WorldWideScience

Sample records for growth factor-mediated urokinase

  1. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  2. Tyk2 mediates effects of urokinase on human vascular smooth muscle cell growth

    International Nuclear Information System (INIS)

    Patecki, Margret; Schaewen, Markus von; Tkachuk, Sergey; Jerke, Uwe; Dietz, Rainer; Dumler, Inna; Kusch, Angelika

    2007-01-01

    The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury

  3. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe

    2007-01-01

    in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular...... collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis......The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process...

  4. Crystal structure of the urokinase receptor in a ligand-free form

    DEFF Research Database (Denmark)

    Xu, Xiang; Gårdsvoll, Henrik; Yuan, Cai

    2012-01-01

    The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent...

  5. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    Science.gov (United States)

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  6. Some factors affecting urokinase inactivation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Hiroo; Iketa, Yoshito

    1985-10-01

    The enzymatic activity of urokinase adsorbed on various polymer surfaces was measured to study the interaction between protein and polymers. The polymer films on which urokinase was adsorbed were exposed to either a high temperature or ..gamma..-radiation. The thermal inactivation rates were higher on hydrophobic polymers such as poly(ethylene terephthalate), nylon 6, and poly(vinylidene fluoride) than hydrophilic polymers like cellulose and ethylene-vinyl alcohol copolymer, indicating their substantial dependence on the interfacial free energy between the polymer and water. A similar dependence was also seen for the ..gamma..-radiation inactivation. Urokinase adsorbed on the hydrophobic polymers lost more easily its enzymatic activity by exposure to ..gamma..-radiation. The interfacial free energy seems to be one of the driving forces to denaturate proteins on polymers.

  7. Interleukin-6 infusion during human endotoxaemia inhibits in vitro release of the urokinase receptor from peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Ostrowski, S R; Plomgaard, P; Fischer, C P

    2005-01-01

    Leucocyte expression of the urokinase receptor [urokinase-type plasminogen activator receptor (uPAR)] is regulated by inflammatory mediators. This study investigated the in vivo effect of endotoxin, interleukin (IL)-6 and tumour necrosis factor (TNF)-alpha on uPAR-release in vivo and in vitro in ...

  8. Analysis of multi-factors affecting symptomatic intracranial hemorrhage in intraarterial thrombolysis with urokinase for acute ischemic stroke

    International Nuclear Information System (INIS)

    Qiao Qianlin; Zhou Shi; Wang Xuejian; Wu Qinghua; Song Jie

    2005-01-01

    Objective: To explore the causes and preventive measures of symptomatic intracranial hemorrhage in 217 patients with acute cerebral ischemic stroke treated with local intra-arterial urokinase. Methods: From February 1999 to June 2004, 217 patients were treated for acute ischemic stroke with local intra-arterial urokinase in our hospital. Factors associated with symptomatic intracranial hemorrhage of intra-arterial thrombolysis were analyzed by Stepwise logistic regression to identify some factors relating the prediction symptomatic intracranial hemorrhage. Results: Symptomatic intracranial hemorrhage occurred in 8 cases (3.7%). Predictors of the symptomatic intracranial hemorrhage were the elevated systolic blood pressure before therapy (odds ratio, 1.096; 95% CI, 1.006 to 1.194) and urokinase (UK) treatment (odds ratio, 1.068 ; 95% CL, 1.053 to 1.247). Risk of secondary symptomatic intracranial hemorrhage was increased with elevated systolic blood pressure. Other factors like age, initial treating time, NIHSS, diabetes and collateral circulation did not predict the symptomatic intracranial hemorrhage respectively. Conclusions: Predictors of symptomatic intracranial hemorrhage after local intra-arterial infusion of urokinase for acute ischemic stroke were the elevated systolic blood pressure before therapy and urokinase (UK) treatment. (authors)

  9. Quantitative method of measuring cancer cell urokinase and metastatic potential

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1993-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  10. Effect of purified, soluble urokinase receptor on the plasminogen-prourokinase activation system

    DEFF Research Database (Denmark)

    Behrendt, N; Danø, K

    1996-01-01

    The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration of the cas......The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration...

  11. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma

    DEFF Research Database (Denmark)

    Alpizar, Warner Enrique Alpizar; Christensen, Ib Jarle; Santoni-Rugiu, Eric

    2012-01-01

    Gastric cancer is the second cancer causing death worldwide. The five-year survival for this malignancy is below 25% and few parameters have shown an impact on the prognosis of the disease. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation...... by mediating cell surface associated plasminogen activation, and its presence on gastric cancer cells is linked to micrometastasis and poor prognosis. Using immunohistochemistry, the prognostic significance of uPAR was evaluated in tissue samples from a retrospective series of 95 gastric cancer patients. u...... association between the expression of uPAR on tumor cells in the peripheral invasion zone and overall survival of gastric cancer patients (HR = 2.16; 95% CI: 1.13-4.14; p = 0.02). Multivariate analysis showed that uPAR immunoreactivity in cancer cells at the invasive front is an independent prognostic factor...

  12. A composite role of vitronectin and urokinase in the modulation of cell morphology upon expression of the urokinase receptor

    DEFF Research Database (Denmark)

    Hillig, Thore; Engelholm, Lars H; Ingvarsen, Signe

    2008-01-01

    The urokinase receptor, urokinase receptor (uPAR), is a glycosylphosphatidylinositol-anchored membrane protein engaged in pericellular proteolysis and cellular adhesion, migration, and modulation of cell morphology. A direct matrix adhesion is mediated through the binding of uPAR to vitronectin......, and this event is followed by downstream effects including changes in the cytoskeletal organization. However, it remains unclear whether the adhesion through uPAR-vitronectin is the only event capable of initiating these morphological rearrangements or whether lateral interactions between uPAR and integrins can...... a different single-site mutant, uPAR(Y57A), in the presence of a synthetic uPAR-binding peptide, as well as with wild-type uPAR, which underwent cytoskeletal rearrangements even when cultivated in uPA-deficient serum. Blocking of integrins with an Arg-Gly-Asp-containing peptide counteracted the matrix...

  13. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I

    International Nuclear Information System (INIS)

    Drago, J.; Murphy, M.; Carroll, S.M.; Harvey, R.P.; Bartlett, P.F.

    1991-01-01

    Fibroblast growth factor stimulates proliferation and subsequent differentiation of precursor cells isolated from the neuroepithelium of embryonic day 10 mice in vitro. Here we show that fibroblast growth factor-induced proliferation is dependent on the presence of insulin-like growth factors (IGFs) and that IGF-I is endogenously produced by the neuroepithelial cells. Blocking of endogenous IGF-I activity with anti-IGF-I antibodies results in complete inhibition of fibroblast growth factor-mediated proliferation and in cell death. IGF-I alone acts as a survival agent. These observations correlate with the detection of transcripts for IGF-I and basic fibroblast growth factor in freshly isolated neuroepithelium and are consistent with an autocrine action of these factors in early brain development in vivo

  14. The urokinase plasminogen activator system components are regulated by vascular endothelial growth factor D in bovine oviduct.

    Science.gov (United States)

    García, Daniela C; Russo-Maenza, Agostina; Miceli, Dora C; Valdecantos, Pablo A; Roldán-Olarte, Mariela

    2018-06-08

    SummaryThe mammalian oviduct plays a pivotal role in the success of early reproductive events. The urokinase plasminogen activator system (uPAS) is present in the bovine oviduct and is involved in extracellular matrix remodelling through plasmin generation. This system can be regulated by several members of the vascular endothelial growth factors (VEGF) and their receptors. In this study, the VEGF-D effect on the regulation of uPAS was evaluated. First, RT-polymerase chain reaction (PCR) analyses were used to evidence the expression of VEGF-D and its receptors in oviductal epithelial cells (BOEC). VEGF-D, VEGFR2 and VEGFR3 transcripts were found in ex vivo and in vitro BOEC, while only VEGFR2 mRNA was present after in vitro conditions. VEGF-D showed a regulatory effect on uPAS gene expression in a dose-dependent manner, inducing an increase in the expression of both uPA and its receptor (uPAR) at 24 h post-induction and decreases in the expression of its inhibitor (PAI-1). In addition, the regulation of cell migration induced by VEGF-D and uPA in BOEC monolayer cultures was analyzed. The wound areas of monolayer cultures incubated with VEGF-D 10 ng/ml or uPA 10 nM were modified and significant differences were found at 24 h for both stimulations. These results indicated that uPAS and VEGF-D systems can modify the arrangement of the bovine oviductal epithelium and contribute to the correct maintenance of the oviductal microenvironment.

  15. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases

    DEFF Research Database (Denmark)

    Illemann, Martin; Bird, Nigel; Majeed, Ali

    2009-01-01

    Metastatic growth and invasion by colon cancer cells in the liver requires the ability of the cancer cells to interact with the new tissue environment. Plasmin(ogen) is activated on cell surfaces by urokinase-type PA (uPA), and is regulated by uPAR and plasminogen activator inhibitor-1 (PAI-1). T...

  16. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    Science.gov (United States)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  17. Selective arterial thrombolysis with urokinase

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyung; Park, Kil Sun; Chung, Jin Wook; Han, Joon Koo; Kim, Sang Joon [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Dae Young [Choong Buk University College of Medicine, Jeonju (Korea, Republic of)

    1991-07-15

    Seven patients with thrombotic occlusions of the peripheral arteries or grafts were treated with urokinase by direct intraarterial selective infusion. During the infusion, simultaneous heparin infusion was used to reduce the frequency of thrombus formation on the infusion catheter or recurrent thrombosis. In 4 patients in whom a complete thrombolysis occurred, urokinase was infused by a high-dose transthrombus bolus technique followed by continuous infusion. There other patients, in whom thrombolysis was partially accomplished and then surgical thrombectomy was performed, were treated only by continuous urokinase infusion. Small hematomas developed at the infusion catheter entry site in 2 patients, but transfusion or operation was not required. Other significant complications were not found. Our results suggest that selective arterial infusion of urokinase with a transthrombus bolus technique can accomplish a complete arterial thrombolysis without any significant complications.

  18. Selective arterial thrombolysis with urokinase

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Park, Kil Sun; Chung, Jin Wook; Han, Joon Koo; Kim, Sang Joon; Kim, Dae Young

    1991-01-01

    Seven patients with thrombotic occlusions of the peripheral arteries or grafts were treated with urokinase by direct intraarterial selective infusion. During the infusion, simultaneous heparin infusion was used to reduce the frequency of thrombus formation on the infusion catheter or recurrent thrombosis. In 4 patients in whom a complete thrombolysis occurred, urokinase was infused by a high-dose transthrombus bolus technique followed by continuous infusion. There other patients, in whom thrombolysis was partially accomplished and then surgical thrombectomy was performed, were treated only by continuous urokinase infusion. Small hematomas developed at the infusion catheter entry site in 2 patients, but transfusion or operation was not required. Other significant complications were not found. Our results suggest that selective arterial infusion of urokinase with a transthrombus bolus technique can accomplish a complete arterial thrombolysis without any significant complications

  19. Interaction of urokinase A chain with the receptor of human keratinocytes stimulates release of urokinase-like plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Fibbi, G.; Magnelli, L.; Pucci, M.; Del Rosso, M. (Florence Univ. (Italy))

    1990-03-01

    On the basis of a fibrinolytic assay with {sup 125}I-fibrin, zymography, and immunoprobing with anti-human urokinase antibody, the authors have observed that the in vitro established NCTC human keratinocyte cell line releases into the culture medium a 54,000-Da plasminogen activator which is indistinguishable from human urokinase. Only the early release following the washing of keratinocyte monolayers is accounted for by secretion of preformed enzyme, while late secretory events require the de novo synthesis of urokinase. The released enzyme can interact by autocriny with its own receptor present on keratinocytes. The addition to the keratinocyte culture medium of the urokinase A chain can stimulate a concentration-dependent urokinase oversecretion, which is not paralleled by oversecretion of plasminogen activator inhibitor-1. Since stimulation of urokinase production can be obtained by an A chain concentration which was previously shown to be efficient in inducing keratinocyte mobilization in an in vitro migration model system, they hypothesize that this mechanism may be important in vivo during the process of wound repair.

  20. The urokinase receptor associated protein (uPARAP/endo180)

    DEFF Research Database (Denmark)

    Engelholm, L H; Nielsen, B S; Danø, K

    2001-01-01

    The urokinase-mediated plasminogen activation system plays a central role in the extracellular proteolytic degradation reactions in cancer invasion. In this review article we discuss a number of recent findings identifying a new cellular receptor protein, uPARAP, that interacts with components of...... and their substrate degradation products and thus may add to the complicated interplay between several cell types in governing restricted tissue degradation....

  1. Thrombolytic treatment for acute ischemic cerebral stroke: intraarterial urokinase infusion vs. intravenous heparin and urokinase infusion

    International Nuclear Information System (INIS)

    Ko, Gi Young; Suh, Dae Chul; Lee, Jae Hong; Kim, Jun Hyoung; Choi, Choong Gon; Lee, Ho Kyu; Lee, Myoung Chong

    1996-01-01

    To evaluate the efficacy and limitation of intra-arterial urokinase (IAUK) infusion for treatment of acute cerebral stroke. Twenty-seven acute cerebral stroke patients treated with IAUK infusion within six hours of stroke onset were reviewed. All patients showed normal initial brain findings on CT. In 21 patients, urokinase(5-15 x 10 5 IU) was administered through a microcatheter placed into or proximal to occluded segment. Mechanical disruption of thrombus by guidewire was performed in 17 patients. Angiographic and clinical responses and complications after IAUK infusion, were evaluated and the results were compared with those of intravenous heparin(N=19) and urokinase infusion(N=19). Complete or partial angiographic recanalization of occluded segment was found in 18 patients (67%), and neurologic improvement was followed in 14 patients(52%). The degree of improvement on the stroke scale score after IAUK infusion was statistically more significant(p<0.05) than that shown after intravenous heparin and urokinase infusion. Complications after IAUK infusion were large(15%) and small amount intracerebral hemorrhage(15%), contrast leakage into brain parenchyma(11%), and gastrointestinal bleeding(4%). Between the IAVK and the intravenous urokinase infusion group, differences in extent and types of complications were statistically insignificant, but were significantly higher in those two groups than in the intravenous heparin infusion group. IAUK infusion may be effective for the treatment of acute cerebral stroke

  2. Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library

    NARCIS (Netherlands)

    Horn, I. R.; Moestrup, S. K.; van den Berg, B. M.; Pannekoek, H.; Nielsen, M. S.; van Zonneveld, A. J.

    1995-01-01

    The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) mediates endocytosis of a number of structurally unrelated ligands, including complexes of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) or urokinase plasminogen

  3. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  4. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  5. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  6. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia.

    Science.gov (United States)

    Zheng, Qin; Dai, Kuixing; Cui, Xinyuan; Yu, Ming; Yang, Xuesong; Yan, Bin; Liu, Shuai; Yan, Qiu

    2016-05-01

    Preeclampsia is a pregnancy-related syndrome which can cause perinatal mortality and morbidity. Inadequate invasion by trophoblast cells may lead to poor perfusion of the placenta, even result in preeclampsia. Understanding the molecular mechanisms underlying placentation facilitates the better intervention of preeclampsia. Urokinase-type plasminogen activator receptor (uPAR) is involved in the physiological and pathological processes. Leukemia inhibitory factor (LIF) is an important regulator in the establishment of pregnancy. However, the expression of uPAR in preeclamptic patients and its relationship with LIF remains unclear. In the current study, we found that the level of uPAR was relatively lower in the placentas from preeclamptic patients as compared with normal pregnant women. LIF promoted trophoblast cell outgrowth by upregulating uPAR in an explants culture, and LIF also enhanced migration and invasion potential through uPAR in trophoblast JAR and JEG-3 cell lines, and with increased gelatinolytic activities of matrix metalloproteinase 2 (MMP-2). The effect of LIF and uPAR on trophoblast migration and invasion was mediated by PI3K/AKT signaling pathway. Our data indicates the roles of LIF in promoting trophoblast migration and invasion through uPAR and suggest that abnormal expression of uPAR might be associated with the etiology of preeclampsia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  8. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis.

    Science.gov (United States)

    Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen

    2015-02-15

    Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    OpenAIRE

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequ...

  10. Elevated soluble urokinase receptor values in CSF, age and bacterial meningitis infection are independent and additive risk factors of fatal outcome

    DEFF Research Database (Denmark)

    Tzanakaki, G; Paparoupa, M; Kyprianou, M

    2012-01-01

    The aim of the present study was to evaluate the potential role of cerebrospinal fluid soluble urokinase receptor (suPAR) level, infection and age as risk factors for fatal outcome in patients suspected of having meningitis and/or bacteraemia on admission to hospital. A total of 545 cerebrospinal...

  11. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  12. Nerve growth factor expression by PLG-mediated lipofection.

    Science.gov (United States)

    Whittlesey, Kevin J; Shea, Lonnie D

    2006-04-01

    Biomaterials capable of efficient gene delivery provide a fundamental tool for basic and applied research models, such as promoting neural regeneration. We developed a system for the encapsulation and sustained release of plasmid DNA complexed with a cationic lipid and investigated their efficacy using in vitro models of neurite outgrowth. Sustained lipoplex release was obtained for up to 50 days, with rates controlled by the fabrication conditions. Released lipoplexes retained their activity, transfecting 48.2+/-8.3% of NIH3T3 cells with luciferase activity of 3.97x10(7)RLU/mg. Expression of nerve growth factor (NGF) was employed in two models of neurite outgrowth: PC12 and primary dorsal root ganglia (DRG) co-culture. Polymer-mediated lipofection of PC12 produced bioactive NGF, eliciting robust neurite outgrowth. An EGFP/NGF dual-expression vector identified transfected cells (GFP-positive) while neurite outgrowth verified NGF secretion. A co-culture model examined the ability of NGF secretion by an accessory cell population to stimulate DRG neurite outgrowth. Polymer-mediated transfection of HEK293T with an NGF-encoding plasmid induced outgrowth by DRG neurons. This system could be fabricated as implants or nerve guidance conduits to support cellular and tissue regeneration. Combining this physical support with the ability to locally express neurotrophic factors will potentiate regeneration in nerve injury and disease models.

  13. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  14. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Le Thi Minh Phuc

    2017-06-01

    Full Text Available The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF on the uptake efficiency of polystyrene nanoparticles (PS NPs by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  15. Investigation of Mediational Processes Using Parallel Process Latent Growth Curve Modeling

    Science.gov (United States)

    Cheong, JeeWon; MacKinnon, David P.; Khoo, Siek Toon

    2010-01-01

    This study investigated a method to evaluate mediational processes using latent growth curve modeling. The mediator and the outcome measured across multiple time points were viewed as 2 separate parallel processes. The mediational process was defined as the independent variable influencing the growth of the mediator, which, in turn, affected the growth of the outcome. To illustrate modeling procedures, empirical data from a longitudinal drug prevention program, Adolescents Training and Learning to Avoid Steroids, were used. The program effects on the growth of the mediator and the growth of the outcome were examined first in a 2-group structural equation model. The mediational process was then modeled and tested in a parallel process latent growth curve model by relating the prevention program condition, the growth rate factor of the mediator, and the growth rate factor of the outcome. PMID:20157639

  16. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    Science.gov (United States)

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  17. Upregulation of vascular endothelial growth factor receptor-1 contributes to sevoflurane preconditioning–mediated cardioprotection

    Directory of Open Access Journals (Sweden)

    Qian B

    2018-04-01

    Full Text Available Bin Qian,1 Yang Yang,2 Yusheng Yao,3 Yanling Liao,3 Ying Lin3 1Department of Anesthesiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; 2Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; 3Department of Anesthesiology, The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China Purpose: Sevoflurane preconditioning (SPC can provide myocardial protective effects similar to ischemic preconditioning. However, the exact mechanism of SPC remains unclear. Previous studies indicate that vascular endothelial growth factor receptor 1 (VEGFR-1 is involved in ischemic preconditioning-mediated cardioprotection. This study was designed to determine the significance of VEGFR-1 signaling in SPC-mediated cardioprotection.Materials and methods: Myocardial ischemia–reperfusion (I/R rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, after 15 min of baseline equilibration, the isolated hearts were pretreated with 2.5% sevoflurane, 2.5% sevoflurane+MF1 10 µmol/L, or 2.5% sevoflurane+placental growth factor 10 µmol/L, and then subjected to 30 min of global ischemia and 120 min of reperfusion. The changes in hemodynamic parameters, myocardial infarct size, and the levels of creatine kinase-MB, lactate dehydrogenase, cardiac troponin-I, tumor necrosis factor-α, and interleukin 6 in the myocardium were evaluated.Results: Compared to the I/R group, pretreatment with 2.5% sevoflurane significantly improved the cardiac function, limited myocardial infarct size, reduced cardiac enzyme release, upregulated VEGFR-1 expression, and decreased inflammation. In addition, the selective VEGFR-1 agonist, placental growth factor, did not enhance the cardioprotection and anti-inflammation effects of sevoflurane, while the specific VEGFR-1 inhibitor, MF1, completely reversed these effects

  18. The relationship between human resource development factors, career growth and turnover intention: The mediating role of organizational commitment

    Directory of Open Access Journals (Sweden)

    Muhammad Shahid Nawaz

    2016-02-01

    Full Text Available Retaining the best employees is of high concern for most organizations and this issue has become a significant focus of attention for many researchers. For this reason, this paper discusses different factors which influence the employee turnover intention-behavior in the organization, specifically to examine the effect of salary, performance appraisal, training & development and career growth on turnover intention. In addition, based on the social exchange theory this paper explains the mediating role of organizational commitment in the relationship between human resource development factors, career growth and turnover intention. A cross sectional, survey data study is undertaken to investigate the relationships in a sample of 270 full time faculty members employed in different private universities of Pakistan. Partial Least Square two step path modeling is used to test the direct and the indirect hypothesis of the study. The results of PLS (SEM path modeling reveal that human resource development factors specially salary and performance appraisal were negatively associated with turnover intention. In addition, the results also indicate that career growth had significant relationships with turnover intention. Moreover, out of four dimensions of career growth, only two dimensions, namely promotion speed and remuneration growth, have strong influence on turnover intention. Finally, in terms of organizational commitment as mediating variable between the relationships of salary, performance appraisal, career growth and turnover intention, four out of six variables indicate partial mediation including career growth (career goal progress, career growth (promotion speed, career growth (remuneration growth and performance appraisal.

  19. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  20. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  1. Prolonged radiation damage in rat colon and urokinase expression in epithelium

    International Nuclear Information System (INIS)

    Hayashida, Masayuki; Minami, Kazunori; Okimoto, Tomoaki; Shichijo, Kazuko; Matsuu, Mutsumi; Nakayama, Toshiyuki; Sekine, Ichiro

    2001-01-01

    Although radiation therapy plays important role in the treatment of gynecological tumors, it may cause radiation injury as a late effect. Several recent reports show that urokinase such as urokinase type plasminogen activator (uPA) contributes to the repair of ulcerative lesions of the colon epithelium. We studied radiation induced enterocolitis using rat animal models. Seventy-two female Wistar rats were irradiated by a single fraction dose of 36 Gy at laparotomy. Histological changes and activity of urokinase system were investigated after irradiation. Ulcers were observed in irradiated field in 12 of 19 animals (63%) even at 60th week after irradiation. Urokinase expressions were observed in the margins of active ulcer. Urokinase was thought to play important role in exacerbation of ulcer formation. Expression of uPA was also observed in submucosal glands. Ischaemic changes were not observed in irradiated colon despite sclerosing vasculitis. It is suggested that uPA played reciprocal roles in radiation induced enterocolitis: healing and aggravation of ulcer. (author)

  2. Prolonged radiation damage in rat colon and urokinase expression in epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, Masayuki; Minami, Kazunori; Okimoto, Tomoaki [Nagasaki Univ. (Japan). School of Medicine; Shichijo, Kazuko; Matsuu, Mutsumi; Nakayama, Toshiyuki; Sekine, Ichiro

    2001-12-01

    Although radiation therapy plays important role in the treatment of gynecological tumors, it may cause radiation injury as a late effect. Several recent reports show that urokinase such as urokinase type plasminogen activator (uPA) contributes to the repair of ulcerative lesions of the colon epithelium. We studied radiation induced enterocolitis using rat animal models. Seventy-two female Wistar rats were irradiated by a single fraction dose of 36 Gy at laparotomy. Histological changes and activity of urokinase system were investigated after irradiation. Ulcers were observed in irradiated field in 12 of 19 animals (63%) even at 60th week after irradiation. Urokinase expressions were observed in the margins of active ulcer. Urokinase was thought to play important role in exacerbation of ulcer formation. Expression of uPA was also observed in submucosal glands. Ischaemic changes were not observed in irradiated colon despite sclerosing vasculitis. It is suggested that uPA played reciprocal roles in radiation induced enterocolitis: healing and aggravation of ulcer. (author)

  3. Short- and long-term effectiveness of intracavitary urokinase in loculated thoracic empyema

    International Nuclear Information System (INIS)

    Jeong, Tae Gon; Han, Young Min; Chang, Suk Kyeong; Chung, Gyung Ho; Sohn, Myung Hee; Kim, Chong Soo; Choi, Ki Chul

    1995-01-01

    The purpose of this study was to evaluate the short-and long-term effectiveness of intracavitary urokinase with percutaneous catheter drainage in loculated thoracic empyemas. 15 patients were identified as second stage of loculated thoracic empyema by estimating nature of pleural fluid, chest PA, lateral decubitus view and CT scan. Under the guidance of fluoroscopy or ultrasound, catheter was inserted percutaneously. Instillation of urokinase was started when amount of drained fluid became less than 30 ml per day with 100,000U of urokinase mixed with 100 ml of normal saline. Trial of urokinase was repeated until complete drainage of empyema was demonstrated on plain chest film obtained after 48 hours. Successful complete drainage was achieved in 14 of 15 patients. In long-term study, complete resorption was demonstrated in 11 of 12 patients. Average dosage of used urokinase was 330,000U and mean duration of catheter insertion was 35 days. Intracavitary urokinase with percutaneous catheter drainage is a safe and effective method to facilitate drainage of loculated empyema and to prevent recurrence

  4. Posttraumatic growth in patients who survived cardiac surgery: the predictive and mediating roles of faith-based factors.

    Science.gov (United States)

    Ai, Amy L; Hall, Daniel; Pargament, Kenneth; Tice, Terrence N

    2013-04-01

    Despite the growing knowledge of posttraumatic growth, only a few studies have examined personal growth in the context of cardiac health. Similarly, longitudinal research is lacking on the implications of religion/spirituality for patients with advanced cardiac diseases. This paper aims to explore the effect of preoperative religious coping on long-term postoperative personal growth and potential mediation in this effect. Analyses capitalized on a preoperative survey and medical indices from the Society of Thoracic Surgeons' National Database of patients undergoing cardiac surgery. Participants in the current follow-up study completed a mailed survey 30 months after surgery. Hierarchical regression analysis was performed to evaluate the extent to which preoperative use of religious coping predicted growth at follow-up, after controlling for key demographics, medical indices, mental health, and protective factors. Predictors of posttraumatic growth at follow-up were positive religious coping and a living status without a partner. Medical indices, optimistic expectations, social support, and other religious factors were unrelated to posttraumatic growth. Including religious factors diminished effects of gender, age, and race. Including perceived spiritual support completely eliminated the role of positive religious coping, indicating mediation. Preoperative positive religious coping may have a long-term effect on postoperative personal growth, explainable by higher spiritual connections as a part of significance-making. These results suggest that spirituality may play a favorable role in cardiac patients' posttraumatic growth after surviving a life-altering operation. The elimination of demographic effects may help explain previously mixed findings concerning the association between these factors and personal growth.

  5. Accessibility of receptor-bound urokinase to type-1 plasminogen activator inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Cubellis, M.V.; Andreasen, P.; Ragno, P.; Mayer, M.; Dano, K.; Blasi, F. (Univ. of Copenhagen (Denmark))

    1989-07-01

    Urokinase plasminogen activator (uPA) interacts with a surface receptor and with specific inhibitors, such as plasminogen activator inhibitor type 1 (PAI-1). These interactions are mediated by two functionally independent domains of the molecule: the catalytic domain (at the carboxyl terminus) and the growth factor domain (at the amino terminus). The authors have now investigated whether PAI-1 can bind and inhibit receptor-bound uPA. Binding of {sup 125}I-labeled ATF (amino-terminal fragment of uPA) to human U937 monocyte-like cells can be competed for by uPA-PAI-1 complexes, but not by PAI-1 alone. Preformed {sup 125}I-labeled uPA-PAI-1 complexes can bind to uPA receptor with the same binding specificity as uPA. PAI-1 also binds to, and inhibits the activity of, receptor-bound uPA in U937 cells, as shown in U937 cells by a caseinolytic plaque assay. Plasminogen activator activity of these cells is dependent on exogenous uPA, is competed for by receptor-binding diisopropyl fluorophosphate-treated uPA, and is inhibited by the addition of PAI-1. In conclusion, in U937 cells the binding to the receptor does not shield uPA from the action of PAI-1. The possibility that in adherent cells a different localization of PAI-1 and uPA leads to protection of uPA from PAI-1 is to be considered.

  6. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, Ole Nørregaard; Engelholm, L H

    2000-01-01

    The plasminogen activation cascade system, directed by urokinase and the urokinase receptor, plays a key role in extracellular proteolysis during tissue remodeling. To identify molecular interaction partners of these trigger proteins on the cell, we combined covalent protein cross-linking with ma...

  7. Gene expression of fibrinolytic factors urokinase plasminogen activator and plasminogen activator inhibitor-1 in rabbit temporo-mandibular joint cartilage with disc displacement.

    Science.gov (United States)

    Zhan, Jing; Gu, Zhi-yuan; Wu, Li-qun; Zhang, Yin-kai; Hu, Ji-an

    2005-06-20

    The urokinase plasminogen activator system is believed to play an important role in degradation of the extracellular matrix associated with cartilage and bone destruction; however its precise roles in temporomandibular disorders have not yet been clarified. The aims of this study were to investigate the gene expression of fibrinolytic factors urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in the articular cartilage of rabbit temporomandibular joint (TMJ) with disc displacement (DD) and to probe the relationship between fibrinolytic activity and cartilage remodeling. Disc displacement of right joints was performed in 36 of 78 rabbits under investigation. The animals were sacrificed at 4 days and 1, 2, 4, 8 and 12 weeks after surgery, respectively. The right joints of these animals were harvested and processed for the examination of mRNA expression of uPA and PAI-1 in articular cartilage using in situ hybridization techniques. The expression of uPA and PAI-1 was co-expressed weakly in the chondrocytes from transitive zone to hypertrophic zone and mineralized zone, while no hybridizing signals were shown in proliferative zone and superficial zone in control rabbits. The most striking was the up-regulation of uPA and PAI-1 mRNA in 4-day rabbits postoperatively at the onset of cartilage degeneration. The strongest hybridizing signals for uPA and PAI-1 were seen in 2-week rabbits postoperatively. After 2 weeks, the expression of uPA and PAI-1 began to decrease and reached nearly normal level at 12 weeks. The expression of the uPA/PAI-1 system coincides with the pathological changes in condylar cartilage after DD. The uPA/PAI-1 system may be one of the essential mediators in articular cartilage remodeling.

  8. Epidermal growth factor-mediated effects on equine vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Grosenbaugh, D.A.; Amoss, M.S.; Hood, D.M.; Morgan, S.J.; Williams, J.D.

    1988-01-01

    Epidermal growth factor (EGF) receptor binding kinetics and EGF-mediated stimulation of DNA synthesis and cellular proliferation were studied in cultured vascular smooth muscle cells (VSMC) from the equine thoracic aorta. Binding studies, using murine 125 I-labeled EGF, indicate the presence of a single class of high-affinity binding sites, with an estimated maximal binding capacity of 5,800 sites/cells. EGF stimulated [ 3 H]thymidine uptake in confluent quiescent monolayers in a dose-dependent fashion, half-maximal stimulation occurring at 7.5 x 10 -11 M. Likewise, EGF-mediated cellular proliferation was dose dependent under reduced serum concentrations. Equine VSMC contain specific receptors for EGF, and EGF can stimulate DNA synthesis and proliferation in these cultured cells, which suggests that EGF may participate in the proliferative changes observed in equine distal digital peripheral vascular disease

  9. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 in breast cancer - correlation with traditional prognostic factors

    Directory of Open Access Journals (Sweden)

    Lampelj Maja

    2015-12-01

    Full Text Available Background. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 play a key role in tumour invasion and metastasis. High levels of both proteolytic enzymes are associated with poor prognosis in breast cancer patients. The purpose of this study was to evaluate the correlation between traditional prognostic factors and uPA and PAI-1 expression in primary tumour of breast cancer patients.

  10. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    Science.gov (United States)

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  11. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR

    DEFF Research Database (Denmark)

    Plesner, T; Behrendt, N; Ploug, M

    1997-01-01

    patients with the rare blood disease paroxysmal nocturnal hemoglobinuria (PNH) that fail to express glycosyl-phosphatidylinositol-anchored proteins including uPAR, show a very significantly reduced transmigration over an endothelial barrier. Cell-associated plasminogen activation by PNH......Several important functions have been assigned to the receptor for urokinase-type plasminogen activator, uPAR. As implied by the name, uPAR was first identified as a high affinity cellular receptor for urokinase plasminogen activator (uPA). It mediates the binding of the zymogen, pro......-uPA, to the plasma membrane where trace amounts of plasmin will initiate a series of events referred to as "reciprocal zymogen activation" where plasmin converts pro-uPA to the active enzyme, uPA, which in turn converts plasma membrane-associated plasminogen to plasmin. This is an efficient machinery to generate...

  12. Carrier-free labelling of urokinase with fluorine-18 by preserving the biological activity

    International Nuclear Information System (INIS)

    Mueller-Platz, C.M.

    1982-03-01

    Fluorine-18 is particularly suitable for the regional location of clot formation using positron emission tomography. The radioisotope however cannot be directly incorporated in the urokinase as the enzyme is only stable in aqueous solution, F - sub(aq) is unreactive in protic solutions. 18 F-fluoroacetic acid was therefore selected as intermediate step for labelling urokinase. 18 F-fluoroacetic acid can be well activated by water-soluble [N-ethyl-N'-(dimethyl amino)propyl] carbodiimide and form a covalent bond as activated acid on the free amino groups of the urokinase. Different labelled preparations were thus investigated on the activity of the labelled enzyme. It could be shown in some cases that already after a slight drop of the total enzyme activity, all labelled urokinase molecules were biologically inactive. By changing the reaction conditions (pH value and reaction time) a method was found however in which not only was the enzyme activity of the preparation completely maintained but also that of the radiochemical yield corresponding radioactivity eluted with the bonding urokinase. The carrier-free labelling of urokinase starting with 18 F - was achieved with an overall radiochemical yield of 8 per cent for a synthesis time of 110 min. The method enables a sufficient amount of activity to be produced for the in-vivo application to the location of thrombus in patients. (orig./MG) [de

  13. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis.

    Science.gov (United States)

    Kenny, Hilary A; Leonhardt, Payton; Ladanyi, Andras; Yamada, S Diane; Montag, Anthony; Im, Hae Kyung; Jagadeeswaran, Sujatha; Shaw, David E; Mazar, Andrew P; Lengyel, Ernst

    2011-02-01

    To understand the functional and preclinical efficacy of targeting the urokinase plasminogen activator receptor (u-PAR) in ovarian cancer. Expression of u-PAR was studied in 162 epithelial ovarian cancers, including 77 pairs of corresponding primary and metastatic tumors. The effect of an antibody against u-PAR (ATN-658) on proliferation, adhesion, invasion, apoptosis, and migration was assessed in 3 (SKOV3ip1, HeyA8, and CaOV3) ovarian cancer cell lines. The impact of the u-PAR antibody on tumor weight, number, and survival was examined in corresponding ovarian cancer xenograft models and the mechanism by which ATN-658 blocks metastasis was explored. Only 8% of all ovarian tumors were negative for u-PAR expression. Treatment of SKOV3ip1, HeyA8, and CaOV3 ovarian cancer cell lines with the u-PAR antibody inhibited cell invasion, migration, and adhesion. In vivo, anti-u-PAR treatment reduced the number of tumors and tumor weight in CaOV3 and SKOV3ip1 xenografts and reduced tumor weight and increased survival in HeyA8 xenografts. Immunostaining of CaOV3 xenograft tumors and ovarian cancer cell lines showed an increase in active-caspase 3 and TUNEL staining. Treatment with u-PAR antibody inhibited α(5)-integrin and u-PAR colocalization on primary human omental extracellular matrix. Anti-u-PAR treatment also decreased the expression of urokinase, u-PAR, β(3)-integrin, and fibroblast growth factor receptor-1 both in vitro and in vivo. This study shows that an antibody against u-PAR reduces metastasis, induces apoptosis, and reduces the interaction between u-PAR and α(5)-integrin. This provides a rationale for targeting the u-PAR pathway in patients with ovarian cancer and for further testing of ATN-658 in this indication. ©2010 AACR.

  14. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.

    Science.gov (United States)

    Capsoni, Simona; Malerba, Francesca; Carucci, Nicola Maria; Rizzi, Caterina; Criscuolo, Chiara; Origlia, Nicola; Calvello, Mariantonietta; Viegi, Alessandro; Meli, Giovanni; Cattaneo, Antonino

    2017-01-01

    Nerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  15. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    Science.gov (United States)

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  16. Epidermal growth factor induction of front–rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-01-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front–rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front–rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front–rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front–rear polarity and forward movement. PMID:22160594

  17. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2.

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-02-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.

  18. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis.

    Science.gov (United States)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.

  19. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  20. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    International Nuclear Information System (INIS)

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-01-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  1. Plasma soluble urokinase plasminogen activator receptor in children with urinary tract infection

    DEFF Research Database (Denmark)

    Wittenhagen, Per; Andersen, Jesper Brandt; Hansen, Anita

    2011-01-01

    In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection.......In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection....

  2. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did no...

  3. Growth factors and new periodontology

    Directory of Open Access Journals (Sweden)

    Paknejad M

    1999-06-01

    Full Text Available Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and"ndifferentiation by acting on specific receptors on the surface of cells and regulating events in wound"nhealing.They can be considered hormones that are not released in to the blood stream but have one a"nlocal action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion"ncycle and even may stimulate synthesis of DNA in suitable cells, Growth substances, primarily secreted"nby fibroblasts, endothelia! cells, macrophages and platelet, include platelet derived growth factor"n(PDGF, insulin like growth factor (IGF transforming growth factor (TGFa and (3 and bone"nmorphogenetic proteins BMPs that approximately are the most important of them. (BMPs could be"nused to control events during periodontal, craniofacial and implant wound healing through favoring bone"nformation"nAccording toLynch, combination of PGDF and IGF1 would be effective in promoting growth of all the"ncomponents of the periodontium."nThe aim of this study was to characterize growth factor and review the literature to determine the"nmechanism of their function, classification and application in implant and periodontal treatment.

  4. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  5. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  6. Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function

    International Nuclear Information System (INIS)

    Marshman, Emma; Streuli, Charles H

    2002-01-01

    Insulin-like growth factor (IGF)-mediated proliferation and survival are essential for normal development in the mammary gland during puberty and pregnancy. IGFs interact with IGF-binding proteins and regulate their function. The present review focuses on the role of IGFs and IGF-binding proteins in the mammary gland and describes how modulation of their actions occurs by association with hormones, other growth factors and the extracellular matrix. The review will also highlight the involvement of the IGF axis in breast cancer

  7. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel

    2017-11-01

    We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).

  8. Mimicry of the regulatory role of urokinase in lamellipodia formation by introduction of a non-native interdomain disulfide bond in its receptor

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Kjærgaard, Magnus; Jacobsen, Benedikte

    2011-01-01

    The high-affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays a regulatory role for both extravascular fibrinolysis and uPAR-mediated adhesion and migration on vitronectin-coated surfaces. We have recently proposed that the ......The high-affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays a regulatory role for both extravascular fibrinolysis and uPAR-mediated adhesion and migration on vitronectin-coated surfaces. We have recently proposed...... that the adhesive function of uPAR is allosterically regulated via a "tightening" of its three-domain structure elicited by uPA binding. To challenge this proposition, we redesigned the uPAR structure to limit its inherent conformational flexibility by covalently tethering domains DI and DIII via a non...... adhering to vitronectin. In this respect, the engineered constraint in uPAR(H47C-N259C) thus bypasses the regulatory role of uPA binding, resulting in a constitutively active uPAR. In conclusion, our data argue for a biological relevance of the interdomain dynamics of the glycolipid-anchored u...

  9. Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway.

    Science.gov (United States)

    Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo

    2008-11-01

    E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.

  10. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  11. Dynamics of urokinase receptor interaction with Peptide antagonists studied by amide hydrogen exchange and mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Gårdsvoll, Henrik; Danø, Keld

    2004-01-01

    Using amide hydrogen exchange combined with electrospray ionization mass spectrometry, we have in this study determined the number of amide hydrogens on several peptides that become solvent-inaccessible as a result of their high-affinity interaction with the urokinase-type plasminogen activator...... receptor (uPAR). These experiments reveal that at least six out of eight amide hydrogens in a synthetic nine-mer peptide antagonist (AE105) become sequestered upon engagement in uPAR binding. Various uPAR mutants with decreased affinity for this peptide antagonist gave similar results, thereby indicating...... that deletion of the favorable interactions involving the side chains of these residues in uPAR does not affect the number of hydrogen bonds established by the main chain of the peptide ligand. The isolated growth factor-like domain (GFD) of the cognate serine protease ligand for uPAR showed 11 protected amide...

  12. Adsorption behavior of Urokinase by the polypropylene film with amine, hydroxylamine and polyol groups

    International Nuclear Information System (INIS)

    Lee, Kwang-Pill; Kang, Hae-Jeong; Joo, Duck-Lae; Choi, Seong-Ho

    2001-01-01

    For the purpose of the recovery of urokinase, the polypropylene (PP) films were modified by radiation-induced grafting of glycidylmethacrylate (GMA) and subsequent chemical modification of epoxy group of poly-GMA graft chains. The physical and chemical properties of the irradiated PP film, GMA-grafted PP film and the PP films modified with trimethylamine (TMA), hydroxylamine (HA), diethanolamine (DEA), and tri(hydroxymethyl)aminomethane (THMAM) were investigated by IR, SEM, and XPS. The adsorption of urokinase for the PP films modified with TMA, HA, DEA, and THMAM group were examined under various conditions of the functional group content, pH value and salt. It increased with increasing the content of functional group. The adsorption behavior of the PP films modified for different functional groups was in the following order: TMA>DEA>THMAM>HA. The adsorption of urokinase by the PP films with various functional groups at pH=7.4 were higher than that at pH=9.0. In TMA, DEA, and THMAM groups, the adsorption of urokinase without salts was also higher than those with salts. (author)

  13. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  14. Association between polymorphism at 3 ׳UTR of urokinase gene and risk of calcium

    Directory of Open Access Journals (Sweden)

    S. Morovvati

    2016-06-01

    Full Text Available Background: Kidney stone is a common multifactorial disease in Iran. Environmental and genetic factors including single nucleotide polymorphism (SNP affect the incidence of kidney stones. Objective: The aim of this study was to determine the association of +4065 T/C polymorphism at 3′untranslated region (3'UTR of urokinase gene and calcium kidney stones. Methods: This case-control study was conducted on 70 patients with history of calcium kidney stones as case group and 70 healthy subjects as control group in the Baqiyatallah hospital in 2013. The polymorphism was assessed using the Allele Specific PCR (AS-PCR method. Allele and genotype frequencies of the two groups were compared using 2x2 contingency tables. Hardy-Weinberg equilibrium was compared between the two groups using Chi-square test. Findings: Of 70 cases, 10 (15% were heterozygous and 24 (34% were homozygous for the polymorphism. Of 70 controls, 25 (35% were heterozygous for the polymorphism. The frequency of mutant T allele was 41% in the case group and 18% in the control group. The frequency of mutant C allele was 59% in the case group and 82% in the control group. The risk of calcium kidney stones in carriers of the mutant allele was 1.7 times higher than non-carriers (OR: 1.7. Conclusion: With regards to the results, it seems that there is a significant association between the polymorphism at 3 ׳UTR of urokinase gene and formation of calcium kidney stones. Urokinase gene polymorphism may be introduced as a candidate gene involved in calcium stone formation.

  15. Influential factors of clinical outcome of local intra-arterial thrombolysis using urokinase in patients with hyperacute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Min; Yoon, Woong; Kim, Jae Kyu; Seo, Jeong Jin; Heo, Sook Hee; Park, Jin Gyoon; Jeong, Yoon Yeon; Kang, Heoung Keun [Chonam University Hospital, Kwangju (Korea, Republic of)

    2002-10-01

    To evaluate the clinical outcome and other relevant factors in cases where local intra-arterial thrombolysis (LIT) is used for the treatment of hyperacute ischemic stroke. Forty-eight hyperacute ischemic stroke patients were treated by LIT, using urokinase, within six hours of ictus, and for evaluation of their neurological status, the national institutes of health stroke scale (NIHSS) score was used. Angiography recanalization was classified according to Mori recanalization grades. Three months after LIT, the outcome was assessed by clinical examination using the modified rankin scale (good outcome: RS=0-3; poor outcome: RS=4-6). In all patients, the findings of pre- and post- LIT CT, and angiography, as well as neurological status and hemorrhagic complications, were also analysed. Thirty-three patients had occlusions of the middle cerebral artery (MCA), and 15, of the internal carotid artery (ICA). The NIHSS score averaged 16.9 at the onset of therapy and 13.5 at 24 hours later. Successful recanalization (Mori grade 3,4) was achieved in 28 (58.3%) of 48 patients, but in 20 (41.7%) the attempt failed. Twenty-two (45.8%) of the 48 patients had a good outcome, but in (54.2%) the outcome was poor. Thirteen (40.6%) of 32 patients with MCA occlusions and 13 (81.2%) of 16 with ICA occlusions had a poor outcome. Eight patients (16.7%) died. Overall, hemorrhages occured in 20 (41.7%) of 48 patients, with symptomatic hemorrhage in ten. Five (50%) of these ten died. LIT using urokinase for hyperacute ischemic stroke is feasible; patients with MCA occlusions had better outcomes than those with ICA occlusions. Hemorrhagic complications of LIT were frequent, and in cases of symptomatic hemorrhage a fatal outcome may be expected.

  16. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  17. Anterograde Intra-Arterial Urokinase Injection for Salvaging Fibular Free Flap

    Directory of Open Access Journals (Sweden)

    Dae-Sung Lee

    2013-05-01

    Full Text Available We present a case of a 57-year-old male patient who presented with squamous cell carcinoma on his mouth floor with cervical and mandibular metastases. Wide glossectomy with intergonial mandibular ostectomy, and sequential reconstruction using fibular osteomyocutaneous free flap were planned. When the anastomosis between the peroneal artery of the fibular free flap and the right lingual artery was performed, no venous flow was observed at the vena comitans. Then re-anastomosis followed by topical application of papaverine and lidocaine was attempted. However, the blood supply was not recovered. Warm saline irrigation over 30 minutes was also useless. Microvascular thromboses of donor vessels were clinically suspected, so a solution of 100,000 units of urokinase was infused once through a 26-gauge angiocatheter inserted into the recipient artery just at the arterial anastomotic site, until the solution gushed out through the flap vena comitans. Immediately after the application of urokinase, arterial flow and venous return were restored. There were no complications during the follow-up period of 11 months. We believe that vibrating injuries from the reciprocating saw during osteotomies and flap insetting might be the cause of microvascular thromboses. The use of urokinase may provide a viable option for the treatment of suspicious intraoperative arterial thrombosis.

  18. Surfactant-Mediated Growth Revisited

    International Nuclear Information System (INIS)

    Meyerheim, H. L.; Sander, D.; Popescu, R.; Pan, W.; Kirschner, J.; Popa, I.

    2007-01-01

    The x-ray structure analysis of the oxygen-surfactant-mediated growth of Ni on Cu(001) identifies up to 0.15 monolayers of oxygen in subsurface octahedral sites. This questions the validity of the general view that surfactant oxygen floats on top of the growing Ni film. Rather, the surfactant action is ascribed to an oxygen-enriched zone extending over the two topmost layers. Surface stress measurements support this finding. Our results have important implications for the microscopic understanding of surfactant-mediated growth and the change of the magnetic anisotropy of the Ni films

  19. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  20. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Newcomb, Christina J.; Sur, Shantanu; Lee, Sungsoo S.; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L.; Stupp, Samuel I. (NWU); (USC)

    2016-04-12

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.

  1. Platelet Vascular Endothelial Growth Factor is a Potential Mediator of Transfusion-Related Acute Lung Injury.

    Science.gov (United States)

    Maloney, James P; Ambruso, Daniel R; Voelkel, Norbert F; Silliman, Christopher C

    The occurrence of non-hemolytic transfusion reactions is highest with platelet and plasma administration. Some of these reactions are characterized by endothelial leak, especially transfusion related acute lung injury (TRALI). Elevated concentrations of inflammatory mediators secreted by contaminating leukocytes during blood product storage may contribute to such reactions, but platelet-secreted mediators may also contribute. We hypothesized that platelet storage leads to accumulation of the endothelial permeability mediator vascular endothelial growth factor (VEGF), and that intravascular administration of exogenous VEGF leads to extensive binding to its lung receptors. Single donor, leukocyte-reduced apheresis platelet units were sampled over 5 days of storage. VEGF protein content of the centrifuged supernatant was determined by ELISA, and the potential contribution of VEGF from contaminating leukocytes was quantified. Isolated-perfused rat lungs were used to study the uptake of radiolabeled VEGF administered intravascularly, and the effect of unlabeled VEGF on lung leak. There was a time-dependent release of VEGF into the plasma fraction of the platelet concentrates (62 ± 9 pg/ml on day one, 149 ± 23 pg/ml on day 5; mean ± SEM, pproducts.

  2. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  3. Inhibition of the Transforming Growth Factor β (TGFβ) Pathway by Interleukin-1β Is Mediated through TGFβ-activated Kinase 1 Phosphorylation of SMAD3

    NARCIS (Netherlands)

    Benus, G.F.J.D.; Wierenga, A.T. J.; de Gorter, D.J.J.; Schuringa, Jan-Jacob; van Bennekum, A.M.; Drenth - Diephuis, L.; Vellenga, E.; Eggen, B.J.L.

    2005-01-01

    Transforming growth factor β is the prototype of a large family of secreted factors that regulate multiple biological processes. In the immune system, TGFβ acts as an anti-inflammatory and immunosuppressive molecule, whereas the cytokine interleukin (IL)-1β is a crucial mediator of inflammatory

  4. Decreased Hepatocyte Growth Factor (HGF) and Gamma Aminobutyric Acid (GABA) in Individuals with Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Russo, Anthony J; Pietsch, Stefanie C

    2013-01-01

    There is support for the role of gamma aminobutyric acid (GABA) in the etiology of mood disorders. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF and GABA as well as symptom severity in individuals with obsessive-compulsive disorder (OCD). Plasma from 15 individuals with OCD (9 males, 6 females;, mean age 38.7 years) and 17 neurotypical controls (10 males, 7 females; mean age 35.2 years) was assessed for HGF, GABA, urokinase plasminogen activator (uPA), and urokinase plasminogen activator receptor (uPAR) concentration using enzyme-linked immunosorbest assays ELISAs. Symptom severity was assessed in these OCD individuals and compared with HGF and GABA concentrations. In this preliminary study, individuals with OCD had significantly decreased HGF levels, decreased plasma levels of GABA and decreased uPA. We found that both uPA and uPAR levels correlate with HGF. Both low uPA and low uPAR levels correlate with high symptom severity in individuals with OCD. Low GABA levels in OCD individuals also correlate with high symptom severity. These results demonstrate a preliminary association between HGF, GABA, uPA levels, and OCD and suggest that plasma GABA and uPA levels are related to symptom severity in individuals with OCD.

  5. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    Science.gov (United States)

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  6. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor.

    Science.gov (United States)

    Armant, D Randall; Kilburn, Brian A; Petkova, Anelia; Edwin, Samuel S; Duniec-Dmuchowski, Zophia M; Edwards, Holly J; Romero, Roberto; Leach, Richard E

    2006-02-01

    Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.

  7. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Kasza, Thomas; Han, Richard; Choi, Hyeong-Seon; Palmer, Kenneth C.; Kim, Hyeong-Reh C.

    1997-01-01

    Platelet-derived growth factor (PDGF) signals a diversity of cellular responses in vitro, including cell proliferation, survival, transformation, and chemotaxis. PDGF functions as a 'competence factor' to induce a set of early response genes expressed in G 1 including p21 WAF1/CIP1 , a functional mediator of the tumor suppressor gene p53 in G 1 /S checkpoint. For PDGF-stimulated cells to progress beyond G 1 and transit the cell cycle completely, progression factors in serum such as insulin and IGF-1 are required. We have recently shown a novel role of PDGF in inducing apoptosis in growth-arrested murine fibroblasts. The PDGF-induced apoptosis is rescued by insulin, suggesting that G 1 /S checkpoint is a critical determinant for PDGF-induced apoptosis. Because recent studies suggest that radiation-induced signal transduction pathways interact with growth factor-mediated signaling pathways, we have investigated whether activation of the PDGF-signaling facilitates the radiation-induced apoptosis in the absence of functional p53. For this study we have used the 125-IL cell line, a mutant p53-containing, highly metastatic, and hormone-unresponsive human prostate carcinoma cell line. PDGF signaling is constitutively activated by transfection with a p28 v-sis expression vector, which was previously shown to activate PDGF α- and β- receptors. Although the basal level of p21 WAF1/CIP1 expression and radiation-induced apoptosis were not detectable in control 125-IL cells as would be predicted in mutant p53-containing cells, activation of PDGF-signaling induced expression of p21 WAF1/CIP1 and radiation-induced apoptosis. Our study suggests that the level of 'competence' growth factors including PDGF may be one of the critical determinants for radiation-induced apoptosis, especially in cells with loss of p53 function at the site of radiotherapy in vivo

  8. The uPA/uPAR system regulates the bioavailability of PDGF-DD: implications for tumour growth.

    Science.gov (United States)

    Ehnman, M; Li, H; Fredriksson, L; Pietras, K; Eriksson, U

    2009-01-29

    Members of the platelet-derived growth factor (PDGF) family are mitogens for cells of mesenchymal origin and have important functions during embryonic development, blood vessel maturation, fibrotic diseases and cancer. In contrast to the two classical PDGFs, the novel and less well-characterized members, PDGF-CC and PDGF-DD, are latent factors that need to be processed extracellularly by activating proteases, before they can mediate PDGF receptor activation. Here, we elucidate the structural requirements for urokinase plasminogen activator (uPA)-mediated activation of PDGF-DD, as well as the intricate interplay with uPA receptor (uPAR) signalling. Furthermore, we show that activated PDGF-DD, in comparison to latent, more potently transforms NIH/3T3 cells in vitro. Conversely, xenograft studies in nude mice demonstrate that cells expressing latent PDGF-DD are more tumorigenic than those expressing activated PDGF-DD. These findings imply that a fine-tuned proteolytic activation, in the local milieu, controls PDGF-DD bioavailability. Moreover, we suggest that proteolytic activation of PDGF-DD reveals a retention motif mediating interactions with pericellular components. Our proposed mechanism, where uPA not only generates active PDGF-DD, but also regulates its spatial distribution, provides novel insights into the biological function of PDGF-DD.

  9. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.

    Science.gov (United States)

    Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A

    2014-05-02

    The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.

  10. Nerve Growth Factor in Cancer Cell Death and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M., E-mail: adrienne.gorman@nuigalway.ie [Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway (Ireland)

    2011-02-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75{sup NTR}, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75{sup NTR}. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75{sup NTR}. This latter signaling through p75{sup NTR} promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75{sup NTR} mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer.

  11. Transforming growth factor alpha is a critical mediator of radiation lung injury.

    Science.gov (United States)

    Chung, Eun Joo; Hudak, Kathryn; Horton, Jason A; White, Ayla; Scroggins, Bradley T; Vaswani, Shiva; Citrin, Deborah

    2014-09-01

    Radiation fibrosis of the lung is a late toxicity of thoracic irradiation. Epidermal growth factor (EGF) signaling has previously been implicated in radiation lung injury. We hypothesized that TGF-α, an EGF receptor ligand, plays a key role in radiation-induced fibrosis in lung. Mice deficient in transforming growth factor (TGF-α(-/-)) and control C57Bl/6J (C57-WT) mice were exposed to thoracic irradiation in 5 daily fractions of 6 Gy. Cohorts of mice were followed for survival (n ≥ 5 per group) and tissue collection (n = 3 per strain and time point). Collagen accumulation in irradiated lungs was assessed by Masson's trichrome staining and analysis of hydroxyproline content. Cytokine levels in lung tissue were assessed with ELISA. The effects of TGF-α on pneumocyte and fibroblast proliferation and collagen production were analyzed in vitro. Lysyl oxidase (LOX) expression and activity were measured in vitro and in vivo. Irradiated C57-WT mice had a median survival of 24.4 weeks compared to 48.2 weeks for irradiated TGF-α(-/-) mice (P = 0.001). At 20 weeks after irradiation, hydroxyproline content was markedly increased in C57-WT mice exposed to radiation compared to TGF-α(-/-) mice exposed to radiation or unirradiated C57-WT mice (63.0, 30.5 and 37.6 μg/lung, respectively, P = 0.01). C57-WT mice exposed to radiation had dense foci of subpleural fibrosis at 20 weeks after exposure, whereas the lungs of irradiated TGF-α (-/-) mice were largely devoid of fibrotic foci. Lung tissue concentrations of IL-1β, IL-4, TNF-α, TGF-β and EGF at multiple time points after irradiation were similar in C57-WT and TGF-α(-/-) mice. TGF-α in lung tissue of C57-WT mice rose rapidly after irradiation and remained elevated through 20 weeks. TGF-α(-/-) mice had lower basal LOX expression than C57-WT mice. Both LOX expression and LOX activity were increased after irradiation in all mice but to a lesser degree in TGF-α(-/-) mice. Treatment of NIH-3T3 fibroblasts with TGF

  12. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael D; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C; Dandekar, Satya

    2003-07-20

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression.

  13. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    George, Michael D.; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C.; Dandekar, Satya

    2003-01-01

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression

  14. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    Science.gov (United States)

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  15. Transforming growth factor β-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways.

    Science.gov (United States)

    Jahan, Naima; Hannila, Sari S

    2015-01-01

    The expression of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes is a major factor contributing to glial scarring and regenerative failure after spinal cord injury, but the molecular mechanisms underlying CSPG expression remain largely undefined. One contributing factor is transforming growth factor β (TGFβ), which is upregulated after injury and has been shown to induce expression of CSPGs in vitro. TGFβ typically mediates its effects through the Smad2/3 signaling pathway, and it has been suggested that this pathway is responsible for CSPG expression. However, there is evidence that TGFβ can also activate non-Smad signaling pathways. In this study, we report that TGFβ-induced expression of three different CSPGs--neurocan, brevican, and aggrecan--is mediated through non-Smad signaling pathways. We observed significant increases in TGFβ-induced expression of neurocan, brevican, and aggrecan following siRNA knockdown of Smad2 or Smad4, which indicates that Smad signaling is not required for the expression of these CSPGs. In addition, we show that neurocan, aggrecan, and brevican levels are significantly reduced when TGFβ is administered in the presence of either the PI3K inhibitor LY294002 or the mTOR inhibitor rapamycin, but not the MEK1/2 inhibitor U0126. This suggests that TGFβ mediates this effect through non-Smad-dependent activation of the PI3K-Akt-mTOR signaling pathway, and targeting this pathway may therefore be an effective means of reducing CSPG expression in the injured CNS. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2).

    Science.gov (United States)

    Whitson, Ramon J; Lucia, Marshall Scott; Lambert, James R

    2013-06-01

    Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states. Copyright © 2012 Wiley Periodicals, Inc.

  17. The pro-urokinase plasminogen-activation system in the presence of serpin-type inhibitors and the urokinase receptor

    DEFF Research Database (Denmark)

    Behrendt, Niels; List, Karin; Andreasen, Peter A

    2003-01-01

    The reciprocal pro-enzyme activation system of plasmin, urokinase-type plasminogen activator (uPA) and their respective zymogens is a potent mechanism in the generation of extracellular proteolytic activity. Plasminogen activator inhibitor type 1 (PAI-1) acts as a negative regulator. This system...... is complicated by a poorly understood intrinsic reactivity of the uPA pro-enzyme (pro-uPA) before proteolytic activation, directed against both plasminogen and PAI-1. We have studied the integrated activation mechanism under the repression of PAI-1 in a purified system. A covalent reaction between pro...

  18. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes.

    Science.gov (United States)

    Copple, Bryan L; Bustamante, Juan J; Welch, Timothy P; Kim, Nam Deuk; Moon, Jeon-Ok

    2009-08-01

    During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B and plasminogen activator inhibitor-1 (PAI-1) in the liver, during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1alpha in liver cell types. Accordingly, the hypothesis was tested that HIF-1alpha is activated in hypoxic hepatocytes and regulates the production of profibrotic mediators by these cells. In this study, hepatocytes were isolated from the livers of control and HIF-1alpha- or HIF-1beta-deficient mice and exposed to hypoxia. Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1alpha and upregulated PAI-1, vascular endothelial cell growth factor and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, the levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1alpha-deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2alpha, may also regulate these genes. In support of this, HIF-2alpha was activated in hypoxic hepatocytes, and exposure of HIF-1beta-deficient hepatocytes to 1% oxygen completely prevented upregulation of PAI-1, vascular endothelial cell growth factor and ADM-1, suggesting that HIF-2alpha may also contribute to upregulation of these genes in hypoxic hepatocytes. Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes.

  19. The urokinase receptor as a potential target in cancer therapy

    DEFF Research Database (Denmark)

    Romer, John; Nielsen, Boye Schnack; Ploug, Michael

    2004-01-01

    The glycolipid-anchored receptor for urokinase-type plasminogen activator (uPAR) is essential for cell-surface associated plasminogen activation and is overexpressed at the invasive tumor-stromal microenvironment in many human cancers. In line with this, uPAR and uPA levels in both resected tumor...

  20. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis

    DEFF Research Database (Denmark)

    Multhaupt, H A; Mazar, A; Cines, D B

    1994-01-01

    BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors by troph......BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors...... at the leading edge of migrating extravillous trophoblast cells. Receptors were also abundantly expressed during the first and second trimesters of gestation by villous trophoblast, where they were located on apical villous projections and within intracellular vacuoles, a subset of which were lysosomes...

  1. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  2. Thrombolysis for treating deep venous thrombosis by high-dose urokinase: the usefulness of preventive placement of inferior vena cava filter

    International Nuclear Information System (INIS)

    Guo Jinhe; Teng Gaojun; He Shicheng; Qiu Haibo; Fang Wen; Zhu Guangyu; Deng Gang

    2002-01-01

    Objective: To investigate the feasibility and efficacy of high-dose urokinase thrombolysis for treating lower limb deep venous thrombosis (DVT) after inferior vena cava (IVC) filter placement. Methods: Thirteen patients of venographically proved DVT underwent preventive IVC filter placement for thrombolysis by high-dose urokinase. Antegrade infusion of high-dose urokinase was performed via the dorsalis pedis vein of the involved lower limb. The total dose of urokinase was 9 000 000 ∼ 16 000 000 units, and the procedure of thrombolysis was performed in ICU ward where the patients were closely monitored clinically and laboratorially. Results: A total of 13 IVC filters were successfully deployed without disposition and migration. The therapeutic effects were divided into four scales as follows: complete disappearance of the venous thrombosis and clinically asymptomatic (n = 2); remarkable recovery characterized by markedly improved clinical symptoms and venographically proved patent lumen in which the diameter was larger than 70% (n = 9); effective treatment indicating improved symptoms to some degrees and venographically proved patent lumen in which the diameter was smaller than 70% ( n = 2); and ineffective treatment (n = 0). No pulmonary embolism and hemorrhage occurred during the procedure of thrombolysis. Conclusion: High-dose urokinase for treating DVT is safe and effective after preventive placement of IVC filter

  3. Enhancement of intestinal growth in neonatal rats by epidermal growth factor in milk

    International Nuclear Information System (INIS)

    Berseth, C.L.

    1987-01-01

    Breast milk has been shown to enhance neonatal intestinal growth. Because epidermal growth factor (EGF) is present in the milk of various mammalian species, the hypothesis was tested that EGF in rodent milk mediates, in part, the breast milk-enhanced intestinal growth in neonatal rat. Fifty-eight rat pups fed artificial formal that contained 1.2, 3.0, and 6.0 μg/ml EGF for 39 h had greater incorporation of [ 3 H]thymidine into DNA and DNA content of intestine than 29 pups fed unsupplemented formula. Pups fed EGF for 5 days had significantly greater body weight, intestinal weight, length, and DNA content than control pups. Conversely, pups fed pooled rat milk containing rabbit-derived antibody to EGF for 39 h had intestines of lower weight that contained less DNA than animals fed rat milk containing normal rabbit serum. EGF appears to mediate, in part, breast milk-enhanced neonatal intestinal growth

  4. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Kaczmarek, Jakub; Skottrup, Peter Durand

    2015-01-01

    Urokinase-type plasminogen activator (uPA) is a trypsin-like serine protease that plays a vital role in extracellular conversion of inactive plasminogen into catalytically active plasmin. Activated plasmin facilitates the release of several proteolytic enzymes, which control processes like perice...

  5. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    Science.gov (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  6. The urokinase receptor and its structural homologue C4.4A in human cancer

    DEFF Research Database (Denmark)

    Jacobsen, B; Ploug, M

    2008-01-01

    The urokinase-type plasminogen activator receptor (uPAR) and its structural homologue C4.4A are multidomain members of the Ly6/uPAR/alpha-neurotoxin protein domain family. Both are glycosylphosphatidylinositol-anchored membrane glycoproteins encoded by neighbouring genes located on chromosome 19q13...... that high protein expression in tumour cells of non-small cell pulmonary adenocarcinomas is associated with a particularly severe disease progression. This review will evaluate structural-functional and disease-related aspects of uPAR and C4.4A with a view to possible pharmacological targeting strategies...... in the human genome. The structural relationship between the two proteins is, however, not reflected at the functional level. Whereas uPAR has a well-established role in regulating and focalizing uPA-mediated plasminogen activation to the surface of those cells expressing the receptor, the biological function...

  7. Prognostic and predictive value of intact and cleaved forms of the urokinase plasminogen activator receptor in metastatic prostate cancer

    DEFF Research Database (Denmark)

    Almasi, Charlotte E; Brasso, Klaus; Iversen, Peter

    2011-01-01

    The purpose of this study was to investigate the prognostic value of different forms of the urokinase receptor, uPAR, in serum from prostate cancer (PC) patients.......The purpose of this study was to investigate the prognostic value of different forms of the urokinase receptor, uPAR, in serum from prostate cancer (PC) patients....

  8. Urokinase Plasminogen Activator Receptor–PET with 68Ga-NOTA-AE105

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2017-01-01

    Urokinase plasminogen activator receptor (uPAR) is a key component in proteolysis and extracellular matrix degradation during cancer invasion and metastasis. uPAR overexpression is an important biomarker for aggressiveness in several solid tumors and provides independent clinical information...... biomarker in cancer....

  9. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anne-France Petit-Bertron

    Full Text Available The most recently characterized H4 histamine receptor (H4R is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs.

  10. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity.

    Science.gov (United States)

    Doherty, Leo F; Taylor, Hugh S

    2015-03-01

    To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    Science.gov (United States)

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Polyethylene Glycol Mediated Colorectal Cancer Chemoprevention: Roles of Epidermal Growth Factor Receptor and Snail

    Science.gov (United States)

    Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.

    2008-01-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (pPEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788

  13. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    Science.gov (United States)

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.

  14. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  15. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    Science.gov (United States)

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  16. Localization of urokinase-type plasminogen activator receptor on U937 cells

    DEFF Research Database (Denmark)

    Hansen, S H; Behrendt, N; Danø, K

    1990-01-01

    The binding of human urokinase-type plasminogen activator (u-PA) to the surface of the human monocytic cell line U937 was studied by immunological detection of bound u-PA or binding of biotinylated diisopropyl fluorophosphate-inactivated human u-PA visualized by light or electron microscopy...

  17. Human insulin-like growth factor II leader 2 mediates internal initiation of translation

    DEFF Research Database (Denmark)

    Pedersen, Susanne; Christiansen, Jan; Hansen, T.O.

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IG...

  18. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P.

    2006-01-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-κB, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment

  19. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  20. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    Science.gov (United States)

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  1. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  2. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  3. The Mediating Role Of Coping Styles In Personal, Environmental and Event Related Factors and Posttraumatic Growth Relationships Among Women With Breast Cancer (English

    Directory of Open Access Journals (Sweden)

    Zumrut Bellur

    2018-03-01

    Full Text Available Object: The aim of this study was to examine the effects of environmental, personal and event related factors on posttraumatic growth in breast cancer patients. Methods: The study was conducted with 134 women who are undergoing chemotherapy treatment or coming to the hospital for their routine controls. Revised Dyadic Adjustment Scale, The Impact of Event Scale, Posttraumatic Growth Inventory, Ways of Coping Inventory, Multidimensional Scale of Perceived Social Support, The General Self-Efficacy Scale-Turkish Form and Demographic Information Form was used. Results: Acoording to t-test analyses as the time passage from the diagnosis increases the perceived social support from the family members is increasing. Also while the group that had previous trauma experiences uses more helplessness coping styles, the group that had no previous trauma experience uses more problem focused coping style and showed greater posttraumatic growth. Results of the mediation analyses showed that problem focused coping has a mediator role in dyadic adjustment- posttraumatic growth; perceived social support from the family- posttraumatic growth; and self-efficacy- posttraumatic growth relationships. Discussion: The results of the current study are important in terms of developing new intervention programs that will help breast cancer patients to develop posttraumatic growth and also to better cope with cancer. This study is also important because the effect of marital adjustment and marital satisfaction on posttraumatic growth in breast cancer patients is an issue which is not well studied with Turkish sample.

  4. The superoxide scavenger TEMPOL induces urokinase receptor (uPAR expression in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Francis Joseph

    2006-06-01

    Full Text Available Abstract There is little understanding of the effect that reactive oxygen metabolites have on cellular behavior during the processes of invasion and metastasis. These oxygen metabolites could interact with a number of targets modulating their function such as enzymes involved in basement membrane dissolution, adhesion molecules involved in motility or receptors involved in proliferation. We investigated the effect of increased scavenging of superoxide anions on the expression of the urokinase receptor (uPAR in PC-3M human prostate cancer cells. Urokinase receptor is a GPI-linked cell surface molecule which mediates multiple functions including adhesion, proliferation and pericellular proteolysis. Addition of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL to PC-3M cultures stimulated expression of uPAR protein peaking between 48 and 72 hours. Cell surface expression of the uPAR was also increased. Surprisingly, uPAR transcript levels increased only slightly and this mild increase did not coincide with the striking degree of protein increase. This disparity indicates that the TEMPOL effect on uPAR occurs through a post-transcriptional mechanism. TEMPOL presence in PC-3M cultures reduced intracellular superoxide-type species by 75% as assayed by NBT dye conversion; however this reduction significantly diminished within hours following TEMPOL removal. The time gap between TEMPOL treatment and peak uPAR protein expression suggests that reduction of reactive oxygen metabolites in prostate cancer cells initiates a multistep pathway which requires several hours to culminate in uPAR induction. These findings reveal a novel pathway for uPAR regulation involving reactive oxygens such as superoxide anion.

  5. High dose urokinase for restoration of patency of occluded permanent central venous catheters in hemodialysis patients.

    Science.gov (United States)

    Shavit, L; Lifschitz, M; Plaksin, J; Grenader, T; Slotki, I

    2010-10-01

    Catheter thrombosis is common and results in inadequate dialysis treatment and, frequently, in catheter loss. Since dialysis treatment runs on a strict schedule, occluded catheters need to be restored in a timely and cost effective manner. We present a new shortened protocol of urokinase infusion that allows hemodialysis to be performed within 90 minutes. To chronic hemodialysis patients, who developed complete catheter occlusion, urokinase was infused simultaneously through both lumens of the catheter (125,000 units to each lumen) over 90 minutes. Technical success was defined as restoring blood pump speed to at least 250 ml/min. We determined the average time from catheter placement to first clot event (primary patency PP), recurrent clot event after urokinase treatment (secondary patency SP), catheter salvage rate and cause for removal. 37 catheters developed total thrombosis and urokinase was used to restore patency one or more times (total 47 treatments). Catheter salvage rate was 97 %. The average time of PP was 152 ± 56 days (7 - 784 days). Nine patients (30%) developed recurrent occlusion and the average time of SP was 64 ± 34 days (2 - 364 days). One catheter was removed because of dysfunction due to thrombosis. Other catheters were removed due to infection, fistula maturation or fell out spontaneously. Hemodialysis was performed immediately after treatment with blood speed of 250 ml/min in all patients. Our protocol is highly effective, short, and allows to restore patency of totally occluded central venous catheters with minimal disruption of the dialysis session.

  6. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  7. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  8. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  9. Overexpression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor Mediates Liver Fibrosis in Transgenic Mice.

    Science.gov (United States)

    Guo, Yongze; Ding, Qian; Chen, Lei; Ji, Chenguang; Hao, Huiyao; Wang, Jia; Qi, Wei; Xie, Xiaoli; Ma, Junji; Li, Aidi; Jiang, Xiaoyu; Li, Xiaotian; Jiang, Huiqing

    2017-08-01

    The role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver fibrosis is not clear and is sometimes even contradictory. To clarify this role, a HB-EGF transgenic (Tg) mouse model was, for the first time, used to evaluate the functions of HB-EGF in liver fibrosis. For the in vivo study, carbon tetrachloride injection and bile duct ligation treatment were used to induce liver fibrosis in HB-EGF Tg mice and wild-type (WT) mice, respectively. Primary hepatic satellite cells (HSCs) were isolated from HB-EGF Tg and WT mice for the in vitro study. Compared with the WT mice, HB-EGF Tg mice were shown to develop more severe liver fibrosis when treated with carbon tetrachloride or bile duct ligation, with increased matrix metalloproteinases 13 activity and enhanced expression of fibrogenic genes including α-smooth muscle actin and collagen I. HB-EGF gene transfer led to an increase in proliferation and a decrease in apoptosis in primary HSCs. The ERK signaling pathway was more highly activated in primary HSCs from HB-EGF Tg mice than in those from WT mice. Our investigation confirmed the profibrotic effect of HB-EGF on the liver using a Tg mouse model. This result may contribute to the elucidation of HB-EGF as a therapeutic target in liver fibrosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  10. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  11. Jet and ultrasonic nebulization of single chain urokinase plasminogen activator (scu-PA)

    DEFF Research Database (Denmark)

    Münster, Anna-Marie; Bendstrup, E; Jensen, J.I.

    2000-01-01

    locally by nebulization in a recombinant zymogen form as single chain urokinase plasminogen activator (scu-PA). We aimed to characterize the particle size distribution, drug output, and enzymatic activity of scu-PA after nebulization with a Ventstream jet nebulizer (Medic-Aid, Bognor Regis, UK) and a Syst...

  12. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2016-01-01

    Full Text Available Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8 is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.

  13. Bicyclic peptide inhibitor of urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Roodbeen, Renée; Jensen, Berit Paaske; Jiang, Longguang

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptide-based inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... investigated the solution structures of the bicyclic peptide by NMR spectroscopy to map possible conformations. An X-ray structure of the bicyclic-peptide-uPA complex confirmed an interaction similar to that for the previous upain-1/upain-2-uPA complexes. These physical studies of the peptide...

  14. Intra-arterial urokinase infusion in the very early stage of cerebral artery occlusion and stenosis at their main trunks

    Energy Technology Data Exchange (ETDEWEB)

    Shizume, Kengo

    1988-02-01

    Eight patients, aged 43 approx. 78 years, with occlusion or stenosis of intracranial cerebral arteries at their main trunks were treated with intraarterial urokinase infusion within 5 hours after onset. Intracranial hemorrhage was excluded and low density area were absent on the first CT examination. Three of eight patients were diagnosed as embolism because of the sudden onset and coexisted atrial fibrillation. Middle cerebral artery (MCA) occlusion was disclosed in 5 cases. MCA stenosis, internal carotid artery (ICA) occlusion and ICA stenosis were revealed in each one case by angiography. 24 approx. 72 x 10/sup 4/ units of urokinase was infused manually into the common or internal carotid artery through the catheter for angiography within 10 approx. 50 minutes. Anticoagulants were not used exept in one case. Four patients were immediately improved after urokinase infusion and discharged without any significant sequelae. Patients with mild or moderate disability due to thrombosis recovered and those with severe symptoms due to embolism scarcely improved. The follow-up CT scans revealed hemorragic infarction in only one case (embolism of MCA), although symptoms did not deteriorate. After infusion of 48 x 10/sup 4/ units of urokinase for 50 minutes, fibrinogen and ..cap alpha../sub 2/-antiplasmin (..cap alpha../sub 2/ AP) decreased to 34 % and 21 % of the original values, respectively. Although the decrease of fibrinogen level is a disadvantage in this therapy, the decrease in the level of ..cap alpha../sub 2/ AP near the clot is probably indispensable for the fibrinolytic effect. If the endothelial damage of ischemic arteries still remain mild and reversible, hemorrhagic complication after reperfusion may rarely take place. It is suggested that intraarterial urokinase infusion is a relatively safe and effective therapy of cerebral artery occlusion and stenosis in strictly selected cases.

  15. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis

    NARCIS (Netherlands)

    de Jager, S.C.A.; Bermúdez, B.; Bot, I.; Koenen, R.R.; Bot, M.; Kavelaars, A.; de Waard, V.; Heijnen, C.J.; Muriana, F.J.G.; Weber, C.; van Berkel, T.J.C.; Kuiper, J.; Lee, S.J.; Abia, R.; Biessen, E.A.L.

    2011-01-01

    Growth differentiation factor (GDF) 15 is a member of the transforming growth factor. (TGF-beta) superfamily, which operates in acute phase responses through a currently unknown receptor. Elevated GDF-15 serum levels were recently identified as a risk factor for acute coronary syndromes. We show

  16. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.

    Science.gov (United States)

    Liu, Zhongle; Moran, Gary P.; Myers, Lawrence C.

    2016-01-01

    Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of ‘free,’ non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large ‘free’ pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the

  17. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.

    Directory of Open Access Journals (Sweden)

    Zhongle Liu

    2016-10-01

    Full Text Available Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of 'free,' non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large 'free' pool of the C. dubliniensis Tlo2 (CdTlo2 protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which

  18. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  19. Tumor therapy with a urokinase plasminogen activator-activated anthrax lethal toxin alone and in combination with paclitaxel

    OpenAIRE

    Wein, Alexander N.; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T.; Leppla, Stephen H.

    2012-01-01

    PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wild-type lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6,...

  20. The soluble urokinase plasminogen activator receptor and its fragments in venous ulcers

    DEFF Research Database (Denmark)

    Ahmad, Anwar; Saha, Prakash; Evans, Colin

    2015-01-01

    OBJECTIVE: Activation of proteolytic mechanisms at the cell surface through the activity of urokinase-type plasminogen activator (uPA) bound to its receptor, uPAR, is an important process in wound healing. The soluble forms of uPAR (suPAR and its fragments I, II, and III) have nonproteolytic func...

  1. Indications for intra-arterial infusion of urokinase in the treatment of acute gut ischaemia in patients with heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Schichijo, Y; Ibukuro, K

    1985-12-01

    The poor prognosis of acute mesenteric artery occlusion can be improved by reaching a rapid angiographic diagnosis and by instituting treatment at an early stage. In addition to operative embolectomy, success may be expected from the use of urokinase infused superselectively into the superior mesenteric artery. This treatment is only likely to be successful if it is carried out within ten hours of the onset of clinical signs and symptoms. In patients with heart disease, angiography is recommended as soon as there is any suspicion of mesenteric occlusion, in order to confirm the diagnosis, localise the embolus and decide on the form of treatment. Urokinase treatment can be successful for embolic occlusion of the main branches or peripheral branches of the superior mesenteric artery. However, complete occlusion of the main superior mesenteric artery should be treated operatively. A contra-indication to urokinase therapy is occlusion due to infected emboli from an endocarditis.

  2. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    Science.gov (United States)

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF - cells) or the presence (EGF + cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF - but not in EGF + cells. In EGF - cells, Tl(I) decreased mitochondrial potential, enhanced H 2 O 2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF - cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF - and EGF + cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF - cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF - and EGF + cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  3. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research July 2015; 14 (7): 1191-1197 ... Abstract. Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGF- ... catecholamines, reduces levels of dopamine and.

  4. Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) in breast cancer - correlation with traditional prognostic factors

    International Nuclear Information System (INIS)

    Lampelj, Maja; Arko, Darja; Cas-Sikosek, Nina; Kavalar, Rajko; Ravnik, Maja; Jezersek-Novakovic, Barbara; Dobnik, Sarah; Dovnik, Nina Fokter; Takac, Iztok

    2015-01-01

    Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) play a key role in tumour invasion and metastasis. High levels of both proteolytic enzymes are associated with poor prognosis in breast cancer patients. The purpose of this study was to evaluate the correlation between traditional prognostic factors and uPA and PAI-1 expression in primary tumour of breast cancer patients. 606 primary breast cancer patients were enrolled in the prospective study in the Department of gynaecological oncology and breast oncology at the University Medical Centre Maribor between the years 2004 and 2010. We evaluated the traditional prognostic factors (age, menopausal status, tumour size, pathohistological type, histologic grade, lymph node status, lymphovascular invasion and hormone receptor status), together with uPA and PAI-1. We used Spearman’s rank correlation, Mann Whitney U test and χ 2 test for statistical analysis. Our findings indicate a positive correlation between uPA and tumour size (p < 0.001), grade (p < 0.001), histological type (p < 0.001), lymphovascular invasion (p = 0.01) and a negative correlation between uPA and hormone receptor status (p < 0.001). They also indicate a positive correlation between PAI-1 and tumour size (p = 0.004), grade (p < 0.001), pathohistological type (p < 0.001) and negative correlation between PAI-1 and hormone receptor status (p = 0.002). Our study showed a relationship between uPA and PAI-1 and traditional prognostic factors. Their role as prognostic and predictive factors remains to be further evaluated

  5. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  6. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease

    Directory of Open Access Journals (Sweden)

    Aislinn Joanmarie Williams

    2014-03-01

    Full Text Available Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g. schizophrenia and bipolar disorder, respectively. In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases.

  7. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    Science.gov (United States)

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  8. Outcome evaluation of intra-arterial infusion of urokinase for acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hai Bin [First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Suh, Dae Chul; Lim, Soo Mee [Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); And Others

    2000-06-01

    To evaluate the results of intra-arterial urokinase thrombolysis in cases of acute ischemic stroke and to define the factors affecting prognosis. Forty-eight patients with angiographically proven occlusion of the intracranial arteries were treated with local intra-arterial infusion of urokinase within six hours of the onset of symptoms. Neurologic status was evaluated on admission and on discharge using the NIH (National Institute of Health) stroke scale score (SSS). When the SSS decreased by at least four points, this was considered indicative of an improved clinical outcome. Complete recanalization was achieved in 17/48 patients (35%), including 8 of 13 (62%) with occlusion of the vertebrobasilar artery (VBA), 9 of 20 (45%) with occlusion of the middle cerebral artery (MCA), and none of 15 with occlusion of the internal carotid artery (ICA). Neurologic status improved in 12 (60%) of patients with MCA occlusion, in five (38%) of those with VBA occlusion and in three (20%) of those with ICA occlusion (p less than 0.005). Patients in whom occluded MCA was completely recanalized showed greater clinical improvement than those with partial or no recanalization (p less than 0.05). The overall mortality rate was 21%, 43% (9/21) in patients in whom CT revealed signs of early infarct, but only 4% (1/27) in those without this sign (p less than 0.05). The mortality rate of patients with parenchymal hematoma (4/5) was higher than that of those with hemorrhagic infarct (3/9) or without hemorrhage (3/34) (p less than 0.005). In patients in whom occluded MCA was completely recanalized, the clinical outcome was better, while patients with VBA occlusion did not benefit from recanalization. The presence on CT scans of signs of early infarct and of parenchymal hematoma after thrombolysis correlated with a high mortality rate. (author)

  9. Modulation of Regorafenib effects on HCC cell lines by epidermal growth factor.

    Science.gov (United States)

    D'Alessandro, Rosalba; Refolo, Maria Grazia; Lippolis, Catia; Carella, Nicola; Messa, Caterina; Cavallini, Aldo; Carr, Brian Irving

    2015-06-01

    Blood platelet numbers are correlated to growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) also stimulated growth and migration, and antagonized the growth-inhibitory and apoptotic effects of both Sorafenib and Regorafenib, two multikinase inhibitors, on three HCC cell lines. In this study, in vitro function of human epidermal growth factor (EGF) with and without Sorafenib or Regorafenib was investigated. An ELISA kit was used to evaluate the EGF concentrations in hPLs. In vitro function of EGF was assessed with proliferation MTT test. Apoptosis assay, scratch assays, and Transwell assays were performed for apoptosis, invasion, and migration, respectively. MAPK Activation Kit was used to explore MAPK phosphorylation. EGF antagonized the growth inhibition of Regorafenib on three HCC cell lines. Regorafenib-mediated growth inhibition was blocked by 70 % when the cells were pre-treated with EGF. EGF also blocked Regorafenib-induced apoptosis, as well as Regorafenib-induced decreases in cell migration and invasion. The EGF effects were in turn antagonized by concomitant addition to the cultures of EGF receptor antagonist Erlotinib, showing that the EGF receptor was involved in the mechanisms of EGF-mediated blocking of Regorafenib effects. Erlotinib also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that EGF was an important component of hPL actions. All these results show that EGF antagonized Regorafenib-mediated growth and migration inhibition and apoptosis induction in HCC cells and reinforce the idea that microenvironment can influence cancer drug actions.

  10. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  11. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  12. Soluble CD30 and Hepatocyte growth factor as predictive markers of antibody-mediated rejection of the kidney allograft.

    Science.gov (United States)

    Pavlova, Yelena; Viklicky, Ondrej; Slatinska, Janka; Bürgelova, Marcela; Süsal, Caner; Skibova, Jelena; Honsová, Eva; Striz, Ilja; Kolesar, Libor; Slavcev, Antonij

    2011-07-01

    Our retrospective study was aimed to assess the relevance of pre- and post-transplant measurements of serum concentrations of the soluble CD30 molecule (soluble CD30, sCD30) and the cytokine Hepatocyte growth factor (HGF) for prediction of the risk for development of antibody-mediated rejection (AMR) in kidney transplant patients. Evaluation of sCD30, HGF levels and the presence of HLA-specific antibodies in a cohort of 205 patients was performed before, 2weeks and 6months after transplantation. Patients were followed up for kidney graft function and survival for two years. We found a tendency of higher incidence of AMR in retransplanted patients with elevated pre-transplant sCD30 (≥100U/ml) (p=0.051), however no such correlation was observed in first-transplant patients. Kidney recipients with simultaneously high sCD30 and HLA-specific antibodies (sCD30+/Ab+) before transplantation had significantly lower AMR-free survival compared to the other patient groups (psCD30 showed increased incidence of AMR in recipients with elevated pretransplant sCD30 and low HGF levels. the predictive value of pretransplant sCD30 for the development of antibody-mediated rejection after transplantation is significantly potentiated by the co-presence of HLA specific antibodies. The role of HGF as a rejection-protective factor in patients with high pretransplant HGF levels would need further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes

    International Nuclear Information System (INIS)

    Ceccarelli, Simona; Cardinali, Giorgia; Aspite, Nicaela; Picardo, Mauro; Marchese, Cinzia; Torrisi, Maria Rosaria; Mancini, Patrizia

    2007-01-01

    Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10

  14. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  15. Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects

    NARCIS (Netherlands)

    Braat, E. A.; Levi, M. [=Marcel M.; Bos, R.; Haverkate, F.; Lassen, M. R.; de Maat, M. P.; Rijken, D. C.

    1999-01-01

    Thrombin cleaves single-chain urokinase-type plasminogen activator (scu-PA) into a virtually inactive two-chain form (tcu-PA/T), a process that may protect a blood clot from early fibrinolysis. It is not known under what circumstances tcu-PA/T can be generated in vivo. We have studied the occurrence

  16. Function of Etk in Growth Factor Receptor Signaling to Integrins in Breast Cancer

    National Research Council Canada - National Science Library

    Shimizu, Yoji

    2001-01-01

    The central hypothesis in this IDEA Award is that increased integrin-mediated adhesiveness and migration of breast cancer cells in response to stimulation by the growth factors heregulin beta (HRG beta...

  17. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  18. Plasma levels of intact and cleaved urokinase plasminogen activator receptor (uPAR) in men with clinically localised prostate cancer

    DEFF Research Database (Denmark)

    Kristensen, Gitte; Berg, Kasper Drimer; Lippert, Solvej

    2017-01-01

    Aims: Lymph node metastasis (N1) is an adverse prognostic factor for men with clinically localised prostate cancer (PCa), but the prediction of N1 disease remains difficult. Urokinase plasminogen activator receptor (uPAR) plays an important role in angiogenesis and tumorigenesis. We analysed...... analysis and quantified using the areas under the ROC curve (AUC).Results: All soluble uPAR levels were significantly (p=0.03) higher in patients with N1 disease compared with patients with N0/x disease. ROC curves including clinical tumour stage, biopsy Gleason score, prostate-specific antigen and percent...

  19. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing. © 2014 The International Society of Dermatology.

  20. Targeting of liposomes to cells bearing nerve growth factor receptors mediated by biotinylated NGF

    International Nuclear Information System (INIS)

    Rosenberg, M.B.

    1986-01-01

    Previous studies of liposome targeting have concentrated on immunological systems, the use of ligand-receptor interactions has received little attention. The protein hormone beta-nerve growth factor (NGF) was modified by biotinylation via carboxyl group substitution (C-bio-NGF) under reaction conditions that yielded an average of 3 biotin additions per NGF subunit. NGF was also biotinylated through amino group substitution to produce derivatives with ratios of 1, 2 and 4 biotin moieties per NGF subunit (N-bio-NGF). These derivatives were compared with native NGF for their ability to compete with 125 I-NGF for binding to NGF receptors on rat pheochromocytoma (PC 12) cells at 4 0 C. C-bio-NGF was as effective as native NGF in binding to NGF receptors, while N-bio-NGF containing 1 biotin per NGF subunit was only 28% as active in binding as native NGF. C-bio-NGF, but not N-bio-NGF, mediated the specific binding of 125 I-streptavidin to PC12 cells. Biocytin-NGF, a derivative of C-bio-NGF with an extended spacer chain, was also synthesized and retained full biological and receptor binding activities. C-bio-NGF and biocytin-NGF were as effective as native NGF in a bioassay involving induction of neurite outgrowth from PC12 cells

  1. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  2. Exogenous estrogen as mediator of racial differences in bioactive insulin-like growth factor-I levels among postmenopausal women.

    Science.gov (United States)

    Jung, Su Yon; Vitolins, Mara Z; Paskett, Electra D; Chang, Shine

    2015-04-01

    The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race-IGF-I relationship in postmenopausal women. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women's Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race-IGF-I relationship, we used the Baron-Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race-IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Insulin-like growth factor 1 (IGF-1): a growth hormone

    Science.gov (United States)

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  4. The Inflammatory Actions of Coagulant and Fibrinolytic Proteases in Disease

    Directory of Open Access Journals (Sweden)

    Michael Schuliga

    2015-01-01

    Full Text Available Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa, factor VIIa (FVIIa, tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells or inflammatory cells (e.g., macrophages via the proteolytic activation of protease-activated receptors (PARs. Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4 activating fibrin degradation products (FDPs and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β. Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.

  5. Transgenic chickens expressing human urokinase-type plasminogen activator.

    Science.gov (United States)

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P huPA protein in eggs increased from 7.82 IU/egg in the G0 generation to 17.02 IU/egg in the G1 generation. However, huPA-expressing embryos had reduced survival and hatchability at d 18 and 21 of incubation, respectively, and the blood clotting time was significantly higher in transgenic chickens than their nontransgenic counterparts (P huPA transgenic chickens could be successfully produced by the retroviral vector system. Transgenic chickens, expressing the huPA under the control of a ubiquitous promoter, may not only be used as a bioreactor for pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders.

  6. Involvement of Connective Tissue Growth Factor in Human and Experimental Hypertensive Nephrosclerosis

    NARCIS (Netherlands)

    Ito, Yasuhiko; Aten, Jan; Nguyen, Tri Q.; Joles, Jaap A.; Matsuo, Seiichi; Weening, Jan J.; Goldschmeding, Roel

    2011-01-01

    Background/Aims: Connective tissue growth factor (CTGF; CCN2) has been implicated as a marker and mediator of fibrosis in human and experimental renal disease. Methods: We performed a comparative analysis of CTGF expression in hypertensive patients with and without nephrosclerosis, and in

  7. Forkhead box A1 (FOXA1) is a key mediator of insulin-like growth factor I (IGF-I) activity.

    Science.gov (United States)

    Potter, Adam S; Casa, Angelo J; Lee, Adrian V

    2012-01-01

    The insulin-like growth factor receptor (IGF-IR) has been implicated in a number of human tumors, including breast cancer. Data from human breast tumors has demonstrated that IGF-IR is over-expressed and hyper-phosphorylated. Additionally, microarray analysis has shown that IGF-I treatment of MCF7 cells leads to a gene signature comprised of induced and repressed genes, which correlated with luminal B tumors. FOXA1, a forkhead family transcription factor, has been shown to be crucial for mammary ductal morphogenesis, similar to IGF-IR, and expressed at high levels in luminal subtype B breast tumors. Here, we investigated the relationship between FOXA1 and IGF-I action in breast cancer cells. We show that genes regulated by IGF-I are enriched for FOXA1 binding sites, and knock down of FOXA1 blocked the ability of IGF-I to regulate gene expression. IGF-I treatment of MCF7 cells increased the half-life of FOXA1 protein and this increase in half-life appeared to be dependent on canonical IGF-I signal transduction through both MAPK and AKT pathways. Finally, knock down of FOXA1 led to a decreased ability of IGF-I to induce proliferation and protect against apoptosis. Together, these results demonstrate that IGF-I can increase the stability of FOXA1 protein expression and place it as a critical mediator of IGF-I regulation of gene expression and IGF-I-mediated biological responses. Copyright © 2011 Wiley Periodicals, Inc.

  8. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  9. Activation of the connective tissue growth factor (CTGF-transforming growth factor β 1 (TGF-β 1 axis in hepatitis C virus-expressing hepatocytes.

    Directory of Open Access Journals (Sweden)

    Tirumuru Nagaraja

    Full Text Available BACKGROUND: The pro-fibrogenic cytokine connective tissue growth factor (CTGF plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV-induced liver fibrosis remains unclear. METHODS: In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2 by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1 as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques. RESULTS: We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells. CONCLUSION: Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.

  10. Insulin-like growth factor-I, physical activity, and control of cellular anabolism.

    Science.gov (United States)

    Nindl, Bradley C

    2010-01-01

    The underlying mechanisms responsible for mediating the beneficial outcomes of exercise undoubtedly are many, but the insulin-like growth factor-I (IGF-I) system is emerging as an important and central hormonal axis that plays a significant role concerning cellular anabolism. This introductory article summarizes the intent and the content for papers presented as part of a 2008 American College of Sports Medicine national symposium entitled "Insulin-like Growth Factor-I, Physical Activity, and Control of Cellular Anabolism." The individual authors and their papers are as follows: Jan Frystyk authoring "The relationship between exercise and the growth hormone/insulin-like growth factor-I axis," Greg Adams authoring "IGF-I signaling in skeletal muscle and the potential for cytokine interactions," and Brad Nindl authoring "Insulin-like growth factor-I as a biomarker of health, fitness, and training status." These papers focus on 1) different assay methodologies for IGF-I within the paradigm of exercise studies, 2) research demonstrating that intracellular signaling components associated with several proinflammatory cytokines have the potential to interact with anabolic signaling processes in skeletal muscle, and 3) an overview of IGF-I as a biomarker related to exercise training, muscle and bone remodeling, body composition, cognition, and cancer. When summed in total, the contribution that these papers will make will undoubtedly involve bringing attention to the vast regulatory complexity of the IGF-I system and will hopefully convince the reader that the IGF-I system warrants further detailed scientific inquiry to resolve many unanswered questions and paradoxical experimental findings. The IGF-I system remains one of the most intriguing and captivating marvels of human physiology that seems central in mediating numerous adaptations from physical activity.

  11. An Anti-Urokinase Plasminogen Activator Receptor Antibody (ATN-658 Blocks Prostate Cancer Invasion, Migration, Growth, and Experimental Skeletal Metastasis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Shafaat A. Rabbani

    2010-10-01

    Full Text Available Urokinase plasminogen activator receptor (uPAR is a multidomain protein that plays important roles in the growth, invasion, and metastasis of a number of cancers. In the present study, we examined the effects of administration of a monoclonal anti-uPAR antibody (ATN-658 on prostate cancer progression in vitro and in vivo. We examined the effect of treatment of ATN-658 on human prostate cancer cell invasion, migration, proliferation, and regulation of intracellular signaling pathways. For in vivo studies, PC-3 cells (1 x 106 were inoculated into the right flank of male Balb C nu/nu mice through subcutaneous or through intratibial route (2 x 105 of male Fox Chase severe combined immunodeficient mice to monitor the effect on tumor growth and skeletal metastasis. Treatment with ATN-658 resulted in a significant dose-dependent decrease in PC-3 cell invasion and migration without affecting cell doubling time. Western blot analysis showed that ATN-658 treatment decreased the phosphorylation of serine/threonine protein kinase B (AKT, mitogen-activated protein kinase (MAPK, and focal adhesion kinase (FAK without affecting AKT, MAPK, and FAK total protein expression. In in vivo studies, ATN-658 caused a significant decrease in tumor volume and a marked reduction in skeletal lesions as determined by Faxitron x-ray and micro-computed tomography. Immunohistochemical analysis of subcutaneous and tibial tumors showed a marked decrease in the levels of expression of pAKT, pMAPK, and pFAK, consistent with the in vitro observations. Results from these studies provide compelling evidence for the continued development of ATN-658 as a potential therapeutic agent for the treatment of prostate and other cancers expressing uPAR.

  12. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  13. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  14. Keratinocyte Growth Factor Causes Cystic Dilation of the Mammary Glands of Mice: Interactions of Keratinocyte Growth Factor, Estrogen, and Progesterone In Vivo

    OpenAIRE

    Yi, Eunhee S.; Bedoya, Adriana A.; Lee, Hyesun; Kim, Seokhyun; Housley, Regina M.; Aukerman, Sharon L.; Tarpley, John E.; Starnes, Charles; Yin, Songmei; Pierce, Glenn F.; Ulich, Thomas R.

    1994-01-01

    Keratinocyte growth factor (KGF) is a paracrine mediator of epithelial cell proliferation that has been reported to induce marked proliferation of mammary epithelium in rats. In this study, systemic administration of KGF into naive and oophorectomized mice causes mammary gland proliferation, as evidenced histologically by the appearance of cysts lined by a single layer of epithelium and by hyperplastic epithelium. Whole mount preparations of the mammary glands reveal that the histologically n...

  15. Importin α-importin β complex mediated nuclear translocation of insulin-like growth factor binding protein-5.

    Science.gov (United States)

    Sun, Min; Long, Juan; Yi, Yuxin; Xia, Wei

    2017-10-28

    Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: K D =2.44e-7, IGFBP-5/importin-α5: K D =3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5 ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5 ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.

  16. Quantitative PET of human urokinase-type plasminogen activator receptor with 64Cu-DOTA-AE105

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren

    2012-01-01

    Expression levels of the urokinase-type plasminogen activator receptor (uPAR) represent an established biomarker for poor prognosis in a variety of human cancers. The objective of the present study was to explore whether noninvasive PET can be used to perform a quantitative assessment of expressi...

  17. Soluble urokinase-type plasminogen activator receptor forms in plasma as markers of atherosclerotic plaque vulnerability

    DEFF Research Database (Denmark)

    Olson, Fredrik J; Thurison, Tine; Ryndel, Mikael

    2009-01-01

    OBJECTIVES:: To test if circulating forms of the soluble urokinase-type plasminogen activator receptor (suPAR) are potential biomarkers of plaque vulnerability. DESIGN AND METHODS:: Plasma concentrations of suPAR(I-III), suPAR(II-III) and uPAR(I) were measured by time-resolved fluorescence immuno...

  18. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    The receptor for human urokinase-type plasminogen activator (u-PA) was purified from phorbol 12-myristate 13-acetate-stimulated U937 cells by temperature-induced phase separation of detergent extracts, followed by affinity chromatography with immobilized diisopropyl fluorophosphate-treated u...

  19. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway

    Directory of Open Access Journals (Sweden)

    Barańska Sylwia

    2009-03-01

    Full Text Available Abstract Background Mucopolysaccharidoses (MPS are inherited metabolic disorders caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs. Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs. Substrate reduction therapy is one of potential treatment of these diseases. It was demonstrated previously that genistein (4', 5, 7-trihydroxyisoflavone inhibits synthesis and reduces levels of GAGs in cultures of fibroblasts of MPS patients. Recent pilot clinical study indicated that such a therapy may be effective in MPS III (Sanfilippo syndrome. Methods To learn on details of the molecular mechanism of genistein-mediated inhibition of GAG synthesis, efficiency of this process was studied by measuring of incorporation of labeled sulfate, storage of GAGs in lysosomes was estimated by using electron microscopic techniques, and efficiency of phosphorylation of epidermal growth factor (EGF receptor was determined by using an ELISA-based assay with fluorogenic substrates. Results Effects of genistein on inhibition of GAG synthesis and accumulation in fibroblasts from patients suffering from various MPS types were abolished in the presence of an excess of EGF, and were partially reversed by an increased concentration of genistein. No such effects were observed when an excess of 17β-estradiol was used instead of EGF. Moreover, EGF-mediated stimulation of phsophorylation of the EGF receptor was impaired in the presence of genistein in both wild-type and MPS fibroblasts. Conclusion The results presented in this report indicate that the mechanism of genistein-mediated inhibition of GAG synthesis operates through epidermal growth factor (EGF-dependent pathway.

  20. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGFII) on 1-methyl-4-phenyl pyridinium (MPP) induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  1. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  2. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta–Mediated Epithelial–Mesenchymal Transition

    International Nuclear Information System (INIS)

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-01-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-β)–mediated epithelial–mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by 60 Co γ-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-β in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-β signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with γ-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-β were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-β signaling. Conclusions: These results suggest that EMT mediated by TGF-β plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  3. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: guozhenguo@hotmail.com [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  4. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    Science.gov (United States)

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases. PMID:28280337

  5. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  6. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor β

    International Nuclear Information System (INIS)

    Andarawewa, Kumari L.; Costes, Sylvain V.; Fernandez-Garcia, Ignacio; Chou, William S.; Ravani, Shraddha A.; Park, Howard; Barcellos-Hoff, Mary Helen

    2011-01-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor β (TGF-β)-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-β-mediated EMT. Methods and Materials: HMECs were cultured on tissue culture plastic or in Matrigel (BD Biosciences, San Jose, CA) and exposed to low or high linear energy transfer (LET) and TGF-β (400 pg/mL). Image analysis was used to measure membrane-associated E-cadherin, a marker of functional epithelia, or fibronectin, a product of mesenchymal cells, as a function of radiation dose and quality. Results: E-cadherin was reduced in TGF-β-treated cells irradiated with low-LET radiation doses between 0.03 and 2 Gy compared with untreated, unirradiated cells or TGF-β treatment alone. The radiation quality dependence of TGF-β-mediated EMT was determined by use of 1 GeV/amu (gigaelectron volt / atomic mass unit) 56 Fe ion particles at the National Aeronautics and Space Administration's Space Radiation Laboratory. On the basis of the relative biological effectiveness of 2 for 56 Fe ion particles' clonogenic survival, TGF-β-treated HMECs were irradiated with equitoxic 1-Gy 56 Fe ion or 2-Gy 137 Cs radiation in monolayer. Furthermore, TGF-β-treated HMECs irradiated with either high- or low-LET radiation exhibited similar loss of E-cadherin and gain of fibronectin and resulted in similar large, poorly organized colonies when embedded in Matrigel. Moreover, the progeny of HMECs exposed to different fluences of 56 Fe ion underwent TGF-β-mediated EMT even when only one-third of the cells were directly traversed by the particle. Conclusions: Thus TGF-β-mediated EMT, like other non-targeted radiation effects, is neither radiation dose nor quality dependent at the doses examined.

  7. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    Directory of Open Access Journals (Sweden)

    Stathopoulos Efstathios N

    2010-09-01

    Full Text Available Abstract Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this

  8. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  9. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  10. Is thrombophilia a risk factor for placenta-mediated pregnancy complications?

    DEFF Research Database (Denmark)

    Hoffmann, Elise; Hedlund, Elisabeth; Perin, Trine

    2012-01-01

    PURPOSE: To determine if thrombophilia is a risk factor for placenta-mediated pregnancy complications (PMPC) (i.e., preeclampsia, intrauterine growth restriction (IUGR), placental abruption, intrauterine fetal death and recurrent pregnancy loss). METHODS: A 5-year retrospective cohort study....... Ongoing pregnancies in women with an antecedent PMPC with thrombophilia were compared with the pregnancies in similar women without thrombophilia. The main outcome measures were mean birth weight deviations, corrected for gestational age, and recurrence of PMPC. Low-molecular-weight heparin (LMWH...

  11. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  12. Knockdown of platinum-induced growth differentiation factor 15 abrogates p27-mediated tumor growth delay in the chemoresistant ovarian cancer model A2780cis

    International Nuclear Information System (INIS)

    Meier, Julia C; Haendler, Bernard; Seidel, Henrik; Groth, Philip; Adams, Robert; Ziegelbauer, Karl; Kreft, Bertolt; Beckmann, Georg; Sommer, Anette; Kopitz, Charlotte

    2015-01-01

    Molecular mechanisms underlying the development of resistance to platinum-based treatment in patients with ovarian cancer remain poorly understood. This is mainly due to the lack of appropriate in vivo models allowing the identification of resistance-related factors. In this study, we used human whole-genome microarrays and linear model analysis to identify potential resistance-related genes by comparing the expression profiles of the parental human ovarian cancer model A2780 and its platinum-resistant variant A2780cis before and after carboplatin treatment in vivo. Growth differentiation factor 15 (GDF15) was identified as one of five potential resistance-related genes in the A2780cis tumor model. Although A2780-bearing mice showed a strong carboplatin-induced increase of GDF15 plasma levels, the basal higher GDF15 plasma levels of A2780cis-bearing mice showed no further increase after short-term or long-term carboplatin treatment. This correlated with a decreased DNA damage response, enhanced AKT survival signaling and abrogated cell cycle arrest in the carboplatin-treated A2780cis tumors. Furthermore, knockdown of GDF15 in A2780cis cells did not alter cell proliferation but enhanced cell migration and colony size in vitro. Interestingly, in vivo knockdown of GDF15 in the A2780cis model led to a basal-enhanced tumor growth, but increased sensitivity to carboplatin treatment as compared to the control-transduced A2780cis tumors. This was associated with larger necrotic areas, a lobular tumor structure and increased p53 and p16 expression of the carboplatin-treated shGDF15-A2780cis tumors. Furthermore, shRNA-mediated GDF15 knockdown abrogated p27 expression as compared to control-transduced A2780cis tumors. In conclusion, these data show that GDF15 may contribute to carboplatin resistance by suppressing tumor growth through p27. These data show that GDF15 might serve as a novel treatment target in women with platinum-resistant ovarian cancer

  13. Soluble urokinase plasminogen activator receptor as a prognostic marker in men participating in prostate cancer screening

    DEFF Research Database (Denmark)

    Kjellman, A; Akre, O; Gustafsson, O

    2011-01-01

    BACKGROUND: The urokinase plasminogen activator (uPA) system is involved in tissue remodelling processes and is up-regulated in many types of malignancies. We investigated whether serum levels of different forms of soluble uPA receptor (suPAR) are associated with survival and in particular with p...

  14. Rational targeting of the urokinase receptor (uPAR): development of antagonists and non-invasive imaging probes

    DEFF Research Database (Denmark)

    Kriegbaum, Mette Camilla; Persson, Morten; Haldager, L

    2011-01-01

    PA-mediated plasminogen activation at the cell surface, which is accomplished by its high-affinity interaction with the growth factor-like domain of uPA. Detailed insights into the molecular basis underlying the interactions between uPAR and its two bona fide ligands, uPA and vitronectin, have been obtained recently by X...

  15. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    International Nuclear Information System (INIS)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-01-01

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease

  16. Specific immunoassays for detection of intact and cleaved forms of the urokinase receptor

    DEFF Research Database (Denmark)

    Piironen, Timo; Laursen, Birgitte; Pass, Jesper

    2004-01-01

    BACKGROUND: The cell surface receptor (uPAR) for urokinase plasminogen activator (uPA) is a strong prognostic marker in several types of cancer. uPA cleaves the three-domain protein uPAR(I-III) into two fragments: uPAR(I), which contains domain I; and uPAR(II-III), which contains domains II and III...... of the diagnostic and prognostic value of individual uPAR forms in cancer patients....

  17. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  18. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    International Nuclear Information System (INIS)

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-01-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 ± 9.01 vs. 41.94 ± 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 ± 1303 vs. 1667 ± 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 ± 1084 vs. 1566 ± 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  19. Imaging of Prostate Cancer Using Urokinase-Type Plasminogen Activator Receptor PET

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2017-01-01

    Urokinase-type plasminogen activator receptor (uPAR) overexpression is an important biomarker for aggressiveness in cancer including prostate cancer (PC) and provides independent clinical information in addition to prostate-specific antigen and Gleason score. This article focuses on uPAR PET...... as a new diagnostic and prognostic imaging biomarker in PC. Many preclinical uPAR-targeted PET imaging studies using AE105 in cancer models have been undertaken with promising results. A major breakthrough was obtained with the recent human translation of uPAR PET in using 64Cu- and 68Ga-labelled versions...

  20. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  1. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  2. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R

    2007-01-01

    PAR and produce urokinase (uPA). The purpose of this study was to investigate the role of uPAR in bone remodeling. MATERIALS AND METHODS: In vivo studies were performed in uPAR knockout (KO) and wildtype (WT) mice on a C57Bl6/SV129 (75:25) background. Bone mass was analyzed by pQCT. Excised tibias were subjected......The uPAR and its ligand uPA are expressed by both osteoblasts and osteoclasts. Their function in bone remodeling is unknown. We report that uPAR-lacking mice display increased BMD, increased osteogenic potential of osteoblasts, decreased osteoclasts formation, and altered cytoskeletal...... of macrophage-colony stimulating factor (M-CSF) and RANKL. Phalloidin staining in osteoclasts served to study actin ring and podosome formation. RESULTS: pQCT revealed increased bone mass in uPAR-null mice. Mechanical tests showed reduced load-sustaining capability in uPAR KO tibias. uPAR KO osteoblasts showed...

  3. ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-09-25

    In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  5. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation.

    Science.gov (United States)

    Chang, Shang-Hung; Yeh, Yung-Hsin; Lee, Jia-Lin; Hsu, Yu-Juei; Kuo, Chi-Tai; Chen, Wei-Jan

    2017-09-04

    Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.

  6. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells

    International Nuclear Information System (INIS)

    Zhao Wenhui; Zhang Qingyuan; Kang Xinmei; Jin Shi; Lou Changjie

    2009-01-01

    Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.

  7. Two-color cytofluorometry and cellular properties of the urokinase receptor associated with a human metastatic carcinomatous cell line

    International Nuclear Information System (INIS)

    Takahashi, K.; Gojobori, T.; Tanifuji, M.

    1991-01-01

    Purified human urokinase was labeled with either fluorescein isothiocyanate or iodine-125 and used as a probe for binding to the human metastatic carcinomatous cell line, Detroit 562. Cytofluorometry showed that the ligand bound preferentially to cells that had been exposed to acidic pH. The binding was competitive and decreased after mild tryptic digestion. The bound ligand could be removed by restoration of the cells to a low pH. Therefore, the cells had specific binding sites. The bound urokinase was involved in the breakdown of fibrin. Two-color cytofluorometric maps were constructed by counterstaining with propidium iodide. Results suggested that there were different cell populations that had different numbers of receptors and amounts of DNA. We cloned cells and found that single clones had homogeneous levels of receptors with different dissociation constants (from 10(-13) to 10(-11) mol/mg protein) for different clones. Cells of one clone, C5, which had high levels of receptor production, moved characteristically on a glass substratum coated with gold particles and reacted with wheat germ agglutinin, but not with concanavalin A. The receptors were found together with adhesion proteins at the sites where the cells adhered to the substrate. These results and the data obtained by zymography of the cellular proteins suggested that the urokinase-type plasminogen activators were bound to the receptors. The membrane-associated activator may stimulate local proteolysis, facilitating the migration of the tumor cell across the substrate

  8. Two-color cytofluorometry and cellular properties of the urokinase receptor associated with a human metastatic carcinomatous cell line

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Gojobori, T.; Tanifuji, M. (Shimane Medical Univ., Izumo (Japan))

    1991-02-01

    Purified human urokinase was labeled with either fluorescein isothiocyanate or iodine-125 and used as a probe for binding to the human metastatic carcinomatous cell line, Detroit 562. Cytofluorometry showed that the ligand bound preferentially to cells that had been exposed to acidic pH. The binding was competitive and decreased after mild tryptic digestion. The bound ligand could be removed by restoration of the cells to a low pH. Therefore, the cells had specific binding sites. The bound urokinase was involved in the breakdown of fibrin. Two-color cytofluorometric maps were constructed by counterstaining with propidium iodide. Results suggested that there were different cell populations that had different numbers of receptors and amounts of DNA. We cloned cells and found that single clones had homogeneous levels of receptors with different dissociation constants (from 10(-13) to 10(-11) mol/mg protein) for different clones. Cells of one clone, C5, which had high levels of receptor production, moved characteristically on a glass substratum coated with gold particles and reacted with wheat germ agglutinin, but not with concanavalin A. The receptors were found together with adhesion proteins at the sites where the cells adhered to the substrate. These results and the data obtained by zymography of the cellular proteins suggested that the urokinase-type plasminogen activators were bound to the receptors. The membrane-associated activator may stimulate local proteolysis, facilitating the migration of the tumor cell across the substrate.

  9. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    Directory of Open Access Journals (Sweden)

    Angela Wang

    2016-12-01

    Full Text Available Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark, orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

  10. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Science.gov (United States)

    Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-01-01

    The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  11. The Role of Cytokines, Chemokines, and Growth Factors in the Pathogenesis of Pityriasis Rosea

    Directory of Open Access Journals (Sweden)

    Francesco Drago

    2015-01-01

    Full Text Available Introduction. Pityriasis rosea (PR is an exanthematous disease related to human herpesvirus- (HHV- 6/7 reactivation. The network of mediators involved in recruiting the infiltrating inflammatory cells has never been studied. Object. To investigate the levels of serum cytokines, growth factors, and chemokines in PR and healthy controls in order to elucidate the PR pathogenesis. Materials and Methods. Interleukin- (IL- 1, IL-6, IL-17, interferon- (IFN- γ, tumor necrosis factor- (TNF- α, vascular endothelial growth factor (VEGF, granulocyte colony stimulating factor (G-CSF, and chemokines, CXCL8 (IL-8 and CXCL10 (IP-10, were measured simultaneously by a multiplex assay in early acute PR patients’ sera and healthy controls. Subsequently, sera from PR patients were analysed at 3 different times (0, 15, and 30 days. Results and discussion. Serum levels of IL-17, IFN-γ, VEGF, and IP-10 resulted to be upregulated in PR patients compared to controls. IL-17 has a key role in host defense against pathogens stimulating the release of proinflammatory cytokines/chemokines. IFN-γ has a direct antiviral activity promoting NK cells and virus specific T cells cytotoxicity. VEGF stimulates vasculogenesis and angiogenesis. IP-10 can induce chemotaxis, apoptosis, cell growth, and angiogenesis. Conclusions. Our findings suggest that these inflammatory mediators may modulate PR pathogenesis in synergistic manner.

  12. Growth factors mediated differentiation of mesenchymal stem cells to cardiac polymicrotissue using hanging drop and bioreactor.

    Science.gov (United States)

    Konstantinou, Dimitrios; Lei, Ming; Xia, Zhidao; Kanamarlapudi, Venkateswarlu

    2015-04-01

    Heart disease is the major leading cause of death worldwide and the use of stem cells promises new ways for its treatment. The relatively easy and quick acquisition of human umbilical cord matrix mesenchymal stem cells (HUMSCs) and their properties make them useful for the treatment of cardiac diseases. Therefore, the main aim of this investigation was to create cardiac polymicrotissue from HUMSCs using a combination of growth factors [sphingosine-1-phosphate (S1P) and suramin] and techniques (hanging drop and bioreactor). Using designated culture conditions of the growth factors (100 nM S1P and 500 µM suramin), cardiomyocyte differentiation medium (CDM), hanging drop, bioreactor and differentiation for 7 days, a potential specific cardiac polymicrotissue was derived from HUMSCs. The effectiveness of growth factors alone or in combination in differentiation of HUMSCs to cardiac polymicrotissue was analysed by assessing the presence of cardiac markers by immunocytochemistry. This analysis demonstrated the importance of those growth factors for the differentiation. This study for the first time demonstrated the formation of a cardiac polymicrotissue under specific culture conditions. The polymicrotissue thus obtained may be used in future as a 'patch' to cover the injured cardiac region and would thereby be useful for the treatment of heart diseases. © 2014 International Federation for Cell Biology.

  13. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  14. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  15. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  16. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

    Directory of Open Access Journals (Sweden)

    Erh-Hsuin Lim

    2013-11-01

    Full Text Available BackgroundTo overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF into an electrospun poly(L-lactide scaffold.MethodsThe electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats.ResultsChemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen.ConclusionsWe have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

  17. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1).

    Science.gov (United States)

    Wolfe, Andrew; Divall, Sara; Wu, Sheng

    2014-10-01

    The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

    Directory of Open Access Journals (Sweden)

    Allison L Speer

    Full Text Available The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10 and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b, in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22 except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.

  19. Bioavailable insulin-like growth factor-I as mediator of racial disparity in obesity-relevant breast and colorectal cancer risk among postmenopausal women.

    Science.gov (United States)

    Jung, Su Yon; Barrington, Wendy E; Lane, Dorothy S; Chen, Chu; Chlebowski, Rowan; Corbie-Smith, Giselle; Hou, Lifang; Zhang, Zuo-Feng; Paek, Min-So; Crandall, Carolyn J

    2017-03-01

    Bioavailable insulin-like growth factor-I (IGF-I) interacts with obesity and exogenous estrogen (E) in a racial disparity in obesity-related cancer risk, yet their interconnected pathways are not fully characterized. We investigated whether circulating bioavailable IGF-I acted as a mediator of the racial disparity in obesity-related cancers such as breast and colorectal (CR) cancers and how obesity and E use regulate this relationship. A total of 2,425 white and 164 African American (AA) postmenopausal women from the Women's Health Initiative Observational Study were followed from October 1, 1993 through August 29, 2014. To assess bioactive IGF-I as a mediator of race-cancer relationship, we used the Baron-Kenny method and quantitative estimation of the mediation effect. Compared with white women, AA women had higher IGF-I levels; their higher risk of CR cancer, after accounting for IGF-I, was no longer significant. IGF-I was associated with breast and CR cancers even after controlling for race. Among viscerally obese (waist/hip ratio >0.85) and overall nonobese women (body mass index obesity-related breast and CR cancer risk between postmenopausal AA and white women. Body fat distribution and E use may be part of the interconnected hormonal pathways related to racial difference in IGF-I levels and obesity-related cancer risk.

  20. Interconversion of Active and Inactive Conformations of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Liu, Zhuo; Kromann-Hansen, Tobias; Lund, Ida K

    2012-01-01

    The catalytic activity of serine proteases depends on a salt-bridge between the amino group of residue 16 and the side chain of Asp194. The salt-bridge stabilizes the oxyanion hole and the S1 specificity pocket of the protease. Some serine proteases exist in only partially active forms, in which...... the amino group of residue 16 is exposed to the solvent. Such a partially active state is assumed by a truncated form of the murine urokinase-type plasminogen activator (muPA), consisting of residues 16-243. Here we investigated the allosteric interconversion between partially active states and the fully...

  1. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  2. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  3. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    International Nuclear Information System (INIS)

    Kim, Yeoun-Hee; Chang, Yongmin; Jung, Jae-Chang

    2012-01-01

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  4. Evaluation of thyroid-mediated otolith growth of larval and juvenile tilapia.

    Science.gov (United States)

    Shiao, Jen-Chieh; Wu, Su-Mei; Hwang, Yi-Ping; Wu, Done-Ping; Hwang, Pung-Pung

    2008-06-01

    Thyroid-mediated otolith growth in tilapia was evaluated by the ontogenic triiodothyronine (T3) profile revealed by radioimmunoassay during the first month after hatching. Thyroid hormone receptor genes (TRalpha and TRbeta) were cloned and only the expression of TRalpha mRNA, quantified by real-time PCR, was similar to the T3 profile. Variations in otolith growth showed median correlation with the T3 profile and TRalpha mRNA expression pattern. Hypothyroidism and hyperthyroidism were induced in tilapia juveniles and larvae by administration of different concentrations of thiourea (TU) and T3, respectively, for 13 days. T3 and TU had little effect on otolith growth during the larval stage. However, T3 increased otolith growth and TU retarded, or stopped, otolith growth during the juvenile stage. Furthermore, TU treatment caused permanent changes in otolith shape in the ventral area. Otolith growth recovered slowly from hypothyroidism, requiring 2 days to form an increment during the first week. These results suggest that otolith growth, at least during the juvenile stage, is regulated by the thyroid hormones and the process may be mediated by TRalpha.

  5. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  6. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. UNEARTHING GLOBAL FINANCIAL INCLUSION LEVELS AND ANALYSIS OF FINANCIAL INCLUSION AS A MEDIATING FACTOR IN GLOBAL HUMAN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Roshny Unnikrishnan

    2015-04-01

    Full Text Available This study is a result of the author’s inquisition to unearth the current values of Global Financial Inclusion and its relationship with economic growth measured by Gross Domestic product(GDP and human development measured by United Nations Human Development Index (HDI. The Financial Inclusion (FI levels are measured using Index for Financial Inclusion .The relationship between GDP and HDI with FI as mediator, using multiple regression, is validated on a global level based on data of 162 countries for the year 2011. An overall global mediation analysis is undertaken to establish Financial Inclusion as a mediating factor and partial mediation on human development is validated. The study is valid and unique in the global context of income inequality prevailing in developed, developing and underdeveloped countries as it validates the argument that an impressive GDP performance does not ensure equity in economic growth.

  8. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Haruyuki Tsuchiya

    Full Text Available The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM and growth factors in intramuscular islet transplantation.Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group, islets embedded in ECM with growth factors (Matrigel group, and islets embedded in ECM without growth factors [growth factor-reduced (GFR Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  9. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  10. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    Science.gov (United States)

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  11. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  12. Uniform 15N- and 15N/13C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    International Nuclear Information System (INIS)

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W.

    1994-01-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly 15 N-and 15 N/ 13 C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the φ angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor

  13. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W. [Abbott Laboratories, Abbott Park, IL (United States)

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  14. Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy

    DEFF Research Database (Denmark)

    Lin, Lin; Gårdsvoll, Henrik; Huai, Qing

    2010-01-01

    The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) is decisive for cell surface-associated plasminogen activation. Because plasmin activity controls fibrinolysis in a variety of pathological conditions, including cancer...

  15. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin.

    Science.gov (United States)

    De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai

    2016-07-01

    Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.

  16. Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-β1.

    Science.gov (United States)

    Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng

    2017-10-01

    Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.

  17. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    Science.gov (United States)

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness.

    Science.gov (United States)

    Nakagawa, S; Pawelek, P; Grinnell, F

    1989-06-01

    To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.

  19. New microbial growth factor

    Science.gov (United States)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  20. Differential expression of growth factors in irradiated mouse testes

    International Nuclear Information System (INIS)

    Mauduit, Claire; Siah, Ahmed; Foch, Marie; Chapet, Olivier; Clippe, Sebastien; Gerard, Jean-Pierre; Benahmed, Mohamed

    2001-01-01

    Purpose: By using as an experimental model the male mouse gonad, which contains both radiosensitive (germ) and radioresistant (somatic) cells, we have studied the growth factor (and/or receptor) expression of transforming growth factor-β receptor (TGFβ RI), stem cell factor (SCF), c-kit, Fas-L, Fas, tumor necrosis factor receptor (TNF R55), and leukemia inhibiting factor receptor (LIF-R) after local irradiation. Methods and Materials: Adult male mice were locally irradiated on the testes. Induction of apoptosis in the different testicular cell types following X-ray radiation was identified by the TdT-mediated dUTP Nick End Labeling (TUNEL) approach. Growth factor expression was evidenced by semiquantitative RT-PCR and Western blot analyses. Results: Apoptosis, identified through the TUNEL approach, occurred in radiosensitive testicular (premeotic) germ cells with the following kinetics: the number of apoptotic cells increased after 24 h (p<0.001) and was maximal 48 h after a 2-Gy ionizing radiation (p<0.001). Apoptotic cells were no longer observed 72 h after a 2-Gy irradiation. The number of apoptotic cells increased with the dose of irradiation (1-4 Gy). In the seminiferous tubules, the growth factor expression in premeiotic radiosensitive germ cells was modulated by irradiation. Indeed Fas, c-kit, and LIF-R expression, which occurs in (radiosensitive) germ cells, decreased 24 h after a 2-Gy irradiation, and the maximal decrease was observed with a 4-Gy irradiation. The decrease in Stra8 expression occurred earlier, at 4 h after a 2-Gy irradiation. In addition, a significant (p<0.03) decrease in Stra8 mRNA levels was observed at the lowest dose used (0.5 Gy, 48 h). Moreover, concerning a growth factor receptor, such as TGFβ RI, which is expressed both in radiosensitive and radioresistant cells, we observed a differential expression depending on the cell radiosensitivity after irradiation. Indeed, TGFβ RI expression was increased after irradiation in

  1. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    Science.gov (United States)

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, Phyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (Phormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  2. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  3. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  4. Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularization.

    Science.gov (United States)

    Yuan, Meng-Ke; Tao, Yong; Yu, Wen-Zhen; Kai, Wang; Jiang, Yan-Rong

    2010-08-25

    To explore the in vivo anti-angiogenesis effects resulting from lentivirus-mediated RNAi of vascular endothelial growth factor (VEGF) in monkeys with iris neovascularization (INV). Five specific recombinant lentiviral vectors for RNA interference, targeting Macaca mulatta VEGFA, were designed and the one with best knock down efficacy (LV-GFP-VEGFi1) in H1299 cells and RF/6A cells was selected by real-time PCR for in vivo use. A laser-induced retinal vein occlusion model was established in one eye of seven cynomolgus monkeys. In monkeys number 1, 3, and 5 (Group 1), the virus (1x10(8) particles) was intravitreally injected into the preretinal space of the animal's eye immediately after laser coagulation; and in monkeys number 2, 4, and 6 (Group 2), the virus (1x10(8) particles) was injected at 10 days after laser coagulation. In monkey number 7, a blank control injection was performed. In monkeys number 1 and 2, virus without RNAi sequence was used; in monkeys number 3 and 4, virus with nonspecific RNAi sequence was used; and in monkeys 5 and 6, LV-GFP-VEGFi1 was used. In monkey number 5, at 23 days after laser treatment, no obvious INV was observed, while fluorescein angiography of the iris revealed high fluorescence at the margin of pupil and point posterior synechiae. At 50 days after laser treatment, only a slight ectropion uvea was found. However, in the other eyes, obvious INV or hyphema was observed. The densities of new iridic vessels all significantly varied: between monkey number 5 and number 3 (36.01+/-4.49/mm(2) versus 48.68+/-9.30/mm(2), p=0.025), between monkey number 3 and monkey number 7 (48.68+/-9.30/mm(2) versus 74.38+/-9.23/mm(2), p=0.002), and between monkey number 5 and number 7 (36.01+/-4.49/mm(2) versus 74.38+/-9.23/mm(2), p<0.001). Lentivirus-mediated RNAi of VEGF may be a new strategy to treat iris neovascularization, while further studies are needed to investigate the long-term effect.

  5. The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF

    Directory of Open Access Journals (Sweden)

    Ziebura Thomas

    2010-12-01

    Full Text Available Abstract Background Hyperbaric oxygen (HBO therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. It combines hyperoxic effects with the stimulating potential of post-therapeutic reactive hypoxia. As its crucial effects, stimulation of fibroblast growth, induction of collagen synthesis and the initiation of angiogenesis are discussed. Angiogenesis is a multistage process resulting in the growth of blood vessels. It includes degradation of extracellular matrix, proliferation and migration of different cell populations and finally formation of new vessel structures. This complex chain of procedures is orchestrated by different cytokines and growth factors. Crucial mediators of angiogenesis are basic fibroblast growth factor (bFGF and vascular endothelial growth factor (VEGF; their in-vivo function is still not fully understood. Methods Forty-three patients suffering from sudden sensorineural hearing loss or tinnitus were treated with HBO. The therapy included 10 sessions of 90 minutes each, one session a day. Serological levels of bFGF and VEGF were assessed by enzyme-linked immunosorbent assays performed according to the manufacturer's instructions on day 1, 2, 5 and 10 of HBO therapy and were compared to mean values of the control group, related to the patient's age and sex, and their development observed over the ten days of HBO. Results There was no sex- or age dependency of bFGF observed in the present study, whereas under HBO our results showed a significant mitigation of the bFGF concentration. In the present data, there was no connection between the VEGF concentration and the patients' ages. Women showed significantly higher levels of VEGF. There was no significant change of VEGF concentration or the VEGF/bFGF ratio during HBO. All scored results varied within the range of standard values as described in the current literature. Conclusions A significant effect of HBO on serum

  6. Role of the insulin-like growth factor 1 axis and visceral adiposity in oesophageal adenocarcinoma.

    LENUS (Irish Health Repository)

    Donohoe, C L

    2012-03-01

    Epidemiological studies have linked obesity with many cancers. The insulin-like growth factor (IGF) 1 axis may be an important mediator in obesity-associated cancer. This study examined the relationship between IGF-1 and its receptor (IGF-1R) in oesophageal adenocarcinoma, a cancer strongly linked to obesity.

  7. Functional Development of the Human Gastrointestinal Tract: Hormone- and Growth Factor-Mediated Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Daniel Ménard

    2004-01-01

    Full Text Available The present review focuses on the control of gastrointestinal (GI tract development. The first section addresses the differences in general mechanisms of GI development in humans versus rodents, highlighting that morphogenesis of specific digestive organs and the differentiation of digestive epithelia occur not only at different stages of ontogeny but also at different rates. The second section provides an overview of studies from the author's laboratory at the Université de Sherbrooke pertaining to the development of the human fetal small intestine and colon. While both segments share similar morphological and functional characteristics, they are nevertheless modulated by distinct regulatory mechanisms. Using the organ culture approach, the author and colleagues were able to establish that hormones and growth factors, such as glucocorticoids, epidermal growth factor, insulin and keratinocyte growth factor, not only exert differential effects within these two segments, they can also trigger opposite responses in comparison with animal models. In the third section, emphasis is placed on the functional development of human fetal stomach and its various epithelial cell types; in particular, the glandular chief cells responsible for the synthesis and secretion of gastric enzymes such as pepsinogen-5 and gastric lipase. Bearing in mind that limitations of available cell models have, until now, greatly impeded the comprehension of molecular mechanisms regulating human gastric epithelial cell functions, the last section focuses on new human gastric epithelial cell models recently developed in the author's laboratory. These models comprise a novel primary culture system of human fetal gastric epithelium including, for the first time, functional chief cells, and human gastric epithelium cell lines cloned from the parental NCI-N87 strain. These new cells lines could serve important applications in the study of pathogenic action and epithelial

  8. FGF growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  9. Urokinase-type plasminogen activator (uPA) stimulates triglyceride synthesis in Huh7 hepatoma cells via p38-dependent upregulation of DGAT2.

    Science.gov (United States)

    Paland, Nicole; Gamliel-Lazarovich, Aviva; Coleman, Raymond; Fuhrman, Bianca

    2014-11-01

    The liver is the central organ of fatty acid and triglyceride metabolism. Oxidation and synthesis of fatty acids and triglycerides is under the control of peroxisome-proliferator-activated receptors (PPAR) α. Impairment of these receptors' function contributes to the accumulation of triglycerides in the liver resulting in non-alcoholic fatty liver disease. Urokinase-type plasminogen activator (uPA) was shown to regulate gene expression in the liver involving PPARγ transcriptional activity. In this study we questioned whether uPA modulates triglyceride metabolism in the liver, and investigated the mechanisms involved in the observed processes. Huh7 hepatoma cells were incubated with increasing concentrations of uPA for 24 h uPA dose-dependently increased the cellular triglyceride mass, and this effect resulted from increased de novo triglyceride synthesis mediated by the enzyme diglyceride acyltransferase 2 (DGAT2). Also, the amount of free fatty acids was highly up regulated by uPA through activation of the transcription factor SREBP-1. Chemical activation of PPARα further increased uPA-stimulated triglyceride synthesis, whereas inhibition of p38, an upstream activator of PPARα, completely abolished the stimulatory effect of uPA on both triglyceride synthesis and DGAT2 upregulation. The effect of uPA on triglyceride synthesis in Huh7 cells was mediated via binding to its receptor, the uPAR. In vivo studies in uPAR(-/-) mice demonstrated that no lipid droplets were observed in their livers compared to C57BL/6 mice and the triglyceride levels were significantly lower. This study presents a new biological function of the uPA/uPAR system in the metabolism of triglycerides and might present a new target for an early therapeutic intervention for NAFLD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Transforming growth factor-β1/Smad/connective tissue growth factor axis: The main pathway in radiation-induced fibrosis of osteoradionecrosis?

    Directory of Open Access Journals (Sweden)

    Qian Wei Zhuang

    2013-01-01

    Full Text Available Introduction: Osteoradionecrosis (ORN of the mandible is a serious complication following radiation therapy for malignancies of the head and neck. Radiation-induced fibrosis (RIF is a new theory that accounts for the damage to normal tissues after radiotherapy, and the radiation-induced fibroatrophic mechanism includes the free-radical formation, endothelial dysfunction, inflammation, microvascular thrombosis, fibrosis and remodeling, and finally bone and tissue necrosis. The Hypothesis: Previous studies revealed that transforming growth factor-β1 (TGF-β1 is the master switch cytokine responsible for the regulation of fibroblast proliferation and differentiation that result in RIF. Among the targets of TGF-β1, connective tissue growth factor (CTGF is a downstream mediator through the Smad3/4 pathway and plays an important role in connective tissue homeostasis and fibroblast proliferation. Studies have proved that the TGF-β1/Smad/CTGF signaling pathway is involved in the RIF of soft tissues, so the authors put forward a hypothesis that the TGF-β1/Smad/CTGF axis is also the main pathway in RIF of ORN. Evaluation of the Hypothesis: The validation of our hypothesis may provide new insights for better understanding the pathogenesis of ORN and open new perspectives for anti-fibrotic therapies, and pioneer novel approaches to treat ORN.

  11. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a

    OpenAIRE

    Schiering, Nikolaus; Knapp, Stefan; Marconi, Marina; Flocco, Maria M.; Cui, Jean; Perego, Rita; Rusconi, Luisa; Cristiani, Cinzia

    2003-01-01

    The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique...

  12. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions s...

  13. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Creixell, Mar; Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda; Perez-Torres, Marianela; Torres-Lugo, Madeline; Rinaldi, Carlos

    2010-01-01

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  14. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Bone turnover markers during pubertal development: relationships with growth factors and adipocytokines.

    Science.gov (United States)

    Jürimäe, Jaak; Mäestu, Jarek; Jürimäe, Toivo

    2010-01-01

    The rapid increase in skeletal mass that occurs during puberty is caused by increases in longitudinal growth as well as cortical thickness. The measurement of growth changes during puberty using two-dimensional (dual-energy X-ray absorptiometry) and/or three-dimensional (computed tomography, magnetic resonance imaging) measurement devices provides only a static representation of bone tissue parameters. The measurement of bone turnover markers provides a more dynamic picture of the nature of bone tissue that can be repeated at much shorter intervals during puberty. The bone turnover markers are products of osteoblasts and osteoclasts which can be measured in urine or blood. The increase in different markers of bone turnover coincides with the pubertal growth spurt and thereafter markers decline until they converge into adult values. The initiation of puberty is accompanied by increases in androgens and estrogens. The effects of sex hormones on bone mineral accrual are mediated mainly by growth hormone and insulin-like growth factor-1, but they also exert a direct effect on bone metabolism. Important determinants of bone mineral accrual during puberty include optimal nutritional status, body composition parameters and physical activity pattern. All of these determinants are related to the state of energy balance, while peripheral indicators of energy balance, such as different growth factors and adipocytokines, may also have a positive influence of the growing skeleton. Taken together, bone mineral accrual during puberty is a complex interaction between physical activity pattern, various body composition parameters, specific growth factors and adipocytokines, and also sex hormones. Copyright © 2010 S. Karger AG, Basel.

  16. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  17. Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression.

    Science.gov (United States)

    Chen, Yan; Huang, Shai; Wu, Bo; Fang, Jiankai; Zhu, Minsheng; Sun, Li; Zhang, Lifeng; Zhang, Yongsheng; Sun, Maomin; Guo, Lingling; Wang, Shouli

    2017-07-25

    Transforming growth factor-β1 is considered a key contributor to the progression of breast cancer. MicroRNAs are important factors in the development and progression of many malignancies. In the present study, upon studies of breast cancer cell lines and tissues, we showed that microRNA -196a-3p is decreased by transforming growth factor-β1 in breast cancer cells and associated with breast cancer progression. We identified neuropilin-2 as a target gene of microRNA -196a-3p and showed that it is regulated by transforming growth factor-β1. Moreover, transforming growth factor-β1-mediated inhibition of microRNA -196a-3p and activation of neuropilin-2were required for transforming growth factor-β1-induced migration and invasion of breast cancer cells. In addition, neuropilin-2 expression was suppressed in breast tumors, particularly in triple-negative breast cancers. Collectively, our findings strongly indicate that microRNA -196a-3p is a predictive biomarker of breast cancer metastasis and patient survival and a potential therapeutic target in metastatic breast cancer.

  18. Serum levels of soluble urokinase plasminogen activator receptor is associated with parasitemia in children with acute Plasmodium falciparum malaria infection

    DEFF Research Database (Denmark)

    Perch, M; Kofoed, P; Fischer, TK

    2004-01-01

    Serum levels of soluble urokinase plasminogen activator receptor (suPAR) are significantly elevated and of prognostic value in patients suffering from serious infectious diseases such as HIV and tuberculosis. Our objective was to investigate suPAR levels during symptomatic malaria infection and 7...

  19. Use of plasma C-reactive protein, procalcitonin, neutrophils,macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Andersen, Ove; Kronborg, Gitte

    2007-01-01

    the diagnostic characteristics of novel and routinely used biomarkers of sepsis alone and in combination. Methods: This prospective cohort study included patients with systemic inflammatory response syndrome who were suspected of having community-acquired infections. It was conducted in a medical emergency...... department and department of infectious diseases at a university hospital. A multiplex immunoassay measuring soluble urokinase-type plasminogen activator (suPAR) and soluble triggering receptor expressed on myeloid cells (sTREM)-1 and macrophage migration inhibitory factor (MIF) was used in parallel...... with standard measurements of C-reactive protein (CRP), procalcitonin (PCT), and neutrophils. Two composite markers were constructed – one including a linear combination of the three best performing markers and another including all six – and the area under the receiver operating characteristic curve (AUC...

  20. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  1. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Science.gov (United States)

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  2. Factor affecting Agrobacterium -mediated transformation of rice ...

    African Journals Online (AJOL)

    Potato is a very important food crop and is adversely affected by fungus. Agrobacterium-mediated transformation can play an important role in the improvement of potato. The present study was conducted to optimize the different factors affecting Agrobacterium-mediated transformation of chitinase gene. Nodes were used as ...

  3. CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor β transcriptional responses in endothelial cells

    OpenAIRE

    Topper, James N.; DiChiara, Maria R.; Brown, Jonathan D.; Williams, Amy J.; Falb, Dean; Collins, Tucker; Gimbrone, Michael A.

    1998-01-01

    The transforming growth factor-β (TGF-β) superfamily of growth factors and cytokines has been implicated in a variety of physiological and developmental processes within the cardiovascular system. Smad proteins are a recently described family of intracellular signaling proteins that transduce signals in response to TGF-β superfamily ligands. We demonstrate by both a mammalian two-hybrid and a biochemical approach that human Smad2 and Smad4, two essential Smad proteins involved in mediating TG...

  4. Cadmium exposure is associated with soluble urokinase plasminogen activator receptor, a circulating marker of inflammation and future cardiovascular disease

    International Nuclear Information System (INIS)

    Fagerberg, Björn; Borné, Yan; Barregard, Lars; Sallsten, Gerd; Forsgard, Niklas; Hedblad, Bo; Persson, Margaretha; Engström, Gunnar

    2017-01-01

    Background: Diet and smoking are the main sources of cadmium exposure in the general population. Cadmium increases the risk of cardiovascular diseases, and experimental studies show that it induces inflammation. Blood cadmium levels are associated with macrophages in human atherosclerotic plaques. Soluble urokinase-type plasminogen activator receptor (suPAR) is an emerging biomarker for cardiovascular events related to inflammation and atherosclerotic plaques. The aim was to examine whether blood cadmium levels are associated with circulating suPAR and other markers of inflammation. Methods: A population sample of 4648 Swedish middle-aged women and men was examined cross-sectionally in 1991–1994. Plasma suPAR was assessed by ELISA, leukocytes were measured by standard methods, and blood cadmium was analysed by inductively coupled plasma mass spectrometry. Prevalent cardiovascular disease, ultrasound-assessed carotid plaque occurrence, and several possible confounding factors were recorded. Results: After full adjustment for risk factors and confounding variables, a 3-fold increase in blood cadmium was associated with an 10.9% increase in suPAR concentration (p<0.001). In never-smokers, a 3-fold increase in blood cadmium was associated with a 3.7% increase in suPAR concentration (p<0.01) after full adjustment. Blood cadmium was not associated with C-reactive protein, white blood cell count and Lp-PLA2 but with neutrophil/lymphocyte ratio in one of two statistical models. Conclusions: Exposure to cadmium was associated with increased plasma suPAR in the general population, independently of smoking and cardiovascular disease. These results imply that cadmium is a possible cause for raised levels of this inflammatory marker. - Highlights: • Cadmium is a toxic proinflammatory, proatherosclerotic metal. • Soluble urokinase-type plasminogen activator receptor (suPAR) in plasma is a promising proinflammatory marker of atherosclerosis. • Blood cadmium and plasma su

  5. Cadmium exposure is associated with soluble urokinase plasminogen activator receptor, a circulating marker of inflammation and future cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Fagerberg, Björn, E-mail: bjorn.fagerberg@wlab.gu.se [Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg (Sweden); Borné, Yan [Department of Clinical Sciences in Malmö, Cardiovascular Epidemiology, CRC, Jan Waldenströms gata 35, Lund University, Skåne University Hospital, Malmö, SE-205 02 Malmö (Sweden); Barregard, Lars; Sallsten, Gerd [Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, SE-413 45 Gothenburg (Sweden); Forsgard, Niklas [Department of Clinical Chemistry, Sahlgrenska University Hospital, SE-413 45 Gothenburg (Sweden); Hedblad, Bo; Persson, Margaretha; Engström, Gunnar [Department of Clinical Sciences in Malmö, Cardiovascular Epidemiology, CRC, Jan Waldenströms gata 35, Lund University, Skåne University Hospital, Malmö, SE-205 02 Malmö (Sweden)

    2017-01-15

    Background: Diet and smoking are the main sources of cadmium exposure in the general population. Cadmium increases the risk of cardiovascular diseases, and experimental studies show that it induces inflammation. Blood cadmium levels are associated with macrophages in human atherosclerotic plaques. Soluble urokinase-type plasminogen activator receptor (suPAR) is an emerging biomarker for cardiovascular events related to inflammation and atherosclerotic plaques. The aim was to examine whether blood cadmium levels are associated with circulating suPAR and other markers of inflammation. Methods: A population sample of 4648 Swedish middle-aged women and men was examined cross-sectionally in 1991–1994. Plasma suPAR was assessed by ELISA, leukocytes were measured by standard methods, and blood cadmium was analysed by inductively coupled plasma mass spectrometry. Prevalent cardiovascular disease, ultrasound-assessed carotid plaque occurrence, and several possible confounding factors were recorded. Results: After full adjustment for risk factors and confounding variables, a 3-fold increase in blood cadmium was associated with an 10.9% increase in suPAR concentration (p<0.001). In never-smokers, a 3-fold increase in blood cadmium was associated with a 3.7% increase in suPAR concentration (p<0.01) after full adjustment. Blood cadmium was not associated with C-reactive protein, white blood cell count and Lp-PLA2 but with neutrophil/lymphocyte ratio in one of two statistical models. Conclusions: Exposure to cadmium was associated with increased plasma suPAR in the general population, independently of smoking and cardiovascular disease. These results imply that cadmium is a possible cause for raised levels of this inflammatory marker. - Highlights: • Cadmium is a toxic proinflammatory, proatherosclerotic metal. • Soluble urokinase-type plasminogen activator receptor (suPAR) in plasma is a promising proinflammatory marker of atherosclerosis. • Blood cadmium and plasma su

  6. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  7. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  8. Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mayra Domínguez-Pérez

    2016-01-01

    Full Text Available Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system.

  9. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  10. ID2 mediates the transforming growth factor-β1-induced Warburg-like effect seen in the peritoneum of women with endometriosis.

    Science.gov (United States)

    Young, Vicky J; Ahmad, Syed F; Brown, Jeremy K; Duncan, W Colin; Horne, Andrew W

    2016-09-01

    Is inhibitor of DNA-binding protein 2 (ID2) a mediator of the transforming growth factor (TGF)-β1-induced Warburg-like effect seen in the peritoneum of women with endometriosis? The TGF-β1-induced changes in the metabolic phenotype of peritoneal mesothelial cells from women with endometriosis are mediated through the ID2 pathway. TGF-β1 induces the metabolic conversion of glucose to lactate via aerobic glycolysis (the 'Warburg effect') in the peritoneum of women with endometriosis, through increased expression of the transcription factor hypoxia inducible factor α (HIF-1α). ID proteins are transcriptional targets of TGF-β1. Expression of ID2 was investigated in luteal phase peritoneal biopsies from women with regular menstrual cycles, with and without endometriosis (n = 8-10 each group) by quantitative RT-PCR (qRT-PCR) and immunohistochemistry. ID2 mRNA expression in primary human peritoneal mesothelial cells (HPMC) and immortalized mesothelial cells (MeT-5A) was assessed by qRT-PCR (n = 6). The effects of TGF-β1 and ID2 siRNA on HIF-1α mRNA expression and lactate secretion was assessed using qRT-PCR and a colorimetric lactate assay. ID2 is localized to peritoneal mesothelial and stromal cells of women with and without endometriosis. ID2 mRNA expression is lower in peritoneum adjacent to the endometriosis lesions compared to distal sites (P endometriosis. None. This work was funded by a Wellbeing of Women research grant (R42533) awarded to A.W.H., J.K.B. and W.C.D.; and an MRC Centre Grant G1002033. V.J.Y. received grant support from Federation of Women Graduates (134225) and a PhD studentship from the College of Medicine and Veterinary Medicine at the University of Edinburgh. There are no competing interests to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  12. Molecular cloning of a human gene that is a member of the nerve growth factor family

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Reichardt, L.F. (Howard Hughes Medical Institute, San Francisco, CA (USA))

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  13. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  14. Industry growth, work role characteristics, and job satisfaction: a cross-level mediation model.

    Science.gov (United States)

    Ford, Michael T; Wooldridge, Jessica D

    2012-10-01

    The associations between industry revenue growth, individual work role characteristics, and job satisfaction were examined in this cross-level mediation analysis. Work roles were expected to be more autonomous, involve greater skill variety, and offer more opportunities for growth and development for workers in growing industries than for workers in declining industries. Supervisor support was also hypothesized to be stronger for workers in high-growth industries. Results from a nationally representative (U.S.) sample of service industry workers, using multilevel modeling, supported these propositions and suggest that job enrichment mediates relations between industry growth and job satisfaction. Associations between industry growth and autonomy were also stronger among workers in occupations that are less normatively autonomous, suggesting that industry growth fosters a weakening, and industry decline a strengthening, of traditional differences in autonomy across work roles. These results contribute to a multilevel perspective on organizational environments, individual work roles, and worker attitudes and well-being.

  15. Insulin-like growth factor I (IGF-1 Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Directory of Open Access Journals (Sweden)

    Werner Schlegel

    Full Text Available Human insulin-like growth factor 1 Ec (IGF-1Ec, also called mechano growth factor (MGF, is a splice variant of insulin-like growth factor 1 (IGF-1, which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  16. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo.

    Science.gov (United States)

    Deprés-Tremblay, Gabrielle; Chevrier, Anik; Tran-Khanh, Nicolas; Nelea, Monica; Buschmann, Michael D

    2017-11-10

    Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.

  17. Exploring soluble urokinase plasminogen activator receptor and its relationship with arterial stiffness in a bi-ethnic population: the SAfrEIC-study

    DEFF Research Database (Denmark)

    Schutte, Aletta E; Myburgh, Anélda; Olsen, Michael Hecht

    2012-01-01

    INTRODUCTION: Elevated soluble urokinase-type plasminogen activator receptor (suPAR) indicates an inflammatory state caused by conditions such as HIV and cancer. Recently suPAR was identified as an indicator of cardiovascular disease (CVD). CVD is highly prevalent in black South Africans...

  18. Association of markers of bacterial translocation with immune activation in decompensated cirrhosis

    DEFF Research Database (Denmark)

    Mortensen, Christian; Jensen, Jørgen Skov; Hobolth, Lise

    2014-01-01

    -reactive protein, tumour necrosis factor-α, soluble urokinase plasminogen activating receptor, interleukin-6, interleukin 8, interferon-γ inducible protein-10 and vascular endothelial growth factor in plasma and ascites were measured by multiplex cytokine and ELISA assays. RESULTS: In patients without signs of SBP...

  19. Ultraviolet Radiation and the Slug Transcription Factor Induce Proinflammatory and Immunomodulatory Mediator Expression in Melanocytes

    Directory of Open Access Journals (Sweden)

    Stephanie H. Shirley

    2012-01-01

    Full Text Available Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  20. Mediation Analysis in a Latent Growth Curve Modeling Framework

    Science.gov (United States)

    von Soest, Tilmann; Hagtvet, Knut A.

    2011-01-01

    This article presents several longitudinal mediation models in the framework of latent growth curve modeling and provides a detailed account of how such models can be constructed. Logical and statistical challenges that might arise when such analyses are conducted are also discussed. Specifically, we discuss how the initial status (intercept) and…

  1. Studies on urokinase (UK) therapy of thromboembolic diseases

    International Nuclear Information System (INIS)

    Wakayama, Ryuji; Satake, Kisaburo; Hisamatsu, Tokugoro; Fukase, Masaichi

    1974-01-01

    In order to determine the urokinase (UK) concentration in blood, a radioimmunoassay method was developed, in which a radioactive material labeled with 125 I-Na was used. In this method, the movement of UK in blood and the relationship between the UK concentration and fibrinolytic activity were studied with the following results: 1) The concentration of UK in normal human blood was found to be 6.84 +- 2.53 PKU early in the morning with an apparent daily rythmic fluctuation in concentration. 2) With an intravenous drip of 20,000 to 30,000 PKU, the UK concentration increased 6 to 8 PKU/ml above the early morning value, then in one to two hours it returned to the previous value once again. In some of the cases, a slight, transient decrease occurred. 3) Following the UK drip, UK concentration in the blood and fibrinolytic activity varied in a parallel fashion. Plasminogen and antiplasmin levels were not altered by administration of only 20,000 to 30,000 PKU of UK. Fibrinogen was lowered, but the fluctuation was within the physiological range. (S. Oyama)

  2. The Effectiveness of Subdural Drains Using Urokinase after Burr Hole Evacuation of Subacute Subdural Hematoma in Elderly Patients: A Prelimilary Report

    Science.gov (United States)

    Yeo, Chang-Gi; Jeon, Woo-Yeol; Kim, Seong-Ho; Kim, Oh-Lyong

    2016-01-01

    Objective A subdural drain using urokinase after a burr hole hematoma evacuation was performed for subacute subdural hematoma (SASDH), and its effectiveness and safety in elderly patients were evaluated. Methods Between January 2013 and May 2015, subdural drains using urokinase after burr hole hematoma evacuation were performed in 19 elderly patients. The inclusion criteria were as follows: 1) a subdural hematoma occurring between 4 and 20 days after injury; 2) worsening neurological symptoms, from mild to moderate or severe, due to injury during the subacute stage; 3) a mix of solid clots (high-density lighter shadow) and fluid hematoma (low-density darker shadow) on the computed tomography (CT) scan; 4) a score of ≥9 on the Glasgow Coma Scale (GCS) assessed immediately before surgery; and 5) an age of ≥65 years. When the majority of the hematoma was evacuated on the CT, we removed the catheter. Results Under local anesthesia, a catheter was inserted into the hematoma through a burr hole. The mean age of the patients was 73.7 years (range, 65-87 years). The mean preoperative GCS score was 11.2 (range, 10-13), and the mean Glasgow Outcome Scale score for all patients was 5 at discharge. No recurrences of hematomas or surgical complications were observed. Conclusion A subdural drain using urokinase after burr hole hematoma evacuation under local anesthesia is thought to be an effective and safe method of blood clot removal with low morbidity. This surgical method is less invasive for treating elderly patients with SASDH. PMID:27857916

  3. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    such as ischemic heart disease, arthritis and tumor growth. Angiogenesis is a complex process with several growth factors involved. Because PlGF modulates VEGF-A responses, we investigated their mutual relationship and impact on breast cancer prognosis. Quantitative PlGF and VEGF-A levels were measured in 229...... tumor tissue specimen from primarily operated patients with unilateral breast cancer. Non-malignant breast tissue was also dissected near the tumor and quantitative measurements were available for 211 patients. PlGF and VEGF-A protein levels in homogenized tissue lysates were analyzed using the Luminex......Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions...

  4. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  5. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes

    NARCIS (Netherlands)

    Zhang, Y.; Moerkens, M.; Ramaiahgari, S.; Bont, de H.J.G.M.; Price, L.; Meerman, J.H.N.; Water, van de B.

    2011-01-01

    INTRODUCTION: Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth

  6. Prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) in Danish patients with recurrent epithelial ovarian cancer (REOC)

    DEFF Research Database (Denmark)

    Begum, Farah Diba; Høgdall, Estrid V S; Riisbo, Rikke

    2006-01-01

    The level of the soluble urokinase plasminogen activator receptor (suPAR) is elevated in tumour tissue from several types of cancer. This is the first study aiming to predict the prognosis for survival by the use of a pre-chemotherapeutic plasma suPAR value in 71 patients with recurrent epithelial...

  7. Partial characterization of a putative new growth factor present in pathological human vitreous.

    Science.gov (United States)

    Pombo, C; Bokser, L; Casabiell, X; Zugaza, J; Capeans, M; Salorio, M; Casanueva, F

    1996-03-01

    Several growth factors have been implicated in the development of proliferative eye diseases, and some of those are present in human vitreous (HV). The effects of HV on cellular responses which modulate proliferative cell processes were studied. This study describes the partial characterization of a vitreous factor activity which does not correspond to any of the previously reported growth factors in pathological HV. Vitreous humour was obtained from medical vitrectomies, from patients with PDR and PVR. The biological activity of the vitreous factor was determined by its ability to increase cytosolic calcium concentration ([Ca2+]i), increase production of inositol phosphates, and induce cell proliferation in the cell line EGFR T17. In some experiments other cell lines, such as NIH 3T3, 3T3-L1, FRTL5, A431, PC12, Y79, and GH3, were also employed. Measurement of [Ca2+]i in cell suspensions was performed using the fluorescent Ca2+ indicator fura-2. The activity of the factor present in HV was compared with other growth factors by means of: (a) [Ca2+]i mobilization pattern, (b) sequential homologous and heterologous desensitization of receptors, (c) effects of phorbol esters on their action, and (d) inactivation after treatment with different proteolytic enzymes. The HV-induced cell proliferation and increases in [Ca2+]i concentration were characterized by a peculiar time pattern. The different approaches used ruled out its identity with PDGF, bFGF, EGF, TGF-beta, IGFs, TNF-alpha, NGF, and other compounds such as ATP, angiotensin I, and bradykinin. Vitreous factor actions are mediated by specific receptors apparently regulated by PKC. This factor is able to induce [Ca2+]i mobilization in most of the cell lines studied, indicating that its effects are not tissue specific. These results suggest the presence of a growth factor activity in pathological HV which may be due to the presence of an undescribed growth factor in the eye.

  8. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  9. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Morthorst, Stine Kjær; Mogensen, Johanne Bay

    2017-01-01

    are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination...

  10. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  11. Characterization of rPEPT2-mediated Gly-Sar transport parameters in the rat kidney proximal tubule cell line SKPT-0193 cl.2 cultured in basic growth media

    DEFF Research Database (Denmark)

    Bravo, Silvina A; Nielsen, Carsten Uhd; Frokjaer, Sven

    2005-01-01

    The rat proximal kidney tubule cell line SKPT-0193 cl.2 (SKPT) expresses the di-/tripeptide transporter PEPT2 (rPEPT2) and has been used to study PEPT2-mediated transport. Traditionally, SKPT cells have been cultured in growth media supplemented with epidermal growth factor (EGF), apotransferrin,...

  12. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Growth hormone, growth factors, and acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  14. PEGylated DX-1000: Pharmacokinetics and Antineoplastic Activity of a Specific Plasmin Inhibitor

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2007-11-01

    Full Text Available Novel inhibitors of the urokinase-mediated plasminogen (plg activation system are potentially of great clinical benefit as anticancer treatments. Using phage display, we identified DX-1000 a tissue factor pathway inhibitor-derived Kunitz domain protein which is a specific high-affinity inhibitor of plasmin (pin (Ki = 99 pM. When tested in vitro, DX-1000 blocks plasminmediated pro-matrix metal loproteinase-9 (proMMP-9 activation on cells and dose-dependently inhibits tube formation, while not significantly affecting hemostasis and coagulation. However, this low-molecular weight protein inhibitor (~ 7 kDa exhibits rapid plasma clearance in mice and rabbits, limiting its potential clinical use in chronic diseases. After site-specific PEGylation, DX-1000 retains its activity and exhibits a decreased plasma clearance. This PEGylated derivative is effective in vitro, as well as potent in inhibiting tumor growth of green fluorescent protein (GFP-labeled MDA-MB-231 cells. 4PEG-DX-1000 treatment causes a significant reduction of urokinase-type plasminogen activator (uPA and plasminogen expressions, a reduction of tumor proliferation, and vascularization. 4PEG-DX-1000 treatment significantly decreases the level of active mitogenactivated protein kinase (MAPK in the primary tumors and reduces metastasis incidence. Together, our results demonstrate the potential value of plasmin inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.

  15. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway.

    Science.gov (United States)

    Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi

    2014-02-14

    Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. SPRY4-mediated ERK1/2 signaling inhibition abolishes 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell.

    Science.gov (United States)

    Li, Mingjiang; Zhang, Hui; Zhao, Xingbo; Yan, Lei; Wang, Chong; Li, Chunyan; Li, Changzhong

    2014-08-01

    Basic fibroblast growth factor (FGF2)-mediated Extracellular signal-regulated kinases1/2 (ERK1/2) signaling is a critical modulator in angiogenesis. SPRY4 has been reported to be a feedback negative regulator of FGFs-induced ERK1/2 signaling. The aim of this study was to explore the role of SPRY4 in endometrial adenocarcinoma cell. The effect of SPRY4 expression on FGF2-mediated ERK1/2 signaling was detected by luciferase assay and Western blot analysis. The growth of Ishikawa cells was detected using colony formation assay and cell number counting experiment. We found that plasmid-driven SPRY4 expression efficiently blocked the activity of FGF2-induced ERK1/2 signaling in Ishikawa cells. SPRY4 expression significantly reduced the proliferation and 17β-estradiol-induced proliferation of Ishikawa cells. SPRY4 may function as a tumor suppressor in endometrial adenocarcinoma.

  17. Ultraviolet Radiation and the Slug Transcription Factor Induce Pro inflammatory and Immunomodulatory Mediator Expression in Melanocytes

    International Nuclear Information System (INIS)

    Shirley, S. H.; Kusewitt, D. F.; Grimm, E. A.

    2012-01-01

    Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR) component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete pro inflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce pro inflammatory mediators and that Slug is important in this process. Micro array studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of pro inflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  18. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... an endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence...

  19. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    International Nuclear Information System (INIS)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-01-01

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast

  20. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  1. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis

    Science.gov (United States)

    Kim, Hyo Jung; Cha, Jiyoung Y.; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-woo

    2016-01-01

    Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868

  2. Cardiac Regeneration using Growth Factors: Advances and Challenges.

    Science.gov (United States)

    Rebouças, Juliana de Souza; Santos-Magalhães, Nereide Stela; Formiga, Fabio Rocha

    2016-09-01

    Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. Resumo O infarto do miocárdio representa a manifestação mais significativa da cardiopatia isquêmica e está associado a elevada morbimortalidade. Novas estratégias vêm sendo investigadas com o intuito de regenerar o miocárdio lesionado, incluindo a terapia gênica, a terapia celular e a utilização de fatores de crescimento. A terapia com fatores de crescimento despertou interesse em medicina cardiovascular, devido aos mecanismos de regeneração induzidos por essas biomoléculas, incluindo angiogênese, remodelamento da matriz extracelular, proliferação de cardiomiócitos e recrutamento de células-tronco, dentre outros. Em conjunto, tais mecanismos promovem a reparação do miocárdio e a melhora da função cardíaca. Esta revisão pretende abordar o papel estratégico da terapia, com fatores de crescimento, para a regeneração cardíaca, considerando seu car

  3. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor - B1

    Science.gov (United States)

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in people with significant morbidity and mortality. There is a strong association between atrial fibrosis and AF. Transforming growth factor B1 (TGF-B1) is an essential mediator of atrial fibrosis in animal models and human pat...

  4. The serum level of soluble urokinase receptor is elevated in tuberculosis patients and predicts mortality during treatment: a community study from Guinea-Bissau

    DEFF Research Database (Denmark)

    Eugen-Olsen, Jesper; Gustafson, P; Sidenius, N

    2002-01-01

    OBJECTIVE: To investigate whether the serum level of soluble urokinase plasminogen activator receptor (suPAR) carries prognostic information in individuals infected with Mycobacterium tuberculosis. DESIGN: suPAR was measured by ELISA in 262 individuals at the time of enrolment into a cohort based...

  5. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-β responsiveness

    International Nuclear Information System (INIS)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.; Varga, John

    2008-01-01

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-β (TGF-β) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-β, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-β. To explore this notion, we characterized TGF-β-induced activation of fibroblasts from CCN2-null (CCN2 -/- ) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-β signal transduction and regulation of collagen gene expression were examined in CCN2 -/- MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2 -/- MEFs was markedly reduced compared to wild type MEFs, TGF-β-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2 -/- MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-β-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts

  6. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  7. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  8. Polysaccharides from Tricholoma matsutake and Lentinus edodes enhance 5-fluorouracil-mediated H22 cell growth inhibition.

    Science.gov (United States)

    Ren, Ming; Ye, Lingyan; Hao, Xiaoshi; Ren, Zhixing; Ren, Shuping; Xu, Kun; Li, Juan

    2014-06-01

    Few studies have investigated the effects produced by combinations of polysaccharides and chemotherapeutic drugs in cancer treatment. We hypothesized that a combination of polysaccharides (COP) from Lentinus edodes and Tricholoma matsutake would improve the efficacy of 5-fluorouracil (5-FU)-mediated inhibition of H22 cell growth. Mice were injected H22 cells and then treated with either 5-FU, polysaccharides from Tricholoma matsutake (PTM), polysaccharides from Lentinus edodes (PL), PTM+PL, 5-FU+PTM, 5-FU+ PL, or 5-FU + COP. The tumor weight and volume, and splenic CD4 + and CD8 + T cell frequencies, were determined. Additionally, splenic natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activities were assessed and the serum levels of tumor necrosis factor-alpha (TNF-alpha), Interleukin-2 (IL-2), and Interferon-gamma (IFN-gamma) were measured. Compared with mice from the control, 5-FU, PL, PTM, PTM + PL, 5-FU + PL, and 5-FU + PTM groups, mice treated with 5-FU + COP showed: (a) significantly reduced tumor weight and volume (P Lentinus edodes and Tricholoma matsutake could enhance the efficacy of 5-FU-mediated H22 cell growth inhibition.

  9. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  10. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Tanu Talwar

    2014-01-01

    Full Text Available Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.

  11. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    Science.gov (United States)

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  12. Soluble Urokinase-Type Plasminogen Activator Receptor Levels in Patients With Schizophrenia

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Røge, Rasmus; Pristed, Sofie Gry

    2015-01-01

    PAR) is a protein that can be measured in blood samples and reflects the levels of inflammatory activity. It has been associated with mortality and the development of type 2 diabetes and cardiovascular disease. METHODS: suPAR levels in patients with schizophrenia were compared to healthy controls from the Danish......BACKGROUND: The etiology of schizophrenia remains largely unknown but alterations in the immune system may be involved. In addition to the psychiatric symptoms, schizophrenia is also associated with up to 20 years reduction in life span. Soluble urokinase-type plasminogen activator receptor (su...... Blood Donor Study. SuPAR levels were dichotomized at >4.0 ng/ml, which is considered the threshold for low grade inflammation. A multiple logistic regression model was used and adjusted for age, sex, and current smoking. RESULTS: In total we included 1009 subjects, 105 cases with schizophrenia (10...

  13. Growth factors, muscle function, and doping.

    Science.gov (United States)

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  14. PGE2-induced colon cancer growth is mediated by mTORC1

    International Nuclear Information System (INIS)

    Dufour, Marc; Faes, Seraina; Dormond-Meuwly, Anne; Demartines, Nicolas; Dormond, Olivier

    2014-01-01

    Highlights: • PGE 2 activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE 2 induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE 2 induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E 2 (PGE 2 ) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE 2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE 2 -induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE 2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE 2 EP 4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE 2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE 2 -induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE 2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE 2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth

  15. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned...

  16. A Less Invasive Strategy for Ruptured Cerebral Aneurysms with Intracerebral Hematomas: Endovascular Coil Embolization Followed by Stereotactic Aspiration of Hematomas Using Urokinase

    Science.gov (United States)

    Kim, Sang Heum; Kong, Min Ho

    2017-01-01

    Objective Aneurysm clipping and simultaneous hematoma evacuation through open craniotomy is traditionally recommended for ruptured cerebral aneurysms accompanied by intracerebral or intrasylvian hemorrhages. We report our experience of adapting a less invasive treatment strategy in poor-grade patients with intracerebral or intrasylvian hemorrhages associated with ruptured cerebral aneurysms, where the associated ruptured cerebral aneurysms were managed by endovascular coil embolization, followed by stereotactic aspiration of hematomas (SRH) using urokinase. Materials and Methods We retrospectively analyzed 112 patients with ruptured cerebral aneurysms. There were accompanying intracerebral or intrasylvian hemorrhages in 36 patients (32.1%). The most common site for these ruptured aneurysms was the middle cerebral artery (MCA) (n = 15; 41.6%). Endovascular coil embolization followed by SRH using urokinase was performed in 9 patients (25%). Results In these 9 patients, the most common site of aneurysms was the MCA (n = 3; 33.4%); the hematoma volume ranged from 19.24 to 61.68 mL. Four patients who were World Federation of Neurological Surgeons (WFNS) grade-IV on admission, achieved favorable outcomes (Glasgow Outcome Score [GOS] 4 or 5) at 6-months postoperatively. In the five patients who were WFNS grade-V on admission, one achieved a favorable outcome, whereas 4 achieved GOS scores of 2 or 3, 6-months postoperatively. There was no mortality. Conclusion If immediate hematoma evacuation is not mandated by clinical or radiological signs of brain herniation, a less invasive strategy, such as endovascular coil embolization followed by SRH using urokinase, may be a good alternative in poor-grade patients with intracerebral or intrasylvian hemorrhages associated with ruptured cerebral aneurysms. PMID:29152466

  17. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  18. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis

    International Nuclear Information System (INIS)

    Di Fulvio, Mauricio; Henkels, Karen M.; Gomez-Cambronero, Julian

    2007-01-01

    Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7 shGrb2 ), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7 shGrb2 cells had the shGrb2 integrated into the genomic DNA and carried on SiL construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation

  19. Helicobacter pylori promotes angiogenesis depending on Wnt/beta-catenin-mediated vascular endothelial growth factor via the cyclooxygenase-2 pathway in gastric cancer

    International Nuclear Information System (INIS)

    Liu, Ningning; Zhou, Ning; Chai, Ni; Liu, Xuan; Jiang, Haili; Wu, Qiong; Li, Qi

    2016-01-01

    Helicobacter pylori is an important pathogenic factor in gastric carcinogenesis. Angiogenesis (i.e., the growth of new blood vessels) is closely associated with the incidence and development of gastric cancer. Our previous study found that COX-2 stimulates gastric cancer cells to induce expression of the angiogenic growth factor VEGF through an unknown mechanism. Therefore, the aim of this study was to clarify the role of angiogenesis in H. pylori-induced gastric cancer development. To clarify the relationship between H. pylori infection and angiogenesis, we first investigated H. pylori colonization, COX-2, VEGF, beta-catenin expression, and microvessel density (MVD) in gastric cancer tissues from 106 patients. In addition, COX-2, phospho-beta-catenin, and beta-catenin expression were measured by western blotting, and VEGF expression was measured by ELISA in H. pylori-infected SGC7901 and MKN45 human gastric cancer cells. H. pylori colonization occurred in 36.8 % of gastric carcinoma samples. Furthermore, COX-2, beta-catenin, and VEGF expression, and MVD were significantly higher in H. pylori-positive gastric cancer tissues than in H. pylori-negative gastric cancer tissues (P < 0.01). H. pylori infection was not related to sex or age in gastric cancer patients, but correlated with the depth of tumor invasion, lymph node metastasis, and tumor–node–metastasis stage (P < 0.05) and correlated with the COX-2 expression and beta-catenin expression(P < 0.01). Further cell experiments confirmed that H. pylori infection upregulated VEGF in vitro. Further analysis revealed that H. pylori-induced VEGF expression was mediated by COX-2 via activation of the Wnt/beta-catenin pathway. The COX-2/Wnt/beta-catenin/VEGF pathway plays an important role in H. pylori-associated gastric cancer development. The COX-2/Wnt/beta-catenin pathway is therefore a novel therapeutic target for H. pylori-associated gastric cancers

  20. Host and Viral Factors in HIV-Mediated Bystander Apoptosis

    Science.gov (United States)

    Garg, Himanshu; Joshi, Anjali

    2017-01-01

    Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402

  1. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  2. Resilience mediated the association between acculturation and psychological growth in college students from Hong Kong to Guangzhou, China.

    Science.gov (United States)

    Yu, Nancy Xiaonan; Liu, Chang; Yue, Zhenzhu

    2017-08-01

    The number of Hong Kong citizens living in mainland China is increasing. The process of acculturation may create opportunities for psychological growth. This study aimed at examining whether resilience mediated the effects of acculturation on psychological growth in college students from Hong Kong to Guangzhou. In this cross-sectional survey, 164 college students in Guangzhou who were Hong Kong permanent residents (female: 46%, age: 21.09 ± 1.50) joined the study. The integration group reported more psychological growth than the assimilation, separation, and marginalization groups. Resilience partially mediated the effect of integration on psychological growth and fully mediated the effect of marginalization on psychological growth. Resilience represents one of the mechanisms to explain beneficial effects of integration on psychological growth in college students from Hong Kong to Guangzhou. Theoretical considerations to rethink the acculturation model, implications for developing intervention programs, and recommendations for future research are discussed.

  3. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  4. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)

    2016-01-15

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  5. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    International Nuclear Information System (INIS)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.

    2016-01-01

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  6. The mediating effect of psychosocial factors on suicidal probability among adolescents.

    Science.gov (United States)

    Hur, Ji-Won; Kim, Won-Joong; Kim, Yong-Ku

    2011-01-01

    Suicidal probability is an actual tendency including negative self-evaluation, hopelessness, suicidal ideation, and hostility. The purpose of this study was to examine the role of psychosocial variances in the suicidal probability of adolescents, especially the role of mediating variance. This study investigated the mediating effects of psychosocial factors such as depression, anxiety, self-esteem, stress, and social support on the suicidal probability among 1,586 adolescents attending middle and high schools in the Kyunggi Province area of South Korea. The relationship between depression and anxiety/suicidal probability was mediated by both social resources and self-esteem. Furthermore, the influence of social resources was mediated by interpersonal and achievement stress as well as self-esteem. This study suggests that suicidal probability in adolescents has various relationships, including mediating relations, with several psychosocial factors. The interventions on suicidal probability in adolescents should focus on social factors as well as clinical symptoms.

  7. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  9. Immunohistochemical expression of Insulin-like growth factor-1, Transforming growth factor-beta1, and Vascular endothelial growth factor in parathyroid adenoma and hyperplasia

    Directory of Open Access Journals (Sweden)

    Hamide Sayar

    2014-01-01

    Full Text Available Background: Insulin-like growth factor (IGF, transforming growth factor-beta1 (TGF-β1, and vascular endothelial growth factor (VEGF are commonly studied growth factors, but little data are available on the immunohistochemical expression of these factors in parathyroid lesions. Materials and Methods: Tissue specimens from 36 patients with primary hyperparathyroidism (P-HPT (26 adenomas and 10 primary hyperplasias were examined. Normal parathyroid tissue adjacent to the adenoma or area of hyperplasia was used as control tissue. Preoperative laboratory testing [serum Ca and P, creatinine and parathormone levels (PTH] which led to the diagnosis of P-HPT had been performed, the size and weight of the parathyroid glands measured, and postoperative serum PTH levels determined. Paraffin-embedded parathyroid tissue specimens were stained with antibodies to IGF-1, VEGF, and TGF-β1 using standard immunohistochemical procedures. Results: IGF-1 immunoreactivity was seen in 50% of hyperplasia and in 46% of adenoma samples, but in 87% of normal parathyroid tissue in the vicinity of the adenomas (P = 0.005. TGF-β1 immunoreactivity was observed in 90% of hyperplasia, in 92% of adenoma samples, and in 95% of normal tissues around adenomas. VEGF immunoreactivity was observed in 70% of hyperplastic and 65% of adenomatous tissues, as well as in 54% of normal tissues in the vicinity of the adenoma. No significant differences in the expression of IGF-1, TGF-β1, and VEGF were observed between primary adenomas compared to hyperplasia samples (P > 0.05. Conclusions: Parathyroid tissue is clearly a site for production of IGF-1, TGF-β1, and VEGF. IGF-1 receptor activity was higher in normal parathyroid tissue compared to hyperplastic and adenomatous tissue.

  10. Glucose Stimulation of Transforming Growth Factor-β Bioactivity in Mesangial Cells Is Mediated by Thrombospondin-1

    Science.gov (United States)

    Poczatek, Maria H.; Hugo, Christian; Darley-Usmar, Victor; Murphy-Ullrich, Joanne E.

    2000-01-01

    Glucose is a key factor in the development of diabetic complications, including diabetic nephropathy. The development of diabetic glomerulosclerosis is dependent on the fibrogenic growth factor, transforming growth factor-β (TGF-β). Previously we showed that thrombospondin-1 (TSP-1) activates latent TGF-β both in vitro and in vivo. Activation occurs as the result of specific interactions of latent TGF-β with TSP-1, which potentially alter the conformation of latent TGF-β. As glucose also up-regulates TSP-1 expression, we hypothesized that the increased TGF-β bioactivity observed in rat and human mesangial cells cultured with high glucose concentrations is the result of latent TGF-β activation by autocrine TSP-1. Glucose-induced bioactivity of TGF-β in mesangial cell cultures was reduced to basal levels by peptides from two different sequences that antagonize activation of latent TGF-β by TSP, but not by the plasmin inhibitor, aprotinin. Furthermore, glucose-dependent stimulation of matrix protein synthesis was inhibited by these antagonist peptides. These studies demonstrate that glucose stimulation of TGF-β activity and the resultant matrix protein synthesis are dependent on the action of autocrine TSP-1 to convert latent TGF-β to its biologically active form. These data suggest that antagonists of TSP-dependent TGF-β activation may be the basis of novel therapeutic approaches for ameliorating diabetic renal fibrosis. PMID:11021838

  11. Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis

    NARCIS (Netherlands)

    Renckens, Rosemarijn; Roelofs, Joris J. T. H.; Florquin, Sandrine; van der Poll, Tom

    2006-01-01

    BACKGROUND: Urokinase-type plasminogen activator receptor (uPAR) is expressed on many different cells, including leukocytes. uPAR has been implicated to play a role in neutrophil migration to sites of inflammation. METHODS: To determine the role that uPAR plays in neutrophil recruitment in response

  12. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  13. Liarozole inhibits transforming growth factor-β3–mediated extracellular matrix formation in human three-dimensional leiomyoma cultures

    Science.gov (United States)

    Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.

    2014-01-01

    Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427

  14. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  15. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  16. Factor-structure of economic growth in E-commerce

    Institute of Scientific and Technical Information of China (English)

    吴隽; 刘洪久; 栾天行

    2003-01-01

    In order to analyze the factors having effect on economic growth of E-commerce, the economic growthprocess of E-commerce is divided into three stages; growth stage, stabilization stage and re-growth stage. Thesethree different stages are analysed using several economic growth theories, a set of factor-structure is proposedfor each stage of the economic growth process of E-commerce.

  17. Epidermal growth factor receptor signaling promotes metastatic prostate cancer through microRNA-96-mediated downregulation of the tumor suppressor ETV6.

    Science.gov (United States)

    Tsai, Yuan-Chin; Chen, Wei-Yu; Siu, Man Kit; Tsai, Hong-Yuan; Yin, Juan Juan; Huang, Jiaoti; Liu, Yen-Nien

    2017-01-01

    It has been suggested that ETV6 serves as a tumor suppressor; however, its molecular regulation and cellular functions remain unclear. We used prostate cancer as a model system and demonstrated a molecular mechanism in which ETV6 can be regulated by epidermal growth factor receptor (EGFR) signaling through microRNA-96 (miR-96)-mediated downregulation. In addition, EGFR acts as a transcriptional coactivator that binds to the promoter of primary miR-96 and transcriptionally regulates miR-96 levels. We analyzed two sets of clinical prostate cancer samples, confirmed association patterns that were consistent with the EGFR-miR-96-ETV6 signaling model and demonstrated that the reduced ETV6 levels were associated with malignant prostate cancer. Based on results derived from multiple approaches, we identified the biological functions of ETV6 as a tumor suppressor that inhibits proliferation and metastasis in prostate cancer. We present a molecular mechanism in which EGFR activation leads to the induction of miR-96 expression and suppression of ETV6, which contributes to prostate cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Economic growth factors system: theoretical and methodological aspect

    OpenAIRE

    H.Ya. Hlukha

    2014-01-01

    The aim of the article. The main objective of the article is to create theoretical grounds to build the system of economic growth factors, to modernize their classification, to define exogenous and endogenous factors, to analyze them within the state economic policy structure. The results of the analysis. The article focuses on economic growth factors theoretical studies: - economic growth factors classification characteristics have been highlighted; - various approaches to determine...

  19. Insulin-like growth factor-I in growth and metabolism

    DEFF Research Database (Denmark)

    Backeljauw, P; Bang, P; Dunger, D B

    2010-01-01

    Deficiency of insulin-like growth factor-I (IGF-I) results in growth failure. A variety of molecular defects have been found to underlie severe primary IGF-I deficiency (IGFD), in which serum IGF-I concentrations are substantially decreased and fail to respond to GH therapy. Identification of more...

  20. Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor.

    Science.gov (United States)

    Liu, Haizhou; Wang, Shaoyang; Ma, Weimin; Lu, Youguang

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.

  1. Tumor therapy with a urokinase plasminogen activator-activated anthrax lethal toxin alone and in combination with paclitaxel.

    Science.gov (United States)

    Wein, Alexander N; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T; Leppla, Stephen H

    2013-02-01

    PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wildtype lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an antimitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an antiangiogenesis therapy such as sunitinib or sorafinib.

  2. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant.

    Science.gov (United States)

    Bonawitz, Nicholas D; Kim, Jeong Im; Tobimatsu, Yuki; Ciesielski, Peter N; Anderson, Nickolas A; Ximenes, Eduardo; Maeda, Junko; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint

    2014-05-15

    Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.

  3. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells.

    Science.gov (United States)

    Campbell, Stephanie A; Gromeier, Matthias

    2005-04-01

    Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.

  4. Influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2017-05-01

    Full Text Available Objective: To study the influence of minimally invasive hematoma evacuation combined with nerve growth factor preparation on neurological function injury in patients with hypertensive cerebral hemorrhage. Methods: A total of 112 patients with hypertensive cerebral hemorrhage who were treated in our hospital between July 2013 and February 2016 were collected, and according to random number table, they were divided into the control group (n=56 who underwent minimally invasive hematoma evacuation therapy and the observation group (n=56 who underwent minimally invasive hematoma evacuation combined with nerve growth factor preparation therapy. Serum contents of inflammatory mediators, nerve injury indexes and neurotransmitters were compared between two groups of patients before and after treatment. Results: Before treatment, there were no significant differences in serum contents of inflammatory mediators, nerve injury indexes and neurotransmitters between the two groups. After treatment, serum contents of inflammatory mediators such as CRP, PCT, IL-1β and IL-6 in observation group were lower than those in control group; serum contents of nerve injury indexes such as NSE, S100B, GEAP and MBP were lower than those in control group; serum contents of neurotransmitters such as SP, NPY, Glu and Asp were lower than those in control group while GABA and Gly were higher than those in control group. Conclusion: Minimally invasive hematoma evacuation combined with nerve growth factor preparation can effectively reduce neurological function injury, and has positive clinical significance.

  5. The role of the vascular endothelial growth factor/vascular endothelial growth factor receptors axis mediated angiogenesis in curcumin-loaded nanostructured lipid carriers induced human HepG2 cells apoptosis

    Directory of Open Access Journals (Sweden)

    Fengling Wang

    2015-01-01

    Full Text Available Background: Curcumin (diferuloylmethane, the active constituent of turmeric extract has potent anti-cancer properties have been demonstrated in hepatocellular carcinoma (HCC. However, its underlying molecular mechanism of therapeutic effects remains unclear. Vascular endothelial growth factor (VEGF and its receptors (VEGFRs have crucial roles in tumor angiogenesis. Purpose: The goal of this study was to investigate the role of the VEGF/VEGFRs mediated angiogenesis during the proliferation and apoptosis of human HepG2 hepatoma cell line and the effect of curcumin-loaded nanostructured lipid carriers (Cur-NLC. Materials and Methods: The proliferation of HepG2 cells was determined by methyl thiazolyl tetrazolium after exposure to Cur-NLC and native curcumin. Apoptosis was quantified by flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodide staining. Cellular internalization of Cur-NLC was observed by fluorescent microscope. The level of VEGF was detected by enzyme-linked immunosorbent assay kits. The expression of VEGFRs was quantified by Western blotting. Results: Cur-NLC was more effective in inhibiting the proliferation and enhancing the apoptosis of HepG2 cells than native curcumin. Fluorescent microscope analysis showed that HepG2 cells internalized Cur-NLC more effectively than native curcumin. Furthermore, Cur-NLC down-regulated the level of VEGF and the expression of VEGFR-2, but had a slight effect on VEGFR-1. Conclusion: These results clearly demonstrated that Cur-NLC was more effective in anti-cancer activity than the free form of curcumin. These studies demonstrate for the 1 st time that Cur-NLC exerts an antitumor effect on HepG2 cells by modulating VEGF/VEGFRs signaling pathway.

  6. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer

    DEFF Research Database (Denmark)

    Iglesias Gato, Diego; Chuan, Yin Choy; Wikström, Pernilla

    2014-01-01

    ) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison...... of transcription 5 protein (STAT5) and androgen receptor-dependent transcription. Consequentially, SOCS2 inhibits GH activation of Janus kinase 2, Src and STAT5 as well as both cell invasion and cell proliferation in vitro. In vivo, SOCS2 limits proliferation and production of IGF-1 in the prostate in response......Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2...

  7. Application of Molecular Modeling to Urokinase Inhibitors Development

    Directory of Open Access Journals (Sweden)

    V. B. Sulimov

    2014-01-01

    Full Text Available Urokinase-type plasminogen activator (uPA plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program, postprocessing (DISCORE program, direct generalized docking (FLM program, and the application of the quantum chemical calculations (MOPAC package, search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM.

  8. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    International Nuclear Information System (INIS)

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-01-01

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  9. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  10. Epigenetic control of hypoxia inducible factor-1α-dependent expression of placental growth factor in hypoxic conditions.

    Science.gov (United States)

    Tudisco, Laura; Della Ragione, Floriana; Tarallo, Valeria; Apicella, Ivana; D'Esposito, Maurizio; Matarazzo, Maria Rosaria; De Falco, Sandro

    2014-04-01

    Hypoxia plays a crucial role in the angiogenic switch, modulating a large set of genes mainly through the activation of hypoxia-inducible factor (HIF) transcriptional complex. Endothelial cells play a central role in new vessels formation and express placental growth factor (PlGF), a member of vascular endothelial growth factor (VEGF) family, mainly involved in pathological angiogenesis. Despite several observations suggest a hypoxia-mediated positive modulation of PlGF, the molecular mechanism governing this regulation has not been fully elucidated. We decided to investigate if epigenetic modifications are involved in hypoxia-induced PlGF expression. We report that PlGF expression was induced in cultured human and mouse endothelial cells exposed to hypoxia (1% O 2), although DNA methylation at the Plgf CpG-island remains unchanged. Remarkably, robust hyperacetylation of histones H3 and H4 was observed in the second intron of Plgf, where hypoxia responsive elements (HREs), never described before, are located. HIF-1α, but not HIF-2α, binds to identified HREs. Noteworthy, only HIF-1α silencing fully inhibited PlGF upregulation. These results formally demonstrate a direct involvement of HIF-1α in the upregulation of PlGF expression in hypoxia through chromatin remodeling of HREs sites. Therefore, PlGF may be considered one of the putative targets of anti-HIF therapeutic applications.

  11. Docosahexaenoic Acid Inhibits Tumor Promoter-Induced Urokinase-Type Plasminogen Activator Receptor by Suppressing PKCδ- and MAPKs-Mediated Pathways in ECV304 Human Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available The overexpression of urokinase-type plasminogen activator receptor (uPAR is associated with inflammation and virtually all human cancers. Despite the fact that docosahexaenoic acid (DHA has been reported to possess anti-inflammatory and anti-tumor properties, the negative regulation of uPAR by DHA is still undefined. Here, we investigated the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA-induced uPAR expression and the underlying molecular mechanisms in ECV304 human endothelial cells. DHA concentration-dependently inhibited TPA-induced uPAR. Specific inhibitors and mutagenesis studies showed that PKCδ, JNK1/2, Erk1/2, NF-κB, and AP-1 were critical for TPA-induced uPAR expression. Application of DHA suppressed TPA-induced translocation of PKCδ, activation of the JNK1/2 and Erk1/2 signaling pathways, and subsequent AP-1 and NF-κB transactivation. In conclusion, these observations suggest a novel role for DHA in reducing uPAR expression and cell invasion by inhibition of PKCδ, JNK1/2, and Erk1/2, and the reduction of AP-1 and NF-κB activation in ECV304 human endothelial cells.

  12. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  13. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  14. Perinatal and lifestyle factors mediate the association between maternal education and preschool children's weight status: the ToyBox study.

    Science.gov (United States)

    Androutsos, Odysseas; Moschonis, George; Ierodiakonou, Despo; Karatzi, Kalliopi; De Bourdeaudhuij, Ilse; Iotova, Violeta; Zych, Kamila; Moreno, Luis A; Koletzko, Berthold; Manios, Yannis

    2018-04-01

    This study aimed to explore the associations among perinatal, sociodemographic, and behavioral factors and preschool overweight/obesity. Data were collected from 7541 European preschoolers in May/June 2012. Children's anthropometrics were measured, and parents self-reported all other data via questionnaires. Level of statistical significance was set at P ≤ 0.05. Certain perinatal factors (i.e., maternal prepregnancy overweight/obesity, maternal excess gestational weight gain, excess birth weight, and "rapid growth velocity"), children's energy balance-related behaviors (i.e., high sugar-sweetened beverage consumption, increased screen time, reduced active-play time), family sociodemographic characteristics (i.e., Eastern or Southern Europe, low maternal and paternal education), and parental overweight/obesity were identified as correlates of preschoolers' overweight/obesity. Furthermore, maternal prepregnancy overweight/obesity, children's "rapid growth velocity," and increased screen time mediated by 21.2%, 12.5%, and 5.7%, respectively, the association between maternal education and preschoolers' body mass index. This study highlighted positive associations of preschooler's overweight/obesity with excess maternal prepregnancy and gestational weight gain, excess birth weight and "rapid growth velocity," Southern or Eastern European region, and parental overweight/obesity. Moreover, maternal prepregnancy overweight/obesity, children's "rapid growth velocity," and increased screen time partially mediated the association between maternal education and preschoolers' body mass index. The findings of the present study may support childhood obesity prevention initiatives, because vulnerable population groups and most specifically low-educated families should be prioritized. Among other fields, these intervention initiatives should also focus on the importance of normal prepregnancy maternal weight status, normal growth velocity during infancy, and retaining

  15. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  16. Composition of growth factors and cytokines in lysates obtained from fresh versus stored pathogen-inactivated platelet units.

    Science.gov (United States)

    Sellberg, Felix; Berglund, Erik; Ronaghi, Martin; Strandberg, Gabriel; Löf, Helena; Sommar, Pehr; Lubenow, Norbert; Knutson, Folke; Berglund, David

    2016-12-01

    Platelet lysate is a readily available source of growth factors, and other mediators, which has been used in a variety of clinical applications. However, the product remains poorly standardized and the present investigation evaluates the composition of platelet lysate obtained from either fresh or stored pathogen-inactivated platelet units. Platelet pooled units (n = 10) were obtained from healthy blood donors and tested according to standard procedures. All units were pathogen inactivated using amotosalen hydrochloride and UVA exposure. Platelet lysate was subsequently produced at two separate time-points, either from fresh platelet units or after 5 days of storage, by repeated freeze-thaw cycles. The following mediators were determined at each time-point: EGF, FGF-2, VEGF, IGF-1, PDGF-AB/BB, BMP-2, PF4, TGF-β isoform 1, IL-1β, IL-2, IL-6, IL-10, IL-12p70, 1L-17A, TNF-α, and IFN-γ. The concentration of growth factors and cytokines was affected by time in storage. Notably, TGF-β, PDGF-AB/BB, and PF4 showed an increase of 27.2% (p product, which potentially may influence the clinical effects. Copyright © 2016. Published by Elsevier Ltd.

  17. The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1

    International Nuclear Information System (INIS)

    Genrich, Geeske; Kruppa, Marcus; Lenk, Lennart; Helm, Ole; Broich, Anna; Freitag-Wolf, Sandra; Röcken, Christoph; Sipos, Bence; Schäfer, Heiner; Sebens, Susanne

    2016-01-01

    Nuclear factor E2 related factor-2 (Nrf2) is an oxidative stress inducible transcription factor being essential in regulating cell homeostasis. Thus, acute induction of Nrf2 in epithelial cells exposed to inflammation confers protection from oxidative cell damage and mutagenesis supporting an anti-tumorigenic role for Nrf2. However, pancreatic ductal adenocarcinoma (PDAC) is characterized by persistent Nrf2 activity conferring therapy resistance which points to a pro-tumorigenic role of Nrf2. A similar dichotomous role in tumorigenesis is described for the Transforming Growth Factor-beta 1 (TGF-β1). The present study therefore aimed at elucidating whether the switch of Nrf2 function towards a tumor promoting one relates to the modulation of TGF-β1 induced cell responses and whether this might occur early in PDAC development. In situ analysis comprised immunohistochemical stainings of activated (phosphorylated) Nrf2 and Ki67 in pancreatic tissues containing normal ducts and pancreatic intraepithelial neoplasia (PanINs). In vitro, Nrf2 levels in benign (H6c7-pBp), premalignant (H6c7-kras) and malignant (Colo357) pancreatic ductal epithelial cells were modulated by Nrf2 specific siRNA or Nrf2 overexpression. Then, the effect of Nrf2 alone and in combination with TGF-β1 on cell growth and survival was investigated by cell counting, Ki67 staining and apoptosis assays. The underlying cell signaling was investigated by western blotting. Statistical analysis was performed by Shapiro-Wilk test for normal distribution. Parametric data were analyzed by one-way ANOVA, while non-parametric data were analyzed by Kruskal-Wallis one-way ANOVA on ranks. Significantly elevated expression of activated Nrf2 and Ki67 could be detected in PanINs but not in normal pancreatic ductal epithelium. While the effect of Nrf2 on basal cell growth of H6c7-pBp, H6c7-kras and Colo357 cells was minor, it clearly attenuated the growth inhibiting effects of TGF-β1 in all cell lines. This enhanced

  18. The effect of hepatocyte growth factor on secretory functions in human eosinophils.

    Science.gov (United States)

    Yamauchi, Yumiko; Ueki, Shigeharu; Konno, Yasunori; Ito, Wataru; Takeda, Masahide; Nakamura, Yuka; Nishikawa, Junko; Moritoki, Yuki; Omokawa, Ayumi; Saga, Tomoo; Hirokawa, Makoto

    2016-12-01

    Hepatocyte growth factor (HGF), originally identified as a potent mitogen for mature hepatocytes, is now recognized as a humoral mediator in inflammatory and immune responses. Previous studies indicated that HGF negatively regulated allergic airway inflammation. In view of eosinophils playing a role in the pathogenesis of asthma, especially in airway remodeling as a rich source of pro-fibrogenic mediators, the effects of HGF on the different types of eosinophil secretory functions were examined in this study. We found that HGF significantly inhibited IL-5-induced secretion of TGF-β and VEGF from human eosinophils. The inhibitory effect is not associated with TGF-β transcription; rather, it is associated with ultrastructural granule emptying and loss of intracellular TGF-β contents, indicating HGF inhibits the process of piecemeal degranulation. The effect of HGF on extracellular trap cell death (ETosis) that mediates cytolytic degranulation was also investigated; however, immobilized IgG- or phorbol myristate acetate-induced ETosis was only minimally attenuated by HGF. These results reveal the effect of HGF on the distinct pathways of eosinophil secretory functions and also provide novel insights into the role of HGF in the pathogenesis of allergic inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of growth-promoting factors on proliferation of mouse ...

    African Journals Online (AJOL)

    SSCs) in vitro are critical to our understanding of male infertility, genetic resources and endangered species conservation. To investigate the effects of growth-promoting factors, epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and ...

  20. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    Science.gov (United States)

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  1. Using hierarchical linear growth models to evaluate protective mechanisms that mediate science achievement

    Science.gov (United States)

    von Secker, Clare Elaine

    The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.

  2. microRNA 21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation.

    Science.gov (United States)

    Jin, Xiu-Li; Sun, Qin-Sheng; Liu, Feng; Yang, Hong-Wei; Liu, Min; Liu, Hong-Xia; Xu, Wei; Jiang, Yu-Yang

    2013-07-01

    Transcriptional repressor Pokemon is a critical factor in embryogenesis, development, cell proliferation, differentiation, and oncogenesis, thus behaving as an oncogene. Oncomine database suggests a potential correlation between the expressions of Pokemon and Sprouty1. This study investigated the regulatory role of Pokemon in Sprouty1 expression and the effect on liver cancer cell growth and proliferation, revealing a novel miR-21-mediated regulatory circuit. In normal (HL-7702) and cancer (QGY-7703) liver cell lines, Sprouty1 expression is inversely correlated with Pokemon levels. Targeted expression or siRNA-mediated silencing showed that Pokemon is a repressor of Sprouty1 expression at both mRNA and protein levels, but Pokemon cannot affect the promoter activity of Sprouty1. Sprouty1 is a target of miR-21 and interestingly, we found that miR-21 is up-regulated by Pokemon in liver cancer cells. Luciferase reporter assays showed that Pokemon up-regulated miR-21 transcription in a dose-dependent manner, and ChIP assay exhibited a direct binding of Pokemon to the miR-21 promoter at -747 to -399 bp. Site-directed mutagenesis of the GC boxes at -684 to -679 bp and -652 to -647 bp of miR-21 promoter abolished the regulatory activity by Pokemon. Furthermore, we found that the modulation of Pokemon and miR-21 expression affected the growth and proliferation of liver cancer cells QGY-7703. In summary, our findings demonstrate that Pokemon suppresses Sprouty1 expression through a miR-21-mediated mechanism, affecting the growth and proliferation of liver cancer cells. This study recognized miR-21 and Sprouty1 as novel targets of the Pokemon regulatory network. Copyright © 2013 Wiley Periodicals, Inc.

  3. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  4. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    Science.gov (United States)

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  5. Pentoxifylline inhibits the fibrogenic activity of pleural effusions and transforming growth factor

    Directory of Open Access Journals (Sweden)

    P. Entzian

    1997-01-01

    Full Text Available Physiopathology of organ fibrosis is far from being completely understood, and the efficacy of the available therapeutic strategies is disappointing. We chose pleural disease for further studies and addressed the questions of which cytokines are relevant in pleural fibrosis and which drugs might interrupt its development. We screened pleural effusions for mediators thought to interfere with fibrogenesis (transforming growth factor-β (TGF-β, tumour necrosis factor α (TNFα, soluble TNF-receptor p55 (sTNF-R and correlated the results with patient clinical outcome in terms of extent of pleural thickenings. We found pleural thickenings correlated with TGF-β (p<0.005 whereas no correlations could be observed with TNFα and sTNF-R. Further, we were interested in finding out how TGF-β effects on fibroblast growth could be modulated. We found that pentoxifylline is able to inhibit both fibroblast proliferation and collagen synthesis independently of the stimulus. We conclude that, judging from in vitro studies, pentoxifylline might offer a new approach in the therapy of pleural as well as pulmonary fibrosis.

  6. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  7. Urokinase-type plasminogen activator: a new target for male contraception?

    Science.gov (United States)

    Qin, Ying; Han, Yan; Xiong, Cheng-Liang; Li, Hong-Gang; Hu, Lian; Zhang, Ling

    2015-01-01

    Urokinase-type plasminogen activator (uPA) is closely related to male reproduction. With the aim of investigating the possibility for uPA as a potential contraceptive target, in the present work, Kunming male mice were immunized by human uPA subcutaneous injection at three separate doses for 3 times. Then the potency of the anti-human uPA antibody in serum was analyzed, and mouse fertility was evaluated. Serum antibody titers for human uPA in immunized groups all reached 1:10,240 or higher levels by enzyme linked immunosorbent assay, and mating experiments revealed that pregnancy rates and the mean number of embryos implanted after mating declined obviously (P male mice. Sperm function tests suggested that the sperm concentration, sperm viability, sperm motility, and in vitro fertilization rate for the cauda epididymis sperm in uPA-immunized groups were lower than those in the controls (P male mice could effectively reduce their fertility, and uPA could become a new target for immunocontraception in male contraceptive development.

  8. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  9. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  10. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  11. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

    International Nuclear Information System (INIS)

    McLaughlin, Patricia J; Zagon, Ian S; Park, Sunny S; Conway, Andrea; Donahue, Renee N; Goldenberg, David

    2009-01-01

    Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met 5 ]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. OGF and OGFr were present in KAT-18 cells. Concentrations of 10 -6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis

  12. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  13. Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates.

    Science.gov (United States)

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A; Messaoudi, Ilhem

    2014-04-01

    Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. Using a nonhuman primate model of ethanol (EtOH) self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine, and growth factor production in peripheral blood, lung, and intestinal mucosa following 12 months of chronic EtOH exposure. EtOH exposure inhibited activation-induced production of growth factors hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and vascular-endothelial growth factor (VEGF) by peripheral blood mononuclear cells (PBMC). Moreover, EtOH significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of EtOH-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed EtOH-dependent up-regulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF, and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR-181 and miR-221, and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected. Chronic EtOH consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be

  14. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    Science.gov (United States)

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  15. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  16. Boron mediation on the growth of Ge quantum dots on Si (1 0 0) by ultra high vacuum chemical vapor deposition system

    International Nuclear Information System (INIS)

    Chen, P.S.; Pei, Z.; Peng, Y.H.; Lee, S.W.; Tsai, M.-J.

    2004-01-01

    Self-assembled Ge quantum dots (QDs) with boron mediation are grown on Si (1 0 0) by an industrial hot wall ultra-high-vacuum chemical vapor deposition (UHV/CVD) system with different growth temperatures and dopant gas flow rates. Diborane (B 2 H 6 ) gas is applied as a surfactant on the Si (1 0 0) prior to the growth of Ge QDs. Small dome and pyramid shaped Ge QDs are observed after boron treatment as compared to the hut shaped Ge cluster without boron pre-treatment at 525 and 550 deg. C. The Ge QDs have a typical base width and height of about 30 and 6 nm, respectively, and the density is about 2.5x10 10 cm -2 for the growth temperature of 525 deg. C. Through weakening the Si-H bond during the epitaxy growth and changing the stress field on the surface of the Si (1 0 0) buffer, boron mediation can modify the growth mode of Ge QDs. When the growth temperature is low (525-550 deg. C), the former factor is dominate, as the growth temperature is raised (600 deg. C), the latter parameter may play an important role on the formation of Ge QDs. Optical transition from Ge QDs is demonstrated from photoluminescence (PL) spectra. Furthermore, multifold Ge/Si layers are also carried out to enhance the PL intensity with first Ge layer treated by B 2 H 6 and avoid the generation of threading dislocations

  17. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  18. The role of insulin-like growth factor-I in the physiopathology of hearing

    Directory of Open Access Journals (Sweden)

    Silvia eMurillo-Cuesta

    2011-07-01

    Full Text Available Insulin like growth factor I (IGF-I belongs to the family of polypeptides of insulin, which play a central role in embryonic development and adult nervous system homeostasis by endocrine, autocrine and paracrine mechanisms. IGF-I is fundamental for the regulation of cochlear development, growth and differentiation, and its mutations are associated with hearing loss in mice and men. Low levels of IGF-I have been shown to correlate with different human syndromes showing hearing loss and with presbyacusis. Animal models are fundamental to understand the genetic, epigenetic, and environmental factors that contribute to human hearing loss. In the mouse, IGF-I serum levels decrease with ageing and there is a concomitant hearing loss and retinal degeneration. In the Igf1-/- null mouse, hearing loss is due to neuronal loss, poor innervation of the sensory hair cells and age-related stria vascularis alterations. In the inner ear, IGF-I actions are mediated by intracellular signaling networks, RAF, AKT and p38 MAPK protein kinases modulate the expression and activity of transcription factors, as AP1, MEF2, FoxM1 and FoxP3, leading to the regulation of cell cycle and metabolism. Therapy with rhIGF-I has been approved in humans for the treatment of poor linear growth and certain neurodegenerative diseases. This review will discuss these findings and their implications in new IGF-I-based treatments for the protection or repair of hearing loss.

  19. Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study.

    Science.gov (United States)

    Raia-Barjat, Tiphaine; Prieux, Carole; Gris, Jean-Christophe; Chapelle, Céline; Laporte, Silvy; Chauleur, Céline

    2017-09-22

    The study aimed to compare the level of two angiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt1) and soluble endoglin (sEng), for the prediction of preeclampsia and intrauterine growth restriction in high-risk pregnant women. A prospective multicenter cohort study of 200 pregnant patients was conducted between June 2008 and October 2010. sFlt1 and sEng were measured by enzyme-linked immunosorbent assay. Forty-five patients developed a placenta-mediated adverse pregnancy outcome. Plasma levels of sFlt1 and sEng were higher in patients who will experience a preeclampsia at 28, 32, and 36 weeks compared with patients with no complication. The same results were observed for intrauterine growth restriction. Plasma levels of sFlt1 and sEng were not significantly different for patients with preeclampsia compare to patients with intrauterine growth restriction. Patients with early pre-eclampsia (PE) had very high rates of angiogenic factors at 20, 24, and 28 weeks. Patients with late PE and early and late intrauterine growth retardation (IUGR) had high rates at 32 and 36 weeks. In high-risk women, angiogenic factors are disturbed before the onset of preeclampsia and this is true for intrauterine growth restriction.

  20. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  2. Modulation of radiosensitivity by growth factors

    International Nuclear Information System (INIS)

    Paris, F.

    2013-01-01

    The full text of the publication follows. For the past 70 years, radiotherapy protocols were defined to target and kill cancer cells. New research developments showed that the tissue or tumor radiosensitivities might be directly modulated by its own microenvironment. Between all the micro-environmental cells, endothelial cells are playing a unique role due to the need of angio-genesis for tumor genesis and to the microvascular endothelial cell apoptosis involved in acute normal tissue and tumor radiosensitivities. Both endothelial behaviours may be controlled by specific growth factors secreted by tumor cells. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are two cytokines involved in angio genesis and endothelial cell survival. Because radiation exposure develops opposite molecular and cellular responses by inhibiting proliferation and by enhancing apoptosis, inhibiting these cytokines has been proposed as a relevant strategy to improve radiotherapy efficiency. Drugs or antibody against VEGF, or other growth factors have been used with success to limit endothelial cell resistance, but also to transiently normalize of blood vessels to improve oxygen distribution into the tumor. However, better characterisation of the role of the cytokines will help to better improve the strategy of the use of their antagonists. We demonstrate that bFGF or sphingosin 1 phosphate (S1P), a lipid endothelial growth factor, protects endothelial cells from radiation stress by inhibiting the pre-mitotic apoptosis through enhancement of pro-survival molecular cascade, such as the Pi3K/AKT pathway, but not post-mitotic death. This discrepancy allowed a specific use of S1P as pharmacological drug protecting quiescent endothelial cells, present in normal tissue blood vessels, but not in proliferating angiogenic blood vessels, majority present in tumor blood vessel. In vivo studies are underway. (author)

  3. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    Science.gov (United States)

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  4. Plant Mediator complex and its critical functions in transcription regulation.

    Science.gov (United States)

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  5. Diacylglycerol kinase α mediates 17-β-estradiol-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line through the G protein-coupled estrogen receptor GPR30.

    Science.gov (United States)

    Filigheddu, Nicoletta; Sampietro, Sara; Chianale, Federica; Porporato, Paolo E; Gaggianesi, Miriam; Gregnanin, Ilaria; Rainero, Elena; Ferrara, Michele; Perego, Beatrice; Riboni, Francesca; Baldanzi, Gianluca; Graziani, Andrea; Surico, Nicola

    2011-12-01

    Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  7. Risk Factors to Growth Retardation in Major Thalassemia

    Directory of Open Access Journals (Sweden)

    Riva Uda

    2011-03-01

    Full Text Available The increasing in the life span of patients with major thalassemia should be followed by increased quality of life. There are factors which can affect growth retardation in these patients. The aim of this study was to find out the risk factors for growth retardation in patients with major thalassemia. An analytical study with cross-sectional design was conducted at Pediatric Thalassemia Clinics of Dr.Hasan Sadikin Hospital, Bandung, in June to July 2006. The subjects of this study were patients with major thalassemia. Inclusion criteria’s were age under 14 years old, had no chronic diseases like tuberculosis, cerebral palsy with complete medical records. Risk factors were the timing of diagnosis, initial and dose of deferoxamine, volume of transfused blood, mean pretransfusion hemoglobin level, family income, and age. Antropometric measurement indices were used to assess the growth which expressed in Z score. Growth evaluated based on height/age (H/A and growth retardation if H/A <-2 SD. Risk factors for growth retardation were analyzed separately using chi-square test and odds ratio (OR with 95% confidence interval (CI. Then they were analyzed simultaneously with logistic regression method. Subjects consisted of 152 patients with major thalassemia. Seventy three thalassemia patients were stunted. Analysis showed that age (OR: 5.42, 95% CI:2.32–12.65, p <0.001, dosage of deferoxamine (OR: 4.0, 95% CI: 1.29–12.41, p: 0.016, and family income (OR: 2.32, 95% CI: 1.06–5.06, p: 0.036 were risks factors for growth retardation. Conclusion, risk factors for growth retardation in major thalassemia are age, dosage of deferoxamine, and family income.

  8. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    Science.gov (United States)

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  9. Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

    NARCIS (Netherlands)

    Krause, Carola; Kloen, Peter; ten Dijke, Peter

    2011-01-01

    ABSTRACT: Dupuytren's disease is a fibroproliferative disorder of the palmar fascia. The treatment used to date has mostly been surgery, but there is a high recurrence rate. Transforming growth factor β (TGF-β) has been implicated as a key stimulator of myofibroblast activity and fascial contraction

  10. Dual Targeting of the Insulin-Like Growth Factor and Collateral Pathways in Cancer: Combating Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Joseph A., E-mail: jaludwig@mdanderson.org; Lamhamedi-Cherradi, Salah-Eddine [Departments of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lee, Ho-Young [Departments of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Naing, Aung [Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Benjamin, Robert [Departments of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2011-07-26

    The insulin-like growth factor pathway, regulated by a complex interplay of growth factors, cognate receptors, and binding proteins, is critically important for many of the hallmarks of cancer such as oncogenesis, cell division, growth, and antineoplastic resistance. Naturally, a number of clinical trials have sought to directly abrogate insulin-like growth factor receptor 1 (IGF-1R) function and/or indirectly mitigate its downstream mediators such as mTOR, PI3K, MAPK, and others under the assumption that such therapeutic interventions would provide clinical benefit, demonstrable by impaired tumor growth as well as prolonged progression-free and overall survival for patients. Though a small subset of patients enrolled within phase I or II clinical trials revealed dramatic clinical response to IGF-1R targeted therapies (most using monoclonal antibodies to IGF-1R), in toto, the anticancer effect has been underwhelming and unsustained, as even those with marked clinical responses seem to rapidly acquire resistance to IGF-1R targeted agents when used alone through yet to be identified mechanisms. As the IGF-1R receptor is just one of many that converge upon common intracellular signaling cascades, it is likely that effective IGF-1R targeting must occur in parallel with blockade of redundant signaling paths. Herein, we present the rationale for dual targeting of IGF-1R and other signaling molecules as an effective strategy to combat acquired drug resistance by carcinomas and sarcomas.

  11. Dual Targeting of the Insulin-Like Growth Factor and Collateral Pathways in Cancer: Combating Drug Resistance

    International Nuclear Information System (INIS)

    Ludwig, Joseph A.; Lamhamedi-Cherradi, Salah-Eddine; Lee, Ho-Young; Naing, Aung; Benjamin, Robert

    2011-01-01

    The insulin-like growth factor pathway, regulated by a complex interplay of growth factors, cognate receptors, and binding proteins, is critically important for many of the hallmarks of cancer such as oncogenesis, cell division, growth, and antineoplastic resistance. Naturally, a number of clinical trials have sought to directly abrogate insulin-like growth factor receptor 1 (IGF-1R) function and/or indirectly mitigate its downstream mediators such as mTOR, PI3K, MAPK, and others under the assumption that such therapeutic interventions would provide clinical benefit, demonstrable by impaired tumor growth as well as prolonged progression-free and overall survival for patients. Though a small subset of patients enrolled within phase I or II clinical trials revealed dramatic clinical response to IGF-1R targeted therapies (most using monoclonal antibodies to IGF-1R), in toto, the anticancer effect has been underwhelming and unsustained, as even those with marked clinical responses seem to rapidly acquire resistance to IGF-1R targeted agents when used alone through yet to be identified mechanisms. As the IGF-1R receptor is just one of many that converge upon common intracellular signaling cascades, it is likely that effective IGF-1R targeting must occur in parallel with blockade of redundant signaling paths. Herein, we present the rationale for dual targeting of IGF-1R and other signaling molecules as an effective strategy to combat acquired drug resistance by carcinomas and sarcomas

  12. Dual Targeting of the Insulin-Like Growth Factor and Collateral Pathways in Cancer: Combating Drug Resistance

    Directory of Open Access Journals (Sweden)

    Aung Naing

    2011-07-01

    Full Text Available The insulin-like growth factor pathway, regulated by a complex interplay of growth factors, cognate receptors, and binding proteins, is critically important for many of the hallmarks of cancer such as oncogenesis, cell division, growth, and antineoplastic resistance. Naturally, a number of clinical trials have sought to directly abrogate insulin-like growth factor receptor 1 (IGF-1R function and/or indirectly mitigate its downstream mediators such as mTOR, PI3K, MAPK, and others under the assumption that such therapeutic interventions would provide clinical benefit, demonstrable by impaired tumor growth as well as prolonged progression-free and overall survival for patients. Though a small subset of patients enrolled within phase I or II clinical trials revealed dramatic clinical response to IGF-1R targeted therapies (most using monoclonal antibodies to IGF-1R, in toto, the anticancer effect has been underwhelming and unsustained, as even those with marked clinical responses seem to rapidly acquire resistance to IGF-1R targeted agents when used alone through yet to be identified mechanisms. As the IGF-1R receptor is just one of many that converge upon common intracellular signaling cascades, it is likely that effective IGF-1R targeting must occur in parallel with blockade of redundant signaling paths. Herein, we present the rationale for dual targeting of IGF-1R and other signaling molecules as an effective strategy to combat acquired drug resistance by carcinomas and sarcomas.

  13. The effects of anxiety and depression on stress-related growth among Chinese army recruits: Resilience and coping as mediators.

    Science.gov (United States)

    Yu, Yongju; Peng, Li; Liu, Botao; Liu, Yunbo; Li, Min; Chen, Long; Xie, Junrun; Li, Jing; Li, Jiawen

    2016-09-01

    Stress-related growth can occur after various traumas or stressful events. In order to investigate how anxiety and depression relate to stress-related growth, this study was conducted with 443 Chinese army recruits who had just finished a 3-month recruit training program. Path analyses revealed that resilience and positive/negative coping partially mediated the effect of anxiety on perceived stress-related growth, while negative coping fully mediated the relationship between depression and perceived stress-related growth. Moreover, positive coping partially carried the influence of resilience on perceived stress-related growth. Anxiety and depression may be potential targets for intervention to enhance the development of stress-related growth among Chinese army recruits. © The Author(s) 2015.

  14. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  15. Extremity Regeneration of Soft Tissue Injury Using Growth Factor-Impregnated Gels

    Science.gov (United States)

    2017-10-01

    vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Repeated injections of growth factor-alginate material are... Vascularized endothelial growth factor (VEGF) Insulin-like growth factor-1 (IGF-1) Alginate gel Ischemia-reperfusion Large animal model...operative complications including skin necrosis and seroma development. The IACUC protocol was reevaluated and modified thought multiple discussions

  16. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica

    2010-01-01

    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...

  17. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  18. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  19. Growth Factors and Breast Tumors, Comparison of Selected Growth Factors with Traditional Tumor Markers

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Černá, M.; Ňaršanská, A.; Svobodová, Š.; Straková, M.; Vrzalová, J.; Fuchsová, R.; Třešková, I.; Kydlíček, T.; Třeška, V.; Pecen, Ladislav; Topolčan, O.; Padziora, P.

    2011-01-01

    Roč. 31, č. 12 (2011), s. 4653-4656 ISSN 0250-7005 Grant - others:GA MZd(CZ) NS9727; GA MZd(CZ) NS10238; GA MZd(CZ) NS10253 Institutional research plan: CEZ:AV0Z10300504 Keywords : growth factor * breast cancer * tumor markers * CA 15-3 * CEA * IGF1 * EGF * HGF Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  20. Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach.

    Science.gov (United States)

    Wiley, Andrea S

    2012-01-01

    To assess the life history consequences of cow milk consumption at different stages in early life (prenatal to adolescence), especially with regard to linear growth and age at menarche and the role of insulin-like growth factor I (IGF-I) in mediating a relationship among milk, growth and development, and long-term biological outcomes. United States National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2004 and review of existing literature. The literature tends to support milk's role in enhancing growth early in life (prior to age 5 years), but there is less support for this relationship during middle childhood. Milk has been associated with early menarche and with acceleration of linear growth in adolescence. NHANES data show a positive relationship between milk intake and linear growth in early childhood and adolescence, but not middle childhood, a period of relatively slow growth. IGF-I is a candidate bioactive molecule linking milk consumption to more rapid growth and development, although the mechanism by which it may exert such effects is unknown. Routine milk consumption is an evolutionarily novel dietary behavior that has the potential to alter human life history parameters, especially vis-à-vis linear growth, which in turn may have negative long-term biological consequences. Copyright © 2011 Wiley Periodicals, Inc.

  1. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  2. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  3. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka

    2008-01-01

    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase...... differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane...

  4. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite.

    Science.gov (United States)

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-09-26

    Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C 3 N 4 /CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C 3 N 4 /CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL -1 , ranging from 1 μg mL -1 -0.1 pg mL -1 . The proposed strategy should provide a promising method for detection of other biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    LENUS (Irish Health Repository)

    Sands, Michelle

    2011-01-25

    Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or potentiate the

  6. Apoptosis induced by knockdown of uPAR and MMP-9 is mediated by inactivation of EGFR/STAT3 signaling in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Ramaprasada Rao Kotipatruni

    Full Text Available Medulloblastoma is a highly invasive cancer of central nervous system diagnosed mainly in children. Matrix metalloproteinase-9 (MMP-9 and urokinase plasminogen activator receptor (uPAR are over expressed in several cancers and well established for their roles in tumor progression. The present study is aimed to determine the consequences of targeting these molecules on medulloblastoma progression.Radiation is one of the foremost methods applied for treating cancer and considerable evidence showed that radiation elevated uPAR and MMP-9 expression in medulloblastoma cell. Therefore efforts are made to target these molecules in non-irradiated and irradiated medulloblastoma cells. Our results showed that siRNA-mediated knockdown of uPAR and MMP-9, either alone or in combination with radiation modulated a series of events leading to apoptosis. Down regulation of uPAR and MMP-9 inhibited the expression of anti-apoptotic molecules like Bcl-2, Bcl-xL, survivin, XIAP and cIAPI; activated BID cleavage, enhanced the expression of Bak and translocated cyctochrome C to cytosol. Capsase-3 and -9 activities were also increased in uPAR- and MMP-9-downregulated cells. The apoptosis induced by targeting MMP-9 and uPAR was initiated by inhibiting epidermal growth factor receptor (EGFR mediated activation of STAT3 and NF-κB related signaling molecules. Silencing uPAR and MMP-9 inhibited DNA binding activity of STAT3 and also reduced the recruitment of STAT3 protein at the promoter region of Bcl-2 and survivin genes. Our results suggest that inhibiting uPAR and MMP-9 reduced the expression of anti-apoptotic molecules by inactivating the transcriptional activity of STAT3. In addition, treating pre-established medulloblastoma with siRNAs against uPAR and MMP-9 both alone or in combination with radiation suppressed uPAR, MMP-9, EGFR, STAT3 expression and induced Bak activation leading to apoptosis.Taken together, our results illustrated that RNAi mediated targeting of

  7. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  8. Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist.

    Science.gov (United States)

    Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R; Bottaro, Donald P

    2007-07-01

    Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.

  9. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  10. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  11. The association between newborn regional body composition and cord blood concentrations of C-peptide and insulin-like growth factor I

    DEFF Research Database (Denmark)

    Carlsen, Emma M; Renault, Kristina M; Jensen, Rikke B

    2015-01-01

    BACKGROUND: Third trimester fetal growth is partially regulated by C-peptide and insulin-like growth factor I (IGF-I). Prenatal exposures including maternal obesity and high gestational weight gain as well as high birth weight have been linked to subsequent metabolic disease. We evaluated...... with both C-peptide (p tissue accumulation was associated with cord blood C-peptide and IGF-I. Total and abdominal fat masses were related to C-peptide but not to IGF-I. Thus, newborn adiposity is partially mediated through C-peptide and early...

  12. Insulin-like Growth Factor-I Mediates Neuroprotection in Proteasome Inhibition-Induced Cytotoxicity in SH-SY5Y Cells

    Science.gov (United States)

    Cheng, Benxu; Maffi, Shivani Kaushal; Martinez, Alex Anthony; Acosta, Yolanda P Villarreal; Morales, Liza D; Roberts, James L

    2011-01-01

    The proteasome is an enzyme complex responsible for targeted intracellular proteolysis. Alterations in proteasome-mediated protein clearance have been implicated in the pathogenesis of aging, Alzheimer's disease (AD) and Parkinson's disease (PD). In such diseases, proteasome inhibition may contribute to formation of abnormal protein aggregates, which in turn activate intracellular unfolded protein responses that cause oxidative stress and apoptosis. In this study, we investigated the protective effect of Insulin-like Growth Factor-I (IGF-1) for neural SH-SY5Y cells treated with the proteasomal inhibitor, Epoxomicin, In SH-SY5Y cells, Epoxomicin treatment results in accumulation of intracellular ubiquitinated proteins and cytochrome c release from damaged mitochondria, leading to cell death, in Epoxomicin time- and dose-dependent manner. In cells treated with small amounts of IGF-1, the same dosages of Epoxomicin reduced both mitochondrial damage (cytochrome c release) and reduced caspase-3 activation and PARP cleavage, both of which are markers of apoptosis. Notably, however, IGF-1-treated SH-SY5Y cells still contained ubiquitinated protein aggregates. This result indicates that IGF-1 blocks the downstream apoptotic consequences of Epoxomicin treatment leading to decreased proteasome function. Clues as to the mechanism for this protective effect come from (a) increased AKT phosphorylation observed in IGF-1-protected cells, vs. cells exposed to Epoxomicin without IGF-1, and (b) reduction of IGF-1 protection by pretreatment of the cells with LY294002 (an inhibitor of PI3-kinase). Together these findings suggest that activation of PI3/AKT pathways by IGF-1 is involved in IGF-1 neuroprotection against apoptosis following proteasome inhibition. PMID:21545837

  13. Angiopoietin-related growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins

    International Nuclear Information System (INIS)

    Zhang Yueqing; Hu Xiaobo; Tian Ruiyang; Wei Wangui; Hu Wei; Chen Xia; Han Wei; Chen Huayou; Gong Yi

    2006-01-01

    Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the α v -containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism

  14. The liberated domain I of urokinase plasminogen activator receptor--a new tumour marker in small cell lung cancer

    DEFF Research Database (Denmark)

    Almasi, Charlotte E; Drivsholm, Lars; Pappot, Helle

    2013-01-01

    The prognosis of small cell lung cancer (SCLC) remains poor with a 5-year survival rate of 4-6%. In non-small cell lung cancer (NSCLC), high levels of intact and cleaved forms of the receptor for urokinase plasminogen activator (uPAR) are significantly associated with short overall survival. Our...... measured using time-resolved fluorescence immunoassays (TR-FIA 1-3). Assessment of association of the uPAR forms to overall survival (OS) was done using Cox regression analysis adjusted for clinical covariates [age, gender, stage, lactate dehydrogenase (LDH), WHO performance status (PS)]. Multivariate...

  15. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    Science.gov (United States)

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic

  16. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis.

    Science.gov (United States)

    Chien, Wenwen; O'Kelly, James; Lu, Daning; Leiter, Amanda; Sohn, Julia; Yin, Dong; Karlan, Beth; Vadgama, Jay; Lyons, Karen M; Koeffler, H Phillip

    2011-06-01

    Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis.

  17. Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN

    Directory of Open Access Journals (Sweden)

    Enugutti Balaji

    2013-01-01

    Full Text Available Abstract Background The coordination of growth within a tissue layer is of critical importance for tissue morphogenesis. For example, cells within the epidermis undergo stereotypic cell divisions that are oriented along the plane of the layer (planar growth, thereby propagating the layered epidermal structure. Little is known about the developmental control that regulates such planar growth in plants. Recent evidence suggested that the Arabidopsis AGC VIII protein kinase UNICORN (UCN maintains planar growth by suppressing the formation of ectopic multicellular protrusions in several floral tissues including integuments. In the current model UCN controls this process during integument development by directly interacting with the ABERRANT TESTA SHAPE (ATS protein, a member of the KANADI (KAN family of transcription factors, thereby repressing its activity. Here we report on the further characterization of the UCN mechanism. Results Phenotypic analysis of flowers of ucn-1 plants impaired in floral homeotic gene activity revealed that any of the four floral whorls could produce organs carrying ucn-1 protrusions. The ectopic outgrowths of ucn integuments did not accumulate detectable signals of the auxin and cytokinin reporters DR5rev::GFP and ARR5::GUS, respectively. Furthermore, wild-type and ucn-1 seedlings showed similarly strong callus formation upon in vitro culture on callus-inducing medium. We also show that ovules of ucn-1 plants carrying the dominant ats allele sk21-D exhibited more pronounced protrusion formation. Finally ovules of ucn-1 ett-1 double mutants and ucn-1 ett-1 arf4-1 triple mutants displayed an additive phenotype. Conclusions These data deepen the molecular insight into the UCN-mediated control of planar growth during integument development. The presented evidence indicates that UCN downstream signaling does not involve the control of auxin or cytokinin homeostasis. The results also reveal that UCN interacts with ATS

  18. Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN.

    Science.gov (United States)

    Enugutti, Balaji; Schneitz, Kay

    2013-01-02

    The coordination of growth within a tissue layer is of critical importance for tissue morphogenesis. For example, cells within the epidermis undergo stereotypic cell divisions that are oriented along the plane of the layer (planar growth), thereby propagating the layered epidermal structure. Little is known about the developmental control that regulates such planar growth in plants. Recent evidence suggested that the Arabidopsis AGC VIII protein kinase UNICORN (UCN) maintains planar growth by suppressing the formation of ectopic multicellular protrusions in several floral tissues including integuments. In the current model UCN controls this process during integument development by directly interacting with the ABERRANT TESTA SHAPE (ATS) protein, a member of the KANADI (KAN) family of transcription factors, thereby repressing its activity. Here we report on the further characterization of the UCN mechanism. Phenotypic analysis of flowers of ucn-1 plants impaired in floral homeotic gene activity revealed that any of the four floral whorls could produce organs carrying ucn-1 protrusions. The ectopic outgrowths of ucn integuments did not accumulate detectable signals of the auxin and cytokinin reporters DR5rev::GFP and ARR5::GUS, respectively. Furthermore, wild-type and ucn-1 seedlings showed similarly strong callus formation upon in vitro culture on callus-inducing medium. We also show that ovules of ucn-1 plants carrying the dominant ats allele sk21-D exhibited more pronounced protrusion formation. Finally ovules of ucn-1 ett-1 double mutants and ucn-1 ett-1 arf4-1 triple mutants displayed an additive phenotype. These data deepen the molecular insight into the UCN-mediated control of planar growth during integument development. The presented evidence indicates that UCN downstream signaling does not involve the control of auxin or cytokinin homeostasis. The results also reveal that UCN interacts with ATS independently of an ATS/ETT complex required for integument

  19. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection.

    Science.gov (United States)

    Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas

    2007-01-01

    Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.

  20. Fibroblast growth factor 23

    African Journals Online (AJOL)

    Dr Olaleye

    Systemic phosphate homeostasis is maintained through several hormonal mechanisms which involve fibroblast growth factor 23 (FGF-23), α-klotho, vitamin D and parathyroid hormone. FGF-23 is known to be the major regulator of phosphate balance (Mirams et al., 2004). FGF-23 is a phosphaturic hormone, which is.

  1. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.

    Science.gov (United States)

    Maurya, Jay P; Bhalerao, Rishikesh P

    2017-09-01

    How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees. This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees. The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  3. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  4. Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis

    Science.gov (United States)

    Chen, Dongshi; Wei, Liang; Yu, Jian; Zhang, Lin

    2014-01-01

    Purpose Regorafenib, a multi-kinase inhibitor targeting the Ras/Raf/MEK/ERK pathway, has recently been approved for the treatment of metastatic colorectal cancer (CRC). However, the mechanisms of action of regorafenib in CRC cells have been unclear. We investigated how regorafenib suppresses CRC cell growth and potentiates effects of other chemotherapeutic drugs. Experimental Design We determined whether and how regorafenib induces the expression of PUMA, a p53 target and a critical mediator of apoptosis in CRC cells. We also investigated whether PUMA is necessary for the killing and chemosensitization effects of regorafenib in CRC cells. Furthermore, xenograft tumors were used to test if PUMA mediates the in vivo antitumor, antiangiogenic and chemosensitization effects of regorafenib. Results We found that regorafenib treatment induces PUMA in CRC cells irrespective of p53 status through the NF-κB pathway following ERK inhibition and glycogen synthase kinase 3β (GSK3β) activation. Upregulation of PUMA is correlated with apoptosis induction in different CRC cell lines. PUMA is necessary for regorafenib-induced apoptosis in CRC cells. Chemosensitization by regorafenib is mediated by enhanced PUMA induction through different pathways. Furthermore, deficiency in PUMA abrogates the in vivo antitumor, antiangiogenic and chemosensitization effects of regorafenib. Conclusions Our results demonstrate a key role of PUMA in mediating the anticancer effects of regorafenib in CRC cells. They suggest that PUMA induction can be used as an indicator of regorafenib sensitivity, and also provide a rationale for manipulating the apoptotic machinery to improve the therapeutic efficacy of regorafenib and other targeted drugs. PMID:24763611

  5. PGE{sub 2}-induced colon cancer growth is mediated by mTORC1

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, Marc, E-mail: Marc.dufour@chuv.ch; Faes, Seraina, E-mail: Seraina.faes@chuv.ch; Dormond-Meuwly, Anne, E-mail: Anne.meuwly-Dormond@chuv.ch; Demartines, Nicolas, E-mail: Demartines@chuv.ch; Dormond, Olivier, E-mail: Olivier.dormond@chuv.ch

    2014-09-05

    Highlights: • PGE{sub 2} activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE{sub 2} induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE{sub 2} induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E{sub 2} (PGE{sub 2}) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE{sub 2} directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE{sub 2}-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE{sub 2} increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE{sub 2} EP{sub 4} receptor was responsible for transducing the signal to mTORC1. Moreover, PGE{sub 2} increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE{sub 2}-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE{sub 2} increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE{sub 2} mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.

  6. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    Science.gov (United States)

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low

  7. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  8. Growth factors II: insuline-like growth binging proteins (GFBPs Factores de crecimiento II: factores insulinoides de crecimiento

    Directory of Open Access Journals (Sweden)

    Hilda Norha Jaramillo Londoño

    1996-03-01

    Full Text Available This review summarizes recent knowledge concerning Insulin.like growth factors I and II, with emphasis on their biochemical structure, concentrations, binding proteins, receptors, mechanisms of action, biological effects, and alterations of their concentrations in biological fluids. Se revisan los Factores Insulinoides de Crecimiento, también denominados ";Factores de Crecimiento Similares a la Insulina";, sobre los cuales se dispone de abundante información. Se sintetizan conocimientos recientes sobre dichos factores con énfasis en los siguientes aspectos: estructura bioquímica, concentraciones y sus cambios en los líquidos biológicos, proteínas fijadoras, receptores, mecanismos de acción y efectos biológicos.

  9. Gender Factors and Inclusive Economic Growth: The Silent Revolution

    Directory of Open Access Journals (Sweden)

    Laura Cabeza-García

    2018-01-01

    Full Text Available The gender factors that trigger economic growth in both high- and low-income countries were investigated in this study. To address these gender factors, four characteristic dimensions of gender inclusion were considered: education, access to the labor market, fertility, and democracy. The relationship between economic growth and gender factors was analyzed in a sample of 127 countries. Value and robustness were added to the results using dynamic models applied to panel data while accounting for endogeneity. We conclude that high fertility in women has negative effects on economic growth. However, when women have greater access to secondary education and the labor market in conditions of equality, the effects are positive. Similarly, the access of women to active political participation has significant effects on economic growth. Overall, this study helps identify which gender factors may promote inclusive economic growth, which is economic growth achieved when both men and women are incorporated in equal conditions.

  10. Pαx6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1.

    Directory of Open Access Journals (Sweden)

    Alvaro Sebastián-Serrano

    Full Text Available During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs, dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity.

  11. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  12. Soluble urokinase receptor is elevated in cerebrospinal fluid from patients with purulent meningitis and is associated with fatal outcome

    DEFF Research Database (Denmark)

    Ostergaard, Christian; Benfield, Thomas; Lundgren, Jens D

    2004-01-01

    The urokinase-type plasminogen activator system has been suggested to play a pathophysiological role in brain damage. The aim of this study was to evaluate CSF levels of suPAR in 183 patients clinically suspected of having meningitis on admission. Of these, 54 patients were found to have purulent...... meningitis, 63 had lymphocytic meningitis, 12 had encephalitis, and 54 patients were suspected of, but had no evidence of, meningitis. There was a significant difference in suPAR levels among patient groups (Kruskal Wallis test, p

  13. The liver taxis of receptor mediated lactosaminated human growth hormone

    International Nuclear Information System (INIS)

    Chen Zelian; Shi Lin; Li Tongling; Pang Qijie; He Juying; Guan Changtian

    2002-01-01

    Radiography imaging is used to assess liver taxis mechanism of anti-dwarfism drug lactosaminated human growth hormone (L-rhGH). Both L-rhGH and rhGH labelled with 131 I are used to study their biodistribution in animals (including rabbits, cocks and rats). The results show that L-rhGH is of specific hepatic targeting property, and the maximum hepatic concentration rate is 76.8%, which is two times of rhGH. Its hepatic binding is receptor mediated

  14. Intra-Carotid Urokinase thrombolytic therapy in acute cerebral infarction: a preliminary study

    International Nuclear Information System (INIS)

    Cho, Hee Kyung; Chung, Tae Sub; Kim, Dong Ik; Suh, Jung Ho; Lee, Byung In; Lee, Byung Chul

    1990-01-01

    We conducted a pilot study to evaluate the possibility that the intraarterial thrombolytic therapy might lead to recanalization of the acutely occluded cerebral arteries and subsequent clinical improvement in patients with acute cerebral infarction. Mean time from the onset of symptoms to the start of treatment and mean dosage of thrombolytic agent, Urokinase, were 6.4 hours and 1,260,000 units, respectively. Seven of 12 cases (58%) with acute cerebral infarction demonstrated successful recanalization. Neurological evaluation at one week and three months after the onset of symptoms suggested better outcome in the cases with recanalization. Repeat CT scan at 24 hours and one week after the procedure demonstrated the evidence of hemorrhagic infarction in the infarcted territories in five cases (41%), but clinical deteriorations were observed in only 2 cases. Though statistical analysis could not be done because the limited number of cases, these results suggest that the intraarterial thrombolytic therapy had a role in the management of acute cerebral infarction

  15. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells.

    Science.gov (United States)

    Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E

    2018-05-01

    Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.

  16. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR) by surface plasmon resonance and X-ray crystallography

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai

    2015-01-01

    The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dy...... of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively]....

  17. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    the hyperplastic growth phase of the prostate in newborn rats.MATERIAL AND METHODS: Newborn rats were treated for 8 weeks with EGF (150 microg/kg body weight per day), administered as daily subcutaneous injections. Sections of the prostate tissue were examined by a stereological technique to determine tissue......OBJECTIVE: The epidermal growth factor (EGF) system is expressed in the rat prostate, and growth factors from this system induce proliferation in prostate epithelial and stromal cell cultures. The aim of the study was to investigate the possible growth-promoting effects of the system during...... of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p

  18. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  19. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  20. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  1. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  2. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    Science.gov (United States)

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  3. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  4. Modulation of radiation effects in tissues by keratinocyte growth factor (KGF)

    International Nuclear Information System (INIS)

    Doerr, W.; Lacmann, A.; Noack, R.; Spekl, K.

    2000-01-01

    Keratinocyte Growth Factor (KGF) is a member of the fibroblast growth factor family. KGF is produced by mesenchymal cells, predominantly fibroblasts; target cells are epithelial cells in a variety of tissues. Hence, KGF is a mediator of the mesenchymal-epithelial communication and a regulator of tissue homeostasis in epithelia. Systemic administration of KGF in animal models induces stimulation of proliferation and modulation of migration and differentiation processes in squamous epithelia. This results in a transient increase in cell numbers and epithelial thickness. Radiation exposure of epithelia causes an imbalance between cell production and cell loss, which in consequence causes progressive cell depletion and eventually complete denudation. Systemic application of KGF reduces the radiation-induced cell loss. This effect is most pronounced when KGF is given after the radiation exposure. With regard to epithelial radiation tolerance, KGF-application in animal models results in a significant increase, by a factor of 1.7-2.3, in the doses required to induce epithelial ulceration as a clinically most relevant endpoint. After exposure with a given dose, this translates into a significant reduction of the clinical manifestation of the acute radiation sequelae. This effect is accompanied by a modification of the time course of the response. In conclusion, although the mechanisms underlying the protective efficacy remain unclear, KGF may represent an effective approach for amelioration of radiation effects in oral, gastrointestinal and cutaneous epithelia. Results from a clinical pilot study indicate that KGF is well tolerated and effective in humans. (orig.) [de

  5. The effect of barrier layer-mediated catalytic deactivation in vertically aligned carbon nanotube growth

    International Nuclear Information System (INIS)

    Patole, S P; Yu, Seong-Man; Shin, Dong-Wook; Yoo, Ji-Beom; Kim, Ha-Jin; Han, In-Taek; Kwon, Kee-Won

    2010-01-01

    The effect of Al-barrier layer-mediated Fe-catalytic deactivation in vertically aligned carbon nanotube (CNT) growth was studied. The substrate surface morphology, catalytic diffusion and barrier layer oxidation were found to be dependent on the annealing temperature of the barrier layer, which ultimately affects CNT growth. The annealed barrier layer without complete oxidation was found to be suitable for top to bottom super aligned CNT arrays. The highest average CNT growth rate of up to 3.88 μm s -1 was observed using this simple approach. Details of the analysis are also presented.

  6. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    Directory of Open Access Journals (Sweden)

    Jinyi Liu

    Full Text Available Growth regulating factors (GRFs are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  7. Vascularized bone transplant chimerism mediated by vascular endothelial growth factor.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2015-01-01

    Vascular endothelial growth factor (VEGF) induces angiogenesis and osteogenesis in bone allotransplants. We aim to determine whether bone remodeling in VEGF-treated bone allotransplants results from repopulation with circulation-derived autogenous cells or survival of allogenic transplant-derived cells. Vascularized femoral bone transplants were transplanted from female Dark Agouti rats (DA;RT1(a) ) to male Piebald Viral Glaxo (PVG;RT1(c) ). Arteriovenous bundle implantation and short-term immunosuppression were used to maintain cellular viability. VEGF was encapsulated in biodegradable microspheres and delivered intramedullary in the experimental group (n = 22). In the control group (n = 22), no VEGF was delivered. Rats were sacrificed at 4 or 18 weeks. Laser capture microdissection of bone remodeling areas was performed at the inner and outer cortex. Sex-mismatched genes were quantified with reverse transcription-polymerase chain reaction to determine the amount of male cells to total cells, defined as the relative expression ratio (rER). At 4 weeks, rER was significantly higher at the inner cortex in VEGF-treated transplants as compared to untreated transplants (0.622 ± 0.225 vs. 0.362 ± 0.081, P = 0.043). At 4 weeks, the outer cortex in the control group had a significantly higher rER (P = 0.038), whereas in the VEGF group, the inner cortex had a higher rER (P = 0.015). Over time, in the outer cortex the rER significantly increased to 0.634 ± 0.106 at 18 weeks in VEGF-treated rats (P = 0.049). At 18 weeks, the rER was >0.5 at all cortical areas in both groups. These in vivo findings suggest a chemotactic effect of intramedullary applied VEGF on recipient-derived bone and could imply that more rapid angiogenesis of vascularized allotransplants can be established with microencapsulated VEGF. © 2014 Wiley Periodicals, Inc.

  8. Co-ordinate regulation of growth factor receptors and lipid phosphate phosphatase-1 controls cell activation by exogenous lysophosphatidate.

    Science.gov (United States)

    Pilquil, C; Ling, Z C; Singh, I; Buri, K; Zhang, Q X; Brindley, D N

    2001-11-01

    The serum-derived lipid growth factors, lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P), activate cells selectively through different members of a family of endothelial differentiation gene (EDG) receptors. Activation of EDG receptors by LPA and S1P provides a variety of signalling cascades depending upon the G-protein coupling of the different EDG receptors. This leads to chemotactic and mitogenic responses, which are important in wound healing. For example, LPA stimulates fibroblast division and S1P stimulates the chemotaxis and division of endothelial cells leading to angiogenesis. Counteracting these effects of LPA and S1P, are the actions of lipid phosphate phosphatases (LPP, or phosphatidate phosphohydrolases, Type 2). The isoform LPP-1 is expressed in the plasma membrane with its active site outside the cell. This enzyme is responsible for 'ecto-phosphatase' activity leading to the degradation of exogenous lipid phosphate mediators, particularly LPA. Expression of LPP-1 decreases cell activation by exogenous LPA. The mechanism for this is controversial and several mechanisms have been proposed. Evidence will be presented that the LPPs cross-talk with EDG and other growth factor receptors, thus, regulating the responses of the cells to lipid phosphate mediators of signal transduction.

  9. Effects of gintonin on the proliferation, migration, and tube formation of human umbilical-vein endothelial cells: involvement of lysophosphatidic-acid receptors and vascular-endothelial-growth-factor signaling

    Directory of Open Access Journals (Sweden)

    Sung-Hee Hwang

    2016-10-01

    Conclusion: The gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginseng-induced angiogenic and wound-healing effects.

  10. Growth hormone-insulin-like growth factor-1 and inflammatory response to a single exercise bout in children and adolescents.

    Science.gov (United States)

    Nemet, Dan; Eliakim, Alon

    2010-01-01

    Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.

  11. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    Directory of Open Access Journals (Sweden)

    McLoughlin Paul

    2011-01-01

    Full Text Available Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2 or hypoxia (10% O2 for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA, VEGFB, placenta growth factor (PlGF, VEGF receptor 1 (VEGFR1 and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or

  12. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  13. Risk Factors for Preschool Depression: The Mediating Role of Early Stressful Life Events

    Science.gov (United States)

    Luby, Joan L.; Belden, Andy C.; Spitznagel, Edward

    2006-01-01

    Background: Family history of mood disorders and stressful life events are both established risk factors for childhood depression. However, the role of mediators in risk trajectories, which are potential targets for intervention, remains understudied. To date, there have been no investigations of mediating relationships between risk factors and…

  14. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180)

    DEFF Research Database (Denmark)

    Behrendt, Niels

    2004-01-01

    The breakdown of the barriers formed by extracellular matrix proteins is a pre-requisite for all processes of tissue remodeling. Matrix degradation reactions take part in specific physiological events in the healthy organism but also represent a crucial step in cancer invasion. These degradation...... on the surface of various cell types that serves to bind the urokinase plasminogen activator and localize the activation reactions in the proteolytic cascade system of plasminogen activation. uPARAP is an integral membrane protein with a pronounced role in the internalization of collagen for intracellular...... degradation. Both receptors have additional functions that are currently being unraveled. The present discussion of uPAR and uPARAP is centered on their protein structure and molecular and cellular function....

  15. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  16. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    Science.gov (United States)

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  17. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  18. Alterations of Growth Factors in Auti