WorldWideScience

Sample records for gut barrier function

  1. Influence of functional food components on gut health.

    Science.gov (United States)

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  2. Kiwifruit, mucins, and the gut barrier.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M; Balan, Prabhu

    2013-01-01

    Kiwifruit has long been regarded in China, where it originated from, for its health properties and particularly in relation to digestion and general gut health. There are a number of physical and chemical properties of the fruit, including its dietary fiber content, the presence of raphides, its high water holding capacity and actinidin content, that suggest that kiwifruit may be effective in influencing gut mucin production and thus enhancing the integrity of the gut barrier. The mucous layer, which comprises mucins and other materials, overlying the mucosal epithelium, is an important component of the gut barrier. The gut barrier plays a crucial role in separating the host from the often noxious external environment. The mucous layer, which covers the entire gastrointestinal tract (GIT), is the front line of innate host defense. There have been few direct studies of the effect of kiwifruit ingestion on mucin production in the GIT, and findings that are available using animal models are somewhat inconsistent. Taking results for digesta mucin content, number of goblet cells, and mucin gene expression, together, it would seem that green kiwifruit and possibly gold kiwifruit do influence gut mucin production, and the kiwifruit as part of a balanced diet may help to maintain the mucous layer and gut barrier. More corroborative experimental evidence is needed, and studies need to be undertaken in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

    Science.gov (United States)

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-03-30

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R 2 = 0.5301, P <0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R 2 = 0.4608, P <0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  5. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice

    Science.gov (United States)

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-01-01

    AIM: To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. METHODS: Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. RESULTS: L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway. PMID:22912548

  6. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis.

    Science.gov (United States)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    2017-08-01

    Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on T1D development in nonobese diabetic mice. Female nonobese diabetic mice were weaned to long- and short-chain ITFs [ITF(l) and ITF(s), 5%] supplemented diet up to 24 weeks. T1D incidence, pancreatic-gut immune responses, gut barrier function, and microbiota composition were analyzed. ITF(l) but not ITF(s) supplementation dampened the incidence of T1D. ITF(l) promoted modulatory T-cell responses, as evidenced by increased CD25 + Foxp3 + CD4 + regulatory T cells, decreased IL17A + CD4 + Th17 cells, and modulated cytokine production profile in the pancreas, spleen, and colon. Furthermore, ITF(l) suppressed NOD like receptor protein 3 caspase-1-p20-IL-1β inflammasome in the colon. Expression of barrier reinforcing tight junction proteins occludin and claudin-2, antimicrobial peptides β-defensin-1, and cathelicidin-related antimicrobial peptide as well as short-chain fatty acid production were enhanced by ITF(l). Next-generation sequencing analysis revealed that ITF(l) enhanced Firmicutes/Bacteroidetes ratio to an antidiabetogenic balance and enriched modulatory Ruminococcaceae and Lactobacilli. Our data demonstrate that ITF(l) but not ITF(s) delays the development of T1D via modulation of gut-pancreatic immunity, barrier function, and microbiota homeostasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The intriguing role of Rifaximin in gut barrier chronic inflammation and in the treatment of Crohn's disease.

    Science.gov (United States)

    Lopetuso, Loris R; Napoli, Marco; Rizzatti, Gianenrico; Gasbarrini, Antonio

    2018-06-04

    The gastrointestinal tract acts as a functional unit organized as a semipermeable multilayer system, in which commensal gut microbiota represents the anatomical barrier. Recently,, several studies have highlighted the involvement of gut microbiota in IBD pathogenesis, in sustaining gut barrier chronic inflammation, and in conditioning disease course and therapeutical response. This evidence provides a rationale for treating patients with gut microbiota modifiers. Among these, Rifaximin represents a non-traditional antibiotic able to act as a "eubiotic" on intestinal barrier. Area covered: The purpose of this narrative review is to explore the impact of Rifaximin on gut barrier and gut microbiota in IBD, in particular in Crohn's disease, and to analyze its potential therapeutic applications. Expert opinion: The possibility of a beneficial activity of Rifaximin in chronic intestinal inflammation and Crohn's disease has been debated and evaluated with different studies having obtained promising but still preliminary data. Larger trials are therefore needed. This gut-specific antibiotic could represent an alternative to systemic antibiotics thanks to its favorable safety profile and promising efficacy data. Rifaximin could exert, when appropriate, a synergic effect with immunomodulators in IBD, acting on both the microbial and immunological sides of gut barrier impairment.

  8. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis.

    Science.gov (United States)

    Lorentz, C Adam; Liang, Zhe; Meng, Mei; Chen, Ching-Wen; Yoseph, Benyam P; Breed, Elise R; Mittal, Rohit; Klingensmith, Nathan J; Farris, Alton B; Burd, Eileen M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-06-07

    Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK -/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK -/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK -/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK -/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK -/- mice; however, survival was similar between septic MLCK -/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.

  10. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs

    Directory of Open Access Journals (Sweden)

    Adam J. Moeser

    2017-12-01

    Full Text Available The gastrointestinal (GI barrier serves a critical role in survival and overall health of animals and humans. Several layers of barrier defense mechanisms are provided by the epithelial, immune and enteric nervous systems. Together they act in concert to control normal gut functions (e.g., digestion, absorption, secretion, immunity, etc. whereas at the same time provide a barrier from the hostile conditions in the luminal environment. Breakdown of these critical GI functions is a central pathophysiological mechanism in the most serious GI disorders in pigs. This review will focus on the development and functional properties of the GI barrier in pigs and how common early life production stressors, such as weaning, can alter immediate and long-term barrier function and disease susceptibility. Specific stress-related pathophysiological mechanisms responsible for driving GI barrier dysfunction induced by weaning and the implications to animal health and performance will be discussed.

  11. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  12. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Lisa Lindheim

    Full Text Available Polycystic ovary syndrome (PCOS is a common female endocrinopathy of unclear origin characterized by hyperandrogenism, oligo-/anovulation, and ovarian cysts. Women with PCOS frequently display overweight, insulin resistance, and systemic low-grade inflammation. We hypothesized that endotoxemia resulting from a leaky gut is associated with inflammation, insulin resistance, fat accumulation, and hyperandrogenemia in PCOS. In this pilot study, we compared the stool microbiome, gut permeability, and inflammatory status of women with PCOS and healthy controls.16S rRNA gene amplicon sequencing was performed on stool samples from 24 PCOS patients and 19 healthy controls. Data processing and microbiome analysis were conducted in mothur and QIIME using different relative abundance cut-offs. Gut barrier integrity, endotoxemia, and inflammatory status were evaluated using serum and stool markers and associations with reproductive, metabolic, and anthropometric parameters were investigated.The stool microbiome of PCOS patients showed a lower diversity and an altered phylogenetic composition compared to controls. We did not observe significant differences in any taxa with a relative abundance>1%. When looking at rare taxa, the relative abundance of bacteria from the phylum Tenericutes, the order ML615J-28 (phylum Tenericutes and the family S24-7 (phylum Bacteroidetes was significantly lower and associated with reproductive parameters in PCOS patients. Patients showed alterations in some, but not all markers of gut barrier function and endotoxemia.Patients with PCOS have a lower diversity and an altered phylogenetic profile in their stool microbiome, which is associated with clinical parameters. Gut barrier dysfunction and endotoxemia were not driving factors in this patient cohort, but may contribute to the clinical phenotype in certain PCOS patients.

  13. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study.

    Science.gov (United States)

    Lindheim, Lisa; Bashir, Mina; Münzker, Julia; Trummer, Christian; Zachhuber, Verena; Leber, Bettina; Horvath, Angela; Pieber, Thomas R; Gorkiewicz, Gregor; Stadlbauer, Vanessa; Obermayer-Pietsch, Barbara

    2017-01-01

    Polycystic ovary syndrome (PCOS) is a common female endocrinopathy of unclear origin characterized by hyperandrogenism, oligo-/anovulation, and ovarian cysts. Women with PCOS frequently display overweight, insulin resistance, and systemic low-grade inflammation. We hypothesized that endotoxemia resulting from a leaky gut is associated with inflammation, insulin resistance, fat accumulation, and hyperandrogenemia in PCOS. In this pilot study, we compared the stool microbiome, gut permeability, and inflammatory status of women with PCOS and healthy controls. 16S rRNA gene amplicon sequencing was performed on stool samples from 24 PCOS patients and 19 healthy controls. Data processing and microbiome analysis were conducted in mothur and QIIME using different relative abundance cut-offs. Gut barrier integrity, endotoxemia, and inflammatory status were evaluated using serum and stool markers and associations with reproductive, metabolic, and anthropometric parameters were investigated. The stool microbiome of PCOS patients showed a lower diversity and an altered phylogenetic composition compared to controls. We did not observe significant differences in any taxa with a relative abundance>1%. When looking at rare taxa, the relative abundance of bacteria from the phylum Tenericutes, the order ML615J-28 (phylum Tenericutes) and the family S24-7 (phylum Bacteroidetes) was significantly lower and associated with reproductive parameters in PCOS patients. Patients showed alterations in some, but not all markers of gut barrier function and endotoxemia. Patients with PCOS have a lower diversity and an altered phylogenetic profile in their stool microbiome, which is associated with clinical parameters. Gut barrier dysfunction and endotoxemia were not driving factors in this patient cohort, but may contribute to the clinical phenotype in certain PCOS patients.

  14. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  15. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    Science.gov (United States)

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  16. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis

    NARCIS (Netherlands)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    Scope: Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on

  17. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery.

    Directory of Open Access Journals (Sweden)

    Joep P M Derikx

    Full Text Available Gut barrier loss has been implicated as a critical event in the occurrence of postoperative complications. We aimed to study the development of gut barrier loss in patients undergoing major non-abdominal surgery.Twenty consecutive children undergoing spinal fusion surgery were included. This kind of surgery is characterized by long operation time, significant blood loss, prolonged systemic hypotension, without directly leading to compromise of the intestines by intestinal manipulation or use of extracorporeal circulation. Blood was collected preoperatively, every two hours during surgery and 2, 4, 15 and 24 hours postoperatively. Gut mucosal barrier was assessed by plasma markers for enterocyte damage (I-FABP, I-BABP and urinary presence of tight junction protein claudin-3. Intestinal mucosal perfusion was measured by gastric tonometry (P(rCO2, P(r-aCO2-gap. Plasma concentration of I-FABP, I-BABP and urinary expression of claudin-3 increased rapidly and significantly after the onset of surgery in most children. Postoperatively, all markers decreased promptly towards baseline values together with normalisation of MAP. Plasma levels of I-FABP, I-BABP were significantly negatively correlated with MAP at (1/2 hour before blood sampling (-0.726 (p<0.001, -0.483 (P<0.001, respectively. Furthermore, circulating I-FABP correlated with gastric mucosal P(rCO2, P(r-aCO2-gap measured at the same time points (0.553 (p = 0.040, 0.585 (p = 0.028, respectively.This study shows the development of gut barrier loss in children undergoing major non-abdominal surgery, which is related to preceding hypotension and mesenterial hypoperfusion. These data shed new light on the potential role of peroperative circulatory perturbation and intestinal barrier loss.

  18. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery

    Science.gov (United States)

    Derikx, Joep P. M.; van Waardenburg, Dick A.; Thuijls, Geertje; Willigers, Henriëtte M.; Koenraads, Marianne; van Bijnen, Annemarie A.; Heineman, Erik; Poeze, Martijn; Ambergen, Ton; van Ooij, André; van Rhijn, Lodewijk W.; Buurman, Wim A.

    2008-01-01

    Background Gut barrier loss has been implicated as a critical event in the occurrence of postoperative complications. We aimed to study the development of gut barrier loss in patients undergoing major non-abdominal surgery. Methodology/Principal Findings Twenty consecutive children undergoing spinal fusion surgery were included. This kind of surgery is characterized by long operation time, significant blood loss, prolonged systemic hypotension, without directly leading to compromise of the intestines by intestinal manipulation or use of extracorporeal circulation. Blood was collected preoperatively, every two hours during surgery and 2, 4, 15 and 24 hours postoperatively. Gut mucosal barrier was assessed by plasma markers for enterocyte damage (I-FABP, I-BABP) and urinary presence of tight junction protein claudin-3. Intestinal mucosal perfusion was measured by gastric tonometry (PrCO2, Pr-aCO2-gap). Plasma concentration of I-FABP, I-BABP and urinary expression of claudin-3 increased rapidly and significantly after the onset of surgery in most children. Postoperatively, all markers decreased promptly towards baseline values together with normalisation of MAP. Plasma levels of I-FABP, I-BABP were significantly negatively correlated with MAP at ½ hour before blood sampling (−0.726 (p<0.001), −0.483 (P<0.001), respectively). Furthermore, circulating I-FABP correlated with gastric mucosal PrCO2, Pr-aCO2-gap measured at the same time points (0.553 (p = 0.040), 0.585 (p = 0.028), respectively). Conclusions/Significance This study shows the development of gut barrier loss in children undergoing major non-abdominal surgery, which is related to preceding hypotension and mesenterial hypoperfusion. These data shed new light on the potential role of peroperative circulatory perturbation and intestinal barrier loss. PMID:19088854

  19. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study.

    Directory of Open Access Journals (Sweden)

    Vanessa Stadlbauer

    Full Text Available Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13 or no LcS (n = 15. Data were compared to healthy controls (n = 16. Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level.ClinicalTrials.gov NCT01182844.

  20. Reshaping the gut microbiota at an early age: functional impact on obesity risk?

    Science.gov (United States)

    Luoto, R; Collado, M C; Salminen, S; Isolauri, E

    2013-01-01

    Overweight and obesity can currently be considered a major threat to human health and well-being. Recent scientific advances point to an aberrant compositional development of the gut microbiota and low-grade inflammation as contributing factors, in conjunction with excessive energy intake. A high-fat/energy diet alters the gut microbiota composition, which reciprocally engenders excessive energy harvesting and storage. Further, microbial imbalance increases gut permeability, leading to metabolic endotoxemia, inflammation and insulin resistance. Local intestinal immunologic homeostasis is achieved by tolerogenic immune responses to microbial antigens. In the context of amelioration of insulin sensitivity and decreased adiposity, the potential of gut microbiota modulation with specific probiotics and prebiotics lies in the normalization of aberrant microbiota, improved gut barrier function and creation of an anti-inflammatory milieu. This would suggest a role for probiotic/prebiotic interventions in the search for preventive and therapeutic applications in weight management. © 2013 S. Karger AG, Basel.

  1. Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion

    Directory of Open Access Journals (Sweden)

    Lorène J. Lebrun

    2017-10-01

    Full Text Available Summary: Glucagon-like peptide 1 (GLP-1 is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS administration in mice via a Toll-like receptor 4 (TLR4-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation. : Lebrun et al. demonstrate that enteroendocrine L cells sense lipopolysaccharides (pro-inflammatory bacterial compounds after gut injury and respond by secreting glucagon-like peptide 1. These findings expand concepts of L cell function to include roles as both a nutrient and pathogen sensor, linking glucagon-like peptide secretion to gut inflammation. Keywords: glucagon-like peptide 1, lipopolysaccharides, enteroendocrine cells, TLR4, gut injury, intestinal ischemia, inflammation

  2. Gut inflammation in chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2010-10-01

    Full Text Available Abstract Chronic fatigue syndrome (CFS is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS, a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestinal microbiota, mucosal barrier function, and the immune system have been shown to play a role in the disorder's pathogenesis. Studies examining the microecology of the gastrointestinal (GI tract have identified specific microorganisms whose presence appears related to disease; in CFS, a role for altered intestinal microbiota in the pathogenesis of the disease has recently been suggested. Mucosal barrier dysfunction promoting bacterial translocation has also been observed. Finally, an altered mucosal immune system has been associated with the disease. In this article, we discuss the interplay between these factors in CFS and how they could play a significant role in GI dysfunction by modulating the activity of the enteric nervous system, the intrinsic innervation of the gut. If an altered intestinal microbiota, mucosal barrier dysfunction, and aberrant intestinal immunity contribute to the pathogenesis of CFS, therapeutic efforts to modify gut microbiota could be a means to modulate the development and/or progression of this disorder. For example, the administration of probiotics could alter the gut microbiota, improve mucosal barrier function, decrease pro-inflammatory cytokines, and have the potential to positively influence mood in patients where both emotional symptoms and inflammatory immune signals are elevated. Probiotics also have the potential to improve gut motility, which is dysfunctional in many CFS patients.

  3. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis.

    Science.gov (United States)

    Ciccia, Francesco; Guggino, Giuliana; Rizzo, Aroldo; Alessandro, Riccardo; Luchetti, Michele Maria; Milling, Simon; Saieva, Laura; Cypers, Heleen; Stampone, Tommaso; Di Benedetto, Paola; Gabrielli, Armando; Fasano, Alessio; Elewaut, Dirk; Triolo, Giovanni

    2017-06-01

    Dysbiosis has been recently demonstrated in patients with ankylosing spondylitis (AS) but its implications in the modulation of intestinal immune responses have never been studied. The aim of this study was to investigate the role of ileal bacteria in modulating local and systemic immune responses in AS. Ileal biopsies were obtained from 50 HLA-B27 + patients with AS and 20 normal subjects. Silver stain was used to visualise bacteria. Ileal expression of tight and adherens junction proteins was investigated by TaqMan real-time (RT)-PCR and immunohistochemistry. Serum levels of lipopolysaccharide (LPS), LPS-binding protein (LPS-BP), intestinal fatty acid-BP (iFABP) and zonulin were assayed by ELISA. Monocyte immunological functions were studied in in vitro experiments. In addition the effects of antibiotics on tight junctions in human leukocyte antigen (HLA)-B27 transgenic (TG) rats were assessed. Adherent and invasive bacteria were observed in the gut of patients with AS with the bacterial scores significantly correlated with gut inflammation. Impairment of the gut vascular barrier (GVB) was also present in AS, accompanied by significant upregulation of zonulin, and associated with high serum levels of LPS, LPS-BP, iFABP and zonulin. In in vitro studies zonulin altered endothelial tight junctions while its epithelial release was modulated by isolated AS ileal bacteria. AS circulating monocytes displayed an anergic phenotype partially restored by ex vivo stimulation with LPS+sCD14 and their stimulation with recombinant zonulin induced a clear M2 phenotype. Antibiotics restored tight junction function in HLA-B27 TG rats. Bacterial ileitis, increased zonulin expression and damaged intestinal mucosal barrier and GVB, characterises the gut of patients with AS and are associated with increased blood levels of zonulin, and bacterial products. Bacterial products and zonulin influence monocyte behaviour. Published by the BMJ Publishing Group Limited. For permission to use

  4. Evidence for the effects of yogurt on gut health and obesity.

    Science.gov (United States)

    Pei, Ruisong; Martin, Derek A; DiMarco, Diana M; Bolling, Bradley W

    2017-05-24

    Obesity is associated with increased risk for chronic diseases, and affects both developed and developing nations. Yogurt is a nutrient-dense food that may benefit individuals with lactose intolerance, constipation and diarrheal diseases, hypertension, cardiovascular diseases, diabetes, and certain types of cancer. Emerging evidence suggests that yogurt consumption might also improve the health of obese individuals. Obesity is often accompanied by chronic, low-grade inflammation perpetuated by adipose tissue and the gut. In the gut, obesity-associated dysregulation of microbiota and impaired gut barrier function may increase endotoxin exposure. Intestinal barrier function can be compromised by pathogens, inflammatory cytokines, endocannabinoids, diet, exercise, and gastrointestinal peptides. Yogurt consumption may improve gut health and reduce chronic inflammation by enhancing innate and adaptive immune responses, intestinal barrier function, lipid profiles, and by regulating appetite. While this evidence suggests that yogurt consumption is beneficial for obese individuals, randomized-controlled trials are needed to further support this hypothesis.

  5. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    Science.gov (United States)

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  6. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Science.gov (United States)

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  7. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Directory of Open Access Journals (Sweden)

    Dragana Dobrijevic

    Full Text Available The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  8. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  9. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.

    Science.gov (United States)

    Geurts, L; Neyrinck, A M; Delzenne, N M; Knauf, C; Cani, P D

    2014-03-01

    Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and

  10. Probiotics and the Gut Immune System: Indirect Regulation.

    Science.gov (United States)

    La Fata, Giorgio; Weber, Peter; Mohajeri, M Hasan

    2018-03-01

    The gastrointestinal tract (GIT) represents the largest interface between the human organism and the external environment. In the lumen and upper part of the mucus layer, this organ hosts an enormous number of microorganisms whose composition affects the functions of the epithelial barrier and the gut immune system. Consequentially, the microorganisms in the GIT influence the health status of the organism. Probiotics are living microorganisms which, in specific conditions, confer a health benefit to the host. Among others, probiotics have immunomodulatory properties that usually act directly by (a) increasing the activity of macrophages or natural killer cells, (b) modulating the secretion of immunoglobulins or cytokines, or indirectly by (c) enhancing the gut epithelial barrier, (d) altering the mucus secretion, and (e) competitive exclusion of other (pathogenic) bacteria. This review focuses on specific bacteria strains with indirect immunomodulatory properties. Particularly, we describe here the mechanisms through which specific probiotics enhance the gut epithelial barrier and modulate mucus production. Moreover, we describe the antimicrobial properties of specific bacteria strains. Recent data suggest that multiple pathologies are associated with an unbalanced gut microflora (dysbiosis). Although the cause-effect relationship between pathology and gut microflora is not yet well established, consumption of specific probiotics may represent a powerful tool to re-establish gut homeostasis and promote gut health.

  11. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    Science.gov (United States)

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  12. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis.

    Science.gov (United States)

    Freedman, Samantha N; Shahi, Shailesh K; Mangalam, Ashutosh K

    2018-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

  13. Gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  14. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice.

    Science.gov (United States)

    Malaisé, Yann; Ménard, Sandrine; Cartier, Christel; Lencina, Corinne; Sommer, Caroline; Gaultier, Eric; Houdeau, Eric; Guzylack-Piriou, Laurence

    2018-01-01

    The potent immunomodulatory effect of the endocrine disruptor bisphenol A during development and consequences during life span are of increasing concern. Particular interests have been raised from animal studies regarding the risk of developing food intolerance and infection. We aimed to identify immune disorders in mice triggered by perinatal exposure to bisphenol A. Gravid mice were orally exposed to bisphenol (50 μg/kg body weight/day) from day 15 of pregnancy until weaning. Gut barrier function, local and systemic immunity were assessed in adult female offspring. Mice perinatally exposed to bisphenol showed a decrease in ileal lysozyme expression and a fall of fecal antimicrobial activity. In offspring mice exposed to bisphenol, an increase in colonic permeability was observed associated with an increase in interferon-γ level and a drop of colonic IgA + cells and fecal IgA production. Interestingly, altered frequency of innate lymphoid cells type 3 occurred in the small intestine, with an increase in IgG response against commensal bacteria in sera. These effects were related to a defect in dendritic cell maturation in the lamina propria and spleen. Activated and regulatory T cells were decreased in the lamina propria. Furthermore, perinatal exposure to bisphenol promoted a sharp increase in interferon-γ and interleukin-17 production in the intestine and elicited a T helper 17 profile in the spleen. To conclude, perinatal exposure to bisphenol weakens protective and regulatory immune functions in the intestine and at systemic level in adult offspring. The increased susceptibility to inflammatory response is an interesting lead supporting bisphenol-mediated adverse consequences on food reactions and infections.

  15. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  16. Functional variation in the gut microbiome of wild Drosophila populations.

    Science.gov (United States)

    Bost, Alyssa; Martinson, Vincent G; Franzenburg, Soeren; Adair, Karen L; Albasi, Alice; Wells, Martin T; Douglas, Angela E

    2018-05-26

    Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the γ-Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    Science.gov (United States)

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  18. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  19. Structure and function of the healthy pre-adolescent pediatric gut microbiome.

    Science.gov (United States)

    Hollister, Emily B; Riehle, Kevin; Luna, Ruth Ann; Weidler, Erica M; Rubio-Gonzales, Michelle; Mistretta, Toni-Ann; Raza, Sabeen; Doddapaneni, Harsha V; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Petrosino, Joseph F; Shulman, Robert J; Versalovic, James

    2015-08-26

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limited. Using 16S rRNA gene and shotgun metagenomic sequencing, we characterized the structure, function, and variation of the healthy pediatric gut microbiome in a cohort of school-aged, pre-adolescent children (ages 7-12 years). We compared the healthy pediatric gut microbiome with that of healthy adults previously recruited from the same region (Houston, TX, USA). Although healthy children and adults harbored similar numbers of taxa and functional genes, their composition and functional potential differed significantly. Children were enriched in Bifidobacterium spp., Faecalibacterium spp., and members of the Lachnospiraceae, while adults harbored greater abundances of Bacteroides spp. From a functional perspective, significant differences were detected with respect to the relative abundances of genes involved in vitamin synthesis, amino acid degradation, oxidative phosphorylation, and triggering mucosal inflammation. Children's gut communities were enriched in functions which may support ongoing development, while adult communities were enriched in functions associated with inflammation, obesity, and increased risk of adiposity. Previous studies suggest that the human gut microbiome is relatively stable and adult-like after the first 1 to 3 years of life. Our results suggest that the healthy pediatric gut microbiome harbors compositional and functional qualities that differ from those of healthy adults and that the gut microbiome may undergo a more prolonged development than previously suspected.

  20. Identification of potential biomarkers for gut barrier failure in broiler chickens

    Directory of Open Access Journals (Sweden)

    Juxing eChen

    2015-05-01

    Full Text Available The objective of the present study was to identify potential biomarkers for gut barrier failure in chickens. A total of 144 day-of-hatch Ross 308 male broiler chickens were housed in 24 battery cages with 6 chicks per cage. Cages were randomly assigned to either a control group (CON or gut barrier failure (GBF group. During the first 13 d, birds in CON or GBF groups were fed a common corn-soy starter diet. On d 14, CON chickens were switched to a corn grower diet and GBF chickens were switched to rye-wheat-barley grower diet. In addition, on d 21, GBF chickens were orally challenged with a coccidiosis vaccine. At d 21 and d 28, birds were weighed by cage and feed intake was recorded to calculate feed conversion ratio. At d 28, one chicken from each cage was euthanized to collect intestinal samples for morphometric analysis, blood for serum, and intestinal mucosa scrapings for gene expression. Overall performance and feed efficiency was severely affected (P < 0.05 by a GBF model when compared with CON group at d 21 and d 28. Duodenum of GBF birds had wider villi, longer crypt depth, and higher crypt depth/villi height ratio than CON birds. Similarly, GBF birds had longer crypt depth in jejunum and ileum when compared with CON birds. An increase (P <0.05 in serum endotoxin, α1-acid glycoprotein (AGP, as well as interleukin (IL-8, IL-1β, transforming growth factor (TGF-β4 and fatty-acid-binding protein (FABP 6 mRNA levels were increased in GBF birds compared to CON; however, FABP2 mRNA levels were decreased (P <0.05 in GBF birds compared to CON. Occludin was numerically reduced by 24% (P = 0.107 and mucin 2 (MUC2 was reduced by 29 % (P = 0.088 in GBF birds compared to CON birds. The results from the present study suggest that serum endotoxin and AGP, as well as, gene expression of FABP2, FABP6, IL-8, IL-1β and TGF-β4 in mucosa may work as potential biomarkers for gut barrier health in chickens.

  1. Structure and function of the healthy pre-adolescent pediatric gut microbiome

    Science.gov (United States)

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...

  2. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Jared D. Hoffman

    2017-09-01

    Full Text Available Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD. However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF, gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age and compared those to old mice (18–20 months of age by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to

  3. The Gut Microbiota: Ecology and Function

    Energy Technology Data Exchange (ETDEWEB)

    Willing, B.P.; Jansson, J.K.

    2010-06-01

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.

  4. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.

    Science.gov (United States)

    Wiley, N C; Dinan, T G; Ross, R P; Stanton, C; Clarke, G; Cryan, J F

    2017-07-01

    The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.

  5. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  6. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  7. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer.

    Science.gov (United States)

    Fasano, Alessio

    2011-01-01

    The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs.

  8. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2011-11-01

    Full Text Available Abstract Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS, which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered.

  9. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders.

    Science.gov (United States)

    Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D

    2017-06-14

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  10. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  11. Infant Nutritional Status, Feeding Practices, Enteropathogen Exposure, Socioeconomic Status, and Illness Are Associated with Gut Barrier Function As Assessed by the Lactulose Mannitol Test in the MAL-ED Birth Cohort.

    Science.gov (United States)

    Lee, Gwenyth O; McCormick, Benjamin J J; Seidman, Jessica C; Kosek, Margaret N; Haque, Rashidul; Olortegui, Maribel Paredes; Lima, Aldo A M; Bhutta, Zulfiqar A; Kang, Gagandeep; Samie, Amidou; Amour, Caroline; Mason, Carl J; Ahmed, Tahmeed; Yori, Pablo Peñataro; Oliveira, Domingos B; Alam, Didar; Babji, Sudhir; Bessong, Pascal; Mduma, Estomih; Shrestha, Sanjaya K; Ambikapathi, Ramya; Lang, Dennis R; Gottlieb, Michael; Guerrant, Richard L; Caulfield, Laura E; For The Mal-Ed Network Investigators

    2017-07-01

    The lactulose mannitol (LM) dual sugar permeability test is the most commonly used test of environmental enteropathy in developing countries. However, there is a large but conflicting literature on its association with enteric infection and host nutritional status. We conducted a longitudinal cohort using a single field protocol and comparable laboratory procedures to examine intestinal permeability in multiple, geographically diverse pediatric populations. Using a previously published systematic review to guide the selection of factors potentially associated with LM test results, we examined the relationships between these factors and mucosal breach, represented by percent lactulose excretion; absorptive area, represented by percent mannitol excretion; and gut barrier function, represented by the L/M ratio. A total of 6,602 LM tests were conducted in 1,980 children at 3, 6, 9, and 15 months old; percent lactulose excretion, percent mannitol excretion, and the L/M ratio were expressed as age- and sex-specific normalized values using the Brazil cohort as the reference population. Among the factors considered, recent severe diarrhea, lower socioeconomic status, and recent asymptomatic enteropathogen infections were associated with decreased percent mannitol excretion and higher L/M ratios. Poorer concurrent weight-for-age, infection, and recent breastfeeding were associated with increased percent lactulose excretion and increased L/M ratios. Our results support previously reported associations between the L/M ratio and factors related to child nutritional status and enteropathogen exposure. These results were remarkably consistent across sites and support the hypothesis that the frequency of these exposures in communities living in poverty leads to alterations in gut barrier function.

  12. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  13. Neuroimmune modulation of gut function

    Science.gov (United States)

    There is considerable interest in the mechanisms and pathways involved in the neuro-immune regulation of gut function. The number of cell types and possible interactions is staggering and there are a number of recent reviews detailing various aspects of these interactions, many of which focus on ...

  14. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota.

    Science.gov (United States)

    Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E

    2018-04-01

    Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.

  15. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet.

    Science.gov (United States)

    Kurundkar, Ashish R; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Hartman, Yolanda E; He, Dongning; Karnatak, Rajendra K; Neel, Mary L; Clancy, John P; Anantharamaiah, G M; Maheshwari, Akhil

    2010-08-01

    Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-wk-old previously healthy piglets to venoarterial ECMO for up to 8 h and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 h of treatment, leading to a 6- to 10-fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. On the basis of these data, we conclude that ECMO is an independent cause of gut barrier dysfunction and bacterial translocation may be an important contributor to ECMO-related inflammation.

  16. Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota.

    Science.gov (United States)

    Bird, Julia K; Raederstorff, Daniel; Weber, Peter; Steinert, Robert E

    2017-11-01

    Encouraging scientific research into the health effects of dietary bioactive resveratrol has been confounded by its rapid first-pass metabolism, which leads to low in vivo bioavailability. Preliminary studies have shown that resveratrol can modulate gut microbiota composition, undergo biotransformation to active metabolites via the intestinal microbiota, or affect gut barrier function. In rodents, resveratrol can modify the relative Bacteroidetes:Firmicutes ratio and reverse the gut microbial dysbiosis caused by a high-fat diet. By upregulating the expression of genes involved in maintaining tight junctions between intestinal cells, resveratrol contributes to gut barrier integrity. The composition of the gut microbiome and rapid metabolism of resveratrol determines the production of resveratrol metabolites, which are found at greater concentrations in humans after ingestion than their parent molecule and can have similar biological effects. Resveratrol may affect cardiovascular risk factors such as elevated blood cholesterol or trimethylamine N -oxide concentrations. Modulating the composition of the gut microbiota by resveratrol may affect central energy metabolism and modify concentrations of satiety hormones to produce antiobesity effects. Encouraging research from animal models could be tested in humans. © 2017 American Society for Nutrition.

  17. The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs.

    Science.gov (United States)

    Spiljar, Martina; Merkler, Doron; Trajkovski, Mirko

    2017-01-01

    The gut microbiota is essential for the development and regulation of the immune system and the metabolism of the host. Germ-free animals have altered immunity with increased susceptibility to immunologic diseases and show metabolic alterations. Here, we focus on two of the major immune-mediated microbiota-influenced components that signal far beyond their local environment. First, the activation or suppression of the toll-like receptors (TLRs) by microbial signals can dictate the tone of the immune response, and they are implicated in regulation of the energy homeostasis. Second, we discuss the intestinal mucosal surface is an immunologic component that protects the host from pathogenic invasion, is tightly regulated with regard to its permeability and can influence the systemic energy balance. The short chain fatty acids are a group of molecules that can both modulate the intestinal barrier and escape the gut to influence systemic health. As modulators of the immune response, the microbiota-derived signals influence functions of distant organs and can change susceptibility to metabolic diseases.

  18. Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut

    DEFF Research Database (Denmark)

    Dantas, Gautam; Sommer, Morten; Degnan, Patrick H.

    2013-01-01

    The complex and intimate relationship between humans and their gut microbial communities is becoming less obscure, due in part to large-scale gut microbial genome-sequencing projects and culture-independent surveys of the composition and gene content of these communities.These studies build upon...... ofmicrobial genome and community profiling projects, and the loss-of-function and gain-of-function strategies long employed in model organisms are now being extended to microbial genes, species, and communities from the human gut. These developments promise to deepen our understanding of human gut host...

  19. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    Science.gov (United States)

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  20. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Yan Y. Lam

    2017-06-01

    Full Text Available Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  1. Tackling probiotic and gut microbiota functionality through proteomics.

    Science.gov (United States)

    Ruiz, Lorena; Hidalgo, Claudio; Blanco-Míguez, Aitor; Lourenço, Anália; Sánchez, Borja; Margolles, Abelardo

    2016-09-16

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Many strains exert their beneficial effects after transiently colonizing the human gut, where they interact with the rest of the intestinal microorganisms and with the host mucosa. Indeed the human gut harbours a huge number of microorganisms also known as gut microbiota. Imbalances in the relative abundances of the individual components of the gut microbiota may determine the health status of the host and alterations in specific groups have been related to different diseases and metabolic disorders. Proteomics provide a set of high-throughput methodologies for protein identification that are extremely useful for studying probiotic functionality and helping in the assessment of specific health-promoting activities, such as their immunomodulatory activity, the intestinal colonization processes, and the crosstalk mechanisms with the host. Furthermore, proteomics have been used to identify markers of technological performance and stress adaptation, which helps to predict traits such as behaviour into food matrices and ability to survive passage through the gastrointestinal tract. The aim of this review is to compile studies in which proteomics have been used to assess probiotic functionality and to identify molecular players supporting their mechanisms of action. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Molecular basis underlying the functional properties of probiotic bacteria responsible for the health promoting effects have been in the background for many years. Breakthrough of omics technologies in the probiotic and microbiota fields has had a very relevant impact in the elucidation of probiotic mechanisms and in the procedures to select these microorganisms, based on solid scientific evidence. It is unquestionable that, in the near future, the evolution of proteomic techniques

  2. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    Science.gov (United States)

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Gut barrier function and systemic endotoxemia after laparotomy or laparoscopic resection for colon cancer: A prospective randomized study

    Directory of Open Access Journals (Sweden)

    Mario Schietroma

    2016-01-01

    Full Text Available Purpose: The gut barrier is altered in certain pathologic conditions (shock, trauma, or surgical stress, resulting in bacterial and/or endotoxin translocation from the gut lumen into the systemic circulation. In this prospective randomized study, we investigated the effect of surgery on intestinal permeability (IP and endotoxemia in patients undergoing elective colectomy for colon cancer by comparing the laparoscopic with the open approach. Patients and Methods: A hundred twenty-three consecutive patients underwent colectomy for colon cancer: 61 cases were open resection (OR and 62 cases were laparoscopic resection (LR. IP was measured preoperatively and at days 1 and 3 after surgery. Serial venous blood sample were taken at 0, 30, 60, 90, 120, and 180 min, and at 12, 24, and 48 h after surgery for endotoxin measurement. Results: IP was significantly increased in the open and closed group at day 1 compared with the preoperative level (P < 0.05, but no difference was found between laparoscopic and open surgery group. The concentration endotoxin systemic increased significantly in the both groups during the course of surgery and returned to baseline levels at the second day. No difference was found between laparoscopic and open surgery. A significant correlation was observed between the maximum systemic endotoxin concentration and IP measured at day 1 in the open group and in the laparoscopic group. Conclusion: An increase in IP, and systemic endotoxemia were observed during the open and laparoscopic resection for colon cancer, without significant statistically difference between the two groups.

  4. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; A randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, De Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm J.H.M.; Wit, De Nicole J.W.; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  5. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H M; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A M; Troost, Freddy J

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  6. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-05-01

    Full Text Available Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ loci occludin and zona occludens (ZO-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  7. Effects of Dietary Bacillus licheniformis on Gut Physical Barrier, Immunity, and Reproductive Hormones of Laying Hens.

    Science.gov (United States)

    Wang, Yang; Du, Wei; Lei, Kai; Wang, Baikui; Wang, Yuanyuan; Zhou, Yingshan; Li, Weifen

    2017-09-01

    Previous study showed that dietary Bacillus licheniformis (B. licheniformis) administration contributes to the improvement of laying performance and egg quality in laying hens. In this study, we aimed to further evaluate its underlying mechanisms. Three hundred sixty Hy-Line Variety W-36 hens (28 weeks of age) were randomized into four groups, each group with six replications (n = 15). The control group received the basal diet and the treatment groups received the same basal diets supplemented with 0.01, 0.03, and 0.06% B. licheniformis powder (2 × 10 10  cfu/g) for an 8-week trial. The results demonstrate that B. licheniformis significantly enhance the intestinal barrier functions via decreasing gut permeability, promoting mucin-2 transcription, and regulating inflammatory cytokines. The systemic immunity of layers in B. licheniformis treatment groups is improved through modulating the specific and non-specific immunity. In addition, gene expressions of hormone receptors, including estrogen receptor α, estrogen receptor β, and follicle-stimulating hormone receptor, are also regulated by B. licheniformis. Meanwhile, compared with the control, B. licheniformis significantly increase gonadotropin-releasing hormone level, but markedly reduce ghrelin and inhibin secretions. Overall, our data suggest that dietary inclusion of B. licheniformis can improve the intestinal barrier function and systemic immunity and regulate reproductive hormone secretions, which contribute to better laying performance and egg quality of hens.

  8. Role of gut pathogens in development of irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Madhusudan Grover

    2014-01-01

    Full Text Available Acute infectious gastroenteritis is one of the most commonly identifiable risk factors for the development of irritable bowel syndrome (IBS. A number of bacterial, viral and parasitic pathogens have been found to be associated with the development of IBS and other functional gastrointestinal (GI disorders. Epidemiological studies have identified demographic and acute enteritis-related risk factors for the development of post-infectious-IBS (PI-IBS. Immune dysregulation, alterations in barrier function, serotonergic and mast cell activation have been identified as potential pathophysiological mechanisms. Additionally, variations in host genes involved in barrier function, antigen presentation and cytokine response have been associated with PI-IBS development. However, it is unknown whether specific pathogens have unique effects on long-term alterations in gut physiology or different pathogens converge to cause common alterations resulting in similar phenotype. The role of microbial virulence and pathogenicity factors in development of PI-IBS is also largely unknown. Additionally, alterations in host gut sensation, motility, secretion, and barrier function in PI-IBS need to be elucidated. Finally, both GI infections and antibiotics used to treat these infections can cause long-term alterations in host commensal microbiota. It is plausible that alteration in the commensal microbiome persists in a subset of patients predisposing them to develop PI-IBS.

  9. Leaky gut and autoimmune diseases.

    Science.gov (United States)

    Fasano, Alessio

    2012-02-01

    Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on the role of impaired intestinal barrier function on autoimmune pathogenesis. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiologic modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the zonulin pathway is deregulated in genetically susceptible individuals, autoimmune disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing the zonulin-dependent intestinal barrier function. Both animal models and recent clinical evidence support this new paradigm and provide the rationale for innovative approaches to prevent and treat autoimmune diseases.

  10. Gastroenterology issues in schizophrenia: why the gut matters.

    Science.gov (United States)

    Severance, Emily G; Prandovszky, Emese; Castiglione, James; Yolken, Robert H

    2015-05-01

    Genetic and environmental studies implicate immune pathologies in schizophrenia. The body's largest immune organ is the gastrointestinal (GI) tract. Historical associations of GI conditions with mental illnesses predate the introduction of antipsychotics. Current studies of antipsychotic-naïve patients support that gut dysfunction may be inherent to the schizophrenia disease process. Risk factors for schizophrenia (inflammation, food intolerances, Toxoplasma gondii exposure, cellular barrier defects) are part of biological pathways that intersect those operant in the gut. Central to GI function is a homeostatic microbial community, and early reports show that it is disrupted in schizophrenia. Bioactive and toxic products derived from digestion and microbial dysbiosis activate adaptive and innate immunity. Complement C1q, a brain-active systemic immune component, interacts with gut-related schizophrenia risk factors in clinical and experimental animal models. With accumulating evidence supporting newly discovered gut-brain physiological pathways, treatments to ameliorate brain symptoms of schizophrenia should be supplemented with therapies to correct GI dysfunction.

  11. Exposure to bacterial DNA before hemorrhagic shock strongly aggravates systemic inflammation and gut barrier loss via an IFN-gamma-dependent route

    NARCIS (Netherlands)

    Luyer, Misha D.; Buurman, Wim A.; Hadfoune, M.'hamed; Wolfs, T.; van't Veer, Cornelis; Jacobs, Jan A.; Dejong, Cornelis H.; Greve, Jan Willem M.

    2007-01-01

    OBJECTIVE: To investigate the role of bacterial DNA in development of an excessive inflammatory response and loss of gut barrier loss following systemic hypotension. SUMMARY BACKGROUND DATA: Bacterial infection may contribute to development of inflammatory complications following major surgery;

  12. Gut Microbiota in Cardiovascular Health and Disease

    Science.gov (United States)

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  13. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    Renowned experts present the latest knowledge Although a very fragile structure, the skin barrier is probably one of the most important organs of the body. Inward/out it is responsible for body integrity and outward/in for keeping microbes, chemicals, and allergens from penetrating the skin. Since...... the role of barrier integrity in atopic dermatitis and the relationship to filaggrin mutations was discovered a decade ago, research focus has been on the skin barrier, and numerous new publications have become available. This book is an interdisciplinary update offering a wide range of information...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  14. Comparative fecal metagenomics unveils unique functional capacity of the swine gut

    Directory of Open Access Journals (Sweden)

    Martinson John

    2011-05-01

    Full Text Available Abstract Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices.

  15. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers.

    Directory of Open Access Journals (Sweden)

    Brian L Weiss

    Full Text Available Tsetse flies (Glossina spp. vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb and epithelial (inducible nitric oxide synthase and dual oxidase immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo adults present a structurally compromised peritrophic matrix (PM, which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results

  16. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-07-01

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice

    Directory of Open Access Journals (Sweden)

    Zuheng Liu

    2017-09-01

    Full Text Available Physical exercise is commonly regarded as protective against cardiovascular disease (CVD. Recent studies have reported that exercise alters the gut microbiota and that modification of the gut microbiota can influence cardiac function. Here, we focused on the relationships among exercise, the gut microbiota and cardiac function after myocardial infarction (MI. Four-week-old C57BL/6J mice were exercised on a treadmill for 4 weeks before undergoing left coronary artery ligation. Cardiac function was assessed using echocardiography. Gut microbiomes were evaluated post-exercise and post-MI using 16S rRNA gene sequencing on an Illumina HiSeq platform. Exercise training inhibited declines in cardiac output and stroke volume in post-MI mice. In addition, physical exercise and MI led to alterations in gut microbial composition. Exercise training increased the relative abundance of Butyricimonas and Akkermansia. Additionally, key operational taxonomic units were identified, including 24 lineages (mainly from Bacteroidetes, Barnesiella, Helicobacter, Parabacteroides, Porphyromonadaceae, Ruminococcaceae, and Ureaplasma that were closely related to exercise and cardiac function. These results suggested that exercise training improved cardiac function to some extent in addition to altering the gut microbiota; therefore, they could provide new insights into the use of exercise training for the treatment of CVD.

  18. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  19. Low calorie sweeteners: Evidence remains lacking for effects on human gut function.

    Science.gov (United States)

    Bryant, Charlotte; Mclaughlin, John

    2016-10-01

    The importance of nutrient induced gut-brain signalling in the regulation of human food intake has become an increasing focus of research. Much of the caloric excess consumed comes from dietary sugars, but our knowledge about the mechanisms mediating the physiological and appetitive effects of sweet tastants in the human gut and gut-brain axis is far from complete. The comparative effects of natural sugars vs low calorie sweeteners are also poorly understood. Research in animal and cellular models has suggested a key functional role in gut endocrine cells for the sweet taste receptors previously well described in oral taste. However human studies to date have very consistently failed to show that activation of the sweet taste receptor by low calorie sweeteners placed in the human gut fails to replicate any of the effects on gastric motility, gut hormones or appetitive responses evoked by caloric sugars. Copyright © 2016. Published by Elsevier Inc.

  20. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    Science.gov (United States)

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  1. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  2. Role of intestinal mucosal barrier in the development and progression of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    ZHANG Yuanyuan

    2016-12-01

    Full Text Available The incidence of non-alcoholic fatty liver disease (NAFLD has been increasing year by year in China. Intestinal mucosa is the largest organ for bacterial storage, and intestinal mucosal barrier includes biological barrier, mechanical barrier, immunological barrier, and chemical barrier. This article investigates the important role of intestinal mucosal barrier function in the pathogenesis of NAFLD. As for the intestinal biological barrier, abnormalities in gut microbiota occur earlier than obesity and other metabolic disorders; small intestinal bacterial overgrowth may affect energy metabolism, promote insulin resistance, and get involved in the pathogenesis of NAFLD; regulation of gut microbiota has a certain clinical effect in the treatment of NAFLD. Intestinal mechanical barrier impairment increases the mucosal permeability and is associated with intestinal dysbacteriosis. The changes in intestinal immunological barrier may be associated with obesity, metabolic disorders, and liver inflammation. The changes in intestinal chemical barrier can inhibit the synthesis and secretion of very low-density lipoprotein and low-density lipoprotein in hepatocytes and may result in triglyceride deposition in the liver. It is pointed out that the research on intestinal mucosal barrier function provides promising prospects for the prevention and treatment of NAFLD.

  3. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    Science.gov (United States)

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  4. Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections.

    Science.gov (United States)

    Serino, Matteo

    2018-03-02

    Alterations of both ecology and functions of gut microbiota are conspicuous traits of several inflammatory pathologies, notably metabolic diseases such as obesity and type 2 diabetes. Moreover, the proliferation of enterobacteria, subdominant members of the intestinal microbial ecosystem, has been shown to be favored by Western diet, the strongest inducer of both metabolic diseases and gut microbiota dysbiosis. The inner interdependence between the host and the gut microbiota is based on a plethora of molecular mechanisms by which host and intestinal microbes modify each other. Among these mechanisms are as follows: (i) the well-known metabolic impact of short chain fatty acids, produced by microbial fermentation of complex carbohydrates from plants; (ii) a mutual modulation of miRNAs expression, both on the eukaryotic (host) and prokaryotic (gut microbes) side; (iii) the production by enterobacteria of virulence factors such as the genotoxin colibactin, shown to alter the integrity of host genome and induce a senescence-like phenotype in vitro; (iv) the microbial excretion of outer-membrane vesicles, which, in addition to other functions, may act as a carrier for multiple molecules such as toxins to be delivered to target cells. In this review, I describe the major molecular mechanisms by which gut microbes exert their metabolic impact at a multi-organ level (the gut barrier being in the front line) and support the emerging triad of metabolic diseases, gut microbiota dysbiosis and enterobacteria infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota.

    Science.gov (United States)

    Lyu, Ming; Wang, Yue-Fei; Fan, Guan-Wei; Wang, Xiao-Ying; Xu, Shuang-Yong; Zhu, Yan

    2017-01-01

    It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella , while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella ) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and

  6. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Ming Lyu

    2017-11-01

    Full Text Available It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs, and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella, while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs, bile acids (BAs and lipopolysaccharides (LPS, which are now correlated with metabolic diseases such as type 2 diabetes (T2D, obesity and non-alcoholic fatty liver disease (NAFLD. In addition, trimethylamine (TMA-N-oxide (TMAO is recently linked to atherosclerosis (AS and cardiovascular disease (CVD risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and

  7. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota

    Science.gov (United States)

    Lyu, Ming; Wang, Yue-fei; Fan, Guan-wei; Wang, Xiao-ying; Xu, Shuang-yong; Zhu, Yan

    2017-01-01

    It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella, while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and treatment

  8. Early colonization of functional groups of microbes in the infant gut.

    Science.gov (United States)

    Pham, Van T; Lacroix, Christophe; Braegger, Christian P; Chassard, Christophe

    2016-07-01

    The colonization of the infant gut is crucial for early life development. Although the composition and diversity of the infant gut microbiota (GM) has been well described at a taxonomic level, functional aspects of this ecosystem remain unexplored. In the infant gut, lactate is produced by a number of bacteria and plays an important role in the trophic chain of the fermentation process. However, little is known about the lactate-utilizing bacteria (LUB) community in infants and their impact on gut health. By combining culture-based and molecular methods, we intensively studied LUB in fecal samples of 40 healthy infants on both taxonomic and functional levels. We demonstrated metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization. The interactions of such species and their metabolic outcome could have direct impacts on infant health, either beneficial (production of short chain fatty acids) or detrimental (accumulation of hydrogen or hydrogen sulfide). We identified mode of delivery as a strong determinant for lactate-producing and -utilizing bacteria levels. These findings present the early establishment of GM with a novel perspective and emphasize the importance of lactate utilization in infancy. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    Science.gov (United States)

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  10. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study.

    Science.gov (United States)

    Koloski, N A; Jones, M; Talley, N J

    2016-09-01

    Traditionally, functional gastrointestinal disorders (FGIDs) are conceptualised as originating in the brain via stress pathways (brain-to-gut). It is uncertain how many with irritable bowel syndrome (IBS) and functional dyspepsia (FD) have a gut origin of symptoms (gut-to-brain pathway). To determine if there is a distinct brain-to-gut FGID (where psychological symptoms begin first) and separately a distinct gut-to-brain FGID (where gut symptoms start first). A prospective random population sample from Newcastle, Australia who responded to a validated survey in 2012 and completed a 1-year follow-up survey (n = 1900). The surveys contained questions on Rome III IBS and FD and the Hospital Anxiety and Depression Scale. We found that higher levels of anxiety and depression at baseline were significant predictors of developing IBS (OR = 1.31; 95% CI 1.06-1.61, P = 0.01; OR = 1.54; 95% CI 1.29-1.83, P intestinal features in many cases. © 2016 John Wiley & Sons Ltd.

  11. Gut

    DEFF Research Database (Denmark)

    Muscogiuri, Giovanna; Balercia, Giancarlo; Barrea, Luigi

    2017-01-01

    The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes...... which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible...... metabolism. Thus, the aim of this manuscript is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects....

  12. Keeping gut lining at bay: impact of emulsifiers.

    Science.gov (United States)

    Cani, Patrice D; Everard, Amandine

    2015-06-01

    Obesity is associated with altered gut microbiota and low-grade inflammation. Both dietary habits and food composition contribute to the onset of such diseases. Emulsifiers, compounds commonly used in a variety of foods, were shown to induce body weight gain, low-grade inflammation and metabolic disorders. These dietary compounds promote gut microbiota alteration and gut barrier dysfunction leading to negative metabolic alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis.

    Science.gov (United States)

    Sanctuary, Megan R; Kain, Jennifer N; Angkustsiri, Kathleen; German, J Bruce

    2018-01-01

    Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the "fragile gut" in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the "fragile gut" in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized

  14. Differential effects of antibiotic therapy on the structure and function of human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Ana Elena Pérez-Cobas

    Full Text Available The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB, are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.

  15. Leaky Gut As a Danger Signal for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Qinghui Mu

    2017-05-01

    Full Text Available The intestinal epithelial lining, together with factors secreted from it, forms a barrier that separates the host from the environment. In pathologic conditions, the permeability of the epithelial lining may be compromised allowing the passage of toxins, antigens, and bacteria in the lumen to enter the blood stream creating a “leaky gut.” In individuals with a genetic predisposition, a leaky gut may allow environmental factors to enter the body and trigger the initiation and development of autoimmune disease. Growing evidence shows that the gut microbiota is important in supporting the epithelial barrier and therefore plays a key role in the regulation of environmental factors that enter the body. Several recent reports have shown that probiotics can reverse the leaky gut by enhancing the production of tight junction proteins; however, additional and longer term studies are still required. Conversely, pathogenic bacteria that can facilitate a leaky gut and induce autoimmune symptoms can be ameliorated with the use of antibiotic treatment. Therefore, it is hypothesized that modulating the gut microbiota can serve as a potential method for regulating intestinal permeability and may help to alter the course of autoimmune diseases in susceptible individuals.

  16. The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus.

    Science.gov (United States)

    Kanbay, Mehmet; Onal, Emine M; Afsar, Baris; Dagel, Tuncay; Yerlikaya, Aslihan; Covic, Adrian; Vaziri, Nosratola D

    2018-05-04

    Chronic kidney disease (CKD) has been shown to result in profound changes in the composition and functions of the gut microbial flora which by disrupting intestinal epithelial barrier and generating toxic by-products contributes to systemic inflammation and the associated complications. On the other hand, emerging evidence points to the role of the gut microbiota in the development and progression of CKD by provoking inflammation, proteinuria, hypertension, and diabetes. These observations demonstrate the causal interconnection between the gut microbial dysbiosis and CKD. The gut microbiota closely interacts with the inflammatory, renal, cardiovascular, and endocrine systems via metabolic, humoral, and neural signaling pathways, events which can lead to chronic systemic inflammation, proteinuria, hypertension, diabetes, and kidney disease. Given the established role of the gut microbiota in the development and progression of CKD and its complications, favorable modification of the composition and function of the gut microbiome represents an appealing therapeutic target for prevention and treatment of CKD. This review provides an overview of the role of the gut microbial dysbiosis in the pathogenesis of the common causes of CKD including hypertension, diabetes, and proteinuria as well as progression of CKD.

  17. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  18. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women.

    Science.gov (United States)

    Ott, Beate; Skurk, Thomas; Hastreiter, Ljiljana; Lagkouvardos, Ilias; Fischer, Sandra; Büttner, Janine; Kellerer, Teresa; Clavel, Thomas; Rychlik, Michael; Haller, Dirk; Hauner, Hans

    2017-09-20

    Recent findings suggest an association between obesity, loss of gut barrier function and changes in microbiota profiles. Our primary objective was to examine the effect of caloric restriction and subsequent weight reduction on gut permeability in obese women. The impact on inflammatory markers and fecal microbiota was also investigated. The 4-week very-low calorie diet (VLCD, 800 kcal/day) induced a mean weight loss of 6.9 ± 1.9 kg accompanied by a reduction in HOMA-IR (Homeostasis model assessment-insulin resistance), fasting plasma glucose and insulin, plasma leptin, and leptin gene expression in subcutaneous adipose tissue. Plasma high-molecular weight adiponectin (HMW adiponectin) was significantly increased after VLCD. Plasma levels of high-sensitivity C-reactive protein (hsCRP) and lipopolysaccharide-binding protein (LBP) were significantly decreased after 28 days of VLCD. Using three different methods, gut paracellular permeability was decreased after VLCD. These changes in clinical parameters were not associated with major consistent changes in dominant bacterial communities in feces. In summary, a 4-week caloric restriction resulted in significant weight loss, improved gut barrier integrity and reduced systemic inflammation in obese women.

  19. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  20. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  1. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats.

    Science.gov (United States)

    Feng, Wenhuan; Wang, Hongdong; Zhang, Pengzi; Gao, Caixia; Tao, Junxian; Ge, Zhijuan; Zhu, Dalong; Bi, Yan

    2017-07-01

    Structural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated. Next generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding. We found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated 'functionally relevant phylotypes'. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin. These results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats. Compounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans.

    Science.gov (United States)

    Allen, Jacob M; Mailing, Lucy J; Niemiro, Grace M; Moore, Rachel; Cook, Marc D; White, Bryan A; Holscher, Hannah D; Woods, Jeffrey A

    2018-04-01

    Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of 6 wk of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota in lean and obese adults with multiple-day dietary controls before outcome variable collection. Thirty-two lean (n = 18 [9 female]) and obese (n = 14 [11 female]), previously sedentary subjects participated in 6 wk of supervised, endurance-based exercise training (3 d·wk) that progressed from 30 to 60 min·d and from moderate (60% of HR reserve) to vigorous intensity (75% HR reserve). Subsequently, participants returned to a sedentary lifestyle activity for a 6-wk washout period. Fecal samples were collected before and after 6 wk of exercise, as well as after the sedentary washout period, with 3-d dietary controls in place before each collection. β-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short-chain fatty acids in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of short-chain fatty acid production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased. These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.

  4. Gut as a target for cadmium toxicity.

    Science.gov (United States)

    Tinkov, Alexey A; Gritsenko, Viktor A; Skalnaya, Margarita G; Cherkasov, Sergey V; Aaseth, Jan; Skalny, Anatoly V

    2018-04-01

    The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Metagenomics Study on the Polymorphism of Gut Microbiota and Their Function on Human Health

    DEFF Research Database (Denmark)

    Feng, Qiang

    diversity and functional complexity of the gut microbiome. Facilitated by the Next Generation Sequencing (NGS) technologies and the progress of bioinformatics in the past decade, we have acquired substantial achievements in metagenomic studies on human gut microbiome and established the fundamentals of our...... understanding of the interactions between gut microbes and human body, and also the importance of this interaction on human health. As one of the milestones, the first integrated gene catalog in the human gut microbiome was constructed in 2010 in the scheme of the Metagenomics of Human Intestinal Tract (Meta......’ are shared in the population. These microorganisms participate in various metabolic pathways and activities of the immune system and the nervous system of our bodies,and have fundamental impacts on our health. For example, an association study between gut microbiome and type 2 diabetes (T2D) highlighted...

  6. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    Science.gov (United States)

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  7. The human gut microbiota: metabolism and perspective in obesity.

    Science.gov (United States)

    Gomes, Aline Corado; Hoffmann, Christian; Mota, João Felipe

    2018-04-18

    The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.

  8. Structure and Function of a Nonruminant Gut: A Porcine Model

    DEFF Research Database (Denmark)

    Tajima, Kiyoshi; Aminov, Rustam

    2015-01-01

    In many aspects, the anatomical, physiological, and microbial diversity features of the ruminant gut are different from that of the monogastric animals. Thus, the main aim of this chapter is to give a comparative overview of the structure and function of the gastrointestinal tract of a nonruminan...

  9. The pathophysiology of necrotizing enterocolitis in preterm infants : New insights in the interaction between the gut and its microbiota

    NARCIS (Netherlands)

    Heida, Fardou Hadewych

    2016-01-01

    Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder affecting the preterm infant. The underlying cause of NEC is partly unknown. This thesis studied the gut flora, the intestinal barrier function, and the intestinal bloodcirculation contributing to NEC. We observed NEC-associated

  10. Alteration of intestinal barrier function during activity-based anorexia in mice.

    Science.gov (United States)

    Jésus, Pierre; Ouelaa, Wassila; François, Marie; Riachy, Lina; Guérin, Charlène; Aziz, Moutaz; Do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O; Coëffier, Moïse

    2014-12-01

    Anorexia nervosa is a severe eating disorder often leading to malnutrition and cachexia, but its pathophysiology is still poorly defined. Chronic food restriction during anorexia nervosa may induce gut barrier dysfunction, which may contribute to disease development and its complications. Here we have characterized intestinal barrier function in mice with activity-based anorexia (ABA), an animal model of anorexia nervosa. Male C57Bl/6 ABA or limited food access (LFA) mice were placed respectively in cages with or without activity wheel. After 5 days of acclimatization, both ABA and LFA mice had progressively limited access to food from 6 h/d at day 6 to 3 h/d at day 9 and until the end of experiment at day 17. A group of pair-fed mice (PF) was also compared to ABA. On day 17, food intake was lower in ABA than LFA mice (2.0 ± 0.18 g vs. 3.0 ± 0.14 g, p anorexia nervosa. The role of these alterations in the pathophysiology of anorexia nervosa should be further evaluated. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function

    Science.gov (United States)

    Agustí, Ana; García-Pardo, Maria P.; López-Almela, Inmaculada; Campillo, Isabel; Maes, Michael; Romaní-Pérez, Marina; Sanz, Yolanda

    2018-01-01

    Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function. PMID:29615850

  12. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro.

    Science.gov (United States)

    Johnson, Laura P; Walton, Gemma E; Psichas, Arianna; Frost, Gary S; Gibson, Glenn R; Barraclough, Timothy G

    2015-06-04

    Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation--another method used to modulate gut composition and function--could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

  13. Gut Microbiota, Obesity and Metabolic Dysfunction

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-12-01

    Full Text Available BACKGROUND: The prevalence of obesity and related disorders such as metabolic syndrome and diabetes has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. This represents an area of scientific need, opportunity and challenge. The insights gleaned should help to address several pressing global health problems. CONTENT: Our bowels have two major roles: the digestion and absorption of nutrients and the maintenance of a barrier against the external environment. They fulfill these functions in the context of, and with the help from, tens of trillions of resident microbes, known as the gut microbiota. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. SUMMARY: The interaction of the intestinal microbial world with its host, and its mutual regulation, will become one of the important topics of biomedical research and will provide us with further insights at the interface of microbiota, metabolism, metabolic syndrome, and obesity. A better understanding of the interaction between certain diets and the human gut microbiome should help to develop new guidelines for feeding humans at various time points in their life, help to improve global human health, and establish ways to prevent or treat various food-related diseases. KEYWORDS: gut microbiota, obesity, metabolic syndrome, type 2 diabetes.

  14. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  15. Comparative Fecal Metagenomics Unveils Unique Functional Capacity of the Swine Gut

    Science.gov (United States)

    Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health and to food and water safety due to the presence of human pathogens in pig feces. Limited information on the physiological...

  16. Non-invasive assessment of barrier integrity and function of the human gut

    NARCIS (Netherlands)

    Grootjans, J.; Thuijls, G.; Verdam, F.J.; Derikx, J.P.M.; Lenaerts, K.; Buurman, W.A.

    2010-01-01

    Over the past decades evidence has been accumulating that intestinal barrier integrity loss plays a key role in the development and perpetuation of a variety of disease states including inflammatory bowel disease and celiac disease, and is a key player in the onset of sepsis and multiple organ

  17. [Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis].

    Science.gov (United States)

    Konturek, Peter C; Zopf, Yurdagül

    2016-05-25

    The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. Overview Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.

  18. Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer.

    Science.gov (United States)

    Kuugbee, Eugene Dogkotenge; Shang, Xueqi; Gamallat, Yaser; Bamba, Djibril; Awadasseid, Annoor; Suliman, Mohammed Ahmed; Zang, Shizhu; Ma, Yufang; Chiwala, Gift; Xin, Yi; Shang, Dong

    2016-10-01

    Structural change in the gut microbiota is implicated in cancer. The beneficial modulation of the microbiota composition with probiotics and prebiotics prevents diseases. We investigated the effect of oligofructose-maltodextrin-enriched Lactobacillus acidophilus, Bifidobacteria bifidum, and Bifidobacteria infantum (LBB), on the gut microbiota composition and progression of colorectal cancer. Sprague Dawley rats were acclimatized, given ampicillin (75 mg/kg), and treated as follows; GCO: normal control; GPR: LBB only; GPC: LBB+ 1,2-dimethylhydrazine dihydrochloride (DMH); and GCA: DMH only (cancer control). 16S V4 Pyrosequencing for gut microbiota analysis, tumor studies, and the expression of MUC2, ZO-1, occludin, TLR2, TLR4, caspase 3, COX-2, and β-catenin were conducted at the end of experiment. Probiotic LBB treatment altered the gut microbiota. The relative abundance of genera Pseudomonas, Congregibacter, Clostridium, Candidactus spp., Phaeobacter, Escherichia, Helicobacter, and HTCC was decreased (P cancer control. The altered gut microbiota was associated with decreased tumor incidence (80 % in GPC vs. 100 % in GCA, P = 0.0001), tumor volume (GPC 84.23 (42.75-188.4) mm(3) vs. GCA 243 (175.5-344.5) mm(3), P cancer control GCA (P colon cancer development by decreasing tumor incidence, multiplicity/count, and volume via enhanced TLR2-improved gut mucosa epithelial barrier integrity and suppression of apoptosis and inflammation.

  19. Intraluminal Flagellin Differentially Contributes to Gut Dysbiosis and Systemic Inflammation following Burn Injury.

    Directory of Open Access Journals (Sweden)

    Logan Grimes

    Full Text Available Burn injury is associated with a loss of gut barrier function, resulting in systemic dissemination of gut-derived bacteria and their products. The bacterial protein and TLR5 agonist, flagellin, induces non-specific innate immune responses. Because we detected flagellin in the serum of burn patients, we investigated whether gut-derived flagellin was a primary or secondary contributor to intestinal dysfunction and systemic inflammation following burn injury. The apical surface of polarized human intestinal epithelial cells (IECs, Caco-2BBe, were exposed to 50 or 500 ng of purified flagellin and 1 x 105 of an intestinal E. coli (EC isolate as follows: 1 flagellin added 30 min prior to EC, 2 flagellin and EC added simultaneously, or 3 EC added 30 min prior to flagellin. Our results showed that luminal flagellin and EC modulated each other's biological actions, which influenced their ability to induce basolateral secretion of inflammatory cytokines and subsequent translocation of bacteria and their products. A low dose of flagellin accompanied by an enteric EC in the lumen, tempered inflammation in a dose- and time-dependent manner. However, higher doses of flagellin acted synergistically with EC to induce both intestinal and systemic inflammation that compromised barrier integrity, increasing systemic inflammation following burn injury, a process we have termed flagellemia. In a murine model of burn injury we found that oral gavage of flagellin (1 μg/mouse significantly affected the gut microbiome after burn injury. In these mice, flagellin disseminated out of the intestine into the serum and to distal organs (mesenteric lymph nodes and lungs where it induced secretion of monocyte chemoattractant protein (MCP-1 and CXCL1/KC (mouse equivalent of human IL-8 at 24 and 48h post-burn. Our results illustrated that gut-derived flagellin alone or accompanied by a non-pathogenic enteric EC strain can function as an initiator of luminal and systemic

  20. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection.

    Science.gov (United States)

    Hofer, Ursula; Speck, Roberto F

    2009-07-01

    Why and how HIV makes people sick is highly debated. Recent evidence implicates heightened immune activation due to breakdown of the gastrointestinal barrier as a determining factor of lentiviral pathogenesis. HIV-mediated loss of Th17 cells from the gut-associated lymphoid tissue (GALT) impairs mucosal integrity and innate defense mechanisms against gut microbes. Translocation of microbial products from the gut, in turn, correlates with increased immune activation in chronic HIV infection and may further damage the immune system by increasing viral and activation-induced T cell death, by reducing T cell reconstitution due to tissue scarring, and by impairing the function of other cell types, such as gammadelta T cells and epithelial cells. Maintaining a healthy GALT may be the key to reducing the pathogenic potential of HIV.

  2. Vasoactive drugs and the gut: is there anything new?

    Science.gov (United States)

    Woolsey, Cheryl A; Coopersmith, Craig M

    2006-04-01

    Systemic changes in blood pressure and cardiac output induced by pressors and inotropes do not always correlate to improvements in regional perfusion. Since the gut is often referred to as the 'motor' of the systemic inflammatory response syndrome, the impact of vasoactive agents on splanchnic perfusion has theoretical importance. This review will highlight recent studies examining secondary effects of vasoactive agents on intestinal perfusion, metabolism, and barrier function. Norepinephrine has minimal impact on mesenteric blood flow although the combination of norepinephrine and dobutamine increases splanchnic blood flow in sepsis. Dopamine also increases mesenteric blood flow although this may be associated with negative hepatic energy balance at high does. Vasopressin and epinephrine both have negative effects on splanchnic blood flow. Newer inodilators levosimendan and olprinone preferentially improve mesenteric perfusion in animal models. Secondary effects of norepinephrine and dopamine on splanchnic perfusion are minor compared with their systemic effects. While vasopressin usage is increasing in the intensive care unit, caution should be used because of its adverse effects on gut perfusion. Experimental agents for the treatment of heart failure have beneficial gut-specific effects although the clinical significance of this is currently limited by their availability.

  3. Gancao-Gansui combination impacts gut microbiota diversity and related metabolic functions.

    Science.gov (United States)

    Yu, Jingao; Guo, Jianming; Tao, Weiwei; Liu, Pei; Shang, Erxin; Zhu, Zhenhua; Fan, Xiuhe; Shen, Juan; Hua, Yongqing; Zhu, Kevin Yue; Tang, Yuping; Duan, Jin-Ao

    2018-03-25

    The theory of "eighteen incompatible medicaments" (EIM) in traditional Chinese medicine (TCM) is the most representative case of herbal-herbal interactions. Gancao and Gansui are one of the incompatible herbal pairs in EIM. Gancao, also known as "licorice", is the most frequently used Chinese herb or food additive. Gansui, the root of Euphorbia kansui T.P. Wang, is another famous Chinese herb usually used to treat edema, ascites and asthma but could induce gastrointestinal (GI) tract irritation. Although Gancao and Gansui are incompatible herbal pairs, they are still used in combination in the famous "Gansui-Banxia" decoction. This study was conducted to investigate if Gancao-Gansui combination could exacerbate Gansui induced GI tract injury. Moreover, the impact of Gancao-Gansui combination to gut microbiota and related metabolism pathways were evaluated. Normal mice were divided into different groups and treated with Gancao extracts, Gansui extracts, and Gancao-Gansui combination extracts for 7 days. Serum biomarkers (diamine oxidase activity, lipopolysaccharide, motilin, IL-1β, IL-6, TNF-α) were determined to reflect GI tract damage. Gut microbiota diversity was studied by 16S rDNA sequencing and metagenomes analysis were also conducted to reflect functional genes expression alteration. Fecal hydrogen sulfide concentrations were measured by spectrophotometry to confirm the alteration of Desulfovibrio genus. Fecal lipid metabolomics study was conducted by GC-MS analysis to confirm the change of metagenomes and Mycoplasma abundance. Gancao-Gansui combination did not exacerbate GI tract tissue or functional damage but caused gut microbiota dysbiosis and increased some rare genus's abundance including Desulfovibrio and Mycoplasma. Desulfovibrio genus proliferation was confirmed by the disturbance of fecal hydrogen sulfide homeostasis. Gancao-Gansui combination also dys-regulated the metabolic genes in metagenomes. Mycoplasma genus proliferation and the metagenomes

  4. Mucosal T cells in gut homeostasis and inflammation

    OpenAIRE

    van Wijk, Femke; Cheroutre, Hilde

    2010-01-01

    The antigen-rich environment of the gut interacts with a highly integrated and specialized mucosal immune system that has the challenging task of preventing invasion and the systemic spread of microbes, while avoiding excessive or unnecessary immune responses to innocuous antigens. Disruption of the mucosal barrier and/or defects in gut immune regulatory networks may lead to chronic intestinal inflammation as seen in inflammatory bowel disease. The T-cell populations of the intestine play a c...

  5. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders

    Directory of Open Access Journals (Sweden)

    D. Pagliari

    2018-01-01

    Full Text Available Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders.

  6. Gut-Brain Axis and Behavior.

    Science.gov (United States)

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  7. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...... and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due......) and Th2 (AD) have been proposed as an explanation. Finally, there is convincing evidence that exposure to irritants increases the risk of CS, and patients with ICD are, therefore, at great risk of developing CA. Skin irritation leads to the release of IL-1 and TNF-α, which affects the function of antigen...

  8. An Extract of Glycyrrhiza glabra (GutGard Alleviates Symptoms of Functional Dyspepsia: A Randomized, Double-Blind, Placebo-Controlled Study

    Directory of Open Access Journals (Sweden)

    Kadur Ramamurthy Raveendra

    2012-01-01

    Full Text Available A randomized, double-blind, placebo-controlled study was conducted to evaluate the efficacy of GutGard, an extract of Glycyrrhiza glabra, in patients with functional dyspepsia. The primary outcome variables of the study were the change in the severity symptoms and the global assessment of efficacy. The quality of life was evaluated as a secondary outcome measure. The patients received either placebo or GutGard (75 mg twice daily for 30 days. Efficacy was evaluated in terms of change in the severity of symptoms (as measured by 7-point Likert scale, the global assessment of efficacy, and the assessment of quality of life using the short-form Nepean Dyspepsia Index. In comparison with placebo, GutGard showed a significant decrease (P≤.05 in total symptom scores on day 15 and day 30, respectively. Similarly, GutGard showed marked improvement in the global assessment of efficacy in comparison to the placebo. The GutGard group also showed a significant decrease (P≤.05 in the Nepean dyspepsia index on day 15 and 30, respectively, when compared to placebo. GutGard was generally found to be safe and well-tolerated by all patients. GutGard has shown significant efficacy in the management of functional dyspepsia.

  9. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes.

    Science.gov (United States)

    Clark, Allison; Mach, Núria

    2016-01-01

    Fatigue, mood disturbances, under performance and gastrointestinal distress are common among athletes during training and competition. The psychosocial and physical demands during intense exercise can initiate a stress response activating the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal (HPA) axes, resulting in the release of stress and catabolic hormones, inflammatory cytokines and microbial molecules. The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including metabolism, endocrine, neuronal and immune function. The gut microbiome and its influence on host behavior, intestinal barrier and immune function are believed to be a critical aspect of the brain-gut axis. Recent evidence in murine models shows that there is a high correlation between physical and emotional stress during exercise and changes in gastrointestinal microbiota composition. For instance, induced exercise-stress decreased cecal levels of Turicibacter spp and increased Ruminococcus gnavus, which have well defined roles in intestinal mucus degradation and immune function. Diet is known to dramatically modulate the composition of the gut microbiota. Due to the considerable complexity of stress responses in elite athletes (from leaky gut to increased catabolism and depression), defining standard diet regimes is difficult. However, some preliminary experimental data obtained from studies using probiotics and prebiotics studies show some interesting results, indicating that the microbiota acts like an endocrine organ (e.g. secreting serotonin, dopamine or other neurotransmitters) and may control the HPA axis in athletes. What is troubling is that dietary recommendations for elite athletes are primarily based on a low consumption of plant polysaccharides, which is associated with reduced microbiota diversity and functionality (e.g. less synthesis of byproducts such as short chain fatty acids and neurotransmitters). As more

  10. Hh pathway expression in human gut tissues and in inflammatory gut diseases

    NARCIS (Netherlands)

    Nielsen, Corinne M.; Williams, Jerrell; van den Brink, Gijs R.; Lauwers, Gregory Y.; Roberts, Drucilla J.

    2004-01-01

    Sonic hedgehog (Shh) directs early gut patterning via epithelial-mesenchymal signaling and remains expressed in endoderm-derived tissues into the adult period. In human adult gut epithelium SHH/SHH expression is strongest in basal layers, which suggests that SHH may function in the maintenance of

  11. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  12. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  13. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg.

    Science.gov (United States)

    Arab, Juan P; Martin-Mateos, Rosa M; Shah, Vijay H

    2018-02-01

    The term gut-liver axis is used to highlight the close anatomical and functional relationship between the intestine and the liver. The intestine has a highly specialized epithelial membrane which regulates transport across the mucosa. Due to dysbiosis, impairment of the intestinal barrier and altered immunity status, bacterial products can reach the liver through the portal vein, where they are recognized by specific receptors, activate the immune system and lead to a proinflammatory response. Gut microbiota and bacterial translocation play an important role in the pathogenesis of chronic liver diseases, including alcoholic and non-alcoholic fatty liver disease, cirrhosis, and its complications, such as portal hypertension, spontaneous bacterial peritonitis and hepatic encephalopaty. The gut microbiota also plays a critical role as a modulator of bile acid metabolism which can also influence intestinal permeability and portal hypertension through the farnesoid-X receptor. On the other hand, cirrhosis and portal hypertension affect the microbiota and increase translocation, leading to a "chicken and egg" situation, where translocation increases portal pressure, and vice versa. A myriad of therapies targeting gut microbiota have been evaluated specifically in patients with chronic liver disease. Further studies targeting intestinal microbiota and its possible hemodynamic and metabolic effects are needed. This review summarizes the current knowledge about the role of gut microbiota in the pathogenesis of chronic liver diseases and portal hypertension.

  14. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  15. Standards for the Protection of Skin Barrier Function.

    Science.gov (United States)

    Giménez-Arnau, Ana

    2016-01-01

    The skin is a vital organ, and through our skin we are in close contact with the entire environment. If we lose our skin we lose our life. The barrier function of the skin is mainly driven by the sophisticated epidermis in close relationship with the dermis. The epidermal epithelium is a mechanically, chemically, biologically and immunologically active barrier submitted to continuous turnover. The barrier function of the skin needs to be protected and restored. Its own physiology allows its recovery, but many times this is not sufficient. This chapter is focused on the standards to restore, treat and prevent barrier function disruption. These standards were developed from a scientific, academic and clinical point of view. There is a lack of standardized administrative recommendations. Still, there is a walk to do that will help to reduce the social and economic burden of diseases characterized by an abnormal skin barrier function. © 2016 S. Karger AG, Basel.

  16. The impact of the postnatal gut microbiota on animal models

    DEFF Research Database (Denmark)

    Hansen, Axel Jacob Kornerup; Ejsing-Duun, Maria; Aasted, Bent

    2007-01-01

    Quality control of laboratory animals has been mostly concentrated on eliminating and securing the absence of specific infections, but event barrier bred laboratory animals harbour a huge number of gut bacteria. There is scientific evidence that the nature of the gut microbiota especially in early...... correlated to factors related to early exposure to microorganisms, e.g. the so-called hygiene hypothesis claims that the increasing human incidence of allergy. T1D, RA and IBD may be due to the lack of such exposure. It is possible today by various molecular techniques to profile the gut microbiota...

  17. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  18. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    Science.gov (United States)

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Chao Kang

    2017-05-01

    Full Text Available Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI responsible for the development of obesity. Capsaicin (CAP is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA measurements, and phylogenetic reconstruction of unobserved states (PICRUSt analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS-producing family S24_7. Predicted function analysis (PICRUSt showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1 by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation.

  20. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro

    Directory of Open Access Journals (Sweden)

    Laura P. Johnson

    2015-06-01

    Full Text Available Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs, which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation—another method used to modulate gut composition and function—could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre, inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

  1. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  2. Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function.

    Science.gov (United States)

    Sanz, Yolanda; De Palma, Giada

    2009-01-01

    The intestinal tract mucosa is exposed to a vast number of environmental antigens and a large community of commensal bacteria. The mucosal immune system has to provide both protection against pathogens and tolerance to harmless bacteria. Immune homeostasis depends on the interaction of indigenous commensal and transient bacteria (probiotics) with various components of the epithelium and the gut-associated lymphoid tissue. Herein, an update is given of the mechanisms by which the gut microbiota and probiotics are translocated through the epithelium, sensed via pattern-recognition receptors, and activate innate and adaptive immune responses.

  3. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.

    Science.gov (United States)

    MacMillan, Heath A; Yerushalmi, Gil Y; Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2017-08-18

    Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.

  4. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Gut microbiota and immunopathogenesis of diabetes mellitus type 1 and 2.

    Science.gov (United States)

    Wang, Fei; Zhang, Chunfang; Zeng, Qiang

    2016-06-01

    Diabetes mellitus (DM) is a major increasing global health burden in the aging population. Understanding the etiology of DM is beneficial for its prevention as well as treatment. In light of the metagenome hypothesis, defined as the overall bacterial genome, gut microbes have attracted increasing attention in the pathogenesis of DM. Many studies have found that gut microbes are involved in the immunopathogenesis of DM. Probiotics strengthen the host's intestinal barrier and modulate the immune system, and have therefore been investigated in DM management. Recent epigenetic findings in context of genes associated with inflammation suggest a possible way in which gut microbiota participate in the immunopathogenesis of DM. In this review, we discuss the role of gut microbiota in the immunopathogenesis of DM.

  6. Structural and functional changes in the gut microbiota associated to Clostridium difficile infection

    Directory of Open Access Journals (Sweden)

    Ana Elena Pérez-Cobas

    2014-07-01

    Full Text Available Antibiotic therapy is a causative agent of severe disturbances in microbial communities. In healthy individuals, the gut microbiota prevents infection by harmful microorganisms through direct inhibition (releasing antimicrobial compounds, competition, or stimulation of the host’s immune defenses. However, widespread antibiotic use has resulted in short- and long-term shifts in the gut microbiota structure, leading to a loss in colonization resistance in some cases. Consequently, some patients develop Clostridium difficile infection (CDI after taking an antibiotic (AB and, at present, this opportunistic pathogen is one of the main causes of antibiotic-associated diarrhea in hospitalized patients. Here, we analyze the composition and functional differences in the gut microbiota of C. difficile infected (CDI versus non-infected patients, both patient groups having been treated with AB therapy. To do so we used 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. Samples were taken before, during and after AB treatment and were checked for the presence of the pathogen. We performed different analyses and comparisons between infected (CD+ versus non-infected (CD- samples, allowing proposing putative candidate taxa and functions that might protect against C. difficile colonization. Most of these potentially protective taxa belonged to the Firmicutes phylum, mainly to the order Clostridiales, while some candidate protective functions were related to aromatic amino acid biosynthesis and stress response mechanisms. We also found that CDI patients showed, in general, lower diversity and richness than non-infected, as well as an overrepresentation of members of the families Bacteroidaceae, Enterococcaceae, Lactobacillaceae and Clostridium clusters XI and XIVa. Regarding metabolic functions, we detected higher abundance of genes involved in the transport and binding of carbohydrates, ions and others compounds as a response to an antibiotic

  7. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    Science.gov (United States)

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  8. The paneth cell: A guardian of gut health

    Science.gov (United States)

    The article by Podany et al in the current issue of Cellular and Molecular Gastroenterology and Hepatology makes observations that significantly advance our understanding of Paneth cells and zinc transporters in maintenance of a healthy gut barrier and microbiota of the small intestine. Paneth cells...

  9. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health.

    Science.gov (United States)

    Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Pauls, K Peter; Robinson, Lindsay E; Power, Krista A

    2017-11-01

    Common beans (Phaseolus vulgaris L.) are enriched in non-digestible fermentable carbohydrates and phenolic compounds that can modulate the colonic microenvironment (microbiota and host epithelial barrier) to improve gut health. In a comprehensive assessment of the impact of two commonly consumed bean varieties (differing in levels and types of phenolic compounds) within the colonic microenvironment, C57Bl/6 mice were fed diets supplemented with 20% cooked navy bean (NB) or black bean (BB) flours or an isocaloric basal diet control (BD) for 3 weeks. NB and BB similarly altered the fecal microbiota community structure (16S rRNA sequencing) notably by increasing the abundance of carbohydrate fermenting bacteria such as Prevotella, S24-7 and Ruminococcus flavefaciens, which coincided with enhanced short chain fatty acid (SCFA) production (microbial-derived carbohydrate fermentation products) and colonic expression of the SCFA receptors GPR-41/-43/-109a. Both NB and BB enhanced multiple aspects of mucus and epithelial barrier integrity vs. BD including: (i) goblet cell number, crypt mucus content and mucin mRNA expression, (ii) anti-microbial defenses (Reg3γ), (iii) crypt length and epithelial cell proliferation, (iv) apical junctional complex components (occludin, JAM-A, ZO-1 and E-cadherin) mRNA expression and (v) reduced serum endotoxin concentrations. Interestingly, biomarkers of colon barrier integrity (crypt height, mucus content, cell proliferation and goblet cell number) were enhanced in BB vs. NB-fed mice, suggesting added benefits attributable to unique BB components (e.g., phenolics). Overall, NB and BB improved baseline colonic microenvironment function by altering the microbial community structure and activity and promoting colon barrier integrity and function; effects which may prove beneficial in attenuating gut-associated diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  10. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  11. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex.

    Science.gov (United States)

    Rizzetto, Lisa; Fava, Francesca; Tuohy, Kieran M; Selmi, Carlo

    2018-05-31

    Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in

  12. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular......), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases.The gut microbiota may play a role in cardiovascular diseases. Here, the authors perform...

  13. Short-Term, Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension.

    Science.gov (United States)

    Catterson, James H; Khericha, Mobina; Dyson, Miranda C; Vincent, Alec J; Callard, Rebecca; Haveron, Steven M; Rajasingam, Arjunan; Ahmad, Mumtaz; Partridge, Linda

    2018-06-04

    Intermittent fasting (IF) can improve function and health during aging in laboratory model organisms, but the mechanisms at work await elucidation. We subjected fruit flies (Drosophila melanogaster) to varying degrees of IF and found that just one month of a 2-day fed:5-day fasted IF regime at the beginning of adulthood was sufficient to extend lifespan. This long-lasting, beneficial effect of early IF was not due to reduced fecundity. Starvation resistance and resistance to oxidative and xenobiotic stress were increased after IF. Early-life IF also led to higher lipid content in 60-day-old flies, a potential explanation for increased longevity. Guts of flies 40 days post-IF showed a significant reduction in age-related pathologies and improved gut barrier function. Improved gut health was also associated with reduced relative bacterial abundance. Early IF thus induced profound long-term changes. Pharmacological and genetic epistasis analysis showed that IF acted independently of the TOR pathway because rapamycin and IF acted additively to extend lifespan, and global expression of a constitutively active S6K did not attenuate the IF-induced lifespan extension. We conclude that short-term IF during early life can induce long-lasting beneficial effects, with robust increase in lifespan in a TOR-independent manner, probably at least in part by preserving gut health. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Impact of Cranberries on Gut Microbiota and Cardiometabolic Health: Proceedings of the Cranberry Health Research Conference 2015.

    Science.gov (United States)

    Blumberg, Jeffrey B; Basu, Arpita; Krueger, Christian G; Lila, Mary Ann; Neto, Catherine C; Novotny, Janet A; Reed, Jess D; Rodriguez-Mateos, Ana; Toner, Cheryl D

    2016-07-01

    Recent advances in cranberry research have expanded the evidence for the role of this Vaccinium berry fruit in modulating gut microbiota function and cardiometabolic risk factors. The A-type structure of cranberry proanthocyanidins seems to be responsible for much of this fruit's efficacy as a natural antimicrobial. Cranberry proanthocyanidins interfere with colonization of the gut by extraintestinal pathogenic Escherichia coli in vitro and attenuate gut barrier dysfunction caused by dietary insults in vivo. Furthermore, new studies indicate synergy between these proanthocyanidins, other cranberry components such as isoprenoids and xyloglucans, and gut microbiota. Together, cranberry constituents and their bioactive catabolites have been found to contribute to mechanisms affecting bacterial adhesion, coaggregation, and biofilm formation that may underlie potential clinical benefits on gastrointestinal and urinary tract infections, as well as on systemic anti-inflammatory actions mediated via the gut microbiome. A limited but growing body of evidence from randomized clinical trials reveals favorable effects of cranberry consumption on measures of cardiometabolic health, including serum lipid profiles, blood pressure, endothelial function, glucoregulation, and a variety of biomarkers of inflammation and oxidative stress. These results warrant further research, particularly studies dedicated to the elucidation of dose-response relations, pharmacokinetic/metabolomics profiles, and relevant biomarkers of action with the use of fully characterized cranberry products. Freeze-dried whole cranberry powder and a matched placebo were recently made available to investigators to facilitate such work, including interlaboratory comparability. © 2016 American Society for Nutrition.

  15. Healthy human gut phageome.

    Science.gov (United States)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  16. The Blood-Brain Barrier: Connecting the Gut and the Brain

    OpenAIRE

    Banks, William A.

    2008-01-01

    The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated b...

  17. Radiation and Gut

    International Nuclear Information System (INIS)

    Potten, C.S.; Hendry, J.H.

    1995-08-01

    Texts on gut with reference to radiation (or other cytotoxic and carcinogenic agents) consist of primary research papers, review articles, or books which are now very out-of-date. With this in mind, the present book was conceived. Here, with chapters by experts in the field, we cover the basic structure and cell replacement process in the gut, the physical situation relevant for gut radiation exposure and a description of some of the techniques used to study radiation effects, in particular the clonal regeneration assay that assesses stem cell functional capacity. Chapters comprehensively cover the effects of radiation in experimental animal model systems and clinical experiences. The effects of radiation on the supportive tissue of the gut is also reviewed. The special radiation situation involving ingested radionuclides is reviewed and the most important late response-carcinogenesis-within the gut is considered. This book follows a volume on 'Radiation and Skin' (1985) and another on 'Radiation and Bone Marrow' is in preparation. The present volume is intended to cover the anatomy and renewal characteristics of the gut, and its response in terms of carcinogenicity and tissue injury in mammalian species including in particular man. The book is expected to be useful to students and teachers in these topics, as well as clinical oncologists (radiotherapists) and medical oncologists, and industrial health personnel. 70 figs., 20 tabs., 869 refs

  18. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health.

    Science.gov (United States)

    Malmuthuge, Nilusha; Guan, Le Luo

    2017-07-01

    Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota-one of the key aspects of gut health-is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host-microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    Science.gov (United States)

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  20. Chronic zinc deficiency alters chick gut microbiota composition and function

    Science.gov (United States)

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...

  1. The human gut microbiota and virome: Potential therapeutic implications.

    Science.gov (United States)

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  2. Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production.

    Science.gov (United States)

    Miyauchi, Eiji; O'Callaghan, John; Buttó, Ludovica F; Hurley, Gráinne; Melgar, Silvia; Tanabe, Soichi; Shanahan, Fergus; Nally, Kenneth; O'Toole, Paul W

    2012-11-01

    Enhanced barrier function is one mechanism whereby commensals and probiotic bacteria limit translocation of foreign antigens or pathogens in the gut. However, barrier protection is not exhibited by all probiotic or commensals and the strain-specific molecules involved remain to be clarified. We evaluated the effects of 33 individual Lactobacillus salivarius strains on the hydrogen peroxide (H(2)O(2))-induced barrier impairment in human epithelial Caco-2 cells. These strains showed markedly different effects on H(2)O(2)-induced reduction in transepithelial resistance (TER). The effective strains such as UCC118 and CCUG38008 attenuated H(2)O(2)-induced disassembly and relocalization of tight junction proteins, but the ineffective strain AH43324 did not. Strains UCC118 and CCUG38008 induced phosphorylation of extracellular signal-regulated kinase (ERK) in Caco-2 cells, and the ERK inhibitor U0126 attenuated the barrier-protecting effect of these strains. In contrast, the AH43324 strain induced phosphorylation of Akt and p38, which was associated with an absence of a protective effect. Global transcriptome analysis of UCC118 and AH43324 revealed that some genes in a bacteriocin gene cluster were upregulated in AH43324 under TER assay conditions. A bacteriocin-negative UCC118 mutant displayed significantly greater suppressive effect on H(2)O(2)-induced reduction in TER compared with wild-type UCC118. The wild-type strain augmented H(2)O(2)-induced phosphorylation of Akt and p38, whereas a bacteriocin-negative UCC118 mutant did not. These observations indicate that L. salivarius strains are widely divergent in their capacity for barrier protection, and this is underpinned by differences in the activation of intracellular signaling pathways. Furthermore, bacteriocin production appears to have an attenuating influence on lactobacillus-mediated barrier protection.

  3. Alterations of the Gut Microbiome in Hypertension

    Directory of Open Access Journals (Sweden)

    Qiulong Yan

    2017-08-01

    Full Text Available Introduction: Human gut microbiota is believed to be directly or indirectly involved in cardiovascular diseases and hypertension. However, the identification and functional status of the hypertension-related gut microbe(s have not yet been surveyed in a comprehensive manner.Methods: Here we characterized the gut microbiome in hypertension status by comparing fecal samples of 60 patients with primary hypertension and 60 gender-, age-, and body weight-matched healthy controls based on whole-metagenome shotgun sequencing.Results: Hypertension implicated a remarkable gut dysbiosis with significant reduction in within-sample diversity and shift in microbial composition. Metagenome-wide association study (MGWAS revealed 53,953 microbial genes that differ in distribution between the patients and healthy controls (false discovery rate, 0.05 and can be grouped into 68 clusters representing bacterial species. Opportunistic pathogenic taxa, such as, Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently distributed in hypertensive gut microbiome, whereas the short-chain fatty acid producer, such as, Roseburia spp. and Faecalibacterium prausnitzii, were higher in controls. The number of hypertension-associated species also showed stronger correlation to the severity of disease. Functionally, the hypertensive gut microbiome exhibited higher membrane transport, lipopolysaccharide biosynthesis and steroid degradation, while in controls the metabolism of amino acid, cofactors and vitamins was found to be higher. We further provided the microbial markers for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC of 0.78, demonstrating the potential of gut microbiota in prediction of hypertension.Conclusion: These findings represent specific alterations in microbial diversity, genes, species and functions of the hypertensive gut microbiome. Further studies on the causality relationship between

  4. The Treg/Th17 axis: A dynamic balance regulated by the gut microbiome

    Directory of Open Access Journals (Sweden)

    Sara eOmenetti

    2015-12-01

    Full Text Available T-helper 17 (Th17 and T-regulatory (Treg cells are frequently found at barrier surfaces, particularly within the intestinal mucosa, where they function to protect the host from pathogenic microorganisms and to restrain excessive effector T-cell responses, respectively. Despite their differing functional properties, Th17 cells and Tregs share similar developmental requirements. In fact, the fate of antigen-naïve T-cells to either Th17 or Treg lineages is finely regulated by key mediators, including TGFβ, IL-6 and all-trans retinoic acid (RA. Importantly, the intestinal microbiome also provides immunostimulatory signals, which can activate innate, and downstream adaptive, immune responses. Specific components of the gut microbiome have been implicated in the production of proinflammatory cytokines by innate immune cells, such as IL-6, IL-23, IL-1β, and the subsequent generation and expansion of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of intestinal Tregs that can actively induce mucosal tolerance. As such, dysbiosis of the gut microbiome may not solely represent a consequence of gut inflammation, but rather shape the Treg/Th17 commitment and influence susceptibility to inflammatory bowel disease (IBD. In this review, we discuss Treg and Th17 cell plasticity, its dynamic regulation by the microbiome, and highlight its impact on intestinal homeostasis and disease.

  5. Gut dysbiosis impairs recovery after spinal cord injury.

    Science.gov (United States)

    Kigerl, Kristina A; Hall, Jodie C E; Wang, Lingling; Mo, Xiaokui; Yu, Zhongtang; Popovich, Phillip G

    2016-11-14

    The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid-producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI. © 2016 Kigerl et al.

  6. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  7. Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Yao-Jong Yang

    2016-02-01

    Full Text Available As a barrier, gut commensal microbiota can protect against potential pathogenic microbes in the gastrointestinal tract. Crosstalk between gut microbes and immune cells promotes human intestinal homeostasis. Dysbiosis of gut microbiota has been implicated in the development of many human metabolic disorders like obesity, hepatic steatohepatitis, and insulin resistance in type 2 diabetes (T2D. Certain microbes, such as butyrate-producing bacteria, are lower in T2D patients. The transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, but the exact pathogenesis remains unclear. H. pylori in the human stomach cause chronic gastritis, peptic ulcers, and gastric cancers. H. pylori infection also induces insulin resistance and has been defined as a predisposing factor to T2D development. Gastric and fecal microbiota may have been changed in H. pylori-infected persons and mice to promote gastric inflammation and specific diseases. However, the interaction of H. pylori and gut microbiota in regulating host metabolism also remains unknown. Further studies aim to identify the H. pylori-microbiota-host metabolism axis and to test if H. pylori eradication or modification of gut microbiota can improve the control of human metabolic disorders.

  8. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  9. The intestinal barrier function and its involvement in digestive disease

    Directory of Open Access Journals (Sweden)

    Eloísa Salvo-Romero

    2015-11-01

    Full Text Available The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  10. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular...... health. Although drug treatment represents a confounding factor, ACVD status, and not current drug use, is the major distinguishing feature in this cohort. We identify common themes by comparison with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2 diabetes...

  11. Emerging synbiotics and their effect on the composition and functionality of the human gut microbiota

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina

    Research indicates that the gut microbiota (GM) plays an important role in the health of the host and during recent years the increase in the composition and functionality of the gut microbiota has become of increasing interest. Probiotics, prebiotics or combinations hereof, so-called synbiotics......, may be used to change the composition and activity of the human GM and thereby potentially affect the host health beneficially. In this PhD study it was hypothesized that emerging synbiotics have the potential of modulating the human GM composition as well as the functionality. To gain the beneficial...... substrates. These findings indicate that the selected emerging prebiotics are able to provide a competitive advantage for NCFM and Bl-04. All the emerging synbiotics were able to induce changes in the predominant bacteria, observed as a decrease in the modified ratio of Bacteroidetes/Firmicutes (calculated...

  12. Characterizing the avian gut microbiota: membership, driving influences, and potential function.

    Science.gov (United States)

    Waite, David W; Taylor, Michael W

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  13. Characterising the avian gut microbiota: membership, driving influences and potential function

    Directory of Open Access Journals (Sweden)

    David eWaite

    2014-05-01

    Full Text Available Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbour diverse communities of microorganisms within their guts, which collectively fulfil important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  14. 5-HT in the enteric nervous system: gut function and neuropharmacology.

    Science.gov (United States)

    McLean, Peter G; Borman, Richard A; Lee, Kevin

    2007-01-01

    In recent times, the perception of functional gastrointestinal disorders such as irritable bowel syndrome (IBS) has shifted fundamentally. Such disorders are now thought of as serious diseases characterized by perturbations in the neuronal regulation of gastrointestinal function. The concept of visceral hypersensitivity, the characterization of neuronal networks in the 'brain-gut axis' and the identification of several novel 5-HT-mediated mechanisms have contributed to this shift. Here, we review how some of the more promising of these new mechanisms (e.g. those involving 5-HT transporters and the 5-HT(2B), 5-HT(7) and putative 5-HT(1p) receptors) might lead to a range of second-generation therapies that could revolutionize the treatment of functional gastrointestinal disorders, particularly IBS.

  15. Functional barriers: Properties and evaluation

    NARCIS (Netherlands)

    Feigenbaum, A.; Dole, P.; Aucejo, S.; Dainelli, D.; Cruz Garcia, C. de la; Hankemeier, T.; N'Gono, Y.; Papaspyrides, C.D.; Paseiro, P.; Pastorelli, S.; Pavlidou, S.; Pennarun, P.Y.; Saillard, P.; Vidal, L.; Vitrac, O.; Voulzatis, Y.

    2005-01-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of

  16. The gut microbiome in cardio-metabolic health

    DEFF Research Database (Denmark)

    Hansen, Tue Haldor; Gøbel, Rikke J; Hansen, Torben

    2015-01-01

    that the gut microbiota, as an environmental factor influencing the metabolic state of the host, is readily modifiable through a variety of interventions. In this review we provide an overview of the development of the gut microbiome and its compositional and functional changes in relation to cardio......With the prevalence of cardio-metabolic disorders reaching pandemic proportions, the search for modifiable causative factors has intensified. One such potential factor is the vast microbial community inhabiting the human gastrointestinal tract, the gut microbiota. For the past decade evidence has...... accumulated showing the association of distinct changes in gut microbiota composition and function with obesity, type 2 diabetes and cardiovascular disease. Although causality in humans and the pathophysiological mechanisms involved have yet to be decisively established, several studies have demonstrated...

  17. Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens.

    Science.gov (United States)

    Wasimuddin; Menke, Sebastian; Melzheimer, Jörg; Thalwitzer, Susanne; Heinrich, Sonja; Wachter, Bettina; Sommer, Simone

    2017-10-01

    Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free-ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free-ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease-associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in

  18. Compositional and Functional Differences in the Human Gut Microbiome Correlate with Clinical Outcome following Infection with Wild-Type Salmonella enterica Serovar Typhi.

    Science.gov (United States)

    Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C; Jones, Claire; Blohmke, Christoph J; Pollard, Andrew J; Magder, Laurence S; Fasano, Alessio; Sztein, Marcelo B; Fraser, Claire M

    2018-05-08

    Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S.  Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S.  Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S.  Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S.  Typhi. IMPORTANCE S.  Typhi is a significant cause of systemic febrile morbidity in settings with poor sanitation and limited access to clean water. It has been demonstrated that the human gut microbiota can influence mucosal immune responses, but there is little information available on the impact of the human gut

  19. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.

    Science.gov (United States)

    Peng, Bingyin; Huang, Shuangcheng; Liu, Tingting; Geng, Anli

    2015-05-17

    Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. This study demonstrated that XIs clustered in the

  20. Gut microbiota: the next-gen frontier in preventive and therapeutic medicine?

    Directory of Open Access Journals (Sweden)

    Ravinder eNagpal

    2014-06-01

    Full Text Available Our gut harbors an extremely diverse collection of trillions of microbes that, besides degrading the complex dietary constituents, execute numerous activities vital for our metabolism and immune health. Although the importance of gut microbiota in maintaining digestive health has long been believed, its close correlation with numerous chronic ailments has recently been exposed, thanks to the innovative mechanistic studies on the compositional and functional aspects of gut microbial communities using germ-free or humanized animal models. Since a myriad of mysteries about the precise structures and functions of gut microbial communities in specific health situations still remains to be explicated, the emerging field of gut microbiota remains a foremost objective of research for microbiologists, computational biologists, clinicians, nutritionalists etc. Nevertheless, it is only after a comprehensive understanding of the structure, density and function of the gut microbiota that the new therapeutic targets could be captured and utilized for a healthier gut as well as overall wellbeing.

  1. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available The infant gut microbiota develops rapidly during the first 2 years of life, acquiring microorganisms from diverse sources. During this time, significant opportunities exist for the infant to acquire antibiotic resistant bacteria, which can become established and constitute the infant gut resistome. With increased antibiotic resistance limiting our ability to treat bacterial infections, investigations into resistance reservoirs are highly pertinent. This study aimed to explore the nascent resistome in antibiotically-naïve infant gut microbiomes, using a combination of metagenomic approaches. Faecal samples from 22 six-month-old infants without previous antibiotic exposure were used to construct a pooled metagenomic library, which was functionally screened for ampicillin and gentamicin resistance. Our library of ∼220Mb contained 0.45 ampicillin resistant hits/Mb and 0.059 gentamicin resistant hits/Mb. PCR-based analysis of fosmid clones and uncloned metagenomic DNA, revealed a diverse and abundant aminoglycoside and β-lactam resistance reservoir within the infant gut, with resistance determinants exhibiting homology to those found in common gut inhabitants, including Escherichia coli, Enterococcus sp., and Clostridium difficile, as well as to genes from cryptic environmental bacteria. Notably, the genes identified differed from those revealed when a sequence-driven PCR-based screen of metagenomic DNA was employed. Carriage of these antibiotic resistance determinants conferred substantial, but varied (2-512x, increases in antibiotic resistance to their bacterial host. These data provide insights into the infant gut resistome, revealing the presence of a varied aminoglycoside and β-lactam resistance reservoir even in the absence of selective pressure, confirming the infant resistome establishes early in life, perhaps even at birth.

  2. Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection.

    Science.gov (United States)

    Talbot, Pauline; Radziwill-Bienkowska, Joanna M; Kamphuis, Jasper B J; Steenkeste, Karine; Bettini, Sarah; Robert, Véronique; Noordine, Marie-Louise; Mayeur, Camille; Gaultier, Eric; Langella, Philippe; Robbe-Masselot, Catherine; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-06-19

    Titanium dioxide (TiO 2 ) particles are commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, the risk of gut barrier disruption is an increasing concern because of the presence of a nano-sized fraction. Food-grade E171 may interact with mucus, a gut barrier protagonist still poorly explored in food nanotoxicology. To test this hypothesis, a comprehensive approach was performed to evaluate in vitro and in vivo interactions between TiO 2 and intestinal mucus, by comparing food-grade E171 with NM-105 (Aeroxyde P25) OECD reference nanomaterial. We tested E171-trapping properties of mucus in vitro using HT29-MTX intestinal epithelial cells. Time-lapse confocal laser scanning microscopy was performed without labeling to avoid modification of the particle surface. Near-UV irradiation of E171 TiO 2 particles at 364 nm resulted in fluorescence emission in the visible range, with a maximum at 510 nm. The penetration of E171 TiO 2 into the mucoid area of HT29-MTX cells was visualized in situ. One hour after exposure, TiO 2 particles accumulated inside "patchy" regions 20 µm above the substratum. The structure of mucus produced by HT29-MTX cells was characterized by MUC5AC immunofluorescence staining. The mucus layer was thin and organized into regular "islands" located approximately 20 µm above the substratum. The region-specific trapping of food-grade TiO 2 particles was attributed to this mucus patchy structure. We compared TiO 2 -mediated effects in vivo in rats after acute or sub-chronic oral daily administration of food-grade E171 and NM-105 at relevant exposure levels for humans. Cecal short-chain fatty acid profiles and gut mucin O-glycosylation patterns remained unchanged, irrespective of treatment. Food-grade TiO 2 is trapped by intestinal mucus in vitro but does not affect mucin O-glycosylation and short-chain fatty acid synthesis in vivo, suggesting the absence of a mucus barrier impairment under "healthy gut

  3. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.

    Science.gov (United States)

    Xiao, Shuiming; Fei, Na; Pang, Xiaoyan; Shen, Jian; Wang, Linghua; Zhang, Baorang; Zhang, Menghui; Zhang, Xiaojun; Zhang, Chenhong; Li, Min; Sun, Lifeng; Xue, Zhengsheng; Wang, Jingjing; Feng, Jie; Yan, Feiyan; Zhao, Naisi; Liu, Jiaqi; Long, Wenmin; Zhao, Liping

    2014-02-01

    Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m(-2) ) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes. © 2013 The Authors. FEMS Microbiology Ecology pubished by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  4. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  5. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats.

    Science.gov (United States)

    Bielinska, Klaudia; Radkowski, Marek; Grochowska, Marta; Perlejewski, Karol; Huc, Tomasz; Jaworska, Kinga; Motooka, Daisuke; Nakamura, Shota; Ufnal, Marcin

    2018-03-22

    A high-salt diet is considered a cardiovascular risk factor; however, the mechanisms are not clear. Research suggests that gut bacteria-derived metabolites such as trimethylamine N-oxide (TMAO) are markers of cardiovascular diseases. We evaluated the effect of high salt intake on gut bacteria and their metabolites plasma level. Sprague Dawley rats ages 12-14 wk were maintained on either water (controls) or 0.9% or 2% sodium chloride (NaCl) water solution (isotonic and hypertonic groups, respectively) for 2 wk. Blood plasma, urine, and stool samples were analyzed for concentrations of trimethylamine (TMA; a TMAO precursor), TMAO, and indoxyl sulfate (indole metabolite). The gut-blood barrier permeability to TMA and TMA liver clearance were assessed at baseline and after TMA intracolonic challenge test. Gut bacterial flora was analyzed with a 16S ribosomal ribonucleic acid (rRNA) gene sequence analysis. The isotonic and hypertonic groups showed a significantly higher plasma TMAO and significantly lower 24-hr TMAO urine excretion than the controls. However, the TMA stool level was similar between the groups. There was no significant difference between the groups in gut-blood barrier permeability and TMA liver clearance. Plasma indoxyl concentration and 24-hr urine indoxyl excretion were similar between the groups. There was a significant difference between the groups in gut bacteria composition. High salt intake increases plasma TMAO concentration, which is associated with decreased TMAO urine excretion. Furthermore, high salt intake alters gut bacteria composition. These findings suggest that salt intake affects an interplay between gut bacteria and their host homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Accident Analysis and Barrier Function (AEB) Method. Manual for Incident Analysis

    International Nuclear Information System (INIS)

    Svenson, Ola

    2000-02-01

    The Accident Analysis and Barrier Function (AEB) Method models an accident or incident as a series of interactions between human and technical systems. In the sequence of human and technical errors leading to an accident there is, in principle, a possibility to arrest the development between each two successive errors. This can be done by a barrier function which, for example, can stop an operator from making an error. A barrier function can be performed by one or several barrier function systems. To illustrate, a mechanical system, a computer system or another operator can all perform a given barrier function to stop an operator from making an error. The barrier function analysis consists of analysis of suggested improvements, the effectiveness of the improvements, the costs of implementation, probability of implementation, the cost of maintaining the barrier function, the probability that maintenance will be kept up to standards and the generalizability of the suggested improvement. The AEB method is similar to the US method called HPES, but differs from that method in different ways. To exemplify, the AEB method has more emphasis on technical errors than HPES. In contrast to HPES that describes a series of events, the AEB method models only errors. This gives a more focused analysis making it well suited for checking other HPES-type accident analyses. However, the AEB method is a generic and stand-alone method that has been applied in other fields than nuclear power, such as, in traffic accident analyses

  7. Accident Analysis and Barrier Function (AEB) Method. Manual for Incident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-02-01

    The Accident Analysis and Barrier Function (AEB) Method models an accident or incident as a series of interactions between human and technical systems. In the sequence of human and technical errors leading to an accident there is, in principle, a possibility to arrest the development between each two successive errors. This can be done by a barrier function which, for example, can stop an operator from making an error. A barrier function can be performed by one or several barrier function systems. To illustrate, a mechanical system, a computer system or another operator can all perform a given barrier function to stop an operator from making an error. The barrier function analysis consists of analysis of suggested improvements, the effectiveness of the improvements, the costs of implementation, probability of implementation, the cost of maintaining the barrier function, the probability that maintenance will be kept up to standards and the generalizability of the suggested improvement. The AEB method is similar to the US method called HPES, but differs from that method in different ways. To exemplify, the AEB method has more emphasis on technical errors than HPES. In contrast to HPES that describes a series of events, the AEB method models only errors. This gives a more focused analysis making it well suited for checking other HPES-type accident analyses. However, the AEB method is a generic and stand-alone method that has been applied in other fields than nuclear power, such as, in traffic accident analyses.

  8. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Stanisavljević, S; Lukić, J; Momčilović, M; Miljković, M; Jevtić, B; Kojić, M; Golić, N; Mostarica Stojković, M; Miljković, D

    2016-06-01

    Gut microbiota and gut-associated lymphoid tissue have been increasingly appreciated as important players in pathogenesis of various autoimmune diseases, including multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that can be induced with an injection of spinal cord homogenate emulsified in complete Freund's adjuvant in Dark Agouti (DA) rats, but not in Albino Oxford (AO) rats. In this study, mesenteric lymph nodes (MLN), Peyer's patches (PP) and gut microbiota were analysed in these two rat strains. There was higher proportion of CD4(+) T cells and regulatory T cells in non-immunised DA rats in comparison to AO rats. Also, DA rat MLN and PP cells were higher producers of pro-inflammatory cytokines interferon-γ and interleukin-17. Finally, microbial analyses showed that uncultivated species of Turicibacter and Atopostipes genus were exclusively present in AO rats, in faeces and intestinal tissue, respectively. Thus, it is clear that in comparison of an EAE-susceptible with an EAE-resistant strain of rats, various discrepancies at the level of gut associated lymphoid tissue, as well as at the level of gut microbiota can be observed. Future studies should determine if the differences have functional significance for EAE pathogenesis.

  9. [Diet and gut microbiota: two sides of the same coin?

    Science.gov (United States)

    Schiumerini, Ramona; Pasqui, Francesca; Festi, Davide

    2018-01-01

    Gut microbiota is a complex ecosystem, resident in the digestive tract, exerting multiple functions that can have a significant impact on the pathophysiology of the host organism. The composition and functions of this "superorganism" are influenced by many factors, and among them, the host's dietary habits seem to have a significant effect. Dietary changes in the evolution of human history and in the different stages of life of the human subjects are responsible for qualitative and functional modification of gut microbiota. At the same time, the different dietary models adopted in worldwide geographic areas take into account the inter-individual differences concerning composition and microbial function. This close relationship between diet, gut microbiota and host seems, in fact, to be responsible for the protection or predisposition to develop several metabolic, immunological, neoplastic and functional diseases. Thus, several studies have evaluated the impact of diet and lifestyle modification strategies on gut microbiota composition and functions which, in turn, seems to affect the effectiveness of such therapeutic measures. Gut microbiota manipulation strategies, as complementary to dietary modifications, represent a fascinating field of research, even if consolidated data are still lacking.

  10. New insights into the gut as the driver of critical illness and organ failure.

    Science.gov (United States)

    Meng, Mei; Klingensmith, Nathan J; Coopersmith, Craig M

    2017-04-01

    The gut has long been hypothesized to be the 'motor' of multiple organ dysfunction syndrome. This review serves as an update on new data elucidating the role of the gut as the propagator of organ failure in critical illness. Under basal conditions, the gut absorbs nutrients and serves as a barrier that prevents approximately 40 trillion intraluminal microbes and their products from causing host injury. However, in critical illness, gut integrity is disrupted with hyperpermeability and increased epithelial apoptosis, allowing contamination of extraluminal sites that are ordinarily sterile. These alterations in gut integrity are further exacerbated in the setting of preexisting comorbidities. The normally commensal microflora is also altered in critical illness, with increases in microbial virulence and decreases in diversity, which leads to further pathologic responses within the host. All components of the gut are adversely impacted by critical illness. Gut injury can not only propagate local damage, but can also cause distant injury and organ failure. Understanding how the multifaceted components of the gut interact and how these are perturbed in critical illness may play an important role in turning off the 'motor' of multiple organ dysfunction syndrome in the future.

  11. Irritable bowel syndrome, the microbiota and the gut-brain axis

    DEFF Research Database (Denmark)

    Raskov, Hans; Burcharth, Jakob; Pommergaard, Hans-Christian

    2016-01-01

    Irritable bowel syndrome is a common functional gastrointestinal disorder and it is now evident that irritable bowel syndrome is a multi-factorial complex of changes in microbiota and immunology. The bidirectional neurohumoral integrated communication between the microbiota and the autonomous...... nervous system is called the gut-brain-axis, which integrates brain and GI functions, such as gut motility, appetite and weight. The gut-brain-axis has a central function in the perpetuation of irritable bowel syndrome and the microbiota plays a critical role. The purpose of this article is to review...... recent research concerning the epidemiology of irritable bowel syndrome, influence of microbiota, probiota, gut-brain-axis, and possible treatment modalities on irritable bowel syndrome....

  12. Intestinal barrier: A gentlemen's agreement between microbiota and immunity.

    Science.gov (United States)

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-02-15

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.

  13. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat.

    Science.gov (United States)

    Visser, J T J; Lammers, K; Hoogendijk, A; Boer, M W; Brugman, S; Beijer-Liefers, S; Zandvoort, A; Harmsen, H; Welling, G; Stellaard, F; Bos, N A; Fasano, A; Rozing, J

    2010-12-01

    Impaired intestinal barrier function is observed in type 1 diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type 1 diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model. DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose-mannitol test and ex vivo by measuring transepithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. Ileal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-ß (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR. The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered. Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect.

  14. A study on the quantitative evaluation of skin barrier function

    Science.gov (United States)

    Maruyama, Tomomi; Kabetani, Yasuhiro; Kido, Michiko; Yamada, Kenji; Oikaze, Hirotoshi; Takechi, Yohei; Furuta, Tomotaka; Ishii, Shoichi; Katayama, Haruna; Jeong, Hieyong; Ohno, Yuko

    2015-03-01

    We propose a quantitative evaluation method of skin barrier function using Optical Coherence Microscopy system (OCM system) with coherency of near-infrared light. There are a lot of skin problems such as itching, irritation and so on. It has been recognized skin problems are caused by impairment of skin barrier function, which prevents damage from various external stimuli and loss of water. To evaluate skin barrier function, it is a common strategy that they observe skin surface and ask patients about their skin condition. The methods are subjective judgements and they are influenced by difference of experience of persons. Furthermore, microscopy has been used to observe inner structure of the skin in detail, and in vitro measurements like microscopy requires tissue sampling. On the other hand, it is necessary to assess objectively skin barrier function by quantitative evaluation method. In addition, non-invasive and nondestructive measuring method and examination changes over time are needed. Therefore, in vivo measurements are crucial for evaluating skin barrier function. In this study, we evaluate changes of stratum corneum structure which is important for evaluating skin barrier function by comparing water-penetrated skin with normal skin using a system with coherency of near-infrared light. Proposed method can obtain in vivo 3D images of inner structure of body tissue, which is non-invasive and non-destructive measuring method. We formulate changes of skin ultrastructure after water penetration. Finally, we evaluate the limit of performance of the OCM system in this work in order to discuss how to improve the OCM system.

  15. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  16. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  17. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leilei Yu

    2016-12-01

    Full Text Available Aluminum (Al is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  18. Could tight junctions regulate the barrier function of the aged skin?

    Science.gov (United States)

    Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš

    2016-03-01

    The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  20. Human gut microbiota and healthy aging: Recent developments and future prospective.

    Science.gov (United States)

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  1. Immunomodulating effects of probiotics, prebiotics and synbiotics for pig gut health

    DEFF Research Database (Denmark)

    Roselli, Marianna; Pieper, Robert; Rogel-Gaillard, Claire

    2017-01-01

    Probiotics are live microorganisms that can confer a health benefit on the host, and amongst various mechanisms probiotics are believed to exert their effects by production of antimicrobial substances, competition with pathogens for adhesion sites and nutrients, enhancement of mucosal barrier...... integrity and immune modulation. Through these activities probiotics can support three core benefits for the host: supporting a healthy gut microbiota, a healthy digestive tract and a healthy immune system. More recently, the concept of combining probiotics and prebiotics, i.e. synbiotics......, for the beneficial effect on gut health of pigs has attracted major interest, and examples of probiotic and prebiotic benefits for pigs are pathogen inhibition and immunomodulation. Yet, it remains to be defined in pigs, what exactly is a healthy gut. Because of the high level of variability in growth and feed...

  2. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  3. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators.

    Science.gov (United States)

    Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon

    2017-05-01

    The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.

  4. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    Science.gov (United States)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  5. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    2010-01-01

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...

  6. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...

  7. Permanent isolation surface barrier: Functional performance

    International Nuclear Information System (INIS)

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release

  8. Gut microbiome and its role in cardiovascular diseases.

    Science.gov (United States)

    Ahmadmehrabi, Shadi; Tang, W H Wilson

    2017-11-01

    In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.

  9. Uniting Control Lyapunov and Control Barrier Functions

    NARCIS (Netherlands)

    Romdlony, Zakiyullah; Jayawardhana, Bayu

    2014-01-01

    In this paper, we propose a nonlinear control design for solving the problem of stabilization with guaranteed safety. The design is based on the merging of a Control Lyapunov Function and a Control Barrier Function. The proposed control method allows us to combine the design of a stabilizer based on

  10. Gut-directed hypnotherapy for functional abdominal pain or irritable bowel syndrome in children: a systematic review

    NARCIS (Netherlands)

    Rutten, Juliette M. T. M.; Reitsma, Johannes B.; Vlieger, Arine M.; Benninga, Marc A.

    2013-01-01

    Gut directed hypnotherapy (HT) is shown to be effective in adult functional abdominal pain (FAP) and irritable bowel syndrome (IBS) patients. We performed a systematic review to assess efficacy of HT in paediatric FAP/IBS patients. We searched Medline, Embase, PsychINFO, Cumulative Index to Nursing

  11. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice

    DEFF Research Database (Denmark)

    Xiao, Liang; Sonne, Si Brask; Feng, Qiang

    2017-01-01

    feeding rather than obesity development led to distinct changes in the gut microbiota. We observed a robust increase in alpha diversity, gene count, abundance of genera known to be butyrate producers, and abundance of genes involved in butyrate production in Sv129 mice compared to BL6 mice fed either a LF......Background: It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those......-induced obesity, but in Sv129 mice accentuates obesity.Results: Using HiSeq-based whole genome sequencing, we identified taxonomic and functional differences in the gut microbiota of the two mouse strains fed regular low-fat or HF diets with or without supplementation with the COX-inhibitor, indomethacin. HF...

  12. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities.

    Science.gov (United States)

    Zhang, Jiachao; Guo, Zhuang; Xue, Zhengsheng; Sun, Zhihong; Zhang, Menghui; Wang, Lifeng; Wang, Guoyang; Wang, Fang; Xu, Jie; Cao, Hongfang; Xu, Haiyan; Lv, Qiang; Zhong, Zhi; Chen, Yongfu; Qimuge, Sudu; Menghe, Bilige; Zheng, Yi; Zhao, Liping; Chen, Wei; Zhang, Heping

    2015-09-01

    Structural profiling of healthy human gut microbiota across heterogeneous populations is necessary for benchmarking and characterizing the potential ecosystem services provided by particular gut symbionts for maintaining the health of their hosts. Here we performed a large structural survey of fecal microbiota in 314 healthy young adults, covering 20 rural and urban cohorts from 7 ethnic groups living in 9 provinces throughout China. Canonical analysis of unweighted UniFrac principal coordinates clustered the subjects mainly by their ethnicities/geography and less so by lifestyles. Nine predominant genera, all of which are known to contain short-chain fatty acid producers, co-occurred in all individuals and collectively represented nearly half of the total sequences. Interestingly, species-level compositional profiles within these nine genera still discriminated the subjects according to their ethnicities/geography and lifestyles. Therefore, a phylogenetically diverse core of gut microbiota at the genus level may be commonly shared by distinctive healthy populations as functionally indispensable ecosystem service providers for the hosts.

  13. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling.

    Science.gov (United States)

    Severance, Emily G; Yolken, Robert H; Eaton, William W

    2016-09-01

    Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The gut microbiota and its relationship to diet and obesity

    Science.gov (United States)

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  15. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-10-01

    Full Text Available Objectives: To comprehensively review the scientific knowledge on the gut–brain axis. Methods: Various publications on the gut–brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: “gut-brain axis”, “gut-microbiota-brain axis”, “nutrition microbiome/microbiota”, “enteric nervous system”, “enteric glial cells/network”, “gut-brain pathways”, “microbiome immune system”, “microbiome neuroendocrine system” and “intestinal/gut/enteric neuropeptides”. Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium–enteric nervous, endocrine and immune systems and the brain. The basis of the gut–brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons, the neuroendocrine–hypothalamic–pituitary–adrenal (HPA axis (represented by the gut hormones, immune routes (represented by multiple cytokines, microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and

  16. Mucus: An Underestimated Gut Target for Environmental Pollutants and Food Additives.

    Science.gov (United States)

    Gillois, Kévin; Lévêque, Mathilde; Théodorou, Vassilia; Robert, Hervé; Mercier-Bonin, Muriel

    2018-06-15

    Synthetic chemicals (environmental pollutants, food additives) are widely used for many industrial purposes and consumer-related applications, which implies, through manufactured products, diet, and environment, a repeated exposure of the general population with growing concern regarding health disorders. The gastrointestinal tract is the first physical and biological barrier against these compounds, and thus their first target. Mounting evidence indicates that the gut microbiota represents a major player in the toxicity of environmental pollutants and food additives; however, little is known on the toxicological relevance of the mucus/pollutant interplay, even though mucus is increasingly recognized as essential in gut homeostasis. Here, we aimed at describing how environmental pollutants (heavy metals, pesticides, and other persistent organic pollutants) and food additives (emulsifiers, nanomaterials) might interact with mucus and mucus-related microbial species; that is, “mucophilic” bacteria such as mucus degraders. This review highlights that intestinal mucus, either directly or through its crosstalk with the gut microbiota, is a key, yet underestimated gut player that must be considered for better risk assessment and management of environmental pollution.

  17. Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function

    Directory of Open Access Journals (Sweden)

    Tomonori Sugawara

    2016-03-01

    Full Text Available Background: Lactobacillus gasseri CP2305 (CP2305 is a strain of Lactobacillus isolated from a stool sample from a healthy adult that showed beneficial effects on health as a paraprobiotic. In a previous study, we demonstrated that CP2305-fermented heat-treated milk modified gut functions more than artificially acidified sour milk. Thus, the regulatory activity of the former beverage was attributed to the inactivated CP2305 cells. Objective: The aim of this study was to elucidate the contribution of non-viable paraprobiotic CP2305 cells to regulating human gut functions. We thus conducted a randomized, placebo-controlled, double-blinded parallel group trial. Design: The trial included 118 healthy participants with relatively low or high stool frequencies. The test beverage was prepared by adding 1×1010 washed, heat-treated, and dried CP2305 cells directly to the placebo beverage. The participants ingested a bottle of the assigned beverage daily for 3 weeks and answered daily questionnaires about defecation and quality of life. Fecal samples were collected and the fecal characteristics, microbial metabolite contents of the feces and composition of fecal microbiota were evaluated. Results: The number of evacuations and the scores for fecal odors were significantly improved in the group that consumed the CP2305-containing beverage compared with those of the group that consumed the placebo (p=0.035 and p=0.040, respectively. Regarding the fecal contents of microbial metabolites, the level of fecal p-cresol was significantly decreased in the CP2305 group relative to that of the placebo group (p=0.013. The Bifidobacterium content of the intestinal microbiota was significantly increased in the CP2305 group relative to that of the placebo group (p<0.008, whereas the content of Clostridium cluster IV was significantly decreased (p<0.003. The parasympathetic nerve activity of the autonomic nervous system became dominant and the total power of autonomic

  18. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet.

    Science.gov (United States)

    Kang, Chao; Wang, Bin; Kaliannan, Kanakaraju; Wang, Xiaolan; Lang, Hedong; Hui, Suocheng; Huang, Li; Zhang, Yong; Zhou, Ming; Chen, Mengting; Mi, Mantian

    2017-05-23

    Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae , while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB 1 ) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of

  19. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity

    Directory of Open Access Journals (Sweden)

    Perdigón Gabriela

    2007-09-01

    at sites of infection. Conclusion The oral administration of the supernatant of milk fermented by L. helveticus R389 enhanced the gut mucosal immunity by improving the mechanisms that reinforce the epithelial and non-specific barriers and the gut functioning at sites of infection, with an improvement in the expression of the enzyme calcineurin, an important signal in the network that activates the gut immune system. The results of this work contribute to revealing the mechanisms underlying the immunomodulation of the gut immune function by fermented milks with probiotic bacteria.

  20. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  1. Metaproteomic analysis of human gut microbiota: where are we heading?

    Science.gov (United States)

    Lee, Pey Yee; Chin, Siok-Fong; Neoh, Hui-Min; Jamal, Rahman

    2017-06-12

    The human gut is home to complex microbial populations that change dynamically in response to various internal and external stimuli. The gut microbiota provides numerous functional benefits that are crucial for human health but in the setting of a disturbed equilibrium, the microbial community can cause deleterious outcomes such as diseases and cancers. Characterization of the functional activities of human gut microbiota is fundamental to understand their roles in human health and disease. Metaproteomics, which refers to the study of the entire protein collection of the microbial community in a given sample is an emerging area of research that provides informative details concerning functional aspects of the microbiota. In this mini review, we present a summary of the progress of metaproteomic analysis for studying the functional role of gut microbiota. This is followed by an overview of the experimental approaches focusing on fecal specimen for metaproteomics and is concluded by a discussion on the challenges and future directions of metaproteomic research.

  2. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60 on the intestinal barrier function and gut peptides in breast cancer patients: an observational study

    Directory of Open Access Journals (Sweden)

    Russo Francesco

    2013-02-01

    Full Text Available Abstract Background Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2, epidermal growth factor (EGF and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD. Methods Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+ patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21. Results During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27% suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+ patients compared to CTD(− patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+ patients than CTD(− ones, respectively. Finally in CTD(+ patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Conclusions Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2

  3. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; D'Attoma, Benedetta; Orlando, Antonella; Campanella, Giovanna; Giotta, Francesco; Riezzo, Giuseppe

    2013-02-04

    Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF) and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD). Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+) patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21). During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27%) suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+) patients compared to CTD(-) patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+) patients than CTD(-) ones, respectively. Finally in CTD(+) patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2, ghrelin and EGF. In CTD(+) patients, a different GI peptide

  4. Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens

    Directory of Open Access Journals (Sweden)

    Rosario eGalarza-Seeber

    2016-02-01

    Full Text Available Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect of 3 concentrations of Aflatoxin B1 (AFB1; 2, 1.5 or 1 ppm on gastrointestinal leakage and liver bacterial translocation (BT. In Exp 1, 240 day-of-hatch male broilers were allocated in two groups, each group had six replicates of 20 chickens (n = 120/group: Control feed or feed + 2 ppm AFB1. In Exp 2, 240 day-of-hatch male broilers were allocated in three groups, each group had 5 replicates of 16 chickens (n = 80/group: Control feed; feed + 1 ppm AFB1; or feed + 1.5 ppm AFB1. In both experiments, chickens were fed starter (d1-d7 and grower diets (d8-d21 ad libitum and performance parameters were evaluated every week. At day 21, all chicks received an oral gavage dose of FITC-d (4.16 mg/kg 2.5h before collecting blood samples to evaluate gastrointestinal leakage of FITC-d. In Exp 2 a hematologic analysis was also performed. Liver sections were aseptically collected and cultured using TSA plates to determine BT. Cecal contents were collected to determine total cfu/g of Gram-negative bacteria; lactic acid bacteria (LAB or anaerobes by plating on selective media. In Exp 2, liver, spleen and bursa of Fabricius were removed to determine organ weight ratio, and also intestinal samples were obtained for morphometric analysis. Performance parameters, organ weight ratio and morphometric measurements were significantly different between control and AFB1 groups in both experiments. Gut leakage of FITC-d was not affected by the three concentrations of AFB1 evaluated (P > 0.05. Interestingly, a significant reduction in BT was observed in chickens that received 2 and 1 ppm AFB1. An increase (P < 0.05 in total aerobic bacteria, total Gram negatives, and total LAB

  5. Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4

    Directory of Open Access Journals (Sweden)

    Judith Radloff

    2017-08-01

    Full Text Available The pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE covering porcine Peyer's patches (PP has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the way toward an understanding of the functional contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens were taken from the distal small intestine in order to obtain electrophysiological data of PP FAE and neighboring villous epithelium (VE, employing the Ussing chamber technique. Transepithelial resistance (TER and paracellular fluorescein flux were measured, and tissues were morphometrically compared. In selfsame tissues, expression and localization of major tight junction (TJ proteins (claudin-1, -2, -3, -4, -5, and -8 were analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP FAE compared with the neighboring VE. Immunohistochemistry confirmed the expression and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance in PP FAE. The results are in accordance with the physiological function of the FAE, which strongly regulates and limits antigen uptake determining a mandatory transcellular route for antigen presentation, highlighting the importance of this structure for the first steps of the intestinal immune response. Thus, this study provides detailed insights into the specific barrier properties of the porcine FAE covering intestinal PP, at the interface of intestinal immunology and barriology.

  6. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  7. Brain gut microbiome interactions and functional bowel disorders

    Science.gov (United States)

    Alterations in the bidirectional interactions between the intestine and the nervous system have important roles in the pathogenesis of irritable bowel syndrome (IBS). A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. A small and poorly defined r...

  8. Introduction to the human gut microbiota.

    Science.gov (United States)

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  9. [Glucose homeostasis and gut-brain connection].

    Science.gov (United States)

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  10. Just a Gut Feeling: Central Nervous Effects of Peripheral Gastrointestinal Hormones.

    Science.gov (United States)

    Roth, Christian L; Doyle, Robert Patrick

    2017-01-01

    Despite greater health education, obesity remains one of the greatest health challenges currently facing the world. The prevalence of obesity among children and adolescents and the rising rates of prediabetes and diabetes are of particular concern. A deep understanding of regulatory pathways and development of new anti-obesity drugs with increased efficacy and safety are of utmost necessity. The 2 major biological players in the regulation of food intake are the gut and the brain as peptides released from the gut in response to meals convey information about the energy needs to brain centers of energy homeostasis. There is evidence that gut hormones not only pass the blood-brain barrier and bind to receptors located in different brain areas relevant for body weight regulation, but some are also expressed in the brain as part of hedonic and homeostatic pathways. Regarding obesity interventions, the only truly effective treatment for obesity is bariatric surgery, the long-term benefits of which may actually involve increased activity of gut hormones including peptide YY3-36 and glucagon-like peptide 1. This review discusses critical gut-hormones involved in the regulation of food intake and energy homeostasis and their effects on peripheral tissues versus central nervous system actions. © 2017 S. Karger AG, Basel.

  11. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers.

    Science.gov (United States)

    Ticinesi, Andrea; Milani, Christian; Guerra, Angela; Allegri, Franca; Lauretani, Fulvio; Nouvenne, Antonio; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Turroni, Francesca; Duranti, Sabrina; Mangifesta, Marta; Viappiani, Alice; Ferrario, Chiara; Dodi, Rossella; Dall'Asta, Margherita; Del Rio, Daniele; Ventura, Marco; Meschi, Tiziana

    2018-04-28

    The involvement of the gut microbiota in the pathogenesis of calcium nephrolithiasis has been hypothesised since the discovery of the oxalate-degrading activity of Oxalobacter formigenes , but never comprehensively studied with metagenomics. The aim of this case-control study was to compare the faecal microbiota composition and functionality between recurrent idiopathic calcium stone formers (SFs) and controls. Faecal samples were collected from 52 SFs and 48 controls (mean age 48±11). The microbiota composition was analysed through 16S rRNA microbial profiling approach. Ten samples (five SFs, five controls) were also analysed with deep shotgun metagenomics sequencing, with focus on oxalate-degrading microbial metabolic pathways. Dietary habits, assessed through a food-frequency questionnaire, and 24-hour urinary excretion of prolithogenic and antilithogenic factors, including calcium and oxalate, were compared between SFs and controls, and considered as covariates in the comparison of microbiota profiles. SFs exhibited lower faecal microbial diversity than controls (Chao1 index 1460±363vs 1658±297, fully adjusted p=0.02 with stepwise backward regression analysis). At multivariate analyses, three taxa ( Faecalibacterium , Enterobacter , Dorea ) were significantly less represented in faecal samples of SFs. The Oxalobacter abundance was not different between groups. Faecal samples from SFs exhibited a significantly lower bacterial representation of genes involved in oxalate degradation, with inverse correlation with 24-hour oxalate excretion (r=-0.87, p=0.002). The oxalate-degrading genes were represented in several bacterial species, whose cumulative abundance was inversely correlated with oxaluria (r=-0.85, p=0.02). Idiopathic calcium SFs exhibited altered gut microbiota composition and functionality that could contribute to nephrolithiasis physiopathology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All

  12. Impacts of Gut Bacteria on Human Health and Diseases

    Science.gov (United States)

    Zhang, Yu-Jie; Li, Sha; Gan, Ren-You; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2015-01-01

    Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases. PMID:25849657

  13. Gut inflammation in chronic fatigue syndrome

    OpenAIRE

    Lakhan, Shaheen E; Kirchgessner, Annette

    2010-01-01

    Abstract Chronic fatigue syndrome (CFS) is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS), a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestin...

  14. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation.

    Science.gov (United States)

    Bajic, Juliana E; Johnston, Ian N; Howarth, Gordon S; Hutchinson, Mark R

    2018-01-01

    The central nervous system and gastrointestinal tract form the primary targets of chemotherapy-induced toxicities. Symptoms associated with damage to these regions have been clinically termed chemotherapy-induced cognitive impairment and mucositis. Whilst extensive literature outlines the complex etiology of each pathology, to date neither chemotherapy-induced side-effect has considered the potential impact of one on the pathogenesis of the other disorder. This is surprising considering the close bidirectional relationship shared between each organ; the gut-brain axis. There are complex multiple pathways linking the gut to the brain and vice versa in both normal physiological function and disease. For instance, psychological and social factors influence motility and digestive function, symptom perception, and behaviors associated with illness and pathological outcomes. On the other hand, visceral pain affects central nociception pathways, mood and behavior. Recent interest highlights the influence of functional gut disorders, such as inflammatory bowel diseases and irritable bowel syndrome in the development of central comorbidities. Gut-brain axis dysfunction and microbiota dysbiosis have served as key portals in understanding the potential mechanisms associated with these functional gut disorders and their effects on cognition. In this review we will present the role gut-brain axis dysregulation plays in the chemotherapy setting, highlighting peripheral-to-central immune signaling mechanisms and their contribution to neuroimmunological changes associated with chemotherapy exposure. Here, we hypothesize that dysregulation of the gut-brain axis plays a major role in the intestinal, psychological and neurological complications following chemotherapy. We pay particular attention to evidence surrounding microbiota dysbiosis, the role of intestinal permeability, damage to nerves of the enteric and peripheral nervous systems and vagal and humoral mediated changes.

  15. Characterising the avian gut microbiota: membership, driving influences and potential function

    OpenAIRE

    David eWaite; Mike eTaylor

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbour diverse communities of microorganisms within their guts, which collectively fulfil important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-ba...

  16. Characterizing the avian gut microbiota: membership, driving influences, and potential function

    OpenAIRE

    Waite, David W.; Taylor, Michael W.

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-ba...

  17. The Potential for Gut Organoid Derived Interstitial Cells of Cajal in Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Jerry Zhou

    2017-09-01

    Full Text Available Effective digestion requires propagation of food along the entire length of the gastrointestinal tract. This process involves coordinated waves of peristalsis produced by enteric neural cell types, including different categories of interstitial cells of Cajal (ICC. Impaired food transport along the gastrointestinal tract, either too fast or too slow, causes a range of gut motility disorders that affect millions of people worldwide. Notably, loss of ICC has been shown to affect gut motility. Patients that suffer from gut motility disorders regularly experience diarrhoea and/or constipation, insomnia, anxiety, attention lapses, irritability, dizziness, and headaches that greatly affect both physical and mental health. Limited treatment options are available for these patients, due to the scarcity of human gut tissue for research and transplantation. Recent advances in stem cell technology suggest that large amounts of rudimentary, yet functional, human gut tissue can be generated in vitro for research applications. Intriguingly, these stem cell-derived gut organoids appear to contain functional ICC, although their frequency and functional properties are yet to be fully characterised. By reviewing methods of gut organoid generation, together with what is known of the molecular and functional characteristics of ICC, this article highlights short- and long-term goals that need to be overcome in order to develop ICC-based therapies for gut motility disorders.

  18. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  19. Functional interpretation of a non-gut hemocoelic tissue aminopeptidase N (APN in a lepidopteran insect pest Achaea janata.

    Directory of Open Access Journals (Sweden)

    Thuirei Jacob Ningshen

    Full Text Available Insect midgut membrane-anchored aminopeptidases N (APNs are Zn(++ dependent metalloproteases. Their primary role in dietary protein digestion and also as receptors in Cry toxin-induced pathogenesis is well documented. APN expression in few non-gut hemocoelic tissues of lepidopteran insects has also been reported but their functions are widely unknown. In the present study, we observed specific in vitro interaction of Cry1Aa toxin with a 113 kDa AjAPN1 membrane protein of larval fat body, Malpighian tubule and salivary gland of Achaea janata. Analyses of 3D molecular structure of AjAPN1, the predominantly expressed APN isoform in these non-gut hemocoelic tissues of A. janata showed high structural similarity to the Cry1Aa toxin binding midgut APN of Bombyx mori, especially in the toxin binding region. Structural similarity was further substantiated by in vitro binding of Cry1Aa toxin. RNA interference (RNAi resulted in significant down-regulation of AjAPN1 transcript and protein expression in fat body and Malpighian tubule but not in salivary gland. Consequently, reduced AjAPN1 expression resulted in larval mortality, larval growth arrest, development of lethal larval-pupal intermediates, development of smaller pupae and emergence of viable defective adults. In vitro Cry1Aa toxin binding analysis of non-gut hemocoelic tissues of AjAPN1 knockdown larvae showed reduced interaction of Cry1Aa toxin with the 113 kDa AjAPN1 protein, correlating well with the significant silencing of AjAPN1 expression. Thus, our observations suggest AjAPN1 expression in non-gut hemocoelic tissues to play important physiological role(s during post-embryonic development of A. janata. Though specific interaction of Cry1Aa toxin with AjAPN1 of non-gut hemocoelic tissues of A. janata was demonstrated, evidences to prove its functional role as a Cry1Aa toxin receptor will require more in-depth investigation.

  20. Exercise, fitness, and the gut.

    Science.gov (United States)

    Cronin, Owen; Molloy, Michael G; Shanahan, Fergus

    2016-03-01

    Exercise and gut symptomatology have long been connected. The possibility that regular exercise fosters intestinal health and function has been somewhat overlooked in the scientific literature. In this review, we summarize current knowledge and discuss a selection of recent, relevant, and innovative studies, hypotheses and reviews that elucidate a complex topic. The multiorgan benefits of regular exercise are extensive. When taken in moderation, these benefits transcend improved cardio-respiratory fitness and likely reach the gut in a metabolic, immunological, neural, and microbial manner. This is applicable in both health and disease. However, further work is required to provide safe, effective recommendations on physical activity in specific gastrointestinal conditions. Challenging methodology investigating the relationship between exercise and gut health should not deter from exploring exercise in the promotion of gastrointestinal health.

  1. The role of the adaptive immune system in regulation of gut microbiota.

    Science.gov (United States)

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-07-01

    The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health.

    Science.gov (United States)

    Donovan, Sharon M

    2017-03-04

    Over the past decade, application of culture-independent, next generation DNA sequencing has dramatically enhanced our understanding of the composition of the gut microbiome and its association with human states of health and disease. Host genetics, age, and environmental factors such as where and who you live with, use of pre-, pro- and antibiotics, exercise and diet influence the short- and long-term composition of the microbiome. Dietary intake is a key determinant of microbiome composition and diversity and studies to date have linked long-term dietary patterns as well as short-term dietary interventions to the composition and diversity of the gut microbiome. The goal of this special focus issue was to review the role of diet in regulating the composition and function of the gut microbiota across the lifespan, from pregnancy to old age. Overall dietary patterns, as well as perturbations such as undernutrition and obesity, as well as the effects of dietary fiber/prebiotics and fat composition are explored.

  3. Contribution of Gut Bacteria to Liver Pathobiology

    Directory of Open Access Journals (Sweden)

    Gakuhei Son

    2010-01-01

    Full Text Available Emerging evidence suggests a strong interaction between the gut microbiota and health and disease. The interactions of the gut microbiota and the liver have only recently been investigated in detail. Receiving approximately 70% of its blood supply from the intestinal venous outflow, the liver represents the first line of defense against gut-derived antigens and is equipped with a broad array of immune cells (i.e., macrophages, lymphocytes, natural killer cells, and dendritic cells to accomplish this function. In the setting of tissue injury, whereby the liver is otherwise damaged (e.g., viral infection, toxin exposure, ischemic tissue damage, etc., these same immune cell populations and their interactions with the infiltrating gut bacteria likely contribute to and promote these pathologies. The following paper will highlight recent studies investigating the relationship between the gut microbiota, liver biology, and pathobiology. Defining these connections will likely provide new targets for therapy or prevention of a wide variety of acute and chronic liver pathologies.

  4. Toward improving mucosal barrier defenses: rhG-CSF plus IgG antibody.

    Science.gov (United States)

    Simmonds, Aryeh; LaGamma, Edmund F

    2006-11-01

    Epithelial cell functions ultimately define the ability of the extremely low birth weight human fetus to survive outside of the uterus. These specialized epithelial cell capacities manage all human interactions with the ex utero world including: (i) lung mechanics, surface chemistry and gas exchange, (ii) renal tubular balance of fluid and electrolytes, (iii) barrier functions of the intestine and skin for keeping bacteria out and water in, plus enabling intestinal digestion, as well as (iv) maintaining an intact neuroepithelium lining of the ventricles of the brain and retina. In Part I of this two part review, the authors describe why the gut barrier is a clinically relevant model system for studying the complex interplay between innate and adaptive immunity, dendritic &epithelial cell interactions, intraepithelial lymphocytes, M-cells, as well as the gut associated lymphoid tissues where colonization after birth, clinician feeding practices, use of antibiotics as well as exposure to prebiotics, probiotics and maternal vaginal flora all program the neonate for a life-time of immune competence distinguishing "self" from foreign antigens. These barrier defense capacities become destructive during disease processes like necrotizing enterocolitis (NEC) when an otherwise maturationally normal, yet dysregulated and immature, immune defense system is associated with high levels of certain inflammatory mediators like TNFa. In Part II the authors discuss the rationale for why rhG-CSF has theoretical advantages in managing NEC or sepsis by augmenting neonatal neutrophil number, neutrophil expression of Fcg and complement receptors, as well as phagocytic function and oxidative burst. rhG-CSF also has potent anti-TNFa functions that may serve to limit extension of tissue destruction while not impairing bacterial killing capacity. Healthy, non-infected neutropenic and septic neonates differ in their ability to respond to rhG-CSF; however, no neonatal clinical trials to date

  5. Gut microbiota and bacterial translocation in digestive surgery: the impact of probiotics.

    Science.gov (United States)

    Komatsu, Shunichiro; Yokoyama, Yukihiro; Nagino, Masato

    2017-05-01

    It is conceivable that manipulation of the gut microbiota could reduce the incidence or magnitude of surgical complications in digestive surgery. However, the evidence remains inconclusive, although much effort has been devoted to randomized controlled trials (RCTs) and meta-analyses on probiotics. Furthermore, the mechanism behind the protective effects of probiotics appears elusive, our understanding of probiotic actions being fragmentary. The objective of this review is to assess the clinical relevance of the perioperative use of probiotics in major digestive surgery, based on a comprehensive view of the gut microbiota, bacterial translocation (BT), and host defense system. The first part of this article describes the pathophysiological events associated with the gut microbiota. Results of RCTs for the perioperative use of probiotics in major digestive surgery are reviewed in the latter part. The development of the structural and functional barrier to protect against BT primarily results from the generally cooperative interactions between the host and resident microbiota. There is a large body of evidence indicating that probiotics, by enhancing beneficial interactions, reinforce the host defense system to limit BT. The perioperative use of probiotics in patients undergoing hepatobiliary and pancreatic surgery is a promising approach for the prevention of postoperative infectious complications, while the effectiveness in colorectal surgery remains controversial due to substantial heterogeneity among the RCTs with small sample populations. Further studies, such as multi-center RCTs with a larger sample size, are necessary to confirm the clinical relevance of probiotic agents in major digestive surgery.

  6. Food Design to Feed the Human Gut Microbiota

    NARCIS (Netherlands)

    Ercolini, Danilo; Fogliano, Vincenzo

    2018-01-01

    The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and

  7. Role of nutraceuticals in gut health and growth performance of poultry

    Directory of Open Access Journals (Sweden)

    Sugiharto Sugiharto

    2016-06-01

    Full Text Available The gut is a fundamental organ system which makes up two equally important functions, i.e., the digestion and host defence. To elicit the well-functioning and healthy gut, the dynamic balance of gut ecosystem is of importance. A wide range of factors related to diets and infectious disease agents seem to affect this balance, and subsequently affect the health status and production performance of the chicken. With the ban and/or reduction of the use of antibiotic growth promoters (AGPs in poultry production, the alternatives to AGP are needed especially to preserve the balance of gut microbiota in chicken. This review provides a summary of the potentials and possible mechanisms of action of some alternatives to AGP (referred as nutraceuticals in improving the gut microbial ecosystem and immune system as well as growth performance of poultry.

  8. The Overarching Influence of the Gut Microbiome on End-Organ Function: The Role of Live Probiotic Cultures

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2014-09-01

    Full Text Available At the time of birth, humans experience an induced pro-inflammatory beneficial event. The mediators of this encouraged activity, is a fleet of bacteria that assault all mucosal surfaces as well as the skin. Thus initiating effects that eventually provide the infant with immune tissue maturation. These effects occur beneath an emergent immune system surveillance and antigenic tolerance capability radar. Over time, continuous and regulated interactions with environmental as well as commensal microbial, viral, and other antigens lead to an adapted and maintained symbiotic state of tolerance, especially in the gastrointestinal tract (GIT the organ site of the largest microbial biomass. However, the perplexing and much debated surprise has been that all microbes need not be targeted for destruction. The advent of sophisticated genomic techniques has led to microbiome studies that have begun to clarify the critical and important biochemical activities that commensal bacteria provide to ensure continued GIT homeostasis. Until recently, the GIT and its associated micro-biometabolome was a neglected factor in chronic disease development and end organ function. A systematic underestimation has been to undervalue the contribution of a persistent GIT dysbiotic (a gut barrier associated abnormality state. Dysbiosis provides a plausible clue as to the origin of systemic metabolic disorders encountered in clinical practice that may explain the epidemic of chronic diseases. Here we further build a hypothesis that posits the role that subtle adverse responses by the GIT microbiome may have in chronic diseases. Environmentally/nutritionally/and gut derived triggers can maintain microbiome perturbations that drive an abnormal overload of dysbiosis. Live probiotic cultures with specific metabolic properties may assist the GIT microbiota and reduce the local metabolic dysfunctions. As such the effect may translate to a useful clinical treatment approach for patients

  9. [Research advances in the relationship between childhood malnutrition and gut microbiota].

    Science.gov (United States)

    Wang, Hui-Hui; Wen, Fei-Qiu; Wei, Ju-Rong

    2016-11-01

    Childhood malnutrition is an important disease threatening healthy growth of children worldwide. Gut microbiota has close links to food digestion, absorption and intestinal function. Current research considers that alterations in gut microbiota have been strongly implicated in childhood malnutrition. This review article addresses the latest understanding and evidence of interrelationship between gut microbiota and individual nutrition status, the changes of gut microbiota in different types of malnutrition, and the attribution of gut microbiota in the treatment and prognosis of malnutrition. It provides in depth understanding of childhood malnutrition from the perspective of microbiome.

  10. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    therapy in dermatological patients on ceramides and skin barrier function.We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy.......The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified.The aim of this study was to examine the effect of UV...

  11. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    therapy in dermatological patients on ceramides and skin barrier function. We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy.......The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified. The aim of this study was to examine the effect of UV...

  12. [Gut microbiota: Description, role and pathophysiologic implications].

    Science.gov (United States)

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  13. Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases

    Science.gov (United States)

    van den Elsen, Lieke WJ; Poyntz, Hazel C; Weyrich, Laura S; Young, Wayne; Forbes-Blom, Elizabeth E

    2017-01-01

    The gut microbiota provides essential signals for the development and appropriate function of the immune system. Through this critical contribution to immune fitness, the gut microbiota has a key role in health and disease. Recent advances in the technological applications to study microbial communities and their functions have contributed to a rapid increase in host–microbiota research. Although it still remains difficult to define a so-called ‘normal' or ‘healthy' microbial composition, alterations in the gut microbiota have been shown to influence the susceptibility of the host to different diseases. Current translational research combined with recent technological and computational advances have enabled in-depth study of the link between microbial composition and immune function, addressing the interplay between the gut microbiota and immune responses. As such, beneficial modulation of the gut microbiota is a promising clinical target for many prevalent diseases including inflammatory bowel disease, metabolic abnormalities such as obesity, reduced insulin sensitivity and low-grade inflammation, allergy and protective immunity against infections. PMID:28197336

  14. Guidance on the scientific requirements for health claims related to gut and immune function

    DEFF Research Database (Denmark)

    Tetens, Inge

    2011-01-01

    The European Food Safety Authority (EFSA) asked the Panel on Dietetic Products Nutrition and Allergies (NDA) to draft guidance on scientific requirements for health claims related to gut and immune function. This guidance has been drawn from scientific opinions of the NDA Panel on such health......, was subjected to public consultation (28 September 2010 to 22 October 2010), and was also discussed at a technical meeting with experts in the field on 2 December 2010 in Amsterdam....

  15. Effects of predation stress and food ration on perch gut microbiota.

    Science.gov (United States)

    Zha, Yinghua; Eiler, Alexander; Johansson, Frank; Svanbäck, Richard

    2018-02-06

    Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context.

  16. Metabolic niche of a prominent sulfate-reducing human gut bacterium.

    Science.gov (United States)

    Rey, Federico E; Gonzalez, Mark D; Cheng, Jiye; Wu, Meng; Ahern, Philip P; Gordon, Jeffrey I

    2013-08-13

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.

  17. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice.

    Science.gov (United States)

    Xiao, Liang; Sonne, Si Brask; Feng, Qiang; Chen, Ning; Xia, Zhongkui; Li, Xiaoping; Fang, Zhiwei; Zhang, Dongya; Fjære, Even; Midtbø, Lisa Kolden; Derrien, Muriel; Hugenholtz, Floor; Tang, Longqing; Li, Junhua; Zhang, Jianfeng; Liu, Chuan; Hao, Qin; Vogel, Ulla Birgitte; Mortensen, Alicja; Kleerebezem, Michiel; Licht, Tine Rask; Yang, Huanming; Wang, Jian; Li, Yingrui; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2017-04-08

    It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those associated with obesity, we took advantage of the different susceptibility of C57BL/6JBomTac (BL6) and 129S6/SvEvTac (Sv129) mice to diet-induced obesity and of their different responses to inhibition of cyclooxygenase (COX) activity, where inhibition of COX activity in BL6 mice prevents HF diet-induced obesity, but in Sv129 mice accentuates obesity. Using HiSeq-based whole genome sequencing, we identified taxonomic and functional differences in the gut microbiota of the two mouse strains fed regular low-fat or HF diets with or without supplementation with the COX-inhibitor, indomethacin. HF feeding rather than obesity development led to distinct changes in the gut microbiota. We observed a robust increase in alpha diversity, gene count, abundance of genera known to be butyrate producers, and abundance of genes involved in butyrate production in Sv129 mice compared to BL6 mice fed either a LF or a HF diet. Conversely, the abundance of genes involved in propionate metabolism, associated with increased energy harvest, was higher in BL6 mice than Sv129 mice. The changes in the composition of the gut microbiota were predominantly driven by high-fat feeding rather than reflecting the obese state of the mice. Differences in the abundance of butyrate and propionate producing bacteria in the gut may at least in part contribute to the observed differences in obesity propensity in Sv129 and BL6 mice.

  18. Crossing safety barriers: influence of children's morphological and functional variables.

    Science.gov (United States)

    Cordovil, Rita; Vieira, Filomena; Barreiros, João

    2012-05-01

    Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Emerging Technologies for Gut Microbiome Research

    Science.gov (United States)

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  20. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    Science.gov (United States)

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  1. Gut microbiome can control antitumor immune function in liver

    Science.gov (United States)

    An NCI study in mice that found a connection between gut bacteria and antitumor immune responses in the liver has implications for understanding mechanisms that lead to liver cancer and for potential treatments. The study was published in Science.

  2. Healthy human gut phageome

    NARCIS (Netherlands)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; Oost, van der John; Vos, de Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of

  3. The important role of stratum corneum lipids for the cutaneous barrier function.

    Science.gov (United States)

    van Smeden, J; Janssens, M; Gooris, G S; Bouwstra, J A

    2014-03-01

    The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1983-01-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. It starts with a review of the present theoretical and phenomenological status of GUTs and then goes on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. (author)

  5. Functional diversity and redundancy across fish gut, sediment and water bacterial communities.

    Science.gov (United States)

    Escalas, Arthur; Troussellier, Marc; Yuan, Tong; Bouvier, Thierry; Bouvier, Corinne; Mouchet, Maud A; Flores Hernandez, Domingo; Ramos Miranda, Julia; Zhou, Jizhong; Mouillot, David

    2017-08-01

    This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Probiotics, Prebiotics, and Synbiotics: Gut and Beyond

    Directory of Open Access Journals (Sweden)

    Usha Vyas

    2012-01-01

    Full Text Available The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management.

  7. The human gut microbiome and its dysfunctions through the meta-omics prism.

    Science.gov (United States)

    Mondot, Stanislas; Lepage, Patricia

    2016-05-01

    The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases. © 2016 New York Academy of Sciences.

  8. Gut microbiota and obesity: lessons from the microbiome.

    Science.gov (United States)

    Cani, Patrice D

    2013-07-01

    The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.

  9. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction.

    Science.gov (United States)

    Damms-Machado, Antje; Louis, Sandrine; Schnitzer, Anna; Volynets, Valentina; Rings, Andreas; Basrai, Maryam; Bischoff, Stephan C

    2017-01-01

    Obesity and associated metabolic disorders are related to impairments of the intestinal barrier. We examined lactulose:mannitol (Lac:Man) permeability in obese individuals with and without liver steatosis undergoing a weight-reduction program to test whether an effective weight-loss program improves gut barrier function and whether obese patients with or without liver steatosis differ in this function. Twenty-seven adult, nondiabetic individuals [mean ± SD body mass index (BMI; in kg/m 2 ): 43.7 ± 5.2; 78% with moderate or severe liver steatosis] were included in the follow-up intervention study (n = 13 by month 12). All patients reduced their weight to a mean ± SD BMI of 36.4 ± 5.1 within 12 mo. We assessed barrier functions by the oral Lac:Man and the fecal zonulin tests. Insulin resistance was assessed by the homeostatic model assessment index (HOMA), and liver steatosis by sonography and the fatty liver index (FLI). The Lac:Man ratio and circulating interleukin (IL) 6 concentration decreased during intervention from 0.080 (95% CI: 0.073, 0.093) to 0.027 (95% CI: 0.024, 0.034; P < 0.001) and from 4.2 ± 1.4 to 2.8 ± 1.6 pg/mL (P < 0.01), respectively. At study start, the Lac:Man ratio was higher in patients with moderate or severe steatosis than in those without any steatosis (P < 0.001). The Lac:Man ratio tended to correlate with HOMA (ρ = 0.55, P = 0.052), which correlated with FLI (ρ = 0.75, P < 0.01). A multiple-regression analysis led to a final model explaining FLI best through BMI, waist circumference, and the Lac:Man ratio. Intestinal permeability is increased in obese patients with steatosis compared with obese patients without. The increased permeability fell to within the previously reported normal range after weight reduction. The data suggest that a leaky gut barrier is linked with liver steatosis and could be a new target for future steatosis therapies. This trial was registered at clinicaltrials.gov as NCT01344525. © 2017 American Society

  10. A search for parameters of universal sub-barrier fusion excitation function

    Energy Technology Data Exchange (ETDEWEB)

    Qu, W.W. [Medical College of Soochow University, School of Radiation Medicine and Protection, Soochow (China); Zhang, G.L. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Wolski, R. [Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow (Poland)

    2016-11-15

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections. (orig.)

  11. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

    Science.gov (United States)

    Sundman, Mark H; Chen, Nan-Kuei; Subbian, Vignesh; Chou, Ying-Hui

    2017-11-01

    As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral

  12. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  13. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  14. Physiological, Pathological, and Therapeutic Implications of Zonulin-Mediated Intestinal Barrier Modulation

    Science.gov (United States)

    Fasano, Alessio

    2008-01-01

    The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields. PMID:18832585

  15. Gradual Changes of Gut Microbiota in Weaned Miniature Piglets

    Directory of Open Access Journals (Sweden)

    Xianghua Yan

    2016-11-01

    Full Text Available Colonization of gut microbiota in mammals during the early life is vital to host health. The miniature piglet has recently been considered as an optimal infant model. However, less is known about the development of gut microbiota in miniature piglets. Here, this study was conducted to explore how the gut microbiota develops in weaned Congjiang miniature piglets. In contrast to the relatively stabilized gut fungal community, gut bacterial community showed a marked drop in alpha diversity, accompanied by significant alterations in taxonomic compositions. The relative abundances of 24 bacterial genera significantly declined, whereas the relative abundances of 7 bacterial genera (Fibrobacter, Collinsella, Roseburia, Prevotella, Dorea, Howardella, and Blautia significantly increased with the age of weaned piglets. Fungal taxonomic analysis showed that the relative abundances of 2 genera (Kazachstania and Aureobasidium significantly decreased, whereas the relative abundances of 4 genera (Aspergillus, Cladosporium, Simplicillium, and Candida significantly increased as the piglets aged. Kazachstania telluris was the signature species predominated in gut fungal communities of weaned miniature piglets. The functional maturation of the gut bacterial community was characterized by the significantly increased digestive system, glycan biosynthesis and metabolism, and vitamin B biosynthesis as the piglets aged. These findings suggest that marked gut microbial changes in Congjiang miniature piglets may contribute to understand the potential gut microbiota development of weaned infants.

  16. Gut microbiome development along the colorectal adenoma-carcinoma sequence

    DEFF Research Database (Denmark)

    Feng, Qiang; Liang, Suisha; Jia, Huijue

    2015-01-01

    factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment......Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from benign polyps called adenoma. The gut microbiota is believed to be directly involved in colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-related gut microbe...

  17. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    Science.gov (United States)

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  18. Enterotypes of the human gut microbiome

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Raes, Jeroen; Pelletier, Eric

    2011-01-01

    Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previou......Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries....... This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species...

  19. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-10-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record

  20. A nuclide transfer model for barriers of the seabed repository using response function

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Kang, Chul Hyung; Hahn, Pil Soo

    1996-01-01

    A nuclide transfer by utilizing mass transfer coefficient and barrier response function defined for each barrier is proposed, by which the final nuclide transfer rate into the sea water can be evaluated. When simple and immediate quantification of the nuclide release is necessary in the conservative aspect, using this kind of approach may be advantageous since each layered barrier can be treated separately from other media in series in the repository system, making it possible to apply separate solutions in succession to other various media. Although one disadvantage is that while flux continuity can be maintained at the interface by using the exit nuclide flux from the first medium as the source flux for the next one, there may be no guarantee for concentration continuity, this problem could be eliminated assuming that there is no boundary resistance to mass transfer across the interface. Mass transfer coefficient can be determined by the assumption that the nuclide concentration gradient at the interface between adjacent barriers remains constant and barrier response function is obtained from an analytical expression for nuclide flow rate out of each barrier in response to a unit impulse into the barrier multiplied by mass transfer coefficient. Total time-dependent nuclide transfer rate from the barrier can then be obtained by convoluting the response function for the barrier with a previously calculated set of time-varying input of nuclide flow rate for the previous barrier. 18 refs., 5 figs. (author)

  1. Rapid gut growth but persistent delay in digestive function in the postnatal period of preterm pigs

    DEFF Research Database (Denmark)

    Hansen, Carl Frederik; Thymann, Thomas; Andersen, Anders Daniel

    2016-01-01

    BACKGROUND: Preterm infants often tolerate full enteral nutrition few weeks after birth but it is not known how this is related to gut maturation. Using pigs as models, we hypothesized that intestinal structure and digestive function are similar in preterm and term individuals at 3-4 weeks after...... to term pigs. CONCLUSION: Intestinal structure shows a remarkable growth adaptation in the first week after preterm birth, especially with enteral nutrition, while some digestive functions remain immature until at least 3-4 weeks. It is important to identify feeding regimens that stimulate intestinal...

  2. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    Directory of Open Access Journals (Sweden)

    Saad Rama

    2012-11-01

    Full Text Available Abstract The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics, notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  3. OP-16 DIETARY INTERVENTION USING THE LOW FODMAP DIET VERSUS THE "MILK, EGG, WHEAT AND SOYA FREE" DIET FOR TREATMENT OF FUNCTIONAL GUT DISORDERS A SINGLE CENTRE EXPERIENCE.

    Science.gov (United States)

    Keetarut, K; Kiparissi, F; McCartney, S; Murray, C

    2015-10-01

    The adolescent clinic is a tertiary referral clinic including patients with a wide variety of complex gastroenterology conditions predominantly tertiary referrals fromGreat Ormond Street Hospital transition clinic. To assess the benefit of the low FODMAP diet versus the "Milk, egg, wheat and soya" (MEWS) free diet for symptom control in patients with functional gut disorders and/or food allergy from June 2013 to June 2015. A total of 436 patients were seen during this time period for dietetic advice and the age range varied from 13-21 years old with 43terms of diagnosis used. These included the broad categories of inflammatory bowel disease, food allergy, functional gut conditions, congenital gut disorders, autoimmune disorders and oncology conditions. For functional gut disorders/food allergy there were 14 terms used which varied from "Functional gut disorder" to "Irritable bowel syndrome" and also included patients with delayed gastric emptying. For patients with food allergy the terms "multiple food allergy" or EosinophilicOesophagitis or Colitis were used. A total of 40 patients with functional gut disorders were referred for the MEWS or low FODMAP diet. The efficacy of the diet was measured using a symptom scale pre and post dietary intervention assessing if patients symptoms changed from nil/mild/moderate tosignificant. The results indicate whether the presenting predominant symptom e.g., bloating, constipation or abdominal pain improved following the dietary intervention. A total of 29 patients were seen for the "MEWS" free diet.These were 17 functional, 3 food allergy, 6 IBS, 2 EosinophilicOesophagitis, 1 oncology patient. The age ranged from 14 to 21 and average ageat treatment was 16.6 years old with 11 males and 18 females. 13 patients were referred for the low FODMAP diet. The patients referred for the low FODMAP diet were 7 with a functional gut disorder, 5Irritable Bowel Syndrome and1 EosinophilicColitis.The age range was 14 to 19 years old with

  4. Shotgun metaproteomics of the human distal gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    VerBerkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarsson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; Jansson, Janet K.

    2008-10-15

    The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  5. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Influence of gut microbiota on neuropsychiatric disorders.

    Science.gov (United States)

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  7. GUTs without guts

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.nl [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2014-06-15

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts.

  8. GUTs without guts

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2014-01-01

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts

  9. Stabilization with guaranteed safety using Control Lyapunov–Barrier Function

    NARCIS (Netherlands)

    Romdlony, Muhammad Zakiyullah; Jayawardhana, Bayu

    2016-01-01

    We propose a novel nonlinear control method for solving the problem of stabilization with guaranteed safety for nonlinear systems. The design is based on the merging of the well-known Control Lyapunov Function (CLF) and the recent concept of Control Barrier Function (CBF). The proposed control

  10. No Change in Rectal Sensitivity After Gut-Directed Hypnotherapy in Children With Functional Abdominal Pain or Irritable Bowel Syndrome

    NARCIS (Netherlands)

    Vlieger, A. M.; van den Berg, M. M.; Menko-Frankenhuis, C.; Bongers, M. E. J.; Tromp, E.; Benninga, M. A.

    2010-01-01

    OBJECTIVES: Gut-directed hypnotherapy (HT) has recently been shown to be highly effective in treating children with functional abdominal pain (FAP) and irritable bowel syndrome (IBS). This study was conducted to determine the extent to which this treatment success is because of an improvement in

  11. Gut Melatonin in Vertebrates: Chronobiology and Physiology

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2015-07-01

    Full Text Available Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s as its synchronizer. Based on mammalian findings, physiological significance of gut derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini-review is to summarize existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  12. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells

    Science.gov (United States)

    Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.

    2015-04-01

    TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken

  13. The gut microbiota, environment and diseases of modern society.

    Science.gov (United States)

    Kelsen, Judith R; Wu, Gary D

    2012-01-01

    The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases.

  14. Crossing the entropy barrier of dynamical zeta functions

    International Nuclear Information System (INIS)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F.

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.)

  15. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  16. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    Science.gov (United States)

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  17. Gut microbiome response to short-term dietary interventions in reactive hypoglycemia subjects.

    Science.gov (United States)

    Quercia, Sara; Turroni, Silvia; Fiori, Jessica; Soverini, Matteo; Rampelli, Simone; Biagi, Elena; Castagnetti, Andrea; Consolandi, Clarissa; Severgnini, Marco; Pianesi, Mario; Fallucca, Francesco; Pozzilli, Paolo; Brigidi, Patrizia; Candela, Marco

    2017-11-01

    Reactive hypoglycemia is a metabolic disorder that provokes severe hypoglycemic episodes after meals. Over recent years, the gut microbiota has been recognized as potential target for the control of metabolic diseases, and the possibility to correct gut microbiota dysbioses through diet, favouring the recovery of metabolic homeostasis, has been considered. We investigate the impact of 2 short-term (3-day) nutritional interventions, based on the macrobiotic Ma-Pi 2 diet and a control Mediterranean diet, on the structure and functionality of the gut microbiota in 12 patients affected by reactive hypoglycemia. The gut microbiota composition was characterized by next-generation sequencing of the V3 to V4 region of the 16S rRNA gene, and the ecosystem functionality was addressed by measuring the faecal concentration of short-chain fatty acids (SCFAs). In order to measure the short-term physiological gut microbiota fluctuation, the microbiomes of 7 healthy people were characterized before and after 3 days of constant diet. While no convergence of the gut microbiota compositional profiles was observed, a significant increase in SCFA faecal levels was induced only in the Ma-Pi 2 diet group, suggesting the potential of this diet to support a short-term functional convergence of the gut microbiota, regardless of the individual compositional layout. The Ma-Pi 2 diet, with its high fibre load, was effective in increasing the production of SCFAs by the gut microbiota. Because these metabolites are known for their ability to counterbalance the metabolic deregulation in persons with glucose impairment disorders, their increased bioavailability could be of some relevance in reactive hypoglycemia. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Examination of digestive enzyme distribution in gut tract and functions of intestinal caecum, in megascolecid earthworms (Oligochaeta: Megascolecidae) in Japan.

    Science.gov (United States)

    Nozaki, Mana; Ito, Katsutoshi; Miura, Chiemi; Miura, Takeshi

    2013-09-01

    Earthworms ingest various materials in addition to food items, such as soil particles. Most earthworms of the family Megascolecidae, a dominant family in Japan, have intestinal caeca connected directly to the intestinal tract. The function of the caeca has not been demonstrated, although it is thought to be associated with digestion. We investigated the activity of the digestive enzymes amylase, phosphatase, cellulase, and protease in different regions of the gut, including the intestinal caeca, in three species of megascolecid earthworms, Pheretima heteropoda, Pheretima hilgendorfi, and Pheretima sieboldi. Activities of several enzymes were high in the intestinal caeca; in particular, protease activity was higher in the caeca than that in the anterior gut, foregut, midgut, and hindgut in all three species. Moreover, the ratio of enzyme activities in the intestinal caeca to whole-gut tended to be higher in manicate intestinal caeca than in simple intestinal caeca. These results suggest that the digestive system of earthworms relies on the intestinal caeca.

  19. Gut: An underestimated target organ for Aluminum.

    Science.gov (United States)

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic acid and the kynurenine pathway

    Directory of Open Access Journals (Sweden)

    David eGems

    2013-08-01

    Full Text Available Despite decades of research on the nematode C. elegans, it still contains many hidden secrets. One such is the function of the prominent organelles known as gut granules, which are numerous in the intestinal cells of nematodes throughout the suborder Rhabditina. A striking feature of gut granules is the blue fluorescence that they emit under ultraviolet light. Clues to gut granule function include their acidic interior and capacity for endocytosis, both lysosome-like features (though gut granules are much bigger than normal lysosomes. This and the fluorescent material within identify gut granules as lysosome-like organelles (LROs, akin to pigment-containing melanosomes in mammals and eye pigment granules in Drosophila. Thus, the identity of the blue fluorescent substance could provide a key to understanding gut granule function.

  1. The human gut resistome.

    Science.gov (United States)

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  2. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    DEFF Research Database (Denmark)

    Forslund, Kristoffer; Hildebrand, Falk ; Nielsen, Trine N.

    2015-01-01

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported1,2. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs...... on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified......, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa3,4. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures...

  3. Immune Response of Chicken Gut to Natural Colonization by Gut Microflora and to Salmonella enterica Serovar Enteritidis Infection ▿

    OpenAIRE

    Crhanova, Magdalena; Hradecka, Helena; Faldynova, Marcela; Matulova, Marta; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2011-01-01

    In commercial poultry production, there is a lack of natural flora providers since chickens are hatched in the clean environment of a hatchery. Events occurring soon after hatching are therefore of particular importance, and that is why we were interested in the development of the gut microbial community, the immune response to natural microbial colonization, and the response to Salmonella enterica serovar Enteritidis infection as a function of chicken age. The complexity of chicken gut micro...

  4. Gut microbiota’s effect on mental health: The gut-brain axis

    Directory of Open Access Journals (Sweden)

    Megan Clapp

    2017-09-01

    Full Text Available The bidirectional communication between the central nervous system and gut microbiota, referred to as the gut-brain-axis, has been of significant interest in recent years. Increasing evidence has associated gut microbiota to both gastrointestinal and extragastrointestinal diseases. Dysbiosis and inflammation of the gut have been linked to causing several mental illnesses including anxiety and depression, which are prevalent in society today. Probiotics have the ability to restore normal microbial balance, and therefore have a potential role in the treatment and prevention of anxiety and depression. This review aims to discuss the development of the gut microbiota, the linkage of dysbiosis to anxiety and depression, and possible applications of probiotics to reduce symptoms.

  5. Application of Prodrugs to Inflammatory Diseases of the Gut

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Ebersole

    2008-02-01

    Full Text Available Oral delivery is the most common and preferred route of drug administrationalthough the digestive tract exhibits several obstacles to drug delivery including motilityand intraluminal pH profiles. The gut milieu represents the largest mucosal surfaceexposed to microorganisms with 1010-12 colony forming bacteria/g of colonic content.Approximately, one third of fecal dry matter is made of bacteria/ bacterial components.Indeed, the normal gut microbiota is responsible for healthy digestion of dietary fibers(polysaccharides and fermentation of short chain fatty acids such as acetate and butyratethat provide carbon sources (fuel for these bacteria. Inflammatory bowel disease (IBDresults in breakage of the mucosal barrier, an altered microbiota and dysregulated gutimmunity. Prodrugs that are chemically constructed to target colonic release or aredegraded specifically by colonic bacteria, can be useful in the treatment of IBD. Thisreview describes the progress in digestive tract prodrug design and delivery in light of gutmetabolic activities.

  6. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  7. Spatial structure of the Mormon cricket gut microbiome and its predicted contribution to nutrition and immune function

    Science.gov (United States)

    The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the n...

  8. Commensal Homeostasis of Gut Microbiota-Host for the Impact of Obesity

    Directory of Open Access Journals (Sweden)

    Pengyi Zhang

    2018-01-01

    Full Text Available Gut microbiota and their metabolites have been linked to a series of chronic diseases such as obesity and other metabolic dysfunctions. Obesity is an increasingly serious international health issue that may lead to a risk of insulin resistance and other metabolic diseases. The relationship between gut microbiota and the host is both interdependent and relatively independent. In this review, the causality of gut microbiota and its role in the pathogenesis and intervention of obesity is comprehensively presented to include human genotype, enterotypes, interactions of gut microbiota with the host, microbial metabolites, and energy homeostasis all of which may be influenced by dietary nutrition. Diet can enhance, inhibit, or even change the composition and functions of the gut microbiota. The metabolites they produce depend upon the dietary substrates provided, some of which have indispensable functions for the host. Therefore, diet is a key factor that maintains or not a healthy commensal relationship. In addition, the specific genotype of the host may impact the phylogenetic compositions of gut microbiota through the production of host metabolites. The commensal homeostasis of gut microbiota is favored by a balance of microbial composition, metabolites, and energy. Ultimately the desired commensal relationship is one of mutual support. This article analyzes the clues that result in patterns of commensal homeostasis. A deeper understanding of these interactions is beneficial for developing effective prevention, diagnosis, and personalized therapeutic strategies to combat obesity and other metabolic diseases. The idea we discuss is meant to improve human health by shaping or modulating the beneficial gut microbiota.

  9. Early-life gut microbiome and egg allergy.

    Science.gov (United States)

    Fazlollahi, M; Chun, Y; Grishin, A; Wood, R A; Burks, A W; Dawson, P; Jones, S M; Leung, D Y M; Sampson, H A; Sicherer, S H; Bunyavanich, S

    2018-07-01

    Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. We studied 141 children with egg allergy and controls from the multicenter Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected, and clinical evaluation, egg-specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and Statistical Analysis of Metagenomic Profiles. Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P = 5.0 × 10 -4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg-allergic subjects (Kruskal-Wallis P adj  = 0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0 × 10 -4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. The distinct early-life gut microbiota in egg-allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  10. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    Science.gov (United States)

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  11. Tail gut cyst.

    Science.gov (United States)

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  12. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A

    2015-06-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host's adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

  13. Gut Microbiome and Obesity: A Plausible Explanation for Obesity

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A.

    2015-01-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity. PMID:26029487

  14. Signals from the gut microbiota to distant organs in physiology and disease

    DEFF Research Database (Denmark)

    Schroeder, Bjoern O; Bäckhed, Gert Fredrik

    2016-01-01

    The ecosystem of the human gut consists of trillions of bacteria forming a bioreactor that is fueled by dietary macronutrients to produce bioactive compounds. These microbiota-derived metabolites signal to distant organs in the body, which enables the gut bacteria to connect to the immune...... and hormone system, to the brain (the gut-brain axis) and to host metabolism, as well as other functions of the host. This microbe-host communication is essential to maintain vital functions of the healthy host. Recently, however, the gut microbiota has been associated with a number of diseases, ranging from...... obesity and inflammatory diseases to behavioral and physiological abnormalities associated with neurodevelopmental disorders. In this Review, we will discuss microbiota-host cross-talk and intestinal microbiome signaling to extraintestinal organs. We will review mechanisms of how this communication might...

  15. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    Science.gov (United States)

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  16. Building GUTs from strings

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1996-01-01

    We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)

  17. IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut.

    Science.gov (United States)

    Renga, Giorgia; Moretti, Silvia; Oikonomou, Vasilis; Borghi, Monica; Zelante, Teresa; Paolicelli, Giuseppe; Costantini, Claudio; De Zuani, Marco; Villella, Valeria Rachela; Raia, Valeria; Del Sordo, Rachele; Bartoli, Andrea; Baldoni, Monia; Renauld, Jean-Christophe; Sidoni, Angelo; Garaci, Enrico; Maiuri, Luigi; Pucillo, Carlo; Romani, Luigina

    2018-05-08

    Candida albicans is implicated in intestinal diseases. Identifying host signatures that discriminate between the pathogenic versus commensal nature of this human commensal is clinically relevant. In the present study, we identify IL-9 and mast cells (MCs) as key players of Candida commensalism and pathogenicity. By inducing TGF-β in stromal MCs, IL-9 pivotally contributes to mucosal immune tolerance via the indoleamine 2,3-dioxygenase enzyme. However, Candida-driven IL-9 and mucosal MCs also contribute to barrier function loss, dissemination, and inflammation in experimental leaky gut models and are upregulated in patients with celiac disease. Inflammatory dysbiosis occurs with IL-9 and MC deficiency, indicating that the activity of IL-9 and MCs may go beyond host immunity to include regulation of the microbiota. Thus, the output of the IL-9/MC axis is highly contextual during Candida colonization and reveals how host immunity and the microbiota finely tune Candida behavior in the gut. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Gut microbiome development along the colorectal adenoma-carcinoma sequence.

    Science.gov (United States)

    Feng, Qiang; Liang, Suisha; Jia, Huijue; Stadlmayr, Andreas; Tang, Longqing; Lan, Zhou; Zhang, Dongya; Xia, Huihua; Xu, Xiaoying; Jie, Zhuye; Su, Lili; Li, Xiaoping; Li, Xin; Li, Junhua; Xiao, Liang; Huber-Schönauer, Ursula; Niederseer, David; Xu, Xun; Al-Aama, Jumana Yousuf; Yang, Huanming; Wang, Jian; Kristiansen, Karsten; Arumugam, Manimozhiyan; Tilg, Herbert; Datz, Christian; Wang, Jun

    2015-03-11

    Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from benign polyps called adenoma. The gut microbiota is believed to be directly involved in colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-related gut microbe(s), however, have not been surveyed in a comprehensive manner. Here we perform a metagenome-wide association study (MGWAS) on stools from advanced adenoma and carcinoma patients and from healthy subjects, revealing microbial genes, strains and functions enriched in each group. An analysis of potential risk factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment of colorectal adenoma or carcinoma.

  19. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Nugent, Colleen A; Tsompana, Maria; Cai, Liting; Wang, Yong; Buck, Michael J; Genco, Robert J; Baker, Robert D; Zhu, Ruixin; Zhu, Lixin

    2018-04-01

    A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.

  20. Dendritic cells in oral tolerance in the gut.

    Science.gov (United States)

    Rescigno, Maria

    2011-09-01

    Oral tolerance is a process that allows generation of systemic unresponsiveness to food antigens. Hence if the same antigen is introduced systemically even under immunogenic conditions it does not induce immune responsiveness. Dendritic cells (DCs) have been identified as essential players in this process. DCs in the gut are located in a strategic position as they can interact directly with luminal antigens or indirectly after their transcytosis across epithelial cells. DCs can then migrate to associated lymphoid tissues to induce tolerance. Antigen presenting cells in the gut are specialized in function and have divided their labour so that there are cells capable to migrate to the draining mesenteric lymph node for induction of T regulatory cells, while other subsets are resident and are required to enforce tolerance locally in the gut after food antigen exposure. In this review, I shall summarize the characteristics of antigen presenting cells in the gut and their involvement in oral tolerance induction. In addition, I will also emphasize that tolerance to food allergens may be contributed by plasmacytoid DCs in the liver that participate to the elimination or anergy of allergen-specific CD8 T cells. Hence specialized functions are associated to different subsets of antigen presenting cells and different organs. © 2011 Blackwell Publishing Ltd.

  1. Gut barrier failure biomarkers are associated with poor disease outcome in patients with primary sclerosing cholangitis

    Science.gov (United States)

    Tornai, Tamas; Palyu, Eszter; Vitalis, Zsuzsanna; Tornai, Istvan; Tornai, David; Antal-Szalmas, Peter; Norman, Gary L; Shums, Zakera; Veres, Gabor; Dezsofi, Antal; Par, Gabriella; Par, Alajos; Orosz, Peter; Szalay, Ferenc; Lakatos, Peter Laszlo; Papp, Maria

    2017-01-01

    AIM To assess the prevalence of a panel of serologic markers that reflect gut barrier dysfunction in a mixed cohort of pediatric and adult primary sclerosing cholangitis (PSC) patients. METHODS Sera of 67 PSC patients [median age (range): 32 (5-79) years, concomitant IBD: 67% and cirrhosis: 20%] were assayed for the presence of antibodies against to F-actin (AAA IgA/IgG) and gliadin (AGA IgA/IgG)] and for serum level of intestinal fatty acid-binding protein (I-FABP) by ELISA. Markers of lipopolysaccharide (LPS) exposure [LPS binding protein (LBP)] and various anti-microbial antibodies [anti-OMP Plus IgA and endotoxin core IgA antibody (EndoCAb)] were also determined. Poor disease outcome was defined as orthotopic liver transplantation and/or liver-related death during the follow-up [median: 99 (14-106) mo]. One hundred and fifty-three healthy subjects (HCONT) and 172 ulcerative colitis (UC) patients were the controls. RESULTS A total of 28.4%, 28.0%, 9% and 20.9% of PSC patients were positive for AAA IgA, AAA IgG, AGA IgA and AGA IgG, respectively. Frequencies of AAA IgA and AAA IgG (P < 0.001, for both) and AGA IgG (P = 0.01, for both) but not AGA IgA were significantly higher compared to both of the HCONT and the UC groups. In survival analysis, AAA IgA-positivity was revealed as an independent predictor of poor disease outcome after adjusting either for the presence of cirrhosis [HR = 5.15 (1.27-20.86), P = 0.022 or for the Mayo risk score (HR = 4.24 (0.99-18.21), P = 0.052]. AAA IgA-positivity was significantly associated with higher frequency of anti-microbial antibodies (P < 0.001 for EndoCab IgA and P = 0.012 for anti-OMP Plus IgA) and higher level of the enterocyte damage marker (median I-FABPAAA IgA pos vs neg: 365 vs 166 pg/mL, P = 0.011), but not with serum LBP level. CONCLUSION Presence of IgA type AAA identified PSC patients with progressive disease. Moreover, it is associated with enhanced mucosal immune response to various microbial antigens and

  2. Behind every great ant, there is a great gut

    DEFF Research Database (Denmark)

    Poulsen, Michael; Sapountzis, Panagiotis

    2012-01-01

    on the potential contribution of the ants’ gut symbionts. This issue of Molecular Ecology contains a study by Anderson et al. (2012), who take a comparative approach to explore the link between trophic levels and ant microbiomes, specifically, to address three main questions: (i) Do closely related herbivorous...... conserved gut microbiomes, suggesting symbiont functions that directly relate to dietary preference of the ant host. These findings suggest an ecological role of gut symbionts in ants, for example, in metabolism and/or protection, and the comparative approach taken supports a model of co-evolution between...... ant species and specific core symbiont microbiomes. This study, thereby, highlights the omnipresence and importance of gut symbioses—also in the Hymenoptera—and suggests that these hitherto overlooked microbes likely have contributed to the ecological success of the ants....

  3. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Directory of Open Access Journals (Sweden)

    Jianbo Zhang

    2018-01-01

    Full Text Available Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrolein. Reuterin is an antimicrobial multicomponent system consisting of 3-hydroxypropionaldehyde, its dimer and hydrate, and also acrolein. The major conclusion is that gut microbes can metabolize glycerol to reuterin and that this transformation occurs in vivo. Given the known toxicity of acrolein, the observation that acrolein is formed in the gut necessitates further investigations on functional relevance for gut microbiota and the host.

  4. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin.

    Science.gov (United States)

    McVey Neufeld, K A; Perez-Burgos, A; Mao, Y K; Bienenstock, J; Kunze, W A

    2015-05-01

    The microbiome is essential for normal myenteric intrinsic primary afferent neuron (IPAN) excitability. These neurons control gut motility and modulate gut-brain signaling by exciting extrinsic afferent fibers innervating the enteric nervous system via an IPAN to extrinsic fiber sensory synapse. We investigated effects of germ-free (GF) status and conventionalization on extrinsic sensory fiber discharge in the mesenteric nerve bundle and IPAN electrophysiology, and compared these findings with those from specific pathogen-free (SPF) mice. As we have previously shown that the IPAN calcium-dependent slow afterhyperpolarization (sAHP) is enhanced in GF mice, we also examined the expression of the calcium-binding protein calbindin in these neurons in these different animal groups. IPAN sAHP and mesenteric nerve multiunit discharge were recorded using ex vivo jejunal gut segments from SPF, GF, or conventionalized (CONV) mice. IPANs were excited by adding 5 μM TRAM-34 to the serosal superfusate. We probed for calbindin expression using immunohistochemical techniques. SPF mice had a 21% increase in mesenteric nerve multiunit firing rate and CONV mice a 41% increase when IPANs were excited by TRAM-34. For GF mice, this increase was barely detectable (2%). TRAM-34 changed sAHP area under the curve by -77 for SPF, +3 for GF, or -54% for CONV animals. Calbindin-immunopositive neurons per myenteric ganglion were 36% in SPF, 24% in GF, and 52% in CONV animals. The intact microbiome is essential for normal intrinsic and extrinsic nerve function and gut-brain signaling. © 2015 John Wiley & Sons Ltd.

  5. Gut metabolome meets microbiome

    DEFF Research Database (Denmark)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M

    2018-01-01

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We...... highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding...

  6. Unification beyond GUT's: Gauge-Yukawa unification

    International Nuclear Information System (INIS)

    Kubo, J.; Mondragon, M.; Zoupanos, G.

    1996-01-01

    Gauge-Yukawa Unification (GYU) is a renormalization group invariant functional relation among gauge and Yukawa couplings which holds beyond the unification point in Grand Unified Theories (GUTs). We present here various models where GYU is obtained by requiring the principles of finiteness and reduction of couplings. We examine the consequences of these requirements for the low energy parameters, especially for the top quark mass. The predictions are such that they clearly distinguish already GYU from ordinary GUTs. It is expected that it will be possible to discriminate among the various GYUs when more accurate measurements of the top quark mass are available. (author)

  7. Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine

    Science.gov (United States)

    Human metabolic disease opens a new view to understanding the contribution of the intestinal microbiome to drug metabolism and drug-induced toxicity in gut-liver function. Gut microbiota, a key determinant of intestinal inflammation, also plays a direct role in chronic inflammation and liver disease...

  8. Barrier function test: Laboratory evaluation of the protective function of some barrier creams against cashewnut shell oil

    Directory of Open Access Journals (Sweden)

    Pasricha J

    1991-01-01

    Full Text Available A barrier function test has been designed to screen the protective capacity of a cream against the cauterizing effect of cashew nut shell oil (CNSO on the skin. The test consists of applying the barrier cream on a 5 cm circular area of skin on the back of a human volunteer and then at its centre applying a 1 cm sq Whatman no. 3 paper disc soaked in the CNSO for 15 minutes and looking for the evidence of cauterization reaction after 48 hours. Of the various creams containing a variety of paraffins, bees wax, polyethylene glycols, methyl cellulose gel, and petrolatum, only polyethylene glycol (PEG cream was found to afford adequate protection against cashew nut shell oil. Addition of 10% zinc oxide or 10% kaolin to the PEG cream did not seem to afford any additional protection. Castor oil already being used by the workers was found to be inferior to the PEG cream.

  9. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?

    Science.gov (United States)

    Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2016-03-01

    The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.

  10. Barrier functions for Pucci-Heisenberg operators and applications

    OpenAIRE

    Cutri , Alessandra; Tchou , Nicoletta

    2007-01-01

    International audience; The aim of this article is the explicit construction of some barrier functions ("fundamental solutions") for the Pucci-Heisenberg operators. Using these functions we obtain the continuity property, up to the boundary, for the viscosity solution of fully non-linear Dirichlet problems on the Heisenberg group, if the boundary of the domain satisfies some regularity geometrical assumptions (e.g. an exterior Heisenberg-ball condition at the characteristic points). We point ...

  11. Immmunohistochemical study of the blood and lymphatic vasculature and the innervation of mouse gut and gut-associated lymphoid tissue.

    Science.gov (United States)

    Ma, B; von Wasielewski, R; Lindenmaier, W; Dittmar, K E J

    2007-02-01

    The blood and lymphatic vascular system of the gut plays an important role in tissue fluid homeostasis, nutrient absorption and immune surveillance. To obtain a better understanding of the anatomic basis of these functions, the blood and lymphatic vasculature of the lower segment of mouse gut and several constituents of gut-associated lymphoid tissue (GALT) including Peyer's patch, specialized lymphoid nodules in the caecum, small lymphoid aggregates and lymphoid nodules in the colon were studied by using confocal microscopy. Additionally, the innervation and nerve/immune cell interactions in the gut and Peyer's patch were investigated by using cell surface marker PGP9.5 and Glial fibrillary acidic protein (GFAP). In the gut and Peyer's patch, the nerves have contact with B cell, T cell and B220CD3 double-positive cells. Dendritic cells, the most important antigen-presenting cells, were closely apposed to some nerves. Some dendritic cells formed membrane-membrane contact with nerve terminals and neuron cell body. Many fine nerve fibres, which are indirectly detected by GFAP, have contact with dendritic cells and other immune cells in the Peyer's patch. Furthermore, the expression of Muscarinic Acetylcholine receptor (subtype M2) was characterized on dendritic cells and other cell population. These findings are expected to provide a route to understand the anatomic basis of neuron-immune regulation/cross-talk and probably neuroinvasion of prion pathogens in the gut and GALT.

  12. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    Science.gov (United States)

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  13. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  14. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    Science.gov (United States)

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  15. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.

  16. Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.

    Science.gov (United States)

    Currie, Erin; King, Brian; Lawrenson, Andrea L; Schroeder, Lena K; Kershner, Aaron M; Hermann, Greg J

    2007-11-01

    Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.

  17. From bugs to buttermilk : Epidemiological and molecular aspects of gut health

    NARCIS (Netherlands)

    Feenstra, Ettje

    2016-01-01

    In the Netherlands, one in ten people suffers from gut complaints (functional gastrointestinal disorders), which can have a high negative impact on their daily activities. Because diagnosis and treatment are not straightforward, and are often impeded by the multiple factors that play a role in gut

  18. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins

    Science.gov (United States)

    Shibata, Toshio; Maki, Kouki; Hadano, Jinki; Fujikawa, Takumi; Kitazaki, Kazuki; Koshiba, Takumi; Kawabata, Shun-ichiro

    2015-01-01

    Transglutaminase (TG) catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi) of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes. PMID:26506243

  19. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins.

    Directory of Open Access Journals (Sweden)

    Toshio Shibata

    2015-10-01

    Full Text Available Transglutaminase (TG catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes.

  20. Light exposure influences the diurnal oscillation of gut microbiota in mice.

    Science.gov (United States)

    Wu, Guangyan; Tang, Wenli; He, Yan; Hu, Jingjuan; Gong, Shenhai; He, Zhanke; Wei, Guoquan; Lv, Liyi; Jiang, Yong; Zhou, Hongwei; Chen, Peng

    2018-05-03

    The gut microbiota exhibit diurnal compositional and functional oscillations that influence the host homeostasis. However, the upstream factors that affect the microbial oscillations remain elusive. Here, we focused on the potential impact of light exposure, the main factor that affects the host circadian oscillation, on the diurnal oscillations of intestinal microflora to explore the upstream factor that governs the fluctuations of the gut microbes. The gut microbiota of the mice that were underwent regular light/dark (LD) cycles exhibited a robust rhythm at both compositional and functional level, in all parts of the intestine. Comparably, constant darkness (DD) led to the loss of the rhythmic oscillations in almost all parts of the intestine. Additionally, the abundance of Clostridia in DD conditions was dramatically enhanced in the small intestine. Our data indicated light exposure is the upstream factor that governs the regular diurnal fluctuations of gut microbiota in vivo. Copyright © 2018. Published by Elsevier Inc.

  1. Short-Term Overfeeding with Dairy Cream Does Not Modify Gut Permeability, the Fecal Microbiota, or Glucose Metabolism in Young Healthy Men.

    Science.gov (United States)

    Ott, Beate; Skurk, Thomas; Lagkouvardos, Llias; Fischer, Sandra; Büttner, Janine; Lichtenegger, Martina; Clavel, Thomas; Lechner, Andreas; Rychlik, Michael; Haller, Dirk; Hauner, Hans

    2018-01-01

    High-fat diets (HFDs) have been linked to low-grade inflammation and insulin resistance. The main purpose of the present study was to assess whether acute overfeeding with an HFD affects insulin sensitivity, gut barrier function, and fecal microbiota in humans. In a prospective intervention study, 24 healthy men [mean ± SD: age 23.0 ± 2.8 y, body mass index (in kg/m2) 23.0 ± 2.1] received an HFD (48% of energy from fat) with an additional 1000 kcal/d (as whipping cream) above their calculated energy expenditure for 7 d. Insulin sensitivity (hyperinsulinemic euglycemic clamp), gut permeability (sugar and polyethylene glycol absorption tests, plasma zonulin), and gut microbiota profiles (high-throughput 16S rRNA gene sequencing) were assessed before and after overfeeding, and 14 d after intervention. Additionally, inflammation markers such as high-sensitivity C-reactive protein, lipopolysaccharide-binding protein, leptin, high-molecular-weight adiponectin, calprotectin, regulated on activation normal, T cell expressed and secreted (RANTES), and monocyte chemoattractant protein-1 were measured in plasma by ELISA. Finally, lipid parameters were analyzed in serum by a laboratory service. Although participants gained 0.9 ± 0.6 kg (P zonulin, a marker of paracellular gut permeability, were unchanged. Moreover, overfeeding was not associated with consistent changes in gut microbiota profiles, but marked alterations were observed in a subgroup of 6 individuals. Our findings suggest that short-term overfeeding with an HFD does not significantly impair insulin sensitivity and gut permeability in normal-weight healthy men, and that changes in dominant communities of fecal bacteria occur only in certain individuals. The study was registered in the German Clinical Trial Register as DRKS00006211. © 2018 American Society for Nutrition. All rights reserved.

  2. Gut microbiota in chronic kidney disease.

    Science.gov (United States)

    Cigarran Guldris, Secundino; González Parra, Emilio; Cases Amenós, Aleix

    The intestinal microflora maintains a symbiotic relationship with the host under normal conditions, but its imbalance has recently been associated with several diseases. In chronic kidney disease (CKD), dysbiotic intestinal microflora has been reported with an increase in pathogenic flora compared to symbiotic flora. An enhanced permeability of the intestinal barrier, allowing the passage of endotoxins and other bacterial products to the blood, has also been shown in CKD. By fermenting undigested products that reach the colon, the intestinal microflora produce indoles, phenols and amines, among others, that are absorbed by the host, accumulate in CKD and have harmful effects on the body. These gut-derived uraemic toxins and the increased permeability of the intestinal barrier in CKD have been associated with increased inflammation and oxidative stress and have been involved in various CKD-related complications, including cardiovascular disease, anaemia, mineral metabolism disorders or the progression of CKD. The use of prebiotics, probiotics or synbiotics, among other approaches, could improve the dysbiosis and/or the increased permeability of the intestinal barrier in CKD. This article describes the situation of the intestinal microflora in CKD, the alteration of the intestinal barrier and its clinical consequences, the harmful effects of intestinal flora-derived uraemic toxins, and possible therapeutic options to improve this dysbiosis and reduce CKD-related complications. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  3. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    Science.gov (United States)

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  5. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.

    Science.gov (United States)

    Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania

    2018-04-03

    The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Gut microbiota, immunity and disease: a complex relationship

    Directory of Open Access Journals (Sweden)

    Michele M Kosiewicz

    2011-09-01

    Full Text Available Our immune system has evolved to recognize and eradicate pathogenic microbes. However, we have a symbiotic relationship with multiple species of bacteria that occupy the gut and comprise the natural commensal flora or microbiota. The microbiota is critically important for the breakdown of nutrients, and also assists in preventing colonization by potentially pathogenic bacteria. In addition, the gut commensal bacteria appears to be critical for the development of an optimally functioning immune system. Various studies have shown that individual species of the microbiota can induce very different types of immune cells (e.g., Th17 cells, Foxp3+ regulatory T cells and responses, suggesting that the composition of the microbiota can have an important influence on the immune response. Although the microbiota resides in the gut, it appears to have a significant impact on the systemic immune response. Indeed, specific gut commensal bacteria have been shown to affect disease development in organs other than the gut, and depending on the species, have been found to have a wide range of effects on diseases from induction and exacerbation to inhibition and protection. In this review, we will focus on the role that the gut microbiota plays in the development and progression of inflammatory/autoimmune disease, and we will also touch upon its role in allergy and cancer.

  7. Rapidly expanding knowledge on the role of the gut microbiome in health and disease

    NARCIS (Netherlands)

    Cenit, M. C.; Matzaraki, V.; Tigchelaar-Feenstra, E. F.; Zhernakova, A.

    2014-01-01

    The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that the genomes of our gut microbiota, known as the gut microbiome or our "other genome"

  8. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome

    DEFF Research Database (Denmark)

    Xie, Hailiang; Guo, Ruijin; Zhong, Huanzi

    2016-01-01

    The gut microbiota has been typically viewed as an environmental factor for human health. Twins are well suited for investigating the concordance of their gut microbiomes and decomposing genetic and environmental influences. However, existing twin studies utilizing metagenomic shotgun sequencing...... have included only a few samples. Here, we sequenced fecal samples from 250 adult twins in the TwinsUK registry and constructed a comprehensive gut microbial reference gene catalog. We demonstrate heritability of many microbial taxa and functional modules in the gut microbiome, including those...... associated with diseases. Moreover, we identified 8 million SNPs in the gut microbiome and observe a high similarity in microbiome SNPs between twins that slowly decreases after decades of living apart. The results shed new light on the genetic and environmental influences on the composition and function...

  10. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon

    NARCIS (Netherlands)

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof; van Mil, SWC

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in

  11. SO(10) GUT baryogenesis

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2008-01-01

    Baryogenesis, through the decays of heavy bosons, was considered to be one of the major successes of the grand unified theories (GUTs). It was then realized that the sphaleron processes erased any baryon asymmetry from the GUT-baryogenesis at a later stage. In this Letter, we discuss the idea of resurrecting GUT-baryogenesis [M. Fukugita, T. Yanagida, Phys. Rev. Lett. 89 (2002) 131602] in a large class of SO(10) GUTs. Our analysis shows that fast lepton number violating but baryon number conserving processes can partially wash out the GUT-baryogenesis produced lepton and/or baryon asymmetry associated with or without the sphaleron and/or Yukawa interactions

  12. The gut-brain interaction in opioid tolerance.

    Science.gov (United States)

    Akbarali, Hamid I; Dewey, William L

    2017-12-01

    The prevailing opioid crisis has necessitated the need to understand mechanisms leading to addiction and tolerance, the major contributors to overdose and death and to develop strategies for developing drugs for pain treatment that lack abuse liability and side-effects. Opioids are commonly used for treatment of pain and symptoms of inflammatory bowel disease. The significant effect of opioids in the gut, both acute and chronic, includes persistent constipation and paradoxically may also worsen pain symptoms. Recent work has suggested a significant role of the gastrointestinal microbiome in behavioral responses to opioids, including the development of tolerance to its pain-relieving effects. In this review, we present current concepts of gut-brain interaction in analgesic tolerance to opioids and suggest that peripheral mechanisms emanating from the gut can profoundly affect central control of opioid function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Prebiotics and gut microbiota in chickens.

    Science.gov (United States)

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice

    DEFF Research Database (Denmark)

    Xiao, Liang; Sonne, Si Brask; Feng, Qiang

    2017-01-01

    Background: It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those...... associated with obesity, we took advantage of the different susceptibility of C57BL/6JBomTac (BL6) and 129S6/SvEvTac (Sv129) mice to diet-induced obesity and of their different responses to inhibition of cyclooxygenase (COX) activity, where inhibition of COX activity in BL6 mice prevents HF diet......-induced obesity, but in Sv129 mice accentuates obesity.Results: Using HiSeq-based whole genome sequencing, we identified taxonomic and functional differences in the gut microbiota of the two mouse strains fed regular low-fat or HF diets with or without supplementation with the COX-inhibitor, indomethacin. HF...

  15. Safety barriers and safety functions a comparison of different applications

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1998-01-01

    A study is being made with the focus on different theories and applications concerning 'safety barriers' and 'safety functions'. One aim is to compare the characteristics of different kinds of safely functions, which can be purpose, efficiency, reliability, weak points etc. A further aim is to summarize how the combination of different barriers are described and evaluated. Of special interest are applications from nuclear and chemical process safety. The study is based on a literature review, interviews and discussions. Some preliminary conclusions are made. For example, it appears to exist a need for better tools to support the design and evaluation of procedures. There are a great number of theoretical models describing safety functions. However, it still appears to be an interest in further development of models, which might give the basis for improved practical tools. (author)

  16. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    Science.gov (United States)

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Melatonin plays a protective role in postburn rodent gut pathophysiology.

    Science.gov (United States)

    Al-Ghoul, Walid M; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-05-17

    supplementation on postburn gut mucosa barrier inflammatory profiles. Here, our results revealed that daily postburn intraperitoneal melatonin administration at a dose of 1.86 mg/kg (8 micromole/kg) significantly suppressed both neutrophil infiltration and tyrosine nitrosylation as revealed by Gr-1 and nitrotyrosine immunohistochemistry, respectively. In conclusion, our results provide support for high mesenteric melatonin levels and dynamic de novo gut melatonin production, both of which increase endogenously in response to major thermal injury, but appear to fall short of abrogating the excessive postburn hyper-inflammation. Moreover, supplementation by exogenous melatonin significantly suppresses gut inflammation, thus confirming that melatonin is protective against postburn inflammation.

  18. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    Science.gov (United States)

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  19. Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis.

    Science.gov (United States)

    Chen, Xiyue; Eslamfam, Shabnam; Fang, Luoyun; Qiao, Shiyan; Ma, Xi

    2017-01-01

    Gastrointestinal homeostasis is a dynamic balance under the interaction between the host, GI tract, nutrition and energy metabolism. Glucose is the main energy source in living cells. Thus, glucose metabolic disorders can impair normal cellular function and endanger organisms' health. Diseases that are associated with glucose metabolic disorders such as obesity, diabetes, hypertension, and other metabolic syndromes are in fact life threatening. Digestive system is responsible for food digestion and nutrient absorption. It is also involved in neuronal, immune, and endocrine pathways. In addition, the gut microbiota plays an essential role in initiating signal transduction, and communication between the enteric and central nervous system. Gut-brain axis is composed of enteric neural system, central neural system, and all the efferent and afferent neurons that are involved in signal transduction between the brain and gut-brain. Gut-brain axis is influenced by the gut-microbiota as well as numerous neurotransmitters. Properly regulated gut-brain axis ensures normal digestion, absorption, energy production, and subsequently maintenance of glucose homeostasis. Understanding the underlying regulatory mechanisms of gut-brain axis involved in gluose homeostasis would enable us develop more efficient means of prevention and management of metabolic disease such as diabetic, obesity, and hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Development of the intrinsic and extrinsic innervation of the gut.

    Science.gov (United States)

    Uesaka, Toshihiro; Young, Heather M; Pachnis, Vassilis; Enomoto, Hideki

    2016-09-15

    The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Control of the gut microbiome by fecal microRNA

    Directory of Open Access Journals (Sweden)

    Shirong Liu

    2016-03-01

    Full Text Available Since their discovery in the early 90s, microRNAs (miRNAs, small non-coding RNAs, have mainly been associated with posttranscriptional regulation of gene expression on a cell-autonomous level. Recent evidence has extended this role by adding inter-species communication to the manifold functional range. In our latest study [Liu S, et al., 2016, Cell Host & Microbe], we identified miRNAs in gut lumen and feces of both mice and humans. We found that intestinal epithelial cells (IEC and Hopx+ cells were the two main sources of fecal miRNA. Deficiency of IEC-miRNA resulted in gut dysbiosis and WT fecal miRNA transplantation restored the gut microbiota. We investigated potential mechanisms for this effect and found that miRNAs were able to regulate the gut microbiome. By culturing bacteria with miRNAs, we found that host miRNAs were able to enter bacteria, specifically regulate bacterial gene transcripts and affect bacterial growth. Oral administration of synthetic miRNA mimics affected specific bacteria in the gut. Our findings describe a previously unknown pathway by which the gut microbiome is regulated by the host and raises the possibility that miRNAs may be used therapeutically to manipulate the microbiome for the treatment of disease.

  2. Comparison of Channel Catfish and Blue Catfish Gut Microbiota Assemblages Shows Minimal Effects of Host Genetics on Microbial Structure and Inferred Function

    Directory of Open Access Journals (Sweden)

    Jacob W. Bledsoe

    2018-05-01

    also containing pathways involved in virulence factors of pathogens. Testing of the inferred KEGG (Kyoto Encyclopedia of Genes and Genomes pathways by DESeq2 revealed minor difference in microbiota function, with only two metagenomic pathways detected as differentially abundant between the two catfish species. As the first study to characterize the gut microbiota of blue catfish, our study results have direct implications on future ictalurid catfish research. Additionally, our insight into the intrinsic factors driving microbiota structure has basic implications for the future study of fish gut microbiota.

  3. SUSY GUT Model Building

    International Nuclear Information System (INIS)

    Raby, Stuart

    2008-01-01

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E 8 xE 8 heterotic string.

  4. The effects of probiotics, prebiotics and synbiotics on gut flora, immune function and blood characteristics of broilers

    OpenAIRE

    Akoy, Rebin Aswad Mirza

    2015-01-01

    Abstract The microbial populations in the gastrointestinal tracts of poultry play an important role in normal digestive processes and in maintaining animal health. The purpose of this study was to evaluate the effects of probiotics, prebiotics and synbiotics on the growth parameters, gut ecosystem, histology and immune function. In this study, four experiments one in vitro and three in vivo were conducted using specific pathogen free (SPF) and Hubbard broiler chickens. The first exper...

  5. Ménage à trois in the human gut: interactions between host, bacteria and phages.

    Science.gov (United States)

    Mirzaei, Mohammadali Khan; Maurice, Corinne F

    2017-07-01

    The human gut is host to one of the densest microbial communities known, the gut microbiota, which contains bacteria, archaea, viruses, fungi and other microbial eukaryotes. Bacteriophages in the gut are largely unexplored, despite their potential to regulate bacterial communities and thus human health. In addition to helping us understand gut homeostasis, applying an ecological perspective to the study of bacterial and phage communities in the gut will help us to understand how this microbial system functions. For example, temporal studies of bacteria, phages and host immune cells in the gut during health and disease could provide key information about disease development and inform therapeutic treatments, whereas understanding the regulation of the replication cycles of phages could help harness the gut microbiota to improve disease outcomes. As the most abundant biological entities in our gut, we must consider bacteriophages in our pursuit of personalized medicine.

  6. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis.

    Science.gov (United States)

    Song, Han; Yoo, Young; Hwang, Junghyun; Na, Yun-Cheol; Kim, Heenam Stanley

    2016-03-01

    Atopic dermatitis (AD) is a serious global epidemic associated with a modern lifestyle. Although aberrant interactions between gut microbes and the intestinal immune system have been implicated in this skin disease, the nature of the microbiome dysfunction underlying the disease remains unclear. The gut microbiome from 132 subjects, including 90 patients with AD, was analyzed by using 16S rRNA gene and metagenome sequence analyses. Reference genomes from the Human Microbiome Project and the KEGG Orthology database were used for metagenome analyses. Short-chain fatty acids in fecal samples were compared by using gas chromatographic-mass spectrometric analyses. We show that enrichment of a subspecies of the major gut species Faecalibacterium prausnitzii is strongly associated with AD. In addition, the AD microbiome was enriched in genes encoding the use of various nutrients that could be released from damaged gut epithelium, reflecting a bloom of auxotrophic bacteria. Fecal samples from patients with AD showed decreased levels of butyrate and propionate, which have anti-inflammatory effects. This is likely a consequence of an intraspecies compositional change in F prausnitzii that reduces the number of high butyrate and propionate producers, including those related to the strain A2-165, a lack of which has been implicated in patients with Crohn disease. The data suggest that feedback interactions between dysbiosis in F prausnitzii and dysregulation of gut epithelial inflammation might underlie the chronic progression of AD by resulting in impairment of the gut epithelial barrier, which ultimately leads to aberrant TH2-type immune responses to allergens in the skin. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  8. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  9. Tests of potential functional barriers for laminated multilayer food packages. Part I: Low molecular weight permeants.

    Science.gov (United States)

    Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R

    2000-08-01

    The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.

  10. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut.

    Science.gov (United States)

    Miller, Aaron W; Dearing, Denise

    2013-12-06

    Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.

  11. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    Science.gov (United States)

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Barrier and system performances within a safety case: their functioning and evolution with time

    International Nuclear Information System (INIS)

    Hedin, A.; Voinis, S.; Fillion, E.; Keller, S.; Lalieux, Ph.; Nachmilner, L.; Nys, V.; Rodriguez, J.; Sevougian, D.; Wollrath, J.

    2002-01-01

    The following six questions were used as the basis for the discussions in a Working Group: - What is the role of each barrier as a function of time or in the different time frames? What is its contribution to the overall system performance or safety as a function of time? - Which are the main uncertainties on the performance of barriers in the timescales? To what extent should we enhance the robustness of barriers because of the uncertainties of some component behaviour with time? - What is the requested or required performance versus the expected realistic or conservative behaviour with time? How are these safety margins used as arguments in a safety case? - What is the issue associated with the geosphere stability for different geological systems? - How are barriers and system performances, as a function of time, evaluated (presented and communicated) in a safety case? - What kind of measures are used for siting, designing and optimising robust barriers corresponding to situations that can vary with time? Are human actions considered to be relevant? (authors)

  13. Proton pump inhibitors alter the composition of the gut microbiota.

    Science.gov (United States)

    Jackson, Matthew A; Goodrich, Julia K; Maxan, Maria-Emanuela; Freedberg, Daniel E; Abrams, Julian A; Poole, Angela C; Sutter, Jessica L; Welter, Daphne; Ley, Ruth E; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2016-05-01

    Proton pump inhibitors (PPIs) are drugs used to suppress gastric acid production and treat GI disorders such as peptic ulcers and gastro-oesophageal reflux. They have been considered low risk, have been widely adopted, and are often over-prescribed. Recent studies have identified an increased risk of enteric and other infections with their use. Small studies have identified possible associations between PPI use and GI microbiota, but this has yet to be carried out on a large population-based cohort. We investigated the association between PPI usage and the gut microbiome using 16S ribosomal RNA amplification from faecal samples of 1827 healthy twins, replicating results within unpublished data from an interventional study. We identified a significantly lower abundance in gut commensals and lower microbial diversity in PPI users, with an associated significant increase in the abundance of oral and upper GI tract commensals. In particular, significant increases were observed in Streptococcaceae. These associations were replicated in an independent interventional study and in a paired analysis between 70 monozygotic twin pairs who were discordant for PPI use. We propose that the observed changes result from the removal of the low pH barrier between upper GI tract bacteria and the lower gut. Our findings describe a significant impact of PPIs on the gut microbiome and should caution over-use of PPIs, and warrant further investigation into the mechanisms and their clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes.

    Science.gov (United States)

    Baldo, Laura; Pretus, Joan Lluís; Riera, Joan Lluís; Musilova, Zuzana; Bitja Nyom, Arnold Roger; Salzburger, Walter

    2017-09-01

    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation.

  15. Effect of antibiotics on gut microbiota, glucose metabolism and bodyweight regulation

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbaek; Allin, Kristine Højgaard; Knop, Filip Krag

    2016-01-01

    Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. Use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association...... between exposure to antibiotics and development of obesity and type 2 diabetes. Here we review human studies examining effects of antibiotics on bodyweight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut...

  16. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  17. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota

    DEFF Research Database (Denmark)

    Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte

    2016-01-01

    of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (mi...

  18. Long-Term Follow-Up of Gut-Directed Hypnotherapy vs. Standard Care in Children With Functional Abdominal Pain or Irritable Bowel Syndrome

    NARCIS (Netherlands)

    Vlieger, Arine M.; Rutten, Juliette M. T. M.; Govers, Anita M. A. P.; Frankenhuis, Carla; Benninga, Marc A.

    2012-01-01

    OBJECTIVES: We previously showed that gut-directed hypnotherapy (HT) is highly effective in the treatment of children with functional abdominal pain (FAP) and irritable bowel syndrome (IBS). Aim of this follow-up study was to investigate the long-term effects of HT vs. standard medical treatment

  19. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system.

    Science.gov (United States)

    Gao, Bei; Chi, Liang; Tu, Pengcheng; Bian, Xiaoming; Thomas, Jesse; Ru, Hongyu; Lu, Kun

    2018-02-01

    The gut microbiome has tremendous potential to impact health and disease. Various environmental toxicants, including insecticides, have been shown to alter gut microbiome community structures. However, the mechanism that compositionally and functionally regulates gut microbiota remains unclear. Quorum sensing is known to modulate intra- and interspecies gene expression and coordinate population responses. It is unknown whether quorum sensing is disrupted when environmental toxicants cause perturbations in the gut microbiome community structure. To reveal the response of the quorum-sensing system to environmental exposure, we use a combination of Illumina-based 16S rRNA gene amplicon and shotgun metagenome sequencing to examine the impacts of a widely used organophosphate insecticide, malathion, on the gut microbiome trajectory, quorum sensing system and behaviors related to quorum sensing, such as motility and pathogenicity. Our results demonstrated that malathion perturbed the gut microbiome development, quorum sensing and quorum sensing related behaviors. These findings may provide a novel mechanistic understanding of the role of quorum-sensing in the gut microbiome toxicity of malathion. Copyright © 2017. Published by Elsevier B.V.

  20. Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections.

    Science.gov (United States)

    Quagliariello, Andrea; Del Chierico, Federica; Russo, Alessandra; Reddel, Sofia; Conte, Giulia; Lopetuso, Loris R; Ianiro, Gianluca; Dallapiccola, Bruno; Cardona, Francesco; Gasbarrini, Antonio; Putignani, Lorenza

    2018-01-01

    Pediatric acute-onset neuropsychiatric syndrome (PANS) and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections syndrome (PANDAS) are conditions that impair brain normal neurologic function, resulting in the sudden onset of tics, obsessive-compulsive disorder, and other behavioral symptoms. Recent studies have emphasized the crosstalk between gut and brain, highlighting how gut composition can influence behavior and brain functions. Thus, the present study investigates the relationship between PANS/PANDAS and gut microbiota ecology. The gut composition of a cohort of 30 patients with PANS/PANDAS was analyzed and compared to control subjects using 16S rRNA-based metagenomics. Data were analyzed for their α- and β-diversity; differences in bacterial distribution were detected by Wilcoxon and LEfSe tests, while metabolic profile was predicted via PICRUSt software. These analyses demonstrate the presence of an altered bacterial community structure in PANS/PANDAS patients with respect to controls. In particular, ecological analysis revealed the presence of two main clusters of subjects based on age range. Thus, to avoid age bias, data from patients and controls were split into two groups: 4-8 years old and >9 years old. The younger PANS/PANDAS group was characterized by a strong increase in Bacteroidetes; in particular, Bacteroides , Odoribacter , and Oscillospira were identified as potential microbial biomarkers of this composition type. Moreover, this group exhibited an increase of several pathways concerning the modulation of the antibody response to inflammation within the gut as well as a decrease in pathways involved in brain function (i.e., SCFA, D-alanine and tyrosine metabolism, and the dopamine pathway). The older group of patients displayed a less uniform bacterial profile, thus impairing the identification of distinct biomarkers. Finally, Pearson's analysis between bacteria and anti-streptolysin O titer reveled a

  1. Gut microbiome and bone.

    Science.gov (United States)

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  2. Comparative gut physiology symposium: The microbe-gut-brain axis

    Science.gov (United States)

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  3. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course...... with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. clinicaltrials.gov NCT01633762....

  4. The crosstalk between gut microbiota and obesity and related metabolic disorders.

    Science.gov (United States)

    Xu, Wen-Ting; Nie, Yong-Zhan; Yang, Zhen; Lu, Nong-Hua

    2016-06-01

    Obesity and related metabolic diseases are currently a threat to global public health. The occurrence and development of these conditions result from the combined effects of multiple factors. The human gut is a diverse and vibrant microecosystem, and its composition and function are a focus of research in the fields of life science and medicine. An increasing amount of evidence indicates that interactions between the gut microbiota and their genetic predispositions or dietary changes may be key factors that contribute to obesity and other metabolic diseases. Defining the mechanisms by which the gut microbiota influence obesity and related chronic metabolic diseases will bring about revolutionary changes that will enable practitioners to prevent and control metabolic diseases by targeting the gut microbiota.

  5. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  6. Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients

    DEFF Research Database (Denmark)

    He, Qing; Gao, Yuan; Jie, Zhuye

    2017-01-01

    The inflammatory intestinal disorder Crohn's disease (CD) has become a health challenge worldwide. The gut microbiota closely interacts with the host immune system, but its functional impact in CD is unclear. Except for studies on a small number of CD patients, analyses of the gut microbiota in CD......). Based on signature taxa, CD microbiotas clustered into two distinct metacommunities indicating individual variability in CD microbiome structure. Metacommunity-specific functional shifts in CD showed enrichment in producers of the pro-inflammatory hexa-acylated lipopolysaccharide variant and a reduction...

  7. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    Science.gov (United States)

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Executive Functioning, Barriers to Adherence, and Nonadherence in Adolescent and Young Adult Transplant Recipients.

    Science.gov (United States)

    Gutiérrez-Colina, Ana M; Eaton, Cyd K; Lee, Jennifer L; Reed-Knight, Bonney; Loiselle, Kristin; Mee, Laura L; LaMotte, Julia; Liverman, Rochelle; Blount, Ronald L

    2016-08-01

    OBJECTIVE : To evaluate levels of executive functioning in a sample of adolescent and young adult (AYA) transplant recipients, and to examine executive functioning in association with barriers to adherence and medication nonadherence.  METHOD : In all, 41 caregivers and 39 AYAs were administered self- and proxy-report measures.  RESULTS : AYA transplant recipients have significant impairments in executive functioning abilities. Greater dysfunction in specific domains of executive functioning was significantly associated with more barriers to adherence and greater medication nonadherence.  CONCLUSION : AYA transplant recipients are at increased risk for executive dysfunction. The assessment of executive functioning abilities may guide intervention efforts designed to decrease barriers to adherence and promote developmentally appropriate levels of treatment responsibility. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Bisphenol A alters gut microbiome: Comparative metagenomics analysis.

    Science.gov (United States)

    Lai, Keng-Po; Chung, Yan-Tung; Li, Rong; Wan, Hin-Ting; Wong, Chris Kong-Chu

    2016-11-01

    Mounting evidence has shown that an alteration of the gut microbiota is associated with diet, and plays an important role in animal health and metabolic diseases. However, little is known about the influence of environmental contaminants on the gut microbial community. Bisphenol A (BPA), which is widely used for manufacturing plastic products, has recently been classified as an environmental obesogen. Although many studies have demonstrated the metabolic-disrupting effects of BPA on liver and pancreatic functions, the possible effects of this synthetic compound on the metabolic diversity of the intestinal microbiota is unknown. Using 16S rRNA gene sequencing analysis on caecum samples of CD-1 mice, the present study aimed to test the hypothesis that dietary BPA intake may influence the gut microbiota composition and functions, an important attributing factor to development of the metabolic syndrome. A high-fat diet (HFD) and high-sucrose diet (HSD) were included as the positive controls for comparing the changes in the intestinal microbial profiles. Our results demonstrated a significant reduction of species diversity in the gut microbiota of BPA-fed mice. Alpha and beta diversity analyses showed that dietary BPA intake led to a similar gut microbial community structure as that induced by HFD and HSD in mice. In addition, comparative analysis of the microbial communities revealed that both BPA and a HFD favored the growth of Proteobacteria, a microbial marker of dysbiosis. Consistently, growth induction of the family Helicobacteraceae and reduction of the Firmicutes and Clostridia populations were observed in the mice fed BPA or a HFD. Collectively, our study highlighted that the effects of dietary BPA intake on the shift of microbial community structure were similar to those of a HFD and HSD, and revealed microbial markers for the development of diseases associated with an unstable microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Probiotic Species in the Modulation of Gut Microbiota: An Overview

    Directory of Open Access Journals (Sweden)

    Md. Abul Kalam Azad

    2018-01-01

    Full Text Available Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.

  12. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.

    Science.gov (United States)

    Forslund, Kristoffer; Hildebrand, Falk; Nielsen, Trine; Falony, Gwen; Le Chatelier, Emmanuelle; Sunagawa, Shinichi; Prifti, Edi; Vieira-Silva, Sara; Gudmundsdottir, Valborg; Pedersen, Helle K; Arumugam, Manimozhiyan; Kristiansen, Karsten; Voigt, Anita Yvonne; Vestergaard, Henrik; Hercog, Rajna; Costea, Paul Igor; Kultima, Jens Roat; Li, Junhua; Jørgensen, Torben; Levenez, Florence; Dore, Joël; Nielsen, H Bjørn; Brunak, Søren; Raes, Jeroen; Hansen, Torben; Wang, Jun; Ehrlich, S Dusko; Bork, Peer; Pedersen, Oluf

    2015-12-10

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

  13. Early-life gut microbiome composition and milk allergy resolution

    Science.gov (United States)

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M.; Leung, Donald; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C.

    2016-01-01

    Background Gut microbiota may play a role in the natural history of cow’s milk allergy Objective To examine the association between early life gut microbiota and the resolution of cow’s milk allergy Methods We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy (CoFAR) observational study of food allergy. Fecal samples were collected at age 3–16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using QIIME (Quantitative Insights into Microbial Ecology), PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), and STAMP (Statistical Analysis of Metagenomic Profiles). Results Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3–6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = 0.047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η2 = 0.43, ANOVA P = 0.034). Conclusions Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. PMID:27292825

  14. Factors influencing the grass carp gut microbiome and its effect on metabolism.

    Science.gov (United States)

    Ni, Jiajia; Yan, Qingyun; Yu, Yuhe; Zhang, Tanglin

    2014-03-01

    Gut microbiota have attracted extensive attention recently because of their important role in host metabolism, immunity and health maintenance. The present study focused on factors affecting the gut microbiome of grass carp (Ctenopharyngodon idella) and further explored the potential effect of the gut microbiome on metabolism. Totally, 43.39 Gb of screened metagenomic sequences obtained from 24 gut samples were fully analysed. We detected 1228 phylotypes (116 Archaea and 1112 Bacteria), most of which belonged to the phyla Firmicutes, Proteobacteria and Fusobacteria. Totally, 41335 of the detected open reading frames (ORFs) were matched to Kyoto Encyclopedia of Genes and Genomes pathways, and carbohydrate and amino acid metabolism was the main matched pathway deduced from the annotated ORFs. Redundancy analysis based on the phylogenetic composition and gene composition of the gut microbiome indicated that gut fullness and feeding (i.e. ryegrass vs. commercial feed, and pond-cultured vs. wild) were significantly related to the gut microbiome. Moreover, many biosynthesis and metabolism pathways of carbohydrates, amino acids and lipids were significantly enhanced by the gut microbiome in ryegrass-fed grass carp. These findings suggest that the metabolic role played by the gut microbiome in grass carp can be affected by feeding. These findings contribute to the field of fish gut microbial ecology and also provide a basis for follow-up functional studies. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing.

    Science.gov (United States)

    Kim, Hyeun Bum; Isaacson, Richard E

    2015-06-12

    The importance of the gut microbiota of animals is widely acknowledged because of its pivotal roles in the health and well being of animals. The genetic diversity of the gut microbiota contributes to the overall development and metabolic needs of the animal, and provides the host with many beneficial functions including production of volatile fatty acids, re-cycling of bile salts, production of vitamin K, cellulose digestion, and development of immune system. Thus the intestinal microbiota of animals has been the subject of study for many decades. Although most of the older studies have used culture dependent methods, the recent advent of high throughput sequencing of 16S rRNA genes has facilitated in depth studies exploring microbial populations and their dynamics in the animal gut. These culture independent DNA based studies generate large amounts of data and as a result contribute to a more detailed understanding of the microbiota dynamics in the gut and the ecology of the microbial populations. Of equal importance, is being able to identify and quantify microbes that are difficult to grow or that have not been grown in the laboratory. Interpreting the data obtained from this type of study requires using basic principles of microbial diversity to understand importance of the composition of microbial populations. In this review, we summarize the literature on culture independent studies of the pig gut microbiota with an emphasis on its succession and alterations caused by diverse factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection.

    Science.gov (United States)

    Crhanova, Magdalena; Hradecka, Helena; Faldynova, Marcela; Matulova, Marta; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2011-07-01

    In commercial poultry production, there is a lack of natural flora providers since chickens are hatched in the clean environment of a hatchery. Events occurring soon after hatching are therefore of particular importance, and that is why we were interested in the development of the gut microbial community, the immune response to natural microbial colonization, and the response to Salmonella enterica serovar Enteritidis infection as a function of chicken age. The complexity of chicken gut microbiota gradually increased from day 1 to day 19 of life and consisted of Proteobacteria and Firmicutes. For the first 3 days of life, chicken cecum was protected by increased expression of chicken β-defensins (i.e., gallinacins 1, 2, 4, and 6), expression of which dropped from day 4 of life. On the other hand, a transient increase in interleukin-8 (IL-8) and IL-17 expression could be observed in chicken cecum on day 4 of life, indicating physiological inflammation and maturation of the gut immune system. In agreement, the response of chickens infected with S. Enteritidis on days 1, 4, and 16 of life shifted from Th1 (characterized mainly by induction of gamma interferon [IFN-γ] and inducible nitric oxide synthase [iNOS]), observed in younger chickens, to Th17, observed in 16-day-old chickens (characterized mainly by IL-17 induction). Active modification of chicken gut microbiota in the future may accelerate or potentiate the maturation of the gut immune system and increase its resistance to infection with different pathogens.

  17. Comparison of the distal gut microbiota from people and animals in Africa.

    Science.gov (United States)

    Ellis, Richard J; Bruce, Kenneth D; Jenkins, Claire; Stothard, J Russell; Ajarova, Lilly; Mugisha, Lawrence; Viney, Mark E

    2013-01-01

    The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gut microbiota of domestic and semi-wild animals. While it is clear that some human gut bacterial pathogens come from animals (showing that human--animal transmission occurs), the extent to which the usually non-pathogenic commensal taxa are shared between humans and animals has not been explored. To investigate this we compared the distal gut microbiota of humans, cattle and semi-captive chimpanzees in communities that are geographically sympatric in Uganda. The gut microbiotas of these three host species could be distinguished by the different proportions of bacterial taxa present. We defined multiple operational taxonomic units (OTUs) by sequence similarity and found evidence that some OTUs were common between human, cattle and chimpanzees, with the largest number of shared OTUs occurring between chimpanzees and humans, as might be expected with their close physiological similarity. These results show the potential for the sharing of usually commensal bacterial taxa between humans and other animals. This suggests that further investigation of this phenomenon is needed to fully understand how it drives the composition of human and animal gut microbiotas.

  18. The gut-kidney axis in chronic renal failure: A new potential target for therapy.

    Science.gov (United States)

    Khoury, Tawfik; Tzukert, Keren; Abel, Roy; Abu Rmeileh, Ayman; Levi, Ronen; Ilan, Yaron

    2017-07-01

    Evidence is accumulating to consider the gut microbiome as a central player in the gut-kidney axis. Microbiome products, such as advanced glycation end products, phenols, and indoles, are absorbed into the circulation but are cleared by normal-functioning kidneys. These products then become toxic and contribute to the uremic load and to the progression of chronic kidney failure. In this review, we discuss the gut-kidney interaction under the state of chronic kidney failure as well as the potential mechanisms by which a change in the gut flora (termed gut dysbiosis) in chronic kidney disease (CKD) exacerbates uremia and leads to further progression of CKD and inflammation. Finally, the potential therapeutic interventions to target the gut microbiome in CKD are discussed. © 2016 International Society for Hemodialysis.

  19. Probiotics and antibiotics change microbial diversity and decrease gut growth in neonatal pigs

    Science.gov (United States)

    Both probiotics and antibiotics are used as a therapy against infection and gut inflammatory disorders. The impact of these interventions on the gut microbiota, intestinal function and protein metabolism in preterm infants is unknown. We investigated the effect of antibiotics and probiotics on inte...

  20. Effect of diet on the human gut microbiota

    DEFF Research Database (Denmark)

    Bahl, Martin Iain

    The gut microbiota plays an important role for humans in both health and disease. It is therefore important to understand how and to what extent choice of diet may influence the microbial community and the effects this has on the host. The variation in the normal human gut microbiota may however...... impede the discovery of correlations between dietary changes and compositional shifts in the microbiota by masking such effects. Although specific functional food ingredients, such as prebiotics, are known to have measurable effects on e.g. abundance of bifidobacteria, it is nevertheless clear...... that induced shifts in gut microbiota show large inter-individual variations. It thus seems plausible that knowing the microbiota composition could facilitate predictions as to how the community will react to dietary interventions thus moving towards some degree of personalised dietary recommendations. During...

  1. The gut microbiota and host health

    NARCIS (Netherlands)

    Marchesi, Julian R.; Adams, David H.; Fava, Francesca; Hermes, Gerben D.A.; Hirschfield, Gideon M.; Hold, Georgina; Quraishi, Mohammed N.; Kinross, James; Smidt, Hauke; Tuohy, Kieran M.; Thomas, Linda V.; Zoetendal, Erwin G.; Hart, Ailsa

    2016-01-01

    Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial

  2. Depressive disorders development in connection with gut microflora and dietary factors

    Directory of Open Access Journals (Sweden)

    Shuldyakov А.А.

    2016-06-01

    Full Text Available The morbidity of depressive disorders and their role in the formation of different human pathologies emphasize the actuality of searching for new approaches in the prophylaxis and treatment of depressions. The modification of gut microbiota may be a perspective direction of clinical investigation. Development in this area is based on the review of trials which confirm the significance of gut microflora composition in regulation of mental functions in particular mood and behavior as well as the role of diet in the development of depressions. The hypothesis of the role of gut microbiota in the development of depressive conditions was discussed.

  3. Control of lupus nephritis by changes of gut microbiota.

    Science.gov (United States)

    Mu, Qinghui; Zhang, Husen; Liao, Xiaofeng; Lin, Kaisen; Liu, Hualan; Edwards, Michael R; Ahmed, S Ansar; Yuan, Ruoxi; Li, Liwu; Cecere, Thomas E; Branson, David B; Kirby, Jay L; Goswami, Poorna; Leeth, Caroline M; Read, Kaitlin A; Oestreich, Kenneth J; Vieson, Miranda D; Reilly, Christopher M; Luo, Xin M

    2017-07-11

    Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a "leaky" gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.

  4. The human gut virome: a multifaceted majority

    Directory of Open Access Journals (Sweden)

    Lesley Ann Ogilvie

    2015-09-01

    Full Text Available Here we outline our current understanding of the human gut virome, in particular the phage component of this ecosystem, highlighting progress and challenges in viral discovery in this arena. We reveal how developments in high-throughput sequencing technologies and associated data analysis methodologies are helping to illuminate this abundant ‘biological dark matter’. Current evidence suggests that the human gut virome is a highly individual but temporally stable collective, dominated by phage exhibiting a temperate lifestyle. This viral community also appears to encode a surprisingly rich functional repertoire that confers a range of attributes to their bacterial hosts, ranging from bacterial virulence and pathogenesis to maintaining host-microbiome stability and community resilience. Despite the significant advances in our understanding of the gut virome in recent years, it is clear that we remain in a period of discovery and revelation, as new methods and technologies begin to provide deeper understanding of the inherent ecological characteristics of this viral ecosystem. As our understanding increases, the nature of the multi-partite interactions occurring between host and microbiome will become clearer, helping us to more rationally define the concepts and principles that will underpin approaches to using human gut virome components for medical or biotechnological applications.

  5. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia.

    Science.gov (United States)

    Schuijt, Tim J; Lankelma, Jacqueline M; Scicluna, Brendon P; de Sousa e Melo, Felipe; Roelofs, Joris J T H; de Boer, J Daan; Hoogendijk, Arjan J; de Beer, Regina; de Vos, Alex; Belzer, Clara; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2016-04-01

    Pneumonia accounts for more deaths than any other infectious disease worldwide. The intestinal microbiota supports local mucosal immunity and is increasingly recognised as an important modulator of the systemic immune system. The precise role of the gut microbiota in bacterial pneumonia, however, is unknown. Here, we investigate the function of the gut microbiota in the host defence against Streptococcus pneumoniae infections. We depleted the gut microbiota in C57BL/6 mice and subsequently infected them intranasally with S. pneumoniae. We then performed survival and faecal microbiota transplantation (FMT) experiments and measured parameters of inflammation and alveolar macrophage whole-genome responses. We found that the gut microbiota protects the host during pneumococcal pneumonia, as reflected by increased bacterial dissemination, inflammation, organ damage and mortality in microbiota-depleted mice compared with controls. FMT in gut microbiota-depleted mice led to a normalisation of pulmonary bacterial counts and tumour necrosis factor-α and interleukin-10 levels 6 h after pneumococcal infection. Whole-genome mapping of alveolar macrophages showed upregulation of metabolic pathways in the absence of a healthy gut microbiota. This upregulation correlated with an altered cellular responsiveness, reflected by a reduced responsiveness to lipopolysaccharide and lipoteichoic acid. Compared with controls, alveolar macrophages derived from gut microbiota-depleted mice showed a diminished capacity to phagocytose S. pneumoniae. This study identifies the intestinal microbiota as a protective mediator during pneumococcal pneumonia. The gut microbiota enhances primary alveolar macrophage function. Novel therapeutic strategies could exploit the gut-lung axis in bacterial infections. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Gut Microbiota Co-microevolution with Selection for Host Humoral Immunity

    Directory of Open Access Journals (Sweden)

    Lingyu Yang

    2017-07-01

    Full Text Available To explore coevolution between the gut microbiota and the humoral immune system of the host, we used chickens as the model organism. The host populations were two lines (HAS and LAS developed from a common founder that had undergone 40 generations of divergent selection for antibody titers to sheep red blood cells (SRBC and two relaxed sublines (HAR and LAR. Analysis revealed that microevolution of host humoral immunity contributed to the composition of gut microbiota at the taxa level. Relaxing selection enriched some microorganisms whose functions were opposite to host immunity. Particularly, Ruminococcaceae and Oscillospira enriched in high antibody relaxed (HAR and contributed to reduction in antibody response, while Lactobacillus increased in low antibody relaxed (LAR and elevated the antibody response. Microbial functional analysis showed that alterations were involved in pathways relating to the immune system and infectious diseases. Our findings demonstrated co-microevolution relationships of host-microbiota and that gut microorganisms influenced host immunity.

  7. Gut microbiota–derived short-chain fatty acids and kidney diseases

    Directory of Open Access Journals (Sweden)

    Li L

    2017-12-01

    Full Text Available Lingzhi Li, Liang Ma, Ping Fu Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China Abstract: Gut microbiota and its metabolites play pivotal roles in host physiology and pathology. Short-chain fatty acids (SCFAs, as a group of metabolites, exert positive regulatory effects on energy metabolism, hormone secretion, immune inflammation, hypertension, and cancer. The functions of SCFAs are related to their activation of transmembrane G protein-coupled receptors and their inhibition of histone acetylation. Though controversial, growing evidence suggests that SCFAs, which regulate inflammation, oxidative stress, and fibrosis, have been involved in kidney disease through the activation of the gut–kidney axis; however, the molecular relationship among gut microbiota–derived metabolites, signaling pathways, and kidney disease remains to be elucidated. This review will provide an overview of the physiology and functions of SCFAs in kidney disease. Keywords: gut microbiome, short-chain fatty acids, kidney diseases, gut–kidney axis

  8. The Gut Microbiome, Its Metabolome, and Their Relationship to Health and Disease.

    Science.gov (United States)

    Wu, Gary D

    2016-01-01

    Despite its importance in maintaining the health of the host, growing evidence suggests that gut microbiota may also be an important factor in the pathogenesis of various diseases. The composition of the microbiota can be influenced by many factors, including age, genetics, host environment, and diet. There are epidemiologic data associating diet with the development of inflammatory bowel disease as well as evidence that diet can influence both the form and the function of the microbiome. Based on this evidence, studies are now underway to examine the effect of defined formula diets, an effective therapeutic modality in Crohn's disease, on both the gut microbiome and its metabolome as a therapeutic probe. Diet has an impact upon both the composition and the function of the microbiota in part through small-molecule production that may influence the development of both immune-mediated and metabolic diseases. By comparing dietary intake, the gut microbiota, and the plasma metabolome in omnivores versus vegans, we provide evidence that the production of certain bacterial metabolites is constrained by the composition of the gut microbiota. In total, these results demonstrate the potential promise of dietary manipulation of the gut microbiota and its metabolome as a modality to both maintain health and treat disease. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  9. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  10. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean...... and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose...

  11. Metagenomic Surveys of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Rahul Shubhra Mandal

    2015-06-01

    Full Text Available Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

  12. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    Science.gov (United States)

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of

  13. Proteins and Carbohydrates from Red Seaweeds: Evidence for Beneficial Effects on Gut Function and Microbiota

    Directory of Open Access Journals (Sweden)

    Raúl E. Cian

    2015-08-01

    Full Text Available Based on their composition, marine algae, and namely red seaweeds, are good potential functional foods. Intestinal mucosal barrier function refers to the capacity of the intestine to provide adequate containment of luminal microorganisms and molecules. Here, we will first outline the component of seaweeds and will summarize the effects of these on the regulation of mucosal barrier function. Special attention will be paid to unique components of red seaweeds: proteins and derived peptides (e.g., phycobiliproteins, glycoproteins that contain “cellulose binding domains”, phycolectins and the related mycosporine-like amino acids together with polysaccharides (e.g., floridean starch and sulfated galactans, such as carrageenans, agarans and “dl-hybrid” and minerals. These compounds have been shown to exert prebiotic effects, to regulate intestinal epithelial cell, macrophage and lymphocyte proliferation and differentiation and to modulate the immune response. Molecular mechanisms of action of peptides and polysaccharides are starting to be elucidated, and evidence indicating the involvement of epidermal growth factor receptor (EGFR, insulin-like growth factor receptor (IGFR, Toll-like receptors (TLR and signal transduction pathways mediated by protein kinase B (PKB or AKT, nuclear factor-κB (NF-κB and mitogen activated protein kinases (MAPK will also be summarized. The need for further research is clear, but in vivo experiments point to an overall antiinflammatory effect of these algae, indicating that they can reinforce membrane barrier function.

  14. GUTs and exceptional branes in F-theory - II. Experimental predictions

    International Nuclear Information System (INIS)

    Beasley, Chris; Heckman, Jonathan J.; Vafa, Cumrun

    2009-01-01

    We consider realizations of GUT models in F-theory. Adopting a bottom up approach, the assumption that the dynamics of the GUT model can in principle decouple from Planck scale physics leads to a surprisingly predictive framework. An internal U(1) hypercharge flux Higgses the GUT group directly to the MSSM or to a flipped GUT model, a mechanism unavailable in heterotic models. This new ingredient automatically addresses a number of puzzles present in traditional GUT models. The internal U(1) hyperflux allows us to solve the doublet-triplet splitting problem, and explains the qualitative features of the distorted GUT mass relations for lighter generations due to the Aharanov-Bohm effect. These models typically come with nearly exact global symmetries which prevent bare μ terms and also forbid dangerous baryon number violating operators. Strong curvature around our brane leads to a repulsion mechanism for Landau wave functions for neutral fields. This leads to large hierarchies of the form exp(-c/ε 2γ ) where c and γ are order one parameters and ε ∼ α GUT -1 M GUT /M pl . This effect can simultaneously generate a viably small μ term as well as an acceptable Dirac neutrino mass on the order of 0.5 x 10 -2±0.5 eV. In another scenario, we find a modified seesaw mechanism which predicts that the light neutrinos have masses in the expected range while the Majorana mass term for the heavy neutrinos is ∼ 3 x 10 12±1.5 GeV. Communicating supersymmetry breaking to the MSSM can be elegantly realized through gauge mediation. In one scenario, the same repulsion mechanism also leads to messenger masses which are naturally much lighter than the GUT scale.

  15. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23.

    Science.gov (United States)

    Sims, Ian M; Frese, Steven A; Walter, Jens; Loach, Diane; Wilson, Michelle; Appleyard, Kay; Eason, Jocelyn; Livingston, Megan; Baird, Margaret; Cook, Gregory; Tannock, Gerald W

    2011-07-01

    Lactobacillus reuteri strain 100-23 together with a Lactobacillus-free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase (ftf) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.

  16. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    Science.gov (United States)

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  17. Gut Microbiota Analysis in Rats with Methamphetamine-Induced Conditioned Place Preference

    Directory of Open Access Journals (Sweden)

    Tingting Ning

    2017-08-01

    Full Text Available Methamphetamine abuse is a major public health crisis. Because accumulating evidence supports the hypothesis that the gut microbiota plays an important role in central nervous system (CNS function, and research on the roles of the microbiome in CNS disorders holds conceivable promise for developing novel therapeutic avenues for treating CNS disorders, we sought to determine whether administration of methamphetamine leads to alterations in the intestinal microbiota. In this study, the gut microbiota profiles of rats with methamphetamine-induced conditioned place preference (CPP were analyzed through 16S rRNA gene sequencing. The fecal microbial diversity was slightly higher in the METH CPP group. The propionate-producing genus Phascolarctobacterium was attenuated in the METH CPP group, and the family Ruminococcaceae was elevated in the METH CPP group. Short chain fatty acid analysis revealed that the concentrations of propionate were decreased in the fecal matter of METH-administered rats. These findings provide direct evidence that administration of METH causes gut dysbiosis, enable a better understanding of the function of gut microbiota in the process of drug abuse, and provide a new paradigm for addiction treatment.

  18. Brain-gut axis and mucosal immunity: a perspective on mucosal psychoneuroimmunology.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    The role of the brain-gut axis has traditionally been investigated in relation to intestinal motility, secretion, and vascularity. More recently, the concept of brain-gut dialogue has extended to the relationship between the nervous system and mucosal immune function. There is compelling evidence for a reciprocal or bi-directional communication between the immune system and the neuroendocrine system. This is mediated, in part, by shared ligands (chemical messengers) and receptors that are common to the immune and nervous systems. Although the concept of psychoneuroimmunology and neuroimmune cross-talk has been studied primarily in the context of the systemic immune system, it is likely to have special significance in the gut. The mucosal immune system is anatomically, functionally, and operationally distinct from the systemic immune system and is subject to independent regulatory signals. Furthermore, the intestinal mucosal immune system operates in a local milieu that depends on a dense innervation for its integrity, with juxtaposition of neuroendocrine cells and mucosal immune cells. An overview of evidence for the biologic plausibility of a brain-gut-immune axis is presented and its potential relevance to mucosal inflammatory disorders is discussed.

  19. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children.

    Science.gov (United States)

    Wu, Guojun; Zhang, Chenhong; Wang, Jing; Zhang, Feng; Wang, Ruirui; Shen, Jian; Wang, Linghua; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping; Zhang, Menghui

    2016-04-05

    The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 10(6) microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome.

  1. Early-life gut microbiome composition and milk allergy resolution.

    Science.gov (United States)

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M; Leung, Donald Y M; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C

    2016-10-01

    Gut microbiota may play a role in the natural history of cow's milk allergy. We sought to examine the association between early-life gut microbiota and the resolution of cow's milk allergy. We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy observational study of food allergy. Fecal samples were collected at age 3 to 16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using Quantitative Insights into Microbial Ecology (QIIME), Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), and Statistical Analysis of Metagenomic Profiles (STAMP). Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3 to 6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = .047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η 2  = 0.43; ANOVA P = .034). Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure.

    Science.gov (United States)

    Khan, Shahzada; Telwatte, Sushama; Trapecar, Martin; Yukl, Steven; Sanjabi, Shomyseh

    2017-11-01

    The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4 + T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4 + T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.

  3. Immune Response of Chicken Gut to Natural Colonization by Gut Microflora and to Salmonella enterica Serovar Enteritidis Infection ▿

    Science.gov (United States)

    Crhanova, Magdalena; Hradecka, Helena; Faldynova, Marcela; Matulova, Marta; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2011-01-01

    In commercial poultry production, there is a lack of natural flora providers since chickens are hatched in the clean environment of a hatchery. Events occurring soon after hatching are therefore of particular importance, and that is why we were interested in the development of the gut microbial community, the immune response to natural microbial colonization, and the response to Salmonella enterica serovar Enteritidis infection as a function of chicken age. The complexity of chicken gut microbiota gradually increased from day 1 to day 19 of life and consisted of Proteobacteria and Firmicutes. For the first 3 days of life, chicken cecum was protected by increased expression of chicken β-defensins (i.e., gallinacins 1, 2, 4, and 6), expression of which dropped from day 4 of life. On the other hand, a transient increase in interleukin-8 (IL-8) and IL-17 expression could be observed in chicken cecum on day 4 of life, indicating physiological inflammation and maturation of the gut immune system. In agreement, the response of chickens infected with S. Enteritidis on days 1, 4, and 16 of life shifted from Th1 (characterized mainly by induction of gamma interferon [IFN-γ] and inducible nitric oxide synthase [iNOS]), observed in younger chickens, to Th17, observed in 16-day-old chickens (characterized mainly by IL-17 induction). Active modification of chicken gut microbiota in the future may accelerate or potentiate the maturation of the gut immune system and increase its resistance to infection with different pathogens. PMID:21555397

  4. The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system

    NARCIS (Netherlands)

    Kabouridis, Panagiotis S; Lasrado, Reena; McCallum, Sarah; Chng, Song Hui; Snippert, Hugo J; Clevers, Hans; Pettersson, Sven; Pachnis, Vassilis

    2015-01-01

    The enteric nervous system (ENS) coordinates the major functions of the gastrointestinal tract. Its development takes place within a constantly changing environment which, after birth, culminates in the establishment of a complex gut microbiota. How such changes affect ENS development and its

  5. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease.

    Science.gov (United States)

    Dubinkina, Veronika B; Tyakht, Alexander V; Odintsova, Vera Y; Yarygin, Konstantin S; Kovarsky, Boris A; Pavlenko, Alexander V; Ischenko, Dmitry S; Popenko, Anna S; Alexeev, Dmitry G; Taraskina, Anastasiya Y; Nasyrova, Regina F; Krupitsky, Evgeny M; Shalikiani, Nino V; Bakulin, Igor G; Shcherbakov, Petr L; Skorodumova, Lyubov O; Larin, Andrei K; Kostryukova, Elena S; Abdulkhakov, Rustam A; Abdulkhakov, Sayar R; Malanin, Sergey Y; Ismagilova, Ruzilya K; Grigoryeva, Tatiana V; Ilina, Elena N; Govorun, Vadim M

    2017-10-17

    Alcohol abuse has deleterious effects on human health by disrupting the functions of many organs and systems. Gut microbiota has been implicated in the pathogenesis of alcohol-related liver diseases, with its composition manifesting expressed dysbiosis in patients suffering from alcoholic dependence. Due to its inherent plasticity, gut microbiota is an important target for prevention and treatment of these diseases. Identification of the impact of alcohol abuse with associated psychiatric symptoms on the gut community structure is confounded by the liver dysfunction. In order to differentiate the effects of these two factors, we conducted a comparative "shotgun" metagenomic survey of 99 patients with the alcohol dependence syndrome represented by two cohorts-with and without liver cirrhosis. The taxonomic and functional composition of the gut microbiota was subjected to a multifactor analysis including comparison with the external control group. Alcoholic dependence and liver cirrhosis were associated with profound shifts in gut community structures and metabolic potential across the patients. The specific effects on species-level community composition were remarkably different between cohorts with and without liver cirrhosis. In both cases, the commensal microbiota was found to be depleted. Alcoholic dependence was inversely associated with the levels of butyrate-producing species from the Clostridiales order, while the cirrhosis-with multiple members of the Bacteroidales order. The opportunist pathogens linked to alcoholic dependence included pro-inflammatory Enterobacteriaceae, while the hallmarks of cirrhosis included an increase of oral microbes in the gut and more frequent occurrence of abnormal community structures. Interestingly, each of the two factors was associated with the expressed enrichment in many Bifidobacterium and Lactobacillus-but the exact set of the species was different between alcoholic dependence and liver cirrhosis. At the level of

  6. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    Science.gov (United States)

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include ...

  7. Perturbations of gut microbiome genes in infants with atopic dermatitis according to feeding type.

    Science.gov (United States)

    Lee, Min-Jung; Kang, Mi-Jin; Lee, So-Yeon; Lee, Eun; Kim, Kangjin; Won, Sungho; Suh, Dong In; Kim, Kyung Won; Sheen, Youn Ho; Ahn, Kangmo; Kim, Bong-Soo; Hong, Soo-Jong

    2018-04-01

    Perturbations of the infant gut microbiota can shape development of the immune system and link to the risk of allergic diseases. We sought to understand the role of the gut microbiome in patients with atopic dermatitis (AD). The metagenome of the infant gut microbiome was analyzed according to feeding types. Composition of the gut microbiota was analyzed in fecal samples from 129 infants (6 months old) by using pyrosequencing, including 66 healthy infants and 63 infants with AD. The functional profile of the gut microbiome was analyzed by means of whole-metagenome sequencing (20 control subjects and 20 patients with AD). In addition, the total number of bacteria in the feces was determined by using real-time PCR. The gut microbiome of 6-month-old infants was different based on feeding types, and 2 microbiota groups (Bifidobacterium species-dominated and Escherichia/Veillonella species-dominated groups) were found in breast-fed and mixed-fed infants. Bacterial cell amounts in the feces were lower in infants with AD than in control infants. Although no specific taxa directly correlated with AD in 16S rRNA gene results, whole-metagenome analysis revealed differences in functional genes related to immune development. The reduction in genes for oxidative phosphorylation, phosphatidylinositol 3-kinase-Akt signaling, estrogen signaling, nucleotide-binding domain-like receptor signaling, and antigen processing and presentation induced by reduced colonization of mucin-degrading bacteria (Akkermansia muciniphila, Ruminococcus gnavus, and Lachnospiraceae bacterium 2_1_58FAA) was significantly associated with stunted immune development in the AD group compared with the control group (P gut microbiome can be associated with AD because of different bacterial genes that can modulate host immune cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  9. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea.

    Directory of Open Access Journals (Sweden)

    Kathrin Endt

    Full Text Available Many enteropathogenic bacteria target the mammalian gut. The mechanisms protecting the host from infection are poorly understood. We have studied the protective functions of secretory antibodies (sIgA and the microbiota, using a mouse model for S. typhimurium diarrhea. This pathogen is a common cause of diarrhea in humans world-wide. S. typhimurium (S. tm(att, sseD causes a self-limiting gut infection in streptomycin-treated mice. After 40 days, all animals had overcome the disease, developed a sIgA response, and most had cleared the pathogen from the gut lumen. sIgA limited pathogen access to the mucosal surface and protected from gut inflammation in challenge infections. This protection was O-antigen specific, as demonstrated with pathogens lacking the S. typhimurium O-antigen (wbaP, S. enteritidis and sIgA-deficient mice (TCRβ(-/-δ(-/-, J(H (-/-, IgA(-/-, pIgR(-/-. Surprisingly, sIgA-deficiency did not affect the kinetics of pathogen clearance from the gut lumen. Instead, this was mediated by the microbiota. This was confirmed using 'L-mice' which harbor a low complexity gut flora, lack colonization resistance and develop a normal sIgA response, but fail to clear S. tm(att from the gut lumen. In these mice, pathogen clearance was achieved by transferring a normal complex microbiota. Thus, besides colonization resistance ( = pathogen blockage by an intact microbiota, the microbiota mediates a second, novel protective function, i.e. pathogen clearance. Here, the normal microbiota re-grows from a state of depletion and disturbed composition and gradually clears even very high pathogen loads from the gut lumen, a site inaccessible to most "classical" immune effector mechanisms. In conclusion, sIgA and microbiota serve complementary protective functions. The microbiota confers colonization resistance and mediates pathogen clearance in primary infections, while sIgA protects from disease if the host re-encounters the same pathogen. This has

  10. Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds.

    Science.gov (United States)

    Risely, Alice; Waite, David W; Ujvari, Beata; Hoye, Bethany J; Klaassen, Marcel

    2018-03-01

    Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and specific response of the gut microbiota to a

  11. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance.

    Science.gov (United States)

    Bindels, Laure B; Neyrinck, Audrey M; Loumaye, Audrey; Catry, Emilie; Walgrave, Hannah; Cherbuy, Claire; Leclercq, Sophie; Van Hul, Matthias; Plovier, Hubert; Pachikian, Barbara; Bermúdez-Humarán, Luis G; Langella, Philippe; Cani, Patrice D; Thissen, Jean-Paul; Delzenne, Nathalie M

    2018-04-06

    Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium ( Faecalibacterium prausnitzii ) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

  12. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    Science.gov (United States)

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  13. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    Science.gov (United States)

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Intestinal Immunomodulatory Cells (T Lymphocytes: A Bridge between Gut Microbiota and Diabetes

    Directory of Open Access Journals (Sweden)

    Qingwei Li

    2018-01-01

    Full Text Available Diabetes mellitus (DM is one of the most familiar chronic diseases threatening human health. Recent studies have shown that the development of diabetes is closely related to an imbalance of the gut microbiota. Accordingly, there is increasing interest in how changes in the gut microbiota affect diabetes and its underlying mechanisms. Immunomodulatory cells play important roles in maintaining the normal functioning of the human immune system and in maintaining homeostasis. Intestinal immunomodulatory cells (IICs are located in the intestinal mucosa and are regarded as an intermediary by which the gut microbiota affects physiological and pathological properties. Diabetes can be regulated by IICs, which act as a bridge linking the gut microbiota and DM. Understanding this bridge role of IICs may clarify the mechanisms by which the gut microbiota contributes to DM. Based on recent research, we summarize this process, thereby providing a basis for further studies of diabetes and other similar immune-related diseases.

  15. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  16. Functional analysis of PGRP-LA in Drosophila immunity.

    Directory of Open Access Journals (Sweden)

    Mathilde Gendrin

    Full Text Available PeptidoGlycan Recognition Proteins (PGRPs are key regulators of the insect innate antibacterial response. Even if they have been intensively studied, some of them have yet unknown functions. Here, we present a functional analysis of PGRP-LA, an as yet uncharacterized Drosophila PGRP. The PGRP-LA gene is located in cluster with PGRP-LC and PGRP-LF, which encode a receptor and a negative regulator of the Imd pathway, respectively. Structure predictions indicate that PGRP-LA would not bind to peptidoglycan, pointing to a regulatory role of this PGRP. PGRP-LA expression was enriched in barrier epithelia, but low in the fat body. Use of a newly generated PGRP-LA deficient mutant indicates that PGRP-LA is not required for the production of antimicrobial peptides by the fat body in response to a systemic infection. Focusing on the respiratory tract, where PGRP-LA is strongly expressed, we conducted a genome-wide microarray analysis of the tracheal immune response of wild-type, Relish, and PGRP-LA mutant larvae. Comparing our data to previous microarray studies, we report that a majority of genes regulated in the trachea upon infection differ from those induced in the gut or the fat body. Importantly, antimicrobial peptide gene expression was reduced in the tracheae of larvae and in the adult gut of PGRP-LA-deficient Drosophila upon oral bacterial infection. Together, our results suggest that PGRP-LA positively regulates the Imd pathway in barrier epithelia.

  17. Ceramides and barrier function in healthy skin

    DEFF Research Database (Denmark)

    Jungerstedt, J; Hellgren, Lars; Drachmann, Tue

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups...... and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal water loss and with information on dry skin from a questionnaire including 16 people. No statistically...

  18. Diversification of Type VI Secretion System Toxins Reveals Ancient Antagonism among Bee Gut Microbes

    Directory of Open Access Journals (Sweden)

    Margaret I. Steele

    2017-12-01

    Full Text Available Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota.

  19. Community assembly of the worm gut microbiome

    Science.gov (United States)

    Gore, Jeff

    It has become increasingly clear that human health is strongly influenced by the bacteria that live within the gut, known collectively as the gut microbiome. This complex community varies tremendously between individuals, but understanding the sources that lead to this heterogeneity is challenging. To address this challenge, we are using a bottom-up approach to develop a predictive understanding of how the microbiome assembles and functions within a simple and experimentally tractable gut, the gut of the worm C. elegans. We have found that stochastic community assembly in the C. elegansintestine is sufficient to produce strong inter-worm heterogeneity in community composition. When worms are fed with two neutrally-competing fluorescently labeled bacterial strains, we observe stochastically-driven bimodality in community composition, where approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions the bimodality disappears. We have also characterized all pairwise interspecies competitions among a set of eleven bacterial species, illuminating the rules governing interspecies community assembly. These results demonstrate the potential importance of stochastic processes in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.

  20. Gastric Activity and Gut Peptides in Patients With Functional Dyspepsia: Postprandial Distress Syndrome Versus Epigastric Pain Syndrome.

    Science.gov (United States)

    Russo, Francesco; Chimienti, Guglielmina; Clemente, Caterina; Riezzo, Giuseppe; D'Attoma, Benedetta; Martulli, Manuela

    2017-02-01

    The goals of the study were to investigate in both postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS) the gastric electrical activity and the gastric emptying (GE) time together with the circulating concentrations of motilin, somatostatin, corticotrophin-releasing factor, and neurotensin, and to establish whether the genetic variability in the neurotensin system genes differs between these 2 categories of functional dyspepsia (FD). The current FD classification is based on symptoms and it has been proven not to be completely satisfying because of a high degree of symptom overlap between subgroups. Gastric electrical activity was evaluated by cutaneous electrogastrography: the GE time by C-octanoic acid breast test. Circulating concentrations of gut peptides were measured by a radioimmunoassay. NTS 479 A/G and NTSR1 rs6090453 SNPs were evaluated by PCR and endonuclease digestion. Fifty-four FD patients (50 female/4 male) were studied. Using a symptom questionnaire, 42 patients were classified as PDS and 12 as EPS, although an overlap between the symptom profiles of the 2 subgroups was recorded. The electrogastrographic parameters (the postprandial instability coefficient of dominant frequency, the dominant power, and the power ratio) were significantly different between the subgroups, whereas the GE time did not differ significantly. In addition, EPS was characterized by a different gut peptide profile compared with PDS. Finally, neurotensin polymorphism was shown to be associated with neurotensin levels. This evidence deserves further studies in consideration of an analgesic role of neurotensin. Analysis of gut peptide profiles could represent an interesting tool to enhance FD diagnosis and overcome limitations due to a distinction based solely on symptoms.

  1. [Review of the relation between gut microbiome, metabolic disease and hypertension].

    Science.gov (United States)

    Barna, István; Nyúl, Dóra; Szentes, Tamás; Schwab, Richárd

    2018-03-01

    Gut flora has personal characteristics for each individual, similar to the fingerprints, consisting of a special mixture of bacterial species living in the intestines, now referred to as the gut microbiome. There is a strong correlation between the loss of microbial diversity and the functional bowel disorders, obesity, type 2 diabetes and cardiovascular disease as well as many autoimmune disorders. With genetic testing of stool diversity of the gut microbiome and exact analysis of the species and phylogenetic classification of the gut flora, the changes of diversity can be identified and the overgrowth of some bacteria can be revealed. In cases with pre- and manifest hypertension, an overgrowth of species from the phylum Firmicutes has been reported along with the relative decline of the phylum Bacteroidetes as opposed with cases of normotension. At the same time, the physiological balance among bacterial families was lost. According to the first studies, there is a correlation between hypertension and the lost balance of the gut microflora, both in animal experiments and in the human clinical setting. This evidence also suggests that targeted dietary alteration of the gut microbiome can be a new innovative approach in the treatment of hypertension. Orv Hetil. 2018; 159(9): 346-351.

  2. Microbial gut diversity of Africanized and European honey bee larval instars.

    Directory of Open Access Journals (Sweden)

    Svjetlana Vojvodic

    Full Text Available The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae.

  3. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis

    NARCIS (Netherlands)

    Gori, Andrea; Tincati, Camilla; Rizzardini, Giuliano; Torti, Carlo; Quirino, Tiziana; Haarman, Monique; Ben Amor, Kaouther; van Schaik, Jacqueline; Vriesema, Aldwin; Knol, Jan; Marchetti, Giulia; Welling, Gjalt; Clerici, Mario

    Our results show that impairment of the gastrointestinal tracts in human immunodeficiency virus (HIV)-positive patients is present in the early phases of HIV disease. This impairment is associated with alterations in gut microbiota and intestinal inflammatory parameters. These findings support the

  4. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 prevents CCl4-induced liver cirrhosis by protecting the intestinal barrier in rats.

    Science.gov (United States)

    Shi, Ding; Lv, Longxian; Fang, Daiqiong; Wu, Wenrui; Hu, Chenxia; Xu, Lichen; Chen, Yanfei; Guo, Jing; Hu, Xinjun; Li, Ang; Guo, Feifei; Ye, Jianzhong; Li, Yating; Andayani, Dewi; Li, Lanjuan

    2017-07-31

    Alterations in the gut microbiome have been reported in liver cirrhosis, and probiotic interventions are considered a potential treatment strategy. This study aimed to evaluate the effects and mechanisms of Lactobacillus salivarius LI01, Pediococcus pentosaceus LI05, Lactobacillus rhamnosus GG, Clostridium butyricum MIYAIRI and Bacillus licheniformis Zhengchangsheng on CCl 4 -induced cirrhotic rats. Only administration of LI01 or LI05 prevented liver fibrosis and down-regulated the hepatic expression of profibrogenic genes. Serum endotoxins, bacterial translocations (BTs), and destruction of intestinal mucosal ultrastructure were reduced in rats treated with LI01 or LI05, indicating maintenance of the gut barrier as a mechanism; this was further confirmed by the reduction of not only hepatic inflammatory cytokines, such as TNF-α, IL-6, and IL-17A, but also hepatic TLR2, TLR4, TLR5 and TLR9. Metagenomic sequencing of 16S rRNA gene showed an increase in potential beneficial bacteria, such as Elusimicrobium and Prevotella, and a decrease in pathogenic bacteria, such as Escherichia. These alterations in gut microbiome were correlated with profibrogenic genes, gut barrier markers and inflammatory cytokines. In conclusion, L. salivarius LI01 and P. pentosaceus LI05 attenuated liver fibrosis by protecting the intestinal barrier and promoting microbiome health. These results suggest novel strategies for the prevention of liver cirrhosis.

  5. The Gut Microbiota in Host Metabolism and Pathogen Challenges

    DEFF Research Database (Denmark)

    Holm, Jacob Bak

    The human microbiota consists of a complex community of microbial cells that live on and inside each person in a close relationship with their host. The majority of the microbial cells are harboured by the gastro intestinal tract where 10-100 trillion bacteria reside. The microbiota is a dynamic...... community where both composition and function can be affected by changes in the local environment. With the microbiota containing ~150 times more genes than the human host, the microbiota provides a large modifiable “secondary genome” (metagenome). Within the last decade, changes in the gut microbiota...... composition has indeed been established as a factor contributing to the health of the host. Therefore, being able to understand, control and modify the gut microbiota is a promising way of improving health. The following thesis is based on four different projects investigating the murine gut microbiota...

  6. The Microbiome in Mental Health: Potential Contribution of Gut Microbiota in Disease and Pharmacotherapy Management.

    Science.gov (United States)

    Flowers, Stephanie A; Ellingrod, Vicki L

    2015-10-01

    The gut microbiome is composed of ~10(13) -10(14) microbial cells and viruses that exist in a symbiotic bidirectional communicative relationship with the host. Bacterial functions in the gut have an important role in healthy host metabolic function, and dysbiosis can contribute to the pathology of many medical conditions. Alterations in the relationship between gut microbiota and host have gained some attention in mental health because new evidence supports the association of gut bacteria to cognitive and emotional processes. Of interest, illnesses such as major depressive disorder are disproportionately prevalent in patients with gastrointestinal illnesses such as inflammatory bowel disease, which pathologically has been strongly linked to microbiome function. Not only is the microbiome associated with the disease itself, but it may also influence the effectiveness or adverse effects associated with pharmacologic agents used to treat these disorders. This field of study may also provide new insights on how dietary agents may help manage mental illness both directly as well as though their influence on the therapeutic and adverse effects of psychotropic agents. © 2015 Pharmacotherapy Publications, Inc.

  7. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome.

    Science.gov (United States)

    Maier, Tanja V; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C; Brislawn, Colin J; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E; Bergeron, Nathalie; Heinzmann, Silke S; Morton, James T; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M; Schmitt-Kopplin, Philippe; Jansson, Janet K

    2017-10-17

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of "omics" approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes , including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut. IMPORTANCE This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of

  8. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Tanja V.; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C.; Brislawn, Colin J.; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E.; Bergeron, Nathalie; Heinzmann, Silke S.; Morton, James T.; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M.; Schmitt-Kopplin, Philippe; Jansson, Janet K.; Moran, Mary Ann

    2017-10-17

    ABSTRACT

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio ofFirmicutestoBacteroidetes, including increases in relative abundances of some specific members of theFirmicutesand concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.

    IMPORTANCEThis work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the

  9. Intrinsic association between diet and the gut microbiome: current evidence

    Directory of Open Access Journals (Sweden)

    Winglee K

    2015-10-01

    Full Text Available Kathryn Winglee, Anthony A Fodor Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA Abstract: The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe, and diet interact to mediate health and disease are only starting to be revealed. Here, we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs omnivore are associated with differences in a modest number of taxa, but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short-term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short-term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of how the diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most

  10. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    Science.gov (United States)

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  11. Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?

    Directory of Open Access Journals (Sweden)

    Kristina Harris

    2012-01-01

    Full Text Available The gut microbiota refers to the trillions of microorganisms residing in the intestine and is integral in multiple physiological processes of the host. Recent research has shown that gut bacteria play a role in metabolic disorders such as obesity, diabetes, and cardiovascular diseases. The mechanisms by which the gut microbiota affects metabolic diseases are by two major routes: (1 the innate immune response to the structural components of bacteria (e.g., lipopolysaccharide resulting in inflammation and (2 bacterial metabolites of dietary compounds (e.g., SCFA from fiber, which have biological activities that regulate host functions. Gut microbiota has evolved with humans as a mutualistic partner, but dysbiosis in a form of altered gut metagenome and collected microbial activities, in combination with classic genetic and environmental factors, may promote the development of metabolic disorders. This paper reviews the available literature about the gut microbiota and aforementioned metabolic disorders and reveals the gaps in knowledge for future study.

  12. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review.

    Science.gov (United States)

    Paganini, Daniela; Zimmermann, Michael B

    2017-12-01

    In infants and young children in Sub-Saharan Africa, iron-deficiency anemia (IDA) is common, and many complementary foods are low in bioavailable iron. In-home fortification of complementary foods using iron-containing micronutrient powders (MNPs) and oral iron supplementation are both effective strategies to increase iron intakes and reduce IDA at this age. However, these interventions produce large increases in colonic iron because the absorption of their high iron dose (≥12.5 mg) is typically iron supplements and iron fortification with MNPs on the gut microbiome and diarrhea. Iron-containing MNPs and iron supplements can modestly increase diarrhea risk, and in vitro and in vivo studies have suggested that this occurs because increases in colonic iron adversely affect the gut microbiome in that they decrease abundances of beneficial barrier commensal gut bacteria (e.g., bifidobacteria and lactobacilli) and increase the abundance of enterobacteria including entropathogenic Escherichia coli These changes are associated with increased gut inflammation. Therefore, safer formulations of iron-containing supplements and MNPs are needed. To improve MNP safety, the iron dose of these formulations should be reduced while maximizing absorption to retain efficacy. Also, the addition of prebiotics to MNPs is a promising approach to mitigate the adverse effects of iron on the infant gut. © 2017 American Society for Nutrition.

  13. Effect of saline iontophoresis on skin barrier function and cutaneous irritation in four ethnic groups.

    Science.gov (United States)

    Singh, J; Gross, M; Sage, B; Davis, H T; Maibach, H I

    2000-08-01

    The effect of saline iontophoresis on skin barrier function and irritation was investigated in four ethnic groups (Caucasians, Hispanics, Blacks and Asians). Forty healthy human volunteers were recruited according to specific entry criteria. Ten subjects, five males and five females, were assigned to each ethnic group. Skin barrier function was examined after 4 hours of saline iontophoresis at a current density of 0.2 mA/cm(2) on a 6.5 cm(2) area in terms of the measured responses: transepidermal water loss (TEWL), skin capacitance, skin temperature and visual scores. There were significant differences in TEWL among the ethnic groups prior to patch application. TEWL at baseline in ethnic groups was in the rank order: Caucasian>Asian>Hispanic>Black. Iontophoresis was generally well tolerated, and skin barrier function was not irreversibly affected by iontophoresis in any group. There was no significant skin temperature change, compared to baseline, in any ethnic groups at any observation point. Edema was not observed. At patch removal, the erythema score was elevated in comparison to baseline in all ethnic groups; erythema resolved within 24 hours. Thus, saline iontophoresis produced reversible changes in skin barrier function and irritation in healthy human subjects.

  14. Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe.

    Science.gov (United States)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M; Orešič, Matej; Bertram, Hanne Christine

    2018-04-30

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding of the microbial functions. Finally, the emerging approaches of genome-scale metabolic modelling to study microbial co-metabolism and host-microbe interactions are highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  16. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    , are generally recognized to be of particular importance for the healthy development of children. While dietary changes are known to affect the adult gut microbiota, there is a gap in our knowledge on how the introduction of new dietary components into the diet of infants/young children affects the gut...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential......(breast/formula). Consequently, the neonatal period and early infancy has attracted much attention. However, after this first period the gut microbial composition continues to develop until the age of 3 years, and these 1st years have been designated "a window of opportunity" for microbial modulation. The beginning and end...

  18. Potential Effects of Horizontal Gene Exchange in the Human Gut.

    Science.gov (United States)

    Lerner, Aaron; Matthias, Torsten; Aminov, Rustam

    2017-01-01

    Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  19. Potential Effects of Horizontal Gene Exchange in the Human Gut

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-11-01

    Full Text Available Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host–microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  20. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  1. Supersymmetric GUTs and cosmology

    International Nuclear Information System (INIS)

    Lazarides, G.; Shafi, Q.

    1982-06-01

    By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)

  2. Dynamics and stabilization of the human gut microbiome during the first year of life

    DEFF Research Database (Denmark)

    Bäckhed, Gert Fredrik; Roswall, Josefine; Peng, Yangqing

    2015-01-01

    The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first...... of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life....... year of life and assessed the impact of mode of delivery and feeding on its establishment. In contrast to vaginally delivered infants, the gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers. Nutrition had a major impact on early microbiota...

  3. Antenatal ureaplasma infection impairs development of the fetal ovine gut in an IL-1-dependent manner.

    Science.gov (United States)

    Wolfs, T G A M; Kallapur, S G; Knox, C L; Thuijls, G; Nitsos, I; Polglase, G R; Collins, J J P; Kroon, E; Spierings, J; Shroyer, N F; Newnham, J P; Jobe, A H; Kramer, B W

    2013-05-01

    Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.

  4. Gut microbiome and the risk factors in central nervous system autoimmunity.

    Science.gov (United States)

    Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-11-17

    Humans are colonized after birth by microbial organisms that form a heterogeneous community, collectively termed microbiota. The genomic pool of this macro-community is named microbiome. The gut microbiota is essential for the complete development of the immune system, representing a binary network in which the microbiota interact with the host providing important immune and physiologic function and conversely the bacteria protect themselves from host immune defense. Alterations in the balance of the gut microbiome due to a combination of environmental and genetic factors can now be associated with detrimental or protective effects in experimental autoimmune diseases. These gut microbiome alterations can unbalance the gastrointestinal immune responses and influence distal effector sites leading to CNS disease including both demyelination and affective disorders. The current range of risk factors for MS includes genetic makeup and environmental elements. Of interest to this review is the consistency between this range of MS risk factors and the gut microbiome. We postulate that the gut microbiome serves as the niche where different MS risk factors merge, thereby influencing the disease process. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    Science.gov (United States)

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  6. Time for food: The impact of diet on gut microbiota and human health.

    Science.gov (United States)

    Zhang, Na; Ju, Zhongjie; Zuo, Tao

    There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. War experiences, general functioning and barriers to care among former child soldiers in Northern Uganda: the WAYS study.

    Science.gov (United States)

    Amone-P'Olak, Kennedy; Jones, Peter; Meiser-Stedman, Richard; Abbott, Rosemary; Ayella-Ataro, Paul Stephen; Amone, Jackson; Ovuga, Emilio

    2014-12-01

    Exposure to war is associated with considerable risks for long-term mental health problems (MHP) and poor functioning. Yet little is known about functioning and mental health service (MHS) use among former child soldiers (FCS). We assessed whether different categories of war experiences predict functioning and perceived need for, sources of and barriers to MHS among FCS. Data were drawn from an on-going War-affected Youths (WAYS) cohort study of FCS in Uganda. Participants completed questionnaires about war experiences, functioning and perceived need for, sources of and barriers to MHS. Regression analyses and parametric tests were used to assess between-group differences. Deaths, material losses, threat to loved ones and sexual abuse significantly predicted poor functioning. FCS who received MHS function better than those who did not. Females reported more emotional and behavioural problems and needed MHS more than males. FCS who function poorly indicated more barriers to MHS than those who function well. Stigma, fear of family break-up and lack of health workers were identified as barriers to MHS. Various war experiences affect functioning differently. A significant need for MHS exists amidst barriers to MHS. Nevertheless, FCS are interested in receiving MHS and believe it would benefit them. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  9. Albumin infusion after reperfusion prevents gut ischemia-reperfusion-induced gut-associated lymphoid tissue atrophy.

    Science.gov (United States)

    Ikezawa, Fumie; Fukatsu, Kazuhiko; Moriya, Tomoyuki; Maeshima, Yoshinori; Okamoto, Koichi; Hara, Etsuko; Hiraide, Hoshio; Compher, Charlene W

    2006-01-01

    Our recent study clarified that gut ischemia-reperfusion (I/R) causes gut-associated lymphoid tissue (GALT) mass atrophy, a possible mechanism for increased morbidity of infectious complications after severe surgical insults. Because albumin administration reportedly reduces hemorrhagic shock-induced lung injury, we hypothesized that albumin treatment prevents GALT atrophy due to gut I/R. Male mice (n = 37) were randomized to albumin, normal saline, and sham groups. All groups underwent jugular vein catheter insertion. The albumin and normal saline groups underwent 75-minute occlusion of the superior mesenteric artery. During gut ischemia, all mice received normal saline infusions at 1.0 mL/h. The albumin group was given 5% bovine serum albumin in normal saline at 1.0 mL/h for 60 minutes after reperfusion, whereas the normal saline group received 0.9% sodium chloride at 1.0 mL/h. The sham group underwent laparotomy only. Mice were killed on day 1 or 7, and the entire small intestine was harvested. GALT lymphocytes were isolated and counted. Their phenotypes (alphabetaTCR, gammadeltaTCR, CD4, CD8, B220) were determined by flow cytometry. On day 1, the gut I/R groups showed significantly lower total lymphocyte and B cell numbers in Peyer's patches and the lamina propria than the sham group. However, the albumin infusion partially but significantly restored these cell numbers. On day 7, there were no significant differences in any of the parameters measured among the 3 groups. Albumin infusion after a gut ischemic insult may maintain gut immunity by preventing GALT atrophy.

  10. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  11. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis.

    Science.gov (United States)

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-01-01

    The main function of the immune system is to protect the host against pathogens. However, unlike the systemic immune system, the gut immune system does not eliminate, but instead nourishes complex bacterial communities and establishes advanced symbiotic relationships. Immunoglobulin A (IgA) is the most abundant antibody isotype in mammals, produced mainly in the gut. The primary function of IgA is to maintain homeostasis at mucosal surfaces, and studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Dynamic diversification and constant adaptation of IgA responses to local microbiota require expression of activation-induced cytidine deaminase by B cells and control from T follicular helper and Foxp3(+) T cells in germinal centers (GCs). We discuss the finely tuned regulatory mechanisms for IgA synthesis in GCs of Peyer's patches and emphasize the roles of CD4(+) T cells for IgA selection and the maintenance of appropriate gut microbial communities required for immune homeostasis.

  12. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome.

    Science.gov (United States)

    Kosnicki, Kassi L; Penprase, Jerrold C; Cintora, Patricia; Torres, Pedro J; Harris, Greg L; Brasser, Susan M; Kelley, Scott T

    2018-05-11

    Many alcohol-induced health complications are directly attributable to the toxicity of alcohol or its metabolites, but another potential health impact of alcohol may be on the microbial communities of the human gut. Clear distinctions between healthy and diseased-state gut microbiota have been observed in subjects with metabolic diseases, and recent studies suggest that chronic alcoholism is linked to gut microbiome dysbiosis. Here, we investigated the effects of moderate levels of alcohol consumption on the gut microbiome in both rats and humans. The gut microbiota of rats voluntarily consuming a 20 percent ethanol solution, on alternate days, were compared with a non-exposed control group to identify differential taxonomic and functional profiles. Gut microbial diversity profiles were determined using culture-independent amplification, next-generation sequencing and bioinformatic analysis of bacterial 16S ribosomal RNA gene sequence libraries. Our results showed that, compared with controls, ethanol-consuming rats experienced a significant decline in the biodiversity of their gut microbiomes, a state generally associated with dysbiosis. We also observed significant shifts in the overall diversity of the gut microbial communities and a dramatic change in the relative abundance of particular microbes, such as the Lactobacilli. We also compared our results to human fecal microbiome data collected as part of the citizen science American Gut Project. In contrast to the rat data, human drinkers had significantly higher gut microbial biodiversity than non-drinkers. However, we also observed that microbes that differed among the human subjects displayed similar trends in the rat model, including bacteria implicated in metabolic disease. © 2018 Society for the Study of Addiction.

  13. Combining 'omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the Huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut.

    Directory of Open Access Journals (Sweden)

    Angela Kruse

    Full Text Available Huanglongbing, or citrus greening disease, is an economically devastating bacterial disease of citrus. It is associated with infection by the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas. CLas is transmitted by Diaphorina citri, the Asian citrus psyllid (ACP. For insect transmission to occur, CLas must be ingested during feeding on infected phloem sap and cross the gut barrier to gain entry into the insect vector. To investigate the effects of CLas exposure at the gut-pathogen interface, we performed RNAseq and mass spectrometry-based proteomics to analyze the transcriptome and proteome, respectively, of ACP gut tissue. CLas exposure resulted in changes in pathways involving the TCA cycle, iron metabolism, insecticide resistance and the insect's immune system. We identified 83 long non-coding RNAs that are responsive to CLas, two of which appear to be specific to the ACP. Proteomics analysis also enabled us to determine that Wolbachia, a symbiont of the ACP, undergoes proteome regulation when CLas is present. Fluorescent in situ hybridization (FISH confirmed that Wolbachia and CLas inhabit the same ACP gut cells, but do not co-localize within those cells. Wolbachia cells are prevalent throughout the gut epithelial cell cytoplasm, and Wolbachia titer is more variable in the guts of CLas exposed insects. CLas is detected on the luminal membrane, in puncta within the gut epithelial cell cytoplasm, along actin filaments in the gut visceral muscles, and rarely, in association with gut cell nuclei. Our study provides a snapshot of how the psyllid gut copes with CLas exposure and provides information on pathways and proteins for targeted disruption of CLas-vector interactions at the gut interface.

  14. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.

    Science.gov (United States)

    Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Li, Jennifer; Butcher, James; Deeke, Shelley Ann; Chen, Rui; Chiang, Cheng-Kang; Wen, Ming; Mack, David; Stintzi, Alain; Figeys, Daniel

    2016-06-24

    The gut microbiota has been shown to be closely associated with human health and disease. While next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential, metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance and easy-to-implement gut metaproteomic approach is required. In this study, we developed a high-performance and universal workflow for gut metaproteome identification and quantification (named MetaPro-IQ) by using the close-to-complete human or mouse gut microbial gene catalog as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable identifications with the matched metagenome database search strategy that is widely used but needs prior metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant responders to high-fat feeding in comparison to low-fat feeding. We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein identification and quantification, which functions as a universal workflow for metaproteomic studies, and will thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in health and disease.

  15. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    Science.gov (United States)

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids

  16. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia

    Science.gov (United States)

    Fujio-Vejar, Sayaka; Vasquez, Yessenia; Morales, Pamela; Magne, Fabien; Vera-Wolf, Patricia; Ugalde, Juan A.; Navarrete, Paola; Gotteland, Martin

    2017-01-01

    the Argentinians and sub-populations from the United States. Interestingly, the microbiota of the Chilean subjects stands out for its richness in Verrucomicrobia; the mucus-degrading bacterium Akkermansia muciniphila is the only identified member of this phylum. This is an important finding considering that this microorganism has been recently proposed as a hallmark of healthy gut due to its anti-inflammatory and immunostimulant properties and its ability to improve gut barrier function, insulin sensitivity and endotoxinemia. These results constitute an important baseline that will facilitate the characterization of dysbiosis in the main diseases affecting the Chilean population. PMID:28713349

  17. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    Sayaka Fujio-Vejar

    2017-06-01

    that of the Argentinians and sub-populations from the United States. Interestingly, the microbiota of the Chilean subjects stands out for its richness in Verrucomicrobia; the mucus-degrading bacterium Akkermansia muciniphila is the only identified member of this phylum. This is an important finding considering that this microorganism has been recently proposed as a hallmark of healthy gut due to its anti-inflammatory and immunostimulant properties and its ability to improve gut barrier function, insulin sensitivity and endotoxinemia. These results constitute an important baseline that will facilitate the characterization of dysbiosis in the main diseases affecting the Chilean population.

  18. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  19. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke.

    Science.gov (United States)

    Winek, Katarzyna; Dirnagl, Ulrich; Meisel, Andreas

    2016-10-01

    Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.

  20. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.

    Science.gov (United States)

    Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno

    2014-05-27

    mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model. Copyright © 2014 Broderick et al.

  1. A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults.

    Science.gov (United States)

    Cronin, Owen; Barton, Wiley; Skuse, Peter; Penney, Nicholas C; Garcia-Perez, Isabel; Murphy, Eileen F; Woods, Trevor; Nugent, Helena; Fanning, Aine; Melgar, Silvia; Falvey, Eanna C; Holmes, Elaine; Cotter, Paul D; O'Sullivan, Orla; Molloy, Michael G; Shanahan, Fergus

    2018-01-01

    Many components of modern living exert influence on the resident intestinal microbiota of humans with resultant impact on host health. For example, exercise-associated changes in the diversity, composition, and functional profiles of microbial populations in the gut have been described in cross-sectional studies of habitual athletes. However, this relationship is also affected by changes in diet, such as changes in dietary and supplementary protein consumption, that coincide with exercise. To determine whether increasing physical activity and/or increased protein intake modulates gut microbial composition and function, we prospectively challenged healthy but sedentary adults with a short-term exercise regime, with and without concurrent daily whey protein consumption. Metagenomics- and metabolomics-based assessments demonstrated modest changes in gut microbial composition and function following increases in physical activity. Significant changes in the diversity of the gut virome were evident in participants receiving daily whey protein supplementation. Results indicate that improved body composition with exercise is not dependent on major changes in the diversity of microbial populations in the gut. The diverse microbial characteristics previously observed in long-term habitual athletes may be a later response to exercise and fitness improvement. IMPORTANCE The gut microbiota of humans is a critical component of functional development and subsequent health. It is important to understand the lifestyle and dietary factors that affect the gut microbiome and what impact these factors may have. Animal studies suggest that exercise can directly affect the gut microbiota, and elite athletes demonstrate unique beneficial and diverse gut microbiome characteristics. These characteristics are associated with levels of protein consumption and levels of physical activity. The results of this study show that increasing the fitness levels of physically inactive humans leads to

  2. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall.

    Science.gov (United States)

    Fasano, Alessio

    2008-11-01

    The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields.

  3. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    Science.gov (United States)

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    Science.gov (United States)

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  5. Application of NMR-based metabolomics to the study of gut microbiota in obesity.

    Science.gov (United States)

    Calvani, Riccardo; Brasili, Elisa; Praticò, Giulia; Sciubba, Fabio; Roselli, Marianna; Finamore, Alberto; Marini, Federico; Marzetti, Emanuele; Miccheli, Alfredo

    2014-01-01

    Lifestyle habits, host gene repertoire, and alterations in the intestinal microbiota concur to the development of obesity. A great deal of research has recently been focused on investigating the role gut microbiota plays in the pathogenesis of metabolic dysfunctions and increased adiposity. Altered microbiota can affect host physiology through several pathways, including enhanced energy harvest, and perturbations in immunity, metabolic signaling, and inflammatory pathways. A broad range of "omics" technologies is now available to help decipher the interactions between the host and the gut microbiota at detailed genetic and functional levels. In particular, metabolomics--the comprehensive analysis of metabolite composition of biological fluids and tissues--could provide breakthrough insights into the links among the gut microbiota, host genetic repertoire, and diet during the development and progression of obesity. Here, we briefly review the most insightful findings on the involvement of gut microbiota in the pathogenesis of obesity. We also discuss how metabolomic approaches based on nuclear magnetic resonance spectroscopy could help understand the activity of gut microbiota in relation to obesity, and assess the effects of gut microbiota modulation in the treatment of this condition.

  6. Gut feelings as a third track in general practitioners' diagnostic reasoning.

    Science.gov (United States)

    Stolper, Erik; Van de Wiel, Margje; Van Royen, Paul; Van Bokhoven, Marloes; Van der Weijden, Trudy; Dinant, Geert Jan

    2011-02-01

    General practitioners (GPs) are often faced with complicated, vague problems in situations of uncertainty that they have to solve at short notice. In such situations, gut feelings seem to play a substantial role in their diagnostic process. Qualitative research distinguished a sense of alarm and a sense of reassurance. However, not every GP trusted their gut feelings, since a scientific explanation is lacking. This paper explains how gut feelings arise and function in GPs' diagnostic reasoning. The paper reviews literature from medical, psychological and neuroscientific perspectives. Gut feelings in general practice are based on the interaction between patient information and a GP's knowledge and experience. This is visualized in a knowledge-based model of GPs' diagnostic reasoning emphasizing that this complex task combines analytical and non-analytical cognitive processes. The model integrates the two well-known diagnostic reasoning tracks of medical decision-making and medical problem-solving, and adds gut feelings as a third track. Analytical and non-analytical diagnostic reasoning interacts continuously, and GPs use elements of all three tracks, depending on the task and the situation. In this dual process theory, gut feelings emerge as a consequence of non-analytical processing of the available information and knowledge, either reassuring GPs or alerting them that something is wrong and action is required. The role of affect as a heuristic within the physician's knowledge network explains how gut feelings may help GPs to navigate in a mostly efficient way in the often complex and uncertain diagnostic situations of general practice. Emotion research and neuroscientific data support the unmistakable role of affect in the process of making decisions and explain the bodily sensation of gut feelings.The implications for health care practice and medical education are discussed.

  7. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon.

    Science.gov (United States)

    Liu, Yang; Chidgey, Martyn; Yang, Vincent W; Bialkowska, Agnieszka B

    2017-11-01

    Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models ( Villin-CreER T2 ;Klf5 fl/fl designated as Klf5 ΔIND and Villin-Cre;Klf5 fl/fl as Klf5 ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND ). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2 , which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2 , a gene encoding a major component of desmosome structures. NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function

  8. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis.

    Science.gov (United States)

    Lyu, Yi; Wu, Lei; Wang, Fang; Shen, Xinchun; Lin, Dingbo

    2018-04-01

    Dysbiosis, a broad spectrum of imbalance of the gut microbiota, may progress to microbiota dysfunction. Dysbiosis is linked to some human diseases, such as inflammation-related disorders and metabolic syndromes. However, the underlying mechanisms of the pathogenesis of dysbiosis remain elusive. Recent findings suggest that the microbiome and gut immune responses, like immunoglobulin A production, play critical roles in the gut homeostasis and function, and the progression of dysbiosis. In the past two decades, much progress has been made in better understanding of production of immunoglobulin A and its association with commensal microbiota. The present minireview summarizes the recent findings in the gut microbiota dysbiosis and dysfunction of immunoglobulin A induced by the imbalance of pathogenic bacteria and commensal microbiota. We also propose the potentials of dietary carotenoids, such as β-carotene and astaxanthin, in the improvement of the gut immune system maturation and immunoglobulin A production, and the consequent promotion of the gut health. Impact statement The concept of carotenoid metabolism in the gut health has not been well established in the literature. Here, we review and discuss the roles of retinoic acid and carotenoids, including pro-vitamin A carotenoids and xanthophylls in the maturation of the gut immune system and IgA production. This is the first review article about the carotenoid supplements and the metabolites in the regulation of the gut microbiome. We hope this review would provide a new direction for the management of the gut microbiota dysbiosis by application of bioactive carotenoids and the metabolites.

  9. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission

    NARCIS (Netherlands)

    Narasimhan, Sukanya; Coumou, Jeroen; Schuijt, Tim J.; Boder, Eric; Hovius, Joppe W.; Fikrig, Erol

    2014-01-01

    Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized

  10. Diet, Gut Microbiota, and Colorectal Cancer Prevention: A Review of Potential Mechanisms and Promising Targets for Future Research.

    Science.gov (United States)

    Song, Mingyang; Chan, Andrew T

    2017-12-01

    Diet plays an important role in the development of colorectal cancer. Emerging data have implicated the gut microbiota in colorectal cancer. Diet is a major determinant for the gut microbial structure and function. Therefore, it has been hypothesized that alterations in gut microbes and their metabolites may contribute to the influence of diet on the development of colorectal cancer. We review several major dietary factors that have been linked to gut microbiota and colorectal cancer, including major dietary patterns, fiber, red meat and sulfur, and obesity. Most of the epidemiologic evidence derives from cross-sectional or short-term, highly controlled feeding studies that are limited in size. Therefore, high-quality large-scale prospective studies with dietary data collected over the life course and comprehensive gut microbial composition and function assessed well prior to neoplastic occurrence are critically needed to identify microbiome-based interventions that may complement or optimize current diet-based strategies for colorectal cancer prevention and management.

  11. Zinc in Gut-Brain Interaction in Autism and Neurological Disorders

    Science.gov (United States)

    Vela, Guillermo; Stark, Peter; Socha, Michael; Sauer, Ann Katrin; Hagmeyer, Simone; Grabrucker, Andreas M.

    2015-01-01

    A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life. PMID:25878905

  12. Prenatal Androgen Exposure Causes Hypertension and Gut Microbiota Dysbiosis.

    Science.gov (United States)

    Sherman, Shermel; Sarsour, Nadeen; Salehi, Marziyeh; Schroering, Allen; Mell, Blair; Joe, Bina; Hill, Jennifer W

    2018-02-22

    Conditions of excess androgen in women, such as polycystic ovary syndrome (PCOS), often exhibit intergenerational transmission. One way in which the risk for PCOS may be increased in daughters of affected women is through exposure to elevated androgens in utero. Hyperandrogenemic conditions have serious health consequences, including increased risk for hypertension and cardiovascular disease. Recently, gut dysbiosis has been found to induce hypertension in rats, such that blood pressure can be normalized through fecal microbial transplant. Therefore, we hypothesized that the hypertension seen in PCOS has early origins in gut dysbiosis caused by in utero exposure to excess androgen. We investigated this hypothesis with a model of prenatal androgen (PNA) exposure and maternal hyperandrogenemia by single-injection of testosterone cypionate or sesame oil vehicle (VEH) to pregnant dams in late gestation. We then completed a gut microbiota and cardiometabolic profile of the adult female offspring. The metabolic assessment revealed that adult PNA rats had increased body weight and increased mRNA expression of adipokines: adipocyte binding protein 2, adiponectin, and leptin in inguinal white adipose tissue. Radiotelemetry analysis revealed hypertension with decreased heart rate in PNA animals. The fecal microbiota profile of PNA animals contained higher relative abundance of bacteria associated with steroid hormone synthesis, Nocardiaceae and Clostridiaceae, and lower abundance of Akkermansia, Bacteroides, Lactobacillus, Clostridium. The PNA animals also had an increased relative abundance of bacteria associated with biosynthesis and elongation of unsaturated short chain fatty acids (SCFAs). We found that prenatal exposure to excess androgen negatively impacted cardiovascular function by increasing systolic and diastolic blood pressure and decreasing heart rate. Prenatal androgen was also associated with gut microbial dysbiosis and altered abundance of bacteria involved in

  13. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  14. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Christiaen, Steven E A; O'Connell Motherway, Mary; Bottacini, Francesca; Lanigan, Noreen; Casey, Pat G; Huys, Geert; Nelis, Hans J; van Sinderen, Douwe; Coenye, Tom

    2014-01-01

    In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.

  15. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003.

    Directory of Open Access Journals (Sweden)

    Steven E A Christiaen

    Full Text Available In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2, and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.

  16. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  17. Gut microbiota sustains hematopoiesis

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim

    2017-01-01

    In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1......In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1...

  18. Transcriptional interactions suggest niche segregation among microorganisms in the human gut

    DEFF Research Database (Denmark)

    Plichta, Damian Rafal; Juncker, Agnieszka; dos Santos, Marcelo Bertalan Quintanilha

    2016-01-01

    The human gastrointestinal (GI) tract is the habitat for hundreds of microbial species, of which many cannot be cultivated readily, presumably because of the dependencies between species 1. Studies of microbial co-occurrence in the gut have indicated community substructures that may reflect...... functional and metabolic interactions between cohabiting species 2,3. To move beyond species co-occurrence networks, we systematically identified transcriptional interactions between pairs of coexisting gut microbes using metagenomics and microarray-based metatranscriptomics data from 233 stool samples from...

  19. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes.

    Science.gov (United States)

    Sato, Junko; Kanazawa, Akio; Ikeda, Fuki; Yoshihara, Tomoaki; Goto, Hiromasa; Abe, Hiroko; Komiya, Koji; Kawaguchi, Minako; Shimizu, Tomoaki; Ogihara, Takeshi; Tamura, Yoshifumi; Sakurai, Yuko; Yamamoto, Risako; Mita, Tomoya; Fujitani, Yoshio; Fukuda, Hiroshi; Nomoto, Koji; Takahashi, Takuya; Asahara, Takashi; Hirose, Takahisa; Nagata, Satoru; Yamashiro, Yuichiro; Watada, Hirotaka

    2014-08-01

    Mounting evidence indicates that the gut microbiota are an important modifier of obesity and diabetes. However, so far there is no information on gut microbiota and "live gut bacteria" in the systemic circulation of Japanese patients with type 2 diabetes. Using a sensitive reverse transcription-quantitative PCR (RT-qPCR) method, we determined the composition of fecal gut microbiota in 50 Japanese patients with type 2 diabetes and 50 control subjects, and its association with various clinical parameters, including inflammatory markers. We also analyzed the presence of gut bacteria in blood samples. The counts of the Clostridium coccoides group, Atopobium cluster, and Prevotella (obligate anaerobes) were significantly lower (P blood at a significantly higher rate in diabetic patients than in control subjects (28% vs. 4%, P type 2 diabetes as assessed by RT-qPCR. The high rate of gut bacteria in the circulation suggests translocation of bacteria from the gut to the bloodstream. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota.

    Science.gov (United States)

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-03-01

    The distal gut harbours ∼10(13) bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host-microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead. © 2014 British Society for Immunology.