WorldWideScience

Sample records for growth hormone genes

  1. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  2. POLYMORPHISMS OF GROWTH HORMONE GENE IN HARINGHATA BLACK CHICKEN

    Directory of Open Access Journals (Sweden)

    R. Saikhom

    2017-06-01

    Full Text Available The present study was carried out with an aim to investigate the genetic variability of growth hormone gene in Haringhata Black chicken. Blood samples were collected from 82 experimental birds and genomic DNA was extracted using the modified high salt method. Amplification of specific DNA fragment of intron 4 of growth hormone gene yielded a product size of 713 bp and was analyzed for polymorphism using PCR-SSCP technique. The banding pattern of present investigation revealed two SSCP variants AA and BB genotype in all experimental birds. In the analysed flock of Haringhata Black Chicken, the genotype frequencies were found to be 0.915 for AA and 0.085 for BB genotype. The frequencies of A and B alleles were 0.915 and 0.085 respectively which indicated A allele was predominant in the studied Haringhata Black Chicken population of the farm. The Chi Square Test revealed that studied population was not in accordance with Hardy Weinberg equilibrium with respect to intron 4 of Growth hormone gene.

  3. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  4. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    Science.gov (United States)

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  5. Polymorphism of growth hormone gene and its association with ...

    African Journals Online (AJOL)

    sunny t

    2016-04-06

    Apr 6, 2016 ... recorded to be more frequent (83.3, 92.86 and 90%) than pattern II (16.7, 7.14 and 10%) in Barki,. Rahmani ... Key words: Sheep, wool, growth hormone (GH) gene, polymorphism, single strand conformation polymorphism. (SSCP). ... electrophoresis and chemical and ribonuclease cleavage,. SSCP has ...

  6. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  7. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  8. [Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].

    Science.gov (United States)

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2017-01-01

    In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.

  9. Growth Hormone Gene Polymorphism in Two Iranian Native Fowls (Short Communication

    Directory of Open Access Journals (Sweden)

    Jafari A

    1999-11-01

    Full Text Available Biochemical polymorphism study is a method of determination of genetic variation. This variability could be a basis for selection and subsequent genetic improvement in farm animals. The polymorphism in the intron 1 of chicken growth hormone (cGH gene was investigated in the Iranian native fowls by using polymerase chain reaction (PCR-restriction fragment length polymorphism (RFLP method. The genomic DNA was extracted from 217 samples (129 samples from the native fowls of Isfahan province and 88 samples from the native fowls of Mazandaran province by using modified salting out technique. The DNA fragment of the growth hormone gene with 776 bp was amplified by PCR using specific primers. Then the PCR products were digested with MspI restriction enzyme and analyzed on 2.5% agarose gel. The allelic frequency of intron 1 locus for A1, A2 and A3 alleles in  Isfahan native fowls were 0.60, 0.21 and 0.19 and those in Mazandaran native  fowls were 0.28, 0.05 and 0.67, respectively. The results of current study indicated that the intron 1 of cGH is polymorphic in Iranian native fowls and could be exploited as a candidate gene for marker-assisted selection for growth-related traits.

  10. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    Science.gov (United States)

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  11. Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky

    Directory of Open Access Journals (Sweden)

    Changxu Tian

    2014-04-01

    Full Text Available Growth hormone (GH has been considered as a candidate gene for growth traits in fish. In this study, polymorphisms of the GH gene were evaluated for associations with growth traits in 282 Siniperca chuatsi individuals. Using directly sequencing, four single nucleotide polymorphisms (SNPs were identified in GH gene, with two mutations in intron 4 (g.4940A>C, g.4948A>T, one mutation in exon 5 (g.5045T>C and one in intron 5 (g.5234T>G. Notably, three of them were significantly associated with growth performance, particularly for g.4940A>C which was highly correlated with all the four growth traits. In conclusion, our results demonstrated that these SNPs in GH gene could influence growth performance of S.chuatsi and could be used for marker-assisted selection (MAS in this species.

  12. Growth Hormone and Craniofacial Tissues. An update

    OpenAIRE

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the ...

  13. Growth hormone receptor (GHR) gene polymorphism and scoliosis in Prader-Willi syndrome.

    Science.gov (United States)

    Butler, Merlin G; Hossain, Waheeda; Hassan, Maaz; Manzardo, Ann M

    2018-04-01

    A growth hormone receptor (GHR) gene polymorphism impacts sensitivity to endogenous and exogenous growth hormone (GH) to moderate growth and development. Increased sensitivity may accelerate spinal growth and contribute to scoliosis, particularly in GH-deficient and treated populations such as Prader-Willi syndrome (PWS). Therefore, we examined the relationship between GHR genotype and scoliosis (case and control) in PWS cohorts. We utilized a case-control design in a study of 73 subjects (34M; 39F) with genetically confirmed PWS in 32 individuals previously diagnosed with moderate to severe scoliosis (mean age=16.9±10.2years; age range of 1 to 41years) and 41 adults with no evidence of scoliosis (mean age=30.8±9.7years; age range of 18 to 56years). The GHR gene polymorphism was determined using PCR specific primers to capture the two recognized GHR gene fragment sizes [i.e., full length (fl) or exon 3 deletions (d3)]. Twenty-three (72%) of the 32 case subjects with scoliosis required surgical correction with an approximately equal balance for gender and PWS genetic subtype among cases and 41 control subjects without scoliosis. The GHR d3/d3 genotype was identified in N=2 of 8 (25%) cases with scoliosis and the d3/fl genotype was identified in N=11 of 25 (44%) cases with scoliosis but the distribution difference did not statistically differ. The GHR fl/fl genotype was correlated with a significantly faster rate and heavier weight gain among case subjects. Our examination of demographic and genetic markers associated with scoliosis and surgical repair in PWS found no evidence to support differences in gender, PWS genetic subtype or GHR d3 allele distributions among the case vs control groups. Those with fl/fl alleles were heavier than those with d3/d3 or d3/fl genotypes and warrant further study with a larger sample size and possibly to include other vulnerable populations requiring growth hormone treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In Silico characterization of growth hormone from freshwater ...

    African Journals Online (AJOL)

    dimensional (3D) structure prediction and evolutionary profile of growth hormone (GH) from 14 ornamental freshwater fishes. The analyses were performed using the sequence data of growth hormone gene (gh) and its encoded GH protein.

  15. IGF-1 and insulin as growth hormones.

    Science.gov (United States)

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  16. Clinical and molecuar characterization of Brazilian patients with growth hormone gene deletions

    Directory of Open Access Journals (Sweden)

    I.J.P. Arnhold

    1998-04-01

    Full Text Available Genomic DNA from 23 patients with isolated growth hormone (GH deficiency (12 males and 11 females: heights -4.9 ± 1.4 SDS was screened for GH gene deletions by restriction endonuclease analysis of polymerase chain reaction amplification products. Three unrelated patients had typical features of severe GH deficiency and deletions (6.7 kb in two and 7.6 kb in one of the GH gene. The two patients with 6.7-kb deletions developed growth-attenuating anti-GH antibodies whereas the patient with the 7.6-kb deletion continued to grow with GH replacement therapy. Our finding that 3/23 (~13% Brazilian subjects had GH gene deletions agrees with previous studies of severe isolated GH deficiency subjects in other populations. Two of three subjects (67% with deletions developed blocking antibodies despite administration of exogenous GH at low doses. Interestingly, only 1/10 of cases with affected relatives or parental consanguinity had GH-1 gene deletions

  17. Growth hormone insensitivity syndrome: A sensitive approach

    Directory of Open Access Journals (Sweden)

    Soumik Goswami

    2012-01-01

    Full Text Available Patients with Growth Hormone Insensitivity have characteristic phenotypic features and severe short stature. The underlying basis are mutations in the growth hormone receptor gene which gives rise to a characteristic hormonal profile. Although a scoring system has been devised for the diagnosis of this disorder, it has not been indisputably validated. The massive expense incurred in the diagnosis and treatment of this condition with suboptimal therapeutic response necessitates a judicious approach in this regard in our country.

  18. Cloning and sequencing of growth hormone gene of Iranian Lori Bakhtiari sheep

    Directory of Open Access Journals (Sweden)

    M Dayani-Nia

    2010-05-01

    Full Text Available Growth hormone (GH is a peptide hormone that stimulates growth and cell reproduction in humans and animals. It is a 191-amino acid, single chain polypeptide hormone which is synthesized, stored, and secreted by the somatotroph cells within the lateral wings of the anterior pituitary gland. The goal of this research was to clone and sequence sheep growth hormone of Lori Bakhtiary breed in Iran. For this purpose, RNA was extracted from the pituitary gland of freshly slaughtered sheep and cDNA of growth hormone produced. The T/A cloning technique was used to clone the cDNA of growth hormone and then the synthesized construct was transferred into E. coli as the host. Once the correct recombinants were further confirmed by colony PCR or restriction enzyme digestion, sequencing was done. The sequencing results showed that, the length of sheep growth hormone cDNA was 690 bp fragments. Comparison of sequence of growth hormone inside the synthesized construct with those recorded in Genebank (NCBI, Blast indicated high degrees of similarity between Iranian native sheep and other sheep breeds of the world.

  19. Clinical features and growth hormone receptor gene mutations of patients with Laron syndrome from a Chinese family.

    Science.gov (United States)

    Ying, Yan-Qin; Wei, Hong; Cao, Li-Zhi; Lu, Juan-Juan; Luo, Xiao-Ping

    2007-08-01

    Laron syndrome is an autosomal recessive disorder caused by defects of growth hormone receptor (GHR) gene. It is characterized by severe postnatal growth retardation and characteristic facial features as well as high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3). This report described the clinical features and GHR gene mutations in 2 siblings with Laron syndrome in a Chinese family. Their heights and weights were in the normal range at birth, but the growth was retarded after birth. When they presented to the clinic, the heights of the boy (8 years old) and his sister (11 years old) were 80.0 cm (-8.2 SDS) and 96.6 cm (-6.8 SDS) respectively. They had typical appearance features of Laron syndrome such as short stature and obesity, with protruding forehead, saddle nose, large eyes, sparse and thin silky hair and high-pitched voice. They had higher basal serum GH levels and lower serum levels of IGF-I, IGFBP-3 and growth hormone binding protein (GHBP) than normal controls. The peak serum GH level after colonidine and insulin stimulations in the boy was over 350 ng/mL. After one-year rhGH treatment, the boy's height increased from 80.0 cm to 83.3 cm. The gene mutation analysis revealed that two patients had same homozygous mutation of S65H (TCA -->CCA) in exon 4, which is a novel gene mutation. It was concluded that a definite diagnosis of Laron syndrome can be made based on characteristic appearance features and serum levels of GH, IGF-I, IGFBP-3 and GHBP. The S65H mutation might be the cause of Laron syndrome in the two patients.

  20. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    Science.gov (United States)

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  1. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  2. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  3. Gene structure and functional characterization of growth hormone in dogfish, Squalus acanthias.

    Science.gov (United States)

    Moriyama, Shunsuke; Oda, Mayumi; Yamazaki, Tomohide; Yamaguchi, Kiyoko; Amiya, Noriko; Takahashi, Akiyoshi; Amano, Masafumi; Goto, Tomoaki; Nozaki, Masumi; Meguro, Hiroshi; Kawauchi, Hiroshi

    2008-06-01

    Dogfish (Squalus acanthias) growth hormone (GH) was identified by cDNA cloning and protein purification from the pituitary gland. Dogfish GH cDNA encoded a prehormone of 210 amino acids (aa). Sequence analysis of purified GH revealed that the prehormone is composed of a signal peptide of 27 aa and a mature protein of 183 aa. Dogfish GH showed 94% sequence identity with blue shark GH, and also showed 37-66%, 26%, and 48-67% sequence identity with GH from osteichtyes, an agnathan, and tetrapods. The site of production was identified through immunocytochemistry to be cells of the proximal pars distalis of the pituitary gland. Dogfish GH stimulates both insulin-like growth factor-I and II mRNA levels in dogfish liver in vitro. The dogfish GH gene consisted of five exons and four introns, the same as in lamprey, teleosts such as cypriniforms and siluriforms, and tetrapods. The 5'-flanking region within 1082 bp of the transcription start site contained consensus sequences for the TATA box, Pit-1/GHF-1, CRE, TRE, and ERE. These results show that the endocrine mechanism for growth stimulation by the GH-IGF axis was established at an early stage of vertebrate evolution, and that the 5-exon-type gene organization might reflect the structure of the ancestral gene for the GH gene family.

  4. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    International Nuclear Information System (INIS)

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone [GH] is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A) + RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A) + RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with [ 3 H]uridine, and quantitating [ 3 H]GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones

  5. Effects of Growth Hormone Gene Polymorphism on Lipogenic Gene Expression Levels in Diaphragm Tissues of Japanese Black Heifers

    Directory of Open Access Journals (Sweden)

    Astrid Ardiyanti

    2012-08-01

    Full Text Available Two SNPs, i.e. L127V and T172M, of bovine growth hormone (GH causing the presence of GH gene haplotypes A, B, and C was previously shown to alter intramuscular fatty acid (FA composition in Japanese Black (JB heifers. To determine the SNP effect on somatotropic hormone concentration and lipogenesis, we measured plasma GH, insulin, and insulin-like growth factor-1 (IGF-1 concentrations. We also measured mRNA levels of fatty acid synthase (FASN, stearoyl-coA desaturase (SCD, and sterol regulatory element binding proteins-1 (SREBP-1 and FA composition in diaphragm tissues. Heifers with genotype CC had the lowest plasma insulin concentration and FASN and SCD mRNA levels among genotypes. FASN mRNA levels in haplotype A tended to positively correlate with saturated FA (SFA content and negatively correlated with C18:2 and unsaturated FA (USFA contents. SCD mRNA levels in haplotype A positively correlated with monounsaturated FA (MUFA contents and negatively correlated with C18:0 content. They also tended to positively correlate with C16:1, C18:1, and USFA contents and USFA/SFA ratio and negatively correlate with SFA content. Taken together, GH gene polymorphism affects the lipogenic genes expression levels and their relationships with fatty acid compositions in diaphragm tissues of JB heifers at 31 months of age.

  6. Classic Bartter syndrome complicated with profound growth hormone deficiency: a case report.

    Science.gov (United States)

    Adachi, Masanori; Tajima, Toshihiro; Muroya, Koji; Asakura, Yumi

    2013-12-30

    Classic Bartter syndrome is a salt-wasting tubulopathy caused by mutations in the CLCNKB (chloride channel Kb) gene. Although growth hormone deficiency has been suggested as a cause for persistent growth failure in patients with classic Bartter syndrome, in our opinion the diagnoses of growth hormone deficiency has been unconvincing in some reports. Moreover, Gitelman syndrome seems to have been confused with Bartter syndrome in some cases in the literature. In the present work, we describe a new case with CLCNKB gene mutations and review the reported cases of classic Bartter syndrome associated with growth hormone deficiency. Our patient was a Japanese boy diagnosed as having classic Bartter syndrome at eight months of age. The diagnosis of Bartter syndrome was confirmed by CLCNKB gene analysis, which revealed compound heterozygous mutations with deletion of exons 1 to 3 (derived from his mother) and ΔL130 (derived from his father). His medical therapy consisted of potassium (K), sodium chloride, spironolactone, and anti-inflammatory agents; this regime was started at eight months of age. Our patient was very short (131.1cm, -4.9 standard deviation) at 14.3 years and showed profoundly impaired growth hormone responses to pharmacological stimulants: 0.15μg/L to insulin-induced hypoglycemia and 0.39μg/L to arginine. His growth response to growth hormone therapy was excellent. The present case strengthens the association between classic Bartter syndrome and growth hormone deficiency. We propose that growth hormone status should be considered while treating children with classic Bartter syndrome.

  7. Identification of a novel mutation in the human growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed

    2007-07-01

    Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.

  8. Insulin-like growth factor 1 (IGF-1): a growth hormone

    Science.gov (United States)

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  9. Adult growth hormone deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2011-01-01

    Full Text Available Adult growth hormone deficiency (AGHD is being recognized increasingly and has been thought to be associated with premature mortality. Pituitary tumors are the commonest cause for AGHD. Growth hormone deficiency (GHD has been associated with neuropsychiatric-cognitive, cardiovascular, neuromuscular, metabolic, and skeletal abnormalities. Most of these can be reversed with growth hormone therapy. The insulin tolerance test still remains the gold standard dynamic test to diagnose AGHD. Growth hormone is administered subcutaneously once a day, titrated to clinical symptoms, signs and IGF-1 (insulin like growth factor-1. It is generally well tolerated at the low-doses used in adults. Pegylated human growth hormone therapy is on the horizon, with a convenient once a week dosing.

  10. Growth hormone treatment in non-growth hormone-deficient children

    Directory of Open Access Journals (Sweden)

    Sandro Loche

    2014-03-01

    Full Text Available Until 1985 growth hormone (GH was obtained from pituitary extracts, and was available in limited amounts only to treat severe growth hormone deficiency (GHD. With the availability of unlimited quantities of GH obtained from recombinant DNA technology, researchers started to explore new modalities to treat GHD children, as well as to treat a number of other non-GHD conditions. Although with some differences between different countries, GH treatment is indicated in children with Turner syndrome, chronic renal insufficiency, Prader-Willi syndrome, deletions/mutations of the SHOX gene, as well as in short children born small for gestational age and with idiopathic short stature. Available data from controlled trials indicate that GH treatment increases adult height in patients with Turner syndrome, in patients with chronic renal insufficiency, and in short children born small for gestational age. Patients with SHOX deficiency seem to respond to treatment similarly to Turner syndrome. GH treatment in children with idiopathic short stature produces a modest mean increase in adult height but the response in the individual patient is unpredictable. Uncontrolled studies indicate that GH treatment may be beneficial also in children with Noonan syndrome. In patients with Prader-Willi syndrome GH treatment normalizes growth and improves body composition and cognitive function. In any indication the response to GH seems correlated to the dose and the duration of treatment. GH treatment is generally safe with no major adverse effects being recorded in any condition.

  11. Primary growth hormone insensitivity (Laron syndrome and acquired hypothyroidism: a case report

    Directory of Open Access Journals (Sweden)

    Corneli Ginevra

    2011-07-01

    Full Text Available Abstract Introduction Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. Case presentation We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline. The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. Conclusion The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective

  12. Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report.

    Science.gov (United States)

    Cotta, Oana R; Santarpia, Libero; Curtò, Lorenzo; Aimaretti, Gianluca; Corneli, Ginevra; Trimarchi, Francesco; Cannavò, Salvatore

    2011-07-11

    Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline). The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective treatment is daily administration of recombinant insulin-like growth

  13. Gene study within the 5' flanking regions of growth hormone gene of ...

    African Journals Online (AJOL)

    user

    2011-01-17

    Jan 17, 2011 ... Expression of more than one gene for GH has been reported, indicating ..... hormone levels of palsmáticos IGF-1 and carcass traits in beef cattle. Dissertation ... Structure-function relation of somatotropin with reference to ...

  14. A novel growth hormone receptor gene deletion mutation in a patient with primary growth hormone insensitivity syndrome (Laron syndrome).

    Science.gov (United States)

    Yamamoto, Hiroyasu; Kouhara, Haruhiko; Iida, Keiji; Chihara, Kazuo; Kasayama, Soji

    2008-04-01

    Growth hormone (GH) insensitivity syndrome (Laron syndrome) is known to be caused by genetic disorders of the GH-IGF-1 axis. Although many mutations in the GH receptor have been identified, there have been only a few reports of deletions of the GH receptor gene. A Japanese adult female patient with Laron syndrome was subjected to chromosome analysis with basic G-banding and also with a high accuracy technique. Each exon of the GH receptor gene was amplified by means of PCR. Since this patient was diagnosed with osteoporosis, the effects of alendronate on bone mineral density (BMD) were also examined. The chromosome analysis with the high accuracy technique demonstrated a large deletion of the short arm in one allele of chromosome 5 from p11 to p13.1 [46, XX, del (5) (p11-p13.1)]. PCR amplification of exons of the GH receptor gene showed that only exons 2 and 3 were amplified. Low-dose IGF-1 administration (30microg/kg body weight) failed to increase her BMD, whereas alendronate administration resulted in an increase associated with a decrease in urinary deoxypyridinoline (DPD) and serum osteocalcin concentrations. The GH receptor gene of the patient was shown to lack exons 4-10. To the best of our knowledge, this is the third case report of Laron syndrome with large GH receptor deletion. Alendronate was effective for the enhancement of BMD.

  15. Growth hormone in intra-uterine growth retarded newborns.

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Bhat, Vishnu; Chaturvedula, Latha

    2007-11-01

    To study growth hormone levels in IUGR and healthy controls and its association with birth weight and ponderal index. We studied 50 Intra uterine growth retarded (IUGR) and 50 healthy newborns born at term by vaginal delivery in JIPMER, Pondicherry, India. Cord blood was collected at the time of delivery for measurement of growth hormone. When compared with healthy newborns, IUGR newborns had higher growth hormone levels (mean +/- SD, 23.5 +/- 15.6 vs 16.2 +/- 7.61 ngm/ml, P = 0.019). A negative correlation was identified between growth hormone levels and birth weight (r2 = - 0.22, P = 0.03) and ponderal index (r2 = - 0.36, P = 0.008). Correlation of growth hormone levels was much more confident with ponderal index than with birth weight. At birth IUGR infants display increased growth hormone levels which correlate with ponderal index much more confidently than with birth weight.

  16. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism.

    Science.gov (United States)

    Amselem, S; Sobrier, M L; Duquesnoy, P; Rappaport, R; Postel-Vinay, M C; Gourmelen, M; Dallapiccola, B; Goossens, M

    1991-01-01

    In addition to its classical effects on growth, growth hormone (GH) has been shown to have a number of other actions, all of which are initiated by an interaction with specific high affinity receptors present in a variety of tissues. Purification of a rabbit liver protein via its ability to bind GH has allowed the isolation of a cDNA encoding a putative human growth hormone receptor that belongs to a new class of transmembrane receptors. We have previously shown that this putative growth hormone receptor gene is genetically linked to Laron dwarfism, a rare autosomal recessive syndrome caused by target resistance to GH. Nevertheless, the inability to express the corresponding full-length coding sequence and the lack of a test for growth-promoting function have hampered a direct confirmation of its role in growth. We have now identified three nonsense mutations within this growth hormone receptor gene, lying at positions corresponding to the amino terminal extremity and causing a truncation of the molecule, thereby deleting a large portion of both the GH binding domain and the full transmembrane and intracellular domains. Three independent patients with Laron dwarfism born of consanguineous parents were homozygous for these defects. Two defects were identical and consisted of a CG to TG transition. Not only do these results confirm the growth-promoting activity of this receptor but they also suggest that CpG doublets may represent hot spots for mutations in the growth hormone receptor gene that are responsible for hereditary dwarfism. Images PMID:1999489

  17. A nonpeptidyl growth hormone secretagogue.

    Science.gov (United States)

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  18. Catch-up growth in early treated patients with growth hormone deficiency. Dutch Growth Hormone Working Group.

    OpenAIRE

    Boersma, B; Rikken, B; Wit, J M

    1995-01-01

    Catch-up growth of 26 children with growth hormone deficiency during four years of growth hormone treatment, which was started young (< 3 years), was compared with that of 16 children with coeliac disease on a gluten free diet. In children with growth hormone deficiency mean (SD) height SD score increased from -4.3 (1.8) to -1.9 (1.4) and in patients with coeliac disease from -1.8 (0.9) to -0.1 (0.8). Height SD score after four years correlated positively with injection frequency and height S...

  19. Autosomal Dominant Growth Hormone Deficiency (Type II).

    Science.gov (United States)

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  20. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    Science.gov (United States)

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  1. Growth hormone stimulation test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003377.htm Growth hormone stimulation test To use the sharing features on this page, please enable JavaScript. The growth hormone (GH) stimulation test measures the ability of ...

  2. Genotype analysis of partial growth hormone gene (GH891│MspI in Pesisir cattle and Simmental-Pesisir crossbred cattle

    Directory of Open Access Journals (Sweden)

    T. Hartatik

    2018-03-01

    Full Text Available Growth hormone gene that controls metabolism and body size of animals and polymorphism of the gene is known related to performance of livestock. Identification of gene polymorphisms was important to get early information to determine genetic markers associated with economically desirable traits. Genetic mapping is one of important characterizations in the selection process. Pesisir cattle is one of local cattle in Indonesia that are reared in West Sumatera and have become adaptive to local environment. The present study aimed to identify the genotype of Growth Hormone gene (GH891│MspI of the Pesisir cattle and crossbred Simmental-Pesisir cattle (designated as SimPes and relationship between growth performance (body weight and body size. The present study was conducted to 30 blood samples consisted of 15 Pesisir cattle and 15 SimPes cattle. Body weight and body size were measured at 12-18 months of age. The Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP method was used in this research. The results showed that there exist three variant genotypes (MspI-/-, MspI+/-, MspI+/+ and that allele frequencies of MspI- and MspI+ were 53.3% and 46.7%, respectively. Non-significant effect has found between GH’s genotype and growth traits (Body measurement and body weight in both of breed cattle. In conclusion, three variant genotypes (GH891│MspI in Pesisir and SimPes (Simmental x Pesisir cattle population were found and no significant effect on growth trait performance.

  3. Effects of Growth Hormone Replacement Therapy on Bone Mineral Density in Growth Hormone Deficient Adults: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Peng Xue

    2013-01-01

    Full Text Available Objectives. Growth hormone deficiency patients exhibited reduced bone mineral density compared with healthy controls, but previous researches demonstrated uncertainty about the effect of growth hormone replacement therapy on bone in growth hormone deficient adults. The aim of this study was to determine whether the growth hormone replacement therapy could elevate bone mineral density in growth hormone deficient adults. Methods. In this meta-analysis, searches of Medline, Embase, and The Cochrane Library were undertaken to identify studies in humans of the association between growth hormone treatment and bone mineral density in growth hormone deficient adults. Random effects model was used for this meta-analysis. Results. A total of 20 studies (including one outlier study with 936 subjects were included in our research. We detected significant overall association of growth hormone treatment with increased bone mineral density of spine, femoral neck, and total body, but some results of subgroup analyses were not consistent with the overall analyses. Conclusions. Our meta-analysis suggested that growth hormone replacement therapy could have beneficial influence on bone mineral density in growth hormone deficient adults, but, in some subject populations, the influence was not evident.

  4. IDENTIFIKASI IKAN CUPANG (Betta imbelis TRANSGENIK FOUNDER MEMBAWA GEN PENYANDI HORMON PERTUMBUHAN; Identification of Transgenic Founder Betta Fish (Betta imbelis Carry Growth Hormone Gene.

    Directory of Open Access Journals (Sweden)

    Eni Kusrini

    2017-01-01

    Full Text Available Penelitian dilakukan untuk mengidentifikasi keberhasilan introduksi gen penyandi hormon pertumbuhan (Growth Hormone, GH pada induk F-0 ikan Betta imbellis. Ikan transgenik F-0 dibuat dengan menggunakan metode transfeksi. Identifikasi dilakukan menggunakan metode RT-PCR. RNA total diekstraksi dari embrio pooled sample hasil persilangan induk transgenik dan non-transgenik. Berdasarkan analisis ekspresi gen pada embrio juga menunjukkan adanya aktivitas ekspresi gen GH pada semua perlakuan dibandingkan dengan kontrol (embrio hasil persilangan non-transgenik x non-transgenik. Jumlah individu induk F-0 yang membawa gen GH eksogen berdasarkan analisis PCR dengan DNA template dari sirip ekor adalah sebanyak 16%. Individu positif membawa gen GH eksogen tersebut dibesarkan lebih lanjut untuk memproduksi Betta imbellis transgenik F-1. Kandidat ikan transgenik jantan F-0 dikawinkan dengan ikan non-transgenik betina, sedangkan transgenik F-0 betina dikawinkan dengan non-transgenik jantan. Sebanyak 30-50 butir embrio hasil pemijahan F-0 digabung, kemudian DNA genom diekstrak. Sebagian embrio digunakan untuk ekstraksi RNA total untuk analisis ekspresi mRNA GH eksogen. Hasil analisis PCR menunjukkan bahwa semua sampel embrio dari induk transgenik F-0 dapat terdeteksi gen GH eksogen, sedangkan untuk kontrol (non-transgenik tidak terdeteksi. Ekspresi mRNA juga terdeteksi pada embrio F-1. Dengan demikian, metode transfeksi embrio Betta imbellis efektif digunakan untuk menghasilkan ikan transgenik, dan sangat berpotensi menghasilkan individu F-1 Betta imbellis dengan pertumbuhan lebih cepat. The study was conducted to identify the successful introduction of the growth hormone gene (Growth Hormone, GH on the F-0 Betta imbellis broodstock. The F-0 transgenic fish was made through transfection methods. Identification was done using RT-PCR method. Total RNA was extracted from pooled embryos sample. Based on the analysis of gene expression in embryos also showed

  5. Role of Growth Hormone in Prostate Cancer

    Science.gov (United States)

    2007-02-01

    syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA 94:13215... Laron mouse, in which the gene coding for both GHR and GH binding protein has been disrupted or knocked out, with the C3(1)/Tag mouse, which develops...the Laron mouse). Nevertheless, the new model presented here demonstrates that the loss of GHR produced a significant reduction in the level of PIN in

  6. Effects of Growth Hormone Replacement Therapy on Bone Mineral Density in Growth Hormone Deficient Adults: A Meta-Analysis

    OpenAIRE

    Xue, Peng; Wang, Yan; Yang, Jie; Li, Yukun

    2013-01-01

    Objectives. Growth hormone deficiency patients exhibited reduced bone mineral density compared with healthy controls, but previous researches demonstrated uncertainty about the effect of growth hormone replacement therapy on bone in growth hormone deficient adults. The aim of this study was to determine whether the growth hormone replacement therapy could elevate bone mineral density in growth hormone deficient adults. Methods. In this meta-analysis, searches of Medline, Embase, and The Cochr...

  7. Obesity, growth hormone and weight loss

    DEFF Research Database (Denmark)

    Rasmussen, Michael Højby

    2009-01-01

    Growth hormone (GH) is the most important hormonal regulator of postnatal longitudinal growth in man. In adults GH is no longer needed for longitudinal growth. Adults with growth hormone deficiency (GHD) are characterised by perturbations in body composition, lipid metabolism, cardiovascular risk...

  8. Expression of human placental lactogen and variant growth hormone genes in placentas.

    Science.gov (United States)

    Martinez-Rodriguez, H G; Guerra-Rodriguez, N E; Iturbe-Cantu, M A; Martinez-Torres, A; Barrera-Saldaña, H A

    1997-01-01

    Previous studies comparing the expression levels of human placental lactogen (hPL) genes have shown varying results, due to, perhaps, the fact that in all of them only one placenta was being analyzed. Here, the expression of hPL and growth hormone variant (hGH-V) genes in fifteen term placentas was comparatively analyzed at the RNA level, using reverse transcription coupled to polymerase chain reaction (RT-PCR). The abundance of the combined RNA transcripts derived from these genes varied from one placenta to another. The authors found that hPL-4 transcripts were more abundant than those of hPL-3 in most samples (ratios from 1:1 to 6:1), transcripts from the putative hPL-1 pseudogene were more abundant at the unprocessed stage while those of the hGH-V gene were mostly processed. Again, the authors of this study observed wide variation from placenta to placenta in the abundance of both of these types of transcripts. The same was observed when a group of six placentas from abortuses and nine from pregnancies complicated by preclampsia, diabetes and hypertension was studied. The authors conclude that the disagreeing results reported in the literature which are not in agreement concerning the expression levels of hPL genes could be explained by normal variations of their expression levels among the different placentas analyzed.

  9. Ancient origin of placental expression in the growth hormone genes of anthropoid primates.

    Science.gov (United States)

    Papper, Zack; Jameson, Natalie M; Romero, Roberto; Weckle, Amy L; Mittal, Pooja; Benirschke, Kurt; Santolaya-Forgas, Joaquin; Uddin, Monica; Haig, David; Goodman, Morris; Wildman, Derek E

    2009-10-06

    In anthropoid primates, growth hormone (GH) genes have undergone at least 2 independent locus expansions, one in platyrrhines (New World monkeys) and another in catarrhines (Old World monkeys and apes). In catarrhines, the GH cluster has a pituitary-expressed gene called GH1; the remaining GH genes include placental GHs and placental lactogens. Here, we provide cDNA sequence evidence that the platyrrhine GH cluster also includes at least 3 placenta expressed genes and phylogenetic evidence that placenta expressed anthropoid GH genes have undergone strong adaptive evolution, whereas pituitary-expressed GH genes have faced strict functional constraint. Our phylogenetic evidence also points to lineage-specific gene gain and loss in early placental mammalian evolution, with at least three copies of the GH gene present at the time of the last common ancestor (LCA) of primates, rodents, and laurasiatherians. Anthropoid primates and laurasiatherians share gene descendants of one of these three copies, whereas rodents and strepsirrhine primates each maintain a separate copy. Eight of the amino-acid replacements that occurred on the lineage leading to the LCA of extant anthropoids have been implicated in GH signaling at the maternal-fetal interface. Thus, placental expression of GH may have preceded the separate series of GH gene duplications that occurred in catarrhines and platyrrhines (i.e., the roles played by placenta-expressed GHs in human pregnancy may have a longer evolutionary history than previously appreciated).

  10. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Genetic Diversity and Sequence Variations at Growth Hormone Loci among Composite and Hereford Populations of Beef Cattle

    Directory of Open Access Journals (Sweden)

    ALAN J. LYMBERY

    2000-07-01

    Full Text Available A total of 194 Hereford and 235 composite breed cattle from Wokalup Research Station were used in this study. The aims of the study were to: Investigate polymorphisms in the growth hormone gene in the composite and purebred Hereford herds from the Wokalup selection experiment, compare genetic diversity in the growth hormone gene of the breeds, sequencing and compare the sequences of growth hormone loci between composite and purebred Hereford herds with published sequence from Genebank. The genomic DNA was extracted using Wizard genomic DNA purification system from Promega. Two fragments of growth hormone gene were amplified using PCR and continued with RFLP. Each genotype in both loci was sequenced. PCR products of each genotypes were cloned into PCR II, transformed, colonies selection, plasmid DNA extraction continued with cycle sequencing. Polymorphisms were found in both breeds of cattle in both loci of GH-L1 and GH-L2 of the growth hormone gene by PCR-RFLP analysis. Sequencing analysis confirmed the RFLPs data, polymorphism detected using AluI at GH-L1 is due to substitution between leusin/ valine at position 127, while polymorphism at the MspI restriction site was caused by transition of C to T at +837 position.

  12. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  13. Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Muscle of Korean Cattle Steers

    Directory of Open Access Journals (Sweden)

    H. J. Kang

    2015-08-01

    Full Text Available This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months were allocated to normal (N; n = 16 or dietary restriction (DR; n = 15 groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age and 14 months (period 2 [P2] at 24.5 months of age after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN mRNA levels were lower (p<0.05 in the DR group compared with the normal group. The DR group tended (p = 0.06 to have higher of levels of growth hormone receptor (GHR mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06 androgen receptor (AR mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals.

  14. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  15. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  16. Two siblings with isolated GH deficiency due to loss-of-function mutation in the GHRHR gene: successful treatment with growth hormone despite late admission and severe growth retardation.

    Science.gov (United States)

    Sıklar, Zeynep; Berberoğlu, Merih; Legendre, Maria; Amselem, Serge; Evliyaoğlu, Olcay; Hacıhamdioğlu, Bülent; Savaş Erdeve, Senay; Oçal, Gönül

    2010-01-01

    Patients with growth hormone releasing hormone receptor (GHRHR) mutations exhibit pronounced dwarfism and are phenotypically and biochemically indistinguishable from other forms of isolated growth hormone deficiency (IGHD). We presented here two siblings with clinical findings of IGHD due to a nonsense mutation in the GHRHR gene who reached their target height in spite of late GH treatment. Two female siblings were admitted to our clinic with severe short stature at the age of 13.8 (patient 1) and 14.8 years (patient 2). On admission, height in patient 1 was 107 cm (-8.6 SD) and 117 cm (-6.7 SD) in patient 2. Bone age was delayed in both patients (6 years and 9 years). Clinical and biochemical analyses revealed a diagnosis of complete IGHD (peak GH levels on stimulation test was 0.06 ng/mL in patient 1 and 0.16 ng/mL in patient 2). Patients were given recombinant human GH treatment. Genetic analysis of the GH and GHRHR genes revealed that both patientscarried the GHRHR gene mutation p.Glu72X (c.214 G>T) in exon 3 in homozygous (or hemizygous) state. After seven years of GH treatment, the patients reached a final height appropriate for their target height. Final height was 151 cm (-1.5 SD) in patient 1 and 153 cm (-1.2 SD) in patient 2. In conclusion, genetic analysis is indicated in IGHD patients with severe growth failure and a positive family history. In spite of the very late diagnosis in these two patients who presented with severe growth deficit due to homozygous loss-of-function mutations in GHRHR, their final heights reached the target height.

  17. The sheep growth hormone gene polymorphism and its effects on milk traits.

    Science.gov (United States)

    Dettori, Maria Luisa; Pazzola, Michele; Pira, Emanuela; Paschino, Pietro; Vacca, Giuseppe Massimo

    2015-05-01

    Growth hormone (GH) is encoded by the GH gene, which may be single copy or duplicate in sheep. The two copies of the sheep GH gene (GH1/GH2-N and GH2-Z) were entirely sequenced in one 106 ewes of Sarda breed, in order to highlight sequence polymorphisms and investigate possible association between genetic variants and milk traits. Milk traits included milk yield, fat, protein, casein and lactose percentage. We evidenced 75 nucleotide changes. Transcription factor binding site prediction revealed two sequences potentially recognised by the pituitary-specific transcription factor POU1FI at the GH1/GH2-N gene, which were lost at the promoter of GH2-Z, which might explain the different tissues of expression of GH1/GH2-N (pituitary) and GH2-Z (placenta). Significant differences in milk traits were observed among genotypes at polymorphic loci only for the GH2-Z gene. Sheep with homozygote genotype ss748770547 CC had higher fat percentage (P < 0.01) than TT. SNP ss748770547 was part of a potential transcription factor binding site for C/EBP alpha (CCAAT/Enhancer Binding Protein), which is involved in the regulation of adipogenesis and adipoblast differentiation. SNP ss748770547, located in the GH2-Z gene 5' flanking region, may be a causal mutation affecting milk fat content. These findings might contribute to the knowledge of the sheep GH locus and might be useful in selection processes in sheep.

  18. The Long Intron 1 of Growth Hormone Gene from Reeves’ Turtle (Chinemys reevesii Correlates with Negatively Regulated GH Expression in Four Cell Lines

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Liu

    2016-04-01

    Full Text Available Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp, comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.

  19. [Hormones and hair growth].

    Science.gov (United States)

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  20. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    OpenAIRE

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/...

  1. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  2. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    Science.gov (United States)

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  3. Growth hormone test

    Science.gov (United States)

    ... is called acromegaly . In children it is called gigantism . Too little growth hormone can cause a slow ... growth due to excess GH during childhood, called gigantism. (A special test is done to confirm this ...

  4. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  5. Growth hormone-mediated breakdown of body fat

    DEFF Research Database (Denmark)

    Johansen, T.; Malmlöf, K.; Richelsen, Bjørn

    2003-01-01

    regimen. Twelve-month-old rats fed first a high-fat diet or a low-fat diet for 14 weeks were injected with saline or growth hormone (4 mg/kg/d) for four days or three weeks in different combinations with either high- or low-fat diets. In adipose tissue, growth hormone generally inhibited lipoprotein...... lipase and also attenuated the inhibiting effect of insulin on hormone-sensitive lipase activity. Growth hormone treatment combined with restricted high-fat feeding reduced the activity of both lipases in adipose tissue and stimulated hormone-sensitive lipase in muscle. Generally, plasma levels of free...... fatty acids, glycerol and cholesterol were reduced by growth hormone, and in combination with restricted high-fat feeding, triglyceride levels improved too. We conclude that growth hormone inhibits lipid storage in adipose tissue by reducing both lipoprotein lipase activity and insulin's inhibitory...

  6. A Case With Short Stature, Growth Hormone Deficiency and 46, XX, Xq27-qter Deletion.

    Science.gov (United States)

    Yıldırım, Şule; Topaloğlu, Naci; Tekin, Mustafa; Sılan, Fatma

    2017-10-01

    We report a case of 11-year-old girl with growth retardation and 46, XX, Xq27-qter deletion. The endocrinologic evaluation revealed growth hormone deficiency. In karyotype analysis  46, XX, Xq27-qter deletion was determined. The deletion of terminal region of chromosome 27 is most commonly being detected during the evaluation of infertility, premature ovarian insufficiency or in screening for fragile X carrier status. To our knowledge, this is the first reported case with 46, XX, Xq27-qter deletion and growth hormone deficiency. Furthermore, this case might facilitate future search for candidate genes involved in growth hormone deficiency.

  7. Growth hormone treatment during pregnancy in a growth hormone-deficient woman

    DEFF Research Database (Denmark)

    Müller, J; Starup, J; Christiansen, J S

    1995-01-01

    Information on the course and outcome of pregnancies in growth hormone (GH)-deficient patients is sparse, and GH treatment during pregnancy in such women has not been described previously. We have studied fetal growth and serum levels of GH, insulin-like growth factor I (IGF-I) and IGF binding...

  8. [Human growth hormone and Turner syndrome].

    Science.gov (United States)

    Sánchez Marco, Silvia Beatriz; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José Ignacio; Garagorri Otero, Jesús María

    2017-02-01

    The evaluation of clinical and analytical parameters as predictors of the final growth response in Turner syndrome patients treated with growth hormone. A retrospective study was performed on 25 girls with Turner syndrome (17 treated with growth hormone), followed-up until adult height. Auxological, analytical, genetic and pharmacological parameters were collected. A descriptive and analytical study was conducted to evaluate short (12 months) and long term response to treatment with growth hormone. A favourable treatment response was shown during the first year of treatment in terms of height velocity gain in 66.6% of cases (height-gain velocity >3cm/year). A favourable long-term treatment response was also observed in terms of adult height, which increased by 42.82±21.23cm (1.25±0.76 SDS), with an adult height gain of 9.59±5.39cm (1.68±1.51 SDS). Predictors of good response to growth hormone treatment are: A) initial growth hormone dose, B) time on growth hormone treatment until starting oestrogen therapy, C) increased IGF1 and IGFBP-3 levels in the first year of treatment, and D) height gain velocity in the first year of treatment. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    Science.gov (United States)

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Interactions between the thyroid hormones and the hormones of the growth hormone axis.

    Science.gov (United States)

    Laron, Zvi

    2003-12-01

    The normal secretion and action of the thyroid hormones and the hormones of the GH/IGF-I (growth hormone/ insulin-like growth factor I) axis are interdependent. Their interactions often differ in man from animal studies in rodents and sheep. Thus neonates with congenital hypothyroidism are of normal length in humans but IUGR (intrauterine growth retardation) in sheep. Postnatally normal GH/IGF-I secretion and action depends on an euthyroid state. Present knowledge on the interactions between the two axes is reviewed in states of hypo- and hyperthyroidism, states of GH/IGF-I deprivation and hypersecretion, as well as the relationship between IGF-I and thyroid cancer. Emphasis is given to data in children and aspects of linear growth and skeletal maturation.

  11. Growth hormone stimulation test - series (image)

    Science.gov (United States)

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. In children, GH has growth-promoting effects on the body. It stimulates the ...

  12. Modulation of gene expression by nutritional state and hormones in Bombyx larvae in relation to its growth period.

    Science.gov (United States)

    Thounaojam, Bembem; Keshan, Bela

    2017-11-01

    Insect growth and development are mainly regulated via synchronization of many extrinsic and intrinsic factors such as nutrition and hormones. Previously we have demonstrated that larval growth period influences the effect of insulin on the accumulation of glycogen in the fat body of Bombyx larvae. In the present study we demonstrate that Bombyx larvae at the terminal growth period (TGP, after critical weight) had a significantly greater increase in the expression level of Akt in the fat body than at the active growth period (AGP, before critical weight). The larvae at TGP also showed an increase in the expression level of ecdysone receptors (EcRB1 and USP1) and ecdysone-induced early genes (E75A and broad). The treatment of bovine insulin and methoprene to larvae at AGP induced the transcript levels of Akt, irrespective of the nutritional status of the larvae. However, in larvae at TGP, insulin repressed the transcript level of Akt. On contrary, 20-hydroxyecdysone (20E) induced the expression level of Akt in TGP larvae, but at feeding only. Insulin and 20E thus showed an antagonistic action on the Akt expression level in TGP larvae under feeding. The studies thus showed that larval growth period influences the expression level of Akt and ecdysone receptors in Bombyx. Further, the growth period and nutrition modulate the effect of exogenous hormones on Akt expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Long-Term Outcomes, Genetics, and Pituitary Morphology in Patients with Isolated Growth Hormone Deficiency and Multiple Pituitary Hormone Deficiencies: A Single-Centre Experience of Four Decades of Growth Hormone Replacement.

    Science.gov (United States)

    Rohayem, Julia; Drechsel, Hendrik; Tittel, Bettina; Hahn, Gabriele; Pfaeffle, Roland; Huebner, Angela

    2016-01-01

    Growth hormone (GH) has been used to treat children with GH deficiency (GHD) since 1966. Using a combined retrospective and cross-sectional approach, we explored the long-term outcomes of patients with GHD, analysed factors influencing therapeutic response, determined persistence into adulthood, investigated pituitary morphology, and screened for mutations in causative genes. The files of 96 GH-deficient children were reviewed. In a subset of 50 patients, re-assessment in adulthood was performed, including GHRH-arginine testing, pituitary magnetic resonance imaging (MRI), and mutational screening for the growth hormone-1 gene (GH1) and the GHRH receptor gene (GHRHR) in isolated GHD (IGHD), and HESX1, PROP1, POU1F1, LHX3, LHX4, and GLI2 in multiple pituitary hormone deficiency (MPHD) patients. GH was started at a height SDS of -3.2 ± 1.4 in IGHD patients and of -4.1 ± 2.1 in MPHD patients. Relative height gain was 0.3 SDS/year, absolute gain 1.6 SDS, and 1.2/2.6 SDS in IGHD/MPHD, respectively. Mid-parental target height was reached in 77%. Initial height SDS, bone age retardation and duration of GH replacement were correlated with height SDS gain. GHD persisted into adulthood in 19 and 89% of subjects with IGHD and MPHD, respectively. In 1/42 IGHD patients a GH1 mutation was detected; PROP1 mutations were found in 3/7 MPHD subjects. Anterior pituitary hypoplasia, combined with posterior pituitary ectopy and pituitary stalk invisibility on MRI, was an exclusive finding in MPHD patients. GH replacement successfully corrects the growth deficit in children with GHD. While the genetic aetiology remains undefined in most cases of IGHD, PROP1 mutations constitute a major cause for MPHD. Persistence of GHD into adulthood is related to abnormal pituitary morphology. © 2016 S. Karger AG, Basel.

  14. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  15. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  16. Determinants of Growth Hormone Resistance in Malnutrition

    Science.gov (United States)

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    States of under-nutrition are characterized by growth hormone resistance. Decreased total energy intake, as well as isolated protein-calorie malnutrition and isolated nutrient deficiencies result in elevated growth hormone levels and low levels of IGF-I. We review various states of malnutrition and a disease state characterized by chronic under-nutrition -- anorexia nervosa -- and discuss possible mechanisms contributing to the state of growth hormone resistance, including FGF-21 and SIRT1. We conclude by examining the hypothesis that growth hormone resistance is an adaptive response to states of under-nutrition, in order to maintain euglycemia and preserve energy. PMID:24363451

  17. Mortality and reduced growth hormone secretion

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Christiansen, Jens; Laursen, Torben

    2007-01-01

    BACKGROUND: Data regarding the mortality rates of patients with growth hormone deficiency (GHD), whether or not treated with growth hormone (GH), are limited, but an increased mortality rate among hypopituitary patients compared with the general population has been documented. Cardiovascular dise...

  18. Growth Hormone Overexpression Disrupts Reproductive Status Through Actions on Leptin

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2018-03-01

    Full Text Available Growth and reproduction are closely related. Growth hormone (GH-transgenic common carp exhibit accelerated growth and delayed reproductive development, which provides an amenable model to study hormone cross talk between the growth and reproductive axes. We analyzed the energy status and reproductive development in GH-transgenic common carp by using multi-tissue RNA sequencing, real-time-PCR, Western blotting, ELISA, immunofluorescence, and in vitro incubation. The expression of gys (glycogen synthase and igfbp1 (insulin-like growth factor binding protein as well as blood glucose concentrations are lower in GH-transgenic carp. Agrp1 (agouti-related protein 1 and sla (somatolactin a, which are related to appetite and lipid catabolism, are significantly higher in GH-transgenic carp. Low glucose content and increased appetite indicate disrupted metabolic and energy deprivation status in GH-transgenic carp. Meanwhile, the expression of genes, such as gnrhr2 (gonadotropin-releasing hormone receptor 2, gthα (gonadotropin hormone, alpha polypeptide, fshβ (follicle stimulating hormone, beta polypeptide, lhβ [luteinizing hormone, beta polypeptide] in the pituitary, cyp19a1a (aromatase A in the gonad, and cyp19a1b (aromatase B in the hypothalamus, are decreased in GH-transgenic carp. In contrast, pituitary gnih (gonadotropin inhibitory hormone, drd1 (dopamine receptor D1, drd3 (dopamine receptor D3, and drd4 (dopamine receptor D4 exhibit increased expression, which were associated with the retarded reproductive development. Leptin receptor mRNA was detected by fluorescence in situ hybridization in the pituitary including the pars intermedia and proximal pars distalis, suggesting a direct effect of leptin on LH. Recombinant carp Leptin protein was shown to stimulate pituitary gthα, fshβ, lhβ expression, and ovarian germinal vesicle breakdown in vitro. In addition to neuroendocrine factors, we suggest that reduced hepatic leptin signaling to the

  19. Height outcome of the recombinant human growth hormone treatment in patients with SHOX gene haploinsufficiency: a meta-analysis.

    Science.gov (United States)

    Massart, Francesco; Bizzi, Martina; Baggiani, Angelo; Miccoli, Mario

    2013-04-01

    Patients with mutations or deletions of the SHOX gene present variable growth impairment, with or without mesomelic skeletal dysplasia. If untreated, short patients with SHOX haplodeficiency (SHOXD) remain short into adulthood. Although recombinant human growth hormone (rhGH) treatment improves short-term linear growth, there are episodic data on the final height of treated SHOXD subjects. After a thorough search of the published literature for pertinent studies, we undertook a meta-analysis evaluation of the efficacy and safety of rhGH treatment in SHOXD patients. In SHOXD patients, administration of rhGH progressively improved the height deficit from baseline to 24 months, although the major catch-up growth was detected after 12 months. The rhGH-induced growth appeared constant until final height. Our meta-analysis suggested rhGH therapy improves height outcome of SHOXD patients, though future studies using carefully titrated rhGH protocols are needed. Original submitted 29 October 2012; Revision submitted 22 February 2013.

  20. Hormonal influences on growth of the fetal pig

    International Nuclear Information System (INIS)

    Spencer, G.S.

    1986-01-01

    Although there is considerable information on hormonal systems regulating growth postnatally, little is known about hormonal influences on growth in the fetuw. It has long been postulated that insulin is the major fetal growth promoting hormone. However, chronic administration of insulin to the fetal pig during 14 days in utero, although producing hyperinsulinaemia and elevated somatomedin levels, did not stimulate an increase in length, weight or cell number. Postnatally the principal growth promoting hormones are the growth hormone dependent somatomedins. It is thought that multiplication stimulating activity (MSA) is the fetal somatomedin. However, under similar conditions to those used for insulin administration, MSA did not affect growth in the fetal pig. Administration of somatostatin to chronically catheterized fetuses inhibited (p≤0.01) and thyrotrophin releasing factor stimulated (≤0.01) GH release. However, chronic administration of SRIF did not inhibit fetal growth. Thus there does seem to be some hypothalamic control over GH secretion but this may not play a major role in regulating fetal growth

  1. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle.

    Science.gov (United States)

    Sherman, E L; Nkrumah, J D; Murdoch, B M; Li, C; Wang, Z; Fu, A; Moore, S S

    2008-01-01

    Genes that regulate metabolism and energy partitioning have the potential to influence economically important traits in farm animals, as do polymorphisms within these genes. In the current study, SNP in the bovine neuropeptide Y (NPY), growth hormone receptor (GHR), ghrelin (GHRL), uncoupling proteins 2 and 3 (UCP2 and UCP3), IGF2, corticotrophin-releasing hormone (CRH), cocaine and amphetamine regulated transcript (CART), melanocortin-4 receptor (MC4R), proopiomelanocortin (POMC), and GH genes were evaluated for associations with growth, feed efficiency, and carcass merit in beef steers. In total, 24 SNP were evaluated for associations with these traits and haplotypes were constructed within each gene when 2 or more SNP showed significant associations. An A/G SNP located in intron 4 of the GHR gene had the largest effects on BW of the animals (dominance effect P GHRL gene tended to show effects on residual feed intake, FCR, and partial efficiency of growth (P < 0.10). The IGF2 SNP most strongly affected LM area (P < 0.01), back fat, ADG, and FCR (P < 0.05). The SNP in the CART, MC4R, POMC, GH, and CRH genes did not show associations at P < 0.05 with any of the traits. Although most of the SNP that showed associations do not cause amino acid changes, these SNP could be linked to other yet to be detected causative mutations or nearby QTL. It will be very important to verify these results in other cattle populations.

  2. Oral manifestations in growth hormone disorders

    Directory of Open Access Journals (Sweden)

    Gaurav Atreja

    2012-01-01

    Full Text Available Growth hormone is of vital importance for normal growth and development. Individuals with growth hormone deficiency develop pituitary dwarfism with disproportionate delayed growth of skull and facial skeleton giving them a small facial appearance for their age. Both hyper and hypopituitarism have a marked effect on development of oro-facial structures including eruption and shedding patterns of teeth, thus giving an opportunity to treating dental professionals to first see the signs and symptoms of these growth disorders and correctly diagnose the serious underlying disease.

  3. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH-transgenic...

  4. Growth hormone dose in growth hormone-deficient adults is not associated with IGF-1 gene polymorphisms

    NARCIS (Netherlands)

    S. Meyer (Silke); S. Schaefer (Stephan); D. Ivan (Diana); L. Stolk (Lisette); P.P. Arp (Pascal); A.G. Uitterlinden (André); P.P. Nawroth (Peter); U. Plöckinger (Ursula); G.K. Stalla (Günter); U. Tuschy (Ulrich); M.M. Weber (Matthias); W.J. Weise (Wolfgang); A. Pfützner (Andreas); P. Kann (Peter)

    2009-01-01

    textabstractAims: Several SNPs and a microsatellite cytosine-adenine repeat promoter polymorphisms of the IGF-1 gene have been reported to be associated with circulating IGF-1 serum concentrations. Variance in IGF-1 concentrations due to genetic variations may affect different response to growth

  5. Characterization of the neurohypophysial hormone gene loci in elephant shark and the Japanese lamprey: origin of the vertebrate neurohypophysial hormone genes

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2009-02-01

    Full Text Available Abstract Background Vasopressin and oxytocin are mammalian neurohypophysial hormones with distinct functions. Vasopressin is involved mainly in osmoregulation and oxytocin is involved primarily in parturition and lactation. Jawed vertebrates contain at least one homolog each of vasopressin and oxytocin, whereas only a vasopressin-family hormone, vasotocin, has been identified in jawless vertebrates. The genes encoding vasopressin and oxytocin are closely linked tail-to-tail in eutherian mammals whereas their homologs in chicken, Xenopus and coelacanth (vasotocin and mesotocin are linked tail-to-head. In contrast, their pufferfish homologs, vasotocin and isotocin, are located on the same strand of DNA with isotocin located upstream of vasotocin and separated by five genes. These differences in the arrangement of the two genes in different bony vertebrate lineages raise questions about their origin and ancestral arrangement. To trace the origin of these genes, we have sequenced BAC clones from the neurohypophysial gene loci in a cartilaginous fish, the elephant shark (Callorhinchus milii, and in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum. We have also analyzed the neurohypophysial hormone gene locus in an invertebrate chordate, the amphioxus (Branchiostoma floridae. Results The elephant shark neurohypophysial hormone genes encode vasotocin and oxytocin, and are linked tail-to-head like their homologs in coelacanth and non-eutherian tetrapods. Besides the hypothalamus, the two genes are also expressed in the ovary. In addition, the vasotocin gene is expressed in the kidney, rectal gland and intestine. These expression profiles indicate a paracrine role for the two hormones. The lamprey locus contains a single neurohypophysial hormone gene, the vasotocin. The synteny of genes in the lamprey locus is conserved in elephant shark, coelacanth and tetrapods but disrupted in teleost fishes. The amphioxus locus encodes a single

  6. The interrelationships of thyroid and growth hormones: effect of growth hormone releasing hormone in hypo- and hyperthyroid male rats.

    Science.gov (United States)

    Root, A W; Shulman, D; Root, J; Diamond, F

    1986-01-01

    Growth hormone (GH) and the thyroid hormones interact in the hypothalamus, pituitary and peripheral tissues. Thyroid hormone exerts a permissive effect upon the anabolic and metabolic effects of GH, and increases pituitary synthesis of this protein hormone. GH depresses the secretion of thyrotropin and the thyroid hormones and increases the peripheral conversion of thyroxine to triiodothyronine. In the adult male rat experimental hypothyroidism produced by ingestion of propylthiouracil depresses the GH secretory response to GH-releasing hormone in vivo and in vitro, reflecting the lowered pituitary stores of GH in the hypothyroid state. Short term administration of large amounts of thyroxine with induction of the hyperthyroid state does not affect the in vivo GH secretory response to GH-releasing hormone in this animal.

  7. Application of heteroduplex analysis for detecting variation within the growth hormone 2 gene in Salmo trutta L. (brown trout).

    Science.gov (United States)

    Gross, R; Nilsson, J

    1995-03-01

    A new method to detect variation at a single copy nuclear gene in brown trout, Salmo trutta L., is provided. The technique entails (i) selective gene amplification by the polymerase chain reaction (PCR), (ii) digestion of amplification products by restriction endonucleases to obtain fragments of suitable size, (iii) hybridization with heterologous DNA followed by denaturation and reannealing to obtain heteroduplex molecules, and (iv) screening for variation in polyacrylamide gels. Variation was studied within a growth hormone 2 gene 1489 bp segment and polymorphism was detected in two HinfI-digested fragments. Formation of different heteroduplex patterns in experimental mixtures of digested amplification products from brown trout and Atlantic salmon, Salmo salar L., allowed us to determine the genotype of the brown trout. Polymorphism was observed in four out of six studied populations.

  8. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    Science.gov (United States)

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  9. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    Science.gov (United States)

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  10. Growth Hormone Deficiency in a Child with Neurofibromatosis-Noonan Syndrome.

    Science.gov (United States)

    Vurallı, Doğuş; Gönç, Nazlı; Vidaud, Dominique; Özön, Alev; Alikaşifoğlu, Ayfer; Kandemir, Nurgün

    2016-03-05

    Neurofibromatosis-Noonan syndrome (NFNS) is a distinct entity which shows the features of both NF1 (neurofibromatosis 1) and Noonan syndrome (NS). While growth hormone deficiency (GHD) has been relatively frequently identified in NF1 and NS patients, there is limited experience in NFNS cases. The literature includes only one case report of a NFNS patient having GHD and that report primarily focuses on the dermatological lesions that accompany the syndrome and not on growth hormone (GH) treatment. Here, we present a 13-year-old girl who had clinical features of NFNS with a mutation in the NF1 gene. The case is the first NFNS patient reported in the literature who was diagnosed to have GHD and who received GH treatment until reaching final height. The findings in this patient show that short stature is a feature of NFNS and can be caused by GHD. Patients with NFNS who show poor growth should be evaluated for GHD.

  11. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations

    DEFF Research Database (Denmark)

    Christiansen, Jens Sandahl; Backeljauw, Philippe F; Bidlingmaier, Martin

    2016-01-01

    OBJECTIVE: The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). PARTICIPANTS: A closed meeting of 55 international scientists with expertise in GH, including...... and revised in an open forum on the concluding day. This was edited further and then circulated to attendees from academic institutions for review after the meeting. Participants from pharmaceutical companies did not participate in the planning, writing, or in the discussions and text revision on the final...

  12. The origin of the p.E180 growth hormone receptor gene mutation.

    Science.gov (United States)

    Ostrer, Harry

    2016-06-01

    Laron syndrome, an autosomal recessive condition of extreme short stature, is caused by the absence or dysfunction of the growth hormone receptor. A recurrent mutation in the GHR gene, p.E180, did not alter the encoded amino acid, but activated a cryptic splice acceptor resulting in a receptor protein with an 8-amino acid deletion in the extracellular domain. This mutation has been observed among Sephardic Jews and among individuals in Ecuador, Brazil and Chile, most notably in a large genetic isolate in Loja, Ecuador. A common origin has been postulated based on a shared genetic background of markers flanking this mutation, suggesting that the Lojanos (and others) may have Sephardic (Converso) Jewish ancestry. Analysis of the population structure of Lojanos based on genome-wide analysis demonstrated European, Sephardic Jewish and Native American ancestry in this group. X-autosomal comparison and monoallelic Y chromosomal and mitochondrial genetic analysis demonstrated gender-biased admixture between Native American women and European and Sephardic Jewish men. These findings are compatible with the co-occurrence of the Inquisition and the colonization of the Americas, including Converso Jews escaping the Inquisition in the Iberian Peninsula. Although not found among Lojanos, Converso Jews also brought founder mutations to contemporary Hispanic and Latino populations in the BRCA1 (c.68_69delAG) and BLM (c.2207_2212delATCTGAinsTAGATTC) genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Gitelman syndrome combined with complete growth hormone deficiency

    Directory of Open Access Journals (Sweden)

    Se Ra Min

    2013-03-01

    Full Text Available Gitelman syndrome is a rare autosomal recessive hereditary salt-losing tubulopathy, that manifests as hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. It is caused by mutations in the solute carrier family 12(sodium/chloride transporters, member 3 (SLC12A3 gene encoding the thiazide-sensitive sodium chloride cotransporter channel (NCCT in the distal convoluted tubule of the kidney. It is associated with muscle weakness, cramps, tetany, vomiting, diarrhea, abdominal pain, and growth retardation. The incidence of growth retardation, the exact cause of which is unknown, is lower than that of Bartter syndrome. Herein, we discuss the case of an overweight 12.9-year-old girl of short stature presenting with hypokalemic metabolic alkalosis. The patient, on the basis of detection of a heterozygous mutation in the SLC12A3 gene and poor growth hormone (GH responses in two provocative tests, was diagnosed with Gitelman syndrome combined with complete GH deficiency. GH treatment accompanied by magnesium oxide and potassium replacement was associated with a good clinical response.

  14. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore Cattle Are Modulators of Growth.

    Directory of Open Access Journals (Sweden)

    Anirene G T Pereira

    Full Text Available Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS, were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1 as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1, IGF2 (insulin like growth factor 2, GH1 (growth hormone 1, IGF1R (insulin like growth factor 1 receptor and GHR (growth hormone receptor, suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.

  15. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori.

    Science.gov (United States)

    Zhang, Zhongjie; Liu, Xiaojing; Shiotsuki, Takahiro; Wang, Zhisheng; Xu, Xia; Huang, Yongping; Li, Muwang; Li, Kai; Tan, Anjiang

    2017-02-01

    Two major hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulate insect growth and development according to their precisely coordinated titres, which are controlled by both biosynthesis and degradation pathways. Juvenile hormone esterase (JHE) is the primary JH-specific degradation enzyme that plays a key role in regulating JH titers, along with JH epoxide hydrolase (JHEH) and JH diol kinase (JHDK). In the current study, a loss-of-function analysis of JHE in the silkworm, Bombyx mori, was performed by targeted gene disruption using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system. Depletion of B. mori JHE (BmJHE) resulted in the extension of larval stages, especially the penultimate and ultimate larval stages, without deleterious effects to silkworm physiology. The expression of JHEH and JHDK was upregulated in mutant animals, indicating the existence of complementary routes in the JH metabolism pathway in which inactivation of one enzyme will activate other enzymes. RNA-Seq analysis of mutant animals revealed that genes involved in protein processing in the endoplasmic reticulum and in amino acid metabolism were affected by BmJHE depletion. Depletion of JHE and subsequent delayed JH metabolism activated genes in the TOR pathway, which are ultimately responsible for extending larval growth. The transgenic Cas9 system used in the current study provides a promising approach for analysing the actions of JH, especially in nondrosophilid insects. Furthermore, prolonging larval stages produced larger larvae and cocoons, which is greatly beneficial to silk production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Growth hormone deficiency in a Nigerian child with Turner's syndrome

    African Journals Online (AJOL)

    IRORO YARHERE

    Growth hormone treatment early in the course of management of a child with Turner syndrome may help achieve normal final height. Keywords: Turner's syndrome, short stature, growth hormone deficiency, growth hormone ..... cognitive deficit.

  17. GSHR, a Web-Based Platform Provides Gene Set-Level Analyses of Hormone Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaojuan Ran

    2018-01-01

    Full Text Available Phytohormones regulate diverse aspects of plant growth and environmental responses. Recent high-throughput technologies have promoted a more comprehensive profiling of genes regulated by different hormones. However, these omics data generally result in large gene lists that make it challenging to interpret the data and extract insights into biological significance. With the rapid accumulation of theses large-scale experiments, especially the transcriptomic data available in public databases, a means of using this information to explore the transcriptional networks is needed. Different platforms have different architectures and designs, and even similar studies using the same platform may obtain data with large variances because of the highly dynamic and flexible effects of plant hormones; this makes it difficult to make comparisons across different studies and platforms. Here, we present a web server providing gene set-level analyses of Arabidopsis thaliana hormone responses. GSHR collected 333 RNA-seq and 1,205 microarray datasets from the Gene Expression Omnibus, characterizing transcriptomic changes in Arabidopsis in response to phytohormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonic acid, salicylic acid, and strigolactones. These data were further processed and organized into 1,368 gene sets regulated by different hormones or hormone-related factors. By comparing input gene lists to these gene sets, GSHR helped to identify gene sets from the input gene list regulated by different phytohormones or related factors. Together, GSHR links prior information regarding transcriptomic changes induced by hormones and related factors to newly generated data and facilities cross-study and cross-platform comparisons; this helps facilitate the mining of biologically significant information from large-scale datasets. The GSHR is freely available at http://bioinfo.sibs.ac.cn/GSHR/.

  18. Response of Indian growth hormone deficient children to growth hormone therapy: association with pituitary size.

    Science.gov (United States)

    Khadilkar, Vaman V; Prasad, Hemchand Krishna; Ekbote, Veena H; Rustagi, Vaishakhi T; Singh, Joshita; Chiplonkar, Shashi A; Khadilkar, Anuradha V

    2015-05-01

    To ascertain the impact of pituitary size as judged by Magnetic Resonance Imaging (MRI), on response to Growth Hormone (GH) therapy in GH deficient children. Thirty nine children (9.1 ± 2.7 y, 22 boys) with non-acquired GH deficiency (21 Isolated GH deficiency and 18 Combined pituitary hormone deficiency) were consecutively recruited and followed up for one year. Clinical, radiological (bone age and MRI) and biochemical parameters were studied. Children with hypoplastic pituitary (pituitary height deficit (height for age Z-score -6.0 vs. -5.0) and retardation of skeletal maturation (bone age chronological age ratio of 0.59 vs. 0.48) at baseline as compared to children with normal pituitary heights (p growth hormone deficient children with hypoplastic pituitary respond better to therapy with GH in short term.

  19. Growth Hormone Therapy in Adults with Prader-Willi Syndrome

    Directory of Open Access Journals (Sweden)

    Karen S. Vogt

    2015-04-01

    Full Text Available Prader-Willi syndrome (PWS is characterized by hyperphagia, obesity if food intake is not strictly controlled, abnormal body composition with decreased lean body mass and increased fat mass, decreased basal metabolic rate, short stature, low muscle tone, cognitive disability, and hypogonadism. In addition to improvements in linear growth, the benefits of growth hormone therapy on body composition and motor function in children with PWS are well established. Evidence is now emerging on the benefits of growth hormone therapy in adults with PWS. This review summarizes the current literature on growth hormone status and the use of growth hormone therapy in adults with PWS. The benefits of growth hormone therapy on body composition, muscle strength, exercise capacity, certain measures of sleep-disordered breathing, metabolic parameters, quality of life, and cognition are covered in detail along with potential adverse effects and guidelines for initiating and monitoring therapy.

  20. Growth hormone deficiency in cleft lip and palate patients

    Directory of Open Access Journals (Sweden)

    Shahin AbdollahiFakhim

    2015-11-01

    Full Text Available Introduction: Failure to thrive (FTT is relatively common among cleft patients, most commonly attributed to feeding problems during the first months of life. Close association between midline clefts and pituitary gland abnormalities prompted us to determine the frequency of growth hormone deficiency in cleft patients, which is easily treated. Methods: Any cleft patient with FTT was studied and when the patient’s height was under the 3rd percentile of normal, growth hormone was checked after clonidine administration. Growth hormone was checked before and 30, 60 and 90 minutes after clonidine use. Results: Of 670 patients with cleft lip or palate, 31 patients (4% had some kind of growth retardation according to weight, height or head circumstance. Eighteen patients were under the 3rd percentile of normal height. Growth hormone deficiency was detected in 8 patients out of 18 patients and overall frequency of growth hormone deficiency among cleft patients with growth retardation was 25.8% (8 out of 31. Seven patients of 8 were male whereas one was female and half of the patients were syndromic. Conclusion: Cleft patients have many problems with normal feeding and all kind of support should be provided to achieve near-normal feeding and they should be monitored for normal growth. Any patient with growth retardation, especially height decrease, should be assessed for growth hormone deficiency.

  1. Growth Hormone-Releasing Hormone in Diabetes

    Directory of Open Access Journals (Sweden)

    Leonid Evsey Fridlyand

    2016-10-01

    Full Text Available Growth hormone-releasing hormone (GHRH is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR has been demonstrated in different peripheral tissues and cell types including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of Type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggesting that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications.

  2. Baraitser and Winter syndrome with growth hormone deficiency.

    Science.gov (United States)

    Chentli, Farida; Zellagui, Hadjer

    2014-01-01

    Baraitser-Winter syndrome (BWS), first reported in 1988, is apparently due to genetic abnormalities that are still not well-defined, although many gene abnormalities are already discovered and de novo missense changes in the cytoplasmic actin-encoding genes (called ACTB and ACTG1) have been recently discovered. The syndrome combines facial and cerebral malformations. Facial malformations totally or partially present in the same patient are: Iris coloboma, bilateral ptosis, hypertelorism, broad nasal bridge, and prominent epicanthic folds. The various brain malformations are probably responsible for growth and mental retardation. To the best of our knowledge, the syndrome is very rare as few cases have been reported so far. Our aim was to describe a child with a phenotype that looks like BWS with proved partial growth hormone (GH) deficiency which was not reported before. A girl aged 7-year-old of consanguineous parents was referred for short stature and mental retardation. Clinical examination showed dwarfism and a delay in her mental development. Other clinical features included: Strabismus, epicanthic folds, broad nasal bridge, and brain anomalies such as lissencephaly, bilateral hygroma, and cerebral atrophy. Hormonal assessment showed partial GH deficiency without other endocrine disorders. Our case looks exactly like BWS. However, apart from facial and cerebral abnormalities, there is a partial GH deficiency which can explain the harmonious short stature. This case seems worth to be reported as it adds GH deficiency to the very rare syndrome.

  3. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    Science.gov (United States)

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  4. Sweat secretion rates in growth hormone disorders

    DEFF Research Database (Denmark)

    Sneppen, S B; Main, K M; Juul, A

    2000-01-01

    While increased sweating is a prominent symptom in patients with active acromegaly, reduced sweating is gaining status as part of the growth hormone deficiency (GHD) syndrome.......While increased sweating is a prominent symptom in patients with active acromegaly, reduced sweating is gaining status as part of the growth hormone deficiency (GHD) syndrome....

  5. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens.

    Science.gov (United States)

    Lin, Shumao; Li, Hongmei; Mu, Heping; Luo, Wen; Li, Ying; Jia, Xinzheng; Wang, Sibing; Jia, Xiaolu; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2012-07-10

    A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3' untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. There is a critical miRNA, let-7b

  6. The effect of short-term cortisol changes on growth hormone responses to the pyridostigmine-growth-hormone-releasing-hormone test in healthy adults and patients with suspected growth hormone deficiency

    DEFF Research Database (Denmark)

    Andersen, M; Støving, R K; Hangaard, J

    1998-01-01

    BACKGROUND AND AIMS: The interaction between cortisol and growth hormone (GH)-levels may significantly influence GH-responses to a stimulation test. In order to systematically analyse the interaction in a paired design, it is necessary to use a test, which has been proven safe and reliable...... such as the pyridostigmine-growth-hormone-releasing-hormone (PD-GHRH) test. Three groups of subjects with a different GH-secretory capacity were included. STUDY A: Eight healthy adults were tested seven times, once with placebo throughout the examination and six times with the PD-GHRH test following no glucocorticoid......-responses to a PD-GHRH test were reduced in all individuals during acute stress-appropriate cortisol levels and the percentage reduction in GH-levels was independent of the GH-secretory capacity. Clinically, we found that peak GH-responses were not significantly affected by a short break in conventional HC therapy...

  7. Growth arrest despite growth hormone replacement, post-craniopharyngioma surgery.

    Science.gov (United States)

    DeVile, C J; Hayward, R D; Neville, B G; Grant, D B; Stanhope, R

    1995-01-01

    Children with growth failure, whether secondary to an endocrinopathy such as growth hormone deficiency or secondary to neurological handicap with poor nutrient intake, grow at a subnormal rate but it is most unusual for a child to have complete growth arrest. PMID:7745571

  8. Development of a quantitative competitive reverse transcriptase polymerase chain reaction for the quantification of growth hormone gene expression in pigs

    Directory of Open Access Journals (Sweden)

    Maurício Machaim Franco

    2003-01-01

    Full Text Available After the advent of the genome projects, followed by the discovery of DNA polymorphisms, basic understanding of gene expression is the next focus to explain the association between polymorphisms and the level of gene expression, as well as to demonstrate the interaction among genes. Among the various techniques for the investigation of transcriptional profiling involving patterns of gene expression, quantitative PCR is the simplest analytical laboratory technique. The objective of this work was to analyze two strategies of a competitive PCR technique for the quantification of the pig growth hormone (GH gene expression. A pair of primers was designed targeting exons 3 and 5, and two competitive PCR strategies were performed, one utilizing a specific amplicon as a competitor, and the other utilizing a low-stringency PCR amplicon as a competitor. The latter strategy proved to be easier and more efficient, offering an accessible tool that can be used in any kind of competitive reaction, facilitating the study of gene expression patterns for both genetics and diagnostics of infectious diseases.

  9. Molecular genetics of growth hormone deficient children: correlation with auxology and response to first year of growth hormone therapy.

    Science.gov (United States)

    Khadilkar, Vaman; Phadke, Nikhil; Khatod, Kavita; Ekbote, Veena; Gupte, Supriya Phanse; Nadar, Ruchi; Khadilkar, Anuradha

    2017-05-24

    With the paucity of available literature correlating genetic mutation and response to treatment, we aimed to study the genetic makeup of children with growth hormone (GH) deficiency in Western India and correlate the mutation with auxology and response to GH treatment at end of 1 year. Fifty-three (31 boys and 22 girls) children with severe short stature (height for age z-score imaging (MRI) brain scan was done in all. Genetic mutations were tested for in GH1, GHRH, LHX3, LHX4 and PROP1, POU1F1 and HESX1 genes. Mean age at presentation was 9.7±5.1 years. Thirty-seven children (Group A) had no genetic mutation detected. Six children (Group B) had mutations in the GH releasing hormone receptor (GHRHR) gene, while eight children (Group C) had mutation in the GH1 gene. In two children, one each had a mutation in PROP1 and LHX3. There was no statistically significant difference in baseline height, weight and BMI for age z-score and height velocity for age z-score (HVZ). HVZ was significantly lower, post 1 year GH treatment in the group with homozygous GH1 deletion than in children with no genetic defect. Response to GH at the end of 1 year was poor in children with the homozygous GH1 deletion as compared to those with GHRHR mutation or without a known mutation.

  10. Psychomotor retardation in a girl with complete growth hormone deficiency.

    Science.gov (United States)

    Dayal, Devi; Malhi, Prabhjot; Kumar Bhalla, Anil; Sachdeva, Naresh; Kumar, Rakesh

    2013-01-01

    Infants with complete growth hormone deficiency may suffer from psychomotor retardation in addition to severe growth failure. Without replacement therapy, they may have a compromised intellectual potential manifesting as learning disabilities and attention-deficit disorders in later life. In this communication, we discuss an infant who showed improvement in physical growth after growth hormone therapy but her psychomotor skills did not improve probably due to late start of treatment. There is a need to start growth hormone therapy as early as possible in infants with complete growth hormone deficiency to avoid adverse effects on psychomotor and brain development.

  11. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure.

    Science.gov (United States)

    Haffner, D; Schaefer, F; Nissel, R; Wühl, E; Tönshoff, B; Mehls, O

    2000-09-28

    Growth hormone treatment stimulates growth in short children with chronic renal failure. However, the extent to which this therapy increases final adult height is not known. We followed 38 initially prepubertal children with chronic renal failure treated with growth hormone for a mean of 5.3 years until they reached their final adult height. The mean (+/-SD) age at the start of treatment was 10.4+/-2.2 years, the mean bone age was 7.1+/-2.3 years, and the mean height was 3.1+/-1.2 SD below normal. Fifty matched children with chronic renal failure who were not treated with growth hormone served as controls. The children treated with growth hormone had sustained catch-up growth, whereas the control children had progressive growth failure. The mean final height of the growth hormone-treated children was 165 cm for boys and 156 cm for girls. The mean final adult height of the growth hormone-treated children was 1.6+/-1.2 SD below normal, which was 1.4 SD above their standardized height at base line (Pgrowth hormone-treated children, treatment was not associated with a shortening of the pubertal growth spurt. The total height gain was positively associated with the initial target-height deficit and the duration of growth hormone therapy and was negatively associated with the percentage of the observation period spent receiving dialysis treatment. Long-term growth hormone treatment of children with chronic renal failure induces persistent catch-up growth, and the majority of patients achieve normal adult height.

  12. Hormones and growth factors in the pathogenesis of spinal ligament ossification.

    Science.gov (United States)

    Li, Hai; Jiang, Lei-Sheng; Dai, Li-Yang

    2007-08-01

    Ossification of the spinal ligaments (OSL) is a pathologic condition that causes ectopic bone formation and subsequently results in various degrees of neurological deficit, but the etiology of OSL remains almost unknown. Some systemic hormones, such as 1,25-dihydroxyvitamin D, parathyroid hormone (PTH), insulin and leptin, and local growth factors, such as transforming growth factor-beta (TGF-beta), and bone morphogenetic protein (BMP), have been studied and are thought to be involved in the initiation and development of OSL. This review article summarizes these studies, delineates the possible mechanisms, and puts forward doubts and new questions. The related findings from studies of genes and target cells in the ligament of OSL are also discussed. Although these findings may be helpful in understanding the pathogenesis of OSL, much more research needs to be conducted in order to investigate the nature of OSL.

  13. Effects of growth hormone deficiency and recombinant growth hormone therapy on postprandial gallbladder motility and cholecystokinin release.

    NARCIS (Netherlands)

    Moschetta, A.; Twickler, M.; Rehfeld, J.F.; Ooteghem, N.A. van; Castro Cabezas, M.; Portincasa, P.; Berge-Henegouwen, G.P. van; Erpecum, K.J. van

    2004-01-01

    In addition to cholecystokinin, other hormones have been suggested to be involved in regulation of postprandial gallbladder contraction. We aimed to evaluate effects of growth hormone (GH) on gallbladder contractility and cholecystokinin release. Gallbladder and gastric emptying (by ultrasound) and

  14. Early growth and postprandial appetite regulatory hormone responses

    DEFF Research Database (Denmark)

    Perälä, Mia-Maria; Kajantie, Eero; Valsta, Liisa M

    2013-01-01

    Strong epidemiological evidence suggests that slow prenatal or postnatal growth is associated with an increased risk of CVD and other metabolic diseases. However, little is known whether early growth affects postprandial metabolism and, especially, the appetite regulatory hormone system. Therefore......, we investigated the impact of early growth on postprandial appetite regulatory hormone responses to two high-protein and two high-fat content meals. Healthy, 65-75-year-old volunteers from the Helsinki Birth Cohort Study were recruited; twelve with a slow increase in BMI during the first year of life......, early growth may have a role in programming appetite regulatory hormone secretion in later life. Slow early growth is also associated with higher postprandial insulin and TAG responses but not with incretin levels....

  15. Preliminary report: BGLIIA-BGLIIB haplotype of growth hormone cluster is associated with glucose intolerance in non-insulin-dependent diabetes mellitus and with growth hormone deficit in growth retardation.

    Science.gov (United States)

    Bottini, E; Lucarelli, P; Amante, A; Saccucci, P; Gloria-Bottini, F

    2002-01-01

    We studied 101 growth-retarded children from the population of Ancona (Italy). Plasma growth hormone (GH) levels at the end of insulin and clonidine tests were considered for classification of children into 3 categories according to severity of GH deficit: total deficit of GH (TD), partial deficit (PD, and familiar short stature (FSS; no deficit of GH). The BGLIIA*2/BGLIIB*1 haplotype of GH cluster that was previously found to be negatively associated with severe glucose intolerance in non-insulin-dependent diabetes mellitus (NIDDM) is negatively associated with GH deficit in growth-retarded children. The hypothesis that intrauterine growth retardation and glucose intolerance in adult life could be phenotypes of the same underlying genotype has been recently put forward. The present observation suggests that genes influencing both growth and glucose tolerance are encoded in the GH cluster. Copyright 2002 by W.B. Saunders Company

  16. Growth hormone effects on cortical bone dimensions in young adults with childhood-onset growth hormone deficiency

    DEFF Research Database (Denmark)

    Hyldstrup, L; Conway, G S; Racz, K

    2012-01-01

    Growth hormone (GH) treatment in young adults with childhood-onset GH deficiency has beneficial effects on bone mass. The present study shows that cortical bone dimensions also benefit from GH treatment, with endosteal expansion and increased cortical thickness leading to improved bone strength....... INTRODUCTION: In young adults with childhood-onset growth hormone deficiency (CO GHD), GH treatment after final height is reached has been shown to have beneficial effects on spine and hip bone mineral density. The objective of the study was to evaluate the influence of GH on cortical bone dimensions. METHODS...

  17. Homeorhetic hormones, metabolites and accelerated growth ...

    African Journals Online (AJOL)

    Blood samples were drawn from surgically implanted catheters in the caudal aorta and vena cava during normal growth, maintenance (zero) growth and accelerated growth.These samples were assayed for glucose, free fatty acids, glycerol, alanine, lysine, growth hormone, insulin and thyroxine. It was found that during the ...

  18. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  19. Human Growth Hormone (HGH): Does It Slow Aging?

    Science.gov (United States)

    Healthy Lifestyle Healthy aging Human growth hormone is described by some as the key to slowing the aging process. Before you sign up, get the ... slowdown has triggered an interest in using synthetic human growth hormone (HGH) as a way to stave ...

  20. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone

    International Nuclear Information System (INIS)

    Koenig, R.J.; Brent, G.A.; Warne, R.L.; Larsen, P.R.; Moore, D.D.

    1987-01-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. The authors have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. They show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor

  1. Silent pituitary macroadenoma co-secreting growth hormone and thyroid stimulating hormone.

    Science.gov (United States)

    Sen, Orhan; Ertorer, M Eda; Aydin, M Volkan; Erdogan, Bulent; Altinors, Nur; Zorludemir, Suzan; Guvener, Nilgun

    2005-04-01

    Silent pituitary adenomas are a group of tumors showing heterogenous morphological features with no hormonal function observed clinically. To date no explanation has been provided as to why these tumors remain "silent". We report a case of a silent macroadenoma with both growth hormone (GH) and thyroid stimulating hormone (TSH) staining and secretion but with no clinical manifestations, in particular, the absence of features of acromegaly or hyperthyroidism. The relevant literature is reviewed.

  2. Parents' views on growth hormone treatment for their children: psychosocial issues

    Directory of Open Access Journals (Sweden)

    van Dongen N

    2012-07-01

    Full Text Available Nadine van Dongen,1 Ad A Kaptein21Patient Intelligence Panel Health Ltd, London, United Kingdom; 2Section Medical Psychology, Leiden University Medical Centre, Leiden, The NetherlandsBackground: We evaluated the opinions of parents in The Netherlands concerning treatment of their children with growth hormone, and examined beliefs and perceptions about treatment and quality of health care communication and support.Methods: An Internet survey was completed by 69 parents who had children prescribed growth hormone and were part of the Patient Intelligence Panel. Acceptance of the diagnosis and treatment was investigated with reference to four topics, ie, search and quality of information, involvement in decision-making process, operational aspects, and emotional problems and support.Results: Among the parents surveyed, 48% reported a lack of freedom to choose the type of growth hormone device that best suited their needs, 92% believed that their children (and they themselves would benefit if the children self-administered growth hormone, and 65% believed training to support self-administration would be helpful. According to 79%, the availability of support from another parent with experience of treating their own child with growth hormone, alongside their doctor, would be valuable. Thirty-seven percent of the parents indicated that their children felt anxious about administration of growth hormone, and 83% of parents would appreciate psychological support to overcome their anxiety. An increase in reluctance to receive treatment with growth hormone was observed by 40% of parents after the children reached puberty, and 57% of these parents would appreciate psychological support to overcome this reluctance.Conclusion: Understanding how growth hormone treatments and their implications are perceived by parents is a first step towards addressing quality of growth hormone treatment, which may be instrumental in improving adherence. The data show a need for

  3. EXPRESSION OF GROWTH HORMONE (PhGH GENE AND ANALYSIS OF INSULINE-LIKE GROWTH FACTOR I (IGF-I PRODUCTION IN AFRICAN CATFISH (Clarias gariepinus TRANSGENIC F-1

    Directory of Open Access Journals (Sweden)

    Huria Marnis

    2013-12-01

    Full Text Available We have previously produced F-1 transgenic of African catfish from crosses between founder transgenic female and non transgenic male. The aim of this study was to evaluate distribution and expression PhGH growth hormone gene transgenic African catfish organs and to measure the concentration of IGF-I in plasma. Transgene was detected using the PCR method in various organs, namely pituitary, brain, liver, heart, spleen, kidney, intestine, stomach, muscle, gill, and eye. Transgene expression levels were analyzed using the method of quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR. Plasma samples were analyzed for Insuline-like Growth Factor (IGF-I using Enzyme Linked Immunosorbent Assay (ELISA method. The results showed that the PhGH was detected and expressed in all organs of the transgenic African catfish (F-1. Liver exhibited the highest level of PhGH mRNA (23 x 106 copies. The plasma IGF-I levels in transgenic individuals were not significant than non transgenic. The higher level of exogenous PhGH gene expression may not represent the production of IGF-1.

  4. The Growth Hormone Receptor Gene-Disrupted (GHR-KO) Mouse Fails to Respond to an Intermittent Fasting (IF) Diet

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S.; Rocha, Juliana S.; Bartke, Andrzej

    2009-01-01

    SUMMARY The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long-lived; and this longevity is not responsive to 30% caloric restriction (CR), in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction (DR), we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting (IF) diet. The IF diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction we postulate that GHR-KO mice would be resistant to any manner of DR; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan-extending potential of an intervention. PMID:19747233

  5. Growth hormone positive effects on craniofacial complex in Turner syndrome.

    Science.gov (United States)

    Juloski, Jovana; Dumančić, Jelena; Šćepan, Ivana; Lauc, Tomislav; Milašin, Jelena; Kaić, Zvonimir; Dumić, Miroslav; Babić, Marko

    2016-11-01

    Turner syndrome occurs in phenotypic females with complete or partial absence of X chromosome. The leading symptom is short stature, while numerous but mild stigmata manifest in the craniofacial region. These patients are commonly treated with growth hormone to improve their final height. The aim of this study was to assess the influence of long-term growth hormone therapy on craniofacial morphology in Turner syndrome patients. In this cross-sectional study cephalometric analysis was performed on 13 lateral cephalograms of patients with 45,X karyotype and the average age of 17.3 years, who have received growth hormone for at least two years. The control group consisted of 13 Turner syndrome patients naive to growth hormone treatment, matched to study group by age and karyotype. Sixteen linear and angular measurements were obtained from standard lateral cephalograms. Standard deviation scores were calculated in order to evaluate influence of growth hormone therapy on craniofacial components. In Turner syndrome patients treated with growth hormone most of linear measurements were significantly larger compared to untreated patients. Growth hormone therapy mainly influenced posterior face height, mandibular ramus height, total mandibular length, anterior face height and maxillary length. While the increase in linear measurements was evident, angular measurements and facial height ratio did not show statistically significant difference. Acromegalic features were not found. Long-term growth hormone therapy has positive influence on craniofacial development in Turner syndrome patients, with the greatest impact on posterior facial height and mandibular ramus. However, it could not compensate X chromosome deficiency and normalize craniofacial features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency.

    Science.gov (United States)

    Vilboux, Thierry; Malicdan, May Christine V; Roney, Joseph C; Cullinane, Andrew R; Stephen, Joshi; Yildirimli, Deniz; Bryant, Joy; Fischer, Roxanne; Vemulapalli, Meghana; Mullikin, James C; Steinbach, Peter J; Gahl, William A; Gunay-Aygun, Meral

    2017-03-01

    Joubert syndrome is a ciliopathy characterized by a specific constellation of central nervous system malformations that result in the pathognomonic "molar tooth sign" on imaging. More than 27 genes are associated with Joubert syndrome, but some patients do not have mutations in any of these genes. Celsr1, Celsr2, and Celsr3 are the mammalian orthologues of the drosophila planar cell polarity protein, flamingo; they play important roles in neural development, including axon guidance, neuronal migration, and cilium polarity. Here, we report bi-allelic mutations in CELSR2 in a Joubert patient with cortical heterotopia, microophthalmia, and growth hormone deficiency. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori.

    Science.gov (United States)

    Shi, Guofang; Zhan, Pengfei; Jin, Weiming; Fei, JianMing; Zhao, Lihua

    2017-08-01

    Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO 2 NP) caused a significant increase of body size. TiO 2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO 2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis. © 2017 Wiley Periodicals, Inc.

  8. Neuroprotective Actions of Ghrelin and Growth Hormone Secretagogues

    Science.gov (United States)

    Frago, Laura M.; Baquedano, Eva; Argente, Jesús; Chowen, Julie A.

    2011-01-01

    The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved. PMID:21994488

  9. An 8bp indel in exon 1 of Ghrelin gene associated with chicken growth.

    Science.gov (United States)

    Fang, Meixia; Nie, Qinghua; Luo, Chenglong; Zhang, Dexiang; Zhang, Xiquan

    2007-04-01

    Ghrelin, acts as the endogenous ligand for growth hormone secretagogues receptor (GHS-R), is a novel growth hormone (GH) releasing peptide with reported effects on food intake in chickens. In this study, an 8 bp indel polymorphism in exon 1 of the chicken Ghrelin (cGHRL) gene was genotyped in a F(2) designed full-sib population to analyze its associations with chicken growth and carcass traits. Later, mRNA level in the proventriculus was determined by real-time PCR to reveal the expression feature of cGHRL gene. Result showed that this 8 bp indel was significantly associated with body weight at the age of 28 days (BW28) and 56 days (BW56), eviscerated weight (EW) and leg muscle weight (LMW) (PGhrelin on chicken growth were indicated by this study.

  10. Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone.

    Science.gov (United States)

    Armario, A; Montero, J L; Jolin, T

    1987-01-01

    Adult male Sprague-Dawley rats were subjected to food restriction so that they ate 65% of food ingested by control rats. While control rats had free access to food over the 24-hour period, food-restricted rats were provided with food daily at 10 a.m. The experimental period lasted for 34 days. On day 35, rats from both experimental groups were killed at 08.00, 11.00, 14.00, 24.00 and 02.00 h. Food restriction modified the circadian rhythms of ACTH and corticosterone. In addition, total circulating corticosterone throughout the day was higher in food-restricted than in control rats. In contrast, food restriction resulted in depressed secretion of thyroid-stimulating hormone and growth hormone. The results indicate that time of food availability entrained circadian corticosterone rhythm but not thyroid-stimulating hormone and growth hormone rhythms.

  11. Effects of Growth Hormone on Bone.

    Science.gov (United States)

    Tritos, Nicholas A; Klibanski, Anne

    2016-01-01

    Describe the effects of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) on the skeleton. The GH and IGF-1 axis has pleiotropic effects on the skeleton throughout the lifespan by influencing bone formation and resorption. GH deficiency leads to decreased bone turnover, delayed statural growth in children, low bone mass, and increased fracture risk in adults. GH replacement improves adult stature in GH deficient children, increases bone mineral density (BMD) in adults, and helps to optimize peak bone acquisition in patients, during the transition from adolescence to adulthood, who have persistent GH deficiency. Observational studies suggest that GH replacement may mitigate the excessive fracture risk associated with GH deficiency. Acromegaly, a state of GH and IGF-1 excess, is associated with increased bone turnover and decreased BMD in the lumbar spine observed in some studies, particularly in patients with hypogonadism. In addition, patients with acromegaly appear to be at an increased risk of morphometric-vertebral fractures, especially in the presence of active disease or concurrent hypogonadism. GH therapy also has beneficial effects on statural growth in several conditions characterized by GH insensitivity, including chronic renal failure, Turner syndrome, Prader-Willi syndrome, postnatal growth delay in patients with intrauterine growth retardation who do not demonstrate catchup growth, idiopathic short stature, short stature homeobox-containing (SHOX) gene mutations, and Noonan syndrome. GH and IGF-1 have important roles in skeletal physiology, and GH has an important therapeutic role in both GH deficiency and insensitivity states. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Growth without growth hormone in combined pituitary hormone deficiency caused by pituitary stalk interruption syndrome

    Directory of Open Access Journals (Sweden)

    Sang Soo Lee

    2017-03-01

    Full Text Available Growth hormone (GH is an essential element for normal growth. However, reports of normal growth without GH have been made in patients who have undergone brain surgery for craniopharyngioma. Normal growth without GH can be explained by hyperinsulinemia, hyperprolactinemia, elevated leptin levels, and GH variants; however, its exact mechanism has not been elucidated yet. We diagnosed a female patient aged 13 with combined pituitary hormone deficiency (CPHD caused by pituitary stalk interruption syndrome (PSIS. The patient has experienced recurrent hypoglycemic seizures since birth, but reached the height of 160 cm at the age of 13, showing normal growth. She grew another 8 cm for 3 years after the diagnosis, and she reached her final adult height of 168 cm which was greater than the midparental height, at the age of 16. The patient's blood GH and insulin-like growth factor-I levels were consistently subnormal, although her insulin levels were normal. Her physical examination conducted at the age of 15 showed truncal obesity, dyslipidemia, and osteoporosis, which are metabolic features of GH deficiency (GHD. Herein, we report a case in which a PSIS-induced CPHD patient attained her final height above mid parental height despite a severe GHD.

  13. MRI findings of complete growth hormone deficiency

    International Nuclear Information System (INIS)

    Ichiba, Yozo

    1995-01-01

    Magnetic resonance (MR) imaging was performed on the pituitary gland of 20 children (age range, 2-11 years) with short stature due to growth hormone deficiency. Sixteen patients with multiple pituitary hormone deficiency showed disappearance of the pituitary stalk, disappearance of high signal area of the posterior pituitary, presence of ectopic pituitary, and decreased volume of the anterior pituitary. Many of them had a history of perinatal abnormalities such as asphyxia at delivery, breech delivery, and bradytocia. On the contrary, patients with isolated growth hormone deficiency presented no abnormal findings on MR images, and had no history of perinatal abnormalities. The findings of pituitary stalk separation syndrome suggested the presence of multiple hypopituitarism. (S.Y.)

  14. MRI findings of complete growth hormone deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ichiba, Yozo [National Hospital of Okayama (Japan)

    1995-10-01

    Magnetic resonance (MR) imaging was performed on the pituitary gland of 20 children (age range, 2-11 years) with short stature due to growth hormone deficiency. Sixteen patients with multiple pituitary hormone deficiency showed disappearance of the pituitary stalk, disappearance of high signal area of the posterior pituitary, presence of ectopic pituitary, and decreased volume of the anterior pituitary. Many of them had a history of perinatal abnormalities such as asphyxia at delivery, breech delivery, and bradytocia. On the contrary, patients with isolated growth hormone deficiency presented no abnormal findings on MR images, and had no history of perinatal abnormalities. The findings of pituitary stalk separation syndrome suggested the presence of multiple hypopituitarism. (S.Y.).

  15. A controlled study on serum insulin-like growth factor-I and urinary excretion of growth hormone in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, S; Main, K; Danneskiold-Samsøe, B

    1995-01-01

    It has been hypothesized that secretory deficiencies of growth hormone may play a pathophysiological role in fibromyalgia (FM). Our objective was thus to evaluate the secretion of growth hormone in FM.......It has been hypothesized that secretory deficiencies of growth hormone may play a pathophysiological role in fibromyalgia (FM). Our objective was thus to evaluate the secretion of growth hormone in FM....

  16. Gene expression of placental hormones regulating energy balance in small for gestational age neonates.

    Science.gov (United States)

    Struwe, Ellen; Berzl, Gabriele M; Schild, Ralf L; Dötsch, Jörg

    2009-01-01

    Fetal growth restriction is associated with an increased risk for metabolic and cardiovascular disease in later life. To further elucidate mechanisms that might be involved in the process of prenatal programming, we measured the adipokines leptin, resistin, and adiponectin and the GH-releasing hormone ghrelin in the placenta of small for gestational age (SGA) neonates. The control group included 24 placentas of appropriate for gestational age (AGA) newborns, in the study group were 16 placentas of SGA neonates. Gene expression of leptin, resistin, adiponectin, and ghrelin was examined. For hormones showing alterations in gene regulation placental protein expression was measured by Western blot. Placental mRNA expression of leptin was significantly increased in SGA placentas (p=0.0035, related to beta-actin). Protein concentration was increased, as well. There were no differences in placental resistin, adiponectin, or ghrelin gene expressions between SGA neonates and controls. Leptin was the only hormone to demonstrate a significant inverse correlation with birth weight (r=-0.44, p=0.01). Adiponectin correlated significantly with leptin (r=0.53, p=0.0023) and ghrelin (r=0.50, p=0.0045). Placental leptin gene expression and protein concentration showed the expected increase in the SGA group. Leptin was inversely correlated with birth weight. Positive correlation of adiponectin with leptin and ghrelin expression suggests an interaction between these hormones in the placenta. However, the unchanged expression of resistin, adiponectin, and ghrelin in SGA placentas and the absence of correlation with birth weight cast doubt whether these hormones produced in the placenta play a key role in fetal programming.

  17. Do hormonal contraceptives stimulate growth of neurofibromas? A survey on 59 NF1 patients

    International Nuclear Information System (INIS)

    Lammert, Marge; Mautner, Victor-Felix; Kluwe, Lan

    2005-01-01

    Neurofibromas are benign tumors of the peripheral nerves and hallmark of neurofibromatosis type 1 (NF1), a tumor suppressor gene syndrome. Neurofibromas mostly start developing at puberty and can increase in size and number during pregnancy. Expression of progesterone receptors has been found in 75% of the tumors. Many female NF1 patients are thus concerned about the possibility that hormonal contraceptives may stimulate the growth of their neurofibromas. A survey was carried out on 59 female NF1 patients who are practicing or have practiced hormonal contraception to examine the effect of the various contraceptives on the growth of neurofibromas. Majority (53 out of 58) of patients who received oral estrogen-progestogen or pure progestogen preparations reported no associated tumor growth. In contrast, significant tumor growth was reported by two patients who received depot contraceptive containing high dose of synthetic progesterone. Oral contraceptives do not seem to stimulate the growth of neurofibromas in NF1 patients. High doses of progesterone might stimulate the growth of neurofibromas and deserve more caution

  18. Craniofacial morphology in Turner syndrome patients treated with growth hormone

    Directory of Open Access Journals (Sweden)

    Jovana Julsoki

    2015-05-01

    Full Text Available ABSTRACT Introduction: In addition to well-established physical characteristics, Turner syndrome patients have distinct craniofacial morphology. Since short stature is the most typical characteristic, Turner syndrome patients are commonly treated with growth hormone in order to increase final height. At the same time, growth hormone treatment was found to influence craniofacial growth and morphology in various groups of treated patients. Whereas craniofacial characteristics of Turner syndrome patients are well documented, comparatively little is known of craniofacial morphology of those who are treated with growth hormone. Aim: The aim of this study was to investigate craniofacial morphology in Turner syndrome patients treated with growth hormone in comparison to healthy females. Materials and methods: The cephalometric evaluation was conducted on twenty lateral cephalograms of Turner syndrome patients (13.53 ± 4.04 years treated with growth hormone for at least one year (4.94 ± 1.92 years in average. As a control group, forty lateral cephalograms of healthy female controls, who matched Turner syndrome patients by chronological (11.80 ± 2.37 years and skeletal age, were used. Eleven angular, seven linear measurements and six dimensional ratios were measured to describe craniofacial morphology. Results: The results obtained for angular measurements, in cephalometric analyses for Turner syndrome patients treated with growth hormone, revealed bimaxillary retrognathism. The linear measurements indicated longer mandibular ramus, anterior cranial base and both anterior and posterior facial heights. However, posterior cranial base and maxilla were in proportion to the anterior cranial base, when comparing dimensional ratios. Anterior cranial base, maxilla and mandibular ramus were larger in proportion to mandibular body; as well as posterior facial height was when compared to anterior facial height. Turner syndrome patients treated with growth

  19. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy; Estudos da expressao genica mediante utilizacao de queratinocitos humanos normais transduzidos com o gene do hormonio de crscimento humano. Possivel utilizacao em terapia genica

    Energy Technology Data Exchange (ETDEWEB)

    Mathor, Monica Beatriz

    1994-12-31

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10{sup 6} cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10{sup 6} cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 {mu}M Zn{sup +2} for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs.

  20. Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice*

    Science.gov (United States)

    Takarada, Takeshi; Kodama, Ayumi; Hotta, Shogo; Mieda, Michihiro; Shimba, Shigeki; Hinoi, Eiichi; Yoneda, Yukio

    2012-01-01

    We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression. PMID:22936800

  1. Debate: idiopathic short stature should be treated with growth hormone.

    Science.gov (United States)

    Ambler, Geoffrey R; Fairchild, Jan; Wilkinson, Dominic J C

    2013-03-01

    In this paper we outline the case for and against the treatment of idiopathic short stature with growth hormone. Drs Ambler and Fairchild argue that many of those with 'idiopathic' short stature are not 'short, normal children' and will ultimately receive molecular diagnoses. They also argue that there is a subset of children who suffer negative psychosocial consequences of their stature for whom growth hormone therapy is effective. Growth hormone has a very good safety record and is likely to be as cost-effective in idiopathic short-stature as in some other conditions that are currently funded. Dr Wilkinson counters that short stature is not associated with physical or psychological illness, and that there is no evidence that growth hormone improves psychological or physical wellbeing. Moreover, growth hormone for idiopathic short stature represents a form of enhancement rather than treatment, and is not a fair use of resources. Socially mediated disadvantage should be treated by attention to prejudice and not by hormone treatment. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  2. Hormonal regulation of wheat growth during hydroponic culture

    Science.gov (United States)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  3. Thyroxine modifies the effects of growth hormone in Ames dwarf mice.

    Science.gov (United States)

    Do, Andrew; Menon, Vinal; Zhi, Xu; Gesing, Adam; Wiesenborn, Denise S; Spong, Adam; Sun, Liou; Bartke, Andrzej; Masternak, Michal M

    2015-04-01

    Ames dwarf (df/df) mice lack growth hormone (GH), thyroid stimulating hormone and prolactin. Treatment of juvenile df/df mice with GH alone stimulates somatic growth, reduces insulin sensitivity and shortens lifespan. Early-life treatment with thyroxine (T4) alone produces modest growth stimulation but does not affect longevity. In this study, we examined the effects of treatment of juvenile Ames dwarf mice with a combination of GH + T4 and compared them to the effects of GH alone. Treatment of female and male dwarfs with GH + T4 between the ages of 2 and 8 weeks rescued somatic growth yet did not reduce lifespan to match normal controls, thus contrasting with the previously reported effects of GH alone. While the male dwarf GH + T4 treatment group had no significant effect on lifespan, the female dwarfs undergoing treatment showed a decrease in maximal longevity. Expression of genes related to GH and insulin signaling in the skeletal muscle and white adipose tissue (WAT) of female dwarfs was differentially affected by treatment with GH + T4 vs. GH alone. Differences in the effects of GH + T4 vs. GH alone on insulin target tissues may contribute to the differential effects of these treatments on longevity.

  4. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  5. Response to growth hormone therapy in adolescents with familial panhypopituitarism.

    Science.gov (United States)

    Kulshreshtha, B; Eunice, M; Ammini, A C

    2010-04-01

    Familial combined pituitary hormone deficiency is a rare endocrine disorder. We describe growth patterns of four children (3 females and 1 male) from two families with combined pituitary hormone deficiency. These children received growth hormone at ages ranging from 14.5 years to 19 years. While all the female siblings reached their target height, the male sibling was much shorter than mid parental height. The reasons for sexual dimorphism in growth patterns in these children are unclear.

  6. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    Science.gov (United States)

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  7. Plurihormonal pituitary adenoma immunoreactive for thyroid-stimulating hormone, growth hormone, follicle-stimulating hormone, and prolactin.

    Science.gov (United States)

    Luk, Cynthia T; Kovacs, Kalman; Rotondo, Fabio; Horvath, Eva; Cusimano, Michael; Booth, Gillian L

    2012-01-01

    To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.

  8. Diversification of the insulin-like growth factor 1 gene in mammals.

    Directory of Open Access Journals (Sweden)

    Peter Rotwein

    Full Text Available Insulin-like growth factor 1 (IGF1, a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  9. Preliminary studies of plasma growth hormone releasing activity during medical therapy of acromegaly

    International Nuclear Information System (INIS)

    Hagen, T.C.; Lawrence, A.M.; Kirsteins, L.

    1978-01-01

    The in vitro growth hormone releasing activity of plasma obtained from six acromegalic subjects was measured before and during therapy. In five subjects, plasmas were obtained before and during successful medical therapy with medroxyprogesterone acetate (MPA). The sixth subject was sampled before and after transphenoidal Sr 90 -induced hypopituitarism. All subjects had a decrement in fasting growth hormone levels with respective therapies (29-88%). The in vitro growth hormone released from Rhesus monkey anterior pituitaries was assessed after incubating one lateral half in control plasma (pre-therapy) and the contralateral pituitary half in plasma obtained during or after therapy. Studies with plasmas obtained from the five patients successfully treated with MPA showed a decrease in growth hormone releasing activity during therapy in all (18-57%). Plasma obtained after Sr 90 pituitary ablation in the sixth subject had 35% more growth hormone releasing activity than obtained before therapy. These results suggest that active acromegalics who respond to MPA with significantly lowered growth hormone levels may actually achieve this response because of a decrease in growth hormone releasing factor measured peripherally. The opposite response in one acromegalic subject, following Sr 90 pituitary ablation and hypopituitarism, suggests that growth hormone releasing factor secretion may increase when growth hormone levels are lowered by ablative therapy. (orig.) [de

  10. Amelioration of Hypophosphatemic Rickets and Osteoporosis With Pamidronate and Growth Hormone in Lowe Syndrome

    Directory of Open Access Journals (Sweden)

    Jia-Woei Hou

    2009-09-01

    Full Text Available The oculocerebrorenal syndrome of Lowe, an X-linked multisystem disorder, was diagnosed in a male patient who presented with typical abnormalities of the eyes, kidneys and nervous system. Besides congenital cataracts, renal tubular dysfunction and psychomotor retardation, the patient had also suffered from profound failure to thrive, growth hormone deficiency, severe osteoporosis with hypophosphatemic rickets, and progressive renal dysfunction since early childhood, which were attributed to the metabolic derangements following Fanconi syndrome. Direct sequencing of the OCRL1 gene (responsible for the oculocerebrorenal syndrome of Lowe revealed a de novo c.2282_2283insT in exon 20, which resulted in premature termination of translation (D762X. After monthly intravenous administration of pamidronate since the age of 17.8 years, his urine creatinine clearance and tubular resorption of phosphate increased slightly and bone mineral density was much improved (Z score increased from −7.3 to −3.3 without deterioration of renal function. Simultaneous growth hormone therapy enhanced the positive response. The beneficial osseous and renal effects of the bisphosphonate, along with growth hormone treatment in Lowe syndrome with hypophosphatemia, may be related to reduced renal calcium and phosphate excretion.

  11. A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products.

    Science.gov (United States)

    Hafsa, Ahmed Ben; Nabi, Nesrine; Zellama, Mohamed Salem; Said, Khaled; Chaouachi, Maher

    2016-01-01

    Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Acetylcholine Modulates the Hormones of the Growth Hormone/Insulinlike Growth Factor-1 Axis During Development in Mice.

    Science.gov (United States)

    Lecomte, Marie-José; Bertolus, Chloé; Ramanantsoa, Nélina; Saurini, Françoise; Callebert, Jacques; Sénamaud-Beaufort, Catherine; Ringot, Maud; Bourgeois, Thomas; Matrot, Boris; Collet, Corinne; Nardelli, Jeannette; Mallet, Jacques; Vodjdani, Guilan; Gallego, Jorge; Launay, Jean-Marie; Berrard, Sylvie

    2018-04-01

    Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.

  13. Study of goldfish (Carassius auratus) growth hormone structure-function relationship by domain swapping.

    Science.gov (United States)

    Chan, Y H; Cheng, C H K; Chan, K M

    2007-03-01

    Using goldfish as a model, the structure-function relationship of goldfish growth hormone was studied using the strategy of homologous domain swapping. Chimeric mutants were constructed by exchanging homologous regions between goldfish growth hormone (gfGH II) and goldfish prolactin (gfPRL) with their cloned complementary DNAs. Six mutants, with their domain-swapped, were generated to have different combinations of three target regions, including the helix a, helix d and the large section in between these helices (possess the helices b, c and other random coiled regions). After expression in E. coli and refolding, these mutants were characterized by using competitive receptor binding assay (RRA) and growth hormone responding promoter activation assay. The different activity profiles of mutants in Spi 2.1 gene promoter assays from that in RRA shows that, for gfGH, receptor binding dose not confer receptor signal activations. When either helices a or d of gfGH was maintained with other helices replaced by their gfPRL counterparts, both receptor binding and hence gene activation activities are reduced. In mutants with helices b and c in gfGH maintained, containing the gfGH middle section, and helices a and d swapped with gfPRL, the had reduced RRA activities but the promoter activation activities retained. In conclusion, as in the case of human GH, the gfGH molecule possesses two functional sites: one of them is composed of discontinuous epitopes located on the target regions of this study and is for receptor binding; another site is located on the middle section of the molecule that helices a and d are not involved, and it is for activation of GH receptor and intracellular signals.

  14. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    Science.gov (United States)

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  15. Favorable Growth Hormone Treatment Response in a Young Boy with Achondroplasia.

    Science.gov (United States)

    Krstevska-Konstantinova, Marina; Stamatova, Ana; Gucev, Zoran

    2016-04-01

    Achondroplasia is a skeletal dysplasia, the most common cause of rhizomelic dwarfism. This is a ten year old boy who was first diagnosed prenatally. He had a mutation c1138G>A in the gene FGFR3 in a heterozygotic constellation. His IGF1 and IGFBP3 levels were normal. Two stimulation tests for growth hormone were performed with values within the reference range. His psychomotor development was adequate for his age except for speech difficulty. He started with recombinant hGH (r-hGH) at the age of 3.4 years in a dose of 0.06 mg/kg. His mean Height SDS (HtSDS) was -2.2. The growth increased to 10 cm/year in the first year of therapy (HtSDS -1.1). It decreased during the second year to 4 cm (HtSDS -1.7) and again increased during the third year to 8 cm/year (HtSDS-1.3). In the next years the growth was constant (6.5, 2.3, 3.5 cm / year). He is still growing in the 3(rd) percentile of the growth curve (HtSDS - 1.2) under GH treatment. The body disproportion remained the same. The growth response on GH treatment was satisfactory in the first 4 years of treatment, and the boy still continued to grow. The young age at the start of treatment was also of importance. Our other patients with achondroplasia who started treatment older had a poor response to growth hormone.

  16. Overnight Levels of Luteinizing Hormone, Follicle-Stimulating Hormone and Growth Hormone before and during Gonadotropin-Releasing Hormone Analogue Treatment in Short Boys Born Small for Gestational Age

    NARCIS (Netherlands)

    van der Kaay, Danielle C. M.; de Jong, Frank H.; Rose, Susan R.; Odink, Roelof J. H.; Bakker-van Waarde, Willie M.; Sulkers, Eric J.; Hokken-Koelega, Anita C. S.

    2009-01-01

    Aims: To evaluate if 3 months of gonadotropin-releasing hormone analogue (GnRHa) treatment results in sufficient suppression of pubertal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) profile patterns in short pubertal small for gestational age (SGA) boys. To compare growth hormone

  17. A controlled study on serum insulin-like growth factor-I and urinary excretion of growth hormone in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, S; Main, K; Danneskiold-Samsøe, B

    1995-01-01

    OBJECTIVE. It has been hypothesized that secretory deficiencies of growth hormone may play a pathophysiological role in fibromyalgia (FM). Our objective was thus to evaluate the secretion of growth hormone in FM. METHODS. The 24-h urinary growth hormone excretion and serum levels of insulin...

  18. Growth hormone-secreting pituitary adenoma:clinical and MR imaging findings

    International Nuclear Information System (INIS)

    Park, Hong Suk; Chang, Kee Hyun; Han, Moon Hee; Sim, Jung Suk; Lee, Sang Hyun; Song, Jae Uoo; Yoo, In Kyu; Jung, Hee Won; Yeon, Kyung Mo

    1996-01-01

    To describe clinical and MRI findings of growth hormone-secreting pituitary adenoma, to determine if there are any characteristic MRI findings different from those of other pituitary adenomas, to evaluate the relationship between tumor size and serum growth hormone level, and to assess the results of immunohi-stochemical study. We retrospectively analysed clinical and MRI findings of 29 patients with growth hormone-secreting pituitary adenoma confirmed by serum growth hormone level and surgery. We also evaluated the relationship between the tumor volume and serum growth hormone level, and the results of immunohistochemical study. Coronal and sagittal T1-weighted MR images in all patients and gadolinium-enhanced T1-weighted MR images in 28 patients were obtained with 2.0 T(24 cases) and 0.5 T(5 cases) MR imagers. The images were analyzed in terms of tumor size, signal intensity, degree of contrast enhancement, extent of tumor growth and the presence or absence of cystic change, hemorrhage and calcification. Clinical manifestations included facial feature change and soft tissue swelling of hands and feet(n=29), headache(n=12), impaired visual acuity(n=9), symptoms of hyperprolactinemia(n=8), visual field defect(n=5), and others(n=6). On MR images, all of the 29 cases were seen to be macroadenomas and the size of the tumors averaged 2.2cm(1-5.2cm). Supra- and infrasellar extensions were seen in 21 and 22 patients, respectively. Cavernous sinus invasion was noted in seven, and in one this was bilateral. Signal intensity was isointense with cortical grey matter in 26 cases(90%). Cystic change or necrosis was seen in eight cases(28%), hemorrhage in four(14%), and calcification in two(7%). After enhancement, most(25/28) of the tumors enhanced less than normal pituitary in degree. There was no correlation between serum growth hormone level and tumor size. Immunohistochemical study showed positive growth hormone-secreting pituitary adenomas were various and included

  19. Growth hormone-secreting pituitary adenoma:clinical and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong Suk; Chang, Kee Hyun; Han, Moon Hee; Sim, Jung Suk; Lee, Sang Hyun; Song, Jae Uoo; Yoo, In Kyu; Jung, Hee Won; Yeon, Kyung Mo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-10-01

    To describe clinical and MRI findings of growth hormone-secreting pituitary adenoma, to determine if there are any characteristic MRI findings different from those of other pituitary adenomas, to evaluate the relationship between tumor size and serum growth hormone level, and to assess the results of immunohi-stochemical study. We retrospectively analysed clinical and MRI findings of 29 patients with growth hormone-secreting pituitary adenoma confirmed by serum growth hormone level and surgery. We also evaluated the relationship between the tumor volume and serum growth hormone level, and the results of immunohistochemical study. Coronal and sagittal T1-weighted MR images in all patients and gadolinium-enhanced T1-weighted MR images in 28 patients were obtained with 2.0 T(24 cases) and 0.5 T(5 cases) MR imagers. The images were analyzed in terms of tumor size, signal intensity, degree of contrast enhancement, extent of tumor growth and the presence or absence of cystic change, hemorrhage and calcification. Clinical manifestations included facial feature change and soft tissue swelling of hands and feet(n=29), headache(n=12), impaired visual acuity(n=9), symptoms of hyperprolactinemia(n=8), visual field defect(n=5), and others(n=6). On MR images, all of the 29 cases were seen to be macroadenomas and the size of the tumors averaged 2.2cm(1-5.2cm). Supra- and infrasellar extensions were seen in 21 and 22 patients, respectively. Cavernous sinus invasion was noted in seven, and in one this was bilateral. Signal intensity was isointense with cortical grey matter in 26 cases(90%). Cystic change or necrosis was seen in eight cases(28%), hemorrhage in four(14%), and calcification in two(7%). After enhancement, most(25/28) of the tumors enhanced less than normal pituitary in degree. There was no correlation between serum growth hormone level and tumor size. Immunohistochemical study showed positive growth hormone-secreting pituitary adenomas were various and included

  20. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro

    DEFF Research Database (Denmark)

    Billestrup, Nils; Swanson, L W; Vale, W

    1986-01-01

    The mitogenic effect of the hypothalamic peptides growth hormone-releasing factor (GRF) and somatostatin on cultured growth hormone (GH)-producing cells (somatotrophs) was studied. Using autoradiographic detection of [3H]thymidine uptake and immunocytochemical identification of GH-producing cells...

  1. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    Science.gov (United States)

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Evaluation of the hormonal state of columnar apple trees (Malus x domestica) based on high throughput gene expression studies.

    Science.gov (United States)

    Krost, Clemens; Petersen, Romina; Lokan, Stefanie; Brauksiepe, Bastienne; Braun, Peter; Schmidt, Erwin R

    2013-02-01

    The columnar phenotype of apple trees (Malus x domestica) is characterized by a compact growth habit with fruit spurs instead of lateral branches. These properties provide significant economic advantages by enabling high density plantings. The columnar growth results from the presence of a dominant allele of the gene Columnar (Co) located on chromosome 10 which can appear in a heterozygous (Co/co) or homozygous (Co/Co) state. Although two deep sequencing approaches could shed some light on the transcriptome of columnar shoot apical meristems (SAMs), the molecular mechanisms of columnar growth are not yet elaborated. Since the influence of phytohormones is believed to have a pivotal role in the establishment of the phenotype, we performed RNA-Seq experiments to study genes associated with hormone homeostasis and clearly affected by the presence of Co. Our results provide a molecular explanation for earlier findings on the hormonal state of columnar apple trees. Additionally, they allow hypotheses on how the columnar phenotype might develop. Furthermore, we show a statistically approved enrichment of differentially regulated genes on chromosome 10 in the course of validating RNA-Seq results using additional gene expression studies.

  3. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    International Nuclear Information System (INIS)

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-01-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation

  4. THE ROLE OF GROWTH HORMONE IN LIPID METABOLISM

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Dewi Ratnayanti

    2013-04-01

    Full Text Available Growth hormone (GH is one of the hormones that regulate metabolism, including lipid metabolism. GH can regulate the amount of fat in the tissue and also the level of lipid profile. Growth hormone affects the lipid in the tissue and blood by modulating the lipid metabolism, especially through the regulation of synthesis, excretion and breakdown of internal lipids. Research showed that GH could consistently lower the level of total cholesterol and LDL, whereas its effect on triglyceride and HDL level showed varying results. Growth hormone induces lypolisis by stimulating the activity of HSL and LPL and thereby influenced the triglyceride level and tissue fat storage. Cholesterol and lipoprotein levels are controlled by regulating the synthesis of cholesterol by lowering the activity of HMGCoA reductase. The excretion of cholesterol through the bile is also enhanced by stimulating the activity of enzymes C7?OH. The breakdown of VLDL and LDL are enhanced by increasing the expression of LDL receptor and ApoE as well as affecting the editing of mRNA ApoB100. Increase activity of LPL is also known to be the important factor in the HDL metabolism

  5. Effects of microgravity on growth hormone concentration and distribution in plants

    Science.gov (United States)

    Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Bandurski, Robert S.

    1989-01-01

    On earth, gravity affects the distribution of the plant growth hormone, indole-3-acetic acid (IAA), in a manner such that the plant grows into a normal vertical orientation (shoots up, roots down). How the plant controls the amount and distribution of IAA is only partially understood and is currently under investigation in this laboratory. The question to be answered in the flight experiment concerns the effect of gravity on the concentration, turn over, and distribution of the growth hormone. The answer to this question will aid in understanding the mechanism by which plants control the amount and distribution of growth hormone. Such knowledge of a plant's hormonal metabolism may aid in the growth of plants in space and will lead to agronomic advances.

  6. Bartter syndrome and growth hormone deficiency: three cases.

    Science.gov (United States)

    Buyukcelik, Mithat; Keskin, Mehmet; Kilic, Beltinge Demircioglu; Kor, Yilmaz; Balat, Ayse

    2012-11-01

    Bartter syndrome is a rare autosomal recessive disorder characterized by hypokalemia, salt loss, and metabolic alkalosis. Short stature is one of the clinical manifestations in these children. Although polyuria, polydipsia, hypokalemia, and salt loss may be responsible for growth retardation, the exact pathogenesis of short stature in Bartter syndrome is not known. In this study, we present three children diagnosed as having Bartter syndrome with short stature and growth hormone (GH) deficiency. After recombinant human growth hormone therapy (rhGH), their growth velocities were improved. These results indicate that GH deficiency may contribute to short stature in children with Bartter syndrome, and rhGH therapy would be an excellent adjunctive treatment for short children with this syndrome whose condition is resistant to conventional therapies in terms of growth.

  7. Age-related changes in Serum Growth Hormone, Insulin-like Growth Factor-1 and Somatostatin in System Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Malemud Charles J

    2004-10-01

    Full Text Available Abstract Background Systemic lupus erythematosus is an age- and gender-associated autoimmune disorder. Previous studies suggested that defects in the hypothalamic/pituitary axis contributed to systemic lupus erythematosus disease progression which could also involve growth hormone, insulin-like growth factor-1 and somatostatin function. This study was designed to compare basal serum growth hormone, insulin-like growth factor-1 and somatostatin levels in female systemic lupus erythematosus patients to a group of normal female subjects. Methods Basal serum growth hormone, insulin-like growth factor-1 and somatostatin levels were measured by standard radioimmunoassay. Results Serum growth hormone levels failed to correlate with age (r2 = 3.03 in the entire group of normal subjects (i.e. 20 – 80 years. In contrast, serum insulin-like growth factor-1 levels were inversely correlated with age (adjusted r2 = 0.092. Of note, serum growth hormone was positively correlated with age (adjusted r2 = 0.269 in the 20 – 46 year range which overlapped with the age range of patients in the systemic lupus erythematosus group. In that regard, serum growth hormone levels were not significantly higher compared to either the entire group of normal subjects (20 – 80 yrs or to normal subjects age-matched to the systemic lupus erythematosus patients. Serum insulin-like growth factor-1 levels were significantly elevated (p 55 yrs systemic lupus erythematosus patients. Conclusions These results indicated that systemic lupus erythematosus was not characterized by a modulation of the growth hormone/insulin-like growth factor-1 paracrine axis when serum samples from systemic lupus erythematosus patients were compared to age- matched normal female subjects. These results in systemic lupus erythematosus differ from those previously reported in other musculoskeletal disorders such as rheumatoid arthritis, osteoarthritis, fibromyalgia, diffuse idiopathic skeletal

  8. Continuation of growth hormone therapy versus placebo in transition-phase patients with growth hormone deficiency

    DEFF Research Database (Denmark)

    Jørgensen, Jens; Nørrelund, Helene; Vahl, Nina

    2002-01-01

    In a placebo-controlled, parallel study of 18 patients with a mean age of 20 years who had confirmed growth hormone (GH) deficiency, we evaluated body composition, insulin sensitivity, and glucose turnover at baseline (when all were receiving GH replacement); after 12 months of continued GH therapy...

  9. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  10. Severe short stature and Wolf-Hirschhorn syndrome: response to growth hormone in two cases without growth hormone deficiency.

    Science.gov (United States)

    Austin, Devon E; Gunn, Alistair J; Jefferies, Craig A

    2015-02-01

    Wolf-Hirschhorn syndrome (WHS) is a rare congenital disorder occurring in approximately 1/50 000 births, with marked pre- and postnatal growth failure. WHS results from the hemizygous deletion encompassing the 4p16.3 region. This report of two children with WHS shows that growth hormone treatment in selected children with WHS and severe short stature may have a substantial effect on long-term growth.

  11. Analysis of therapeutic growth hormone preparations: report of an interlaboratory collaborative study on growth hormone assay methodologies.

    Science.gov (United States)

    Bristow, A F; Jeffcoate, S L

    1992-09-01

    Recombinant DNA-derived human growth hormone (somatotropin) is widely used to treat growth hormone-deficient children. The potency of this product is determined by in-vivo bioassay in hypophysectomized rats, which is imprecise, costly and invasive, and there have been suggestions that it could safely be replaced with in-vitro or physico-chemical alternatives. In this report we present the results of a collaborative study designed to test this proposal. Somatotropin was modified by mild or severe proteolysis, mild or severe oxidation or treatment at high pH, and compared in a multi-centre collaborative study with unmodified somatotropin or with dimerized somatotropin. Participating laboratories included manufacturers and national control laboratories, and pharmacopoeial bioassays were compared with in-house in-vitro and physico-chemical bioassays. Although performing adequately with untreated somatotropin, for degraded samples the in-vivo bioassays were relatively unresponsive to changes in the growth hormone molecule. In contrast, the physico-chemical assays, in particular the reverse-phase HPLC, performed with a high degree of selectivity. We conclude that in the case of somatotropin, the in-vivo bioassay can be removed from the routine product specification with an acceptable degree of security. This however does not obviate the requirement rigorously to demonstrate biological activity in-vivo during product development, nor may the conclusions of this study be applied to other therapeutic recombinant proteins without similar collaborative investigations.

  12. Human growth hormone alters carbohydrate storage in blood and ...

    African Journals Online (AJOL)

    MJP

    2015-06-02

    Jun 2, 2015 ... is the key hormone to maintain the glucose ... homeostasis is tissue-specific.[3] ... Key words: Human growth hormone, blood glucose, hepatic glycogen, hypoglycaemia, ..... diabetic and glycogenolytic effect, which help.

  13. The effects of genetic polymorphism on treatment response of recombinant human growth hormone.

    Science.gov (United States)

    Chen, Shi; You, Hanxiao; Pan, Hui; Zhu, Huijuan; Yang, Hongbo; Gong, Fengying; Wang, Linjie; Jiang, Yu; Yan, Chengsheng

    2017-12-06

    Recombinant human growth hormone (rhGH) has been widely used in clinical treatment of growth hormone deficiency (GHD) or non GHD since 1985 and technology have achieved a great development in different long-acting formulations. Although the mathematical models for predicting the growth hormone response could help clinicians get to an individual personalized growth dose, many patients just can't reach the target height and the growth hormone responses differed.Genetic polymorphisms may play a role in the varies of individual responses in this treatment process.This article gives an overview of the genetic polymorphisms research of growth hormone in recent years, in order to give some potential suggestion and guide for the dose titration during treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. GROWTH HORMONE LEVEL EVOLUTION IN CHILDREN WITH HEPATOBILIARY DISEASES, UNDERGOING LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    O. P. Shevchenko

    2012-01-01

    Full Text Available End stage liver disease is often associated with growth retardation in children with congenital and hereditary diseases of hepatobiliary system. The aim was to investigate the serum growth hormone level before and after liver transplantation in 52 children with congenital and hereditary diseases of hepatobiliary system. Data of our research work revealed increased serum level of growth hormone in children with liver cirrhosis (3,32 ± 7,7 ng/ml vs. 1,16 ± 1,46 ng/ml in healthy children, p = 0,01, which correlates with PELD score (r = 0,62, p < 0,001. In a month after liver transplantation growth hormone concentration decreases (p < 0,001 and in a year after transplantation it doesn’t differ from healthy children. There wasn’t revealed any interaction between serum growth hormone level and anthropometric parameters before liver transplantation, but in a year after there was significant correlation between growth hormone concentration and height (r = 0,79, p = 0,01. Investigation of growth hormone level in children with liver cirrhosis and its evolution after liver transplantation is of interest as objective criterion of recovery of physical development regulation and as an additional parameter, which cor- relates with severity of end-stage liver disease. 

  15. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    International Nuclear Information System (INIS)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R.

    1990-01-01

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with [ 3 H]glycerol or [ 3 H]choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in [ 3 H]ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 [ 3 H])phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein

  16. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. (Universite de Nice-Sophia Antipolis (France))

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  17. Changes in serum concentrations of growth hormone, insulin, insulin-like growth factor and insulin-like growth factor-binding proteins 1 and 3 and urinary growth hormone excretion during the menstrual cycle

    DEFF Research Database (Denmark)

    Juul, A; Scheike, Thomas Harder; Pedersen, A T

    1997-01-01

    Few studies exist on the physiological changes in the concentrations of growth hormone (GH), insulin-like growth factors (IGF) and IGF-binding proteins (IGFBP) within the menstrual cycle, and some controversy remains. We therefore decided to study the impact of endogenous sex steroids on the GH......-IGF-IGFBP axis during the ovulatory menstrual cycle in 10 healthy women (aged 18-40 years). Blood sampling and urinary collection was performed every morning at 0800 h for 32 consecutive days. Every second day the subjects were fasted overnight before blood sampling. Follicle stimulating hormone, luteinizing...... hormone (LH), oestradiol, progesterone, IGF-I, IGFBP-3, sex hormone-binding globulin, dihydroepiandrosterone sulphate and GH were determined in all samples, whereas insulin and IGFBP-1 were determined in fasted samples only. Serum IGF-I concentrations showed some fluctuation during the menstrual cycle...

  18. Ontogeny and nutritional programming of the hepatic growth hormone-insulin-like growth factor-prolactin axis in the sheep.

    Science.gov (United States)

    Hyatt, Melanie A; Budge, Helen; Walker, David; Stephenson, Terence; Symonds, Michael E

    2007-10-01

    The liver is an important metabolic and endocrine organ in the fetus, but the extent to which its hormone receptor sensitivity is developmentally regulated in early life is not fully established. Therefore, we examined developmental changes in mRNA abundance for the GH receptor (GHR) and prolactin receptor (PRLR) plus IGF-I and -II and their receptors. Fetal and postnatal sheep were sampled at either 80 or 140 d gestation, 1 or 30 d, or 6 months of age. The effect of maternal nutrient restriction between early gestation to midgestation (i.e. 28-80 d gestation, the time of early liver growth) on gene expression was also examined in the fetus and juvenile offspring. Gene expression for the GHR, PRLR, and IGF-I receptor increased through gestation peaking at birth, whereas IGF-I was maximal near to term. In contrast, IGF-II mRNA decreased between midgestation and late gestation to increase after birth, whereas IGF-II receptor remained unchanged. A substantial decline in mRNA abundance for GHR, PRLR, and IGF-I receptor then occurred up to 6 months. Maternal nutrient restriction reduced GHR and IGF-II receptor mRNA abundance in the fetus, but caused a precocious increase in the PRLR. Gene expression for IGF-I and -II were increased in juvenile offspring born to nutrient-restricted mothers. In conclusion, there are marked differences in the ontogeny and nutritional programming of specific hormones and their receptors involved in hepatic growth and development in the fetus. These could contribute to changes in liver function during adult life.

  19. Polymorphism and association of growth hormone gene with growth traits in Sirohi and Barbari breeds of goat

    Directory of Open Access Journals (Sweden)

    Praduman Pal Singh

    2015-03-01

    Full Text Available Aim: The aim was to study the polymorphism of exon 2 and exon 3 of growth hormone (GH gene, to test the polymorphic variants for Hardy–Weinberg equilibrium and to investigate association of these polymorphisms with chest girth and paunch girth in Sirohi and Barbari breeds of goat. Materials and Methods: A total of 80 kids involving forty each of Sirohi and Barbari breeds of goat were included in the study. A good quality genomic DNA isolated from the whole blood using standard protocol were used for polymerase chain reaction (PCR amplification and products obtained on restriction digestion of amplicon with enzyme HaeIII were separated on 2% agarose gel, and documented in a gel doc system. The chest girth and paunch girth of kids at birth and weekly intervals up to 4 weeks of age and subsequently at 2 months, 3 months and 6 months of age were recorded. Allele frequency and genotype distribution of polymorphism were tested for Hardy–Weinberg equilibrium by program me Genepop package. Association between different genetic variants on chest girth and paunch girth were analyzed by least squares analysis employing suitable statistical model. Results: The PCR product of genomic DNA isolated from kids of Sirohi and Barbari breeds of goat on digestion with the restriction enzyme HaeIII revealed two genotypic variants viz., AB and BB. None of the two breeds was in Hardy–Weinberg equilibrium for these variants. The least squares analysis of variance revealed non-significant effect of GH genotype and breed × genotype interaction on chest girth and paunch girth from birth to 180 days of age. The effect of breed was highly significant (p<0.01 at all ages. Conclusion: The present study showed that both the breeds were polymorphic at the exon 2 and exon 3 loci of GH gene under study with respect to HaeIII restriction endonuclease. None of the breeds was in Hardy–Weinberg equilibrium for this region of GH gene. In the present study, no significant

  20. Effects of Growth Hormones on Sprouting and Rooting of Jatropha ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: This study was conducted to assess the effect of growth hormone on sprouting and rooting ability of Jatropha curcas (L). Stem cuttings from mature plants were treated with two types of growth hormones: Naphthalene Acetic Acid and Indole-3-Butyric Acid while the untreated cuttings were used as control.

  1. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  2. Cognitive impairments and mood disturbances in growth hormone deficient men

    NARCIS (Netherlands)

    Deijen, J.B.; de Boer, H.; Blok, G.J.; van der Veen, E.A.

    1996-01-01

    In order to establish whether reported psychological complaints in hypopituitary adults are related to growth hormone (GH) deficiency or other pituitary hormone deficiencies, emotional well-being and cognitive performance were evaluated in 31 men with multiple pituitary hormone deficiencies (MPHD)

  3. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  4. Growth hormone and the heart.

    Science.gov (United States)

    Cittadini, A; Longobardi, S; Fazio, S; Saccà, L

    1999-01-01

    Until a few years ago, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) were considered essential only to the control of linear growth, glucose homeostasis, and for the maintenance of skeletal muscle mass. A large body of evidence recently coming from animal and human studies has unequivocally proven that the heart is a target organ for the GH/IGF-1 axis. Specifically GH exerts both direct and indirect cardiovascular actions. Among the direct effects, the ability of GH to trigger cardiac tissue growth plays a pivotal role. Another direct effect is to augment cardiac contractility, independent of myocardial growth. Direct effects of GH also include the improvement of myocardial energetics and mechanical efficiency. Indirect effects of GH on the heart include decreased peripheral vascular resistance (PVR), expansion of blood volume, increased glomerular filtration rate, enhanced respiratory activity, increased skeletal muscle performance, and psychological well-being. Among them, the most consistently found is the decrease of PVR. GH may also raise preload through its sodium-retaining action and its interference with the hormonal system that regulates water and electrolyte metabolism. Particularly important is the effect of GH on skeletal muscle mass and performance. Taking into account that heart failure is characterized by left ventricular dilation, reduced cardiac contractility, and increase of wall stress and peripheral vascular resistance, GH may be beneficial for treatment of heart failure. Animal studies and preliminary human trials have confirmed the validity of the GH approach to the treatment of heart failure. Larger placebo-controlled human studies represent the main focus of future investigations.

  5. The rationale and design of TransCon Growth Hormone for the treatment of growth hormone deficiency

    Directory of Open Access Journals (Sweden)

    Kennett Sprogøe

    2017-10-01

    Full Text Available The fundamental challenge of developing a long-acting growth hormone (LAGH is to create a more convenient growth hormone (GH dosing profile while retaining the excellent safety, efficacy and tolerability of daily GH. With GH receptors on virtually all cells, replacement therapy should achieve the same tissue distribution and effects of daily (and endogenous GH while maintaining levels of GH and resulting IGF-1 within the physiologic range. To date, only two LAGHs have gained the approval of either the Food and Drug Administration (FDA or the European Medicines Agency (EMA; both released unmodified GH, thus presumably replicating distribution and pharmacological actions of daily GH. Other technologies have been applied to create LAGHs, including modifying GH (for example, protein enlargement or albumin binding such that the resulting analogues possess a longer half-life. Based on these approaches, nearly 20 LAGHs have reached various stages of clinical development. Although most have failed, lessons learned have guided the development of a novel LAGH. TransCon GH is a LAGH prodrug in which GH is transiently bound to an inert methoxy polyethylene glycol (mPEG carrier. It was designed to achieve the same safety, efficacy and tolerability as daily GH but with more convenient weekly dosing. In phase 2 trials of children and adults with growth hormone deficiency (GHD, similar safety, efficacy and tolerability to daily GH was shown as well as GH and IGF-1 levels within the physiologic range. These promising results support further development of TransCon GH.

  6. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    Science.gov (United States)

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  7. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    Science.gov (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Compensatory growth assessment by plasma IGF-I hormone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... feeding diets and regimes will be evaluated in future studies. Key words: Compensatory growth, food coefficient ratio, food intake, IGF-I, rainbow trout, special growth .... Blood was sampled for IGF-I hormone concentration.

  9. Interpretation of growth hormone provocative tests

    DEFF Research Database (Denmark)

    Andersson, A M; Orskov, H; Ranke, M B

    1995-01-01

    To compare interpretations of growth hormone (GH) provocative tests in laboratories using six different GH immunoassays (one enzymeimmunometric assay (EIMA, assay 1), one immunoradiometric assay (IRMA, assay 5), one time-resolved fluorimmunometric assay (TRFIA, assay 3) and three radioimmunoassays...

  10. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.

    Science.gov (United States)

    Hao, Jun; Ci, Xinpei; Xue, Hui; Wu, Rebecca; Dong, Xin; Choi, Stephen Yiu Chuen; He, Haiqing; Wang, Yu; Zhang, Fang; Qu, Sifeng; Zhang, Fan; Haegert, Anne M; Gout, Peter W; Zoubeidi, Amina; Collins, Colin; Gleave, Martin E; Lin, Dong; Wang, Yuzhuo

    2018-06-01

    Although androgen deprivation therapy is initially effective in controlling growth of hormone-naive prostate cancers (HNPCs) in patients, currently incurable castration-resistant prostate cancer (CRPC) inevitably develops. To identify CRPC driver genes that may provide new targets to enhance CRPC therapy. Patient-derived xenografts (PDXs) of HNPCs that develop CRPC following host castration were examined for changes in expression of genes at various time points after castration using transcriptome profiling analysis; particular attention was given to pre-CRPC changes in expression indicative of genes acting as potential CRPC drivers. The functionality of a potential CRPC driver was validated via its knockdown in cultured prostate cancer cells; its clinical relevance was established using data from prostate cancer patient databases. Eighty genes were found to be significantly upregulated at the CRPC stage, while seven of them also showed elevated expression prior to CRPC development. Among the latter, growth factor receptor bound protein 10 (GRB10) was the most significantly and consistently upregulated gene. Moreover, elevated GRB10 expression in clinical prostate cancer samples correlated with more aggressive tumor types and poorer patient treatment outcome. GRB10 knockdown markedly reduced prostate cancer cell proliferation and activity of AKT, a well-established CRPC mediator. A positive correlation between AKT activity and GRB10 expression was also found in clinical cohorts. GRB10 acts as a driver of CRPC and sensitizes androgen receptor pathway inhibitors, and hence GRB10 targeting provides a novel therapeutic strategy for the disease. Development of castration-resistant prostate cancer (CRPC) is a major problem in the management of the disease. Using state-of-the-art patient-derived hormone-naive prostate cancer xenograft models, we found and validated the growth factor receptor bound protein 10 gene as a driver of CRPC, indicating that it may be used as a

  11. Gender influences short-term growth hormone treatment response in children

    DEFF Research Database (Denmark)

    Sävendahl, Lars; Blankenstein, Oliver; Oliver, Isabelle

    2012-01-01

    Gender may affect growth hormone (GH) treatment outcome. This study assessed gender-related differences in change from baseline height standard deviation scores (ΔHSDS) after 2 years' GH treatment.......Gender may affect growth hormone (GH) treatment outcome. This study assessed gender-related differences in change from baseline height standard deviation scores (ΔHSDS) after 2 years' GH treatment....

  12. Urinary growth hormone excretion in acromegaly

    DEFF Research Database (Denmark)

    Main, K M; Lindholm, J; Vandeweghe, M

    1993-01-01

    The biochemical assessment of disease activity in acromegaly still presents a problem, especially in treated patients with mild clinical symptoms. We therefore examined the diagnostic value of the measurement of urinary growth hormone (GH) excretion in seventy unselected patients with acromegaly...

  13. Hyperthyroidism and acromegaly due to a thyrotropin- and growth hormone-secreting pituitary tumor. Lack of hormonal response to bromocriptine.

    Science.gov (United States)

    Carlson, H E; Linfoot, J A; Braunstein, G D; Kovacs, K; Young, R T

    1983-05-01

    A 47-year-old woman with acromegaly and hyperthyroidism was found to have an inappropriately normal serum thyrotropin level (1.5 to 2.5 microU/ml) that responded poorly to thyrotropin-releasing hormone but showed partial responsiveness to changes in circulating thyroid hormones. Serum alpha-subunit levels were high-normal and showed a normal response to thyrotropin-releasing hormone. Growth hormone and thyrotropin hypersecretion persisted despite radiotherapy and bromocriptine treatment. Selective trans-sphenoidal removal of a pituitary adenoma led to normalization of both growth hormone and thyrotropin levels. Both thyrotropes and somatotropes were demonstrated in the adenoma by the immunoperoxidase technique and electron microscopy.

  14. Etiology of growth hormone deficiency in children and adolescents

    Directory of Open Access Journals (Sweden)

    Mitrović Katarina

    2013-01-01

    Full Text Available Introduction. Growth hormone deficiency (GHD can be isolated or associated with deficiency of other pituitary gland hormones. According to age at diagnosis, causes of GHD are divided into congenital or acquired, and according to etiology into recognized and unknown. Objective. We analyzed etiology and prevalence of GHD, demographic data at birth, age, body height (BH and bone age at diagnosis as well as the frequency of other pituitary hormone deficiencies. Methods. The study involved 164 patients (109 male. The main criterion for the diagnosis of GHD was inadequate response of GH after two stimulation tests. The patients were classified into three groups: idiopathic, congenital and acquired GHD. Results. Idiopathic GHD was confirmed in 57.9% of patients, congenital in 11.6% and acquired in 30.5%. The mean age at diagnosis of GHD was 10.1±4.5 years. The patients with congenital GHD had most severe growth retardation (-3.4±1.4 SDS, while the patients with idiopathic GHD showed most prominent bone delay (-3.6±2.3 SDS. The prevalence of multiple pituitary hormone deficiency was 56.1%, in the group with congenital GHD 73.7%, acquired GHD 54.0% and idiopathic GHD 53.7%. The frequency of thyrotropin deficiency ranged from 88.2-100%, of adrenocorticotrophin 57.1-68.8% and of gonadotrophins deficiency 57.1- 63.0%, while deficiency of antidiuretic hormone was 2.0-25.0%. Conclusion. Although regular BH measurements enable early recognition of growth retardation, patients’ mean age and degree of growth retardation indicate that GHD is still diagnosed relatively late. A high incidence of other pituitary hormone deficiencies requires a detailed investigation of the etiology of disorders and evaluation of all pituitary functions in each child with confirmed GHD.

  15. Metacarpal index in short stature before and during growth hormone treatment

    OpenAIRE

    Bettendorf, M.; Graf, K.; Nelle, M.; Heinrich, U.; Troger, J.

    1998-01-01

    AIMS—To assess the usefulness of the metacarpal index (MCI) as a radiographic measure of the proportions of the metacarpals in the differential diagnosis of short stature. To investigate the significance of the MCI in following the longitudinal growth and proportions of individual long bones during growth hormone stimulated catch up growth in children with short stature with and without growth hormone deficiency.
SUBJECTS—124 children, including 65 children with short sta...

  16. Maternal and fetal placental growth hormone and IGF axis in type 1 diabetic pregnancy.

    LENUS (Irish Health Repository)

    Higgins, Mary F

    2012-01-01

    Placental growth hormone (PGH) is a major growth hormone in pregnancy and acts with Insulin Like Growth Factor I (IGF-I) and Insulin Like Growth Hormone Binding Protein 3 (IGFBP3). The aim of this study was to investigate PGH, IGF-I and IGFBP3 in non-diabetic (ND) compared to Type 1 Diabetic (T1DM) pregnancies.

  17. Growth hormone deficiency in children with brain tumors

    International Nuclear Information System (INIS)

    Shalet, S.M.; Beardwell, C.G.; Morris-Jones, P.; Bamford, F.N.; Ribeiro, G.G.; Pearson, D.

    1976-01-01

    Nine children with brain tumors are described who have received various combinations of treatment, including surgery, radiotherapy, and chemotherapy. Many of the children were noted to be of short stature. Endocrine assessment was carried out from 2 to 10 years after treatment. The combined results of insulin tolerance and Bovril stimulation tests show an impaired growth hormone response in six of the nine children. Bone age is retarded in all cases, and the present height is below the 10th percentile in five of the six. The cause of this growth hormone deficiency is obscure, but further studies are in progress

  18. A heterozygous microdeletion of 20p12.2-3 encompassing PROKR2 and BMP2 in a patient with congenital hypopituitarism and growth hormone deficiency.

    Science.gov (United States)

    Parsons, Samuel J H; Wright, Neville B; Burkitt-Wright, Emma; Skae, Mars S; Murray, Phillip G

    2017-08-01

    Congenital growth hormone deficiency is a rare disorder with an incidence of approximately 1 in 4,000 live births. Pituitary development is under the control of a multitude of spatiotemporally regulated signaling molecules and transcription factors. Mutations in the genes encoding these molecules can result in hypopituitarism but for the majority of children with congenital hypopituitarism, the aetiology of their disease remains unknown. The proband is a 5-year-old girl who presented with neonatal hypoglycaemia and prolonged jaundice. No definitive endocrine cause of hypoglycaemia was identified in the neonatal period. She was born of normal size at 42 weeks but demonstrated growth failure with a progressive reduction in height to -3.2 SD by age 4.5 years and failed a growth hormone stimulation test with a peak growth hormone of 4.2 mcg/L. MRI of the pituitary gland demonstrated a hypoplastic anterior lobe and ectopic posterior lobe. Array CGH demonstrated an inherited 0.2 Mb gain at 1q21.1 and a de novo 4.8 Mb heterozygous deletion at 20p12.2-3. The deletion contained 17 protein coding genes including PROKR2 and BMP2, both of which are expressed during embryological development of the pituitary gland. PROKR2 mutations have been associated with hypopituitarism but a heterozygous deletion of this gene with hypopituitarism is a novel observation. In conclusion, congenital hypopituitarism can be present in individuals with a 20p12.3 deletion, observed with incomplete penetrance. Array CGH may be a useful investigation in select cases of early onset growth hormone deficiency, and patients with deletions within this region should be evaluated for pituitary hormone deficiencies. © 2017 Wiley Periodicals, Inc.

  19. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  20. Short-term effect of recombinant human growth hormone in patients with alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Becker, U; Grønbaek, M

    1994-01-01

    As growth hormone possesses anabolic properties that are active on protein metabolism, and thus of potential benefit to patients with chronic liver disease, we determined the metabolic effects of recombinant human growth hormone on insulin-like growth factor-I (IGF-I) its specific binding proteins......, and liver function. Twenty consecutive patients with cirrhosis were randomized to recombinant human growth hormone (Norditropin, 4 I.U. twice daily) subcutaneously for 6 weeks (n = 10) or conventional medical treatment (n = 10). The serum concentrations of insulin-like growth factor-I in the recombinant...... patients as well as in controls, whereas no change in insulin-like growth factor binding protein-1 concentrations was found. No significant changes were seen in the area under the curve for biochemical liver function tests. We conclude that administration of recombinant human growth hormone induces...

  1. Sensitive double-antibody method for simultaneous determination of insulin and growth hormone

    International Nuclear Information System (INIS)

    Koparanova, O.; Sotirov, G.; Tyrkolev, N.

    1982-01-01

    A method is described for simultaneous determination of insulin and growth hormone in one sample, using double-antibody technique. The method is characterized by appreciable sensitivity (2.5 μE/ml for insulin and a.2 ng/ml for growth hormone), exactness (variation quotient 6-16 per cent) and reproducibility (96.9-117 per cent). There was no statistically significant difference in the insulin and growth hormone values of the same sera, determined by the here suggested and the standard methods. The necessary test material for examination of either hormone is minimal (0.2 ml). One may thus extend the possibilities for radioimmunologic determination of insulin and growth hormone, when only minor amounts of serum or other biological fluid are available. The method is also less time consuming. Results are reported of statistical processing of an experimental model and different sera determined by the standard method and the one described by the authors. (author)

  2. Natural history of the classical form of primary growth hormone (GH) resistance (Laron syndrome).

    Science.gov (United States)

    Laron, Z

    1999-04-01

    A description of the clinical, biochemical and endocrinological features of the classical form of the syndrome of primary growth hormone (GH) resistance (Laron syndrome) is presented including the progressive changes during follow-up from infancy into adulthood. The main diagnostic features are: severe growth retardation, acromicria, small gonads and genitalia, and obesity. Serum GH levels are elevated and insulin-like growth factor-I (IGF-I) values are low and do not rise upon stimulation by exogenous hGH. The pathogenesis of this syndrome is due to various molecular defects from exon deletion to nonsense, frameshift, splice and missense mutations in the GH receptor (GH-R) gene or in its post-receptor pathways.

  3. Evaluation of growth hormone release and human growth hormone treatment in children with cranial irradiation-associated short stature

    International Nuclear Information System (INIS)

    Romshe, C.A.; Zipf, W.B.; Miser, A.; Miser, J.; Sotos, J.F.; Newton, W.A.

    1984-01-01

    We studied nine children who had received cranial irradiation for various malignancies and subsequently experienced decreased growth velocity. Their response to standard growth hormone stimulation and release tests were compared with that in seven children with classic GH deficiency and in 24 short normal control subjects. With arginine and L-dopa stimulation, six of nine patients who received radiation had a normal GH response (greater than 7 ng/ml), whereas by design none of the GH deficient and all of the normal children had a positive response. Only two of nine patients had a normal response to insulin hypoglycemia, with no significant differences in the mean maximal response of the radiation and the GH-deficient groups. Pulsatile secretion was not significantly different in the radiation and GH-deficient groups, but was different in the radiation and normal groups. All subjects in the GH-deficient and radiation groups were given human growth hormone for 1 year. Growth velocity increased in all, with no significant difference in the response of the two groups when comparing the z scores for growth velocity of each subject's bone age. We recommend a 6-month trial of hGH in children who have had cranial radiation and are in prolonged remission with a decreased growth velocity, as there is no completely reliable combination of GH stimulation or release tests to determine their response

  4. A retrospective review of pituitary MRI findings in children on growth hormone therapy

    International Nuclear Information System (INIS)

    Tsai, Sarah L.; Lawrence, Sarah; Laffan, Eoghan

    2012-01-01

    Patients with congenital hypopituitarism might have the classic triad of pituitary stalk interruption syndrome, which consists of: (1) an interrupted or thin pituitary stalk, (2) an absent or ectopic posterior pituitary (EPP), and (3) anterior pituitary hypoplasia or aplasia. To examine the relationship between pituitary anatomy and the degree of hormonal dysfunction. This study involved a retrospective review of MRI findings in all children diagnosed with congenital growth hormone deficiency from 1988 to 2010 at a tertiary-level pediatric hospital. Of the 52 MRIs reviewed in 52 children, 26 children had normal pituitary anatomy and 26 had one or more elements of the classic triad. Fourteen of fifteen children with multiple pituitary hormone deficiencies had structural anomalies on MRI. Twelve of 37 children with isolated growth hormone deficiency had an abnormal MRI. Children with multiple pituitary hormone deficiencies were more likely to have the classic triad than children with isolated growth hormone deficiency. A normal MRI was the most common finding in children with isolated growth hormone deficiency. (orig.)

  5. A retrospective review of pituitary MRI findings in children on growth hormone therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Sarah L.; Lawrence, Sarah [University of Ottawa, Division of Endocrinology, Children' s Hospital of Eastern Ontario, Ottawa (Canada); Laffan, Eoghan [Children' s University Hospital, Pediatric Radiology, Dublin 1 (Ireland)

    2012-07-15

    Patients with congenital hypopituitarism might have the classic triad of pituitary stalk interruption syndrome, which consists of: (1) an interrupted or thin pituitary stalk, (2) an absent or ectopic posterior pituitary (EPP), and (3) anterior pituitary hypoplasia or aplasia. To examine the relationship between pituitary anatomy and the degree of hormonal dysfunction. This study involved a retrospective review of MRI findings in all children diagnosed with congenital growth hormone deficiency from 1988 to 2010 at a tertiary-level pediatric hospital. Of the 52 MRIs reviewed in 52 children, 26 children had normal pituitary anatomy and 26 had one or more elements of the classic triad. Fourteen of fifteen children with multiple pituitary hormone deficiencies had structural anomalies on MRI. Twelve of 37 children with isolated growth hormone deficiency had an abnormal MRI. Children with multiple pituitary hormone deficiencies were more likely to have the classic triad than children with isolated growth hormone deficiency. A normal MRI was the most common finding in children with isolated growth hormone deficiency. (orig.)

  6. Isolation, purification and studies on radiation induced biochemical and physiological changes of bovine growth hormone in animal

    International Nuclear Information System (INIS)

    Abdel-Salam, H.M.S.

    1997-01-01

    Growth hormone has a great importance in the field of animal physiology. Bovine growth hormone was extracted by alteration of the hydrogen ion concentration of phosphate buffer extract of frozen pituitary glands. The extracted bovine growth hormone has similar absorption peaks at UV and infrared spectra, bands of the same location on polyacrylamide gel electrophoresis plate and had a molecular weight exactly as the standard bovine growth hormone and equal to 20.9 KD. Labelling of bovine growth hormone with 131 I was carried out with fast and least expensive method. The biological and physiological effects of labelled and non labelled bovine growth hormone were studied on rabbits. The labelled bovine growth hormone decreased the biological and physiological effects of the hormone. Bovine growth hormone (unlabelled) and different effects on growth performance traits, body chemical composition (water, fat,protein and ash), and also on the serum biochemical parameters. We conclude that the bovine growth hormone affects on the biological and physiological properties but this depends on the dose, type of delivery of hormone, time of treatment, and the diet content of the animal. 6 tabs., 13.2 figs., 110 refs

  7. Effects of growth hormone treatment on the pituitary expression of GHRH receptor mRNA in uremic rats.

    Science.gov (United States)

    Ferrando, Susana; Rodríguez, Julián; Santos, Fernando; Weruaga, Ana; Fernández, Marta; Carbajo, Eduardo; García, Enrique

    2002-09-01

    A decreased ability of pituitary cells to secrete growth hormone (GH) in response to growth hormone releasing hormone (GHRH) stimulation has been shown in young uremic rats. The aim of the current study was to examine the effect of uremia and GH treatment on pituitary GHRH receptor expression. Pituitary GHRH receptor mRNA levels were analyzed by RNase protection assay in young female rats made uremic by subtotal nephrectomy, either untreated (UREM) or treated with 10 IU/kg/day of GH (UREM-GH), and normal renal function animals fed ad libitum (SAL) or pair-fed with the UREM group (SPF). Rats were sacrificed 14 days after the second stage nephrectomy. Renal failure was confirmed by concentrations (X +/- SEM) of serum urea nitrogen (mmol/L) and creatinine (micromol/L) in UREM (20 +/- 1 and 89.4 +/- 4.5) and UREM-GH (16 +/- 1 and 91.4 +/- 6.9) that were much higher (P growth retarded as shown by a daily longitudinal tibia growth rate below (P growth rate acceleration (213 +/- 6 microm/day). GHRH receptor mRNA levels were no different among the SAL (0.43 +/- 0.03), SPF (0.43 +/- 0.08) and UREM (0.44 +/- 0.04) groups, whereas UREM-GH rats had significantly higher values (0.72 +/- 0.07). The status of pituitary GHRH receptor is not modified by nutritional deficit or by severe uremia causing growth retardation. By contrast, the growth promoting effect of GH administration is associated with stimulated GHRH receptor gene expression.

  8. The Impact of Growth Hormone Therapy on the Apoptosis Assessment in CD34+ Hematopoietic Cells from Children with Growth Hormone Deficiency

    Directory of Open Access Journals (Sweden)

    Miłosz Piotr Kawa

    2017-01-01

    Full Text Available Growth hormone (GH modulates hematopoietic cell homeostasis and is associated with apoptosis control, but with limited mechanistic insights. Aim of the study was to determine whether GH therapeutic supplementation (GH-TS could affect apoptosis of CD34+ cells enriched in hematopoietic progenitor cells of GH deficient (GHD children. CD34+ cells from peripheral blood of 40 GHD children were collected before and in 3rd and 6th month of GH-TS and compared to 60 controls adjusted for bone age, sex, and pubertal development. Next, apoptosis assessment via different molecular techniques was performed. Finally, to comprehensively characterize apoptosis process, global gene expression profile was determined using genome-wide RNA microarray technology. Results showed that GH-TS significantly reduced spontaneous apoptosis in CD34+ cells (p < 0.01 and results obtained using different methods to detect early and late apoptosis in analyzed cells population were consistent. GH-TS was also associated with significant downregulation of several members of TNF-alpha superfamily and other genes associated with apoptosis and stress response. Moreover, the significant overexpression of cyto-protective and cell cycle-associated genes was detected. These findings suggest that recombinant human GH has a direct anti-apoptotic activity in hematopoietic CD34+ cells derived from GHD subjects in course of GH-TS.

  9. Growth hormone treatment in 35 prepubertal children with achondroplasia

    DEFF Research Database (Denmark)

    Hertel, Niels Thomas; Eklöf, Ole; Ivarsson, Sten

    2005-01-01

    BACKGROUND: Achondroplasia is a skeletal dysplasia with extreme, disproportionate, short stature. AIM: In a 5-y growth hormone (GH) treatment study including 1 y without treatment, we investigated growth and body proportion response in 35 children with achondroplasia. METHODS: Patients were rando...... treatment of children with achondroplasia improves height during 4 y of therapy without adverse effect on trunk-leg disproportion. The short-term effect is comparable to that reported in Turner and Noonan syndrome and in idiopathic short stature.......BACKGROUND: Achondroplasia is a skeletal dysplasia with extreme, disproportionate, short stature. AIM: In a 5-y growth hormone (GH) treatment study including 1 y without treatment, we investigated growth and body proportion response in 35 children with achondroplasia. METHODS: Patients were...

  10. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates

    DEFF Research Database (Denmark)

    Fernández-Pérez, Leandro; Guerra, Borja; Díaz-Chico, Juan C

    2013-01-01

    The liver responds to estrogens and growth hormone (GH) which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk...

  11. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  12. A radioimmunoassay of chicken growth hormone using growth hormone produced by recombinant DNA technology: validation and observations of plasma hormone variations in genetically fat and lean chickens

    International Nuclear Information System (INIS)

    Picaper, G.; Leclercq, B.; Saadoun, A.; Mongin, P.

    1986-01-01

    A radioimmunoassay (RIA) of chicken growth hormone (c-GH) has been developed using growth hormone produced by recombinant DNA technology. The best rabbit antiserum was used at 1/300,000 final dilution. Hormone labelling by iodine-125, achieved by chloramine T, allowed a specific activity of 3.7 MBq/μg. The equilibrium curves show that optimal conditions of incubation were reached at room temperature for 24h. This RIA used a second sheep antibody which precipitated the whole c-GH bound to the first antibody in the presence of polyethylene glycol solution (6%) at room temperature for 30 min. In our conditions, sensitivity was about 30 pg of c-GH per tube. Coefficient of variation was around 10%. No cross reaction was found with avian LH and prolactin. Thyrotrophin-releasing hormone (TRH) injection to young chickens induced 20-fold higher plasma c-GH concentrations. Simultaneous injection of somatostatin and TRH slightly reduced these concentrations. Hypoglycemia induced by insulin led to a drop of the plasma c-GH concentration. Conversely, refeeding or glucose load induced slight increases of the c-GH level. Genetically fat chickens tended to exhibit higher plasma c-GH concentrations than lean chickens

  13. The role of hormones and growth factors in the cellular proliferation control in mammals

    International Nuclear Information System (INIS)

    Armelin, H.A.

    1978-01-01

    A review is done about fibroblast proliferation, its control by classic hormones and hormonal growth factors, showing their main implications and the stage of this research at present. The control exerted on fibronlast proliferation by hormonal growth factors and classic hormones is demonstrated. The existence of basic mechanisms valid for all types of cells is suggested. Experiences are carried out with the aim of finding growth mutants useful in the elucidation of the biochemical mechanisms involved in growth regulation. Radiactive precursors and autoradiographic techniques are used in the research. (M.A.) [pt

  14. Single nucleotide polymorphism of the growth hormone (GH encoding gene in inbred and outbred domestic rabbits

    Directory of Open Access Journals (Sweden)

    Deyana Gencheva Hristova

    2018-03-01

    Full Text Available Taking into consideration that the growth hormone (GH gene in rabbits is a candidate for meat production, understanding the genetic diversity and variation in this locus is of particular relevance. The present study comprised 86 rabbits (Oryctolagus cuniculus divided into 3 groups: New Zealand White (NZW outbred rabbits; first-generation inbred rabbits (F1 and second-generation inbred rabbits (F2. They were analysed by polymerase chain reaction-based restriction fragment length polymorphism method. A 231 bp fragment of the polymorphic site of the GH gene was digested with Bsh1236 restriction enzyme. Single nucleotide polymorphisms for the studied GH locus corresponding to 3 genotypes were detected in the studied rabbit populations: CC, CT and TT. In the synthetic inbred F1 and F2 populations, the frequency of the heterozygous genotype CT was 0.696 and 0.609, respectively, while for the homozygous CC genotype the frequency was lower (0.043 and 0.000, and respective values for the homozygous TT genotype were 0.261 and 0.391. This presumed a preponderance of the T allele (0.609 and 0.696 over the C allele (0.391 and 0.304 in these groups. In outbred rabbits, the allele frequencies were 0.613 (allele C and 0.387 (allele Т; consequently, the frequency of the homozygous CC genotype was higher than that of the homozygous TT genotype (0.300 vs. 0.075. Observed heterozygosity for the GH gene was higher than expected, and the result was therefore a negative inbreeding coefficient (Fis=–0.317 for outbred NZW rabbits; –0.460 for inbred F1 and –0.438 for inbred F2, indicating a sufficient number of heterozygous forms in all studied groups of rabbits. The application of narrow inbreeding by breeding full sibs in the synthetic population did not cause a rapid increase in homozygosity.

  15. Impact of Growth Hormone on Cystatin C

    Directory of Open Access Journals (Sweden)

    Lisa Sze

    2013-11-01

    Full Text Available Background: Cystatin C (CysC is an alternative marker to creatinine for estimation of the glomerular filtration rate (GFR. Hormones such as thyroid hormones and glucocorticoids are known to have an impact on CysC. In this study, we examined the effect of growth hormone (GH on CysC in patients with acromegaly undergoing transsphenoidal surgery. Methods: Creatinine, CysC, GH and insulin-like growth factor-1 (IGF-1 were determined in 24 patients with acromegaly before and following transsphenoidal surgery. Estimated GFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration formula. Results: In all patients, surgical debulking resulted in decreased clinical disease activity and declining GH/IGF-1 levels. Postoperatively, biochemical cure was documented in 20 out of 24 patients. Creatinine levels (mean ± SEM increased from 72 ± 3 to 80 ± 3 µmol/l (p = 0.0004 and concurrently, estimated GFR decreased from 99 ± 3 to 91 ± 3 ml/min (p = 0.0008. In contrast to creatinine, CysC levels decreased from 0.72 ± 0.02 to 0.68 ± 0.02 mg/l (p = 0.0008. Conclusions: Our study provides strong evidence for discordant effects of GH on creatinine and CysC in patients with acromegaly undergoing transsphenoidal surgery, thus identifying another hormone that influences CysC independent of renal function.

  16. Structure and proteolysis of the growth hormone receptor on rat hepatocytes

    International Nuclear Information System (INIS)

    Yamada, K.; Lipson, K.E.; Donner, D.B.

    1987-01-01

    125 I-Labeled human growth hormone is isolated in high molecular weight (M/sub r/) (300,000, 220,000, and 130,000) and low molecular weight complexes on rat hepatocytes after affinity labeling. The time-dependent formation of low molecular weight complexes occurred at the expense of the higher molecular weight species and was inhibited by low temperature or inhibitors of serine proteinases. Exposure to reducing conditions induced loss of M/sub r/ 300,000 and 220,000 species and augmented the amount of M/sub r/ 130,000 complexes. The molecular weight of growth hormone (22,000) suggests that binding had occurred with species of M/sub r/ 280,000, 200,000, and 100,000. Two-dimensional gel electrophoresis demonstrated that the 100,000-dalton receptor subunit is contained in both the 280,000- and 200-000-dalton species. Reduction of interchain disulfide bonds in the growth hormone receptor did not alter its elution from gel filtration columns, but intact, high molecular weight receptor constituents were separated from lower molecular weight degradation products. Digestion of affinity-labeled growth hormone-receptor complexes with neuraminidase increased the mobility of receptor constituents on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These observations show that the growth hormone receptor is degraded by hepatic serine proteinases to low molecular weight degradation products which can be separated from intact receptor by gel filtration. Intact hormone-receptor complexes are aggregates of 100,000-dalton sialoglycoprotein subunits held together by interchain disulfide bonds and by noncovalent forces

  17. Effects of phyto-oestrogen quercetin on productive performance, hormones, reproductive organs and apoptotic genes in laying hens.

    Science.gov (United States)

    Yang, J X; Chaudhry, M T; Yao, J Y; Wang, S N; Zhou, B; Wang, M; Han, C Y; You, Y; Li, Y

    2018-04-01

    Quercetin, a polyphenolic flavonoid with diverse biological activities including anti-inflammatory and antiviral, inhibits lipid peroxidation, prevents oxidative injury and cell death. The purpose of the research was to investigate the effect of quercetin on productive performance, reproductive organs, hormones and apoptotic genes in laying hens between 37 and 45 weeks of age, because of the structure and oestrogenic activities similar to 17β-oestradiol. The trial was conducted using 240 Hessian laying hens (37 weeks old), housed in wire cages with two hens in each cage. These hens were randomly allotted to four treatments with six replicates, 10 hens in each replicate and fed with diets containing quercetin as 0, 0.2, 0.4 and 0.6 g/kg feed for 8 weeks. The results showed that dietary quercetin significantly increased (p feed-egg ratio was decreased (p  .05) on average egg weight and average daily feed intake. Compared with control, secretion of hormones, oestradiol (E 2 ) , progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), insulin-like growth factors-1 (IGF-1) and growth hormone (GH), was found to be significantly higher (p  .05) by quercetin, whereas magnum index, isthmus index, magnum length, isthmus length and follicle numbers were significantly increased (p < .05) with quercetin supplementation. Additionally, expression of apoptotic genes was significantly (p < .05) up-regulated or down-regulated by quercetin. These results indicated that quercetin improved productive performance, and its mechanism may be due to the oestrogen-like activities of quercetin. © 2017 Blackwell Verlag GmbH.

  18. Gene Linked to Excess Male Hormones in Female Infertility Disorder

    Science.gov (United States)

    ... April 15, 2014 Gene linked to excess male hormones in female infertility disorder Discovery by NIH-supported ... may lead to the overproduction of androgens — male hormones similar to testosterone — occurring in women with polycystic ...

  19. Sex hormones and gene expression signatures in peripheral blood from postmenopausal women - the NOWAC postgenome study

    Directory of Open Access Journals (Sweden)

    Rylander Charlotta

    2011-03-01

    Full Text Available Abstract Background Postmenopausal hormone therapy (HT influences endogenous hormone concentrations and increases the risk of breast cancer. Gene expression profiling may reveal the mechanisms behind this relationship. Our objective was to explore potential associations between sex hormones and gene expression in whole blood from a population-based, random sample of postmenopausal women Methods Gene expression, as measured by the Applied Biosystems microarray platform, was compared between hormone therapy (HT users and non-users and between high and low hormone plasma concentrations using both gene-wise analysis and gene set analysis. Gene sets found to be associated with HT use were further analysed for enrichment in functional clusters and network predictions. The gene expression matrix included 285 samples and 16185 probes and was adjusted for significant technical variables. Results Gene-wise analysis revealed several genes significantly associated with different types of HT use. The functional cluster analyses provided limited information on these genes. Gene set analysis revealed 22 gene sets that were enriched between high and low estradiol concentration (HT-users excluded. Among these were seven oestrogen related gene sets, including our gene list associated with systemic estradiol use, which thereby represents a novel oestrogen signature. Seven gene sets were related to immune response. Among the 15 gene sets enriched for progesterone, 11 overlapped with estradiol. No significant gene expression patterns were found for testosterone, follicle stimulating hormone (FSH or sex hormone binding globulin (SHBG. Conclusions Distinct gene expression patterns associated with sex hormones are detectable in a random group of postmenopausal women, as demonstrated by the finding of a novel oestrogen signature.

  20. Growth hormone treatment in cartilage-hair hypoplasia: effects on growth and the immune system.

    NARCIS (Netherlands)

    Bocca, G.; Weemaes, C.M.R.; Burgt, C.J.A.M. van der; Otten, B.J.

    2004-01-01

    Cartilage-hair hypoplasia (CHH) is a rare autosomal recessive disorder characterized by metaphyseal chondrodysplasia with severe growth retardation and impaired immunity. We studied the effects of growth hormone treatment on growth parameters and the immune system in four children with CHH. The

  1. Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit

    Directory of Open Access Journals (Sweden)

    Heiko Löhr

    2018-05-01

    Full Text Available Summary: Anorexigenic pro-opiomelanocortin (Pomc/alpha-melanocyte stimulating hormone (αMSH neurons of the hypothalamic melanocortin system function as key regulators of energy homeostasis, also controlling somatic growth across different species. However, the mechanisms of melanocortin-dependent growth control still remain ill-defined. Here, we reveal a thus-far-unrecognized structural and functional connection between Pomc neurons and the somatotropic hypothalamo-pituitary axis. Excessive feeding of larval zebrafish causes leptin resistance and reduced levels of the hypothalamic satiety mediator pomca. In turn, this leads to reduced activation of hypophysiotropic somatostatin (Sst-neurons that express the melanocortin receptor Mc4r, elevated growth hormone (GH expression in the pituitary, and enhanced somatic growth. Mc4r expression and αMSH responsiveness are conserved in Sst-expressing hypothalamic neurons of mice. Thus, acquired leptin resistance and attenuation of pomca transcription in response to excessive caloric intake may represent an ancient mechanism to promote somatic growth when food resources are plentiful. : The melanocortin system controls energy homeostasis and somatic growth, but the underlying mechanisms are elusive. Löhr et al. identify a functional neural circuit in which Pomc neurons stimulate hypothalamic somatostatin neurons, thereby inhibiting hypophyseal growth hormone production. Excessive feeding and acquired leptin resistance attenuate this pathway, allowing faster somatic growth when food resources are rich. Keywords: Pomc neuron, somatostatin neuron, somatic growth, growth hormone, melanocortin system, high-fat diet, obesity, leptin resistance, zebrafish, mouse

  2. The effects of growht hormone therapy in children with radiation-induced growth hormone deficiency

    International Nuclear Information System (INIS)

    Shalet, S.M.; Whitehead, E.; Chapman, A.J.; Beardwell, C.G.

    1981-01-01

    The effects of growth hormone (GH) therapy were studied in 6 children, previously treated for brain tumours which did not directly involve the hypothalamic-pituitary axis, and who had received cranial irradiation between 2.1 and 10 years earlier. All 6 were short with a standing height standard deviation score (SDS) from -1.7 to -3.3. Impaired growth hormone responses to an insulin tolerance test (ITT) were observed in all 6 and a Bovril stimulation test in 5 children. The remainder of pituitary function was essentially normal. All 6 were prepubertal and 5 had a retarded bone age. Subsequently all received human GH in a dose of 5 units 3 times weekly for 1 year. The growth rate in each was at least 2 cm greater during the treatment year than the pre-treatment year.(author)

  3. Hypopituitarism: growth hormone and corticotropin deficiency.

    Science.gov (United States)

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Short-term effect of recombinant human growth hormone in patients with alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Becker, U; Grønbaek, M

    1994-01-01

    As growth hormone possesses anabolic properties that are active on protein metabolism, and thus of potential benefit to patients with chronic liver disease, we determined the metabolic effects of recombinant human growth hormone on insulin-like growth factor-I (IGF-I) its specific binding proteins...

  5. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were incuba...

  6. Physical growth, puberty and hormones in adolescents with Nodding Syndrome; a pilot study.

    Science.gov (United States)

    Piloya-Were, Theresa; Odongkara-Mpora, Beatrice; Namusoke, Hanifa; Idro, Richard

    2014-11-28

    Nodding syndrome is an epidemic symptomatic generalized epilepsy syndrome of unknown cause in Eastern Africa. Some patients have extreme short stature. We hypothesized that growth failure in nodding syndrome is associated with specific endocrine dysfunctions. In this pilot study, we examined the relationship between serum hormone levels and stature, bone age and sexual development. We recruited ten consecutive children, 13 years or older, with World Health Organization defined nodding syndrome and assessed physical growth, bone age, development of secondary sexual characteristics and serum hormone levels. Two children with incomplete results were excluded. Of the eight remaining, two had severe stunting (height for age Z [HAZ] scorebone age was delayed by a median 3(range 0-4) years. Serum growth hormone levels were normal in all eight but the two patients with severe stunting and one with moderate stunting had low levels of Somatomedin C (Insulin like Growth Factor [IGF1]) and/or IGF binding protein 3 (IGFBP3), mediators of growth hormone function. A linear relationship was observed between serum IGF1 level and HAZ score. With the exception of one child, all were either pre-pubertal or in early puberty (Tanner stages 1 and 2) and in the seven, levels of the gonadotrophins (luteinising and follicle stimulating hormone) and the sex hormones (testosterone/oestrogen) were all within pre-pubertal ranges or ranges of early puberty. Thyroid function, prolactin, adrenal, and parathyroid hormone levels were all normal. Patients with nodding syndrome may have dysfunctions in the pituitary growth hormone and pituitary gonadal axes that manifest as stunted growth, delayed bone age and puberty. Studies are required to determine if such endocrine dysfunction is a primary manifestation of the disease or a secondary consequence of chronic ill health and malnutrition and if so, whether targeted interventions can improve outcome.

  7. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Hormonal Regulation of Mammary Gland Development and Breast Cancer

    National Research Council Canada - National Science Library

    Xian, Wa; Rosen, Jeffrey M

    2004-01-01

    Our laboratory is interested in studying the mechanisms by which lactogenic hormones regulate Beta-casein gene expression and how alterations in the levels of these hormones may function in the growth...

  9. Growth hormone deficiency in children and young adults.

    Science.gov (United States)

    Oświęcimska, Joanna; Roczniak, Wojciech; Mikołajczak, Agata; Szymlak, Agnieszka

    2016-09-13

    Growth hormone (GH) is a naturally occurring polypeptide hormone produced by somatotropic cells in the anterior pituitary. The main function of somatotropin is stimulation of linear growth, but it also affects carbohydrate metabolism, increases bone mass and has potent lipolytic, antinatriuretic and antidiuretic effects. Growth hormone deficiency (GHD) may occur both in children and in adults. At the moment there is no gold standard for the diagnosis of GHD, and the diagnosis should take into account clinical, auxological, biochemical and radiological changes and, if necessary, genetic testing. Recent studies have highlighted that the biochemical diagnosis of GH deficiency is still imperfect. Stimuli used in the tests are non-physiological, and various substances are characterized by a different mechanism of action and potency. A few years ago it was thought that GHD treatment in children must be completed at the end of linear growth. Studies performed in the last two decades have shown that GHD deficiency in adults may result in complex clinical problems, and if untreated shortens the life expectancy and worsens its comfort. Discontinuation of GH therapy after the final height has been reached in fact negatively impacts the physiological processes associated with the transition phase, which is the period of human life between achieving the final height and 25-30 years of age. Given the adverse metabolic effects of GH treatment interruption after linear growth has been completed, the latest recommendations propose reassessment of GH secretion in the period at least one month after cessation of treatment and continuation of the therapy in case of persistent deficit.

  10. Growth hormone deficiency in children and young adults

    Directory of Open Access Journals (Sweden)

    Joanna Oświęcimska

    2016-09-01

    Full Text Available Growth hormone (GH is a naturally occurring polypeptide hormone produced by somatotropic cells in the anterior pituitary. The main function of somatotropin is stimulation of linear growth, but it also affects carbohydrate metabolism, increases bone mass and has potent lipolytic, antinatriuretic and antidiuretic effects. Growth hormone deficiency (GHD may occur both in children and in adults. At the moment there is no gold standard for the diagnosis of GHD, and the diagnosis should take into account clinical, auxological, biochemical and radiological changes and, if necessary, genetic testing. Recent studies have highlighted that the biochemical diagnosis of GH deficiency is still imperfect. Stimuli used in the tests are non-physiological, and various substances are characterized by a different mechanism of action and potency. A few years ago it was thought that GHD treatment in children must be completed at the end of linear growth. Studies performed in the last two decades have shown that GHD deficiency in adults may result in complex clinical problems, and if untreated shortens the life expectancy and worsens its comfort. Discontinuation of GH therapy after the final height has been reached in fact negatively impacts the physiological processes associated with the transition phase, which is the period of human life between achieving the final height and 25-30 years of age. Given the adverse metabolic effects of GH treatment interruption after linear growth has been completed, the latest recommendations propose reassessment of GH secretion in the period at least one month after cessation of treatment and continuation of the therapy in case of persistent deficit.

  11. Hypergravity and estrogen effects on avian anterior pituitary growth hormone and prolactin levels

    Science.gov (United States)

    Fiorindo, R. P.; Negulesco, J. A.

    1980-01-01

    Developing female chicks with fractured right radii were maintained for 14 d at either earth gravity (1 g) or a hypergravity state (2 g). The birds at 1 g were divided into groups which received daily injections of (1) saline, (2) 200 micrograms estrone, and (3) 400 micrograms estrone for 14 d. The 2-g birds were divided into three similarly treated groups. All 2-g birds showed significantly lower body weights than did 1-g birds. Anterior pituitary (AP) glands were excised and analyzed for growth hormone and prolactin content by analytical electrophoresis. The 1-g chicks receiving either dose of daily estrogen showed increased AP growth hormone levels, whereas hypergravity alone did not affect growth hormone content. Chicks exposed to daily estrogen and hypergravity displayed reduced growth hormone levels. AP prolactin levels were slightly increased by the lower daily estrogen dose in 1-g birds, but markedly reduced in birds exposed only to hypergravity. Doubly-treated chicks displayed normal prolactin levels. Reduced growth in 2-g birds might be due, in part, to reduced AP levels of prolactin and/or growth hormone.

  12. Characterization of MORE AXILLARY GROWTH genes in Populus.

    Directory of Open Access Journals (Sweden)

    Olaf Czarnecki

    Full Text Available Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1, MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.

  13. Partial correction of the dwarf phenotype by non-viral transfer of the growth hormone gene in mice: Treatment age is critical.

    Science.gov (United States)

    Higuti, Eliza; Cecchi, Cláudia R; Oliveira, Nélio A J; Lima, Eliana R; Vieira, Daniel P; Aagaard, Lars; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N

    2016-02-01

    Non-viral transfer of the growth hormone gene to different muscles of immunodeficient dwarf (lit/scid) mice is under study with the objective of improving phenotypic correction via this particular gene therapy approach. Plasmid DNA was administered into the exposed quadriceps or non-exposed tibialis cranialis muscle of lit/scid mice followed by electroporation, monitoring several growth parameters. In a 6-month bioassay, 50μg DNA were injected three times into the quadriceps muscle of 80-day old mice. A 50% weight increase, with a catch-up growth of 21%, together with a 16% increase for nose-to-tail and tail lengths (catch-up=19-21%) and a 24-28% increase for femur length (catch-up=53-60%), were obtained. mIGF1 serum levels were ~7-fold higher than the basal levels for untreated mice, but still ~2-fold lower than in non-dwarf scid mice. Since treatment age was found to be particularly important in a second bioassay utilizing 40-day old mice, these pubertal mice were compared in a third bioassay with adult (80-day old) mice, all treated twice with 50μg DNA injected into each tibialis cranialis muscle, via a less invasive approach. mIGF1 concentrations at the same level as co-aged scid mice were obtained 15days after administration in pubertal mice. Catch-up growth, based on femur length (77%), nose-to-tail (36%) and tail length (39%) increases was 40 to 95% higher than those obtained upon treating adult mice. These data pave the way for the development of more effective pre-clinical assays in pubertal dwarf mice for the treatment of GH deficiency via plasmid-DNA muscular administration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori.

    Science.gov (United States)

    Zeng, Baosheng; Huang, Yuping; Xu, Jun; Shiotsuki, Takahiro; Bai, Hua; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2017-07-14

    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO ( BmFOXO ) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The influence of age and exercise modality on growth hormone bioactivity in women.

    Science.gov (United States)

    Gordon, Scott E; Kraemer, William J; Looney, David P; Flanagan, Shawn D; Comstock, Brett A; Hymer, Wesley C

    2014-01-01

    Prior research has indicated that the loss of skeletal muscle mass and bone mineral density observed with aging is related to the prominent age-related decline in the concentration of serum growth hormone (GH). However, there is limited data on the effects of aging on GH responses to acute bouts of heavy resistance exercise (HRE) and aerobic exercise (AE). The present investigation examined the effects of a HRE protocol and an AE protocol on immunoreactive GH (IGH) and bioactive GH (BGH) in active young and old women. Older women had a diminished serum IGH response to both the HRE and AE protocols compared to the younger women, however a similar response was not observed in serum BGH. Additionally, the HRE protocol elicited a greater BGH response than the AE protocol exclusively in the younger group. Regardless of exercise mode, aging induces an increase in growth hormone polymerization that specifically results in a loss of serum growth hormone immunoreactivity without a concurrent loss of serum growth hormone bioactivity. The greater BGH response to the HRE protocol found in the younger group can be attributed to an unknown serum factor of molecular weight between 30 and 55kD that either potentiated growth hormone bioactivity in response to HRE or inhibited growth hormone bioactivity in response to AE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The Effect of Growth Hormone on Lipid Accumulation or Maturation in Adipocytes

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    2016-11-01

    Full Text Available Background: Adipogenesis of adipocytes includes two stages: initiation and maturation. Growth hormone (GH secretion is decreased in obese subjects and GH levels are inversely correlated with abdominal fat mass. The effects of growth hormone (GH on lipids accumulation or maturation of adipocytes remains elusive. Methods: In the present study, effect of GH on lipid accumulation in vitro and in vivo was examined. cDNA microarray, quantitative real time-PCR (qPCR and western blotting was used to analyze the expression of genes related to adipocyte lipid accumulation or degradation in pre- or mature 3T3-F442A adipocytes treated with GH and in epididymal adipose tissue of C57BL/6 mice administrated with GH. Level of adiponectin in supernatants of cultured F442A adipocytes was determined by enzyme-linked immune-sorbent assay. Results: We found that in 3T3-F442A especially 6 days post initiation of adipogenesis, GH intervention resulted in decreased expression of adipocyte maturation regulators (C/EBPα, PPARγ and prominent genes related to lipid synthesis such as FAS and FABP, while the expression of UCP1 was markedly enhanced. cDNA microarray analysis and qPCR showed that the expression of SOCS2 and Adipor2 was increased under GH-treatment in mature 3T3-F442A adipocytes. GH treatment increased the mRNA expression of adiponectin and UCP1 in mature adipocytes. The above results were confirmed by in vivo study. Conclusions: GH potentially negatively modulates the maturation and accumulation of lipid in adipocytes.

  17. Binding properties of beetal recombinant caprine growth hormone to ...

    African Journals Online (AJOL)

    SAM

    2014-07-23

    Jul 23, 2014 ... The aim of the study was to illustrate the radio-receptor assay of beetal recombinant caprine growth hormone (rcGH) ... interaction with microsomal membrane that shall be beneficial to study hormone receptor interactions of other Bovidae .... adding 1 ml of ice cold assay buffer, followed by 1 ml of 25% (w/v).

  18. Neuroendocrine and Cardiovascular Risk Factors in Adults with Pituitary Growth Hormone Deficiency (Literature Review

    Directory of Open Access Journals (Sweden)

    S.I. Ismailov

    2013-08-01

    Full Text Available In this article authors discussed the results of literature review, which has been dedicated to study of different complications of growth hormone deficiency in adults, referring to the literature of the last 10–15 years. Based on this analysis, the authors concluded that in adults with growth hormone deficiency there is an adverse profile of cardiovascular risk. Patients with growth hormone deficiency have an adverse lipid profile, elevated body mass index, increased waist circumference and a high risk of hypertension. These disorders are likely to explain the increased cardiovascular mortality observed in patients with hypopituitarism, regardless of the etiology of growth hormone deficiency in adults.

  19. Growth hormone and selective attention : A review

    NARCIS (Netherlands)

    Quik, Elise H.; van Dam, P. Sytze; Kenemans, J. Leon

    Introduction: The relation between growth hormone (GH) secretion and general cognitive function has been established. General cognitive functioning depends on core functions including selective attention, which have not been addressed specifically in relation to GH. The present review addresses

  20. Justified and unjustified use of growth hormone.

    NARCIS (Netherlands)

    A-J. van der Lely (Aart-Jan)

    2004-01-01

    textabstractGrowth hormone (GH) replacement therapy for children and adults with proven GH deficiency due to a pituitary disorder has become an accepted therapy with proven efficacy. GH is increasingly suggested, however, as a potential treatment for frailty, osteoporosis,

  1. Growth hormone replacement normalizes impaired fibrinolysis: new insights into endothelial dysfunction in patients with hypopituitarism and growth hormone deficiency.

    Science.gov (United States)

    Miljic, D; Miljic, P; Doknic, M; Pekic, S; Stojanovic, M; Cvijovic, G; Micic, D; Popovic, V

    2013-12-01

    Cardiovascular morbidity in adult patients with growth hormone deficiency (GHD) and hypopituitarism is increased. Clustering of cardiovascular risk factors leading to endothelial dysfunction and impaired fibrinolysis has also been reported and may account for progression to overt vascular changes in these patients. However, effect of long lasting GH replacement therapy on fibrinolytic capacity in GH deficient patients has not been investigated so far. To investigate fibrinolysis before and after challenge with venous occlusion in GHD patients with hypopituitarism before and during one year of growth hormone replacement. Hospital based, interventional, prospective study. Twenty one patient with GHD and fourteen healthy control subjects matched for age, sex and body mass index (BMI). Anthropometric, metabolic and fibrinolytic parameters were measured at the start and after three, six and twelve months of treatment with human recombinant GH. At baseline GHD patients had significantly impaired fibrinolysis compared to healthy persons. During treatment with GH, significant changes were observed in insulin like growth factor 1(IGF-1) [from baseline 6.9(2.4-13.5) to 22.0(9.0-33.0) nmol/l after one month of treatment; p<0.01] and fibrinolysis. Improvement in fibrinolysis was mostly attributed to improvement of stimulated endothelial tissue plasminogen activator (t-PA) release in response to venous occlusion [from baseline 1.1(0.4-2.6) to 1.9(0.5-8.8) after one year of treatment; p<0.01]. Growth hormone replacement therapy has favorable effects on t-PA release from endothelium and net fibrinolytic capacity in GHD adults, which may contribute to decrease their risk of vascular complications. © 2013.

  2. Gastrointestinal hormone research - with a Scandinavian annotation

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2015-01-01

    Gastrointestinal hormones are peptides released from neuroendocrine cells in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gut, which makes it the largest hormone-producing organ in the body. Modern biology makes it feasible to conceive the hormones...... as a blood-borne hormone, a neurotransmitter, a local growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein-coupled receptors that are expressed in the cell membranes also outside the digestive tract. Thus, gut hormones not only regulate digestive functions...

  3. Effect of long-term growth hormone treatment on bone mass and bone metabolism in growth hormone-deficient men

    NARCIS (Netherlands)

    Bravenboer, N; Holzmann, PJ; ter Maaten, JC; Stuurman, LM; Roos, JC; Lips, P

    2005-01-01

    Long-term GH treatment in GH-deficient men resulted in a continuous increase in bone turnover as shown by histomorphometry. BMD continuously increased in all regions of interest, but more in the regions with predominantly cortical bone. Introduction: Adults with growth hormone (GH) deficiency have

  4. A Child with Local Lipohypertrophy following Recombinant Human Growth Hormone Administration

    Directory of Open Access Journals (Sweden)

    Ilan J. N. Koppen

    2016-01-01

    Full Text Available Local lipohypertrophy due to recombinant human growth hormone (rhGH administration is a rare phenomenon. Here, we report a case of an 11-year-old girl who presented with a paraumbilical swelling, approximately one year after the start of rhGH treatment for short stature due to the presumed diagnosis of partial growth hormone insensitivity. Ultrasound imaging revealed an asymmetric distribution of subcutaneous fat tissue at the rhGH administration site, indicating local lipohypertrophy. After sparing her routine injection site and alternating other sites, the swelling disappeared within 6 months. Although the precise cause of local lipohypertrophy resulting from rhGH administration is still unclear, it might be related to the presumed diagnosis of partial growth hormone insensitivity.

  5. Polymorphisms in the pituitary growth hormone gene and its ...

    Indian Academy of Sciences (India)

    2010-12-06

    Dec 6, 2010 ... GHR variant showed significant association of the GHRd3 deletion allele with CAD (OR 0.48, ...... against scarcity of food supply in this population (Millar et ..... hormone treatment reduces hypertension and obesity induced by.

  6. Growth hormone deficiency and pituitary malformation in a recurrent Cat-Eye syndrome: a family report.

    Science.gov (United States)

    Jedraszak, Guillaume; Braun, Karine; Receveur, Aline; Decamp, Matthieu; Andrieux, Joris; Rabbind Singh, Amrathlal; Copin, Henri; Bremond-Gignac, Dominique; Mathieu, Michèle; Rochette, Jacques; Morin, Gilles

    2015-10-01

    Growth hormone deficiency affects roughly between one in 3000 and one in 4000 children with most instances of growth hormone deficiency being idiopathic. Growth hormone deficiency can also be associated with genetic diseases or chromosome abnormalities. Association of growth hormone deficiency together with hypothalamic-pituitary axis malformation and Cat-Eye syndrome is a very rare condition. We report a family with two brothers presenting with growth delay due to a growth hormone deficiency associated with a polymalformation syndrome. They both displayed pre-auricular pits and tags, imperforate anus and Duane retraction syndrome. Both parents and a third unaffected son displayed normal growth pattern. Cerebral MRI showed a hypothalamic-pituitary axis malformation in the two affected brothers. Cytogenetic studies revealed a type I small supernumerary marker chromosome derived from chromosome 22 resulting in a tetrasomy 22pter-22q11.21 characteristic of the Cat-Eye syndrome. The small supernumerary marker chromosome was present in the two affected sons and the mother in a mosaic state. Patients with short stature due to growth hormone deficiency should be evaluated for chromosomal abnormality. Family study should not be underestimated. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Neuroprotective actions of ghrelin and growth hormone secretagogues

    Directory of Open Access Journals (Sweden)

    Laura M. Frago

    2011-09-01

    Full Text Available The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone (GH secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, GHS-R1a, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved.

  8. Pathology of excessive production of growth hormone.

    Science.gov (United States)

    Scheithauer, B W; Kovacs, K; Randall, R V; Horvath, E; Laws, E R

    1986-08-01

    Since its clinical description in the last century, much progress has been made in our understanding of acromegaly. From an initial description of pituitary enlargement as just another manifestation of generalized visceromegaly, the pituitary abnormality has come to be recognized, in most instances, as the underlying aetiological factor. Gigantism and acromegaly are manifestations of disordered pituitary physiology, but the lesion responsible may be hypothalamic, adenohypophyseal or ectopic in location. The best known pathological hypothalamic basis for acromegaly is represented by a neuronal malformation or 'gangliocytoma'. It usually takes the form of an intrasellar gangliocytoma or, more rarely, a hypothalamic hamartoma. The neuronal elaboration of GHRH may play a role in the development of a growth hormone adenoma; the pituitary process may pass through an intermediate stage of somatotropic hyperplasia. When acromegaly has its basis in a pituitary abnormality, the lesion is almost exclusively an adenoma; the non-tumorous adenohypophysis shows no evidence of coexistent hyperplasia. Surprisingly, such tumours are more often engaged in the formation of multiple hormones rather than GH alone. They frequently produce not only GH and prolactin, the products characteristics of cells of the acidophil line, but also glycoprotein hormones, usually TSH. The spectrum of adenomas also varies in its degree of differentiation from a histogenetically primitive lesion, the acidophil stem cell adenoma, to well-differentiated tumours of varying cellular composition and hormone content. Each adenoma type has its clinicopathological, histochemical, immunocytological and ultrastructural characteristics. The isolation and characterization of GHRH has permitted the identification of neuroendocrine tumours, most of foregut origin, elaborating this releasing hormone. Such functional tumours induce hyperplasia of pituitary somatotrophs and may, on occasion, result in the formation of

  9. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  10. Improved growth velocity of a patient with Noonan-like syndrome with loose anagen hair (NS/LAH) without growth hormone deficiency by low-dose growth hormone therapy.

    Science.gov (United States)

    Takasawa, Kei; Takishima, Shigeru; Morioka, Chikako; Nishioka, Masato; Ohashi, Hirofumi; Aoki, Yoko; Shimohira, Masayuki; Kashimada, Kenichi; Morio, Tomohiro

    2015-10-01

    Noonan-like syndrome with loose anagen hair (NS/LAH; OMIM 607721) is caused by a heterozygous c.4A>G mutation in SHOC2. Most cases exhibit both growth hormone deficiency (GHD) and growth hormone insensitivity (GHI) and thus require a high dose of growth hormone (GH) therapy (e.g., 35-40 µg/kg/day). We report on a genetically diagnosed NS/LAH patient manifesting severe short stature (-3.85 SDs) with low serum level of IGF1, 30 ng/ml. The peak levels of GH stimulation tests were within the normal range, and GHI was not observed in the IGF1 generation test. However, with low-dose GH therapy (25 µg/kg/day) for two years, IGF1 level and height were remarkably improved (IGF1: 117 ng/ml, height SDs: -2.20 SDs). Further, catch-up of motor development and improvement of the proportion of extending limbs to trunk were observed (the Developmental Quotient score increased from 68 to 98 points, and the relative sitting height ratio decreased from 0.62 to 0.57). Our results suggest that endocrinological causes for short stature are variable in NS/LAH and that GH therapy should be considered as a possible treatment for delayed development in NS/LAH. © 2015 Wiley Periodicals, Inc.

  11. Changes in serum concentrations of growth hormone, insulin, insulin-like growth factor and insulin-like growth factor-binding proteins 1 and 3 and urinary growth hormone excretion during the menstrual cycle

    DEFF Research Database (Denmark)

    Juul, A; Scheike, Thomas Harder; Pedersen, A T

    1997-01-01

    Few studies exist on the physiological changes in the concentrations of growth hormone (GH), insulin-like growth factors (IGF) and IGF-binding proteins (IGFBP) within the menstrual cycle, and some controversy remains. We therefore decided to study the impact of endogenous sex steroids on the GH-I...

  12. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens

    Science.gov (United States)

    Liu, Yong; Xu, Zhiqiang; Duan, Xiaohua; Li, Qihua; Dou, Tengfei; Gu, Dahai; Rong, Hua; Wang, Kun; Li, Zhengtian; Talpur, Mir Zulqarnain; Huang, Ying; Wang, Shanrong; Yan, Shixiong; Tong, Huiquan; Zhao, Sumei; Zhao, Guiping; Su, Zhengchang; Ge, Changrong

    2018-01-01

    The growth hormone / insulin-like growth factor-1 (GH/IGF-1) pathway of the somatotropic axis is the major controller for growth rate and body size in vertebrates, but the effect of selection on the expression of GH/IGF-1 somatotropic axis genes and their association with body size and growth performance in farm animals is not fully understood. We analyzed a time series of expression profiles of GH/IGF-1 somatotropic axis genes in two chicken breeds, the Daweishan mini chickens and Wuding chickens, and the commercial Avian broilers hybrid exhibiting markedly different body sizes and growth rates. We found that growth rate and feed conversion efficiency in Daweishan mini chickens were significantly lower than those in Wuding chickens and Avian broilers. The Wuding and Daweishan mini chickens showed higher levels of plasma GH, pituitary GH mRNA but lower levels of hepatic growth hormone receptor (GHR) mRNA than in Avian broilers. Daweishan mini chickens showed significantly lower levels of plasma IGF-1, thigh muscle and hepatic IGF-1 mRNA than did Avian broilers and Wuding chickens. These results suggest that the GH part of the somatotropic axis is the main regulator of growth rate, while IGF-1 may regulate both growth rate and body weight. Selection for growth performance and body size have altered the expression profiles of somatotropic axis genes in a breed-, age-, and tissue-specific manner, and manner, and alteration of regulatory mechanisms of these genes might play an important role in the developmental characteristics of chickens. PMID:29630644

  13. Effect of growth hormone on glycogenesis in rat cerebral cortical slices

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Azad, V.S.S.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    Incubation of cerebral cortical slices of growth hormone treated diabetic and normal rats with U- 14 C glucose showed a two-fold increase in glycogenesis in diabetic rats. Glucose-6-phosphatase activity was lowered while the activities of phosphoglucomutase and phosphorylase were elevated in the cerebral cortex of diabetic rats treated with growth hormone. However, glycogen synthetase activity was slightly depressed. (author). 13 refs., 2 tabs

  14. Pituitary and mammary growth hormone in dogs

    NARCIS (Netherlands)

    Bhatti, Sofie Fatima Mareyam

    2006-01-01

    Several pathological (e.g. obesity and chronic hypercortisolism) and non-pathological (e.g. ageing) states in humans are characterized by a reduction in pituitary growth hormone (GH) secretion. Chronic hypercortisolism in humans is also associated with an impaired GH response to various stimuli.

  15. Growth hormone, prolactin and cortisol response to exercise in patients with depression

    DEFF Research Database (Denmark)

    Krogh, Jesper; Nordentoft, Merete; Mohammad-Nezhad, Mahdi

    2010-01-01

    BACKGROUND: A blunted growth hormone and prolactin response to pharmacological stress test have previously been found in depressed patients, as well as an increased cortisol response to psychosocial stress. This study investigated these hormones in response to acute exercise using an incremental...... bicycle test. METHOD: A cross-sectional comparison of cortisol, growth hormone, and prolactin in depressed (n=137) and healthy (n=44) subjects during rest and in response to an incremental bicycle test. Secondly, we tested the depressed patients again after a 4-month randomized naturalistic exercise...... intervention. RESULTS: Resting plasma levels of growth hormone (GH), cortisol, or prolactin (PRL) did not differ between depressed and healthy subjects (all p-values>.12). In response to an incremental bicycle test the GH (p=.02) and cortisol (p=.05) response in depressed was different compared to healthy...

  16. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    Science.gov (United States)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  17. Growth hormone receptor deficiency (Laron syndrome) in black ...

    African Journals Online (AJOL)

    Non-Caucasians with growth honnone receptor (GHR) deficiency/Lamn syndrome among the .... 4,3 cm (-2,4 SOS for bone age 8,5 years at age 12); the girl's height at age 7 years was 77,5 cm (-8,0 SOS, height ... of serum incubated with '25I-labelled human growth hormone and expressed as relative specific binding ...

  18. Growth hormone and nutrition as protective agents against methotrexate induced enteritis.

    Science.gov (United States)

    Ortega, M; de Segura, I A; Vázquez, I; López, J M; De Miguel, E

    2001-03-01

    To determine whether exogenously administered growth hormone can reduce or prevent chemotherapy-induced intestinal mucosa injury. The expected results will allow to consider its potential clinical use. Experimental and randomized study. Experimental Surgery Service, La Paz University Hospital. Adult Wistar rats weighing 250-300 g. A chemotherapy protocol with methotrexate (MTX) (120 mg/kg) was employed. Animals fed either with a normoproteic or a hyperproteic liquid diet were treated with either saline or growth hormone (1 mg/kg/day) since three days before until four days after chemotherapy. Animals were sacrificed seven days after MTX administration for tissue sampling. Co-administration of growth hormone and a hyperproteic diet increased intestinal crypt proliferation and reduced MTX-induced apoptosis. Jejunal mucosal structure (morphometry), proliferation (Ki-67) and apoptosis (TUNNEL) were assessed.

  19. Irisin inhibition of growth hormone secretion in cultured tilapia pituitary cells.

    Science.gov (United States)

    Lian, Anji; Li, Xin; Jiang, Quan

    2017-01-05

    Irisin, the product of fibronectin type III domain-containing protein 5 (FNDC5) gene, is well-documented to be a regulator of energy metabolism. At present, not much is known about its biological function in non-mammalian species. In this study, a full-length tilapia FDNC5 was cloned and its tissue expression pattern has been confirmed. Based on the sequence obtained, we produced and purified recombinant irisin which could induce uncoupling protein 1 (UCP1) gene expression in tilapia hepatocytes. Further, the rabbit polyclonal irisin antiserum was produced and its specificity was confirmed by antiserum preabsorption. In tilapia pituitary cells, irisin inhibited growth hormone (GH) gene expression and secretion and triggered rapid phosphorylation of Akt, Erk1/2, and p38 MAPK. Furthermore, irisin-inhibited GH mRNA expression could be prevented by inhibiting PI3K/Akt, MEK1/2, and p38 MAPK, respectively. Apparently, fish irisin can act directly at the pituitary level to inhibit GH transcript expression via multiple signaling pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. European audit of current practice in diagnosis and treatment of childhood growth hormone deficiency

    DEFF Research Database (Denmark)

    Juul, Anders; Bernasconi, Sergio; Clayton, Peter E

    2002-01-01

    The present survey among members of the ESPE on current practice in diagnosis and treatment of growth hormone (GH) deficiency (GHD) is of great clinical relevance and importance in the light of the recently published guidelines for diagnosis and treatment of GHD by the Growth Hormone Research...... Society. We have found much conformity but also numerous discrepancies between the recommendations of the Growth Hormone Research Society and the current practice in Europe....

  1. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development1

    Science.gov (United States)

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-01-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. PMID:26232489

  2. Developmental programming: the role of growth hormone.

    Science.gov (United States)

    Oberbauer, Anita M

    2015-01-01

    Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.

  3. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  4. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise.

    Science.gov (United States)

    Kraemer, William J; Ratamess, Nicholas A; Nindl, Bradley C

    2017-03-01

    The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body's response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process. Copyright © 2017 the American Physiological Society.

  5. Effects of Growth Hormone Replacement on Peripheral Muscle and Exercise Capacity in Severe Growth Hormone Deficiency

    Directory of Open Access Journals (Sweden)

    Susana Gonzalez

    2018-02-01

    Full Text Available ObjectiveThe aim of this study is to evaluate the effect of growth hormone therapy (rGH on mitochondrial function on peripheral muscle and to correlate with exercise capacity in subjects with severe adult growth hormone deficiency (GHD.DesignSix months, double-blind, randomized, crossover, placebo-controlled trial of subcutaneous rGH in 17 patients with GHD.MeasurementsQuadriceps muscle biopsies were obtained at baseline, 3 months, and 6 months to measure succinate dehydrogenase (SDH to assess mitochondrial activity. Exercise capacity was measured with cardiopulmonary exercise testing. Lipids, glycemic parameters, and body fat levels were also measured.ResultsSerum insulin-like growth factor 1 (IGF1 levels reduced fat mass by 3.2% (p < 0.05 and normalized with rGH in the active phase (p < 0.005. Patients showed an increase in SDH (p < 0.01 from base line that differed between placebo and rGH therapy treatment groups (p < 0.05: those treated by rGH followed by placebo showed a significant increase in SDH (p < 0.001 followed by a decrease, with a significant between group difference at the end of 6 months (p < 0.05. No significant improvements or correlation with exercise capacity was found.ConclusionShort-term rGH for 3 months normalized IGF1 levels, reduced fat mass, and had a significant effect on mitochondrial function, but exercise capacity was unchanged.Clinical Trial RegistrationNumber ISRCTN94165486.

  6. Influence of growth hormone replacement on neurological and psychomotor development. Case report.

    Science.gov (United States)

    Motta, Felipe; Eisencraft, Adriana Pasmanik; Crisostomo, Lindiane Gomes

    2018-05-14

    The height response to the use of growth hormone in short height cases has already been confirmed in the literature. The influence of the insulin-like growth factor 1 (GH-IGF1) axis components on development, function, regeneration, neuroprotection, cognition, and motor functions has been evaluated in experimental studies and in adults with central nervous system lesions. However, there is still little research on the clinical impact of hormone replacement on neurological and psychomotor development. This report presents the case of a patient with excellent weight-height recovery and, even more surprisingly, neurological and psychomotor development in response to use of growth hormone. The result strengthens the correlation between experimental and clinical findings related to cerebral plasticity response to growth hormone in children. A preterm male patient with multiple health problems during the neonatal and young infancy period, who for six years presented with a relevant deficit in growth, bone maturation, and neurological and psychomotor development. At six years of age, he had low stature (z-score -6.89), low growth rate, and low weight (z-score -7.91). He was incapable of sustaining his axial weight, had not developed fine motor skills or sphincter control, and presented with dysfunctional swallowing and language. Supplementary tests showed low IGF-11 levels, with no changes on the image of the hypothalamus-pituitary region, and bone age consistent with three-year-old children - for a chronological age of six years and one month. Growth hormone replacement therapy had a strong impact on the weight-height recovery as well as on the neurological and psychomotor development of this child.

  7. Cognitive and Adaptive Advantages of Growth Hormone Treatment in Children with Prader-Willi Syndrome

    Science.gov (United States)

    Dykens, Elisabeth M.; Roof, Elizabeth; Hunt-Hawkins, Hailee

    2017-01-01

    Background: People with Prader-Willi syndrome (PWS) typically have mild to moderate intellectual deficits, compulsivity, hyperphagia, obesity, and growth hormone deficiencies. Growth hormone treatment (GHT) in PWS has well-established salutatory effects on linear growth and body composition, yet cognitive benefits of GHT, seen in other patient…

  8. Recombinant-derived chicken growth hormone used for radioimmunoassay

    International Nuclear Information System (INIS)

    Proudman, J.A.

    1984-01-01

    The use of recombinant-derived chicken growth hormone (rcGH) in an avian growth hormone (GH) radioimmunoassay (RIA) procedure is described. Antiserum to turkey GH bound 125 I-labeled rcGH, and unlabeled rcGH or turkey GH displaced binding in a dose-related manner. The dose-response curves of sera and pituitary extract from chickens and turkeys were parallel to the rcGH standard curve. Sera from hypophysectomized (hypox) chickens and turkeys produced no dose-response and did not inhibit binding of labeled rcGH. Recovery of rcGH added to hypox sera was quantitative. Modification of the homologous turkey GH RIA protocol of Proudman and Wentworth (1) to use rcGH made possible either an increase in assay sensitivity or a 3-day reduction in incubation time

  9. Effect of growth hormone replacement therapy on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults

    NARCIS (Netherlands)

    J.A. Beentjes; A. van Tol (Arie); W.J. Sluiter (Wim); R.P.F. Dullaart (Robin)

    2000-01-01

    textabstractThe effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, are

  10. Growth hormone treatment in children with rheumatic disease, corticosteroid induced growth retardation, and osteopenia

    NARCIS (Netherlands)

    F.K. Grote (Floor); L.W.A. van Suijlekom-Smit (Lisette); D. Mul (Dick); W.C.J. Hop (Wim); R. ten Cate (Rebecca); W. Oostdijk (Wilma); W.H.J. van Luijk (Wilma); C.J.A. Jansen-Van Wijngaarden (C. J A); S.M.P.F. de Muinck Keizer-Schrama (Sabine)

    2006-01-01

    textabstractBackground: In children with severe rheumatic disease (RD), treatment with corticosteroids (CS) is frequently needed and growth retardation and osteopenia may develop. A beneficial effect of human growth hormone (hGH) has been reported but mostly in trials without a control group. Aims:

  11. Response to three years of growth hormone therapy in girls with Turner syndrome

    Directory of Open Access Journals (Sweden)

    Hong Kyu Park

    2013-03-01

    Full Text Available PurposeShort stature is the most common finding in patients with Turner syndrome. Improving the final adult height in these patients is a challenge both for the patients and physicians. We investigated the clinical response of patients to growth hormone treatment for height improvement over the period of three years.MethodsReview of medical records from 27 patients with Turner syndrome treated with recombinant human growth hormone for more than 3 years was done. Differences in the changes of height standard deviation scores according to karyotype were measured and factors influencing the height changes were analyzed.ResultsThe response to recombinant human growth hormone was an increase in the height of the subjects to a mean value of 1.1 standard deviation for subjects with Turner syndrome at the end of the 3-year treatment. The height increment in the first year was highest. The height standard deviation score in the third year was negatively correlated with the age at the beginning of the recombinant human growth hormone treatment. Different karyotypes in subjects did not seem to affect the height changes.ConclusionEarly growth hormone administration in subjects with Turner syndrome is helpful to improve height response to the treatment.

  12. [Issues related to secondary osteoporosis associated with growth hormone deficiency in adulthood].

    Science.gov (United States)

    Kužma, Martin; Jackuliak, Peter; Killinger, Zdenko; Vaňuga, Peter; Payer, Juraj

    Growth hormone (GH) increases linear bone growth through complex hormonal reactions, mainly mediated by insulin like growth factor 1 (IGF1) that is produced mostly by hepatocytes under influence of GH and stimulates differentiation of epiphyseal prechondrocytes. IGF1 and GH play a key role in the linear bone growth after birth and regulation of bone remodelation during the entire lifespan. It is known that adult GH deficient (GHD) patients have decreased BMD and increased risk of low-impact fractures. Most data gathered thus far on the effect of GH replacement on bone status comprise the measurement of quantitative changes of bone mass. Some animal studies with GHD showed that the bone microarchitecture, measured using computed tomography methods, is significantly compromised and improve after GH replacement. However, human studies did not show significantly decreased bone microarchitecture, but limited methodological quality does not allow firm conclusions on this subject.Key words: bone mass - bone quality - fracture - growth hormone - IGF1.

  13. Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene.

    Science.gov (United States)

    Kennedy, Oran D; Sun, Hui; Wu, Yingjie; Courtland, Hayden-William; Williams, Garry A; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B; Yakar, Shoshana

    2014-03-01

    IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.

  14. Characterization, expression patterns of molt-inhibiting hormone gene of Macrobrachium nipponense and its roles in molting and growth.

    Science.gov (United States)

    Qiao, Hui; Jiang, Fengwei; Xiong, Yiwei; Jiang, Sufei; Fu, Hongtuo; Li, Fei; Zhang, Wenyi; Sun, Shengming; Jin, Shubo; Gong, Yongsheng; Wu, Yan

    2018-01-01

    The oriental river prawn, Macrobrachium nipponense, is an important commercial aquaculture resource in China. In order to overwinter, M. nipponense displays decreased physiological activity and less consumption of energy. Sudden warming would trigger molting and cause an extensive death, resulting in huge economic losses. Therefore, it is of great practical significance to study the molting mechanism of oriental river prawns. Molt-inhibiting hormone gene (MIH) plays a major role in regulating molting in crustaceans. In this study, a full length MIH cDNA of M. nipponense (Mn-MIH) was cloned from the eyestalk. The total length of the Mn-MIH was 925 bp, encoding a protein of 119 amino acids. Tissue distribution analysis showed that Mn-MIH was highly expressed in the eyestalk, and that it had relatively low expression in gill, ovary, and abdominal ganglion. Mn-MIH was detected in all developmental stages, and changed regularly in line with the molting cycle of the embryo and larva. Mn-MIH varied in response to the molting cycle, suggesting that Mn-MIH negatively regulates ecdysteroidogenesis. Mn-MIH inhibition by RNAi resulted in a significant acceleration of molting cycles in both males and females, confirming the inhibitory role of MIH in molting. After long-term RNAi males, but not females had significant weight gain, confirming that Mn-MIH plays an important role in growth of M. nipponense. Our work contributes to a better understanding of the role of Mn-MIH in crustacean molting and growth.

  15. Developmental processes and responses to hormonal stimuli in tea plant (Camellia sinensis) leaves are controlled by GRF and GIF gene families.

    Science.gov (United States)

    Wu, Zhi-Jun; Wang, Wen-Li; Zhuang, Jing

    2017-09-01

    Tea plant (Camellia sinensis (L.) O. Kuntze) is an important leaf-type woody crop used for producing of non-alcoholic beverages worldwide. The GROWTH-REGULATING FACTOR (GRF) transcription factors cooperated with GRF-INTERACTING FACTOR (GIF) transcriptional coactivators positively regulate leaf development. In the present study, six GRF and two GIF genes were identified and characterized in the leaf transcriptome of C. sinensis, respectively. The alignment results showed that the feature structures of the predicted homologous GRF and GIF proteins of C. sinensis hold a high identity with Arabidopsis and rice. The presence of C. sinensis miR396 target sites suggested that these miR396 members are the potential post-transcriptional regulators of CsGRF genes. The expression profiles of CsGRF and CsGIF1 genes were higher in tender leaves and consistently downregulated during tea plant leaf development. Those results suggested that these genes may be actively involved in the early stage leaf tissue formation in tea plant. The divergence of CsGRF and CsGIF genes in response to different hormonal stimuli revealed the possible multiple functions of these genes in hormonal regulation. This study provided the potential molecular basis of the CsGRF and CsGIF family genes for future functional research on leaf development and hormonal stimuli in C. sinensis.

  16. Growth hormone deficiency and central hypogonadism in retired professional football players

    Directory of Open Access Journals (Sweden)

    Gábor László Kovács

    2016-12-01

    Full Text Available Purpose: The aim of this cross-sectional study was to evaluate the possible impact of multiple mild head traumas sustained during a long-term football career on the presence of central hypogonadism and growth hormone (GH deficiency. Methods: Twenty-seven retired, former professional male football players were investigated. All subjects were assessed for serum levels of insulin-like growth factor (IGF-1, luteinizing hormone (LH and total testosterone (TT. Quality of life was quantified using the Assessment of Growth Hormone Deficiency in Adults (QoL-AGHDA questionnaire. Results: Subjects had a median age of 48.0 (42.0 – 53.0 years and a median football career of 29.0 years (22.0 – 32.0. One subject had central hypogonadism and none had growth hormone deficiency. Nine subjects reported sport-related head injuries. We found a negative correlation between sport-related head injuries and serum LH (p = -0.459, P = 0.016. Subjects with a history of sport-related head injury had a median LH of 3.3 U/L (2.7 – 3.6, while those without a history of sport-related head injury had a median LH of 4.1 (U/L (3.6 – 5.7, P = 0.017. However, there were no differences in other hormones between the two groups. Moreover, we did not find any correlation between the duration of the player’s career nor their field position with hormone profiles or QoL-AGHDA. Conclusion: Although retired footfall players with a history of sport-related head injury had lower LH levels, we did not find strong evidence of an increased prevalence of central hypogonadism or GH deficiency in these patients. Our results suggest that a long-term football career, which includes headings and repetitive mild head traumas, does not damage the most vulnerable anterior pituitary cells.

  17. Growth hormone treatment in children with rheumatic disease, corticosteroid induced growth retardation, and osteopenia

    NARCIS (Netherlands)

    Grote, FK; van Suijlekom-Smit, LWA; Mul, D; Hop, WCJ; ten Cate, R; Oostdijk, W; Van Luijk, W; Jansen-van Wijngaarden, CJA; Keizer-Schrama, SMPFD

    Background: In children with severe rheumatic disease (RD), treatment with corticosteroids (CS) is frequently needed and growth retardation and osteopenia may develop. A beneficial effect of human growth hormone (hGH) has been reported but mostly in trials without a control group. Aims: To study the

  18. Impact of growth hormone therapy on adult height of children with idiopathic short stature: systematic review.

    Science.gov (United States)

    Deodati, Annalisa; Cianfarani, Stefano

    2011-03-11

    To systematically determine the impact of growth hormone therapy on adult height of children with idiopathic short stature. Systematic review. Cochrane Central Register of Controlled Trials, Medline, and the bibliographic references from retrieved articles of randomised and non-randomised controlled trials from 1985 to April 2010. Height in adulthood (standard deviation score) and overall gain in height (SD score) from baseline measurement in childhood. Randomised and non-randomised controlled trials with height measurements for adults. Inclusion criteria were initial short stature (defined as height >2 SD score below the mean), peak growth hormone responses >10 μg/L, prepubertal stage, no previous growth hormone therapy, and no comorbid conditions that would impair growth. Adult height was considered achieved when growth rate was growth hormone treated children exceeded that of the controls by 0.65 SD score (about 4 cm). The mean height gain in treated children was 1.2 SD score compared with 0.34 SD score in untreated children. A slight difference of about 1.2 cm in adult height was observed between the two growth hormone dose regimens. In the seven non-randomised controlled trials the adult height of the growth hormone treated group exceeded that of the controls by 0.45 SD score (about 3 cm). Growth hormone therapy in children with idiopathic short stature seems to be effective in partially reducing the deficit in height as adults, although the magnitude of effectiveness is on average less than that achieved in other conditions for which growth hormone is licensed. The individual response to therapy is highly variable, and additional studies are needed to identify the responders.

  19. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant “Yanfu 6”

    Science.gov (United States)

    Song, Chunhui; Zhang, Dong; Zheng, Liwei; Zhang, Jie; Zhang, Baojuan; Luo, Wenwen; Li, Youmei; Li, Guangfang; Ma, Juanjuan; Han, Mingyu

    2017-01-01

    The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of “Nagafu 2” (CF) and spur-type bud mutation “Yanfu 6” (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture. PMID:28424721

  20. AAS, growth hormone, and insulin abuse: psychological and neuroendocrine effects

    Directory of Open Access Journals (Sweden)

    Michael R Graham

    2008-06-01

    Full Text Available Michael R Graham1, Peter Evans2, Bruce Davies1, Julien S Baker11Health and Exercise Science Research Unit, Faculty of Health Sport and Science, University of Glamorgan, Pontypridd, Wales, United Kingdom; 2Royal Gwent Hospital, Newport, Gwent, United KingdomAbstract: The nontherapeutic use of prescription medicines by individuals involved in sport is increasing. Anabolic-androgenic steroids (AAS are the most widely abused drug. Much of our knowledge of the psychological and physiological effects of human growth hormone (hGH and insulin has been learned from deficiency states. As a consequence of the Internet revolution, previously unobtainable and expensive designer drugs, particularly recombinant human growth hormone (rhGH and insulin, have become freely available at ridiculously discounted prices from countries such as China and are being abused. These drugs have various physiological and psychological effects and medical personnel must become aware that such prescription medicine abuse appears to be used not only for performance and cosmetic reasons, but as a consequence of psychological pre-morbidity.Keywords: AAS, cosmesis, growth hormone, insulin, performance, strength

  1. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  2. Urine metabonomic profiling of a female adolescent with PIT-1 mutation before and during growth hormone therapy: insights into the metabolic effects of growth hormone.

    Science.gov (United States)

    Abd Rahman, Shaffinaz; Schirra, Horst Joachim; Lichanska, Agnieszka M; Huynh, Tony; Leong, Gary M

    2013-01-01

    Growth hormone (GH) is a protein hormone with important roles in growth and metabolism. The objective of this study was to investigate the metabolism of a human subject with severe GH deficiency (GHD) due to a PIT-1 gene mutation and the metabolic effects of GH therapy using Nuclear Magnetic Resonance (NMR)-based metabonomics. NMR-based metabonomics is a platform that allows the metabolic profile of biological fluids such as urine to be recorded, and any alterations in the profile modulated by GH can potentially be detected. Urine samples were collected from a female subject with severe GHD before, during and after GH therapy, and from healthy age- and sex-matched controls and analysed with NMR-based metabonomics. The samples were collected at a hospital and the study was performed at a research facility. We studied a 17 year old female adolescent with severe GHD secondary to PIT-1 gene mutation who had reached final adult height and who had ceased GH therapy for over 3 years. The subject was subsequently followed for 5 years with and without GH therapy. Twelve healthy age-matched female subjects acted as control subjects. The GH-deficient subject re-commenced GH therapy at a dose of 1 mg/day to normalise serum IGF-1 levels. Urine metabolic profiles were recorded using NMR spectroscopy and analysed with multivariate statistics to distinguish the profiles at different time points and identify significant metabolites affected by GH therapy. NMR-based metabonomics revealed that the metabolic profile of the GH-deficient subject altered with GH therapy and that her profile was different from healthy controls before, and during withdrawal of GH therapy. This study illustrates the potential use of NMR-based metabonomics for monitoring the effects of GH therapy on metabolism by profiling the urine of GH-deficient subjects. Further controlled studies in larger numbers of GH-deficient subjects are required to determine the clinical benefits of NMR-based metabonomics in

  3. Fibroblast growth factor 23 - et fosfatregulerende hormon

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe; Pedersen, Susanne Møller; Kassem, Moustapha

    2010-01-01

    Fibroblast growth factor 23 (FGF23) er et nyligt identificeret fosfatonin. FGF23's fysiologiske hovedfunktion er at opretholde normalt serumfosfat og at virke som et D-vitaminmodregulatorisk hormon. Sygdomme, der er koblet til forhøjet serum FGF23, er hypofosfatæmisk rakitis, fibrøs dysplasi og t...

  4. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    International Nuclear Information System (INIS)

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-01-01

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test ≥7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  5. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  6. [The changes of ghrelin, growth hormone, growth hormone releasing hormone and their clinical significances in patients with chronic obstructive pulmonary disease].

    Science.gov (United States)

    Xu, Zhi-song; Bao, Zi-yu; Wang, Zhi-ying; Yang, Guo-jun; Zhu, Dong-fang; Zhang, Li; Tan, Rong-mei

    2012-07-01

    To investigate the changes of plasma ghrelin, growth hormone (GH) and growth hormone releasing hormone (GHRH) and gastric ghrelin in patients with chronic obstructive pulmonary disease (COPD) and to explore their clinical significances. Plasma ghrelin, GH, GHRH, TNFα, IL-6 and C reactive protein (CRP) were measured in 40 COPD patients and 20 controls with chronic bronchitis. Correlated factors of plasma ghrelin, TNFα, IL-6, CRP were analyzed. Body composition was assessed with bioelectrical impedance analysis. The expression of gastric ghrelin in patients with COPD was detected. Plasma ghrelin was higher in the underweight patients than in the normal weight patients and in the controls [(1.78 ± 0.46) ng/L, (1.39 ± 0.46) ng/L, (1.36 ± 0.39) ng/L, respectively]. Plasma GH was lower in the underweight patients than in the normal weight patients and in the controls [(4.12 ± 0.83) µg/L, (5.17 ± 0.72)µg/L, (6.49 ± 1.13) µg/L, respectively]. Plasma GHRH was lower in the underweight patients than in the normal weight patients and in the controls [(20.43 ± 4.41) ng/L, (23.47 ± 3.97) ng/L, (27.48 ± 10.06) ng/L, respectively]. Plasma ghrelin was higher in the underweight patients than in the controls (P 0.05). Plasma ghrelin was positively correlated with TNFα and IL-6 in the underweight patients. The gastric expression of ghrelin showed no evident difference between the patients with COPD and the controls. The plasma GH in COPD patients may not be correlated with ghrelin. The plasma ghrelin level may be a useful indicator for malnutrition in COPD patients. Plasma ghrelin might be involved in the pathogenesis of CODP by affecting the body energy metabolism.

  7. Prolactin, thyrotropin, and growth hormone release during stress associated with parachute jumping.

    Science.gov (United States)

    Noel, G L; Dimond, R C; Earll, J M; Frantz, A G

    1976-05-01

    Prolactin, growth hormone, and thyrotropin (TSH) release during the stress of parachute jumping has been evaluated in 14 male subjects. Subjects were studied at several times before and immediately after their first military parachute jump. All three hormones had risen significantly 1 to 14 min after the jump, compared to mean levels measured immediately beforehand. Earlier studies of physical exercise by ourselves and others would suggest that emotional stress played a role in producing changes of this magnitude. We conclude that prolactin, TSH, and growth hormone are released in physiologically significant amounts in association with the stress of parachute jumping.

  8. Gigantism caused by growth hormone secreting pituitary adenoma

    OpenAIRE

    Rhee, Noorisaem; Jeong, Kumi; Yang, Eun Mi; Kim, Chan Jong

    2014-01-01

    Gigantism indicates excessive secretion of growth hormones (GH) during childhood when open epiphyseal growth plates allow for excessive linear growth. Case one involved a 14.7-year-old boy presented with extreme tall stature. His random serum GH level was 38.4 ng/mL, and failure of GH suppression was noted during an oral glucose tolerance test (OGTT; nadir serum GH, 22.7 ng/mL). Magnetic resonance imaging (MRI) of the brain revealed a 12-mm-sized pituitary adenoma. Transsphenoidal surgery was...

  9. Growth hormone insensitivity: Mexican case report

    Directory of Open Access Journals (Sweden)

    I Castilla-Cortazar

    2017-11-01

    Full Text Available Herein, we present a 14-year-old patient with short stature (134 cm referred from Paediatrics to our department for complementary evaluation since growth hormone (GH treatment failed to show any improvement. He was born premature and small for gestational age. Genital examination classified the patient as Tanner I–II with small penis and testicular size for his age. Biochemical analyses revealed normal GH levels with low serum insulin-like growth factor-1 (IGF-1. Molecular diagnosis confirmed several mutations in IGF1R and IGFALS, and so he was diagnosed with Laron Syndrome or GH insensibility and treated with IGF-1 substitutive therapy.

  10. Shared decision making and patient choice for growth hormone therapy: current perspectives

    Directory of Open Access Journals (Sweden)

    George B

    2016-06-01

    Full Text Available Belinda George, Vageesh Ayyar Department of Endocrinology, St. John’s Medical College Hospital, Bangalore, Karnataka, India Abstract: Growth hormone has now been available in medical practice for close to 50 years. Its use has provided dramatic results in patients with growth hormone deficiency and it is associated with an overall favorable safety profile. Over the years, the utility of growth hormone has expanded to include treatment for short stature associated with conditions other than growth hormone deficiency, and this situation warrants greater involvement of the child and parents in the shared decision-making process. Shared decision making is in good conformance to the principle of informed consent, and it also improves the compliance and adherence to therapy as the patient fully understands the benefit and safety of the treatment. In the pediatric-care setting, the decision-making interactions usually occur between the health care provider, patient, and parents. The process may range from an autonomous decision-making pattern, where the patient or parents are fully responsible for the decision taken, to the paternalistic decision-making pattern, where the health care provider assumes full responsibility for the decision taken. However, the ideal situation is one where a truly shared decision-making process happens, in which the doctor and patient/parents work together to choose an evidence-based option, in line with the patient’s preferences and wishes. The limited data available on shared decision making with regard to growth hormone replacement, however, is not very encouraging and suggests that the actual involvement of the parents as perceived by them is less than optimal. Introduction of a simple structured model for a shared decision-making process that can be easily incorporated into clinical practice and familiarization of health care providers with the same is essential to improve our shared decision-making practices

  11. Genetic variants in hormone-related genes and risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Tess Clendenen

    Full Text Available Sex hormones play a key role in the development of breast cancer. Certain polymorphic variants (SNPs and repeat polymorphisms in hormone-related genes are associated with sex hormone levels. However, the relationship observed between these genetic variants and breast cancer risk has been inconsistent. We conducted a case-control study nested within two prospective cohorts to assess the relationship between specific genetic variants in hormone-related genes and breast cancer risk. In total, 1164 cases and 2111 individually-matched controls were included in the study. We did not observe an association between potential functional genetic polymorphisms in the estrogen pathway, SHBG rs6259, ESR1 rs2234693, CYP19 rs10046 and rs4775936, and UGT1A1 rs8175347, or the progesterone pathway, PGR rs1042838, with the risk of breast cancer. Our results suggest that these genetic variants do not have a strong effect on breast cancer risk.

  12. Association between G316A growth hormone polymorphism and economic traits in pigs

    Directory of Open Access Journals (Sweden)

    Danielle Assis de Faria

    2006-01-01

    Full Text Available The association between G316A growth hormone polymorphism and quantitative traits was investigated in an F2 population of pigs. Association analyses were performed using a statistical model that included genotype, sex, batch and sex by genotype interaction as fixed effects and sire as random effect. The polymorphism was associated with the number of right teats (p = 0.03, heart weight (p = 0.04, lung weight (p = 0.05, carcass length determined by the Brazilian carcass classification method (p = 0.04, picnic shoulder weight (p = 0.07, jowl weight (p = 0.01, pH 24 h after slaughtering (p = 0.03 and drip loss (p = 0.01. Interaction between genotype and sex was observed for six performance traits. The additive effect was significant (p < 0.10 for heart weight, jowl weight and pH 24 h after slaughtering. The effect of dominance was significant (p < 0.05 for number of right teats, heart weight, carcass length, picnic shoulder weight and pH 24 h after slaughtering. This study shows that the growth hormone gene is a potential candidate for investigating the phenotypic variation of quantitative traits in pigs, and suggests its possible application in breeding programs.

  13. GROWTH HORMONE-, ALPHA-SUBUNIT AND THYROTROPIN-COSECRETING PITUITARY-ADENOMA IN FAMILIAL SETTING OF PITUITARY-TUMOR

    NARCIS (Netherlands)

    LINKS, TP; MONKELBAAN, JF; DULLAART, RPF; VANHAEFTEN, TW

    1993-01-01

    A patient with acromegaly and hyperthyroidism due to a growth hormone-, thyrotrophin- and alpha-subunit-secreting pituitary adenoma is described. His deceased father had suffered from a pituitary tumour, and was likely to have had acromegaly as well. Plasma growth hormone and insulin-like growth

  14. Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms?

    Science.gov (United States)

    Ma, Qiang; Huang, Hui; Sun, Long; Zhou, Tong; Zhu, Jingyuan; Cheng, Xuemin; Duan, Lijv; Li, Zhiyuan; Cui, Liuxin; Ba, Yue

    2017-12-01

    The occurrence of endemic fluorosis is derived from high fluoride levels in drinking water and industrial fumes or dust. Reproductive disruption is also a major harm caused by fluoride exposure besides dental and skeletal lesions. However, few studies focus on the mechanism of fluoride exposure on male reproductive function, especially the possible interaction of fluoride exposure and gene polymorphism on male reproductive hormones. Therefore, we conducted a cross-sectional study in rural areas of Henan province in China to explore the interaction between the estrogen receptor alpha (ERα) gene and fluoride exposure on reproductive hormone levels in male farmers living in the endemic fluorosis villages. The results showed that fluoride exposure significantly increased the serum level of estradiol in the hypothalamic-pituitary-testicular (HPT) axis in male farmers. Moreover, the observations indicated that fluoride exposure and genetic markers had an interaction on serum concentration of follicle-stimulating hormone and estradiol, and the interaction among different loci of the ERα gene could impact the serum testosterone level. Findings in the present work suggest that chronic fluoride exposure in drinking water could modulate the levels of reproductive hormones in males living in endemic fluorosis areas, and the interaction between fluoride exposure and ERα polymorphisms might affect the serum levels of hormones in the HPT axis in male farmers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of temperature on the radioiodination of human growth hormone

    International Nuclear Information System (INIS)

    Mohammed-Ali, S.A.; Salacinski, P.R.; Landon, J.

    1981-01-01

    Studies have been undertaken to assess the effect of altering the temperature at which human growth hormone is radioiodinated on the incorporation of 125 I and the immunoreactivity and stability of the labelled hormone. Employing highly purified monomeric hormone it proved possible, by the iodogen procedure, to prepare a labelled product of high specific activity irrespective of temperature. However, in radioiodinations performed at ambient temperature (20 to 25 degrees) significant amounts of the labelled hormone were in an aggregated form which was less immunoreactive than the 125 I-labelled monomeric hormone. Such aggregation was largely prevented by radioiodinating at low temperature (0 to 4 degrees) and even the large monomeric peak was more immunoreactive (about 95% bound in antibody excess) than the monomeric peak from iodinations performed at room temperature

  16. A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories.

    Directory of Open Access Journals (Sweden)

    Manfred Hallschmid

    Full Text Available Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05. The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05. Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation.

  17. GROWTH HORMONE TREATMENT OF CHILDREN WITH SHORT STATURE LIVED IN SAMARA REGION

    Directory of Open Access Journals (Sweden)

    E.G. Mikhailova

    2009-01-01

    Full Text Available Growth inhibition in children is heterogeneous state, and it may accompany many endocrine, somatic, genetic and chromosome diseases. Generally recognized medications for treatment of somatotropic insufficiency in present times are biosynthetic analogs of human growth hormone (hGH, obtained with DNA-recombinant technology. This article presents the results of estimation of effectiveness of hGH in treatment of children with short stature (n=77 with isolated deficiency of growth hormone, panhypopituitarism, Turner's syndrome, treated with hGH during 3 years. All patients had significant positive dynamics of clinical status, the velocity of grouth increased from 1.9 cm (initial per year to 11.0 cm (the end of first year, with following decrease to 5.3 cm per year. SDS index of growth had stable tendency to increase: medium SDS index of growth initially was -3.9 SD, on the end of third year – -2.0 SD. It was shown, that treatment with hGH is effective in any types of short stature.Key words: children, short stature, treatment, human growth hormone.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(1:108-113

  18. Growth Hormone (GH) and Cardiovascular System

    Science.gov (United States)

    Díaz, Oscar; Devesa, Pablo

    2018-01-01

    This review describes the positive effects of growth hormone (GH) on the cardiovascular system. We analyze why the vascular endothelium is a real internal secretion gland, whose inflammation is the first step for developing atherosclerosis, as well as the mechanisms by which GH acts on vessels improving oxidative stress imbalance and endothelial dysfunction. We also report how GH acts on coronary arterial disease and heart failure, and on peripheral arterial disease, inducing a neovascularization process that finally increases flow in ischemic tissues. We include some preliminary data from a trial in which GH or placebo is given to elderly people suffering from critical limb ischemia, showing some of the benefits of the hormone on plasma markers of inflammation, and the safety of GH administration during short periods of time, even in diabetic patients. We also analyze how Klotho is strongly related to GH, inducing, after being released from the damaged vascular endothelium, the pituitary secretion of GH, most likely to repair the injury in the ischemic tissues. We also show how GH can help during wound healing by increasing the blood flow and some neurotrophic and growth factors. In summary, we postulate that short-term GH administration could be useful to treat cardiovascular diseases. PMID:29346331

  19. Enhancement of bone formation in rabbits by recombinant human growth hormone

    International Nuclear Information System (INIS)

    Ehrnberg, A.; Brosjoe, O.; Laaftman, P.; Nilsson, O.; Stroemberg, L.

    1993-01-01

    We studied the effect of human recombinant growth hormone on diaphyseal bone in 40 adult rabbits. The diaphyseal periosteum of one femur in each animal was mechanically stimulated by a nylon cerclage band. The bands induced an increase in bone formation, bone mineral content, and maximum torque capacity of the diaphyseal bone at 1 and 2 months. Growth hormone enhanced the anabolic effect of the cerclage bands on bone metabolism, evidenced by a further increase in torsional strength of the femurs. (au) (32 refs.)

  20. Growth hormone treatment in aarskog syndrome: analysis of the KIGS (Pharmacia International Growth Database) data.

    NARCIS (Netherlands)

    Darendeliler, F.; Larsson, P.; Neyzi, O.; Price, A.D.; Hagenas, L.; Sipila, I.; Lindgren, A.; Otten, B.J.; Bakker, B.

    2003-01-01

    Aarskog syndrome is an X-linked disorder characterized by faciogenital dysplasia and short stature. The present study set out to determine the effect of growth hormone (GH) therapy in patients with Aarskog syndrome enrolled in KIGS--the Pharmacia International Growth Database. Twenty-one patients

  1. Hormonal growth promoting agents in food producing animals.

    Science.gov (United States)

    Stephany, Rainer W

    2010-01-01

    In contrast to the use of hormonal doping agents in sports to enhance the performance of athletes, in the livestock industry hormonal growth promoters ("anabolics") are used to increase the production of muscle meat. This leads to international disputes about the safety of meat originating from animals treated with such anabolics.As a consequence of the total ban in the EU of all hormonal active growth promoters ("hormones") in livestock production, in contrast to their legal use [e.g. of five such hormones (17beta-estradiol, testosterone, progesterone, trenbolone and zeranol) as small solid ear implants and two hormones as feed additives for feedlot heifers (melengestrol acetate) and for swine (ractopamine) in the USA], the regulatory controls also differ sharply between the EU and the USA.In the EU the treatment of slaughter animals is the regulatory offence that has to be controlled in inspection programs. In the USA testing for compliance of a regulatory maximum residue level in the edible product (muscle, fat, liver or kidney) is the purpose of the inspection program (if any).The EU inspection programs focus on sample materials that are more suitable for testing for banned substances, especially if the animals are still on the farm, such as urine and feces or hair. In the case of slaughtered animals, the more favored sample materials are bile, blood, eyes and sometimes liver. Only in rare occasions is muscle meat sampled. This happens only in the case of import controls or in monitoring programs of meat sampled in butcher shops or supermarkets.As a result, data on hormone concentrations in muscle meat samples from the EU market are very rare and are obtained in most cases from small programs on an ad hoc basis. EU data for natural hormones in meat are even rarer because of the absence of "legal natural levels" for these hormones in compliance testing. With the exception of samples from the application sites - in the EU the site of injection of liquid hormone

  2. Yearly stepwise increments of the growth hormone dose results in a better growth response after four years in girls with Turner syndrome. Dutch Working Group on Growth Hormone

    NARCIS (Netherlands)

    van Teunenbroek, A.; de Muinck Keizer-Schrama, S. M.; Stijnen, T.; Jansen, M.; Otten, B. J.; Delemarre-van de Waal, H. A.; Vulsma, T.; Wit, J. M.; Rouwé, C. W.; Reeser, H. M.; Gosen, J. J.; Rongen-Westerlaken, C.; Drop, S. L.

    1996-01-01

    To optimize the growth promoting effect of growth hormone (GH), 65 previously untreated girls with Turner syndrome (TS), chronological age (CA) 2-11 yr, were randomized into 3 dosage regimen groups: A, B, and C, with a daily recombinant-human GH dose during 4 study years of 4-4-4-4, 4-6-6-6, and

  3. Quality of life in children and adolescents with growth hormone deficiency: association with growth hormone treatment.

    Science.gov (United States)

    Geisler, Alexandra; Lass, Nina; Reinsch, Nicole; Uysal, Yvonne; Singer, Viola; Ravens-Sieberer, Ulrike; Reinehr, Thomas

    2012-01-01

    Quality of life (QoL) as it is related with growth hormone deficiency (GHD) is a matter of controversy. We analyzed QoL in 95 children aged 8-18 years with isolated GHD (72% male) treated with growth hormone (GH). These children were compared to 190 age- and gender-matched healthy children with similar height [height children of normal stature (control group 2: CG2). QoL was measured by the KINDL® questionnaire referring to six domains (physical well-being, emotional well-being, self-esteem, family, friends, and school). QoL was significantly reduced in CG1 (effect-size 0.21) compared to CG2, while QoL was not significantly altered in children with GHD. In multiple linear regression analyses adjusted to age, gender, BMI, migration background, and socioeconomic status, decreasing height-SDS was associated with poorer QoL (especially emotional well-being), and treatment with GH was related significantly to better self-esteem. Increase of height-SDS in children treated with GH was associated positively with QoL and all its subscales except family and school. These findings suggest psychological consequences of short stature in children and an improvement of QoL in children treated with GH with the focus on self-esteem and emotional well-being. Copyright © 2012 S. Karger AG, Basel.

  4. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Lead (Pb) attenuation of plasma growth hormone output

    Energy Technology Data Exchange (ETDEWEB)

    Berry, W.D.; Moriarty, C.M. [Auburn Univ., AL (United States); Lau, Y.S. [Univ. of Missouri, Kansas City, MO (United States); Edwards, G.L. [Univ. of Georgia, Athens, GA (United States)

    1996-03-08

    Lead (Pb) induced growth retardation may occur through disruption of the hypothalamic-pituitary-growth hormone (GH) axis. Episodic GH secretion and GH response to exogenous growth hormone releasing hormone (GHRH) were measured in rats chronically exposed to Pb. Male rats received lead nitrate (1000 ppm) in their drinking water from 21 through 49 days of age gained less weight than non-Pb treated controls (242{plus_minus}3 g vs 309{plus_minus}8 g, P{le}0.01). Mean blood Pb was 40 {plus_minus} 5 ug/dl in Pb treated rats vs. nondetectable in controls. Total food intake was increased by Pb treatment (340 vs 260 g/rat). Mean plasma GH levels were significantly reduced by Pb treatment (40.21 {plus_minus} 7 vs 71.53 {plus_minus} 11 ng/mlP= 0.025). However, the temporal pattern of episodic GH release was maintained in the Pb-treated rats. This indicates that Pb does not disrupt the timing of GHRH and somatostatin (SS) release from the hypothalamus but may alter the relative levels of GHRH and SS released. Pb treated rats also retained the ability to secrete GH in response to exogenous GHRH. However, response to GHRH tended to be lower in the Pb treated rats. The greatest effect of Pb was seen at the highest dose of GHRH 5 {mu}g/kg GHRH dose (485.6 {plus_minus} 103 vs. 870.2 {plus_minus} 317 ng/ml; P =0.2). This suggests that Pb disrupts GH synthesis, signal transduction, or secretory mechanisms in the somatotrope.

  6. Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine.

    Science.gov (United States)

    Dauelsberg, Patricia; Matus, José Tomás; Poupin, María Josefina; Leiva-Ampuero, Andrés; Godoy, Francisca; Vega, Andrea; Arce-Johnson, Patricio

    2011-09-15

    In the present work, the effect of assisted fertilization on anatomical, morphological and gene expression changes occurring in carpels and during early stages of berry development in Vitis vinifera were studied. Inflorescences were emasculated before capfall, immediately manually pollinated (EP) and fruit development was compared to emasculated but non-pollinated (ENP) and self-pollinated inflorescences (NESP). The diameter of berries derived from pollinated flowers (EP and NESP) was significantly higher than from non-pollinated flowers (ENP) at 21 days after emasculation/pollination (DAE), and a rapid increase in the size of the inner mesocarp, together with the presence of an embryo-like structure, were observed. The expression of gibberellin oxidases (GA20ox and GA2ox), anthranilate synthase (related to auxin synthesis) and cytokinin synthase coding genes was studied to assess the relationship between hormone synthesis and early berry development, while flower patterning genes were analyzed to describe floral transition. Significant expression changes were found for hormone-related genes, suggesting that their expression at early stages of berry development (13 DAE) is related to cell division and differentiation of mesocarp tissue at a later stage (21 DAE). Expression of hormone-related genes also correlates with the expression of VvHB13, a gene related to mesocarp expansion, and with an increased repression of floral patterning genes (PISTILLATA and TM6), which may contribute to prevent floral transition inhibiting fruit growth before fertilization takes place. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Radioimmunoassay of human growth hormone and its application in pituitary dysfunction studies

    International Nuclear Information System (INIS)

    Asolkar, S.V.; Sivaprasad, N.; Shah, K.B.; Mani, R.S.; Deshpande, A.

    1981-01-01

    A simple, specific and sensitive Radioimmunoassay (RIA) has been developed for the measurement of Human Growth Hormone (HGH) in serum samples. 123 I-labelled HGH has been used as a tracer and dextran coated charcoal system has been employed to separate antibody bound hormone from the unbound one. The assay offers sensitivity of 0.16 ng/ml with a reproducibility of 7% intraassay and inter-assay variations. Serum HGH levels were measured at fasting-resting state and during insulin stimulation test in (1) 15 normal subjects (controls) and (2) 31 patients with stunted growth, whereas (3) in 7 acromegalic patients the same were measured at fasting-resting state and after oral glucose administration. This procedure has been used to distinguish dwarfs due to growth hormone deficiency from other conditions unrelated to pituitary disease and to confirm acromegaly. (author)

  8. Effect of growth hormone replacement therapy on plasma lecithin : cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; van Tol, A; Sluiter, WJ; Dullaart, RPF

    The effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, We unknown. We carried out a 6 mouths study in 24

  9. Genetic and non-genetic causes of Isolated Growth Hormone Deficiency and Combined Pituitary Hormone Deficiency: Results of the HYPOPIT study

    NARCIS (Netherlands)

    L.C.G. de Graaff (Laura)

    2008-01-01

    textabstractHypopituitarism, the deficiency of one or more pituitary hormones, causes stunted growth and severe health problems. Understanding the etiology of pituitary hormone deficiencies is important for anticipation of clinical problems, for genetic counselling and for possible prevention. This

  10. Maternal serum placental growth hormone, but not human placental lactogen or insulin growth factor-1, is positively associated with fetal growth in the first half of pregnancy

    DEFF Research Database (Denmark)

    Pedersen, N G; Juul, A; Christiansen, M

    2010-01-01

    To investigate if maternal levels of human placental lactogen (hPL), placental growth hormone (PGH) and insulin-like growth factor-1 (IGF-1) are associated with growth rate of the biparietal diameter (BPD) in the first half of pregnancy.......To investigate if maternal levels of human placental lactogen (hPL), placental growth hormone (PGH) and insulin-like growth factor-1 (IGF-1) are associated with growth rate of the biparietal diameter (BPD) in the first half of pregnancy....

  11. Effects of hyperthyroidism and hypothyroidism on rat growth hormone release induced by thyrotropin-releasing hormone.

    Science.gov (United States)

    Chihara, K; Kato, Y; Ohgo, S; Iwasaki, Y; Maeda, K

    1976-06-01

    The effect of synthetic thyrotropin-releasing hormone (TRH) on the release of growth hormone (GH) and thyroid-stimulating hormone (TSH) was investigated in euthyroid, hypothyroid, and hyperthyroid rats under urethane anesthesia. In euthyroid control rats, intravenous injection of TRH (200 ng/100 g BW) resulted in a significant increase in both plasma GH and TSH. In rats made hypothyroid by treatment with propylthiouracil or by thyroidectomy, basal GH and TSH levels were significantly elevated with exaggerated responses to TRH. In contrast, plasma GH and TSH responses to TRH were both significantly inhibited in rats made hyperthyroid by L-thyroxine (T4) treatment. These results suggest that altered thyroid status influences GH release as well as TSH secretion induced by TRH in rats.

  12. Growth hormone, prolactin and cortisol response to exercise in patients with depression

    DEFF Research Database (Denmark)

    Krogh, Jesper; Nordentoft, Merete; Mohammad-Nezhad, Mahdi

    2010-01-01

    BACKGROUND: A blunted growth hormone and prolactin response to pharmacological stress test have previously been found in depressed patients, as well as an increased cortisol response to psychosocial stress. This study investigated these hormones in response to acute exercise using an incremental...... bicycle test. METHOD: A cross-sectional comparison of cortisol, growth hormone, and prolactin in depressed (n=137) and healthy (n=44) subjects during rest and in response to an incremental bicycle test. Secondly, we tested the depressed patients again after a 4-month randomized naturalistic exercise...... controls. The effect of acute exercise stress on PRL (p=.56) did not differ between depressed and healthy subjects. Apart from a decrease in GH response in the strength-training group (p=.03) the pragmatic exercise intervention did not affect resting hormonal levels, or the response to acute exercise...

  13. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    Science.gov (United States)

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Induction of chronic growth hormone deficiency by anti-GH serum

    Science.gov (United States)

    Grindeland, R. E.; Smith, A. T.; Ellis, S.; Evans, E. S.

    1974-01-01

    The observations reported indicate that the growth rate of neonatal rats can be specifically inhibited for at least 78 days following the administration of antisera against growth hormone (GH) for only four days after birth. The inhibition can be correlated with a marked deficit of tibial growth promoting activity in the pituitary but not with the plasma concentrations of immuno-reactive GH.

  15. Effect of feed restriction and subsequent re-alimentation on hormones and genes of the somatotropic axis in cattle.

    Science.gov (United States)

    Keogh, Kate; Waters, Sinéad M; Kelly, Alan K; Wylie, Alastair R G; Kenny, David A

    2015-07-01

    The objective of this study was to characterize the effect of feed restriction and compensatory growth during re-alimentation on the functionality of the somatotropic axis. We blocked 60 bulls into one of two groups: 1) restricted feed allowance for 125 days (period 1) (RES, n = 30) followed by ad libitum feeding for 55 days (period 2) or 2) ad libitum access to feed throughout (ADLIB, n = 30). A growth hormone releasing hormone (GHRH) challenge was performed during each period. At the end of each period, 15 animals from each treatment were slaughtered and hepatic tissue collected. Hepatic expression of 13 genes of the somatotropic axis was measured by qRT-PCR. RES displayed a lower growth rate during period 1 (0.6 vs. 1.9 kg/day; P 0.05); however, resultant plasma IGF-1 was lower in period 1 and greater in period 2 in RES animals (P 0.05). Collectively, the results of this study are consistent with uncoupling of the somatotropic axis following feed restriction. However, there is no evidence from this study that the somatotropic axis per se is a significant contributor to compensatory growth. Copyright © 2015 the American Physiological Society.

  16. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    Science.gov (United States)

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  17. Effects of 1-year growth hormone replacement therapy on thyroid volume and function of the children and adolescents with idiopathic growth hormone deficiency.

    Science.gov (United States)

    Keskin, Meliksah; Bayramoglu, Elvan; Aycan, Zehra

    2017-10-26

    There are different opinions about the effects of growth hormone replacement therapy (GHRT) on thyroid function and volume. This study aimed to assess the effects of GHRT on thyroid volume and function in the children and adolescents with growth hormone (GH) deficiency. A total of 29 patients diagnosed with GH deficiency were enrolled in the study. The control group consisted of 29 cases matched for age, gender and pubertal period with the patients. Thyroid function tests and insulin-like growth factor levels were measured, simultaneously thyroid volumes were assessed by ultrasonography at the initiation period and at the end of GHRT. Thyroid volumes of the patient group was -0.55±1.1 standard deviations (SDs) initially; whereas at the end of 1 year it was found to be -0.29±1.29 SDs and both SDs of thyroid volumes did not differ significantly. The SDs of thyroid volume of the control group was -0.85±1.03 SDs initially and -0.72±0.85 SDs at the end of 1 year; and they did not differ significantly. On the other hand, after GHRT of 1 year, thyroid stimulating hormone (TSH) and free thyroxine (T4) levels decreased. It was observed that SDs of thyroid gland volumes did not change in GH deficient children and adolescents after GHRT.

  18. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    Science.gov (United States)

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  19. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  20. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Kardassis, Dimitris [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete (Greece); Simionescu, Maya [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania)

    2015-12-04

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  1. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    International Nuclear Information System (INIS)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  2. Effects of recombinant human growth hormone in the treatment of dwarfism and relationship between IGF-1, IGFBP-3 and thyroid hormone.

    Science.gov (United States)

    Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong

    2016-12-01

    The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved.

  3. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    Science.gov (United States)

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  4. Absorption kinetics of two highly concentrated preparations of growth hormone: 12 IU/ml compared to 56 IU/ml

    DEFF Research Database (Denmark)

    Laursen, Torben; Susgaard, Søren; Jensen, Flemming Steen

    1994-01-01

    was to compare the relative bioavailability of two highly concentrated (12 IU/ml versus 56 IU/ml) formulations of biosynthetic human growth hormone administered subcutaneously. After pretreatment with growth hormone for at least four weeks, nine growth hormone deficient patients with a mean age of 26.2 years......AbstractSend to: Pharmacol Toxicol. 1994 Jan;74(1):54-7. Absorption kinetics of two highly concentrated preparations of growth hormone: 12 IU/ml compared to 56 IU/ml. Laursen T1, Susgaard S, Jensen FS, Jørgensen JO, Christiansen JS. Author information Abstract The purpose of this study...... (range 17-43) were studied two times in a randomized design, the two studies being separated by at least one week. At the start of each study period (7 p.m.), growth hormone was injected subcutaneously in a dosage of 3 IU/m2. The 12 IU/ml preparation of growth hormone was administered on one occasion...

  5. Growth hormone treatment in Turner syndrome accelerates growth and skeletal maturation

    NARCIS (Netherlands)

    C. Rongen-Westerlaken (Ciska); J.M. Wit (Jan); S.M.P.F. de Muinck Keizer-Schrama (Sabine); B.J. Otten (Barto); W. Oostdijk (Wilma); H.A. Delemarre-van der Waal (H.); M.H. Gons (M.); A.G. Bot (Alice); J.L. van den Brande (J.)

    1992-01-01

    textabstractSixteen girls with Turner syndrome (TS) were treated for 4 years with biosynthetic growth hormone (GH). The dosage was 4IU/m2 body surface s.c. per day over the first 3 years. In the 4th year the dosage was increased to 61 U/m2 per day in the 6 girls with a poor height increment and in 1

  6. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure

    DEFF Research Database (Denmark)

    Nielsen, R H; Clausen, N M; Schjerling, P

    2014-01-01

    transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and m......The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant......-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon...

  7. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway.

    Science.gov (United States)

    Singh, A S; Shah, A; Brockmann, A

    2018-02-01

    In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses. © 2017 The Royal Entomological Society.

  8. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    Science.gov (United States)

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  9. EXPERIENCE OF ADMINISTRATION OF GROWTH HORMONE IN TREATMENT OF DIFFERENT TYPES OF MICROSOMIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    V.A. Peterkova

    2009-01-01

    Full Text Available The opportunities of receiving of genetically engineered medications, e.g. somatotropic hormone (STG are almost unrestricted, and treatment and monitoring of patients with different types of microsomia can be held on modern, new level with the help of it. STG provides normal stature and valuable quality of life in these patients. Treatment with growth hormone influences on hormonal, metabolic and psychical status of patient. Metabolic effects are: increasing of muscle strength, improving of renal blood flow, increasing of cardiac output, absorbability of calcium in intestines and mineralization of bones. The level of blood cholesterol, lipoproteins is descended; blood alkaline phosphatase, phosphorus, urine and fatty acid are increased. Patients' vitality and quality of life are normalized. Besides somatotropic insufficiency, growth hormone is widely used in growth_stimulating treatment of different types of dwarism in children: microsomia due to pre_natal growth delay, genetic syndromes: Silwer–Russell, Shereshevsky–Turner, Nunan, Prader–Willi, and microsomia in patients with chronic renal disease.Key words: children, microsomia, somatotropic hormone, treatment.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(2:86-93

  10. Growth failure, somatomedin and growth hormone levels in juvenile diabetes mellitus--a pilot study.

    Science.gov (United States)

    Nash, H

    1979-06-01

    Growth hormone (hGH) responsiveness to exercise and somatomedin C (SmC) activity were measured in ten children with insulin-deficient diabetes mellitus. Four of the ten children showed a significant degree of growth retardation. Normal SmC activity was found in association with elevated hGH levels. The hypothesis that growth-retarded diabetics have a failure of Sm production despite high hGH levels (analogous to malnutrition and Laron dwarfism) was not substantiated by this study. Chronic deficiency of insulin, itself a somatomedin, may play a major role in diabetic growth failure.

  11. Changes of plasma growth hormone, insulin-like growth factors-I, thyroid hormones, and testosterone concentrations in embryos and broiler chickens incubated under monochromatic green light

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2014-07-01

    Full Text Available Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight and pectoral muscle growth of broilers. In this experiment, we further investigated whether the regulation of broiler embryonic or posthatch growth by green light stimulus during incubation is associated with the changes of some important hormones at different ages of embryos and broiler chickens. Fertile broiler eggs (Arbor Acres, n=880 were pre-weighed and randomly assigned 1 of 2 incubation treatment groups: i dark condition (control group, and ii monochromatic green light group (560 nm. The monochromatic lighting systems sourced from light-emitting diode lamps were equalised at the intensity of 15 lux (lx at eggshell level. The dark condition was set as a commercial control from day one until hatching. After hatch, 120 day-old male chicks from each group were housed under white light with an intensity of 30 lx at bird-head level. Compared with the dark condition, chicks incubated under the green light showed significantly higher growth hormone (GH levels from 19 d of embryogenesis (E19 to 5 d of posthatch (H5, and higher plasma insulinlike growth factor (IGF-I levels from both E17 to E19 and H3 to H35. No significant differences were found in plasma thyroxine, triiodothyronine, and testosterone in embryos or hatched birds between the 2 groups. These results indicate that somatotropic axis hormones (GH and IGF-I may be the most important contributor to chicken growth promoted by green light stimuli during embryogenesis.

  12. Effect of single-dose radiation on cell survival and growth hormone secretion by rat anterior pituitary cells

    International Nuclear Information System (INIS)

    Hochberg, Z.; Kuten, A.; Hertz, P.; Tatcher, M.; Kedar, A.; Benderly, A.

    1983-01-01

    Cranial irradiation has been shown to impair growth hormone secretion in children. In this study a cell culture of dispersed rat anterior pituitary cells was exposed to single doses of radiation in the range of 100 to 1500 rad. Survival curves were obtained for the different anterior pituitary cell lines, and growth hormone secretion was measured in the tissue culture medium. Both survival and growth hormone secretion curves showed an initial shoulder in the range of 0 to 300 rad, followed by a decline between 300 to 750 rad. It is concluded that growth hormone secreting acidophilic pituicytes are sensitive to radiation at single doses greater than 300 rad

  13. Do anabolic nutritional supplements stimulate human growth hormone secretion in elderly women with heart failure?

    NARCIS (Netherlands)

    Smeets, Ellen T.H.C.; Schutzler, Scott E.; Wei, Jeanne Y.; Azhar, Gohar; Wolfe, Robert R.

    2017-01-01

    Growth hormone treatment has gained attention over the past decade as a treatment for heart failure. Human growth hormone (HGH) must be administered by injections (usually daily), so there is considerable advantage to stimulation of endogenous secretion by amino acid-based nutritional

  14. Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth1[CC-BY

    Science.gov (United States)

    Mohammed, Binish; Bilooei, Sara Farahi; Grove, Elliot; Railo, Saana; Palme, Klaus

    2018-01-01

    The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis (Arabidopsis thaliana) experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions. PMID:29284741

  15. The effect of recombinant growth hormone on intestinal anastomotic wound healing in rats with obstructive jaundice.

    Science.gov (United States)

    Cağlikülekçi, Mehmet; Ozçay, Necdet; Oruğ, Taner; Aydoğ, Gülden; Renda, Nurten; Atalay, Fuat

    2002-03-01

    Several clinical and experimental studies have shown that obstructive jaundice delays wound healing. Growth hormone may prevent delayed wound healing, since it has effects on the release of mediators in jaundice, as well as increasing the protein synthesis. Forty male Wistar rats were allocated to four groups: Group I (n=10): intestinal anastomosis to normal small bowel, Group II (n=10): intestinal anastomosis to normal small bowel followed by growth hormone therapy (2mg/kg/day, subcutaneously), Group III (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel, Group IV (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel followed by growth hormone therapy at the same dosage The animals were observed for seven days then killed. Intraabdominal adhesions, anastomotic complications and anastomotic bursting pressures were recorded and tissue samples from the anastomotic site were obtained to measure hydroxyproline levels and for histopathologic examination. Growth hormone had a beneficial effect on the healing of intestinal anastomosis in both jaundiced and non-jaundiced rats. This was demonstrated by clinical and mechanical parameters such as a significant increase in anastomotic bursting pressure, hydroxyproline content and histopathological scores. Growth hormone reverses the adverse effects of obstructive jaundice on small bowel anastomotic healing. It can be hypothesized that this effect is due to augmentation of insulin-like growth factors, protection of hepatocytes, enhancement of intestinal epithelization, and reversal of the resultant malnutritional state caused by growth hormone in obstructive jaundice.

  16. Growth and growth hormone secretion in children following treatment of brain tumours with radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Darendeliler, F.; Livesey, E.A.; Hindmarsh, P.C.; Brook, C.G.D. (Endocrine Unit, The Middlesex Hospital, London (UK))

    1990-01-01

    We have studied the growth of 144 children after treatment of brain tumours distant from the hypothalamo-pituitary axis. All had cranial irradiation and 87 spinal irradiation. In 56 patients observed without intervention for 3 years, height SDS in the cranial (CR) group (n=20) declined from 0.02 to -0.44 and in the craniospinal (CS) group (n=36) from -0.28 to -1.11. Failure of spinal growth had a marked effect in the CS group. The onset of puberty was slightly but not significantly advanced; median ages at onset of puberty were 10.3 years in girls and 12.1 years in boys. Of the total group 86.4% had clinical and biochemical evidence of growth hormone insufficiency. Fifty-two children, 33 (28 CS; 5 CR) of whome were prepubertal, received biosynthetic human growth hormone, in a dose of 15 mU/m{sup 2}/week by daily injection for a period of one year. Height velocity SDS increased significantly in both groups from -2.74 to +1.90 (CS) and from -1.0 to +4.26 (CR). Spinal response to GH treatment was restricted in the craniospinal group. (authors).

  17. Growth and growth hormone secretion in children following treatment of brain tumours with radiotherapy

    International Nuclear Information System (INIS)

    Darendeliler, F.; Livesey, E.A.; Hindmarsh, P.C.; Brook, C.G.D.

    1990-01-01

    We have studied the growth of 144 children after treatment of brain tumours distant from the hypothalamo-pituitary axis. All had cranial irradiation and 87 spinal irradiation. In 56 patients observed without intervention for 3 years, height SDS in the cranial (CR) group (n=20) declined from 0.02 to -0.44 and in the craniospinal (CS) group (n=36) from -0.28 to -1.11. Failure of spinal growth had a marked effect in the CS group. The onset of puberty was slightly but not significantly advanced; median ages at onset of puberty were 10.3 years in girls and 12.1 years in boys. Of the total group 86.4% had clinical and biochemical evidence of growth hormone insufficiency. Fifty-two children, 33 (28 CS; 5 CR) of whome were prepubertal, received biosynthetic human growth hormone, in a dose of 15 mU/m 2 /week by daily injection for a period of one year. Height velocity SDS increased significantly in both groups from -2.74 to +1.90 (CS) and from -1.0 to +4.26 (CR). Spinal response to GH treatment was restricted in the craniospinal group. (authors)

  18. [Changes of the immune cells, cytokines and growth hormone in teenager drug addicts].

    Science.gov (United States)

    Kuang, Ying-min; Zhu, Yue-chun; Kuang, Ying; Sun, Yuan; Hua, Chen; He, Wen-yi

    2007-09-01

    To investigate the effect of heroin on the immune function, growth and development in the teenager heroin addicts by measuring their T-lymphocyte subsets, Th1/Th2 cytokines and serum growth hormone. Tlymphocyte subsets of peripheral blood from the teenager heroin addicts were measured by direct microvolume whole blood immunofluorescent staining technique by flow cytometer (FCM). Thl / Th2 cytokines were measured by BD cytometric bead array and serum growth hormone was assayed using the chemiluminescence method in the 20 teenager heroin addicts and 23 healthy teenagers. The levels of CD3(+), CD3(+) + CD4(+), CD3(+) + CD4(+)/CD3(+)+ CD8(+), Th1 cytokines(IL-2, TNF-alpha and IFN-gamma) and Th2 cytokines(IL-4 and IL-10) reduced significantly in the teenager heroin addicts compared with the healthy control group (P teenager heroin addicts was remarkably higher than that in control group (Pteenager heroin addicts. Besides, it can increase the level of serum growth hormone of the teenager heroin addicts.

  19. Genes essential for phototrophic growth by a purple alphaproteobacterium: Genes for phototrophic growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianming [Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao Shandong Province People' s Republic of China; Department of Microbiology, University of Washington, Seattle WA USA; Yin, Liang [Department of Microbiology, University of Washington, Seattle WA USA; Lessner, Faith H. [Department of Biological Sciences, University of Arkansas, Fayetteville AR USA; Nakayasu, Ernesto S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Payne, Samuel H. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Fixen, Kathryn R. [Department of Microbiology, University of Washington, Seattle WA USA; Gallagher, Larry [Department of Genome Sciences, University of Washington, Seattle WA USA; Harwood, Caroline S. [Department of Microbiology, University of Washington, Seattle WA USA

    2017-07-24

    Anoxygenic purple phototrophic bacteria have served as important models for studies of photophosphorylation. The pigment-protein complexes responsible for converting light energy to ATP are relatively simple and these bacteria can grow heterotrophically under aerobic conditions, thus allowing for the study of mutants defective in photophosphorylation. In the past, genes responsible for anoxygenic phototrophic growth have been identified in a number of different bacterial species. Here we systematically studied the genetic basis for this metabolism by using Tn-seq to identify genes essential for the anaerobic growth of the purple bacterium Rhodopseudomonas palustris on acetate in light. We identified 171 genes required for growth in this condition, 35 of which are annotated as photosynthesis genes. Among these are a few new genes not previously shown to be essential for phototrophic growth. We verified the essentiality of many of the genes we identified by analyzing the phenotypes of mutants we generated by Tn mutagenesis that had altered pigmentation. We used directed mutagenesis to verify that the R. palustris NADH:quinone oxidoreductase complex IE is essential for phototrophic growth. As a complement to the genetic data, we carried out proteomics experiments in which we found that 429 proteins were present in significantly higher amounts in cells grown anaerobically in light compared to aerobically. Among these were proteins encoded by subset of the phototrophic growth-essential genes.

  20. The effects of growth hormone deficiency and growth hormone replacement therapy on intellectual ability, personality and adjustment in children.

    Science.gov (United States)

    Puga González, B; Ferrández Longás, A; Oyarzábal, M; Nosas, R

    2010-06-01

    Traditionally, it has been assumed that intellectual development in children with growth hormone deficiency (GHD) is distributed between ranges of a normal population based on the observation that it does not differ substantially from that of children of the same age. Nevertheless, few studies have investigated this assumption. This Spanish Collaborative study was prospectively planned with two main purposes: to study a possible influence of GHD on intelligence quotient (IQ), personality traits and adaptative capacity and to study the evolution of these parameters during substitution therapy with growth hormone (GH). Although the overall intellectual ability of children with GHD is comparable to that of a normal reference population, some areas such the motor-component scale (evaluated by McCarthy test) and performance IQ (evaluated by WISC-R) were below the mean at the beginning of the study, showing significant improvement during therapy. Emotional adjustment (normal at study start) also improved significantly during treatment. Females showed better adjustment capacity before and during GH therapy. Longer studies with an increased number of cases are needed to confirm these effects of GHD and its treatment in children.

  1. Influence of gender on the correlation between plasma growth hormone profiles and urinary growth hormone excretion

    DEFF Research Database (Denmark)

    Main, K M; Jansson, C; Skakkebak, N

    1997-01-01

    A lot of interest has been directed towards the measurement of urinary growth hormone (GH) excretion instead of plasma GH profiles or provocation tests. We investigated the factors influencing the relationship between 24- and 3-hour plasma GH profiles and urinary GH excretion in a cohort of 113...... than spontaneous GH peaks. The difference in cross-reactivities of molecular GH forms in polyclonal assays may have an impact on the correlation between plasma and urinary GH. Thus, the diagnostic value of urinary GH measurement as compared to serum GH profiles needs to be further evaluated....

  2. Skin morphological changes in growth hormone deficiency and acromegaly

    DEFF Research Database (Denmark)

    Lange, Merete Wolder; Thulesen, J; Feldt-Rasmussen, U

    2001-01-01

    To evaluate the histomorphology of skin and its appendages, especially eccrine sweat glands, in patients with GH disorders, because reduced sweating ability in patients with growth hormone deficiency (GHD) is associated with increased risk of hyperthermia under stressed conditions....

  3. Revisiting available knowledge on teleostean thyroid hormone receptors.

    Science.gov (United States)

    Lazcano, Iván; Orozco, Aurea

    2018-03-21

    Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels. In the context of thyroidal systems, and as in the rest of vertebrates, thyroid hormones in fish regulate development, growth and metabolism by actively entering the nucleus and interacting with thyroid hormone receptors, the final sensors of this endocrine signal, to regulate gene expression. In general terms, vertebrates express the functional thyroid hormone receptors alpha and beta, encoded by two distinct genes (thra and thrb, respectively). However, different species of teleosts express thyroid hormone receptor isoforms with particular structural characteristics that confer singular functional traits to these receptors. For example, teleosts contain two thra genes and in some species also two thrb; some of the expressed isoforms can bind alternative ligands. Also, some identified isoforms contain deletions or large insertions that have not been described in other vertebrates and that have not yet been functionally characterized. As in amphibians, the regulation of some of these teleost isoforms coincides with the climax of metamorphosis and/or life transitions during development and growth. In this review, we aimed to gain further insights into thyroid signaling from a comparative perspective by proposing a systematic nomenclature for teleost thyroid hormone receptor isoforms and summarize their particular functional features when the information was available. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. BIOTECHNOLOGY OF RECOMBINANT HORMONES IN DOPING

    Directory of Open Access Journals (Sweden)

    Biljana Vitošević

    2011-09-01

    Full Text Available Recombinant DNA technology has allowed rapid progress in creating biosynthetic gene products for the treatment of many diseases. In this way it can produce large amounts of hormone, which is intended for the treatment of many pathological conditions. Recombinant hormones that are commonly used are insulin, growth hormone and erythropoietin. Precisely because of the availability of these recombinant hormones, it started their abuse by athletes. Experiments in animal models confirmed the potential effects of some of these hormones in increasing physical abilities, which attracted the attention of athletes who push the limits of their competitive capability by such manipulation. The risks of the use of recombinant hormones in doping include serious consequences for the health of athletes. Methods of detection of endogenous hormones from recombined based on the use of a monoclonal antibodies, capillary zone electrophoresis and protein biomarkers

  5. New York Milk Supply with Bovine Growth Hormone

    OpenAIRE

    Magrath, William B.; Tauer, Loren W.

    1986-01-01

    New York milk supply functions with ans without Bovine Growth Hormone were estimated by a sector linear programming model. High Government price supports make bGH profitable and induces significant increases in output. Reduction or elimination of Price supports greatly diminishes bGH as a variable technology except at low bGH prices

  6. Assessment of Tools for Marker-Assisted Selection in a Marine Commercial Species: Significant Association between MSTN-1 Gene Polymorphism and Growth Traits

    Directory of Open Access Journals (Sweden)

    Irma Sánchez-Ramos

    2012-01-01

    Full Text Available Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL have been regarded as useful for marker-assisted selection in complex traits as growth. Polymorphisms have been studied in five candidate genes influencing growth in gilthead seabream (Sparus aurata: the growth hormone (GH, insulin-like growth factor-1 (IGF-1, myostatin (MSTN-1, prolactin (PRL, and somatolactin (SL genes. Specimens evaluated were from a commercial broodstock comprising 131 breeders (from which 36 males and 44 females contributed to the progeny. In all samples eleven gene fragments, covering more than 13,000 bp, generated by PCR-RFLP, were analyzed; tests were made for significant associations between these markers and growth traits. ANOVA results showed a significant association between MSTN-1 gene polymorphism and growth traits. Pairwise tests revealed several RFLPs in the MSTN-1 gene with significant heterogeneity of genotypes among size groups. PRL and MSTN-1 genes presented linkage disequilibrium. The MSTN-1 gene was mapped in the centromeric region of a medium-size acrocentric chromosome pair.

  7. Growth hormone response to guanfacine in boys with attention deficit hyperactivity disorder: a preliminary study.

    Science.gov (United States)

    Halperin, Jeffrey M; Newcorn, Jeffrey H; McKay, Kathleen E; Siever, Larry J; Sharma, Vanshdeep

    2003-01-01

    This preliminary study evaluated a method for assessing central noradrenergic function in children via the growth hormone response to a single dose of the alpha-2 adrenergic receptor agonist guanfacine and examined whether this measure distinguishes between attention deficit hyperactivity disorder (ADHD) boys with and without reading disabilities (RD). Plasma growth hormone was assessed before and after the oral administration of guanfacine and placebo in boys with ADHD who were divided into subgroups based on the presence (n = 3) or absence (n = 5) of RD. Guanfacine and placebo conditions did not differ at baseline, but peak growth hormone was significantly higher following guanfacine. The increase in growth hormone following guanfacine was significantly greater in boys without RD as compared to those with RD, with no overlap between the groups. Consistent with findings using peripheral measures of noradrenergic function, these preliminary data suggest that ADHD boys with and without RD may differ in central noradrenergic function.

  8. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.

    Science.gov (United States)

    Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E

    2001-01-01

    The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.

  9. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    Directory of Open Access Journals (Sweden)

    Annika Mohr

    Full Text Available Immunohistochemistry (IHC is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1, progesterone receptor (PGR, prolactin receptor (PRLR and growth hormone receptor (GHR gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  10. Influence of growth hormone therapy on selected dental and skeletal system parameters.

    Science.gov (United States)

    Partyka, Małgorzata; Chałas, Renata; Dunin-Wilczyńska, Izabella; Drohomyretska, Myroslava; Klatka, Maria

    2018-03-14

    Growth hormone deficiency (GHD) is one of the main indications for growth hormone therapy. One characteristic of this disease is bone age delay in relation to the chronological age. Pituitary dysfunction negatively affects the growth and development of the jaws and teeth of the child. The secretion of endocrine glands regulates growth, development, and gender differentiation. It also controls the growth of bones and teeth, regulates metabolism of calcium and phosphate, proteins, lipids and carbohydrates. The primary role in the endocrine system is played by the pituitary gland which is responsible for the production of somatotropin [1]. Dysfunction of the pituitary gland has a negative effect on the growth and development of long bones in the body, and may have an adverse effect on the development of maxilla, mandible and dentition of a child. There is some information in the literature that dental age is delayed in short stature children; the replacement of deciduous teeth by permanent teeth is also delayed, and newly erupted permanent teeth often require orthodontic treatment. Applying hormonal therapy positively affects the process of replacement of dentition [2, 3, 4, 5, 6]. The aim of the study was to assess bone and dental age, as well as analyze the state of dentition in children diagnosed with GH deficiency treated with growth hormone, depending on the duration of treatment. The study material consisted of 110 children (27 males, 83 females), hospitalized for somatotropin hypopituitarism in the Department of Paediatric Endocrinology and Diabetology at the Medical University of Lublin, Poland. The mean birth age was 13 years (156 months) with a standard deviation of 2 years and 6 months (30 months). 47 children (43%) started treatment with the growth hormone (group starting treatment) and 63 children (57%) whose treatment was started 2-3 years previously (group in the course of treatment). The control group consisted of 41 generally healthy children (15males

  11. The synthesis of a small library of prospective growth hormone secretagogues

    Directory of Open Access Journals (Sweden)

    JELENA JOKSIMOVIC

    1999-10-01

    Full Text Available Employing tools of combinatorial chemistry, an original methodological approach has been developed and applied for the design and synthesis of a small library of peptide-like compounds, prospective growth hormone (GH secretagogues. For this purpose seven building blocks of tBoc- and Fmoc-protected amino acids was used. In this way, a small, tripeptoid library on polyethylene glycol monomethyl ether 5000 (PEG 5000 as a soluble support was obtained. The library was screened by a new, simple system, based on polyclonal rabbit antiserum raised against "GH secretagogue pharmacophore" of a known growth hormone secretagogue GHRP-6 (Hexarelin® and the most promising GH secretagogue candidate was selected.

  12. Influence of sex and growth hormone deficiency on sweating

    DEFF Research Database (Denmark)

    Main, K; Nilsson, K O; Skakkebaek, N E

    1991-01-01

    Sweat secretion rate (SSR) was measured by the pilocarpine iontophoresis test in (a) 254 healthy children and adolescents (aged 6.0 to 19.2 years, mean age 11.2 years); in (b) 58 healthy adults (aged 20.4 to 75.2 years, mean age 37.6 years); and in (c) eight prepubertal patients with growth hormone...... (GH) deficiency (aged 4.2 to 13.5 years, mean age 8.9 years). Boys had higher median values for SSR than girls (pre-pubertal children: 92.7 vs 64.5 mg 30 min-1 pubertal children: 110.3 vs 73.1 mg 30 min-1), and men showed higher values than women (135.5 vs 49.2 mg 30 min-1). In addition, the change...... min-1). We conclude that (a) sweat secretion pattern in children shows a significant sex difference and (b) sweating in children is dependent on growth hormone....

  13. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    International Nuclear Information System (INIS)

    Ramasharma, K.; Li, C.H.

    1987-01-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and α-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin

  14. Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root developmentHormonal crosstalk in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2013-04-01

    Full Text Available Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network construction to elucidate the role of the interaction of the POLARIS peptide (PLS and the auxin efflux carrier PIN proteins in the crosstalk of three hormones (auxin, ethylene and cytokinin in Arabidopsis root development. In ethylene hypersignalling mutants such as polaris (pls, we show experimentally that expression of both PIN1 and PIN2 significantly increases. This relationship is analysed in the context of the crosstalk between auxin, ethylene and cytokinin: in pls, endogenous auxin, ethylene and cytokinin concentration decreases, approximately remains unchanged and increases, respectively. Experimental data are integrated into a hormonal crosstalk network through combination with information in literature. Network construction reveals that the regulation of both PIN1 and PIN2 is predominantly via ethylene signalling. In addition, it is deduced that the relationship between cytokinin and PIN1 and PIN2 levels implies a regulatory role of cytokinin in addition to its regulation to auxin, ethylene and PLS levels. We discuss how the network of hormones and genes coordinates plant growth by simultaneously regulating the activities of auxin, ethylene and cytokinin signalling pathways.

  15. Growth hormone and tesamorelin in the management of HIV-associated lipodystrophy

    Directory of Open Access Journals (Sweden)

    Bedimo R

    2011-07-01

    Full Text Available Roger BedimoInfectious Disease section, VA North Texas Health Care System, TX, USAAbstract: HIV-infected patients on highly active antiretroviral therapy (HAART develop a complex of body composition changes known, including peripheral fat loss (lipoatrophy and central fat accumulation (lipohypertrophy. These changes may cause significant patient distress, which could in turn interfere with adherence to antiretroviral therapy. Treatment options – including antiretroviral switch, insulin sensitizers, and surgical approaches – have been associated with limited success and potential complications. The observation that low growth hormone levels are associated with central fat accumulation among HIV patients has led to the development of tesamorelin (a growth hormone releasing hormone analog for the management of central fat accumulation. Randomized controlled trials have shown that administration of tesamorelin is safe and effective in reducing central fat accumulation among HIV-infected patients. This effect is transient, however, and its association with improved cardiovascular risk remains unclear.Keywords: HAART, HIV, tesamorelin, lipodystrophy

  16. [Secretion of growth hormone in hyperthyroidism].

    Science.gov (United States)

    Hervás, F; Morreale de Escobar, G; Escobar Del Rey, F; Pozuelo, V

    1976-01-01

    The authors studied growth hormone (GH) secretion in a group of adult controls and another group of hyperthyroid patients after stimulation with intravenous insulin-induced (0,1 IU/kg) hypoglycemia, aiming to clear out the problem of discrepancies in literature concerning GH secretion in hyperthyroidism. They concluded that in this syndrome, GH levels are significantly higher than those of controls. The GH releasing response is normal, though it could be expected to be decreased due to decreased pituitary GH contents as a result of permanent somatotrophic cell stimulation.

  17. Defective membrane expression of human growth hormone (GH) receptor causes Laron-type GH insensitivity syndrome.

    Science.gov (United States)

    Duquesnoy, P; Sobrier, M L; Amselem, S; Goossens, M

    1991-01-01

    Mutations in the growth hormone receptor (GHR) gene can cause growth hormone (GH) resistance. Given the sequence homology between the extracellular domain of the GHR and a soluble GH-binding protein (GH-BP), it is remarkable that GH-BP binding activity is absent from the serum of patients with Laron-type GH insensitivity, a hereditary form of severe dwarfism. We have previously identified a mutation within the extracellular domain of this receptor, replacing phenylalanine by serine at position 96 of the mature protein, in a patient with Laron syndrome. We have now investigated the effect of this Phe----Ser substitution on hormone binding activity by expressing the total human GHR cDNA and mutant form in eukaryotic cells. The wild-type protein expressed was able to bind GH but no plasma membrane binding was detectable on cells transfected with the mutant cDNA; this was also the case of cells transfected with a Phe96----Ala mutant cDNA, suggesting that the lack of binding activity is not due to a posttranslational modification of serine. Examination of the variant proteins in subcellular fractions revealed the presence of specific GH binding activity in the lysosomal fraction, whereas immunofluorescence studies located mutant proteins in the cytosol. Our findings suggest that these mutant GHRs fail to follow the correct intracellular transport pathway and underline the potential importance of this phenylalanine residue, which is conserved among the GH, prolactin, and erythropoietin receptors that belong to the same cytokine receptor superfamily. Images PMID:1719554

  18. Growth hormone replacement does not elevate albuminuria in GH-deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; Dullaart, RPF

    2002-01-01

    Minor elevations in urinary albumin excretion rate (Ualb.V) are likely to be associated with renal function loss and increased cardiovascular risk. Since urinary albumin excretion is affected by the growth hormone (GH)-insulin-like growth factor-1 (IGF-1) axis, we evaluated the effect of 6 months GH

  19. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus.

    Directory of Open Access Journals (Sweden)

    Ines Petri

    Full Text Available The Siberian hamster (Phodopus sungorus is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.

  20. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    Science.gov (United States)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  1. Growth Hormone Deficiency in a Patient with Becker Muscular Dystrophy: A Pediatric Case Report

    Directory of Open Access Journals (Sweden)

    Valeria Calcaterra

    2013-01-01

    Full Text Available Objective. To describe a biochemical growth hormone (GH deficiency and to evaluate therapeutic result in a six-year-old male with Becker muscular dystrophy (BMD. Methods. GH peak was evaluated after response to arginine and insulin. Bone age was evaluated according to Greulich and Pyle method. Results. The GH-supplementary therapy was very effective in terms of growth gain. Conclusion. The possibility of a growth hormone deficiency and treatment with GH in patients with BMD cannot be excluded, especially considering the good therapeutic response.

  2. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    Science.gov (United States)

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency.

    Science.gov (United States)

    Pfäffle, R; Klammt, J

    2011-02-01

    The somatotropic axis is the central postnatal regulator of longitudinal growth. One of its major components--growth hormone--is produced by the anterior lobe of the pituitary, which also expresses and secretes five additional hormones (prolactin, thyroid stimulating hormone, follicle stimulating hormone, luteinizing hormone, adrenocorticotropic hormone). Proper development of the pituitary assures the regulation of critical processes such as metabolic control, puberty and reproduction, stress response and lactation. Ontogeny of the adenohypophysis is orchestrated by inputs from neighbouring tissues, cellular signalling molecules and transcription factors. Perturbation of expression or function of these factors has been implicated in the aetiology of combined pituitary hormone deficiency (CPHD). Mutations within the genes encoding for the transcription factors LHX3, LHX4, PROP1, and POU1F1 (PIT1) that act at different stages of pituitary development result in unique patterns of hormonal deficiencies reflecting their differential expression during organogenesis. In the case of LHX3 and LHX4 the phenotype may include extra-pituitary manifestations due to the function of these genes/proteins outside the pituitary gland. The remarkable variability in the clinical presentation of affected patients indicates the influence of the genetic background, environmental factors and possibly stochastic events. However, in the majority of CPHD cases the aetiology of this heterogeneous disease remains unexplained, which further suggests the involvement of additional genes. Identification of these factors might also help to close the gaps in our understanding of pituitary development, maintenance and function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Paired hormone response elements predict caveolin-1 as a glucocorticoid target gene.

    Directory of Open Access Journals (Sweden)

    Marinus F van Batenburg

    2010-01-01

    Full Text Available Glucocorticoids act in part via glucocorticoid receptor binding to hormone response elements (HREs, but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids.

  5. Oxandrolone in growth hormone-treated girls with Turner syndrome

    NARCIS (Netherlands)

    Menke, Leonie Alexandra

    2010-01-01

    Turner syndrome (TS) is a disorder in females that is caused by the complete or partial absence of the second sex chromosome. The main characteristics are gonadal dysgenesis and short stature, with adult patients being on average 20 cm shorter than healthy women. Growth hormone (GH) therapy

  6. A descriptive study on selected growth parameters and growth hormone receptor gene in healthy young adults from the American Midwest.

    Science.gov (United States)

    Hartin, Samantha N; Hossain, Waheeda A; Manzardo, Ann M; Brown, Shaquanna; Fite, Paula J; Bortolato, Marco; Butler, Merlin G

    2018-02-12

    The first study of growth hormone receptor (GHR) genotypes in healthy young adults in the United States attending a Midwestern university and impact on selected growth parameters. To describe the frequency of GHR genotypes in a sample of healthy young adults from the United States attending a university in the Midwest and analyze the relationship between GHR genotypes and selected growth parameters. Saliva was collected from 459 healthy young adults (237 females, 222 males; age range = 18-25 y) and DNA isolated for genotyping of GHR alleles (fl/fl, fl/d3, or d3/d3). Selected growth parameters were collected and GHR genotype data examined for previously reported associations (e.g., height, weight or bone mass density) or novel findings (e.g., % body water and index finger length). We found 219 participants (48%) homozygous for fl/fl, 203 (44%), heterozygous fl/d3 and 37 (8%) homozygous d3/d3. The distribution of GHR genotypes in our participants was consistent with previous reports of non-US populations. Several anthropometric measures differed by sex. The distribution of GHR genotypes did not significantly differ by sex, weight, or other anthropometric measures. However, the fl/d3 genotype was more common among African-Americans. Our study of growth and anthropometric parameters in relationship to GHR genotypes found no association with height, weight, right index finger length, BMI, bone mass density, % body fat or % body water in healthy young adults. We did identify sex differences with increased body fat, decreased bone density, body water and index finger length in females. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Focus on growth hormone deficiency and bone in adults.

    Science.gov (United States)

    Tritos, Nicholas A

    2017-02-01

    Growth hormone (GH) exerts several effects on the skeleton, mediated either directly or indirectly, leading to increased bone formation and resorption rates. Patients with growth hormone deficiency (GHD) of adult onset have decreased bone mineral density (BMD) and increased fracture risk. Some, but not all, studies have found that adults with childhood onset GHD also have lower BMD than healthy controls. Adults with GHD of childhood onset have smaller bone dimensions, leading to possible underestimation of areal BMD (measured by dual energy X-ray absorptiometry), thus potentially confounding the interpretation of densitometric data. Available data suggest that patients with childhood onset GHD are at increased fracture risk. Prospective studies and some clinical trials found that GH replacement for at least 18-24 months leads to increased BMD. Retrospective and prospective data suggest that GH replacement is associated with decreased fracture risk in adults. However, data from randomized clinical trials are lacking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Effects of growth hormone replacement therapy on bone metabolism].

    Science.gov (United States)

    Yamamoto, Masahiro; Sugimoto, Toshitsugu

    2014-06-01

    Growth hormone (GH) as well as insulin like growth factor-1 (IGF-1) are essential hormones to maintain homeostasis of bone turnover by activating osteoblastogenesis and osteoclastogenesis. Results from GH replacement therapy for primary osteoporosis and adult-onset GH deficiency (AGHD) suggest that one year or more treatment period by this agent is required to gain bone mineral density (BMD) over the basal level after compensating BMD loss caused by dominant increase in bone resorption which was observed at early phase of GH treatment. A recent meta-analysis demonstrates the efficacy of GH replacement therapy on increases in BMD in male patients with AGHD. Additional analyses are needed to draw firm conclusions in female patients with AGHD, because insufficient amounts of GH might be administrated to them without considerations of influence of estrogen replacement therapy on IGF-1 production. Further observational studies are needed to clarify whether GH replacement therapy prevent fracture risk in these patients.

  9. Foot length before and during insulin-like growth factor-I treatment of children with laron syndrome compared to human growth hormone treatment of children with isolated growth hormone deficiency.

    Science.gov (United States)

    Silbergeld, Aviva; Lilos, Pearl; Laron, Zvi

    2007-12-01

    To compare foot length deficits between patients with Laron syndrome (LS) (primary growth hormone [GH] insensitivity) and congenital isolated GH deficiency (IGHD) and their response to replacement therapy with insulin-like growth factor-I (IGF-I) and hGH, respectively. Data for the study were collected from the records of nine children with LS (3 M, 6 F) 7.8 +/- 4.8 years old (mean +/- SD), and nine children with IGHD (3 M, 6 F), 3.8 +/- 3.3 years old. Fifteen non-treated adult patients with LS were also included in the study. Measurements of foot length were recorded without treatment and monitored during 9 years of treatment in the children and in the untreated adult patients. For statistical analysis the non-parametric Mann-Whitney U test was used. With almost similar basal values in growth deficit and pre-treatment growth velocities, the achievements towards norms after 9 years of treatment were greater in the patients with IGHD than in the patients with LS: foot length reached -1.4 +/- 0.8 vs. -3.3 +/- 1.0 SDS (mean +/- SD), and body height -2.2 +/- 1.0 vs. -3.9 +/- 0.5 SDS. The difference between the two groups could be due to the initiation of replacement therapy in the patients with IGHD at a younger age. Adult foot size of untreated patients with LS is small but less retarded than the height deficit. Both IGF-I and hGH are potent growth stimulating hormones of linear growth and acrae as exemplified by foot growth.

  10. CLINICAL AND HORMONAL MILIEU OF 9 PATIENTS WITH PRIMARY GROWTH HORMONE INSENSITIVITY SYNDROME AND THEIR RESPONSE TO IGF-I GENERATION TEST

    Directory of Open Access Journals (Sweden)

    M. Razzaghy-Azar

    2006-05-01

    Full Text Available Primary growth hormone insensitivity syndrome (GHIS is a rare entity which can be due to defects in growth hormone (GH receptor that is called type 1 Laron syndrome (T1LS or post receptor defects (type 2 Laron syndrome . The aim of study was determining the clinical and hormonal milieu of the patients with primary GHIS and their response to IGF-I (insulin like growth factor-I generation test (IGT. GH, IGF-I, IGF-II, IGF binding protein 1 and 3 (BP-1 and BP-3, GH binding protein (GHBP and anti-GH antibody were detected by ELISA and RIA methods. IGF-I and BP-3 were measured before and after IGT. Nine patients (8 males, 1 female (mean age ± SD, 6.4 ± 5 years with severe short stature and high GH level were studied. Height SDS was - 8.5 ± 2.6. In 7 patients GHBP was zero, IGF-I and BP-3 were low and did not increase after IGT, so they had T1LS. Two brothers did not show the hormonal milieu of GH receptor defect, and were called non Laron syndrome (NLS. Birth weight in patients with T1LS and NLS was 3.65 ± 0.2 Kg and 1.65 ± 0.2 Kg, respectively (P = 0.001. All of the patients had typical clinical feature of GH-deficiency, but nasal bridge depression and microphallus were not seen in NLS. GH treatment of NLS, normalized their growth velocity, but without catch up growth. In conclusion IGT can differentiate Laron syndrome from other types of short stature. GH and IGF-I of fetus have no role in intrauterine growth.

  11. Acromegaly caused by a growth hormonereleasing hormone secreting carcinoid tumour of the lung : the effect of octreotide treatment

    NARCIS (Netherlands)

    De Heide, L. J. M.; Van den Berg, G.; Wolthuis, A.; Van Schelven, W. D.

    2007-01-01

    in acromegaly, the overproduction of growth hormone is usually caused by a pituitary adenoma. We report a 74-year-old woman with acromegaly caused by ectopic overproduction of growth hormone-releasing hormone (GHRH), a rare diagnosis. The GHRH appeared to be produced by a carcinoid tumour of the

  12. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis.

    Science.gov (United States)

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-08-21

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis.

  13. Altered gene synchrony suggests a combined hormone-mediated dysregulated state in major depression.

    Directory of Open Access Journals (Sweden)

    Chris Gaiteri

    2010-04-01

    Full Text Available Coordinated gene transcript levels across tissues (denoted "gene synchrony" reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001. Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here "depression" (n = 14; MDD/Permutated data, p<0.000001, significantly affecting between 100 and 250 individual genes (10-30% false discovery rate. Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks. In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression.

  14. Growth hormone insensitivity: Mexican case report

    Science.gov (United States)

    De Ita, J R; Aguirre, G A; García–Magariño, M; Martín-Estal, I; Lara-Diaz, V J; Elizondo, M I

    2017-01-01

    Herein, we present a 14-year-old patient with short stature (134 cm) referred from Paediatrics to our department for complementary evaluation since growth hormone (GH) treatment failed to show any improvement. He was born premature and small for gestational age. Genital examination classified the patient as Tanner I–II with small penis and testicular size for his age. Biochemical analyses revealed normal GH levels with low serum insulin-like growth factor-1 (IGF-1). Molecular diagnosis confirmed several mutations in IGF1R and IGFALS, and so he was diagnosed with Laron Syndrome or GH insensibility and treated with IGF-1 substitutive therapy. Learning points: Evaluation of the GH/IGF-1 axis when short stature does not respond to conservative treatment must be included in the ordinary practice. Laron Syndrome real incidence should be calculated once undiagnosed cases arise, as treatment, due to lack of market, is unaffordable. Even when adulthood is reached, and no longitudinal growth can be achieved, still IGF-1 treatment in Laron Syndrome patients should be pursued as metabolic and protective derangements could arise. PMID:29147569

  15. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    Science.gov (United States)

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  16. Algorithmic complexity of growth hormone release in humans

    Energy Technology Data Exchange (ETDEWEB)

    Prank, K.; Wagner, M.; Brabant, G. [Medical School Hannover (Germany)

    1996-12-31

    Most hormones are secreted in an pulsatile rather than in a constant manner. This temporal pattern of pulsatile hormone release plays an important role in the regulation of cellular function and structure. In healthy humans growth hormone (GH) secretion is characterized by distinct pulses whereas patients bearing a GH producing tumor accompanied with excessive secretion (acromegaly) exhibit a highly irregular pattern of GH release. It has been hypothesized that this highly disorderly pattern of GH release in acromegaly arises from random events in the GH-producing tumor under decreased normal control of GH secretion. Using a context-free grammar complexity measure (algorithmic complexity) in conjunction with random surrogate data sets we demonstrate that the temporal pattern of GH release in acromegaly is not significantly different from a variety of stochastic processes. In contrast, normal subjects clearly exhibit deterministic structure in their temporal patterns of GH secretion. Our results support the hypothesis that GH release in acromegaly is due to random events in the GH-producing tumorous cells which might become independent from hypothalamic regulation. 17 refs., 1 fig., 2 tabs.

  17. A female survivor of childhood medulloblastoma presenting with growth-hormone-induced edema and inflammatory lesions: a case report

    Directory of Open Access Journals (Sweden)

    Biassoni Veronica

    2009-01-01

    Full Text Available Abstract Introduction The improved survival of children with brain tumors has increased concerns about treatment-related sequelae. Growth hormone deficiency is frequently observed after craniospinal irradiation for medulloblastoma. It has been widely reported that growth hormone replacement therapy does not increase the risk of second tumors, but there are reports in the literature of growth hormone, and its downstream mediator insulin-like Growth Factor 1, having an important proinflammatory action. There are few reports, however, on the "in-vivo" induction of edema and symptomatic inflammatory lesions during replacement therapy. Case presentation We report the case of a 7-year-old girl treated for metastatic medulloblastoma who developed growth hormone deficiency 2 years after oncological treatment. Three months after replacement therapy, magnetic resonance imaging showed exacerbation of her brain edema, which was already present after oncological treatment. We consequently suspended the growth hormone until a new magnetic resonance image obtained 3 months later documented a reduction of the inflammatory areas. We then re-introduced somatotropin at lower doses with no further increase in brain edema in subsequent radiological controls. Conclusion This case and its iconography suggest a strong association between growth hormone administration and the exacerbation of inflammatory reactions within the tumor bed. Replacement therapy should be carefully monitored in this particular subset of patients.

  18. Sexual hormones modulate compensatory renal growth and function

    Directory of Open Access Journals (Sweden)

    Pablo J. Azurmendi

    2013-12-01

    Full Text Available The role played by sexual hormones and vasoactive substances in the compensatory renal growth (CRG that follows uninephrectomy (uNx is still controversial. Intact and gonadectomized adult Wistar rats of both sexes, with and without uNx, performed at 90 days age, were studied at age 150 days. Daily urine volume, electrolyte excretion and kallikrein activity (UKa were determined. Afterwards, glomerular filtration rate and blood pressure were measured, the kidneys weighed and DNA, protein and RNA studied to determine nuclei content and cell size. When the remnant kidney weight at age 150 days was compared with the weight of the kidney removed at the time of uNx, male uNx rats showed the greatest CRG (50% while growth in the other uNx groups was 25%, 15% and 19% in orchidectomized, female and ovariectomized rats, respectively. The small CRG observed in the uNx female rats was accompanied by the lowest glomerular filtration value, 0.56 ± 0.02 ml/min/g kwt compared, with the other uNx groups, p < 0.05. Cell size (protein or RNA/DNA was similar for all the groups except for uNx orchidectomized rats. In this group the cytoplasmatic protein or RNA content was lower than in the other groups while DNA (nuclei content was similar. Some degree of hyperplasia was determined by DNA content in the uNx groups. Male sexual hormones positively influenced CRG and its absence modulated cell size. Female sexual hormones, instead, did not appear to stimulate CRG. The kallikrein kinin system may not be involved in CRG.

  19. Emerging options in growth hormone therapy: an update

    Directory of Open Access Journals (Sweden)

    Kemp SF

    2011-08-01

    Full Text Available Stephen F Kemp, J Paul FrindikUniversity of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USAAbstract: Growth hormone (GH was first used to treat a patient in 1958. For the next 25 years it was available only from cadaver sources, which was of concern because of safety considerations and short supply. In 1985, GH produced by recombinant DNA techniques became available, expanding its possible uses. Since that time there have been three indications approved by the US Food and Drug Administration (FDA for GH-deficiency states and nine indications approved for non-GH-deficiency states. In 2003 the FDA approved GH for use in idiopathic short stature (ISS, which may indirectly cover other diagnoses that have short stature as a feature. However, coverage for GH therapy is usually more reliably obtainable for a specific indication, rather than the ISS indication. Possible future uses for GH therapy could include the treatment of syndromes such as Russell–Silver syndrome or chondrodystrophy. Other non-short-stature indications could include wound healing and burns. Other uses that have been poorly studied include aging and physical performance, in spite of the interest already shown by elite athletes in using GH. The safety profile of GH developed over the past 25 years has shown it to be a very safe hormone with few adverse events associated with it. The challenge for the future is to follow these patients into adulthood to determine whether GH therapy poses any long-term risks.Keywords: growth hormone, somatotropin, anabolic, short stature

  20. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    Science.gov (United States)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  1. Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows.

    Science.gov (United States)

    Mullen, M P; Lynch, C O; Waters, S M; Howard, D J; O'Boyle, P; Kenny, D A; Buckley, F; Horan, B; Diskin, M G

    2011-08-26

    The somatotrophic axis (GH-IGF) is a key regulator of animal growth and development, affecting performance traits that include milk production, growth rate, body composition, and fertility. The aim of this study was to quantify the association of previously identified SNPs in bovine growth hormone (GH1) and insulin-like growth factor 1 (IGF-1) genes with direct performance trait measurements of lactation and fertility in Holstein-Friesian lactating dairy cows. Sixteen SNPs in both IGF-1 and GH1 were genotyped across 610 cows and association analyses were carried out with traits of economic importance including calving interval, pregnancy rate to first service and 305-day milk production, using animal linear mixed models accounting for additive genetic effects. Two IGF-1 SNPs, IGF1i1 and IGF1i2, were significantly associated with body condition score at calving, while a single IGF-1 SNP, IGF1i3, was significantly associated with milk production, including milk yield (means ± SEM; 751.3 ± 262.0 kg), fat yield (21.3 ± 10.2 kg) and protein yield (16.5 ± 8.0 kg) per lactation. Only one GH1 SNP, GH33, was significantly associated with milk protein yield in the second lactation (allele substitution effect of 9.8 ± 5.0 kg). Several GH1 SNPs were significantly associated with fertility, including GH32, GH35 and GH38 with calving to third parity (22.4 ± 11.3 days) (GH32 and GH38 only), pregnancy rate to first service (0.1%) and overall pregnancy rate (0.05%). The results of this study demonstrate the effects of variants of the somatotrophic axis on milk production and fertility traits in commercial dairy cattle.

  2. A patient with thyrotropinoma cosecreting growth hormone and follicle-stimulating hormone with low alpha-glycoprotein: a new subentity?

    Science.gov (United States)

    Elhadd, Tarik A; Ghosh, Sujoy; Teoh, Wei Leng; Trevethick, Katy Ann; Hanzely, Zoltan; Dunn, Laurence T; Malik, Iqbal A; Collier, Andrew

    2009-08-01

    Thyrotropinomas are rare pituitary tumors. In 25 percent of cases there is autonomous secretion of a second pituitary hormone, adding to the clinical complexity. We report a patient with thyrotropin (TSH)-dependant hyperthyroidism along with growth hormone (GH) and follicle-stimulating hormone (FSH) hypersecretion but low alpha-glycoprotein (alpha-subunit) concentrations, a hitherto unique constellation of findings. A 67-year-old Scottish lady presented with longstanding ankle edema, paroxysmal atrial fibrillation, uncontrolled hypertension, fine tremors, warm peripheries, and agitation. Initial findings were a small goiter, elevated serum TSH of 7.37 mU/L (normal range, 0.30-6.0 mU/L), a free-thyroxine concentration of 34.9 pmol/L (normal range, 9.0-24.0 pmol/L), a flat TSH response to TSH-releasing hormone, and serum alpha-subunit of 3.1 IU/L (normal, hormone beta receptor by genotyping. Serum FSH was 56.8 U/L, but the luteinizing hormone (LH) was 23.6 U/L (postmenopausal FSH and LH reference ranges both >30 U/L) Basal insulin-like growth factor I was elevated to 487 microg/L with the concomitant serum GH being 14.1 mU/L, and subsequent serum GH values 30 minutes after 75 g oral glucose being 19.1 mU/L and 150 minutes later being 13.7 mU/L. An magnetic resonance imaging pituitary revealed a macroadenoma. Pituitary adenomectomy was performed with the histology confirming a pituitary adenoma, and the immunohistochemistry staining showed positive reactivity for FSH with scattered cells staining for GH and TSH. Staining for other anterior pituitary hormones was negative. After pituitary surgery she became clinically and biochemically euthyroid, the serum IFG-1 became normal, but the pattern of serum FSH and LH did not change. This case of plurihormonal thyrotropinoma is unique in having hypersecretion of TSH, GH, and FSH with low alpha-subunit. Such a combination may represent a new subentity of TSHomas.

  3. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: Determination by reconstitution and affinity-labeling

    International Nuclear Information System (INIS)

    Baxter, R.C.; Martin, J.L.

    1989-01-01

    To determine the structure of the high molecular weight, growth hormone-dependent complex between the insulin-like growth factors (IGF-I and IGF-II) and their binding proteins in human serum, we have reconstituted the complex from its purified component proteins and analyzed it by gel electrophoresis and autoradiography after covalent cross-linking. The proteins tested in reconstitution mixtures were an acid-labile Mr 84,000-86,000 glycoprotein doublet (alpha subunit), an acid-stable Mr 47,000-53,000 glycoprotein doublet with IGF-binding activity (BP-53 or beta subunit), and IGF-I or IGF-II (gamma subunit). In incubations containing any one of the three subunits 125I-labeled and the other two unlabeled, identical 125I-labeled alpha-beta-gamma complexes of Mr 140,000 were formed. Minor bands of Mr 120,000 and 90,000 were also seen, thought to represent a partially deglycosylated form of the alpha-beta-gamma complex, and an alpha-gamma complex arising as a cross-linking artifact. When serum samples from subjects of various growth hormone status were affinity-labeled with IGF-II tracer, a growth hormone-dependent Mr 140,000 band was seen, corresponding to the reconstituted alpha-beta-gamma complex. Other growth hormone-dependent labeled bands, of Mr 90,000 (corresponding to alpha-gamma), Mr 55,000-60,000 (corresponding to labeled beta-subunit doublet), and smaller bands of Mr 38,000, 28,000, and 23,000-25,000 (corresponding to labeled beta-subunit degradation products), were also seen in the affinity-labeled serum samples and in the complex reconstituted from pure proteins. All were immunoprecipitable with an anti-BP-53 antiserum. We conclude that the growth hormone-dependent Mr 140,000 IGF-binding protein complex in human serum has three components: the alpha (acid-labile) subunit, the beta (binding) subunit, and the gamma (growth factor) subunit

  4. Turner syndrome in Albania and the efficacy of its treatment with growth hormone.

    Science.gov (United States)

    Hoxha, Petrit; Babameto-Laku, Anila; Vyshka, Gentian; Gjoka, Klodiana; Minxuri, Dorina; Myrtaj, Elira; Çakërri, Luljeta

    2015-11-01

    The aim of this study was the evaluation of Turner syndrome inside the Albanian population, its clinical, cytological and genetic characteristics, the accompanying pathologies, and the efficacy of the treatment with the growth hormone. We performed a retrospective analysis of 59 patients suffering from this syndrome (aging from 5 to 23 years old). The diagnosis of female patients suffering from Turner syndrome is delayed, with a mean age at the moment of diagnosis of 13.74 years (5-23 years). The main reason for seeking medical advice was the growth retardation or a delayed puberty. Available data for 52 patients showed that the most frequent accompanying pathologies were the following: thyroid autoimmune disorders (59%), cardiovascular anomalies (43%), renal pathologies (41%), hearing impairment (4.3%) and hypertension (3.3%). Follow-up for the growth rate was possible for 52 patients out of the total of 59 patients. Twenty-five of the female patients suffering Turner syndrome and forming part of our study sample were treated with growth hormone for a period averaging 3 years and 4 months. A variety of reasons was identified as responsible for the missed treatment in 27 patients. We saw an enhanced growth (in terms of body height) within the treated subgroup, when compared with the untreated subgroup (27 patients), especially during the first 3 years of the follow-up. No side effects of this treatment were reported. Both groups of patients initiated as well a sexual hormone therapy (estrogens and progesterone) for inducing puberty at the age of 12 years. Further work is needed for an early diagnosis of this syndrome, the prompt treatment with growth hormone and the monitoring of accompanying disorders. This will ensure a better quality of life and an improvement of the longevity of patients suffering from the Turner syndrome.

  5. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  6. Duchenne muscular dystrophy with associated growth hormone deficiency

    International Nuclear Information System (INIS)

    Ghafoor, T.; Mahmood, A.; Shams, S.

    2003-01-01

    A patient with duchenne muscular dystrophy (DMD) and growth hormone (GH) deficiency is described who had no clinical evidence of muscular weakness before initiation of GH replacement therapy. Treatment with human GH resulted in appearance of symptoms of easy fatigability and muscle weakness. Thorough investigations including serum creating phosphokinase (CK) levels in recommended in every patient with GH deficiency before starting GH replacement therapy. (author)

  7. The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador.

    Science.gov (United States)

    Rosenbloom, A L; Guevara Aguirre, J; Rosenfeld, R G; Fielder, P J

    1990-11-15

    Laron-type dwarfism, which is characterized by the clinical appearance of isolated growth hormone deficiency with elevated serum levels of growth hormone and decreased serum levels of insulin-like growth factor I (IGF-I), has been described in approximately 50 patients. This condition is caused by a deficiency of the cellular receptor for growth hormone, and it is transmitted as an autosomal recessive trait, as indicated by an equal sex distribution and a high rate of consanguinity in affected families. We studied 20 patients (19 females and 1 male, 2 to 49 years of age), from an inbred Spanish population in southern Ecuador, who had the clinical features of Laron-type dwarfism. Seventeen patients were members of two large pedigrees. Among the 13 affected sibships, there were 19 affected and 24 unaffected female siblings and 1 affected and 21 unaffected male siblings. The patients' heights ranged from 10.0 to 6.7 SD below the normal mean height for age in the United States. In addition to the previously described features, 15 patients had limited elbow extensibility, all had blue scleras, affected adults had relatively short extremities, and all four affected women over 30 years of age had hip degeneration. Basal serum concentrations of growth hormone were elevated in all affected children (30 to 160 micrograms per liter) and normal to moderately elevated in the adults. The serum level of growth hormone-binding protein ranged from 1 to 30 percent of normal; IGF-I concentrations were low--less than or equal to 7 micrograms per liter in the children and less than or equal to 66 micrograms per liter in the adults (normal for Ecuadorean women, 98 to 238). Serum levels of IGF-II and growth hormone-dependent IGF-binding protein-3 were also low. We describe an inbred population with a high incidence of growth hormone-receptor deficiency resulting in a clinical picture resembling Laron-type dwarfism but differing principally in showing a marked predominance of affected

  8. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    OpenAIRE

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity...

  9. Isolation and characterization of the human parathyroid hormone-like peptide gene

    International Nuclear Information System (INIS)

    Mangin, M.; Ikeda, K.; Dreyer, B.E.; Broadus, A.E.

    1989-01-01

    A parathyroid hormone-like peptide (PTH-LP) has recently been identified in human tumors associated with the syndrome of humoral hypercalcemia of malignancy. The peptide appears to be encoded by a single-copy gene that gives rise to multiple mRNAs that are heterogeneous at both their 5' and their 3' ends. Alternative RNA splicing is responsible for the 3' heterogeneity and results in mRNAs encoding three different peptides, each with a unique C terminus. The authors have isolated and characterized the human PTHLP gene. The gene is a complex transcriptional unit spanning more than 12 kilobases of DNA and containing six exons. Two 5' exons encode distinct 5' untranslated regions and are separated by a putative promoter element, indicating that the gene either has two promoters or is alternatively spliced from a single promoter upstream of the first exon. The middle portion of the PTHLP gene, comprising exons 2-4, has an organizational pattern of introns and exons identical to that of the parathyroid hormone gene, consistent with a common ancestral origin of these two genes. Exon 4 of the PTHLP gene encodes the region common to all three peptides and the C terminus of the shortest peptide, and exons 5 and 6 encode the unique C termini of the other two peptides. Northern analysis of mRNAs from four human tumors of different histological types reveals the preferential use of 3' splicing patterns of individual tumors

  10. Radiometrical, hormonal and biological correlates of skeletal growth in the female rat from birth to senescence.

    Science.gov (United States)

    del Pozo, Emilio; Janner, Marco; Mackenzie, Andrew R; Arampatzis, Spyridon; Dixon, Arnold K; Perrelet, Romain; Ruch, Walter; Lippuner, Kurt; Zapf, Juergen; Lamberts, Steven W; Mullis, Primus E

    2014-01-01

    We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain. Copyright © 2014. Published by Elsevier Ltd.

  11. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  12. Effect of nutritional rehabilitation on acquired growth hormone resistance in malnourished children using radioisotopic technique

    International Nuclear Information System (INIS)

    El-Nabarawy, F.S.; Nour Eldin, A.M.

    2003-01-01

    The present study was undertaken to clarify the influence of nutrition on growth hormone resistance in children who were suffering from prologed protein energy malnutrition (PEM). The plasma levels of glucose and serum levels of insulin, free triiodothyronine (FT 3 ), free teraiodothyronine (FT 4 ), thyroid stimulating hormone (TSH), growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin like growth factor binding protein-3 (IGFBP-3) were analyzed by radioisotopic techniques in 7 children with marasmus (mean age 5.29 1.01) and 14 children with unexplained short stature (stunted) (mean age 6.21 1.72) before and after nutritional rehabilitation. At the basal condition of laboratory investigations, the GH level was significantly higher in the two malnourished groups compared to control (P< 0.01), whereas, plasma glucose levels and insulin concentrations did not differ significantly between the two malnourished groups and the control

  13. The interaction between growth hormone and the thyroid axis in hypopituitary patients.

    LENUS (Irish Health Repository)

    Behan, Lucy Ann

    2011-03-01

    Alterations in the hypothalamo-pituitary-thyroid axis have been reported following growth hormone (GH) administration in both adults and children with and without growth hormone deficiency. Reductions in serum free thyroxine (T4), increased tri-iodothyronine (T3) with or without a reduction in serum thyroid-stimulating hormone secretion have been reported following GH replacement, but there are wide inconsistencies in the literature about these perturbations. The clinical significance of these changes in thyroid function remains uncertain. Some authors report the changes are transient and revert to normal after a few months or longer. However, in adult hypopituitary patients, GH replacement has been reported to unmask central hypothyroidism biochemically in 36-47% of apparently euthyroid patients, necessitating thyroxine replacement and resulting in an attenuation of the benefit of GH replacement on quality of life in those who became biochemically hypothyroid after GH replacement. The group at highest risk are those with organic pituitary disease or multiple pituitary hormone deficiencies. It is therefore prudent to monitor thyroid function in hypopituitary patients starting GH therapy to identify those who will develop clinical and biochemical features of central hypothyroidism, thus facilitating optimal and timely replacement.

  14. The interaction between growth hormone and the thyroid axis in hypopituitary patients.

    LENUS (Irish Health Repository)

    Behan, Lucy Ann

    2012-02-01

    Alterations in the hypothalamo-pituitary-thyroid axis have been reported following growth hormone (GH) administration in both adults and children with and without growth hormone deficiency. Reductions in serum free thyroxine (T4), increased tri-iodothyronine (T3) with or without a reduction in serum thyroid-stimulating hormone secretion have been reported following GH replacement, but there are wide inconsistencies in the literature about these perturbations. The clinical significance of these changes in thyroid function remains uncertain. Some authors report the changes are transient and revert to normal after a few months or longer. However, in adult hypopituitary patients, GH replacement has been reported to unmask central hypothyroidism biochemically in 36-47% of apparently euthyroid patients, necessitating thyroxine replacement and resulting in an attenuation of the benefit of GH replacement on quality of life in those who became biochemically hypothyroid after GH replacement. The group at highest risk are those with organic pituitary disease or multiple pituitary hormone deficiencies. It is therefore prudent to monitor thyroid function in hypopituitary patients starting GH therapy to identify those who will develop clinical and biochemical features of central hypothyroidism, thus facilitating optimal and timely replacement.

  15. Human growth hormone may be detrimental when used to accelerate recovery from acute tendon-bone interface injuries.

    Science.gov (United States)

    Baumgarten, Keith M; Oliver, Harvey A; Foley, Jack; Chen, Ding-Geng; Autenried, Peter; Duan, Shanzhong; Heiser, Patrick

    2013-05-01

    There have been few scientific studies that have examined usage of human growth hormone to accelerate recovery from injury. The hypothesis of this study was that human growth hormone would accelerate tendon-to-bone healing compared with control animals treated with placebo in a rat model of acute rotator cuff injury repair. Seventy-two rats underwent repair of acute rotator cuff injuries and were randomized into the following postoperative dosing regimens: placebo, and human growth hormone at 0.1, 1, 2, 5, and 10 mg/kg/day, administered subcutaneously once per day for fourteen days (Protocol 1). An additional twenty-four rats were randomized to receive either (1) placebo or (2) human growth hormone at 5 mg/kg, administered subcutaneously twice per day for seven days preoperatively and twenty-eight days postoperatively (Protocol 2). All rats were killed twenty-eight days postoperatively. Mechanical testing was performed. Ultimate stress, ultimate force, stiffness, energy to failure, and ultimate distension were determined. For Protocol 1, analysis of variance testing showed no significant difference between the groups with regard to ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension. In Protocol 2, ultimate force to failure was significantly worse in the human growth hormone group compared with the placebo group (21.1 ± 5.85 versus 26.3 ± 5.47 N; p = 0.035). Failure was more likely to occur through the bone than the tendon-bone interface in the human growth hormone group compared with the placebo group (p = 0.001). No significant difference was found for ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension between the groups in Protocol 2. In this rat model of acute tendon-bone injury repair, daily subcutaneous postoperative human growth hormone treatment for fourteen days failed to demonstrate a significant difference in any biomechanical parameter compared with placebo. Furthermore, subcutaneous

  16. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko [Osaka City General Hospital (Japan)] (and others)

    2002-06-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 {mu}g corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  17. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    International Nuclear Information System (INIS)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko

    2002-01-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 μg corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  18. Growth hormone therapy and craniofacial bones: a comprehensive review.

    Science.gov (United States)

    Litsas, G

    2013-09-01

    Growth hormone (GH) has significant effects on linear bone growth, bone mass and bone metabolism. The primary role of GH supplementation in children with GH deficiency, those born small for gestational age or with other types of disorders in somatic development is to increase linear growth. However, GH therapy seems to elicit varying responses in the craniofacial region. Whereas the effects of GH administration on somatic development are well documented, comparatively little is known of its effects on the craniofacial region. The purpose of this review was to search the literature and compile results from both animal and human studies related to the impact of GH on craniofacial growth. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression

    International Nuclear Information System (INIS)

    Rosenfeld, M.G.; Glass, C.K.; Adler, S.; Crenshaw, E.B. III; He, X.; Lira, S.A.; Elsholtz, H.P.; Mangalam, H.J.; Holloway, J.M.; Nelson, C.; Albert, V.R.; Ingraham, H.A.

    1988-01-01

    Accurate, regulated initiation of mRNA transcription by RNA polymerase II is dependent on the actions of a variety of positive and negative trans-acting factors that bind cis-acting promoter and enhancer elements. These transcription factors may exert their actions in a tissue-specific manner or function under control of plasma membrane or intracellular ligand-dependent receptors. A major goal in the authors' laboratory has been to identify the molecular mechanisms responsible for the serial activation of hormone-encoding genes in the pituitary during development and the positive and negative regulation of their transcription. The anterior pituitary gland contains phenotypically distinct cell types, each of which expresses unique trophic hormones: adrenocorticotropic hormone, thyroid-stimulating hormone, prolactin, growth hormone, and follicle-stimulating hormone/luteinizing hormone. The structurally related prolactin and growth hormone genes are expressed in lactotrophs and somatotrophs, respectively, with their expression virtually limited to the pituitary gland. The reported transient coexpression of these two structurally related neuroendocrine genes raises the possibility that the prolactin and growth hormone genes are developmentally controlled by a common factor(s)

  20. Evaluation of insulin-like growth factor-1 and insulin like growth factor binding protein-3 in diagnosis of growth hormone deficiency in short-stature children

    International Nuclear Information System (INIS)

    Ali, A.; Hashim, R.; Khan, F.A.; Sattar, A.; Ijaz, A.; Manzoor, S.M.; Younas, M.

    2009-01-01

    Growth Hormone Deficiency (GHD) is conventionally diagnosed and confirmed by diminished peak Growth Hormone (GH) levels to provocative testing. Serum Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) are under the influence of GH and reflect the spontaneous endogenous GH secretion. Owing to the absence of a circadian rhythm, it is possible to take individual measurements of IGF-1 and IGFBP-3 at any time of the day for evaluation of GH status instead of subjecting the individual to cumbersome provocative tests. Objectives of this study were to compare IGF-1 and IGFBP-3 assays with Exercise and L-Dopa stimulation tests in the diagnosis of growth hormone deficiency in short stature children using ITT as gold standard. Methods: This validation study was conducted at Department of Chemical Pathology and Endocrinology, AFIP, Rawalpindi, from November 2005 to October 2006. Fifty-two short stature children were included in the study. Basal samples for GH levels and simultaneous IGF-1 and IGFBP-3 measurements were obtained and afterwards all children were subjected to sequential exercise and LDopa stimulation tests. Insulin Tolerance Test (ITT) was performed one week later with all the necessary precautionary measures. On the basis of ITT results, children were divided into two groups, i.e., 31 growth hormone deficient and 21 Normal Variant Short Stature (NVSS). Results: The diagnostic value of exercise stimulation test remained highest with sensitivity 90.3%, specificity 76.0%, Positive Predictive Value (PPV) 84.84%, Negative Predictive Value (NPV) 84.2% and accuracy 84.6%. The conventional L-Dopa stimulation had sensitivity 96.7%, specificity 38.0%, PPV 69.7%, NPV 88.8 % and accuracy 73.0%. The serum IGF-1 and IGFBP-3 levels were positively correlated with post ITT peak GH levels (r= 0.527, r=0.464 respectively, both p<0.001). The diagnostic value of IGF-1 had sensitivity 83.87%, specificity 76.2%, PPV 83.87%, NPV 76.2% and

  1. Microarchitecture, but Not Bone Mechanical Properties, Is Rescued with Growth Hormone Treatment in a Mouse Model of Growth Hormone Deficiency

    OpenAIRE

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W.; Boyd, Steven K.

    2012-01-01

    Growth hormone (GH) deficiency is related to an increased fracture risk although it is not clear if this is due to compromised bone quality or a small bone size. We investigated the relationship between bone macrostructure, microarchitecture and mechanical properties in a GH-deficient (GHD) mouse model undergoing GH treatment commencing at an early (prepubertal) or late (postpubertal) time point. Microcomputed tomography images of the femur and L4 vertebra were obtained to quantify macrostruc...

  2. Correlation Analysis Between Expression Levels of Hepatic Growth Hormone Receptor, Janus Kinase 2, Insulin-Like Growth Factor-I Genes and Dwarfism Phenotype in Bama Minipig.

    Science.gov (United States)

    Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng

    2015-02-01

    Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.

  3. Acute effects of clonidine and growth-hormone-releasing hormone on growth hormone secretion in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Buffoli, M G; Bussi, A R; Wehrenberg, W B

    1991-01-01

    Patients with hyperthyroidism have reduced growth hormone (GH) responses to pharmacological stimuli and reduced spontaneous nocturnal GH secretion. The stimulatory effect of clonidine on GH secretion has been suggested to depend on an enhancement of hypothalamic GH-releasing hormone (GHRH) release. The aim of our study was to evaluate the effects of clonidine and GHRH on GH secretion in patients with hyperthyroidism. Eight hyperthyroid females with recent diagnosis of Graves' disease (age range 20-55 years, body mass index range 19.2-26.2 kg/m2) and 6 healthy female volunteers (age range 22-35 years, body mass index range 19-25 kg/m2) underwent two experimental trials at no less than 7-day intervals: (a) an intravenous infusion of clonidine 150 micrograms in 10 ml of saline, or (b) a bolus intravenous injection of human GHRH (1-29)NH2, 100 micrograms in 1 ml of saline. Hyperthyroid patients showed blunted GH peaks after clonidine (7.1 +/- 1.7 micrograms/l) as compared to normal subjects receiving clonidine (28.5 +/- 4.9 micrograms/l, p less than 0.05). GH peaks after GHRH were also significantly lower in hyperthyroid subjects (8.0 +/- 1.7 micrograms/l) as compared to normal subjects receiving GHRH (27.5 +/- 4.4 micrograms/l, p less than 0.05). No significant differences in the GH values either after clonidine or GHRH were observed in the two groups of subjects examined. Our data demonstrate that the GH responses to clonidine as well as to GHRH in patients with hyperthyroidism are inhibited in a similar fashion with respect to normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Binding properties of beetal recombinant caprine growth hormone to ...

    African Journals Online (AJOL)

    The aim of the study was to illustrate the radio-receptor assay of beetal recombinant caprine growth hormone (rcGH). Tracer (125I-rcGH) was prepared by iodinating beetal rcGH with iodine-125 and its biological activity was analyzed by rabbit anti-rcGH antibodies. Liver microsomal membranes of the Bovidae species ...

  5. DETECTION OF MENDELIAN AND GENOTYPE FREQUENCY OF GROWTH HORMONE GENE IN ONGOLE CROSSBRED CATTLE MATED BY THE ARTIFICIAL INSEMINATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    U. Paputungan

    2012-06-01

    Full Text Available The objectives of this study were to detect the Mendelian mode inheritance of growth hormone (GH and to establish genotype frequency of GH gene in Ongole-crossbred cattle mated by the artificial insemination (AI technique. Total of 76 blood samples were collected from Ongole-crossbred cows and bulls (G0, and their progenies (G1 at the Tumaratas AI service center in North Sulawesi province, Indonesia. All blood samples were screened for the presence of GH locus using a PCR-RFLP method involving restricted enzyme Msp1 on 1.2 % of agarose gel. Data were analyzed using statistical program function in Excel XP. The results showed that GH locus using alleles of Msp1+ and Msp1- enzyme restriction in Ongole-crossbred cows and bulls was inherited to their Ongole-crossbred progenies following the Mendelian mode inheritance. This Mendelian inheritance generated by AI technique was not under genetic equilibrium for the Msp1 genotype frequencies in groups of G0 and G1. The breeding program using genotypes of bulls and cows (G0 for generating the genotype of GH Msp1 enzyme restriction by AI technique should be maintained to increase these various allele dispersion rates for breeding under genetic equilibrium of the Ongole-crossbred cattle population.

  6. The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism

    Directory of Open Access Journals (Sweden)

    Tae Won Kim

    2015-01-01

    Full Text Available The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity.

  7. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

    Science.gov (United States)

    Zhang, Dan; Guo, Xiantao; Wang, Fang; Dong, Shuanglin

    2016-10-01

    To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance ( P MIH and CHH gene expression when compared to the control ( P < 0.05). According to our findings, L. vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

  8. Growth hormone and prolactin in Andrias davidianus: cDNA cloning, tissue distribution and phylogenetic analysis.

    Science.gov (United States)

    Yang, Liping; Meng, Zining; Liu, Yun; Zhang, Yong; Liu, Xiaochun; Lu, Danqi; Huang, Junhai; Lin, Haoran

    2010-01-15

    The Chinese giant salamander (Andrias davidianus) is one of the largest and 'living fossil' species of amphibian. To obtain genetic information for this species, the cDNAs encoding growth hormone (adGH) and prolactin (adPRL) were cloned from a pituitary cDNA library. The isolated adGH cDNA consisted of 864 bp and encoded a propeptide of 215 amino acids, while the cDNA of adPRL was 1106 bp in length and encoded a putative peptide of 229 amino acids. Expression of the GH and PRL mRNA was only detected in the pituitary. Phylogenetic analyses were performed based on the isolated pituitary hormone sequences using maximum parsimony and neighbor-joining algorithms. The clustering results are similar to that based on the morphological characteristics or the rRNA genes, which indicate that the two orders (Anura and Caudata) of amphibian were monophyletic, and that A. davidianus was diverged early in the Caudate clade. These results indicated that both the GH and PRL sequence might be useful to study the phylogenies of relatively moderate evolved groups.

  9. Skin manifestations of growth hormone-induced diseases.

    Science.gov (United States)

    Kanaka-Gantenbein, Christina; Kogia, Christina; Abdel-Naser, Mohamed Badawy; Chrousos, George P

    2016-09-01

    The human skin is a well-organized organ bearing different types of cells in a well-structured interference to each other including epidermal and follicular keratinocytes, sebocytes, melanocytes, dermal papilla cells and fibroblasts, endothelial cells, sweat gland cells as well as nerves. Several hormones act on different cell types of the skin, while it is also considered an endocrine organ secreting hormones that act at several sites of the organism. GH receptors are found in almost all cell types forming the skin, while IGF-1 receptors' expression is restricted to the epidermal keratinocytes. Both Growth Hormone (GH) excess, as in the case of Acromegaly in adults, or Gigantism in growing children, and GH deficiency states lead to skin manifestations. In case of GH excess the main dermatological findings are skin thickening, coarsening of facial features, acrochordons, puffy hands and feet, oily skin and hyperhidrosis, while GH deficiency, on the contrary, is characterized by thin, dry skin and disorder of normal sweating. Moreover, special disorders associated with GH excess may have specific characteristics, as is the case of café-au-lait spots in Neurofibromatosis, or big café-au-lait skin hyperpigmented regions with irregular margins, as is the case in McCune-Albright syndrome. Meticulous examination of the skin may therefore contribute to the final diagnosis in cases of GH-induced disorders.

  10. Growth hormone producing prolactinoma in juvenile cystinosis: a simple coincidence?

    NARCIS (Netherlands)

    Besouw, M.; Levtchenko, E.N.; Willemsen, M.A.A.P.; Noordam, C.

    2008-01-01

    Juvenile cystinosis was diagnosed in a patient who presented with severe headache attacks and photophobia. Treatment with oral cysteamine and topical cysteamine eye drops was started. One-and-a-half years later, he developed unilateral gynecomastia and elevated prolactin and growth hormone levels. A

  11. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    Science.gov (United States)

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  12. Growth hormone biases amygdala network activation after fear learning.

    Science.gov (United States)

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-11-29

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.

  13. Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47,XXY, 47,XYY, or sex-determining region of the Y chromosome (SRY)-positive 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Skakkebaek, N.E.; Juul, A.

    2008-01-01

    CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution for longitu......CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution...... and sitting height, serum levels of reproductive hormones, IGF-I, and IGFBP-3 were measured. RESULTS: In boys with 47,XXY and 47,XYY karyotypes, growth was accelerated already in childhood, compared with healthy boys. 46,XX-males were significantly shorter than healthy boys but matched the stature of healthy...... and elevated LH levels after puberty, whereas the sex hormone secretion of the 47,XYY boys remained normal. CONCLUSION: We found accelerated growth in early childhood in boys with 47,XXY and 47,XYY karyotypes, whereas 46,XX-males were shorter than controls. These abnormal growth patterns were not reflected...

  14. Bone density and body composition in chronic renal failure: effects of growth hormone treatment

    NARCIS (Netherlands)

    van der Sluis, I. M.; Boot, A. M.; Nauta, J.; Hop, W. C.; de Jong, M. C.; Lilien, M. R.; Groothoff, J. W.; van Wijk, A. E.; Pols, H. A.; Hokken-Koelega, A. C.; de Muinck Keizer-Schrama, S. M.

    2000-01-01

    Metabolic bone disease and growth retardation are common complications of chronic renal failure (CRF). We evaluated bone mineral density (BMD), bone metabolism, body composition and growth in children with CRF, and the effect of growth hormone treatment (GHRx) on these variables. Thirty-three

  15. IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy.

    Science.gov (United States)

    Vasques, Gabriela A; Funari, Mariana F A; Ferreira, Frederico M; Aza-Carmona, Miriam; Sentchordi-Montané, Lucia; Barraza-García, Jimena; Lerario, Antonio M; Yamamoto, Guilherme L; Naslavsky, Michel S; Duarte, Yeda A O; Bertola, Debora R; Heath, Karen E; Jorge, Alexander A L

    2018-02-01

    Genetic evaluation has been recognized as an important tool to elucidate the causes of growth disorders. To investigate the cause of short stature and to determine the phenotype of patients with IHH mutations, including the response to recombinant human growth hormone (rhGH) therapy. We studied 17 families with autosomal-dominant short stature by using whole exome sequencing and screened IHH defects in 290 patients with growth disorders. Molecular analyses were performed to evaluate the potential impact of N-terminal IHH variants. We identified 10 pathogenic or possibly pathogenic variants in IHH, an important regulator of endochondral ossification. Molecular analyses revealed a smaller potential energy of mutated IHH molecules. The allele frequency of rare, predicted to be deleterious IHH variants found in short-stature samples (1.6%) was higher than that observed in two control cohorts (0.017% and 0.08%; P IHH variants segregate with short stature in a dominant inheritance pattern. Affected individuals typically manifest mild disproportional short stature with a frequent finding of shortening of the middle phalanx of the fifth finger. None of them have classic features of brachydactyly type A1, which was previously associated with IHH mutations. Five patients heterozygous for IHH variants had a good response to rhGH therapy. The mean change in height standard deviation score in 1 year was 0.6. Our study demonstrated the association of pathogenic variants in IHH with short stature with nonspecific skeletal abnormalities and established a frequent cause of growth disorder, with a preliminary good response to rhGH. Copyright © 2017 Endocrine Society

  16. The Ghrelin Receptor (Ghsr) Gene Polymorphism in Indonesian Local Chicken and Crossbreed is Associated with Carcass Traits

    OpenAIRE

    Khaerunnisa, Isyana; Jakaria, Jakaria; Arief, Irma Isnafia; Budiman, Cahyo; Sumantri, Cece

    2017-01-01

    Ghrelin receptor (GHSR) gene is candidate gene for growth performance in chicken by modulating growth hormone release from the pituitary by binding to its ligand of ghrelin. Ghrelin gene, or growth hormone secretagogue (GHS) gene, is well known as feed intake and energy homeostasis regulator in mammals and birds. The objectives of this study were to identify the polymorphism of the T1857C GHSR locus in Indonesian local chicken and to evaluate its effects on carcass traits. The gene polymorphi...

  17. A Case with Spondyloenchondrodysplasia Treated with Growth Hormone

    Directory of Open Access Journals (Sweden)

    Takanori Utsumi

    2017-07-01

    Full Text Available Spondyloenchondrodysplasia (SPENCD is an autosomal recessive skeletal dysplasia caused by loss of function mutations in acid phosphatase 5, tartrate resistant (ACP5. Hypomorphic ACP5 mutations impair endochondral bone growth and create an interferon (INF signature, which lead to distinctive spondylar and metaphyseal dysplasias, and extraskeletal morbidity, such as neurological involvement and immune dysregulation, respectively. We report an affected boy with novel ACP5 mutations, a splice-site mutation (736-2 A>C and a nonsense mutation (R176X. He presented with postnatal short stature, which led to a diagnosis of partial growth hormone (GH deficiency at 3 years of age. GH therapy was beneficial in accelerating his growth velocity. At 6 years of age, however, metaphyseal abnormalities of the knee attracted medical attention, and subsequent assessment ascertained the typical skeletal phenotype of SPENCD, brain calcifications, and an INF signature. This anecdotal experience indicates the potential efficacy of GH for growth failure in SPENCD.

  18. Genetic factors associated with small for gestational age birth and the use of human growth hormone in treating the disorder

    Directory of Open Access Journals (Sweden)

    Saenger Paul

    2012-05-01

    Full Text Available Abstract The term small for gestational age (SGA refers to infants whose birth weights and/or lengths are at least two standard deviation (SD units less than the mean for gestational age. This condition affects approximately 3%–10% of newborns. Causes for SGA birth include environmental factors, placental factors such as abnormal uteroplacental blood flow, and inherited genetic mutations. In the past two decades, an enhanced understanding of genetics has identified several potential causes for SGA. These include mutations that affect the growth hormone (GH/insulin-like growth factor (IGF-1 axis, including mutations in the IGF-1 gene and acid-labile subunit (ALS deficiency. In addition, select polymorphisms observed in patients with SGA include those involved in genes associated with obesity, type 2 diabetes, hypertension, ischemic heart disease and deletion of exon 3 growth hormone receptor (d3-GHR polymorphism. Uniparental disomy (UPD and imprinting effects may also underlie some of the phenotypes observed in SGA individuals. The variety of genetic mutations associated with SGA births helps explain the diversity of phenotype characteristics, such as impaired motor or mental development, present in individuals with this disorder. Predicting the effectiveness of recombinant human GH (hGH therapy for each type of mutation remains challenging. Factors affecting response to hGH therapy include the dose and method of hGH administration as well as the age of initiation of hGH therapy. This article reviews the results of these studies and summarizes the success of hGH therapy in treating this difficult and genetically heterogenous disorder.

  19. Effect of plant growth hormones and abiotic stresses on germination ...

    African Journals Online (AJOL)

    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address ...

  20. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice.

    Science.gov (United States)

    Xing, Weirong; Govoni, Kristen E; Donahue, Leah Rae; Kesavan, Chandrasekhar; Wergedal, Jon; Long, Carlin; Bassett, J H Duncan; Gogakos, Apostolos; Wojcicka, Anna; Williams, Graham R; Mohan, Subburaman

    2012-05-01

    Understanding how bone growth is regulated by hormonal and mechanical factors during early growth periods is important for optimizing the attainment of peak bone mass to prevent or postpone the occurrence of fragility fractures later in life. Using genetic mouse models that are deficient in thyroid hormone (TH) (Tshr(-/-) and Duox2(-/-)), growth hormone (GH) (Ghrhr(lit/lit)), or both (Tshr(-/-); Ghrhr(lit/lit)), we demonstrate that there is an important period prior to puberty when the effects of GH are surprisingly small and TH plays a critical role in the regulation of skeletal growth. Daily administration of T3/T4 during days 5 to 14, the time when serum levels of T3 increase rapidly in mice, rescued the skeletal deficit in TH-deficient mice but not in mice lacking both TH and GH. However, treatment of double-mutant mice with both GH and T3/T4 rescued the bone density deficit. Increased body fat in the TH-deficient as well as TH/GH double-mutant mice was rescued by T3/T4 treatment during days 5 to 14. In vitro studies in osteoblasts revealed that T3 in the presence of TH receptor (TR) α1 bound to a TH response element in intron 1 of the IGF-I gene to stimulate transcription. In vivo studies using TRα and TRβ knockout mice revealed evidence for differential regulation of insulin-like growth factor (IGF)-I expression by the two receptors. Furthermore, blockade of IGF-I action partially inhibited the biological effects of TH, thus suggesting that both IGF-I-dependent and IGF-I-independent mechanisms contribute to TH effects on prepubertal bone acquisition. Copyright © 2012 American Society for Bone and Mineral Research.

  1. Reciprocal occupancy of BCL6 and STAT5 on Growth Hormone target genes: contrasting transcriptional outcomes and promoter-specific roles of p300 and HDAC3.

    Science.gov (United States)

    Lin, Grace; LaPensee, Christopher R; Qin, Zhaohui S; Schwartz, Jessica

    2014-09-01

    Expression of the Growth Hormone (GH)-stimulated gene Socs2 (Suppressor of Cytokine Signaling 2) is mediated by the transcription activator STAT5 (Signal Transducer and Activator of Transcription 5) and the transcription repressor BCL6 (B-Cell Lymphoma 6). ChIP-Sequencing identified Cish (Cytokine-Inducible SH2-containing protein) and Bcl6 as having similar patterns of reciprocal occupancy by BCL6 and STAT5 in response to GH, though GH stimulates Cish and inhibits Bcl6 expression. The co-activator p300 occupied Socs2, Cish and Bcl6 promoters, and enhanced STAT5-mediated activation of Socs2 and Cish. In contrast, on Bcl6, p300 functioned as a repressor and inhibited in conjunction with STAT5 or BCL6. The co-repressor HDAC3 (Histone deacetylase 3) inhibited the Socs2, Cish and Bcl6 promoters in the presence of STAT5. Thus transcriptional outcomes on GH-regulated genes occupied by BCL6 and STAT5 are determined in a promoter-specific fashion by co-regulatory proteins which mediate the distinction between activating and repressive transcription factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli.

    Science.gov (United States)

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.

  3. Suitable reference genes for accurate gene expression analysis in parsley (Petroselinum crispum for abiotic stresses and hormone stimuli

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    2016-09-01

    Full Text Available Parsley is one of the most important vegetable in Apiaceae family and widely used in food industry, medicinal and cosmetic. The recent studies in parsley are mainly focus on chemical composition, further research involving the analysis of the gene functions and expressions will be required. qPCR is a powerful method for detecting very low quantities of target transcript levels and widely used for gene expression studies. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, three software geNorm, NormFinder, and BestKeeper were used to evaluate the expression stabilities of eight candidate reference genes (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB under various conditions including abiotic stresses (heat, cold, salt, and drought and hormone stimuli treatments (GA, SA, MeJA, and ABA. The results showed that EF-1α and TUB were identified as the most stable genes for abiotic stresses, while EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes across all the tested samples, while UBC was the least stable one. The expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study provides a guideline for selection the suitable reference genes in gene expression in parsley.

  4. Thermal Manipulation Mid-term Broiler Chicken Embryogenesis: Effect on Muscle Growth Factors and Muscle Marker Genes

    Directory of Open Access Journals (Sweden)

    MB Al-Zghoul

    Full Text Available ABSTRACT Thermal manipulation (TM during broiler chicken embryogenesis has been shown to promote muscle development and growth. However, the molecular bases of promoting broiler muscle development and growth are not fully understood. The aim of this study was to investigate the molecular bases of muscle growth and development in broiler chickens subjected to TM. This included the investigating of the changes in mRNA expression levels of muscle marker genes, namely MyoD, myogenin, paired box transcription factor (Pax7 and proliferating cell nuclear antigen (PCNA, and muscle growth factors namely insulin-like growth factor 1 (IGF-1, myostatin and growth hormone (GH during embryogenesis and on posthatch days 10 and 28. Fertile Cobb eggs (n=1500 were divided into four groups. Eggs in the first group (control were incubated at 37.8°C and 56% RH, whereas, eggs in the second group (TM1, third group (TM2, and fourth group (TM3 were subjected to 39 ºC and 65% RH daily during embryonic days (ED 12-18 for 9, 12, and 18 hours, respectively. Body weight (BW during embryogenesis and posthatch days (1, 3, 5, 7, 14, 21, 28 and 35 was recorded. mRNA expression levels of muscle marker genes and muscle growth factor genes during ED 12, 14, 16 and 18 and on posthatch days 10 and 28 were analyzed using real-time RT-PCR. TM upregulated the mRNA expressions of muscle marker and growth factors genes. This upregulation was accompanied by improvement of body weight near and at market age.

  5. A unique case of combined pituitary hormone deficiency caused by a PROP1 gene mutation (R120C) associated with normal height and absent puberty

    Science.gov (United States)

    Arroyo, Armando; Pernasetti, Flavia; Vasilyev, Vyacheslav V.; Amato, Paula; Yen, Samuel S. C.; Mellon, Pamela L.

    2010-01-01

    Summary We report a 28-year-old-female who presented with primary amenorrhoea, absence of puberty, obesity and normal stature. The subject was clearly short as a child, with a height more than 2 SD below normal until the age of 15 years. The pubertal growth spurt failed to develop. She continued growing at a prepubertal rate until growth ceased at the age of 20 years, reaching her final adult height of 157 cm (SDS −0.86) without hormonal treatment. A combined pituitary hormone stimulation test of anterior pituitary function showed deficiencies of GH, LH and FSH, and low normal serum levels of TSH and PRL. Magnetic resonance imaging revealed a hypoplastic pituitary with markedly reduced pituitary height. In addition, a whole body dual energy X-ray absorptiometry scan showed high levels of body fat (54%). Combined pituitary hormone deficiencies with a hypoplastic pituitary suggested the diagnosis of a Prophet of Pit-1 (PROP1) gene mutation. Normal stature in this case, however, confounded this diagnosis. Sequencing of PROP1 revealed homozygosity for a single base-pair substitution (C to T), resulting in the replacement of an Arg by a Cys at codon 120 (R120C) in the third helix of the homeodomain of the Prop-1 protein. To our knowledge, this is the first report of a patient with a mutation in the PROP1 gene that attained normal height without hormonal treatment, indicating a new variability in the PROP1 phenotype, with important implications for the diagnosis of these patients. We suggest that this can be explained by (i) the presence of low levels of GH in the circulation during childhood and adolescence; (ii) the lack of circulating oestrogen delaying epiphyseal fusion, resulting in growth beyond the period of normal growth; and (iii) fusion of the epiphyseal plates, possibly as a result of circulating oestrogens originating from peripheral conversion of androgens by adipose tissue. PMID:12153609

  6. The effects of oestrogens on linear bone growth

    DEFF Research Database (Denmark)

    Juul, A

    2001-01-01

    receptors (ER-alpha and ER-beta) in the human growth plate, and polymorphisms in the ER gene may influence adult height in healthy subjects. Prepubertal oestradiol concentrations are significantly higher in girls than in boys, explaining sex-related differences in pubertal onset. Men with a disruptive......Regulation of linear bone growth in children and adolescents comprises a complex interaction of hormones and growth factors. Growth hormone (GH) is considered to be the key hormone regulator of linear growth in childhood. The pubertal increase in growth velocity associated with GH has traditionally...... been attributed to testicular androgen secretion in boys, and to oestrogens or adrenal androgen secretion in girls. Research data indicating that oestrogen may be the principal hormone stimulating the pubertal growth spurt in boys as well as girls is reviewed. Such an action is mediated by oestrogen...

  7. Molecular cloning of growth hormone encoding cDNA of Indian

    Indian Academy of Sciences (India)

    A modified rapid amplification of cDNA ends (RACE) strategy has been developed for cloning highly conserved cDNA sequences. Using this modified method, the growth hormone (GH) encoding cDNA sequences of Labeo rohita, Cirrhina mrigala and Catla catla have been cloned, characterized and overexpressed in ...

  8. The role of synthetic growth hormones in crop multiplication and ...

    African Journals Online (AJOL)

    Crop improvement through conventional methods to provide food security for the ever growing population has several limitations. Modern plant biotechnology has held promise over the years to improve outputs from plants. The use of growth hormones as a way of improving plant yield through micro propagation and ...

  9. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency.

    Science.gov (United States)

    Bogdanović, Radovan; Draaken, Markus; Toromanović, Alma; Dordević, Maja; Stajić, Natasa; Ludwig, Michael

    2010-11-01

    Dent disease is an X-linked recessive disorder affecting the proximal tubule and is characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis/nephrolithiasis with a variable number of features of Fanconi syndrome. It is most often associated with mutations in CLCN5, which encodes the endosomal electrogenic chloride/proton exchanger ClC-5. Renal acidification abnormalities are only rarely seen in Dent disease, whereas the hypokalemic metabolic alkalosis associated with hyperreninemic hyperaldosteronism (Bartter-like syndrome) has been reported in only one patient so far. We report on a 5-year-old boy with Dent disease caused by mutation in CLCN5 gene, c.1073G>A, who presented with hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism persisting over the entire follow-up. No mutations were found in NKCC2, ROMK, NCCT, or ClC-Kb genes. In addition, the patient exhibited growth failure associated with partial growth hormone (GH) deficiency. Coexistence of Bartter-like syndrome features with LMWP should prompt a clinician to search for Dent disease. The Bartter syndrome phenotype seen in Dent disease patients may represent a distinct form of Bartter syndrome, the exact mechanism of which has yet to be fully elucidated. Growth delay that persists in spite of appropriate therapy should raise suspicion of other causes, such as GH deficiency.

  10. Growth Hormone Improves Cardiopulmonary Capacity and Body Composition in Children With Growth Hormone Deficiency.

    Science.gov (United States)

    Capalbo, Donatella; Barbieri, Flavia; Improda, Nicola; Giallauria, Francesco; Di Pietro, Elisa; Rapacciuolo, Antonio; Di Mase, Raffaella; Vigorito, Carlo; Salerno, Mariacarolina

    2017-11-01

    Growth hormone deficiency (GHD) in children may be associated with early cardiovascular risk factors and alterations in left ventricular (LV) structure and function; data on cardiopulmonary functional capacity are lacking. Aim of the study was to evaluate the effect of GHD and growth hormone (GH) therapy on cardiopulmonary functional capacity, left and right cardiac structure and function, and body composition in children and adolescents. Prospective, case-control study. Twenty-one untrained GHD children (11.3 ± 0.8 years) underwent cardiopulmonary exercise testing, echocardiography and dual-energy x-ray absorptiometry, before and after 12 months of GH therapy. Twenty-one controls matched for sex, pubertal status, body mass index, and physical activity (PA) were evaluated at baseline and after 1 year. At baseline, GHD patients showed reduced LV mass (LVM; 63.32 ± 7.80 vs 80.44 ± 26.29 g/m2, P = 0.006), peak oxygen consumption (VO2peak; 22.92 ± 4.80 vs 27.48 ± 6.71 mL/Kg/min, P = 0.02), peak workload (80.62 ± 29.32 vs 103.76 ± 36.20 W, P = 0.02), and O2 pulse (4.93 ± 1.30 vs 7.67 ± 2.93 mL/beat, P = 0.0003), compared with controls. GHD patients also exhibited lower lean body mass (LBM 65.36 ± 7.84% vs 76.13 ± 8.23%, P controls. GH therapy resulted in a significant increase of LVM (72.01 ± 15.88, P = 0.03), VO2peak (26.80 ± 4.97; P = 0.01), peak workload (103.67 ± 32.24, P = 0.001), O2 pulse (6.64 ± 1.68, P = 0.0007), and LBM (75.36 ± 7.59%, P = 0.0001), with a reduction in FM (22.62 ± 7.73%, P = 0.001). No difference was found in either left or right ventricular function. Our results suggest that cardiac structure, body composition and cardiopulmonary functional capacity are impaired in children with untreated GHD and can be restored after short-term GH replacement therapy. Copyright © 2017 Endocrine Society

  11. Local Application of Growth Hormone to Enhance Osseointegration in Osteoporotic Bones: A Morphometric and Densitometric Study.

    Science.gov (United States)

    Martin-Monge, Elena; Tresguerres, Isabel F; Clemente, Celia; Tresguerres, Jesús Af

    The aim of this study was to assess the effect of local application of growth hormone on osseointegration of dental implants inserted in osteoporotic bones. Twenty female New Zealand rabbits were used in this study. Ten were ovariectomized and fed a low-calcium diet for 6 weeks, and the others remained intact. A titanium implant was inserted into each tibia, in both groups. In half of the rabbits, 2 IU of growth hormone was placed into the ostectomy prior to the implant insertion. Two weeks after implant surgery, all animals were sacrificed. Tibiae were dissected from soft tissues, and included in methacrylate to be studied under light microscopy. Bone-to-implant contact (BIC) and bone mineral density (BMD) were measured by morphometric and densitometric analysis, respectively. Multifactorial analysis of variance (ANOVA) was used for statistical evaluation. P growth hormone was able to increase the BIC in the ovariectomized group, with statistically significant differences with respect to the control group (P growth hormone at the moment of titanium implant insertion in rabbit tibiae significantly enhanced the BIC around titanium implants 15 days after the implantation in this experimental osteoporotic animal model, without affecting the BMD.

  12. In vitro lipid metabolism, growth and metabolic hormone concentrations in hyperthyroid chickens.

    Science.gov (United States)

    Rosebrough, R W; McMurtry, J P; Vasilatos-Younken, R

    1992-11-01

    Indian River male broiler chickens growing from 7 to 28 d of age were fed on diets containing energy:protein values varying from 43 to 106 MJ/kg protein and containing 0 or 1 mg triiodothyronine (T3)/kg diet to study effects on growth, metabolic hormone concentrations and in vitro lipogenesis. In vitro lipid synthesis was determined in liver explants in the presence and absence of ouabain (Na+, K(+)-transporting ATPase (EC 3.6.1.37) inhibitor) to estimate the role of enzyme activity in explants synthesizing lipid. Growth and feed consumption increased (P 53 MJ/kg protein) and dietary T3 lowered (P 53 MJ/kg protein) increased (P < 0.01) lipogenesis, plasma growth hormone (GH) and decreased plasma insulin-like growth factor 1 (IGF-1). Also, T3 decreased plasma GH, IGF-1 in vitro lipogenesis. Ouabain inhibited a greater proportion of in vitro lipogenesis in those explants synthesizing fat at a high rate. Both dietary T3 and in vitro ouabain decrease lipogenesis, but, when combined, the effects are not cumulative.

  13. The correlation between growth hormone receptor (GHR) polymorphism and obstructive sleep apnea syndrome among the Han and Hani population in China.

    Science.gov (United States)

    Ji, Juanjuan; Yang, Yunwei; Lin, Yan; Li, Xudong; Wu, Xiaoguang; Yang, Xi; Zhong, Ling; Tang, Ying; Huang, Zhiyong; He, Xiaoguang

    2018-04-13

    Obstructive sleep apnea syndrome (OSAS) is a common health problem that is associated with abnormality in craniofacial morphology. The growth hormone receptor (GHR) belongs to the cytokine receptor superfamily and mediates the majority of growth hormone signaling, which, among other functions, determines mandibular growth and development. The aim of this study was to determine if correlations exist between single nucleotide polymorphisms (SNPs) in the GHR gene and OSAS in the Han or Hani ethnic groups in China. A total of 274 Han subjects (106 with OSAS and 168 without OSAS) and a total of 270 Hani subjects (64 with OSAS and 206 without OSAS) were enrolled in our study. Genomic DNA was extracted from peripheral blood obtained from all subjects. Genotyping was undertaken for eight SNPs in the GHR gene (rs3756416, rs7727047, rs2910875, rs12153009, rs2972781, rs12518414, rs4410646, and rs6451620) using PCR amplification and Sanger sequencing. The genotype frequency of rs12518414 was associated with OSAS in both the Han and Hani groups, and the A allele frequency was remarkably lower in Hani OSAS patients compared with Hani controls (16.7 vs 29.9%). In addition, the G allele frequency of the rs3756416 SNP was significantly lower in OSAS patients compared with normal controls in the Hani ethnic group (12.5 vs 24.6%). In a comparison between ethnic groups, genotype frequencies of four SNPs (rs2972781, rs6451620, rs12518414, and rs7727047) differed between Han and Hani OSAS patients, with the A allele frequency of the rs12518414 and G allele frequency of the rs7727047 were significantly higher in the Han OSAS patients. In conclusion, significant associations were detected between some SNPs in the GHR gene and OSAS occurrence while others appeared to be ethnicity-dependent.

  14. Stimulant use and its impact on growth in children receiving growth hormone therapy: an analysis of the KIGS International Growth Database.

    Science.gov (United States)

    Miller, Bradley S; Aydin, Ferah; Lundgren, Frida; Lindberg, Anders; Geffner, Mitchell E

    2014-01-01

    Children receiving stimulants for attention deficit hyperactivity disorder (ADHD) frequently present to pediatric endocrinology clinics for evaluation and treatment of growth disorders. The worldwide prevalence of stimulant use in children with ADHD also receiving recombinant human growth hormone (rhGH) and the impact on response to rhGH are unknown. Data on children enrolled in the KIGS® (Pfizer International Growth Study) registry were evaluated for the associated diagnosis of ADHD prior to initiation of Genotropin® rhGH. Concomitant stimulant medications and auxological information were captured. Response to rhGH was evaluated using established growth prediction models. The prevalence of ADHD in KIGS was 2.3% (1,748/75,251), with stimulants used in 1.8% (1,326/75,251). Children with idiopathic growth hormone deficiency (IGHD) who received stimulants grew significantly less (1.1 cm) in the first year of rhGH therapy than expected for rhGH-treated non-ADHD IGHD children. After one year of rhGH, idiopathic short stature (ISS) children with ADHD were significantly shorter [0.74 cm (with stimulants) and 0.69 cm (without stimulants)] than non-ADHD ISS children. We demonstrated an impaired response to rhGH in IGHD and ISS children with ADHD. Our findings suggest that the ADHD phenotype, alone or in conjunction with stimulant therapy, may impair the short-term growth response to rhGH.

  15. Comparison of low-normal and high-normal IGF-1 target levels during growth hormone replacement therapy : A randomized clinical trial in adult growth hormone deficiency

    NARCIS (Netherlands)

    van Bunderen, Christa C; Lips, Paul; Kramer, Mark H H; Drent, Madeleine L

    BACKGROUND: Current guidelines state that the goals of growth hormone (GH) therapy in adults should be an appropriate clinical response, avoidance of side effects, and an IGF-1 value within the age-adjusted reference range. There are no published studies on the target level for IGF-1 that offer

  16. Educating children and families about growth hormone deficiency and its management: part 2.

    Science.gov (United States)

    Collin, Jacqueline; Whitehead, Amanda; Walker, Jenny

    2016-03-01

    Growth hormone deficiency (GHD) is a long-term condition, therefore creating ongoing partnerships with families is a fundamental part of the role of a paediatric endocrine nurse specialist (PENS). Teaching children, young people and their families about GHD and exploring what it means to them and how they can manage their ongoing treatment is central to building positive relationships. Educating children about the management of their growth hormone treatment (GHT) is an ongoing process and professionals must respond to the changing needs for that information children may have as they grow and develop. Long-term relationships with families are strengthened by recognising and respecting the developing expertise of families as they gain confidence and competence to manage GHT. This article is the second of two parts. Part one was published in the February issue of Nursing Children and Young People and covered an overview of growth hormone, causes and clinical presentation of GHD, development and availability of GHT and the role of the PENS in building partnerships with parents. The focus of this article is the education role of the PENS and the importance of providing information that is appropriate to the child or young person's developmental age.

  17. Effectiveness and safety of growth hormone replacement therapy in adults with growth hormone deficiency%生长激素替代治疗成人生长激素缺乏症的有效性与安全性

    Institute of Scientific and Technical Information of China (English)

    林晨红; 宋筱筱; 徐小红

    2015-01-01

    成人生长激素缺乏症可致机体组分改变、糖、脂代谢紊乱、骨代谢异常、心血管疾病风险增加及生活质量下降等,生长激素替代治疗可有效改善以上情况.但生长激素广泛的生理作用使其安全性备受争议,近几年大部分文献提示生长激素替代治疗不增加糖尿病的发生、肿瘤复发、新发恶性肿瘤及心血管事件等,但仍缺乏大量随机、对照研究,故在生长激素治疗时应严密监测血清胰岛素样生长因子-1水平、血脂、血压、血糖、骨密度、肿瘤标志物及生活质量等指标.%Adult growth hormone deficiency causes a series of abnormities including abnormal body composition,impaired glucose and lipid metabolism,abnormal bone metabolism,as well as increased cardiovascular risk and decreased living quality.Growth hormone replacement therapy can effectively improve those abnormalities.However,the safety of growth hormone is controversial since growth hormone has extensively physiological functions.In recent years,most of the studies revealed that the incidence of diabetes mellitus,tumor recurrence,second neoplasms and cardiovascular events in growth hormone replacement therapy did not increase,although large randomized controlled studies are needed to reach the conclusion.Serum insulin-like growth factor-1 level,serum lipids,blood pressure,plasma glucose,bone mineral density,cancer biomarkers and living quality should be closely monitored during the period of growth hormone replacement therapy.

  18. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    Science.gov (United States)

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  19. Health-Related Quality of Life of Young Adults Treated with Recombinant Human Growth Hormone during Childhood.

    Directory of Open Access Journals (Sweden)

    Grit Sommer

    Full Text Available Since recombinant human growth hormone (rhGH became available in 1985, the spectrum of indications has broadened and the number of treated patients increased. However, long-term health-related quality of life (HRQoL after childhood rhGH treatment has rarely been documented. We assessed HRQoL and its determinants in young adults treated with rhGH during childhood.For this study, we retrospectively identified former rhGH patients in 11 centers of paediatric endocrinology, including university hospitals and private practices. We sent a questionnaire to all patients treated with rhGH for any diagnosis, who were older than 18 years, and who resided in Switzerland at time of the survey. Three hundred participants (58% of 514 eligible returned the questionnaire. Mean age was 23 years; 56% were women; 43% had isolated growth hormone deficiency, or idiopathic short stature; 43% had associated diseases or syndromes, and 14% had growth hormone deficiency after childhood cancer. Swiss siblings of childhood cancer survivors and the German norm population served as comparison groups. HRQoL was assessed using the Short Form-36. We found that the Physical Component Summary of healthy patients with isolated growth hormone deficiency or idiopathic short stature resembled that of the control group (53.8 vs. 54.9. Patients with associated diseases or syndromes scored slightly lower (52.5, and former cancer patients scored lowest (42.6. The Mental Component Summary was similar for all groups. Lower Physical Component Summary was associated with lower educational level (coeff. -1.9. Final height was not associated with HRQoL.In conclusion, HRQoL after treatment with rhGH in childhood depended mainly on the underlying indication for rhGH treatment. Patients with isolated growth hormone deficiency/idiopathic short stature or patients with associated diseases or syndromes had HRQoL comparable to peers. Patients with growth hormone deficiency after childhood cancer were

  20. What drives the prescribing of growth hormone preparations in England? Prices versus patient preferences.

    Science.gov (United States)

    Chapman, Stephen R; Fitzpatrick, Raymond W; Aladul, Mohammed I

    2017-04-11

    The patent expiry of a number of biological medicines and the advent of biosimilars raised the expectations of healthcare commissioners that biosimilars would reduce the high cost of these medicines and produce potential savings to the NHS. We aimed to examine the prescribing pattern of different growth hormone preparations (ready to use and reconstitution requiring) in primary and secondary care in England to determine relative rates of decrease or increase and identify the possible factors influencing prescribing following the introduction of biosimilar growth hormone in 2008. Longitudinal observational study. Primary care prescribing cost and volume data was derived from the NHS business services authority website, and for secondary care from the DEFINE database, between April 2011 and December 2015. Quarterly prescribing analysis to examine trends and measure the relationship between usage and price. Expenditure and usage of growth hormone in primary care decreased by 17.91% and 7.29%, respectively, whereas expenditure and usage in secondary care increased by 68.41% and 100%, respectively, between April 2011 and December 2015. The usage of reconstitution requiring products significantly declined in primary care (R²=0.9292) and slightly increased in use in secondary care (R²=0.139). In contrast, the usage of ready-to-use products significantly increased in use in primary (R²=0.7526) and secondary care (R²=0.9633), respectively. Weak or no correlation existed between the usage and price of growth hormone preparations in primary and secondary care. The price of growth hormone products was not the key factor influencing the prescribing of the biological medicines. The main driver for specific product selection was the ease of use and the number of steps in dose preparation. Prescribers appear to be taking into account patient preferences rather than cost in their prescribing decisions. Published by the BMJ Publishing Group Limited. For permission to use (where

  1. Adrenal hormones interact with sympathetic innervation to modulate growth of embryonic heart in oculo.

    Science.gov (United States)

    Tucker, D C; Torres, A

    1992-02-01

    To allow experimental manipulation of adrenal hormone and autonomic influences on developing myocardium without alteration of hemodynamic load, embryonic rat heart was cultured in the anterior eye chamber of an adult rat. Sympathetic innervation of embryonic day 12 heart grafts was manipulated by surgical sympathectomy of one eye chamber in each host rat. Adrenal hormone exposure was manipulated by host adrenal medullectomy (MEDX) in experiment 1 and by host adrenalectomy (ADX) in experiment 2. In experiment 1, whole heart grafts were larger in MEDX than in sham-operated hosts by 8 wk in oculo (6.14 +/- 0.71 vs. 5.09 +/- 0.69 mm2 with innervation intact and 7.97 +/- 2.07 vs. 3.09 +/- 0.63 mm2 with sympathetic innervation prevented). In experiment 2, host ADX increased growth of embryonic day 12 ventricles grafted into sympathectomized eye chambers (0.69 +/- 0.10 vs. 0.44 +/- 0.04 mm2) but did not affect growth of grafts in intact eye chambers (0.85 +/- 0.09 vs. 1.05 +/- 0.15 mm2). Corticosterone replacement (4 mg/day) entirely reversed the effect of host ADX on graft growth (superior cervical ganglionectomy, 0.47 +/- 0.03 mm2; intact eye chambers, 0.90 +/- 0.91 mm2). Beating rate of grafts was not affected by adrenal hormone manipulations. These experiments indicate that the compromised growth of embryonic heart grafts placed in sympathectomized eye chambers requires exposure to adult levels of glucocorticoids during the early days after grafting. These results suggest that interactions between neural and hormonal stimulation influence cardiac growth in the in oculo culture system and during normal development.

  2. Autodecomposition of radiolabeled human growth hormone

    International Nuclear Information System (INIS)

    Baumann, G.; Amburn, K.

    1986-01-01

    Human growth hormone (hGH) was radiolabeled with 125 I, using a gentle lactoperoxidase technique. The stability and decomposition products of this tracer were studied by frequent periodic analysis by Sephadex G-100 chromatography on a long column. Monomeric 125 I-hGH showed an exponential decline, with a half-life of 61 days. The main radioactive degradation product was iodide, which appeared with a fractional appearance rate of 0.01136 per day. Secondary degradation products were a series of radioactive oligomers of hGH, which appeared with an overall fractional rate of 0.00525 per day. The kinetic data obtained should provide guidelines for the shelf-life and repurification schedule of radioiodinated polypeptides

  3. Polymorphism of the prolactin gene and its association with egg ...

    African Journals Online (AJOL)

    p2492989

    In this study, polymorphism of the prolactin gene was screened in six Chinese native ... Prolactin (PRL) is a single-chain polypeptide hormone that belongs to the growth hormone gene ..... Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining.

  4. Galanin does not affect the growth hormone-releasing hormone-stimulated growth hormone secretion in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Bussi, A R; Legati, F; Bossoni, S; Licini, M; Schettino, M; Zuccato, F; Wehrenberg, W B

    1992-12-01

    Patients with hyperthyroidism have reduced spontaneous and stimulated growth hormone (GH) secretion. The aim of our study was to evaluate the effects of galanin, a novel neuropeptide which stimulates GH secretion in man, on the GH response to GHRH in patients with hyperthyroidism. Eight untreated hyperthyroid patients with Graves' disease (6F, 2M, aged 25-50 years) and six healthy volunteers (3F, 3M, aged 27-76 years) underwent from -10 to 30 min in random order: (i) porcine galanin, iv, 500 micrograms in 100 ml saline; or (ii) saline, iv, 100 ml. A bolus of human GHRH(1-29)NH2, 100 micrograms, was injected iv at 0 min. Hyperthyroid patients showed blunted GH peaks after GHRH+saline (10.2 +/- 2.5 micrograms/l) compared to normal subjects (20.7 +/- 4.8 micrograms/l, p hyperthyroid subjects (12.5 +/- 3 micrograms/l) compared to normal subjects (43.8 +/- 6 micrograms/l, p hyperthyroidism suggests that hyperthyroxinemia may either increase the somatostatin release by the hypothalamus or directly affect the pituitary GH secretory capacity.

  5. Inhibition of rat pituitary growth hormone (GH) release by subclinical levels of lead

    International Nuclear Information System (INIS)

    Camoratto, A.M.; White, L.M.; Lau, Y.S.; Moriarty, C.M.

    1990-01-01

    Lead toxicity has been associated with short stature in children. Since growth hormone is a major regulator of growth, the effects of chronic exposure to subclinical lead levels on pituitary function were assessed. Timed pregnant rats were given 125 ppm lead (as lead nitrate) in their drinking water beginning on day 5 of gestation. After weaning, pups were continued on lead until sacrifice at 7 weeks of age. The average blood lead level at this time was 18.9 ug/dl (range 13.7-27.8). On the day of sacrifice the pituitary was removed, hemisected and incubated with vehicle or 40 nM hGRH (human growth hormone releasing hormone). Pituitaries from chronically lead-treated pups were 64% less responsive to GRH than controls. In contrast, no difference in responsiveness was observed in pituitaries from the dams. The specific binding of GRH was also examined. Control animals showed a dose-dependent displacement of 125I-GRH by unlabeled ligand (10-1000 nM). In the pituitaries of lead-treated pups binding of labeled ligand was markedly reduced by unlabeled GRH (less than 100 nM). Chronic exposure to lead had no effect on serum GH or prolactin levels or on pituitary content of GH. These data suggest that one mechanism by which lead can affect growth is by inhibition of GH release

  6. Growth, Morphology and Growth Related Hormone Level in Kappaphycus alvarezii Produced by Mass Selection in Gorontalo Waters, Indonesia

    Directory of Open Access Journals (Sweden)

    Siti Fadilah

    2016-01-01

    Full Text Available The use of high quality seed can support the success of the seaweed cultivation. This study was conducted to evaluate the growth performance, morphology and growth related hormone level of brown strain seaweed Kappaphycus alvarezii seed produced by mass selection. Selection was performed in the Tomini Gulf, Gorontalo, based on mass selection of seaweed seed protocol with a slight modification in cut-off 10% of the highest daily growth rate. Selection was carried out for four generations. The selected 4th generation of seed was then used in cultivation performance test in the Celebes Sea, North Gorontalo, for three production cycles. The results showed that the selected K. alvarezii has higher clump weight and daily growth rate, longer thallus, more number of branches, and shorter internodes compared to the unselected control and seaweed from the farmer as external control. Furthermore, total sugar content, levels of kinetin hormone and kinetin:indole-3-acetic acid ratio were higher in selected seaweeds than that of unselected control and external control. Thus, mass selection method could be used to produce high growth of seed, and kinetin and indole-3-acetic acid play an important role in growth of K. alvarezii.

  7. Gastrointestinal hormones and their targets

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2014-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone producing organ in the body. Modern biology makes...... it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization......, or differentiated maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed in cells outside the gut, some only in extraintestinal endocrine cells and neurons but others also in other...

  8. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1987-01-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  9. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Adriana, E-mail: francispacagnelli@unoeste.br [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Cicogna, Antônio Carlos [Universidade Estadual Paulista (UNESP), Campus Botucatu, SP (Brazil); Engel, Letícia Estevam; Aldá, Maiara Almeida [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Tomasi, Loreta Casquel de [Universidade Estadual Paulista (UNESP), Campus Botucatu, SP (Brazil); Giuffrida, Rogério; Giometti, Inês Cristina [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Freire, Ana Paula Coelho Figueira [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Universidade Estadual Paulista (UNESP), Campus Presidente Prudente, SP (Brazil); Aguiar, Andreo Fernando [Universidade do Norte do Paraná, UNOPAR, Londrina, PR (Brazil); Pacagnelli, Francis Lopes [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil)

    2016-01-15

    Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca{sup 2+} transport.

  10. Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver.

    Science.gov (United States)

    Cai, Charles; Ahmad, Taimur; Valencia, Gloria B; Aranda, Jacob V; Xu, Jiliu; Beharry, Kay D

    2018-03-08

    Extremely low gestational age neonates with chronic lung disease requiring oxygen therapy frequently experience fluctuations in arterial oxygen saturation or intermittent hypoxia (IH). These infants are at risk for multi-organ developmental delay, reduced growth, and short stature. The growth hormone (GH)/insulin-like growth factor-I (IGF-1) system, an important hormonal regulator of lipid and carbohydrate metabolism, promotes neonatal growth and development. We tested the hypothesis that increasing episodes of IH delay neonatal growth by influencing the GH/IGF-I axis. Newborn rats were exposed to 2, 4, 6, 8, 10, or 12 hypoxic episodes (12% O 2 ) during hyperoxia (50% O 2 ) from P0-P7, P0-P14 (IH), or allowed to recover from P7-P21 or P14-P21 (IHR) in room air (RA). RA littermates at P7, P14, and P21 served as RA controls; and groups exposed to hyperoxia only (50% O 2 ) served as zero IH controls. Histopathology of the liver; hepatic levels of GH, GHBP, IGF-I, IGFBP-3, and leptin; and immunoreactivities of GH, GHR, IGF-I and IGF-IR were determined. Pathological findings of the liver, including cellular swelling, steatosis, necrosis and focal sinusoid congestion were seen in IH, and were particularly severe in the P7 animals. Hepatic GH levels were significantly suppressed in the IH groups exposed to 6-12 hypoxic episodes per day and were not normalized during IHR. Deficits in the GH levels were associated with reduced body length and increase body weight during IHR suggesting increased adiposity and catchup fat. Catchup fat was also associated with elevations in GHBP, IGF-I, leptin. IH significantly impairs hepatic GH/IGF-1 signaling during the first few weeks of life, which is likely responsible for hepatic GH resistance, increased body fat, and hepatic steatosis. These hormonal perturbations may contribute to long-term organ and body growth impairment, and metabolic dysfunction in preterm infants experiencing frequent IH and/or apneic episodes. Copyright © 2018

  11. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear.

    Science.gov (United States)

    Meyer, R M; Burgos-Robles, A; Liu, E; Correia, S S; Goosens, K A

    2014-12-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is no clear relationship between the levels of these hormones and stress-associated mental illnesses such as posttraumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin-releasing factor (CRF) or corticosterone. Repeated intraamygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was enhanced by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear-enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin and

  12. Effects of methimazole treatment on growth hormone (GH) response to GH-releasing hormone in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Ferrari, C; Bodini, C; Buffoli, M G; Legati, F; Schettino, M; Zuccato, F; Wehrenberg, W B

    1990-12-01

    In vitro studies have demonstrated that thyroid hormones can enhance basal and stimulated growth hormone secretion by cultured pituitary cells. However, both in man and in the rat the effects of high thyroid hormone levels on GH secretion are unclear. The aim of our study was to test the GH response to human GHRH in hyperthyroid patients and to evaluate the effects on GH secretion of short- and long-term pharmacological decrease of circulating thyroid hormones. We examined 10 hyperthyroid patients with recent diagnosis of Graves' disease. Twelve healthy volunteers served as controls. All subjects received a bolus iv injection of GHRH(1-29)NH2, 100 micrograms. Hyperthyroid patients underwent a GHRH test one and three months after starting antithyroid therapy with methimazole, 10 mg/day po. GH levels at 15, 30, 45, 60 min and GH peak after stimulus were significantly lower in hyperthyroid patients than in normal subjects. The GH peak was also delayed in hyperthyroid patients. After one month of methimazole therapy, most of the hyperthyroid patients had thyroid hormone levels in the normal range, but they did not show significant changes in GH levels after GHRH, and the GH peak was again delayed. After three months of therapy with methimazole, the hyperthyroid patients did not show a further significant decrease in serum thyroid hormone levels. However, mean GH levels from 15 to 60 min were significantly increased compared with the control study. The GH peak after GHRH was also earlier than in the pre-treatment study.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. An auxology-based growth hormone program : Update on the Australian experience

    NARCIS (Netherlands)

    Werther, GA; Cowell, CT

    In 1988, new guidelines for growth hormone (GH) usage emphasizing auxological criteria were adopted in Australia. Currently, 1,250 children with the following diagnoses are being treated: idiopathic GH deficiency (IGHD), 23.4%; malignancy-related GHD, 7.9%; Turner's syndrome, 12.1%; nonendogrine

  14. Growth hormone and bone health.

    Science.gov (United States)

    Bex, Marie; Bouillon, Roger

    2003-01-01

    Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel

  15. Effect of oxandrolone therapy on adult height in Turner syndrome patients treated with growth hormone: a meta-analysis.

    Science.gov (United States)

    Sheanon, Nicole M; Backeljauw, Philippe F

    2015-01-01

    Turner syndrome is a chromosomal abnormality in which there is complete or partial absence of the X chromosome. Turner syndrome effects 1 in every 2000 live births. Short stature is a cardinal feature of Turner Syndrome and the standard treatment is recombinant human growth hormone. When growth hormone is started at an early age a normal adult height can be achieved. With delayed diagnosis young women with Turner Syndrome may not reach a normal height. Adjuvant therapy with oxandrolone is used but there is no consensus on the optimal timing of treatment, the duration of treatment and the long term adverse effects of treatment. The objective of this review and meta-analysis is to examine the effect of oxandrolone on adult height in growth hormone treated Turner syndrome patients. Eligible trials were identified by a literature search using the terms: Turner syndrome, oxandrolone. The search was limited to English language randomized-controlled trials after 1980. Twenty-six articles were reviewed and four were included in the meta-analysis. A random effects model was used to calculate an effect size and confidence interval. The pooled effect size of 2.0759 (95 % CI 0.0988 to 4.0529) indicates that oxandrolone has a positive effect on adult height in Turner syndrome when combined with growth hormone therapy. In conclusion, the addition of oxandrolone to growth hormone therapy for treatment of short stature in Turner syndrome improves adult height. Further studies are warranted to investigate if there is a subset of Turner syndrome patients that would benefit most from growth hormone plus oxandrolone therapy, and to determine the optimal timing and duration of such therapy.

  16. Serum Growth Hormone and Insulin-Like Growth Factor-1 Levels in Women with Postadolescent Acne

    Directory of Open Access Journals (Sweden)

    Mualla Polat

    2010-06-01

    Full Text Available Background and Design: Acne vulgaris is an inflammatory disease of pilosebaceous unit. It usually starts after puberty but may continue into adulthood. We studied Growth hormone (GH and insulin-like growth factor (IGF-1 levels in women patients with acne vulgaris in whom all other hormon levels were normal. We aimed to show any relation of the acne vulgaris lesion type and GH and IGF-1 levels. Material and Method: The study conducted on the postadolesance period woman patients applying to out patient dermatology department with complaint of acne symptoms between Semtember 2005 and July 2006. All other hormonal parameters were normal in patients. 25 healthy similar age women were accepted as control. IGF-I and GH were quantified by solid-phase competitive chemiluminescence assays. Results: There was no difference according to age between the groups (p=0.726. The mean IGF-1 level was 336.5±112.88 ng/ml in patients and 194±31.32 ng/ml in control; the difference was significantly important (p=0.000. The mean GH level was 3.16±4.35 µIU/ml in patients and 1.15±1.21 µIU/ml in control; and the diffrence was not found as important (p=0.03. IGF-1 level was significantly important in patients with noduler involvement (p=0.015, and GH level was also significantly important in patients with cystic involvement (p=0.05. Conclusion: We supported the hypothesis that GH and IGF-1 levels were important in postadolasence period women patients with acne vulgaris. We recommend new studies comparing GH and IGF-1 levels in adolesence and postadolesence period women patients in order to support the role of these hormones in pathogenesis of acne vulgaris.

  17. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    Science.gov (United States)

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  18. Role of growth hormone in stunted head growth after cranial irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, P E; Shalet, S M; Price, D A; Surtees, R A; Pearson, D

    1987-10-01

    The head sizes of 38 patients, growth hormone (GH) deficient following craniospinal (n = 26) or cranial irradiation (n = 12), have been assessed before (n = 38) and on completion of GH therapy (n = 15) or at the end of a similar period of observation without GH (n = 7). These results were compared to the change in head size seen in idiopathic GH deficiency following GH therapy (n = 14). Before GH therapy, the latter had small heads (mean occipitofrontal circumference SD score (SDS) -1), which were relatively large compared to the height deficit (height SDS (CA) -4.7), and they exhibited catch-up growth with GH (delta occipitofrontal circumference SDS + 0.7, final occipitofrontal circumference SDS -0.2). In contrast, over a similar period all patients, who previously had received cranial irradiation in the dosage range 2700-4750 centi-Geigy, irrespective of the radiation schedule or GH treatment, showed a decrease in occipitofrontal circumference SDS (mean delta -0.9), a significant difference to the expected head growth of normal children over a similar period (p less than 0.01). We have noted that restricted head growth occurs in the years following cranial irradiation and is unaffected by GH therapy. Earlier work has shown that cranial irradiation may impair intelligence. The exact relationship between intellectual impairment and stunted head growth remains to be determined.

  19. A boy with Prader-Willi syndrome: unmasking precocious puberty during growth hormone replacement therapy.

    Science.gov (United States)

    Ludwig, Natasha G; Radaeli, Rafael F; Silva, Mariana M X; Romero, Camila M; Carrilho, Alexandre J F; Bessa, Danielle; Macedo, Delanie B; Oliveira, Maria L; Latronico, Ana Claudia; Mazzuco, Tânia L

    2016-01-01

    Prader-Willi syndrome (PWS) is a genetic disorder frequently characterized by obesity, growth hormone deficiency, genital abnormalities, and hypogonadotropic hypogonadism. Incomplete or delayed pubertal development as well as premature adrenarche are usually found in PWS, whereas central precocious puberty (CPP) is very rare. This study aimed to report the clinical and biochemical follow-up of a PWS boy with CPP and to discuss the management of pubertal growth. By the age of 6, he had obesity, short stature, and many clinical criteria of PWS diagnosis, which was confirmed by DNA methylation test. Therapy with recombinant human growth hormone (rhGH) replacement (0.15 IU/kg/day) was started. Later, he presented psychomotor agitation, aggressive behavior, and increased testicular volume. Laboratory analyses were consistent with the diagnosis of CPP (gonadorelin-stimulated LH peak 15.8 IU/L, testosterone 54.7 ng/dL). The patient was then treated with gonadotropin-releasing hormone analog (GnRHa). Hypothalamic dysfunctions have been implicated in hormonal disturbances related to pubertal development, but no morphologic abnormalities were detected in the present case. Additional methylation analysis (MS-MLPA) of the chromosome 15q11 locus confirmed PWS diagnosis. We presented the fifth case of CPP in a genetically-confirmed PWS male. Combined therapy with GnRHa and rhGH may be beneficial in this rare condition of precocious pubertal development in PWS.

  20. THYROID HORMONE RECEPTOR BETA GENE MUTATION (P453A) IN A TURKISH FAMILY PRODUCING RESISTANCE TO THYROID HORMONE

    Science.gov (United States)

    Bayraktaroglu, Taner; Noel, Janet; Mukaddes, Nahit Motavalli; Refetoff, Samuel

    2018-01-01

    Two members of a Turkish family, a mother and son, had thyroid function tests suggestive of resistance to thyroid hormone (RTH). The clinical presentation was, however, different. The mother (proposita) had palpitation, weakness, tiredness, nervousness, dry mouth and was misdiagnosed as having multinodular toxic goiter which was treated with antithyroid drugs and partial thyroidectomy. Her younger son had attention deficit hyperactivity disorder and primary encopresis, but normal intellectual quotient. Both had elevated serum iodothyronine levels with nonsuppressed thyrotropin. A mutation in one allele of the thyroid hormone receptor beta gene (P453A) was identified, providing a genetic confirmation for the diagnosis of RTH. PMID:18561095

  1. Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta

    Science.gov (United States)

    Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.

    2017-01-01

    Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and

  2. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    Science.gov (United States)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research

    Science.gov (United States)

    Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is

  4. Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Kvist, Peter Helding; Thygesen, Peter

    2017-01-01

    Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH-insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance......) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation...

  5. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco.

    Science.gov (United States)

    Pignocchi, Cristina; Kiddle, Guy; Hernández, Iker; Foster, Simon J; Asensi, Amparo; Taybi, Tahar; Barnes, Jeremy; Foyer, Christine H

    2006-06-01

    The role of the redox state of the apoplast in hormone responses, signaling cascades, and gene expression was studied in transgenic tobacco (Nicotiana tabacum) plants with modified cell wall-localized ascorbate oxidase (AO). High AO activity specifically decreased the ascorbic acid (AA) content of the apoplast and altered plant growth responses triggered by hormones. Auxin stimulated shoot growth only when the apoplastic AA pool was reduced in wild-type or AO antisense lines. Oxidation of apoplastic AA in AO sense lines was associated with loss of the auxin response, higher mitogen-activated protein kinase activities, and susceptibility to a virulent strain of the pathogen Pseudomonas syringae. The total leaf glutathione pool, the ratio of reduced glutathione to glutathione disulfide, and glutathione reductase activities were similar in the leaves of all lines. However, AO sense leaves exhibited significantly lower dehydroascorbate reductase and ascorbate peroxidase activities than wild-type and antisense leaves. The abundance of mRNAs encoding antioxidant enzymes was similar in all lines. However, the day/night rhythms in the abundance of transcripts encoding the three catalase isoforms were changed in response to the AA content of the apoplast. Other transcripts influenced by AO included photorespiratory genes and a plasma membrane Ca(2+) channel-associated gene. We conclude that the redox state of the apoplast modulates plant growth and defense responses by regulating signal transduction cascades and gene expression patterns. Hence, AO activity, which modulates the redox state of the apoplastic AA pool, strongly influences the responses of plant cells to external and internal stimuli.

  6. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  7. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway.

    Science.gov (United States)

    Li, Feida; Li, Yong; Liu, Huan; Zhang, Xingju; Liu, Chuxin; Tian, Kai; Bolund, Lars; Dou, Hongwei; Yang, Wenxian; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao

    2015-12-01

    Growth hormone (GH) is an anabolic mitogen with widespread influence on cellular growth and differentiation as well as on glucose and lipid metabolism. GH binding to the growth hormone receptor (GHR) on hepatocytes prompts expression of insulin growth factor I (IGF-1) involved in nutritionally induced compensatory hyperplasia of pancreatic β-cell islets and insulin release. A prolonged hyperactivity of the IGF-1/insulin axis in the face of insulinotropic nutrition, on the other hand, can lead to collapse of the pancreatic islets and glucose intolerance. Individuals with Laron syndrome carry mutations in the GHR gene resulting in severe congenital IGF-1 deficiency and elevated GH serum levels leading to short stature as well as perturbed lipid and glucose metabolism. However, these individuals enjoy a reduced prevalence of acne, cancer and possibly diabetes. Minipigs have become important biomedical models for human conditions due to similarities in organ anatomy, physiology, and metabolism relative to humans. The purpose of this study was to generate transgenic Wuzhishan minipigs by handmade cloning with impaired systemic GHR activity and assess their growth profile and glucose metabolism. Transgenic minipigs featuring overexpression of a dominant-negative porcine GHR (GHR(dm)) presented postnatal growth retardation and proportionate dwarfism. Molecular changes included elevated GH serum levels and mild hyperglycemia. We believe that this model may prove valuable in the study of GH functions in relation to cancer, diabetes and longevity.

  8. Phosphorylation of chicken growth hormone

    International Nuclear Information System (INIS)

    Aramburo, C.; Montiel, J.L.; Donoghue, D.; Scanes, C.G.; Berghman, L.R.

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and γ- 32 P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of 32 P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of 32 P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer

  9. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    Science.gov (United States)

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, Phyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (Phormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  10. Interaction between ractopamine and growth hormone in the metabolism of hypophysectomized female rats

    Directory of Open Access Journals (Sweden)

    Bianca Sacramento Barros

    2013-11-01

    Full Text Available Ractopamine and growth hormone have been extensively studied due to their ability to generate a better partition of nutrients in the body, providing an increased muscle protein synthesis and lipolysis in adipose tissue. Thus, this article aims to check the effects of interaction between these substances on the metabolism of hypophysectomized female rats, and their individual effects on the body composition of these animals. Thirty Fisher rats were distributed into five treatments, one of them was a normal control group, one was a hypophysectomized control group, and the other three were hypophysectomized animal groups treated with ractopamine (80 mg/kg/day, with growth hormone (4 mg/kg/day, and with a combination of them, all with six replicates in each group. The association between these substances provided a higher percentage of protein and decreased ether extract in the animals’ carcass. Furthermore, it caused an increase in water intake, in urine production, and decreased relative weight of kidneys, liver, and spleen when compared to the control group. The use of growth hormone provided a higher final weight gain and feeding effectiveness, lower heart weight and increased blood glucose level, and the use of ractopamine resulted in a higher lung weight, increased total cholesterol and IGF-1, and decreased peptide C concentration.

  11. The study of the patient and his parents' gene with thyroid hormone resistance syndrome with review of literature

    International Nuclear Information System (INIS)

    Yang Chenwei; Zhang Xi

    2012-01-01

    Objective: To study the genoty of a family of the thyroid hormone receptor β (TRβ) gene and the clinical representation in a patient with thyroid hormone resistance syndrome (THRS). Methods : The peripheral blood samples of the patient and her parents were collected, then DNA was isolated. PCR and direct sequencing techniques were performed to determine if there were mutations in their THRβ gene. Results: There was a point mutation in exon 3d TRβ of the patient and her father, there was a base inserting in the third exon of the third chromosome. Her mother was normal. Conclusion: THRS is a disease related to thyroid hormone receptor gene mutation. The final diagnosis of this disease depends on gene analysis. (authors)

  12. miR-1338-5p Modulates Growth Hormone Secretion and Glucose Utilization by Regulating ghitm in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus).

    Science.gov (United States)

    Qiang, Jun; Bao, Jing Wen; Li, Hong Xia; Chen, De Ju; He, Jie; Tao, Yi Fan; Xu, Pao

    2017-01-01

    MicroRNAs (miRNAs) are endogenous, non-coding small RNA molecules about 22 nt in length, which could regulate the expressions of target genes and participate in growth and development of organisms. Genetically improved farmed tilapia (GIFT, Oreochromis niloticus ) is an important economic freshwater species in China and the growth performance is one of the main breeding indicators. Growth hormone inducible transmembrane protein ( ghitm ) plays an important role in growth and development of both mammals and invertebrates; however, little studies have been reported on fish. Our previous experiments indicated that miR-1338-5p expression may be negatively correlated with ghitm expression. In this study, we firstly used qRT-PCR and northern blot to verify the expression of miR-1338-5p and ghitm , and determined the binding site of miR-1338-5p in the ghitm 3'-untranslated region (UTR) by luciferase reporter assay. Secondly, juveniles GIFT injected with miR-1338-5p antagomir were used to analyze the regulatory function of the miR-1338-5p- ghitm pair in vivo . The results showed that the ghitm 3'-UTR was complementary to the 5' 2-8-nt site of miR-1338-5p. Inhibition of miR-1338-5p promoted ghitm expression in the pituitary and liver of GIFT. ghitm could interfere in the growth hormone (Gh)-growth hormone receptor (Ghr)-insulin-like growth factor (Igf) signaling pathway by competing with the ghr1 for combination with Gh, and then reduce the growth of GIFT. Moreover, the reduction of Gh in serum may regulate insulin secretion and result in the increasing sugar and fat storage in serum and liver. Our results suggest that miR-1338-5p participates in the growth and development of GIFT through the regulation of ghitm , which provides theoretical support for the study of the fish growth mechanism.

  13. IDENTIFICATION OF GH|ALUI AND GHR|ALUI GENES POLYMORPHISMS IN INDONESIAN BUFFALO

    Directory of Open Access Journals (Sweden)

    E. Andreas

    2014-10-01

    Full Text Available Growth hormone (GH is an anabolic hormone which sintesized and secreted by somatrotop cell inpituitary anterior lobe. GH exert its effect on growth and metabolism by interacting with a specificreceptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested ascandidate gene for traits related to meat production in Bovidae. The objectives of this study were toidentify polymorphism of GH and GHR genes in buffalo. The 452 DNA samples buffalo were collectedfrom five populations in Indonesia (Siborong-Borong-Medan (65, Lebak-Banten (29, Pandeglang-Banten (180, Semarang-Central Java, and Mataram-West Nusa Tenggara (103. A gene fragment of theGH|AluI gene at 432 bp located on exon 3 and GHR|AluI gene at 298 bp on exon 10 were successfullyamplified by using the techniques of a PCR (polymerase chain reaction and genotyped by PCR-RFLP(restriction fragment length polymorphism then -SSCP (single strand conformation polymorphism. Theresults showed no polymorphisms were detected in these genes. All buffaloes tested had LL genotype forlocus GH|AluI and AA genotype for locus GHR|AluI.

  14. Exogenous recombinant human growth hormone effects during suboptimal energy and zinc intake

    OpenAIRE

    Rising, Russell; Scaglia, Julio F; Cole, Conrad; Tverskaya, Rozalia; Duro, Debora; Lifshitz, Fima

    2005-01-01

    Abstract Background Energy and Zinc (Zn) deficiencies have been associated with nutritional related growth retardation as well as growth hormone (GH) resistance. In this study, the relationship between suboptimal energy and/or Zn intake and growth in rats and their response to immunoreactive exogenous recombinant human GH (GHi), was determined. Results Rats treated with GHi and fed ad-libitum energy and Zn (100/100) had increased IGFBP-3 (p < 0.05) as compared with NSS (215 ± 23 vs. 185 ± 17 ...

  15. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  16. Netherton Syndrome in a Neonate with Possible Growth Hormone Deficiency and Transient Hyperaldosteronism

    Directory of Open Access Journals (Sweden)

    Chatziioannidis Ilias

    2015-01-01

    Full Text Available Netherton syndrome, a rare autosomal recessive genetic disorder, is classified as an ichthyosiform syndrome. In this report we present the case of a neonate with erythroderma shortly after birth, accompanied by severe hypernatremia, recurrent infections, transient hyperaldosteronism, and signs of growth hormone (GH deficiency. DNA molecular analysis in the SPINK5 gene revealed heterozygosity in our index patient for 238insG and 2468delA frameshift mutations in exons 4 and 26, respectively, in the maternal allele and 1431-12G>A splice-site mutation in intron 15 in the paternal allele as well as the missense variation E420K in homozygous state. Combination of the identified mutations along with transient hyperaldosteronism and possible GH deficiency have not been described before. Accordingly, the importance of early multidisciplinary approach is highlighted, in order to reach accurate diagnosis, initiate prompt treatment, and ensure survival with fewer disease complications.

  17. Insulin-like growth factor 1 and growth hormone in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, Søren; Becker, Povl Ulrik

    1992-01-01

    , and hypothalamic levels. The basal and stimulated GH concentration is pathologically elevated in patients with chronic liver disease and may be due to a disturbed regulation. Alterations in liver IGF receptors in patients with chronic liver disease still require investigation as they may be important for the liver...... mainly due to the decreased liver function. Low levels of somatomedins are also seen in patients with growth hormone (GH) insufficiency, renal impairment, and malnutrition. GH stimulates the production of IGF-1, and both are part of a negative feedback system acting on hepatic, pituitary...

  18. Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes

    Directory of Open Access Journals (Sweden)

    S.E. Arranz

    2008-07-01

    Full Text Available Using biotechnology to increase the growth rates of fish is likely to reduce production costs per unit of food. Among vertebrates, fish appear to occupy a unique position, when growth patterns are considered. With few exceptions, fish species tend to grow indeterminately, implying that size is never fixed. Both hyperplasia and hypertrophy contribute to post-larval muscle growth in fish. Growth hormone (GH - Insulin-like Growth Factor I (IGF-I is the most important growth axis in fish. Our experimental model, the pejerrey, Odontesthes bonariensis (Ateriniformes is a South American inland water fish considered to be a promising species for intensive aquaculture. However, one major drawback to achieve this goal is its slow growth in captivity. In order to understand how growth is regulated in this species, our first objective was to characterized pejerrey GH- IGF-I axis. We first cloned and characterized pejerrey (pj GH, IGF-I and the growth hormone receptors (GHRs I and II. In addition to providing valuable data for evolutionary comparison of GH, investigation of GH action in teleosts is particularly important because of its potential application in aquaculture. GH can not only promote the somatic growth in fish but also lower dietary protein requirements. A prerequisite for providing sufficient amounts of GH for basic research and aquaculture application is a large-scale production of GH. For that purpose, recombinant pjGH was expressed in a bacterial system. Protocols for solubilization and proper folding were achieved. Activity of recombinant pjGH was assessed in fish by measuring the liver IGF-I response to different doses of GH. IGF-I transcript was measured in the liver after pjGHr in vivo stimulation by means of quantitative real-time PCR assays. A dose-dependent response of IGF-I mRNA was observed after pjGHr administration, and reached a 6 fold IGF-I maximum increase over control group when 2.5 µg pjGH /g-body weight were injected

  19. Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Usset, Joseph L; Raghavan, Rama; Tyrer, Jonathan P

    2016-01-01

    and non-obese women. METHODS: We considered interactions between 11,441 SNPs within 80 candidate genes related to hormone biosynthesis and metabolism and insulin-like growth factors with six hormone-related factors (oral contraceptive use, parity, endometriosis, tubal ligation, hormone replacement therapy...... Future work is needed to develop powerful statistical methods able to detect these complex interactions. IMPACT: Assessment of multifactor interaction is feasible, and, here, suggests that the relationship between genetic variants within candidate genes and hormone-related risk factors may vary EOC...

  20. Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction

    DEFF Research Database (Denmark)

    Goujon, L; Allevato, G; Simonin, G

    1994-01-01

    To study structure-function relationships of the growth hormone (GH) receptor (GHR), two functional systems have been developed. CHO cells were transiently cotransfected with the cDNA encoding the full-length rat GHR and with a construct consisting of the 5' flanking region of one of two GH...

  1. A Child with Local Lipohypertrophy following Recombinant Human Growth Hormone Administration

    NARCIS (Netherlands)

    Koppen, Ilan J. N.; Bakx, Roel; de Kruiff, Chris C.; van Trotsenburg, A. S. Paul

    2016-01-01

    Local lipohypertrophy due to recombinant human growth hormone (rhGH) administration is a rare phenomenon. Here, we report a case of an 11-year-old girl who presented with a paraumbilical swelling, approximately one year after the start of rhGH treatment for short stature due to the presumed

  2. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  3. Transcriptome Analysis of Calcium- and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development

    Science.gov (United States)

    Li, Yan; Meng, Jingjing; Yang, Sha; Guo, Feng; Zhang, Jialei; Geng, Yun; Cui, Li; Wan, Shubo; Li, Xinguo

    2017-01-01

    Peanut is one of the calciphilous plants. Calcium serves as a ubiquitous central hub in a large number of signaling pathways. In the field, free calcium ion (Ca2+)-deficient soil can result in unfilled pods. Four pod stages were analyzed to determine the relationship between Ca2+ excretion and pod development. Peanut shells showed Ca2+ excretion at all four stages; however, both the embryo of Stage 4 (S4) and the red skin of Stage 3 (S3) showed Ca2+ absorbance. These results showed that embryo and red skin of peanut need Ca2+ during development. In order to survey the relationship among calcium, hormone and seed development from gene perspective, we further analyzed the seed transcriptome at Stage 2 (S2), S3, and S4. About 70 million high quality clean reads were generated, which were assembled into 58,147 unigenes. By comparing these three stages, total 4,457 differentially expressed genes were identified. In these genes, 53 Ca2+ related genes, 40 auxin related genes, 15 gibberellin genes, 20 ethylene related genes, 2 abscisic acid related genes, and 7 cytokinin related genes were identified. Additionally, a part of them were validated by qRT-PCR. Most of their expressions changed during the pod development. Since some reports showed that Ca2+ signal transduction pathway is involved in hormone regulation pathway, these results implied that peanut seed development might be regulated by the collaboration of Ca2+ signal transduction pathway and hormone regulation pathway. PMID:28769950

  4. Transcriptome Analysis of Calcium- and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-07-01

    Full Text Available Peanut is one of the calciphilous plants. Calcium serves as a ubiquitous central hub in a large number of signaling pathways. In the field, free calcium ion (Ca2+-deficient soil can result in unfilled pods. Four pod stages were analyzed to determine the relationship between Ca2+ excretion and pod development. Peanut shells showed Ca2+ excretion at all four stages; however, both the embryo of Stage 4 (S4 and the red skin of Stage 3 (S3 showed Ca2+ absorbance. These results showed that embryo and red skin of peanut need Ca2+ during development. In order to survey the relationship among calcium, hormone and seed development from gene perspective, we further analyzed the seed transcriptome at Stage 2 (S2, S3, and S4. About 70 million high quality clean reads were generated, which were assembled into 58,147 unigenes. By comparing these three stages, total 4,457 differentially expressed genes were identified. In these genes, 53 Ca2+ related genes, 40 auxin related genes, 15 gibberellin genes, 20 ethylene related genes, 2 abscisic acid related genes, and 7 cytokinin related genes were identified. Additionally, a part of them were validated by qRT-PCR. Most of their expressions changed during the pod development. Since some reports showed that Ca2+ signal transduction pathway is involved in hormone regulation pathway, these results implied that peanut seed development might be regulated by the collaboration of Ca2+ signal transduction pathway and hormone regulation pathway.

  5. Gonadotropin-releasing hormone receptor (Gnrhr gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Directory of Open Access Journals (Sweden)

    Ellen R Busby

    Full Text Available Gonadotropin-releasing hormone (GnRH is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  6. Response to growth hormone treatment and final height after cranial or craniospinal irradiation

    International Nuclear Information System (INIS)

    Sulmont, V.; Brauner, R.; Fontoura, M.; Rappaport, R.

    1990-01-01

    Growth hormone (GH) deficiency (GHD) induced by cranial irradiation has become a frequent indication of hGH substitutive therapy. This study analyses the growth response to hGH therapy and the factors involved in the decrease in growth velocity observed after cranial irradiation. One hundred children given cranial radiation for pathology distant from the hypothalamo-pituitary area were studied. Fifty-six of them received hGH therapy for GHD resulting in decreased growth velocity. The initial annual height gain in the cranial-irradiated group was comparable to that of patients treated for idiopathic GHD; additional spinal irradiation significantly reduced the growth response. Twenty-eight hGH-treated patients reached final heights which were compared to those of 2 untreated irradiated groups, one with GHD (n=27) and the other with normal GH secretion (n=17). The height SD score changes observed in hGH therapy were +0.3 in the cranial (n=10) and -1.2 SD in the craniospinal (n=18) groups. GH deficiency had contributed to a mean height loss of 1 SD and spinal irradiation to a loss of 1.4SD. The small effect of hGH therapy on final height is probably linked to the small bone age retardation at onset of hGH therapy and to the fact that irradiated children entered puberty at a younger age in terms of chronological age and bone age than the idiopathic GHD patients. These data suggest that the results of gGH therapy in irradiated children might be improved with higher and more fractionated hGH doses and, in some patients, by delaying puberty using luteinizing hormone releasing hormone analogs

  7. Response to growth hormone treatment and final height after cranial or craniospinal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sulmont, V.; Brauner, R.; Fontoura, M.; Rappaport, R. (Hospital des Enfants Malades, Paris (France). Pediatric Endocrinology Unit and INSERM U30)

    1990-01-01

    Growth hormone (GH) deficiency (GHD) induced by cranial irradiation has become a frequent indication of hGH substitutive therapy. This study analyses the growth response to hGH therapy and the factors involved in the decrease in growth velocity observed after cranial irradiation. One hundred children given cranial radiation for pathology distant from the hypothalamo-pituitary area were studied. Fifty-six of them received hGH therapy for GHD resulting in decreased growth velocity. The initial annual height gain in the cranial-irradiated group was comparable to that of patients treated for idiopathic GHD; additional spinal irradiation significantly reduced the growth response. Twenty-eight hGH-treated patients reached final heights which were compared to those of 2 untreated irradiated groups, one with GHD (n=27) and the other with normal GH secretion (n=17). The height SD score changes observed in hGH therapy were +0.3 in the cranial (n=10) and -1.2 SD in the craniospinal (n=18) groups. GH deficiency had contributed to a mean height loss of 1 SD and spinal irradiation to a loss of 1.4SD. The small effect of hGH therapy on final height is probably linked to the small bone age retardation at onset of hGH therapy and to the fact that irradiated children entered puberty at a younger age in terms of chronological age and bone age than the idiopathic GHD patients. These data suggest that the results of gGH therapy in irradiated children might be improved with higher and more fractionated hGH doses and, in some patients, by delaying puberty using luteinizing hormone releasing hormone analogs.

  8. Growth hormone in sports: detecting the doped or duped.

    Science.gov (United States)

    Ho, Ken K Y; Nelson, Anne E

    2011-01-01

    Doping with growth hormone (GH) is banned; however, there is anecdotal evidence that it is widely abused. GH is reportedly often used in combination with anabolic steroids at high doses for several months. Development of a robust test for detecting GH has been challenging since recombinant human 22-kDa GH used in doping is indistinguishable analytically from endogenous GH and there are wide physiological fluctuations in circulating GH concentrations. One approach to GH testing is based on measurement of different circulating GH isoforms using immunoassays that differentiate between 22-kDa and other GH isoforms. Administration of 22-kDa GH results in a change in its abundance relative to other endogenous pituitary GH isoforms. The differential isoform method is, however, limited by its short time window of detection. A second approach that extends the time window of detection is based on detection of increased levels of circulating GH-responsive proteins, such as the insulin-like growth factor (IGF) axis and collagen peptides. As age and gender are the major determinants of variability for IGF-I and the collagen markers, a test based on these markers must take these factors into account. Extensive data now validate the GH-responsive marker approach, and implementation is largely dependent on establishing an assured supply of standardized assays. Robust tests are available to detect GH and enforce the ban on its abuse in sports. Novel approaches that include gene expression and proteomic profiling must continue to be pursued to expand the repertoire of testing approaches available and to maintain deterrence of GH doping. Copyright © 2011 S. Karger AG, Basel.

  9. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    International Nuclear Information System (INIS)

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A.

    1988-01-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery

  10. Fixed-functional appliance treatment combined with growth hormone therapy.

    Science.gov (United States)

    Jung, Min-Ho

    2017-09-01

    The purpose of this study was to illustrate the effects of growth hormone (GH) therapy and fixed functional appliance treatment in a 13-year-old Class II malocclusion patient without GH deficiency. GH has been shown to effectively increase endochondral growth and induce a more prognathic skeletal pattern. Although a major concern in Class II retrognathic patients is chin deficiency, long-term studies have shown that the mandibular growth enhancement effects of functional appliances are clinically insignificant. This case report demonstrates that the mandible grew significantly during fixed functional appliance treatment combined with GH therapy, with stable results during 2 years 11 months of retention. More studies are needed to evaluate GH therapy as a supplement in Class II treatment. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  11. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Petersen, Elisabeth D.; Nielsen, Jens Høiriis

    1993-01-01

    During pregnancy, marked hyperplasia of the pancreatic islet cells has been observed. This effect may be mediated by the pregnancy-associated peptide hormones, placental lactogen, PRL, and GH, which were previously shown to be mitogenic to beta-cells in vitro. To study whether the responsiveness ...

  12. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Patrick R., E-mail: phannon2@illinois.edu; Brannick, Katherine E., E-mail: kbran@illinois.edu; Wang, Wei, E-mail: Wei.Wang2@covance.com; Gupta, Rupesh K., E-mail: drrupesh@yahoo.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  13. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    International Nuclear Information System (INIS)

    Hannon, Patrick R.; Brannick, Katherine E.; Wang, Wei; Gupta, Rupesh K.; Flaws, Jodi A.

    2015-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  14. Potent agonists of growth hormone-releasing hormone. Part I.

    Science.gov (United States)

    Zarandi, M; Serfozo, P; Zsigo, J; Bokser, L; Janaky, T; Olsen, D B; Bajusz, S; Schally, A V

    1992-03-01

    Analogs of the 29 amino acid sequence of growth hormone-releasing hormone (GH-RH) with agmatine (Agm) in position 29 have been synthesized by the solid phase method, purified, and tested in vitro and in vivo. The majority of the analogs contained desaminotyrosine (Dat) in position 1, but a few of them had Tyr1, or N-MeTyr1. Some peptides contained one or more additional L- or D-amino acid substitutions in positions 2, 12, 15, 21, 27, and/or 28. Compared to the natural sequence of GH-RH(1-29)NH2, [Dat1,Ala15]GH-RH(1-28)Agm (MZ-3-191) and [D-Ala2,Ala15]GH-RH(1-28)Agm (MZ-3-201) were 8.2 and 7.1 times more potent in vitro, respectively. These two peptides contained Met27. Their Nle27 analogs, [Dat1,Ala15,Nle27]GH-RH(1-28)Agm(MZ-2-51), prepared previously (9), and [D-Ala2,Ala15,Nle28]GH-RH(1-28)Agm(MZ-3-195) showed relative in vitro potencies of 10.5 and 2.4, respectively. These data indicate that replacement of Met27 by Nle27 enhanced the GH-releasing activity of the analog when the molecule contained Dat1-Ala2 residues at the N-terminus, but peptides containing Tyr1-D-Ala2 in addition to Nle27 showed decreased potencies. Replacement of Ser28 with Asp in multi-substituted analogs of GH-RH(1-28)Agm resulted in a decrease in in vitro potencies compared to the parent compound. Thus, the Ser28-containing MZ-2-51, and [Dat1,Ala15,D-Lys21,Nle27]GH-RH(1-28)Agm, its Asp28 homolog (MZ-3-149), possessed relative activities of 10.5 and 5.6, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA),

  16. [Role of growth hormone underproduction and support load deficit in development of muscle atrophy and osteopenia in tail-suspended rats].

    Science.gov (United States)

    Kaplanskiĭ, A S; Durnova, G N; Ili'ina-Kakueva, E I; Loginov, V I

    1999-01-01

    In a 20-day experiment with tail-suspended male rats histological and histomorphometric techniques were used to study the effects of growth hormone, thyroxin, and graded support loads on the progress of atrophy in soleus and gastrocnemius m.m., tibial metaphyses spongiosis, and growth of tibiae. Daily injections of growth hormone at a dose of 0.5 mg/kg of the body mass were found to restore the longitudinal growth of tibiae and to suppress osteopenia in the spongiosis of metaphyses; however, they did not have any noteworthy effect on the muscular atrophy in the suspended rats. Support loading of the hind limbs for 2 hours a day in parallel to the treatment with growth hormone and thyroxin (0.02 mg/kg of the body mass per a day) suppressed the atrophy in soleus m. but not in gastrocnemius m. They were not able to oppose to osteoporosis in tibial metaphyses spongiosis; tibial growth was not normalized. Thyroxin did not appear to markedly influence muscle and bone atrophies; moreover, it made hypofunctioning of the thyroid more intense and, when combined with the growth hormone, masked the positive effect of the latter on the rats' bones.

  17. Optic nerve size evaluated by magnetic resonance imaging in children with optic nerve hypoplasia, multiple pituitary hormone deficiency, isolated growth hormone deficiency, and idiopathic short stature.

    Science.gov (United States)

    Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis

    2004-10-01

    To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P imaging of the ONs with cross-sectional area short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.

  18. Growth rates and the prevalence and progression of scoliosis in short-statured children on Australian growth hormone treatment programmes

    Directory of Open Access Journals (Sweden)

    McPhee Ian

    2007-02-01

    Full Text Available Abstract Study design and aim This was a longitudinal chart review of a diverse group (cohort of patients undergoing HGH (Human Growth Hormone treatment. Clinical and radiological examinations were performed with the aim to identify the presence and progression of scoliosis. Methods and cohort 185 patients were recruited and a database incorporating the age at commencement, dose and frequency of growth hormone treatment and growth charts was compiled from their Medical Records. The presence of any known syndrome and the clinical presence of scoliosis were included for analysis. Subsequently, skeletally immature patients identified with scoliosis were followed up over a period of a minimum four years and the radiologic type, progression and severity (Cobb angle of scoliosis were recorded. Results Four (3.6% of the 109 with idiopathic short stature or hormone deficiency had idiopathic scoliosis (within normal limits for a control population and scoliosis progression was not prospectively observed. 13 (28.8% of 45 with Turner syndrome had scoliosis radiologically similar to idiopathic scoliosis. 11 (48% of 23 with varying syndromes, had scoliosis. In the entire cohort, the growth rates of those with and without scoliosis were not statistically different and HGH treatment was not ceased because of progression of scoliosis. Conclusion In this study, there was no evidence of HGH treatment being responsible for progression of scoliosis in a small number of non-syndromic patients (four. An incidental finding was that scoliosis, similar to the idiopathic type, appears to be more prevalent in Turner syndrome than previously believed.

  19. Gene doping: the hype and the harm.

    Science.gov (United States)

    McKanna, Trudy A; Toriello, Helga V

    2010-06-01

    "Gene doping" is the term used to describe the potential abuse of gene therapy as a performance-enhancing agent. Gene doping would apply the techniques used in gene therapy to provide altered expression of genes that would promote physical superiority. For example, insulin-like growth factor 1 (IGF-1) is a primary target for growth hormone; overexpression of IGF-1 can lead to increased muscle mass and power. Although gene doping is still largely theoretical, its implications for sports, health, ethics, and medical genetics are significant.

  20. Recessive VARS2 mutation underlies a novel syndrome with epilepsy, mental retardation, short stature, growth hormone deficiency, and hypogonadism

    KAUST Repository

    Alsemari, Abdulaziz

    2017-11-14

    Most mitochondrial and cytoplasmic aminoacyl-tRNA synthetases (aaRSs) are encoded by nuclear genes. Syndromic disorders resulting from mutation of aaRSs genes display significant phenotypic heterogeneity. We expand aaRSs-related phenotypes through characterization of the clinical and molecular basis of a novel autosomal-recessive syndrome manifesting severe mental retardation, ataxia, speech impairment, epilepsy, short stature, microcephaly, hypogonadism, and growth hormone deficiency.A G>A variant in exon 29 of VARS2 (c.3650G>A) (NM_006295) was identified in the index case. This homozygous variant was confirmed by Sanger sequencing and segregated with disease in the family studied. The c.3650G>A change results in alteration of arginine to histidine at residue 1217 (R1217H) of the mature protein and is predicted to be pathogenic.These findings contribute to a growing list of aaRSs disorders, broadens the spectrum of phenotypes attributable to VARS2 mutations, and provides new insight into genotype-phenotype correlations among the mitochondrial synthetase genes.