WorldWideScience

Sample records for growth factor-beta superfamily

  1. Plasma transforming growth factor beta levels in breast cancer patients

    NARCIS (Netherlands)

    Sminia, P; Barten, AD; Van Waarde, MAWH; Vujaskovic, Z; Van Tienhoven, G

    1998-01-01

    We investigated whether the concentration of circulating transforming growth factor beta (TGF beta) yields diagnostic value in breast cancer. Blood was collected from twenty stage I and II breast cancer patients both prior to treatment and after surgical excision of the tumour. Both latent and

  2. Plasma transforming growth factor beta levels in breast cancer patients

    NARCIS (Netherlands)

    Sminia, P.; Barten, A. D.; van Waarde, M. A.; Vujaskovic, Z.; van Tienhoven, G.

    1998-01-01

    We investigated whether the concentration of circulating transforming growth factor beta (TGFbeta) yields diagnostic value in breast cancer. Blood was collected from twenty stage I and II breast cancer patients both prior to treatment and after surgical excision of the tumour. Both latent and active

  3. Expression and Function of Transforming Growth Factor beta in Melioidosis

    NARCIS (Netherlands)

    Weehuizen, Tassili A. F.; Wieland, Catharina W.; van der Windt, Gerritje J. W.; Duitman, Jan-Willem; Boon, Louis; Day, Nicholas P. J.; Peacock, Sharon J.; van der Poll, Tom; Wiersinga, W. Joost

    2012-01-01

    Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast Asia and northern Australia. An important controller of the immune system is the pleiotropic cytokine transforming growth factor beta (TGF-beta), of which

  4. Transforming growth factor-beta: possible roles in Dupuytren's contracture

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1995-01-01

    Transforming growth factor-beta (TGF-beta) is a multifunctional polypeptide that stimulates extracellular matrix deposition and fibroblast proliferation. Because both these features characterize Dupuytren's contracture, we investigated a possible role for TGF-beta in the etiology of this disorder.

  5. Transforming growth factor-beta, but not ciliary neurotrophic factor, inhibits DNA synthesis of adrenal medullary cells in vitro

    DEFF Research Database (Denmark)

    Wolf, N; Krohn, K; Bieger, S

    1999-01-01

    by the neuroendocrine chromaffin cells, which also express the transforming growth factor-beta receptor type II. In contrast to the developmentally related sympathetic neurons, chromaffin cells continue to proliferate throughout postnatal life. Using 5-bromo-2'-deoxyuridine pulse labeling and tyrosine hydroxylase......Transforming growth factor-betas are members of a superfamily of multifunctional cytokines regulating cell growth and differentiation. Their functions in neural and endocrine cells are not well understood. We show here that transforming growth factor-betas are synthesized, stored and released...... immunocytochemistry as a marker for young postnatal rat chromaffin cells, we show that treatment with fibroblast growth factor-2 (1 nM) and insulin-like growth factor-II (10 nM) increased the fraction of 5-bromo-2'-deoxyuridine-labeled nuclei from 1% to about 40% of the cells in the absence of serum. In the presence...

  6. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas

    2012-07-01

    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  7. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Science.gov (United States)

    Dobolyi, Arpád; Vincze, Csilla; Pál, Gabriella; Lovas, Gábor

    2012-01-01

    Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed. PMID:22942700

  8. Transforming growth factor beta 1, a cytokine with regenerative functions

    Directory of Open Access Journals (Sweden)

    Wale Sulaiman

    2016-01-01

    Full Text Available We review the biology and role of transforming growth factor beta 1 (TGF-β1 in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus, which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accurately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treatment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronically denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration.

  9. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Directory of Open Access Journals (Sweden)

    Rickmann Michael

    2008-10-01

    Full Text Available Abstract Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.

  10. Molecular characterization of transforming growth factor-beta3

    NARCIS (Netherlands)

    Dijke, ten P.

    1991-01-01

    Normal tissue homeostasis is controlled by a critical balance of positive and negative modulators. Chapter 2 gives an overview of the molecular aspects of growth control, in particular the role of growth factors and oncogene and anti-oncogene products. Uncontrolled growth of cancer cells

  11. Peritoneal transforming growth factor beta-1 expression during laparoscopic surgery: a clinical trial

    NARCIS (Netherlands)

    Brokelman, Walter J. A.; Holmdahl, Lena; Bergström, Maria; Falk, Peter; Klinkenbijl, Jean H. G.; Klinkonbijl, Jean H. G.; Reijnen, Michel M. P. J.; Reijnen, Michael M. P. J.

    2007-01-01

    Transforming growth factor-beta 1 (TGF-beta1) is a growth factor involved in various biologic processes, including peritoneal wound healing and dissemination of malignancies. Laparoscopic surgery is evolving rapidly, and indications are increasing. The peritoneal TGF-beta1 expression during

  12. Transforming growth factor-beta1 induces tumor stroma and reduces tumor infiltrate in cervical cancer

    NARCIS (Netherlands)

    Hazelbag, Suzanne; Gorter, Arko; Kenter, Gemma G.; van den Broek, Lambert; Fleuren, Gertjan

    2002-01-01

    Cervical carcinomas consist of tumor cell nests surrounded by varying amounts of intratumoral stroma containing different quantities and types of immune cells. Besides controlling (epithelial) cell growth, the multifunctional cytokine transforming growth factor-beta(1) (TGF-beta(1)) is involved in

  13. Prognostic value of plasma transforming growth factor-beta in patients with glioblastoma multiforme

    NARCIS (Netherlands)

    Hulshof, M. C.; Sminia, P.; Barten-van Rijbroek, A. D.; Gonzalez Gonzalez, D.

    2001-01-01

    We investigated whether the postoperative concentration of circulating transforming growth factor beta (TGF-beta) yields prognostic value in patients with glioblastoma multiforme (gbm). Blood was collected from 20 healthy volunteers and in 28 patients with mainly glioblastoma multiforme (gbm), both

  14. Transforming growth factor-beta1 inhibits all-trans retinoic acid-induced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Souček, Karel; Pacherník, Jiří; Kubala, Lukáš; Vondráček, Jan; Hofmanová, Jiřina; Kozubík, Alois

    2006-01-01

    Roč. 30, č. 5 (2006), s. 607-623 ISSN 0145-2126 R&D Projects: GA ČR(CZ) GA524/03/0766; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507 Keywords : transforming growth factor - beta * retinoic acid * myeloid leukemia Subject RIV: BO - Biophysics Impact factor: 2.483, year: 2006

  15. Constitutive Activation of Transforming Growth Factor Beta Receptor 1 in the Mouse Uterus Impairs Uterine Morphology and Function1

    Science.gov (United States)

    Gao, Yang; Duran, Samantha; Lydon, John P.; DeMayo, Francesco J.; Burghardt, Robert C.; Bayless, Kayla J.; Bartholin, Laurent; Li, Qinglei

    2014-01-01

    ABSTRACT Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function. PMID:25505200

  16. Transcription profiling of human MCF10A cells subjected to ionizing radiation and treatment with transforming growth factor beta-1

    Data.gov (United States)

    National Aeronautics and Space Administration — Transforming growth factor beta-1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis but it can switch to a tumor promoter during neoplastic...

  17. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions.

    Science.gov (United States)

    Böttner, M; Krieglstein, K; Unsicker, K

    2000-12-01

    Transforming growth factor-betas (TGF-betas) are among the most widespread and versatile cytokines. Here, we first provide a brief overview of their molecular biology, biochemistry, and signaling. We then review distribution and functions of the three mammalian TGF-beta isoforms, beta1, beta2, and beta3, and their receptors in the developing and adult nervous system. Roles of TGF-betas in the regulation of radial glia, astroglia, oligodendroglia, and microglia are addressed. Finally, we review the current state of knowledge concerning the roles of TGF-betas in controlling neuronal performances, including the regulation of proliferation of neuronal precursors, survival/death decisions, and neuronal differentiation.

  18. Transforming growth factor-beta. En potent multifunktionel voekstfaktor for normale og maligne celler

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Spang-Thomsen, M

    1992-01-01

    The polypeptide growth factor transforming growth factor-beta (TGF-beta) is a multifunctional regulator of basic cellular functions: proliferation, differentiation, cell adhesion and interactions with the extracellular matrix. TGF-beta is part of a regulatory network of which our knowledge is still...... incomplete, together with other substances such as steroid hormones, oncogene products and integrins. Five isoforms for TGF-beta and five different TGF-beta receptors have been described. TGF-beta exhibits an antiproliferative effect in vitro and in vivo on many cells of epthelial, myeloid, lymphoid...... and mesenchymal origin together with a growth-stimulating effect on various cells like endothelial cells and epidermal keratinocytes. Production of TGF-beta and receptors for TGF-beta has been found in many cell types, both normal and malignant. Nevertheless the amount of in vivo data is too limited to identify...

  19. Comparison of transforming growth factor beta expression in healthy and diseased human tendon.

    Science.gov (United States)

    Goodier, Henry C J; Carr, Andrew J; Snelling, Sarah J B; Roche, Lucy; Wheway, Kim; Watkins, Bridget; Dakin, Stephanie G

    2016-02-17

    Diseased tendons are characterised by fibrotic scar tissue, which adversely affects tendon structure and function and increases the likelihood of re-injury. The mechanisms and expression profiles of fibrosis in diseased tendon is understudied compared to pulmonary and renal tissues, where transforming growth factor (TGF)β and its associated superfamily are known to be key drivers of fibrosis and modulate extracellular matrix homeostasis. We hypothesised that differential expression of TGFβ superfamily members would exist between samples of human rotator cuff tendons with established disease compared to healthy control tendons. Healthy and diseased rotator cuff tendons were collected from patients presenting to an orthopaedic referral centre. Diseased tendinopathic (intact) and healthy rotator cuff tendons were collected via ultrasound-guided biopsy and torn tendons were collected during routine surgical debridement. Immunohistochemistry and quantitative real-time polymerase chain reaction were used to investigate the protein and gene expression profiles of TGFβ superfamily members in these healthy and diseased tendons. TGFβ superfamily members were dysregulated in diseased compared to healthy tendons. Specifically, TGFβ-1, TGFβ receptor (R)1 and TGFβ R2 proteins were reduced (p tendons. At the mRNA level, TGFβ R1 was significantly reduced in samples of diseased tendons, whereas TGFβ R2 was increased (p tendon disease. We propose that downregulation of TGFβ pathways in established tendon disease may be a protective response to limit disease-associated fibrosis. The disruption of the TGFβ axis with disease suggests associated downstream pathways may be important for maintaining healthy tendon homeostasis. The findings from our study suggest that patients with established tendon disease would be unlikely to benefit from therapeutic TGFβ blockade, which has been investigated as a treatment strategy in several animal models. Future studies should investigate

  20. Constitutive activation of transforming growth factor Beta receptor 1 in the mouse uterus impairs uterine morphology and function.

    Science.gov (United States)

    Gao, Yang; Duran, Samantha; Lydon, John P; DeMayo, Francesco J; Burghardt, Robert C; Bayless, Kayla J; Bartholin, Laurent; Li, Qinglei

    2015-02-01

    Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function. © 2015 by the Society for the Study of Reproduction, Inc.

  1. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    Energy Technology Data Exchange (ETDEWEB)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  2. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    Science.gov (United States)

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  3. Promoter polymorphism of transforming growth factor-beta1 gene and ulcerative colitis.

    Science.gov (United States)

    Tamizifar, B; Lankarani, K B; Naeimi, S; Rismankar Zadeh, M; Taghavi, A; Ghaderi, A

    2008-01-14

    To elucidate the possible difference in two promoter polymorphisms of the transforming growth factor-beta1 (TGF-beta1) gene (-800G > A, -509C > T) between ulcerative colitis (UC) patients and normal subjects. A total of 155 patients with established ulcerative colitis and 139 normal subjects were selected as controls. Two single nucleotide polymorphisms within the promoter region of TGF-beta1 gene (-509C > T and -800G > A) were genotyped using PCR-RFLP. There was a statistically significant difference in genotype and allele frequency distributions between UC patients and controls for the -800G > A polymorphism of the TGF-beta1 gene (P A of TGF-beta1 gene promoter between Iranian patients with UC and normal subjects.

  4. Transforming growth factor Beta2 is required for valve remodeling during heart development

    Science.gov (United States)

    Azhar, Mohamad; Brown, Kristen; Gard, Connie; Chen, Hwudaurw; Rajan, Sudarsan; Elliott, David A.; Stevens, Mark V.; Camenisch, Todd D.; Conway, Simon J.; Doetschman, Thomas

    2012-01-01

    Although the function of transforming growth factor beta2 (TGFβ2) in epithelial mesenchymal transition (EMT) is well studied, its role in valve remodeling remains to be fully explored. Here, we used histological, morphometric, immunohistochemical and molecular approaches and showed that significant dysregulation of major extracellular matrix (ECM) components contributed to valve remodeling defects in Tgfb2-/- embryos. The data indicated that cushion mesenchymal cell differentiation was impaired in Tgfb2-/- embryos. Hyaluronan and cartilage link protein-1 (CRTL1) were increased in hyperplastic valves of Tgfb2-/- embryos, indicating increased expansion and diversification of cushion mesenchyme into the cartilage cell lineage during heart development. Finally, western blot and immunohistochemistry analyses indicate that the activation of SMAD2/3 was decreased in Tgfb2-/- embryos during valve remodeling. Collectively, the data indicate that TGFβ2 promotes valve remodeling and differentiation by inducing matrix organization and suppressing cushion mesenchyme differentiation into cartilage cell lineage during heart development. PMID:21780244

  5. Regulation of proliferation of embryonic heart mesenchyme: Role of transforming growth factor-beta 1 and the interstitial matrix

    Energy Technology Data Exchange (ETDEWEB)

    Choy, M.; Armstrong, M.T.; Armstrong, P.B. (Univ. of California Davis Medical Center, Sacramento (USA))

    1990-10-01

    Proliferation of atrioventricular cushion mesenchyme of the embryonic avian heart maintained in three-dimensional aggregate culture is stimulated by interaction with the interstitial matrix. Chicken serum or transforming growth factor-beta 1, which stimulates proliferation, induces matrix deposition in regions of the aggregate showing high labeling indices with tritiated thymidine. Dispersed heart mesenchyme interstitial matrix introduced into serum-free culture is incorporated into the aggregate and stimulates cellular proliferation similar to serum or transforming growth factor-beta 1. Proliferation is reversibly inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro. It is suggested that transforming growth factor-beta 1 stimulates the production of interstitial matrix and that a sufficient stimulus for proliferation in this system is the presence of the matrix, which acts as the adhesive support for cellular anchorage.

  6. Regulation of proliferation of embryonic heart mesenchyme: Role of transforming growth factor-beta 1 and the interstitial matrix

    International Nuclear Information System (INIS)

    Choy, M.; Armstrong, M.T.; Armstrong, P.B.

    1990-01-01

    Proliferation of atrioventricular cushion mesenchyme of the embryonic avian heart maintained in three-dimensional aggregate culture is stimulated by interaction with the interstitial matrix. Chicken serum or transforming growth factor-beta 1, which stimulates proliferation, induces matrix deposition in regions of the aggregate showing high labeling indices with tritiated thymidine. Dispersed heart mesenchyme interstitial matrix introduced into serum-free culture is incorporated into the aggregate and stimulates cellular proliferation similar to serum or transforming growth factor-beta 1. Proliferation is reversibly inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro. It is suggested that transforming growth factor-beta 1 stimulates the production of interstitial matrix and that a sufficient stimulus for proliferation in this system is the presence of the matrix, which acts as the adhesive support for cellular anchorage

  7. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling

    DEFF Research Database (Denmark)

    Lin, M.; Overgaard, S; Glerup, H

    2001-01-01

    Increasing experimental interest has emerged for the use of growth factors to stimulate bone healing and bone formation in various clinical situations. We and others have demonstrated that recombinant human transforming growth factor-beta1 (rhTGF-beta1) adsorbed onto tricalcium phosphate (TCP)-co...

  8. Maternal breast milk transforming growth factor beta and feeding intolerance in preterm infants

    Science.gov (United States)

    Frost, Brandy L.; Jilling, Tamas; Lapin, Brittany; Maheshwari, Akhil; Caplan, Michael S.

    2015-01-01

    Background Feeding intolerance occurs commonly in the NICU. Breast milk contains a large pool of transforming growth factor-beta (TGF-beta). Few studies describe TGF-beta levels in preterm milk, and the relationship to feeding intolerance (FI) remains unexplored. We measured TGF-beta levels in preterm breast milk to investigate a correlation with FI in preterm infants. Methods Prospective observational trial of 100 mother-infant pairs, enrolling infants born below 32 weeks gestation and less than 1500 grams, and mothers who planned to provide breast milk. TGF-beta levels were measured using ELISA. Infant charts were reviewed for outcomes. Results TGF-beta declined postnatally, most elevated in colostrum (p<0.01). TGF-beta 2 levels were higher than TGF-beta 1 at all time points (p<0.01). Colostrum TGF-beta levels correlated inversely with birth weight (p<0.01) and gestational age (p<0.05). One week TGF-beta 2 levels were reduced in growth-restricted infants with FI (p<0.01). Of infants with NEC, TGF-beta 2 levels appeared low, but small sample size precluded meaningful statistical comparisons. Conclusions TGF-beta levels decline temporally in preterm milk. TGF-beta 1 colostrum levels correlate inversely with birth weight and gestational age. TGF-beta 2 may play a role in FI in growth-restricted infants. The relationship of TGF-beta 2 and NEC merits future investigation. PMID:24995914

  9. The role of transforming growth factor-beta (TGF-beta during ovarian follicular development in sheep

    Directory of Open Access Journals (Sweden)

    Quirke Laurel D

    2004-11-01

    Full Text Available Abstract Background Recently, several members of the transforming growth factor-beta (TGF-beta superfamily have been shown to be essential for regulating the growth and differentiation of ovarian follicles and thus fertility. Methods Ovaries of neonatal and adult sheep were examined for expression of the TGF-betas 1–3 and their receptors (RI and RII by in situ hybridization using ovine cDNAs. The effects of TGF-beta 1 and 2 on proliferation and differentiation of ovine granulosa cells in vitro were also studied. Results The expression patterns of TGF-beta 1 and 2 were similar in that both mRNAs were first observed in thecal cells of type 3 (small pre-antral follicles. Expression of both mRNAs continued to be observed in the theca of larger follicles and was also present in cells within the stroma and associated with the vascular system of the ovary. There was no evidence for expression in granulosa cells or oocytes. Expression of TGF-beta 3 mRNA was limited to cells associated with the vascular system within the ovary. TGFbetaRI mRNA was observed in oocytes from the type 1 (primordial to type 5 (antral stages of follicular growth and granulosa and thecal cells expressed this mRNA at the type 3 (small pre-antral and subsequent stages of development. The TGFbetaRI signal was also observed in the ovarian stroma and vascular cells. In ovarian follicles, mRNA encoding TGFbetaRII was restricted to thecal cells of type 3 (small pre-antral and larger follicles. In addition, expression was also observed in some cells of the surface epithelium and in some stromal cells. In granulosa cells cultured for 6 days, both TGF-beta 1 and 2 decreased, in a dose dependent manner, both the amount of DNA and concentration of progesterone. Conclusion In summary, mRNA encoding both TGF-beta 1 and 2 were synthesized by ovarian theca, stroma and cells of the vascular system whereas TGF-beta 3 mRNA was synthesized by vascular cells. Luteinizing granulosa cells also

  10. The transforming growth factor beta-1 in the oncogenesis of human lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    V. E. Shevchenko

    2017-01-01

    Full Text Available Background. The transforming growth factor beta 1 (TGF-β1 is one of the most important tissue factors secreted by the development of epithelial tumors. Increased expression of TGF-β1 in lung tumors promotes cancer cells survival enhancing their growth, migration, invasion, angiogenesis, immune system suppression.Objective: to study molecular mechanisms of TGF-β1 action on A549 human lung adenocarcinoma cells by means of proteomic high-resolution mass spectrometry. Results. Intracellular signaling pathways responsible for the involvement of TGF-β1 in the oncogenesis of non-small cell lung cancer have been found, which include the differential expressed proteins of the families of cullin, ETS oncogenes, histone diacelases, cyclin-dependent kinases, and the signaling pathway phosphatidylinositol 3-kinase (PI3K.Conclusions. Important patterns are determined that could be used for the development of new approaches for detection of lung cancer metastasis candidate markers and potential therapy targets of this decease.

  11. Changes in Maternal Serum Transforming Growth Factor Beta-1 during Pregnancy: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Mandeep Singh

    2013-01-01

    Full Text Available Changes in circulating levels of maternal serum transforming growth factor beta-1 (TGF-β1, collected from 98 women (AGA at different gestational ages (10–38 weeks were measured and comparisons were made between levels in pregnant and nonpregnant controls and also between 10 women with small-for-gestational age (SGA and 7 with appropriate-for-gestational age (AGA fetuses. Maternal serum TGF-β1 levels at all stages of pregnancy were higher than those in normal healthy nonpregnant adults. The mean TGF-β1 levels in SGA pregnancies at 34-week gestation (32.5 + 3.2 ng/mL were significantly less than those in AGA pregnancies (39.2 + 9.8 ng/mL while at 38-week gestation, the levels were similar in the two groups (36.04 + 4.3 versus 36.7 + 7.0 ng/mL. This differential change in TGF-β1 levels is probably an important modulating factor in the aetiopathogenesis of abnormal intrauterine fetal growth.

  12. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle

    2005-12-01

    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  13. Affinity peptides protect transforming growth factor beta during encapsulation in poly(ethylene glycol) hydrogels.

    Science.gov (United States)

    McCall, Joshua D; Lin, Chien-Chi; Anseth, Kristi S

    2011-04-11

    Transforming growth factor beta (TGFβ(1)) influences a host of cellular fates, including proliferation, migration, and differentiation. Due to its short half-life and cross reactivity with a variety of cells, clinical application of TGFβ(1) may benefit from a localized delivery strategy. Photoencapsulation of proteins in polymeric matrices offers such an opportunity; however, the reactions forming polymer networks often result in lowered protein bioactivity. Here, PEG-based gels formed from the chain polymerization of acrylated monomers were studied as a model system for TGFβ(1) delivery. Concentrations of acrylate group ranging from 0 to 50 mM and photopolymerization conditions were systematically altered to study their effects on TGFβ(1) bioactivity. In addition, two peptide sequences, WSHW (K(D) = 8.20 nM) and KRIWFIPRSSWY (K(D) = 10.41 nM), that exhibit binding affinity for TGFβ(1) were introduced into the monomer solution prior to encapsulation to determine if affinity binders would increase the activity and release of the encapsulated growth factor. The addition of affinity peptides enhanced the bioactivity of TGFβ(1) in vitro from 1.3- to 2.9-fold, compared to hydrogels with no peptide. Further, increasing the concentration of affinity peptides by a factor of 100-10000 relative to the TGFβ(1) concentration increased fractional recovery of the protein from PEG hydrogels.

  14. Tetraspanin CD151 regulates transforming growth factor beta signaling: implication in tumor metastasis.

    Science.gov (United States)

    Sadej, Rafal; Romanska, Hanna; Kavanagh, Dean; Baldwin, Gouri; Takahashi, Takashi; Kalia, Neena; Berditchevski, Fedor

    2010-07-15

    Tetraspanin CD151 is associated with laminin-binding integrins and controls tumor cell migration and invasion. By analyzing responses of breast cancer cells to various growth factors, we showed that depletion of CD151 specifically attenuates transforming growth factor beta1 (TGFbeta1)-induced scattering and proliferation of breast cancer cells in three-dimensional Matrigel. CD151-dependent cell scattering requires its association with either alpha3beta1 or alpha6 integrins, but it is independent of the recruitment of CD151 to tetraspanin-enriched microdomains. We also found that CD151 regulates the compartmentalization of TGF-beta type I receptor (TbetaRI/ALK-5) and specifically controls the TGFbeta1-induced activation of p38. In contrast, signaling leading to activation of Smad2/3, c-Akt, and Erk1/2 proteins was comparable in CD151(+) and CD151(-) cells. Attenuation of TGFbeta1-induced responses correlated with reduced retention in the lung vascular bed, inhibition of pneumocyte-induced scattering of breast cancer cells in three-dimensional Matrigel, and decrease in experimental metastasis to the lungs. These results identify CD151 as a positive regulator of TGFbeta1-initiated signaling and highlight the important role played by this tetraspanin in TGFbeta1-induced breast cancer metastasis. (c)2010 AACR.

  15. Phase I study of transforming growth factor-beta 3 mouthwashes for prevention of chemotherapy-induced mucositis

    NARCIS (Netherlands)

    Wymenga, ANM; van der Graaf, WTA; Hofstra, LS; Spijkervet, FKL; Timens, W; Timmer-Bosscha, H; Sluiter, WJ; van Buuren, AHJAW; Mulder, NH; de Vries, EGE

    The purpose of this study was to establish the safety and tolerability of recombinant transforming growth factor-beta 3 (TGF-beta 3; CGP 46614) mouthwashes intended for prevention of chemotherapy-induced mucositis. Local effects were especially analyzed by objective and subjective measurements of

  16. Significance of plasma transforming growth factor-beta levels in radiotherapy for non-small-cell lung cancer

    NARCIS (Netherlands)

    De Jaeger, K; Seppenwoolde, Y; Kampinga, HH; Belderbos, JSA; Lebesque, JV

    2004-01-01

    Purpose: In dose-escalation studies of radiotherapy (RT) for non-small-cell lung cancer (NSCLC), radiation pneumonitis (RP) is the most important dose-limiting complication. Transforming growth factor-beta1 (TGF-beta1) has been reported to be associated with the incidence of RP. It has been proposed

  17. Plasma levels of Transforming Growth Factor Beta in HIV-1 patients with oral candidiasis

    Science.gov (United States)

    Izadi, A; Asadikaram, G; Nakhaee, N; Hadizadeh, S; Ayatollahi Mousavi, A

    2015-01-01

    Background and Purpose: TGF-β is a potent regulator and suppressor of the immune system and overproduction of this cytokine may contribute to immunosuppression in HIV-infected patients. Increasing population of immunosuppressed patients has resulted in increasingly frequent of fungal infections, including oral candidiasis. The aim of this study was to evaluate the plasma levels of TGF-β under in vivo conditions. Materials and Methods: Seventy- two samples were obtained from the oral cavities of HIV-positive Iranian patients and cultured on Sabouraud’s dextrose agar and CHROMagar. Also blood samples were obtained to assess TGF-β levels using ELISA technique. Results: Thirty-three out of 72 oral samples yielded candida isolates, Candida albicans in 14 and non-albicans candida in 19.Fungal infection decreased significantly more TGF-β level than non-fungal infection also HIV negative were significantly more TGF-β than HIV positive. Conclusion: Our findings suggest a significant interaction between fungal infection and HIV on expression of Transforming Growth Factor Beta. PMID:28680977

  18. Transforming growth factor beta signal transduction: a potential target for maintenance/restoration of transparency of the cornea.

    Science.gov (United States)

    Saika, Shizuya; Yamanaka, Osamu; Sumioka, Takayoshi; Okada, Yuka; Miyamoto, Takeshi; Shirai, Kumi; Kitano, Ai; Tanaka, Sai-ichi

    2010-09-01

    Maintenance of the transparency and regular shape of the cornea are essential to the normal vision, whereas opacification of the tissue impairs vision. Fibrogenic reaction leading to scarring in an injured cornea is characterized by appearance of myofibroblasts, the key player of the fibrogenic reaction, and excess accumulation of fibrous extracellular matrix. Inflammatory/fibrogenic growth factors/cytokines produced by inflammatory cells play a pivotal role in fibrogenic response. Signaling systems involved in myofibroblast formation and fibrogenesis are activated by various growth factors, i.e., transforming growth factor beta or others. Modulation of transforming growth factor beta signal transduction molecules, e.g., Smad and mitogen-activated protein kinases, by gene transfer and other technology provides a new concept of prevention/treatment of unfavorable fibrogenesis in the cornea.

  19. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing.

    Science.gov (United States)

    Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz

    2013-06-01

    This review highlights the critical role of transforming growth factor beta (TGF-β)1-3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1-controlling factors involved in slowing down the healing process upon wound epithelialization. TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision.

  20. Transforming Growth Factor Beta Signaling in Cutaneous Wound Healing: Lessons Learned from Animal Studies.

    Science.gov (United States)

    Finnson, Kenneth W; Arany, Praveen R; Philip, Anie

    2013-06-01

    Wound healing is a complex physiological process involving a multitude of growth factors, among which transforming growth factor beta (TGF-β) has the broadest spectrum of effects. Animal studies have provided key information on the mechanisms of TGF-β action in wound healing and have guided the development of therapeutic strategies targeting the TGF-β pathway to improve wound healing and scarring outcome. Development of tissue-specific expression systems for overexpression or knockout of TGF-β signaling pathway components has led to novel insight into the role of TGF-β signaling in wound healing. This work has also identified molecules that might serve as molecular targets for the treatment of pathological skin conditions such as chronic wounds and excessive scarring (fibrosis). Many of the mouse models with genetic alterations in the TGF-β signaling pathway develop an underlying skin abnormality, which may pose some limitations on the interpretation of wound-healing results obtained in these animals. Also, TGF-β's pleiotropic effects on many cell types throughout all phases of wound healing present a challenge in designing specific strategies for targeting the TGF-β signaling pathway to promote wound healing or reduce scarring. Further characterization of TGF-β signaling pathway components using inducible tissue-specific overexpression or knockout technology will be needed to corroborate results obtained in mouse models that display a skin phenotype, and to better understand the role of TGF-β signaling during distinct phases of the wound-healing process. Such studies will also provide a better understanding of how TGF-β mediates its autocrine, paracrine, and double paracrine effects on cellular responses in vivo during wound healing.

  1. Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma.

    Science.gov (United States)

    Abou-Shady, M; Baer, H U; Friess, H; Berberat, P; Zimmermann, A; Graber, H; Gold, L I; Korc, M; Büchler, M W

    1999-03-01

    Transforming growth factor betas (TGF-betas) are multifunctional polypeptides that have been suggested to influence tumor growth. They mediate their functions via specific cell surface receptors (type I ALK5 and type II TGF-beta receptors). The aim of this study was to analyze the roles of the three TGF-betas and their signaling receptors in human hepatocellular carcinoma (HCC). HCC tissue samples were obtained from 18 patients undergoing partial liver resection. Normal liver tissues from 7 females and 3 males served as controls. The tissues for histological analysis were fixed in Bouin's solution and paraffin embedded. For RNA analysis, freshly obtained tissue samples were snap frozen in liquid nitrogen and stored at -80 degrees C until used. Northern blot analysis was used in normal liver and HCC to examine the expression of TGF-beta1, -beta2, -beta3 and their receptors: type I ALK5 (TbetaR-I ALK5), type II (TbetaR-II), and type III (TbetaR-III). Immunohistochemistry was performed to localize the corresponding proteins. All three TGF-betas demonstrated a marked mRNA overexpression in HCC in comparison with normal controls, whereas the levels of all three TGF-beta receptors showed no significant changes. Intense TGF-beta1, TGF-beta2, and TGF-beta3 immunostaining was found in hepatocellular carcinoma cells and in the perineoplastic stroma with immunohistochemistry, whereas no or mild immunostaining was present in the normal liver. For TbetaR-I ALK5 and TbetaR-II, the immunostaining in both HCC and normal liver was mild to moderate, with a slightly higher intensity in the normal tissues. The upregulation of TGF-betas in HCC suggests an important role for these isoforms in hepatic carcinogenesis and tumor progression. Moreover, the localization of the immunoreactivity in both malignant hepatocytes and stromal cells suggests that TGF-betas act via autocrine and paracrine pathways in this neoplasm.

  2. Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Philip R Buskohl

    Full Text Available Embryonic heart valve primordia (cushions maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ and serotonin (5-HT signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA and extracellular matrix expression (col1α2 in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT, resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical

  3. Serum Transforming Growth Factor Beta-1 as an Index of Chemical Hepato carcinogenesis in Rats

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.; Fekry, A.E.; Edrees, G.; Ali, M.A.; Ghareeb, N.A.

    2008-01-01

    Transforming growth factor beta-1 (TGF β1) is an important mediator which controls liver cell proliferation and replication. The relation between TGF β1, Alpha-fetoprotein (AFP) and clinically thought hepatocellular carcinoma (HCC) in rats were investigated to clarify the clinical value of measuring peripheral serum TGF β1 and AFP in evaluation of HCC. Peripheral serum TGF β1 and AFP were measured during chemically induced hepato carcinogenesis. Male rats were given a genotoxic compound diethylnitrosamine (DEN) in drinking water for 149 days with control receiving drinking water only. Animals were killed at different times intervals 54, 86 and 149 days, serum TGF β1 levels were measured by, Enzyme Linked Immunosorbent Assay (ELISA) and AFP levels were assayed by immunoradiometric assay (IRMA). In DEN treated rats 54 days, there was mild portal tract inflammatory cellular infiltrate, serum TGF β1 and AFP levels were both significantly elevated above control (P>0.05 and P<0.001). At 86 days there were moderate inflammation (portal and peri portal), serum TGF β1 and AFP levels were significantly increased, (P<0.001). At 149 days typical HCC were present in ten of ten rats and serum TGF β1 and AFP were both significantly elevated compared with controls, (P<0.001). It can be concluded that serum TGF β1 and AFP levels are elevated during chemically induced HCC and have roles during the stages of process (initiation, promotion and progression); both serum TGF β1 and AFP levels can be used in parallel as a non invasive tumor markers for early diagnosis and prognosis of HCC

  4. Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease

    Directory of Open Access Journals (Sweden)

    Yu Mi Choi

    2012-01-01

    Full Text Available Purpose : Transforming growth factor beta receptor 2 (TGFBR2 is a tumor suppressor gene that plays a role in the differentiation of striated cells and remodeling of coronary arteries. Single nucleotide polymorphisms (SNPs of this gene are associated with Marfan syndrome and sudden death in patients with coronary artery disease. Cardiovascular remodeling and T cell activation of TGFBR2 gene suggest that the TGFBR2 gene SNPs are related to the pathogenesis of Kawasaki disease (KD and coronary artery lesion (CAL. Methods : The subjects were 105 patients with KD and 500 healthy adults as controls. Mean age of KD group was 32 months age and 26.6% of those had CAL. We selected TGFBR2 gene SNPs from serum and performed direct sequencing. Results : The sequences of the eleven SNPs in the TGFBR2 gene were compared between the KD group and controls. Three SNPs (rs1495592, rs6550004, rs795430 were associated with development of KD (P=0.019, P=0.026, P=0.016, respectively. One SNP (rs1495592 was associated with CAL in KD group (P=0.022. Conclusion : Eleven SNPs in TGFBR2 gene were identified at that time the genome wide association. But, with the change of the data base, only six SNPs remained associated with the TGFBR2 gene. One of the six SNPs (rs6550004 was associated with development of KD. One SNP associated with CAL (rs1495592 was disassociated from the TGFBR2 gene. The other five SNPs were not functionally identified, but these SNPs are notable because the data base is changing. Further studies involving larger group of patients with KD are needed.

  5. Aqueous transforming growth factor-beta-I levels in rabbit eyes after excimer laser photoablation.

    Science.gov (United States)

    Bilgihan, K; Gürelik, G; Okur, H; Bilgihan, A; Hasanreisoglu, B; Imir, T

    1997-01-01

    Transforming growth factor beta (TGF-beta) plays an important role in anterior segment wound healing, by controlling the cell proliferation and differentiation, angiogenesis, extracellular matrix composition and mediating the immunosuppressive properties of the aqueous humor. The present study was undertaken to clarify the possible changes of aqueous humor TGF-betaI levels after excimer laser photoablation. Twenty-eight New Zealand rabbits were divided into four groups of 7 rabbits each. Group 1 served as control, the central 7 mm of corneal epithelium was removed in groups 2, 3 and 4. We performed 50-microm corneal photoablation in group 3, and 100-microm ablation in group 4. After 48 h we measured the TGF-betaI levels of the aqueous humor by ELISA method. The mean TGF-betaI value of the aqueous humor was found to be 162.94+/-13.73 pg/ml in the control group. Mechanical deepithelialization did not change the TGF-betaI levels of the aqueous humor (p > 0.05). There was no significant difference between the 50-microm photoablated group and the controls (p > 0.05), but the TGF-betaI levels of the 100-microm photoablated group were found to be significantly higher than those of both the control group and 50-microm photoablated group (p < 0.05). Many factors and cytokines may induce corneal haze and myopic regression after excimer laser photoablation; our study demonstrated that TGF-betaI is one of these factors and there is a positive correlation between the depth of corneal photoablation and aqueous TGF-betaI concentrations.

  6. Serotonin Potentiates Transforming Growth Factor-beta3 Induced Biomechanical Remodeling in Avian Embryonic Atrioventricular Valves

    Science.gov (United States)

    Buskohl, Philip R.; Sun, Michelle L.; Thompson, Robert P.; Butcher, Jonathan T.

    2012-01-01

    Embryonic heart valve primordia (cushions) maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV) cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ) and serotonin (5-HT) signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA) and extracellular matrix expression (col1α2) in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT), resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical remodeling of

  7. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus.

    Science.gov (United States)

    Cherian, S; Thoresen, M; Silver, I A; Whitelaw, A; Love, S

    2004-12-01

    Posthaemorrhagic ventricular dilatation (PHVD) is a common complication of intraventricular haemorrhage in premature infants. The aim of this study was to investigate the role of transforming growth factor-betas (TGF-betas), a family of polypeptides with potent desmoplastic properties, in the aetiology of PHVD in a newly developed neonatal rat model of this disorder. Pups were injected with citrated rat blood or artificial cerebrospinal fluid (ACSF) into alternate lateral ventricles on postnatal days 7 and 8. The brains were perfusion-fixed 14 days later and immunohistochemistry was performed for TGF-beta1, -beta2 and -beta3, p44/42 mitogen-activated protein (MAP) kinases, and the extracellular matrix proteins laminin, vitronectin and fibronectin. Ventricular dilatation occurred in 58.3% of animals injected with blood and 36.7% of those injected with ACSF. Periventricular immunoreactivity for TGF-beta1 and -beta2 increased in injected animals irrespective of the presence or absence of ventricular dilatation, although the levels of both isoforms tended to be higher in animals with hydrocephalus. TGF-beta3 immunoreactivity was elevated in hydrocephalic rats only. The immunolabelling for phosphorylated p44/42 MAP kinases rose in a pattern similar to that for TGF-beta1 and -beta2. Expression of TGF-betas was accompanied by deposition of the extracellular matrix proteins fibronectin, laminin and vitronectin. The changes caused by injection of ACSF were the same as those caused by injection of blood. Our results raise the possibility that expression of TGF-betas, together with extracellular matrix protein deposition, may be involved in the development and/or maintenance of hydrocephalus after ventricular distension due to haemorrhage in the neonate.

  8. Redox-mediated activation of latent transforming growth factor-beta 1

    Science.gov (United States)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  9. The role of transforming growth factor beta 1 in communicating and non-communicating hydrocele.

    Science.gov (United States)

    Mousavi, S A; Larijani, L V; Mousavi, S J; Kenari, S A; Darvish, A

    2016-08-01

    Repair of inguinal hernia and hydrocele are one of the most common operations performed by surgeons. However, the exact biological mechanism responsible for the closure of processus vaginalis (PV) is not completely understood. Transforming growth factor beta 1 (TGF-β1) is a potent fibrogenic agent and probably stimulate fibrosis and disappearing of PV. From September 2012 to December 2014, all boys from 1 to 5 years who were referred for surgery of hydrocele were divided into two groups of communicating (HC) or non-communicating hydrocele (HNC). During surgery, the fluid in the sac was aspirated and sent for biochemical evaluation including calcium, phosphorus, total protein, and TGF-β1. Finally, a biopsy of the sac was sent to the pathology. The results obtained were considered statistically significant (P hydrocele, including 43 patients and communicating, including 33. The patients studied were aged 1-5 years (mean 33.6 months). Biochemical tests on hydrocele fluid showed no significant difference in the levels of calcium, phosphorus, total protein, and bilirubin between two groups. However, mean TGF-β1 in NHC was found to be 53.45-114.28 pg/ml in HC group. A statistically significant difference (P = 0.04) was obtained. Furthermore, the study showed higher amounts of muscles in NHC (P < 0.001). The amount of TGF-β1 was higher in HC fluid than in non-communicating. To investigate the role of cytokine in the closure of PV, further studies will be required.

  10. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro.

    Science.gov (United States)

    Fan, J M; Ng, Y Y; Hill, P A; Nikolic-Paterson, D J; Mu, W; Atkins, R C; Lan, H Y

    1999-10-01

    We recently found evidence of tubular epithelial-myofibroblast transdifferentiation (TEMT) during the development of tubulointerstitial fibrosis in the rat remnant kidney. This study investigated the mechanisms that induce TEMT in vitro. The normal rat kidney tubular epithelial cell line (NRK52E) was cultured for six days on plastic or collagen type I-coated plates in the presence or absence of recombinant transforming growth factor-beta1 (TGF-beta1). Transdifferentiation of tubular cells into myofibroblasts was assessed by electron microscopy and by expression of alpha-smooth muscle actin (alpha-SMA) and E-cadherin. NRK52E cells cultured on plastic or collagen-coated plates showed a classic cobblestone morphology. Culture in 1 ng/ml TGF-beta caused only very minor changes in morphology, but culture in 10 or 50 ng/ml TGF-beta1 caused profound changes. This involved hypertrophy, a loss of apical-basal polarity and microvilli, with cells becoming elongated and invasive, the formation of a new front-end back-end polarity, and the appearance of actin microfilaments and dense bodies. These morphological changes were accompanied by phenotypic changes. Double immunohistochemistry staining showed that the addition of TGF-beta1 to confluent cell cultures caused a loss of the epithelial marker E-cadherin and de novo expression of alpha-SMA. An intermediate stage in transdifferentiation could be seen with hypertrophic cells expressing both E-cadherin and alpha-SMA. De novo alpha-SMA expression was confirmed by Northern blotting, Western blotting, and flow cytometry. In particular, cells with a transformed morphology showed strong alpha-SMA immunostaining of characteristic microfilament structures along the cell axis. There was a dose-dependent increase in the percentage of cells expressing alpha-SMA with increasing concentrations of TGF-beta1, which was completely inhibited by the addition of a neutralizing anti-TGF-beta1 antibody. Compared with growth on plastic, cell

  11. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis.

    NARCIS (Netherlands)

    Scharstuhl, A.; Vitters, E.L.; Kraan, P.M. van der; Berg, W.B. van den

    2003-01-01

    OBJECTIVE: Osteoarthritis (OA) is a joint disease characterized by osteophyte development, fibrosis, and articular cartilage damage. Effects of exogenous transforming growth factor beta (TGFbeta) isoforms and bone morphogenetic proteins (BMPs) suggest a role for these growth factors in the

  12. Intragraft platelet-derived growth factor-alpha and transforming growth factor-beta1 during the development of accelerated graft vascular disease after clinical heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Mol, W M; Niesters, H G; Maat, A P; Balk, A H; Weimar, W

    1999-01-01

    This study was to determine whether the growth factors platelet-derived growth factor-alpha (PDGF-alpha) and transforming growth factor-beta1 (TGF-beta1) contribute to the development of graft vascular disease (GVD) after clinical heart transplantation. We analysed intragraft PDGF-alpha and

  13. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1994-01-01

    Transforming growth factor-beta (TGF-beta) is a polypeptide with multiple physiological functions. Isoforms of this growth factor have important roles in control of the cell cycle, in regulation of cell-cell interactions and in growth and development. Malignant transformation has been shown to be

  14. Transforming growth factor-betas and their signaling receptors are coexpressed in Crohn's disease.

    Science.gov (United States)

    di Mola, F F; Friess, H; Scheuren, A; Di Sebastiano, P; Graber, H; Egger, B; Zimmermann, A; Korc, M; Büchler, M W

    1999-01-01

    To evaluate mechanisms that contribute to tissue repair and tissue remodeling in Crohn's disease (CD). Transforming growth factor-betas (TGF-betas) are involved in different chronic inflammatory disorders. They function by binding to two receptors, type I (TbetaR-I) subtype ALK5 and type II (TbetaR-II), which are concomitantly required for signal transduction. Tissues were obtained from 18 patients with CD (10 female patients, 8 male patients, median age 38.7 years [range 16 to 58 years]) undergoing surgery because of CD-related complications. Tissue samples of 18 healthy organ donors (10 female subjects, 8 male subjects, median age 50.3 years [range 15 to 65 years]) served as controls. The expression and localization of TGF-beta1, TGF-beta2, TGF-beta3, TbetaR-IALK5, TbetaR-II, and TbetaR-III were studied by Northern blot analysis, in situ hybridization, and immunohistochemistry. On Northern blot analysis, 94% of the CD samples exhibited enhanced TGF-beta1, TGF-beta3, and TbetaR-II mRNA expression compared with controls. TGF-beta2 was increased in 72%, TbetaR-IALK5 in 72%, and TbetaR-III in 82% of the patients with CD. On in situ hybridization and immunohistochemical analysis, TGF-beta1, TbetaR-IALK5, and TbetaR-II were seen to be colocalized in the lamina propria cells and in the lymphocytes closest to the luminal surface, but also in the remaining epithelial cells, and in fibroblasts of CD tissue samples. The concomitant overexpression of TGF-betas and their signaling receptors in CD points to a potential role of these regulatory molecules in the pathophysiology of CD. Activation of TGF-beta-mediated pathways might promote the repair of mucosal injury by enhancing the process of reepithelization, but might also contribute to extracellular matrix generation and subsequently to intramural fibrosis and intestinal obstruction.

  15. Transforming growth factor-beta, but not ciliary neurotrophic factor, inhibits DNA synthesis of adrenal medullary cells in vitro

    DEFF Research Database (Denmark)

    Wolf, N; Krohn, K; Bieger, S

    1999-01-01

    of fibroblast growth factor-2 and insulin-like growth factor-II, transforming growth factor-beta1 (0.08 nM) reduced 5-bromo-2'-deoxyuridine labeling by about 50%, without interfering with chromaffin cell survival or death. Doses lower and higher than 0.08 nM were less effective. Similar effects were seen...... immunocytochemistry as a marker for young postnatal rat chromaffin cells, we show that treatment with fibroblast growth factor-2 (1 nM) and insulin-like growth factor-II (10 nM) increased the fraction of 5-bromo-2'-deoxyuridine-labeled nuclei from 1% to about 40% of the cells in the absence of serum. In the presence...... by the neuroendocrine chromaffin cells, which also express the transforming growth factor-beta receptor type II. In contrast to the developmentally related sympathetic neurons, chromaffin cells continue to proliferate throughout postnatal life. Using 5-bromo-2'-deoxyuridine pulse labeling and tyrosine hydroxylase...

  16. Transforming growth factor-betas and related gene products in mosquito vectors of human malaria parasites: signaling architecture for immunological crosstalk.

    Science.gov (United States)

    Lieber, Matthew J; Luckhart, Shirley

    2004-08-01

    The participation of a divergent mosquito transforming growth factor-beta (TGF-beta) and mammalian TGF-beta1 in the Anopheles stephensi response to malaria parasite development [Infect. Genet. Evol. 1 (2001) 131-141; Infect. Immun. 71 (2003) 3000-3009] suggests that a network of Anopheles TGF-beta ligands and signaling pathways figure prominently in immune defense of this important vector group. To provide a basis for identifying the roles of these proteins in Anopheles innate immunity, we identified six predicted TGF-beta ligand-encoding genes in the Anopheles gambiae genome, including two expressed, diverged copies of 60A, the first evidence of ligand gene duplication outside of chordates. In addition to five predicted type I and II receptors, we identified three Smad genes in the A. gambiae genome that would be predicted to support both TGF-beta/Activin- and bone morphogenetic protein (BMP)-like signaling. All three Smad genes are expressed in an immunocompetent A. stephensi cell line and in the A. stephensi midgut epithelium, confirming that a conserved signaling architecture is in place to support signaling by divergent exogenous and endogenous TGF-beta superfamily proteins.

  17. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels

    Energy Technology Data Exchange (ETDEWEB)

    Preidl, Raimund H.M.; Moebius, Patrick; Weber, Manuel; Neukam, Friedrich W.; Schlegel, Andreas; Wehrhan, Falk [University of Erlangen- Nuernberg, Department of Oral and Maxillofacial Surgery, Erlangen (Germany); University of Erlangen- Nuernberg, Erlangen (Germany); Amann, Kerstin [University of Erlangen- Nuernberg, Erlangen (Germany)

    2014-12-09

    Microvascular free tissue transfer is a standard method in head and neck reconstructive surgery. However, previous radiotherapy of the operative region is associated with an increased incidence in postoperative flap-related complications and complete flap loss. As transforming growth factor beta (TGF-β) 1 and galectin-3 are well known markers in the context of fibrosis and lectin-like oxidized low-density lipoprotein 1 (LOX-1) supports vascular atherosclerosis, the aim of this study was to evaluate the expression of TGF-β1 and related markers as well as LOX-1 in irradiated vessels. To evaluate the expression of galectin-3, Smad 2/3, TGF-β1, and LOX-1, 20 irradiated and 20 nonirradiated arterial vessels were used for immunohistochemical staining. We semiquantitatively assessed the ratio of stained cells/total number of cells (labeling index). Expression of galectin-3, Smad 2/3, and TGF-β1 was significantly increased in previously irradiated vessels compared with nonirradiated controls. Furthermore, LOX-1 was expressed significantly higher in irradiated compared with nonirradiated vessels. Fibrosis-related proteins like galectin-3, Smad 2/3, and TGF-β1 are upregulated after radiotherapy and support histopathological changes leading to vasculopathy of the irradiated vessels. Furthermore, postoperative complications in irradiated patients can be explained by increased endothelial dysfunction caused by LOX-1 in previously irradiated patients. Consequently, not only TGF-β1 but also galectin-3inhibitors may decrease complications after microsurgical tissue transfer. (orig.) [German] Der freie mikrovaskulaere Gewebetransfer gilt heute als fester Standard in der rekonstruktiven Kopf-Hals-Chirurgie. Es zeigte sich jedoch, dass im Falle einer stattgehabten Bestrahlung im Operationsgebiet mit einer erhoehten Rate an transplantatbezogenen Komplikationen gerechnet werden muss. Sowohl TGF-β1 als auch Galektin-3 sind bekannte Mediatoren in Bezug auf die Fibroseentstehung

  18. Studies on Platelet-Derived Growth Factor Beta-Receptor and Hepatocyte Growth Factor Receptor c-met in Paracrine Interactions in Human Breast Cancer

    Science.gov (United States)

    1996-09-01

    specific expression, and transforming submandibular gland . Growth Factors 1994, 10:145- activity of the mouse met proto-oncogene. Cell Growth 151...Derived Growth Factor Beta-Receptor and Hepatocyte Growth Factor Receptor c-met in Paracrine Interactions in Human Breast Cancer PRINCIPAL INVESTIGATOR...Interactions in Human Breast DAMDI7-94-J-4407 Cancer 6. AUTHOR(S) Bruce E. Elliott, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

  19. Active Transforming Growth Factor-beta2 in the Aqueous Humor of Posterior Polymorphous Corneal Dystrophy Patients

    Czech Academy of Sciences Publication Activity Database

    Stádníková, A.; Ďuďáková, L.; Skalická, P.; Valenta, Zdeněk; Filipec, M.; Jirsová, K.

    2017-01-01

    Roč. 12, č. 4 (2017), č. článku e0175509. E-ISSN 1932-6203 Grant - others:GA ČR(CZ) GA17-12355S; GA MŠk(CZ) 7F14156 Institutional support: RVO:67985807 Keywords : transforming growth factor-beta2 * posterior polymorphous corneal dystrophy * corneal endothelial cells * general linear mixed-effect modelling * restricted maximum likelihood estimation Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 2.806, year: 2016

  20. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Andersen, Kasper; Clement, Christian Alexandro

    2014-01-01

    proteins/genes were analysed by immunocytochemistry and quantitative RT-PCR.TGF-β superfamily genes with overall highest mRNA expressions levels included growth differentiation factors 9 (GDF9), bone morphogenic protein-15 (BMP15), BMP6, BMP-receptor-2 (BMPR2), anti-Müllerian hormone receptor 2 (AMHR2......In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling...... growth. Moreover, the presence of multiple TGF-β/BMP antagonists imply that certain growth factors are subjected to local regulation on different levels which address another important level of intraovarian regulation of follicle development in humans....

  1. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  2. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.

    2007-01-01

    ) promoter results in mammary gland hyperplasia and fibrosis, and mammary tumors. Cell lines isolated from MMTV-cyclin D1-Cdk2 (MMTV-D1K2) tumors exhibit Rb and p130 hyperphosphorylation and up-regulation of the protein products of E2F-dependent genes. These results suggest that cyclin D1/Cdk2 complexes may...... mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-DIK2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGF beta), but are relatively resistant to TGF...

  3. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling

    DEFF Research Database (Denmark)

    Lin, M.; Overgaard, S; Glerup, H

    2001-01-01

    Increasing experimental interest has emerged for the use of growth factors to stimulate bone healing and bone formation in various clinical situations. We and others have demonstrated that recombinant human transforming growth factor-beta1 (rhTGF-beta1) adsorbed onto tricalcium phosphate (TCP......)-coated implants can improve mechanical fixation and bone ongrowth. The present study evaluated bone remodeling in newly formed bone and adjacent trabecular bone around TCP-coated implants with and without rhTGF-beta1 adsorption. Unloaded cylindrical grit-blasted titanium alloy implants coated with TCP were.......6% in the control group to 5.9% in the rhTGF-beta1 group (p = 0.02). In the surrounding trabecular bone no significant changes in bone remodeling parameters was demonstrated. This study suggests that rhTGF-beta1 adsorbed onto TCP-ceramic coated implants accelerates repair activity in the newly formed bone close...

  4. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...... cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract...... for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature...

  5. Differential role of Sloan–Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells

    Science.gov (United States)

    Khan, Shafiq A.

    2012-01-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling. PMID:22843506

  6. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells.

    Science.gov (United States)

    Vo, BaoHan T; Cody, Bianca; Cao, Yang; Khan, Shafiq A

    2012-11-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling.

  7. Transforming growth factor beta stimulation of biglycan gene expression is potentially mediated by sp1 binding factors

    DEFF Research Database (Denmark)

    Heegaard, Anne-Marie; Xie, Zhongjian; Young, Marian Frances

    2004-01-01

    Biglycan is a small leucine-rich proteoglycan which is localized in the extracellular matrix of bone and other specialized connective tissues. Both biglycan mRNA and protein are up-regulated by transforming growth factor-beta(1) (TGF-beta(1)) and biglycan appears to influence TGF-beta(1) activity...... promoter upstream from the transcriptional start site, which contained several binding sites for the transcription factor Sp1. Electrophoretic mobility shift assays with nuclear extracts from MG-63 cells showed binding of both Sp1 and Sp3 to a site at -216 to -208. When the biglycan promoter construct....... In this study, we have investigated the mechanism by which TGF-beta(1), TGF-beta(2) and TGF-beta(3) stimulate biglycan mRNA expression in the osteoblastic cell line MG-63. The cells were transfected with a series of deletional human biglycan promoter constructs and a region in the biglycan 5' DNA was found...

  8. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

    Directory of Open Access Journals (Sweden)

    Erh-Hsuin Lim

    2013-11-01

    Full Text Available BackgroundTo overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF into an electrospun poly(L-lactide scaffold.MethodsThe electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats.ResultsChemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen.ConclusionsWe have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

  9. Regulation of c-MYC transcriptional activity by transforming growth factor-beta 1-stimulated clone 22.

    Science.gov (United States)

    Zheng, Ling; Suzuki, Hiroyuki; Nakajo, Yuka; Nakano, Akinobu; Kato, Mitsuyasu

    2018-02-01

    c-MYC stimulates cell proliferation through the suppression of cyclin-dependent kinase (CDK) inhibitors including P15 (CDKN2B) and P21 (CDKN1A). It also activates E-box-mediated transcription of various target genes including telomerase reverse transcriptase (TERT) that is involved in cellular immortality and tumorigenesis. Transforming growth factor-beta 1 (TGF-β1)-stimulated clone 22 (TSC-22/TSC22D1) encodes a highly conserved leucine zipper protein that is induced by various stimuli, including TGF-β. TSC-22 inhibits cell growth in mammalian cells and in Xenopus embryos. However, underlying mechanisms of growth inhibition by TSC-22 remain unclear. Here, we show that TSC-22 physically interacts with c-MYC to inhibit the recruitment of c-MYC on the P15 (CDKN2B) and P21 (CDKN1A) promoters, effectively inhibiting c-MYC-mediated suppression of P15 (CDKN2B) and also P21 (CDKN1A) promoter activities. In contrast, TSC-22 enhances c-MYC-mediated activation of the TERT promoter. Additionally, the expression of TSC-22 in embryonic stem cells inhibits cell growth without affecting its pluripotency-related gene expression. These results indicate that TSC-22 differentially regulates c-MYC-mediated transcriptional activity to regulate cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Modulation of phenotype of human prostatic stromal cells by transforming growth factor-betas.

    Science.gov (United States)

    Hisataki, Toshihiro; Itoh, Naoki; Suzuki, Kazuhiro; Takahashi, Atsushi; Masumori, Naoya; Tohse, Noritsugu; Ohmori, Yuki; Yamada, Shizuo; Tsukamoto, Taiji

    2004-02-01

    We investigated the effects of transforming growth factor (TGF)-betas on morphological and receptor phenotypes, as well as proliferation of four currently established human prostatic myofibroblast cell lines and one commercially available prostatic stromal cell line. The effects of TGF-betas on morphological changes and proliferation of the cells were studied by immunohistochemistry and bromodeoxyuridine assay, respectively. The expression of alpha 1-receptor subtypes was measured by real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and the radioligand binding assay for the receptors was also performed. TGF-betas 1, 2, and 3 induced expression of desmin and myosin of cells of the established cell lines, and significantly inhibited their growth. The alpha 1a-receptor was expressed only in the commercially available cell line and alpha 1b and 1d, in all cell lines. TGF-beta 1 suppressed the expression of all three subtypes of the alpha 1-receptor. The binding sites of cells of all the cell lines were reduced by treatment with this growth factor. TGF-betas may induce human prostatic stromal cells to express the smooth muscle phenotype and inhibited their growth. However, the growth factor reduced the binding sites of the receptor and suppressed mRNA expression of its subtypes, suggesting that morphological and receptor phenotypes may be regulated via more than one pathway by TGF-beta(s). Copyright 2003 Wiley-Liss, Inc.

  11. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression

    NARCIS (Netherlands)

    Lutgens, E; Gijbels, M; Smook, M; Heeringa, P; Gotwals, P; Koteliansky, VE; Daemen, MJAP

    The transition from stable to rupture-prone and ruptured atherosclerotic plaques involves many processes, including an altered balance between inflammation and fibrosis. An important mediator of both is transforming growth factor (TGF)-beta, and a pivotal role for TGF-beta in atherogenesis has been

  12. Transforming growth factor-beta3-loaded microtextured membranes for skin regeneration in dermal wounds.

    NARCIS (Netherlands)

    Vooijs, D.P.P.; Walboomers, X.F.; Parker, J.A.T.C.; Hoff, J.W. Von den; Jansen, J.A.

    2004-01-01

    Adverse effects of wound healing, such as excessive scar tissue formation, wound contraction, or nonhealing wounds represent a major clinical issue in today's healthcare. Transforming growth factor (TGF)-beta3 has specifically been implicated in wound healing. Our hypothesis was that local

  13. The growth inhibition of human breast cancer cells by a novel synthetic progestin involves the induction of transforming growth factor beta.

    OpenAIRE

    Colletta, A A; Wakefield, L M; Howell, F V; Danielpour, D; Baum, M; Sporn, M B

    1991-01-01

    Recent experimental work has identified a novel intracellular binding site for the synthetic progestin, Gestodene, that appears to be uniquely expressed in human breast cancer cells. Gestodene is shown here to inhibit the growth of human breast cancer cells in a dose-dependent fashion, but has no effect on endocrine-responsive human endometrial cancer cells. Gestodene induced a 90-fold increase in the secretion of transforming growth factor-beta (TGF-beta) by T47D human breast cancer cells. O...

  14. Oral Administration of GW788388, an Inhibitor of Transforming Growth Factor Beta Signaling, Prevents Heart Fibrosis in Chagas Disease

    Science.gov (United States)

    de Oliveira, Fabiane L.; Araújo-Jorge, Tania C.; de Souza, Elen M.; de Oliveira, Gabriel M.; Degrave, Wim M.; Feige, Jean-Jacques

    2012-01-01

    Background Chagas disease induced by Trypanosoma cruzi (T. cruzi) infection is a major cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. Transforming Growth Factor beta (TGFß) has been involved in several regulatory steps of T. cruzi invasion and in host tissue fibrosis. GW788388 is a new TGFß type I and type II receptor kinase inhibitor that can be orally administered. In the present work, we studied its effects in vivo during the acute phase of experimental Chagas disease. Methodology/Principal Findings Male Swiss mice were infected intraperitoneally with 104 trypomastigotes of T. cruzi (Y strain) and evaluated clinically. We found that this compound given once 3 days post infection (dpi) significantly decreased parasitemia, increased survival, improved cardiac electrical conduction as measured by PR interval in electrocardiography, and restored connexin43 expression. We could further show that cardiac fibrosis development, evaluated by collagen type I and fibronectin expression, could be inhibited by this compound. Interestingly, we further demonstrated that administration of GW788388 at the end of the acute phase (20 dpi) still significantly increased survival and decreased cardiac fibrosis (evaluated by Masson's trichrome staining and collagen type I expression), in a stage when parasite growth is no more central to this event. Conclusion/Significance This work confirms that inhibition of TGFß signaling pathway can be considered as a potential alternative strategy for the treatment of the symptomatic cardiomyopathy found in the acute and chronic phases of Chagas disease. PMID:22720109

  15. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.

    2007-01-01

    Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMITV......) promoter results in mammary gland hyperplasia and fibrosis, and mammary tumors. Cell lines isolated from MMTV-cyclin D1-Cdk2 (MMTV-D1K2) tumors exhibit Rb and p130 hyperphosphorylation and up-regulation of the protein products of E2F-dependent genes. These results suggest that cyclin D1/Cdk2 complexes may...... mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-DIK2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGF beta), but are relatively resistant to TGF...

  16. Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2014-01-01

    Full Text Available Transforming growth factor-beta (TGF-β is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents’ stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed.

  17. Transforming growth factor-beta. En potent multifunktionel voekstfaktor for normale og maligne celler

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Spang-Thomsen, M

    1992-01-01

    incomplete, together with other substances such as steroid hormones, oncogene products and integrins. Five isoforms for TGF-beta and five different TGF-beta receptors have been described. TGF-beta exhibits an antiproliferative effect in vitro and in vivo on many cells of epthelial, myeloid, lymphoid...... and mesenchymal origin together with a growth-stimulating effect on various cells like endothelial cells and epidermal keratinocytes. Production of TGF-beta and receptors for TGF-beta has been found in many cell types, both normal and malignant. Nevertheless the amount of in vivo data is too limited to identify...

  18. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  19. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

    Science.gov (United States)

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara

    2017-07-12

    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  20. Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor beta signaling pathway.

    Directory of Open Access Journals (Sweden)

    Lorena L de Figueiredo-Pontes

    Full Text Available Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα expression in acute promyelocytic leukemia (APL impairs transforming growth factor beta (TGFβ signaling, leading to cell growth advantage. Halofuginone (HF, a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG. Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001 and induced apoptosis (P = 0.002 after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21 and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest.

  1. Transforming growth factor betas are upregulated in the rat masseter muscle hypertrophied by clenbuterol, a beta2 adrenergic agonist.

    Science.gov (United States)

    Akutsu, Satonari; Shimada, Akemi; Yamane, Akira

    2006-02-01

    1. The regulatory mechanism for the hypertrophy of skeletal muscles induced by clenbuterol is unclear. The purpose of the present study was to determine the extent to which transforming growth factor betas (TGFbetas), fibroblast growth factors (FGFs), hepatocyte growth factor (HGF), and platelet-derived growth factors (PDGFs) are involved in the hypertrophy of rat masseter muscle induced by clenbuterol. 2. We measured the mRNA expression levels for TGFbetas, FGFs, HGF, and PDGFs in rat masseter muscle hypertrophied by oral administration of clenbuterol for 3 weeks and determined correlations between the weight of masseter muscle and mRNA expression levels by regression analysis. We determined immunolocalizations of TGFbetas and their receptors (TGFbetaRs). 3. The mRNA expression levels for TGFbeta1, 2, and 3, and for PDGF-B demonstrated clenbuterol-induced elevations and positive correlations with the weight of masseter muscle. In particular, TGFbeta1, 2, and 3 showed strong positive correlations (correlation coefficients >0.6). The mRNA expression levels for PDGF-A, FGF-1 and 2, and HGF showed no significant differences between the control and clenbuterol groups, and no significant correlations. TGFbeta1, 2, and 3 were principally localized in the connective tissues interspaced among myofibers, and TGFbetaRI and II were localized in the periphery and sarcoplasm of the myofibers. 4. These results suggest that paracrine actions of TGFbeta1, 2, and 3 via TGFbetaRI and II could be involved in the hypertrophy of rat masseter muscle induced by clenbuterol. This is the first study to document the involvement of TGFbetas in the hypertrophy of skeletal muscles induced by clenbuterol.

  2. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function

    International Nuclear Information System (INIS)

    Hattersley, G.; Chambers, T.J.

    1991-01-01

    Transforming growth factor (TGF) beta 1 is a multifunctional cytokine with powerful effects on osteoblastic cells. Its role in the regulation of osteoclast generation and function, however, is unclear. It has been reported both to stimulate and to inhibit resorption in organ culture and to inhibit multinuclear cell formation in bone marrow cultures. We tested the effects of TGF-beta 1 on bone resorption by osteoclasts isolated from neonatal rat long bones. We found potent stimulation of osteoclastic bone resorption, mediated by osteoblastic cells, with an EC50 of 10 pg/ml, considerably lower than that of well-documented osteotropic hormones. Stimulation was not mediated by Swiss mouse 3T3 cells, a nonosteoblastic cell line. TGF-beta 1 strongly inhibited the generation of calcitonin receptor (CTR)-positive cells in mouse bone marrow cultures, but as for isolated osteoclasts, bone resorption per CTR-positive cell was increased. The inhibition of CTR-positive cell formation was associated with suppression of maturation of other bone marrow derivatives and may be related more to the known ability of TGF-beta 1 to suppress the proliferation of primitive hematopoietic cells than to a specific role of TGF-beta 1 in osteoclast generation

  3. Autoregulation of periodontal ligament cell phenotype and functions by transforming growth factor-beta1.

    Science.gov (United States)

    Brady, T A; Piesco, N P; Buckley, M J; Langkamp, H H; Bowen, L L; Agarwal, S

    1998-10-01

    During orthodontic tooth movement, mechanical forces acting on periodontal ligament (PDL) cells induce the synthesis of mediators which alter the growth, differentiation, and secretory functions of cells of the PDL. Since the cells of the PDL represent a heterogeneous population, we examined mechanically stress-induced cytokine profiles in three separate clones of human osteoblast-like PDL cells. Of the four pro-inflammatory cytokines investigated, only IL-6 and TGF-beta1 were up-regulated in response to mechanical stress. However, the expression of other pro-inflammatory cytokines such as IL-1 beta, TNF-alpha, or IL-8 was not observed. To understand the consequences of the increase in TGF-beta1 expression following mechanical stress, we examined the effect of TGF-beta1 on PDL cell phenotype and functions. TGF-beta1 was mitogenic to PDL cells at concentrations between 0.4 and 10 ng/mL. Furthermore, TGF-beta1 down-regulated the osteoblast-like phenotype of PDL cells, i.e., alkaline phosphatase activity, calcium phosphate nodule formation, expression of osteocalcin, and TGF-beta1, in a dose-dependent manner. Although initially TGF-beta1 induced expression of type I collagen mRNA, prolonged exposure to TGF-beta1 down-regulated the ability of PDL cells to express type I collagen mRNA. Our results further show that, within 4 hrs, exogenously applied TGF-beta1 down-regulated IL-6 expression in a dose-dependent manner, and this inhibition was sustained over a six-day period. In summary, the data suggest that mechanically stress-induced TGF-beta1 expression may be a physiological mechanism to induce mitogenesis in PDL cells while down-regulating its osteoblast-like features and simultaneously reducing the IL-6-induced bone resorption.

  4. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. (Washington Univ., St. Louis, MO (United States)); Colby, T.V. (Mayo Clinic, Rochester, MN (United States))

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  5. LEVEL OF TRANSFORMING GROWTH FACTOR BETA-1 RELATES TO CONGENITAL LIVER DISEASE SEVERITY IN CHILDREN OF EARLY AGE

    Directory of Open Access Journals (Sweden)

    R. M. Kurabekova

    2016-01-01

    Full Text Available Aim. Analysis of relationship between transforming growth factor beta-1 (TGF-β1 level in blood and liver disease severity before and after liver transplantation in early age children with congenital liver diseases. Materials and methods. The study included 135 pediatric patients aged from 2 to 73 months with end-stage liver disease. Results. The level of TGF-β1 in the blood of children with liver failure on average was lower than in healthy children of the same age. The cytokine level depended on the liver disease etiology: in patients with biliary atresia, biliary hypoplasia, Alagille syndrome, Byler disease and other diseases it was lower than that at Caroli disease when it did not differ from the level in healthy children. The level of cytokine in the blood plasma of patients was associated with the severity of hepatic fi brosis: in fi brosis of grade 1 and 4 it was lower than in fi brosis of grade 2 and 3. The liver transplantation from related living donor resulted in increase of TGF-β1 level in the blood plasma of patients regardless of the initial etiology and severity of the liver disease. Conclusion. The blood level of TGF-β1 refl ects liver disease severity in children with congenital liver diseases and may be used as a marker of liver function state before and after liver transplantation. 

  6. Effects of tanshinone IIA on transforming growth factor beta1-Smads signal pathway in renal interstitial fibroblasts of rats.

    Science.gov (United States)

    Tang, Jinhui; Zhan, Chengye; Zhou, Jianhua

    2008-10-01

    The effects of tanshinone IIA (TSN) on transforming growth factor beta1 (TGFbeta1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of renal interstitial fibrosis. Rat renal fibroblasts of the line NRK/49F were cultured in vitro, stimulated with 5 ng/mL TGFbeta1 and pretreated with 10(-6), 10(-5), 10(-4) mol/L TSN respectively. The mRNA levels of fibronectin (FN) were examined by RT-PCR. The protein expression of FN and Smads was detected by Western blot. TGFbeta1 induced the expression of FN mRNA and Smads in a time-dependent manner in a certain range. Compared with pre-stimulation, the FN mRNA and protein levels were increased by 1.1 times and 1.5 times respectively (PTSN pretreatment may down-regulate the FN and p-Smad2/3 expression in a dose-dependent manner. 10(-6) mol/L TSN pretreatment had no effect on the FN and p-Smad2/3 expression (both P>0.05). After pretreatment with 10(-5) and 10(-4) mol/L TSN, the FN mRNA levels were decreased by 28.1% and 43.8% respectively (PTSN on renal interstitial fibrosis may be related to its blocking effect on TGFbeta1-Smads signal pathway in renal interstitial fibroblasts.

  7. Transforming growth factor beta receptor 1 is increased following abstinence from cocaine self-administration, but not cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Amy M Gancarz-Kausch

    Full Text Available The addicted phenotype is characterized as a long-lasting, chronically relapsing disorder that persists following long periods of abstinence, suggesting that the underlying molecular changes are stable and endure for long periods even in the absence of drug. Here, we investigated Transforming Growth Factor-Beta Type I receptor (TGF-β R1 expression in the nucleus accumbens (NAc following periods of withdrawal from cocaine self-administration (SA and a sensitizing regimen of non-contingent cocaine. Rats were exposed to either (i repeated systemic injections (cocaine or saline, or (ii self-administration (cocaine or saline and underwent a period of forced abstinence (either 1 or 7 days of drug cessation. Withdrawal from cocaine self-administration resulted in an increase in TGF-β R1 protein expression in the NAc compared to saline controls. This increase was specific for volitional cocaine intake as no change in expression was observed following a sensitizing regimen of experimenter-administered cocaine. These findings implicate TGF-β signaling as a novel potential therapeutic target for treating drug addiction.

  8. Developmental regulation of the serotonergic transmitter phenotype in rostral and caudal raphe neurons by transforming growth factor-betas.

    Science.gov (United States)

    Galter, D; Böttner, M; Unsicker, K

    1999-06-01

    Serotonergic (5-HT) neurons of the CNS develop as two separate clusters, a rostral and a caudal group, within the brain stem raphe. We show here that the transforming growth factors -beta2 and -beta3 (TGF-beta) and the TGF-beta type II receptor are expressed in the embryonic rat raphe, when 5-HT neurons develop and differentiate. To investigate putative roles of TGF-betas in the regulation of 5-HT neuron development we have generated serum-free cultures isolated either from the rostral or the caudal embryonic rat raphe, respectively. In cultures from the caudal E14 raphe saturating concentrations (5 ng/ml) of TGF-beta2 and -beta3 augmented numbers of tryptophan hydroxylase (TpOH) -immunoreactive neurons and cells specifically taking up 5,7-dihydroxytryptamine (5,7-DHT) by about 1.7-fold over a period of 4 days. Treatment with TGF-betas also increased uptake of 3H-5HT uptake about 1.7-fold. Alterations in 5-HT neuron numbers were due to the induction of serotonergic markers rather than increased survival, as shown by the efficacy of delayed short-term treatments. Comparing rostral and caudal raphe cultures from different embryonic ages suggests that distinct effects of TGF-betas reflect the responsiveness of 5-HT neurons at different ages rather than of different origins.

  9. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish

    Directory of Open Access Journals (Sweden)

    Clelland Eric

    2005-09-01

    Full Text Available Abstract Background TGF-beta is a multifunctional growth factor involved in regulating a variety of cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin- and 17alpha, 20beta-dihydroxyprogesterone (DHP-induced maturation in zebrafish. The aim of the present study was to investigate the mechanisms underlying this action. Method To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1 on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h. Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml for 18 h. Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD which is involved in DHP production, follicle stimulating hormone receptor (FSHR, luteinizing hormone receptor (LHR, the two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH (control, were performed. Results Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in

  10. The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells.

    Science.gov (United States)

    McLennan, Ian S; Koishi, Kyoko

    2002-01-01

    This review discusses the roles of the transforming growth factor-betas (TGF-betas) as part of a complex network that regulates the development and maintenance of the neuromuscular system. The actions of the TGF-betas often vary depending on which other growth factors are present, making it difficult to extrapolate results from in vitro experiments to the in vivo situation. A new approach has therefore been needed to understand the physiological functions of the TGF-betas. The behaviours (proliferation, fusion, apoptosis) of many of the cells in the neuromuscular system have a complex pattern which varies in space and time. The actions of growth factors in this system can thus be deduced based on how well their pattern of expression correlates with known cellular behaviours. Hypotheses based on this molecular anatomical evidence can then be further tested with genetically modified mice. From this type of evidence, we suggest that: (1) TGF-beta1 is an autocrine regulator of Schwann cells; (2) maternally-derived TGF-beta1 helps to suppress self and maternal immune attack; (3) TGF-beta2 regulates when and where myoblasts fuse to myotubes; (4) motoneuron survival is regulated by multiple sources of TGF-betas, with TGF-beta2 being the more important isoform. The concept of TGF-beta1 as a regulator of secondary myotube formation is not supported by either the location of the TGF-beta1 in developing muscles or by the phenotype of TGF-beta1-/- mice. The review concludes with a discussion of whether all of these of postulated functions can occur independently of each other, within the confines of the neuromuscular system.

  11. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations.

    Science.gov (United States)

    Zuscik, Michael J; Ma, Lin; Buckley, Taylor; Puzas, J Edward; Drissi, Hicham; Schwarz, Edward M; O'Keefe, Regis J

    2007-09-01

    It has been established that skeletal growth is stunted in lead-exposed children. Because chondrogenesis is a seminal step during skeletal development, elucidating the impact of Pb on this process is the first step toward understanding the mechanism of Pb toxicity in the skeleton. The aim of this study was to test the hypothesis that Pb alters chondrogenic commitment of mesenchymal cells and to assess the effects of Pb on various signaling pathways. We assessed the influence of Pb on chondrogenesis in murine limb bud mesenchymal cells (MSCs) using nodule formation assays and gene analyses. The effects of Pb on transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling was studied using luciferase-based reporters and Western analyses, and luciferase-based assays were used to study cyclic adenosine monophosphate response element binding protein (CREB), beta-catenin, AP-1, and nuclear factor-kappa B (NF-kappaB) signaling. We also used an ectopic bone formation assay to determine how Pb affects chondrogenesis in vivo. Pb-exposed MSCs showed enhanced basal and TGF-beta/BMP induction of chondrogenesis, evidenced by enhanced nodule formation and up-regulation of Sox-9, type 2 collagen, and aggrecan, all key markers of chondrogenesis. We observed enhanced chondrogenesis during ectopic bone formation in mice preexposed to Pb via drinking water. In MSCs, Pb enhanced TGF-beta but inhibited BMP-2 signaling, as measured by luciferase reporter assays and Western analyses of Smad phosphorylation. Although Pb had no effect on basal CREB or Wnt/beta-catenin pathway activity, it induced NFkappaB signaling and inhibited AP-1 signaling. The in vitro and in vivo induction of chondrogenesis by Pb likely involves modulation and integration of multiple signaling pathways including TGF-beta, BMP, AP-1, and NFkappaB.

  12. Transforming growth factor-betas and CD105 expression in calcification and bone formation in human atherosclerotic lesions.

    Science.gov (United States)

    Jeziorska, M

    2001-01-01

    To investigate the expression and localisation of transforming growth factor betas (TGF beta s) and their receptor CD105 (endoglin) in relation to calcification and bone formation in atherosclerotic lesions of human carotid arteries. The TGF beta family regulates cellular growth, differentiation and angiogenesis and plays a key role in enchondral bone formation. CD105 is part of the TGF beta receptor complex preferentially expressed on endothelial cells (EC). Immunohistochemical methods were used to determine the localisation of TGF beta isoforms 1, 2 and 3 and their spatial expression patterns in relation to calcification and bone formation in atherosclerotic lesions. Cellular sources of TGF beta s and CD105 were assessed using cell-type specific antibodies. There was marked variability in TGF beta expression in different cell types associated with calcification. Smooth muscle cells (SMC) in the atheroma cap showed higher levels of TGF beta 3 and 2 than 1, but in the deep musculoelastic intima there were higher levels of TGF beta 1 and alpha-actin. All three TGF beta isoforms were expressed in monocyte-macro-phages. Giant cells associated with calcifications showed intense staining for TGF beta 2. TGF beta 1 was most strongly expressed on matrix and cells associated with bone formation. CD105 expression on SMCs and monocyte-macrophages was lower on cells in close association with calcification. SMCs associated with bone formation expressed high levels of CD105. The different TGF beta isoforms exhibit distinct but overlapping patterns of expression, and support the hypothesis that they are involved in the process of calcification and bone formation in human atherosclerotic lesions. Lower expression of CD105 on cells associated with calcification may represent their state of lower responsiveness to TGF beta s.

  13. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis.

    Science.gov (United States)

    Ozkan, Korhan; Eralp, Levent; Kocaoglu, Mehmet; Ahishali, Bulent; Bilgic, Bilge; Mutlu, Zihni; Turker, Mehmet; Ozkan, Feyza Unlu; Sahin, Kemal; Guven, Melih

    2007-04-01

    Distraction osteogenesis is a well established clinical treatment for limb length discrepancy and skeletal deformities. Transforming growth factor beta 1 (TGF-beta1) is a multifunctional peptide which controls proliferation and expression of cells specific to bone like chondrocytes, osteoblasts, osteoclasts including mesenchymal precursor cells. To decrease the external fixation time with increasing the strength of regenerate (newly formed bone after distraction) we tested the effect of locally applied transforming growth factor beta 1 on distraction osteogenesis. A total of 28 mature female white New zealand rabbits weighing 3,5 kg-4,5 kg were studied. 10 animals were belonging to biomechanical testing group (5 for the study and 5 for the control subgroups), and the others were to histology group. In biomechanical group after tibial osteotomy TGF-beta1 was applied subperiosteally for 5 days just proximal to osteotomy site. Control group received only the solvent. Seven days after tibial osteotomy distraction was started at a rate of 0.25 mm/12 hours for 3 weeks with a unilateral fixator. Rabbits were sacrificed at the end of a consolidation period 8 week after tibial osteotomy. We assessed density of the elongation zone of rabbit tibial bones with the computed tomography. Then biomechanical parametres were assessed using the torsional testing using the material testing machine. In histology group rabbits were classified as control and study (rabbits that were given TGF-beta1). Rabbits were sacrificed at the end of first week, second week and fourth week also at the end of consolidation period 8 week after tibial osteotomy. Immunohistochemical and histologic parameters were examined. Biomechanical testing was applied as torsional testing. These values are used in determination of maximal loading, stiffness and energy absorbed during testing (brittleness). The histomorphometric examination looked for the differences between the study and control groups in terms of

  14. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells.

    Science.gov (United States)

    Lai, Chung-Fang; Cheng, Su-Li

    2002-05-03

    Transforming growth factor beta (TGF-beta) activates Ras/MAPK signaling in many cell types. Because TGF-beta and BMP-2 exert similar effects, we examined if this signaling is stimulated by both factors and analyzed the relationship between this signaling and the Smads in osteoblasts. BMP-2 and TGF-beta stimulated Ras, MAPK, and AP-1 activities. The DNA binding activities of c-Fos, FosB/Delta FosB, Fra-1, Fra-2, and JunB were up-regulated whereas JunD activity was decreased. c-Fos, FosB/Delta FosB, and JunB were associated with Smad4. The stimulation of AP-1 by BMP-2 and TGF-beta was dependent on Smad signaling, and anti-Smad4 antibody interfered with AP-1 activity. Thus, BMP-2 and TGF-beta activate both Ras/MAPK/AP-1 and Smad signaling in osteoblasts with Smads modulating AP-1 activity. To determine the roles of MAPK in BMP-2 and TGF-beta function, we analyzed the effect of ERK and p38 inhibitors on the regulation of bone matrix protein expression and JunB and JunD levels by these two factors. ERK and p38 mediated TGF-beta suppression of osteocalcin and JunD as well as stimulation of JunB. p38 was essential in BMP-2 up-regulation of type I collagen, fibronectin, osteopontin, osteocalcin, and alkaline phosphatase activity whereas ERK mediated BMP-2 stimulation of fibronectin and osteopontin. Thus, ERK and p38 differentially mediate TGF-beta and BMP-2 function in osteoblasts.

  15. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer.

    Science.gov (United States)

    Dhasarathy, Archana; Phadke, Dhiral; Mav, Deepak; Shah, Ruchir R; Wade, Paul A

    2011-01-01

    The transcriptional repressors Snail and Slug are situated at the core of several signaling pathways proposed to mediate epithelial to mesenchymal transition or EMT, which has been implicated in tumor metastasis. EMT involves an alteration from an organized, epithelial cell structure to a mesenchymal, invasive and migratory phenotype. In order to obtain a global view of the impact of Snail and Slug expression, we performed a microarray experiment using the MCF-7 breast cancer cell line, which does not express detectable levels of Snail or Slug. MCF-7 cells were infected with Snail, Slug or control adenovirus, and RNA samples isolated at various time points were analyzed across all transcripts. Our analyses indicated that Snail and Slug regulate many genes in common, but also have distinct sets of gene targets. Gene set enrichment analyses indicated that Snail and Slug directed the transcriptome of MCF-7 cells from a luminal towards a more complex pattern that includes many features of the claudin-low breast cancer signature. Of particular interest, genes involved in the TGF-beta signaling pathway are upregulated, while genes responsible for a differentiated morphology are downregulated following Snail or Slug expression. Further we noticed increased histone acetylation at the promoter region of the transforming growth factor beta-receptor II (TGFBR2) gene following Snail or Slug expression. Inhibition of the TGF-beta signaling pathway using selective small-molecule inhibitors following Snail or Slug addition resulted in decreased cell migration with no impact on the repression of cell junction molecules by Snail and Slug. We propose that there are two regulatory modules embedded within EMT: one that involves repression of cell junction molecules, and the other involving cell migration via TGF-beta and/or other pathways.

  16. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer.

    Directory of Open Access Journals (Sweden)

    Archana Dhasarathy

    Full Text Available The transcriptional repressors Snail and Slug are situated at the core of several signaling pathways proposed to mediate epithelial to mesenchymal transition or EMT, which has been implicated in tumor metastasis. EMT involves an alteration from an organized, epithelial cell structure to a mesenchymal, invasive and migratory phenotype. In order to obtain a global view of the impact of Snail and Slug expression, we performed a microarray experiment using the MCF-7 breast cancer cell line, which does not express detectable levels of Snail or Slug. MCF-7 cells were infected with Snail, Slug or control adenovirus, and RNA samples isolated at various time points were analyzed across all transcripts. Our analyses indicated that Snail and Slug regulate many genes in common, but also have distinct sets of gene targets. Gene set enrichment analyses indicated that Snail and Slug directed the transcriptome of MCF-7 cells from a luminal towards a more complex pattern that includes many features of the claudin-low breast cancer signature. Of particular interest, genes involved in the TGF-beta signaling pathway are upregulated, while genes responsible for a differentiated morphology are downregulated following Snail or Slug expression. Further we noticed increased histone acetylation at the promoter region of the transforming growth factor beta-receptor II (TGFBR2 gene following Snail or Slug expression. Inhibition of the TGF-beta signaling pathway using selective small-molecule inhibitors following Snail or Slug addition resulted in decreased cell migration with no impact on the repression of cell junction molecules by Snail and Slug. We propose that there are two regulatory modules embedded within EMT: one that involves repression of cell junction molecules, and the other involving cell migration via TGF-beta and/or other pathways.

  17. Prognostic value of transforming growth factor-beta in patients with colorectal cancer who undergo surgery: a meta-analysis.

    Science.gov (United States)

    Chen, Xin-Lin; Chen, Zhuo-Qun; Zhu, Shui-Lian; Liu, Tian-Wen; Wen, Yi; Su, Yi-Sheng; Xi, Xu-Jie; Hu, Yue; Lian, Lei; Liu, Feng-Bin

    2017-04-04

    Transforming growth factor-beta (TGF-β) is associated with a higher incidence of distant metastasis and decreased survival. Whether TGF-β can be used as a prognostic indicator of colorectal cancer (CRC) remains controversial. The Medline, EMBASE and Cochrane databases were searched from their inception to March 2016. The studies that focused on TGF-β as a prognostic factor in patients with CRC were included in this analysis. Overall survival (OS) and disease-free survival (DFS) were analysed separately. A meta-analysis was performed, and hazard ratios (HR) with 95% confidence intervals (CI) were calculated. Twelve studies were included in the analysis, of which 8 were used for OS and 7 for DFS. In all, 1622 patients with CRC undergoing surgery were included. Combined HRs suggested that high expression of TGF-β had a favourable impact on OS (HR = 1.68, 95% CI: 1.10-2.59) and DFS (HR = 1.11, 95% CI: 1.03-1.19) in CRC patients. For OS, the combined HRs of Asian studies and Western studies were 1.50 (95% CI: 0.61-3.68) and 1.80 (95% CI: 1.33-2.45), respectively. For DFS, the combined HRs of Asian studies and Western studies were 1.42 (95% CI: 0.61-3.31) and 1.11 (95% CI: 1.03-1.20), respectively. This meta-analysis demonstrates that TGF-β can be used as a prognostic biomarker for CRC patients undergoing surgery, especially for CRC patients from Western countries.

  18. Environmental particulate (PM2.5 augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta.

    Directory of Open Access Journals (Sweden)

    Marilyn M Dysart

    Full Text Available Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD, and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor--beta (TGFβ signaling, the alveolar type II (ATII epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5 will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung

  19. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insuli...

  20. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    Science.gov (United States)

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  1. Expression and action of transforming growth factor beta (TGFbeta1, TGFbeta2, and TGFbeta3) during embryonic rat testis development.

    Science.gov (United States)

    Cupp, A S; Kim, G; Skinner, M K

    1999-06-01

    The objective of the current study was to determine the role of transforming growth factor beta (TGFbeta) during seminiferous cord formation and embryonic testis development. The expression pattern of mRNA for TGFbeta isoforms was evaluated during testis development through a quantitative reverse transcription-polymerase chain reaction (QRT-PCR) procedure. Expression of mRNA for TGFbeta1 was highest at postnatal day 0 (P0) and P10. In contrast, TGFbeta2 was high at embryonic day 15 (E15), declined at E16, and showed a transient increase at P0 through P3 of testis development. Interestingly, expression of mRNA for TGFbeta3 was high during embryonic development and then declined after P3. Immunohistochemical localization of TGFbeta1 and TGFbeta2 demonstrated expression in Sertoli cells at E14 and in the seminiferous cords at P0. Selective interstitial cells expressed high concentrations of TGFbeta1 and TGFbeta2 in P0 testis. TGFbeta3 was expressed in selective cells at the junction of the E14 testis and mesonephros. The cells expressing TGFbeta3 in the testis appeared to be preperitubular cells that resided around the seminiferous cords. TGFbeta3 was localized to gonocytes in P0 testis. TGFbeta1 was found to have no influence on seminiferous cord formation in embryonic organ cultures of E13 testis. In contrast, growth of both E13 and E14 embryonic organ cultures was inhibited by TGFbeta1 and resulted in reduced testis size (40% of controls) with fewer cords present. A P0 testis cell culture and thymidine incorporation assay were used to directly examine the effects of recombinant TGFbeta1. TGFbeta1 alone had no influence on thymidine incorporation in P0 testis cell cultures when compared to controls. Interestingly, TGFbeta1 inhibited epidermal growth factor (EGF), and 10% calf serum stimulated P0 testis cell growth but not FSH-stimulated growth. Therefore, TGFbeta1 appears to inhibit testis growth in both the embryonic and early postnatal periods. The hormonal

  2. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo.

    OpenAIRE

    Dennler, Sylviane; André, Jocelyne; Alexaki, Ismini; Li, Allen; Magnaldo, Thierry; Ten Dijke, Peter; Wang, Xiao-Jing; Verrecchia, Franck; Mauviel, Alain

    2007-01-01

    International audience; Hedgehog (Hh) and transforming growth factor-beta (TGF-beta) family members are involved in numerous overlapping processes during embryonic development, hair cycle, and cancer. Herein, we show that TGF-beta induces the expression of the Hh signaling molecules Gli1 and Gli2 in various human cell types, including normal fibroblasts and keratinocytes, as well as various cancer cell lines. Gli2 induction by TGF-beta is rapid, independent from Hh receptor signaling, and req...

  3. Paracrine up-regulation of monocyte cyclooxygenase-2 by platelets: role of transforming growth factor-beta1.

    Science.gov (United States)

    Eligini, Sonia; Barbieri, Silvia S; Arenaz, Izaskun; Tremoli, Elena; Colli, Susanna

    2007-05-01

    To examine the role of platelets and platelet-derived products on cyclooxygenase-2 (Cox-2) induction in adherent monocytes and to address the signaling pathways involved. Platelets and monocytes were obtained from peripheral blood of healthy donors. Adherent monocytes were co-cultured with autologous platelets or platelet releasates or exposed to mediators contained in platelet alpha-granules (either from platelet source or recombinant) for 4-24 h. Cox-2 protein and mRNA were determined by Western and RT-PCR analysis, respectively. Thromboxane B2 (TxB2) and prostaglandin E2 (PGE2) synthesis as index of Cox-2 activity, and levels of transforming growth factor-beta1 (TGF-beta1) in platelet releasates were measured by enzyme immunoassay (EIA). Activated platelets induce rapid and transient Cox-2 de novo synthesis in adherent monocytes. The effect is dependent upon the platelet number but not upon cell-cell contact. Platelet-induced Cox-2 was not affected by prevention of platelet TxA2 synthesis or microparticle formation but was blunted by inhibition of platelet alpha-granule secretion. TGF-beta1, either platelet-derived or recombinant (rTGF-beta1), induced Cox-2 expression and activity in adherent monocytes at concentrations within the range of those detected in releasates from activated platelets; this effect was not shared by recombinant platelet-derived growth factor (rPDGFBB). The time course of Cox-2 induction by TGF-beta1 in monocytes was identical to that observed with platelet releasates. Moreover, TGF-beta1 receptor blockade completely abolished platelet-induced Cox-2 expression. p38 MAPK activation represents a common transduction pathway through which activated platelets and rTGF-beta1 induce Cox-2 in monocytes. These findings suggest that TGF-beta1 released by activated platelets has a pivotal role in Cox-2 induction in monocytes and further supports the key role of platelets in the inflammatory and reparative responses.

  4. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    Science.gov (United States)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  5. Transforming Growth Factor Beta Family: Insight into the Role of Growth Factors in Regulation of Fracture Healing Biology and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Łukasz A. Poniatowski

    2015-01-01

    Full Text Available The transforming growth factor beta (TGF-β family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors’ involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process.

  6. The growth inhibition of human breast cancer cells by a novel synthetic progestin involves the induction of transforming growth factor beta.

    Science.gov (United States)

    Colletta, A A; Wakefield, L M; Howell, F V; Danielpour, D; Baum, M; Sporn, M B

    1991-01-01

    Recent experimental work has identified a novel intracellular binding site for the synthetic progestin, Gestodene, that appears to be uniquely expressed in human breast cancer cells. Gestodene is shown here to inhibit the growth of human breast cancer cells in a dose-dependent fashion, but has no effect on endocrine-responsive human endometrial cancer cells. Gestodene induced a 90-fold increase in the secretion of transforming growth factor-beta (TGF-beta) by T47D human breast cancer cells. Other synthetic progestins had no effect, indicating that this induction is mediated by the novel Gestodene binding site and not by the conventional progesterone receptor. Furthermore, in four breast cancer cell lines, the extent of induction of TGF-beta correlated with intracellular levels of Gestodene binding site. No induction of TGF-beta was observed with the endometrial cancer line, HECl-B, which lacks the Gestodene binding site, but which expresses high levels of progesterone receptor. The inhibition of growth of T47D cells by Gestodene is partly reversible by a polyclonal antiserum to TGF-beta. These data indicate that the growth-inhibitory action of Gestodene may be mediated in part by an autocrine induction of TGF-beta. Images PMID:1985102

  7. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway.

    Science.gov (United States)

    Shi, Yu; Fukuoka, Masahiro; Li, Guohua; Liu, Youan; Chen, Manyin; Konviser, Michael; Chen, Xin; Opavsky, Mary Anne; Liu, Peter P

    2010-06-22

    Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.

  8. Potential Novel Biomarkers for Diabetic Testicular Damage in Streptozotocin-Induced Diabetic Rats: Nerve Growth Factor Beta and Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Ali Rıza Sisman

    2014-01-01

    Full Text Available Background. It is well known that diabetes mellitus may cause testicular damage. Vascular endothelial growth factor (VEGF and nerve growth factor beta (NGF-β are important neurotrophic factors for male reproductive system. Objective. We aimed to investigate the correlation between testicular damage and testicular VEGF and NGF-β levels in diabetic rats. Methods. Diabetes was induced by streptozotocin (STZ, 45 mg/kg/i.p. in adult rats. Five weeks later testicular tissue was removed; testicular VEGF and NGF-β levels were measured by ELISA. Testicular damage was detected by using hematoxylin and eosin staining and periodic acid-Schiff staining, and apoptosis was identified by terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL. Seminiferous tubular sperm formation was evaluated using Johnsen’s score. Results. In diabetic rats, seminiferous tubule diameter was found to be decreased; basement membrane was found to be thickened in seminiferous tubules and degenerated germ cells. Additionally, TUNEL-positive cells were increased in number of VEGF+ cells and levels of VEGF and NGF-β were decreased in diabetic testes. Correlation between VEGF and NGF-β levels was strong. Conclusion. These results suggest that the decrease of VEGF and NGF-β levels is associated with the increase of the apoptosis and testicular damage in diabetic rats. Testis VEGF and NGF-β levels could be potential novel biomarkers for diabetes induced testicular damage.

  9. Potential novel biomarkers for diabetic testicular damage in streptozotocin-induced diabetic rats: nerve growth factor Beta and vascular endothelial growth factor.

    Science.gov (United States)

    Sisman, Ali Rıza; Kiray, Muge; Camsari, Ulas Mehmet; Evren, Merve; Ates, Mehmet; Baykara, Basak; Aksu, Ilkay; Guvendi, Guven; Uysal, Nazan

    2014-01-01

    It is well known that diabetes mellitus may cause testicular damage. Vascular endothelial growth factor (VEGF) and nerve growth factor beta (NGF-β) are important neurotrophic factors for male reproductive system. We aimed to investigate the correlation between testicular damage and testicular VEGF and NGF-β levels in diabetic rats. Diabetes was induced by streptozotocin (STZ, 45 mg/kg/i.p.) in adult rats. Five weeks later testicular tissue was removed; testicular VEGF and NGF-β levels were measured by ELISA. Testicular damage was detected by using hematoxylin and eosin staining and periodic acid-Schiff staining, and apoptosis was identified by terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL). Seminiferous tubular sperm formation was evaluated using Johnsen's score. In diabetic rats, seminiferous tubule diameter was found to be decreased; basement membrane was found to be thickened in seminiferous tubules and degenerated germ cells. Additionally, TUNEL-positive cells were increased in number of VEGF+ cells and levels of VEGF and NGF-β were decreased in diabetic testes. Correlation between VEGF and NGF-β levels was strong. These results suggest that the decrease of VEGF and NGF-β levels is associated with the increase of the apoptosis and testicular damage in diabetic rats. Testis VEGF and NGF-β levels could be potential novel biomarkers for diabetes induced testicular damage.

  10. Transforming growth factor-beta 1 and mannose 6-phosphate/insulin-like growth factor-II receptor expression during intrahepatic bile duct hyperplasia and biliary fibrosis in the rat.

    Science.gov (United States)

    Saperstein, L A; Jirtle, R L; Farouk, M; Thompson, H J; Chung, K S; Meyers, W C

    1994-02-01

    These studies investigate the role of transforming growth factor-beta 1, a potent inhibitor of epithelial cell proliferation and stimulator of extracellular matrix biosynthesis, during intrahepatic bile duct hyperplasia and biliary fibrosis. These pathogenic responses were induced in rats by common bile duct ligation. Bile duct cell replication, measured by the bromodeoxyuridine labeling index, was significantly increased 24 hr after common bile duct ligation. This response diminished to baseline by 1 wk. Liver collagen content, determined by quantification of hydroxyproline, was increased significantly after 1 wk of common bile duct ligation, and by 4 wk was increased by a factor of 4. Immunohistochemistry revealed low levels of TGF-beta 1 in normal intrahepatic bile duct epithelium. In contrast, the bile duct epithelium in bile duct-ligated rats stained strongly positive for transforming growth factor-beta 1 at 1 and 4 wk after ligation. These results suggest that transforming growth factor-beta 1 may play a role in both the termination of the bile duct epithelial cell proliferative response and the induction of fibrogenesis after common bile duct ligation. In addition, the mannose 6-phosphate/insulin-like growth factor II receptor was up-regulated in hyperplastic bile duct epithelium 1 and 4 wk after ligation. Because the mannose 6-phosphate/insulin-like growth factor-II receptor has been shown to facilitate the proteolytic activation of transforming growth factor-beta 1, these results suggest that the bile duct epithelium may also be involved in the activation of transforming growth factor-beta 1.

  11. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  12. Clinical significance of determination of serum collagen type IV (IV-C) and transforming growth factor beta1(TGF-β1) levels in patients with diabetic nephropathy

    International Nuclear Information System (INIS)

    Xie Hongfang; Peng Liang

    2006-01-01

    Objective: To investigate the clinical significance of determination of serum collagen type IV (IV-C) and transforming growth factor beta 1 (TGF-β 1 ) levels in patients with diabetic nephropathy. Methods: Serum IV-C levels ( with RIA) and TGF-β 1 levels (with ELISA) were determined in 30 controls and 105 patients with type II diabetis mellitus (45 with diabetic nephropathy and 60 without nephropathy). Results: The serum levels of IV-C and TGF-β 1 in diabetic patients with nephropathy were significantly higher than those in controls (P 0.05). Conclusion: Serum IV-C and TGF-β 1 , levels increased gradually as the diabetic nephropathy got more severe, they could be used as sensitive markers for early diagnosis of development of diabetic nephropathy. (authors)

  13. Transforming growth factor-beta1 (TGF-beta1) in plasma is associated with preeclampsia risk in Peruvian women with systemic inflammation.

    Science.gov (United States)

    Muy-Rivera, Martin; Sanchez, Sixto E; Vadachkoria, Surab; Qiu, Chunfang; Bazul, Victor; Williams, Michelle A

    2004-04-01

    In a case-control study of 100 preeclamptics and 100 controls, we assessed plasma transforming growth factor-beta1 (TGF-beta1) concentrations in relation to preeclampsia risk among Peruvian women with and without systemic inflammation. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). The OR of preeclampsia increased across quartiles of TGF-beta1 concentrations. Women with elevated TGF-beta1 and a proinflammatory profile experienced the highest risk of preeclampsia (OR = 15.4, 95% CI 4.7-50.4). Our results confirm an association between TGF-beta1 and risk of preeclampsia and extend the literature by indicating a strong association in women with systemic inflammation.

  14. Differential expression and processing of transforming growth factor beta induced protein (TGFBIp) in the normal human cornea during postnatal development and aging

    DEFF Research Database (Denmark)

    Karring, Henrik; Runager, Kasper; Valnickova, Zuzana

    2010-01-01

    Transforming growth factor beta induced protein (TGFBIp, also named keratoepithelin) is an extracellular matrix protein abundant in the cornea. The purpose of this study was to determine the expression and processing of TGFBIp in the normal human cornea during postnatal development and aging....... TGFBIp in corneas from individuals ranging from six months to 86 years of age was detected and quantified by immunoblotting. The level of TGFBIp in the cornea increases about 30% between 6 and 14 years of age, and adult corneas contain 0.7-0.8 mug TGFBIp per mg wet tissue. Two-dimentional (2-D......) immunoblots of the corneal extracts showed a characteristic "zig-zag" pattern formed by different lower-molecular mass TGFBIp isoforms (30-60 kDa). However, the relative abundance of the different isoforms was different between infant corneas (corneas (>6 years). Matrix...

  15. Effects of cigarette smoke extract on A549 cells and human lung fibroblasts treated with transforming growth factor-beta1 in a coculture system.

    Science.gov (United States)

    Liu, Yin; Gao, Wei; Zhang, Deping

    2010-09-01

    Smoking is a risk factor for idiopathic pulmonary fibrosis (IPF), but the mechanism of the association remains unknown. The aim of this study was to investigate the effects of cigarette smoke extract (CSE) on A549 cells and human lung fibroblasts treated with transforming growth factor-beta1. A transwell two-chamber coculture system was used to study the proliferation, differentiation, morphologic changes and soluble factors production of A549 cells and myofibroblasts. Low concentrations of CSE promoted myofibroblasts proliferation; however, high concentrations of CSE inhibited their proliferation. Low concentrations of CSE also markedly increased extracellular secretion of hydrogen peroxide, inhibited proliferation, induced apoptosis and produced epithelial-mesenchymal transition (EMT) in cocultured A549 cells. This cigarette smoke-induced A549 cells EMT may become a new pathophysiological concept in the development of IPF. CSE possibly takes part in the development and progress of IPF by increasing oxidative stress.

  16. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Schnabel, Reinhild; Claes, Juliane

    2010-01-01

    The ability to regulate wound contraction is critical for wound healing as well as for pathological contractures. Matrix metalloproteinases (MMPs) have been demonstrated to be obligatory for normal wound healing. This study examined the effect that the broad-spectrum MMP inhibitor BB-94 has when...... applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined...... and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound...

  17. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    Science.gov (United States)

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic

  18. The effect of transforming growth factor beta on human neuroendocrine tumor BON cell proliferation and differentiation is mediated through somatostatin signaling.

    Science.gov (United States)

    Leu, Frank P; Nandi, Minesh; Niu, Congrong

    2008-06-01

    The dual effect of the ubiquitous inflammatory cytokine transforming growth factor beta1 (TGF beta) on cellular proliferation and tumor metastasis is intriguing but complex. In epithelial cell- and neural cell-derived tumors, TGF beta serves as a growth inhibitor at the beginning of tumor development but later becomes a growth accelerator for transformed tumors. The somatostatin (SST) signaling pathway is a well-established antiproliferation signal, and in this report, we explore the interplay between the SST and TGF beta signaling pathways in the human neuroendocrine tumor cell line BON. We defined the SST signaling pathway as a determinant for neuroendocrine tumor BON cells in responding to TGF beta as a growth inhibitor. We also determined that TGF beta induces the production of SST and potentially activates the negative growth autocrine loop of SST, which leads to the downstream induction of multiple growth inhibitory effectors: protein tyrosine phosphatases (i.e., SHPTP1 and SHPTP2), p21(Waf1/Cip1), and p27(Kip1). Concurrently, TGF beta down-regulates the growth accelerator c-Myc protein and, collectively, they establish a firm antiproliferation effect on BON cells. Additionally, any disruption in the activation of either the TGF beta or SST signaling pathway in BON leads to "reversible" neuroendocrine-mesenchymal transition, which is characterized by the loss of neuroendocrine markers (i.e., chromogranin A and PGP 9.5), as well as the altered expression of mesenchymal proteins (i.e., elevated vimentin and Twist and decreased E-cadherin), which has previously been associated with elevated metastatic potential. In summary, TGF beta-dependent growth inhibition and differentiation is mediated by the SST signaling pathway. Therefore, any disruption of this TGF beta-SST connection allows BON cells to respond to TGF beta as a growth accelerator instead of a growth suppressor. This model can potentially apply to other cell types that exhibit a similar interaction of

  19. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta.

    Science.gov (United States)

    Donnet-Hughes, A; Duc, N; Serrant, P; Vidal, K; Schiffrin, E J

    2000-02-01

    Human breast milk is rich in nutrients, hormones, growth factors and immunoactive molecules, which influence the growth, development and immune status of the newborn infant. Although several of these factors are also present in bovine milk, the greater susceptibility of the formula-fed infant to infection and disease and the development of allergy is often attributed to the reduced level of protective factors in milk formulas. Nevertheless, modifying manufacturing processes may preserve the biological activity of some bioactive molecules in end products. Transforming growth factor (TGF)-beta is one such molecule. TGF-beta is a polypeptide, which has been described in both human and bovine milk. It is implicated in many processes, including epithelial cell growth and differentiation, development, carcinogenesis and immune regulation. The present article discusses the biological activity of TGF-beta2 that has been preserved and activated in a cow's milk-based product. More specifically, it addresses possible mechanisms of action in the intestinal lumen and speculates on how milk products containing naturally occurring TGF-beta2 could be exploited in functional foods for the infant or as therapies for specific intestinal diseases.

  20. Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair.

    Science.gov (United States)

    Gold, L I; Sung, J J; Siebert, J W; Longaker, M T

    1997-01-01

    Transforming growth factor (TGF)-beta isoforms (TGF-beta 1, -beta 2, and -beta 3) regulate cell growth and differentiation and have critical regulatory roles in the process of tissue repair and remodeling. Signal transduction for TGF-beta function is transmitted by a heteromeric complex of receptors consisting of two serine/threonine kinase transmembrane proteins (RI and RII). We have previously shown that each TGF-beta isoform is widely expressed in a distinct spatial and temporal pattern throughout the processes of excisional and incisional wound repair. As the presence of TGF-beta receptors determines cellular responsiveness, we have currently examined, by immunohistochemistry, the localization of RI (ALK-1, ALK-5) and RII throughout repair of full-thickness excisional wounds up to 21 days after wounding. The expression of RI (ALK-5) and RII co-localized in both the unwounded and wounded skin and was present in the same cell types as TGF-beta ligands. However, immunoreactivity for TGF-beta receptors, throughout repair, occurred 1 to 5 days later than TGF-beta isoform immunostaining. This implies that the presence of TGF-beta ligands may up-regulate TGF-beta receptors for function and/or may reflect a lag due to local processing of latent TGF-beta. As observed for the immunohistochemical localization of TGF-beta isoforms in unwounded skin, RI and RII were expressed throughout the four layers of the epidermis, showing a wavy pattern of slight to moderate immunostaining, and hair follicles, sweat glands, and sebaceous glands were moderately immunoreactive. The extracellular matrix, fibroblasts, and blood vessels in the dermis were not immunoreactive. After injury, as observed for TGF-beta ligands, RI and RII expression was increased in the epidermis adjacent to the wound and the epithelium migrating over the wound was completely devoid of TGF-beta receptor immunoreactivity until re-epithelialization was completed by day 7 after wounding. The dermis was only

  1. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  2. Differing patterns of transforming growth factor-beta expression in normal intestinal mucosa and in active celiac disease.

    Science.gov (United States)

    Lionetti, P; Pazzaglia, A; Moriondo, M; Azzari, C; Resti, M; Amorosi, A; Vierucci, A

    1999-09-01

    Growth-inhibitory autocrine polypeptides such as transforming growth factor (TGF)-beta may play a role in the control of normal epithelial cell proliferation and differentiation. In addition, TGF-beta has a central role in extracellular matrix homeostasis and regulates the immune response at the local level. In this study immunohistochemistry was used to examine the pattern of TGF-beta protein distribution and quantitative reverse transcription-polymerase chain reaction (RT-PCR) to determine levels of TGF-beta messenger RNA expression in normal intestinal mucosa and in the flat mucosa of children with celiac disease. Small intestinal biopsies were performed in children with active celiac disease and in histologically normal control subjects. Frozen sections were single stained using an anti-TGF-beta monoclonal antibody and were double stained for TGF-beta and T cell, macrophages, and the activation marker CD25. Total RNA was extracted from frozen specimens and competitive quantitative RT-PCR performed for TGF-beta mRNA using internal synthetic standard RNA. In normal intestinal mucosa, by immunohistochemistry, TGF-beta expression was most prominent in the villous tip epithelium, whereas in the lamina propria, weak immunoreactivity was present. The celiac mucosa showed weak and patchy epithelial TGF-beta immunoreactivity. In contrast, an intense staining positivity was present in the lamina propria localized mostly in the subepithelial region where T cells, macrophages, and CD25+ cells were detected by double staining. By quantitative RT-PCR, levels of TGF-beta mRNA transcripts appeared to be increased in celiac intestinal mucosa compared with that in control subjects, although the difference did not reach statistical significance. These observations suggest that TGF-beta expression is associated with differentiated enterocyte function. In celiac disease the lower TGF-beta epithelial cell expression could be a consequence of the preponderance of a less

  3. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  4. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  5. Transforming Growth Factor-Beta (TGF-β Signaling in Paravertebral Muscles in Juvenile and Adolescent Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Roman Nowak

    2014-01-01

    Full Text Available Most researchers agree that idiopathic scoliosis (IS is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.. Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis.

  6. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Avignat S Patel

    Full Text Available Epithelial cell death is a major contributor to fibrogenesis in the lung. In this study, we sought to determine the function of mitochondria and their clearance (mitophagy in alveolar epithelial cell death and fibrosis.We studied markers of mitochondrial injury and the mitophagy marker, PTEN-induced putative kinase 1 (PINK1, in IPF lung tissues by Western blotting, transmission electron microscopy (TEM, and immunofluorescence. In vitro experiments were carried out in lung epithelial cells stimulated with transforming growth factor-β1 (TGF-β1. Changes in cell function were measured by Western blotting, flow cytometry and immunofluorescence. In vivo experiments were performed using the murine bleomycin model of lung fibrosis.Evaluation of IPF lung tissue demonstrated increased PINK1 expression by Western blotting and immunofluorescence and increased numbers of damaged mitochondria by TEM. In lung epithelial cells, TGF-β1 induced mitochondrial depolarization, mitochondrial ROS, and PINK1 expression; all were abrogated by mitochondrial ROS scavenging. Finally, Pink1-/- mice were more susceptible than control mice to bleomycin induced lung fibrosis.TGF-β1 induces lung epithelial cell mitochondrial ROS and depolarization and stabilizes the key mitophagy initiating protein, PINK1. PINK1 ameliorates epithelial cell death and may be necessary to limit fibrogenesis.

  7. Transforming Growth Factor-Beta (TGF-β) Signaling in Paravertebral Muscles in Juvenile and Adolescent Idiopathic Scoliosis

    Science.gov (United States)

    Kwiecien, Magdalena

    2014-01-01

    Most researchers agree that idiopathic scoliosis (IS) is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs) and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.). Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis. PMID:25313366

  8. Transforming growth factor-beta 3 alters intestinal smooth muscle function: implications for gastroschisis-related intestinal dysfunction.

    Science.gov (United States)

    Moore-Olufemi, S D; Olsen, A B; Hook-Dufresne, D M; Bandla, V; Cox, C S

    2015-05-01

    Gastroschisis (GS) is a congenital abdominal wall defect that results in the development of GS-related intestinal dysfunction (GRID). Transforming growth factor-β, a pro-inflammatory cytokine, has been shown to cause organ dysfunction through alterations in vascular and airway smooth muscle. The purpose of this study was to evaluate the effects of TGF-β3 on intestinal smooth muscle function and contractile gene expression. Archived human intestinal tissue was analyzed using immunohistochemistry and RT-PCR for TGF-β isoforms and markers of smooth muscle gene and micro-RNA contractile phenotype. Intestinal motility was measured in neonatal rats ± TGF-β3 (0.2 and 1 mg/kg). Human intestinal smooth muscle cells (hiSMCs) were incubated with fetal bovine serum ± 100 ng/ml of TGF-β 3 isoforms for 6, 24 and 72 h. The effects of TGF-β3 on motility, hiSMC contractility and hiSMC contractile phenotype gene and micro-RNA expression were measured using transit, collagen gel contraction assay and RT-PCR analysis. Data are expressed as mean ± SEM, ANOVA (n = 6-7/group). GS infants had increased immunostaining of TGF-β3 and elevated levels of micro-RNA 143 & 145 in the intestinal smooth muscle. Rats had significantly decreased intestinal transit when exposed to TGF-β3 in a dose-dependent manner compared with Sham animals. TGF-β3 significantly increased hiSMC gel contraction and contractile protein gene and micro-RNA expression. TGF-β3 contributed to intestinal dysfunction at the organ level, increased contraction at the cellular level and elevated contractile gene expression at the molecular level. A hyper-contractile response may play a role in the persistent intestinal dysfunction seen in GRID.

  9. Cross-talk between miR-29 and transforming growth factor-betas in trabecular meshwork cells.

    Science.gov (United States)

    Luna, Coralia; Li, Guorong; Qiu, Jianming; Epstein, David L; Gonzalez, Pedro

    2011-06-01

    To investigate the interactions between microRNA-29 (miR-29), a negative regulator of extracellular matrix (ECM), and transforming growth factors (TGF)β-1 and TGFβ-2. Changes in expression of the miR-29 family were analyzed by quantitative-PCR (Q-PCR) after treatment with TGFβ1 and TGFβ2 (1 ng/mL). TGFβ1 and TGFβ2 were evaluated at gene expression and protein levels by Q-PCR and ELISA, respectively, in human trabecular meshwork (HTM) cells transfected with miR-29b or scramble control. TGFβ1 promoter activity was analyzed using an adenovirus with the reporter SEAP. The effects of miR-29b and TGFβ2 on ECM gene expression were evaluated in cells transfected with miR-29b or scramble control and treated with TGFβ2, and the expression of ECM genes was analyzed by Q-PCR. TGFβ2 but not TGFβ1, downregulated the three members of the miR-29 family. Overexpression of miR-29b antagonized the effects of TGFβ2 on the expression of several ECM components. MiR-29b decreased the expression of TGFβ1 at the promoter, transcript, and protein levels but had only a minor effect on the expression of active TGFβ2. The inhibition of TGFβ1 by miR-29b was partially recovered after co-transfection with a plasmid-expressing bone morphogenetic protein 1. Results showed some level of crosstalk between TGFβs and miR-29. Specifically, the downregulation of miR-29 by TGFβ2 contributed to the induction of several ECM components by this cytokine in TM cells. This observation, together with the inhibitory effects of miR-29b on the expression of TGFβ1, suggests that the miR-29 family could play an important role in modulating TGFβs on the outflow pathway.

  10. Transforming growth factor-beta1 inhibits tissue engineering cartilage absorption via inducing the generation of regulatory T cells.

    Science.gov (United States)

    Li, Chichi; Bi, Wei; Gong, Yiming; Ding, Xiaojun; Guo, Xuehua; Sun, Jian; Cui, Lei; Yu, Youcheng

    2016-02-01

    The objective of the present study was to explore the mechanisms of transforming growth factor (TGF)-β1 inhibiting the absorption of tissue engineering cartilage. We transfected TGF-β1 gene into bone marrow mesenchymal stem cells (BMMSCs) and co-cultured with interferon (IFN)-γ and tumour necrosis factor (TNF)-α and CD4(+) CD25(-) T lymphocytes. We then characterized the morphological changes, apoptosis and characterization of chondrogenic-committed cells from TGF-β1(+) BMMSCs and explored their mechanisms. Results showed that BMMSCs apoptosis and tissue engineering cartilage absorption in the group with added IFN-γ and TNF-α were greater than in the control group. In contrast, there was little BMMSC apoptosis and absorption by tissue engineering cartilage in the group with added CD4(+) CD25(-) T lymphocytes; Foxp3(+) T cells and CD25(+) CD39(+) T cells were found. In contrast, no type II collagen or Foxp3(+) T cells or CD25(+) CD39(+) T cells was found in the TGF-β1(-) BMMSC group. The data suggest that IFN-γ and TNF-α induced BMMSCs apoptosis and absorption of tissue engineering cartilage, but the newborn regulatory T (Treg) cells inhibited the function of IFN-γ and TNF-α and protected BMMSCs and tissue engineering cartilage. TGF-β1not only played a cartilage inductive role, but also inhibited the absorption of tissue engineering cartilage. The pathway proposed in our study may simulate the actual reaction procedure after implantation of BMMSCs and tissue engineering cartilage in vivo. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Transposon mutagenesis identifies candidate genes that cooperate with loss of Transforming Growth Factor-beta signaling in mouse intestinal neoplasms

    Science.gov (United States)

    Morris, Shelli M.; Davison, Jerry; Carter, Kelly T.; O’Leary, Rachele M.; Trobridge, Patty; Knoblaugh, Sue E.; Myeroff, Lois L.; Markowitz, Sanford D.; Brett, Benjamin T.; Scheetz, Todd E.; Dupuy, Adam J.; Starr, Timothy K.; Grady, William M.

    2017-01-01

    Colorectal cancer (CRC) results from the accumulation of gene mutations and epigenetic alterations in colon epithelial cells, which promotes CRC formation through deregulating signaling pathways. One of the most commonly deregulated signaling pathways in CRC is the transforming growth factor β (TGF-β) pathway. Importantly, the effects of TGF-β signaling inactivation in CRC are modified by concurrent mutations in the tumor cell, and these concurrent mutations determine the ultimate biological effects of impaired TGF-β signaling in the tumor. However, many of the mutations that cooperate with the deregulated TGF-β signaling pathway in CRC remain unknown. Therefore, we sought to identify candidate driver genes that promote the formation of CRC in the setting of TGF-β signaling inactivation. We performed a forward genetic screen in mice carrying conditionally inactivated alleles of the TGF-β receptor, type II (Tgfbr2) using Sleeping Beauty (SB) transposon mediated mutagenesis. We used TAPDANCE and Gene-centric statistical methods to identify common insertion sites (CIS) and, thus, candidate tumor suppressor genes and oncogenes within the tumor genome. CIS analysis of multiple neoplasms from these mice identified many candidate Tgfbr2 cooperating genes and the Wnt/β-catenin, Hippo and MAPK pathways as the most commonly affected pathways. Importantly, the majority of candidate genes were also found to be mutated in human CRC. The SB transposon system provides an unbiased method to identify Tgfbr2 cooperating genes in mouse CRC that are functionally relevant and that may provide further insight into the pathogenesis of human CRC. PMID:27790711

  12. Temporal localization of immunoreactive transforming growth factor beta1 in normal equine skin and in full-thickness dermal wounds.

    Science.gov (United States)

    Theoret, Christine L; Barber, Spencer M; Gordon, John R

    2002-01-01

    To describe the localization of immunoreactive transforming growth factor (TGF)-beta1 in both normal skin and full-thickness dermal wounds of the limb and the thorax of the horse. Six full-thickness excisional wounds were created on the lateral aspect of one metacarpal region and on the midthoracic area of each horse. Sequentially collected tissue specimens from wound margins were assessed for TGF-beta1 expression by immunohistochemistry. Four horses (2 to 4 years of age). A neutralizing monoclonal anti-human TGF-beta1 antibody was used to detect the spatial expression of TGF-beta1 protein by immunohistochemical localization in biopsies obtained before wounding and at 12 and 24 hours, and 5, 10, and 14 days. No differences in localization of immunoreactive TGF-beta1 were detected between limb and thorax, for either intact skin or wounds. Unwounded epidermis stained moderately for TGF-beta1 protein throughout all layers, whereas the dermis was relatively devoid of immunoreactivity. During the acute stage of repair, migrating epithelium lost its stain, whereas cells of epidermal appendages remained strongly immunoreactive. The epithelium recovered its TGF-beta1 immunoreactivity during wound remodeling, although cells of the stratum corneum remained negative. Macrophages of the inflammatory exudate had positive cytoplasmic staining that diminished with time. Immunoreactivity of granulation tissue fibroblasts was evident early on and increased throughout the repair process. TGF-beta1 is constitutively expressed in normal, unwounded equine epithelium. Its expression is upregulated within the skin on injury and is associated with the cells involved in wound repair. A more precise understanding of the temporal and spatial expression of TGF-beta1 during wound repair in horses should provide the groundwork for possible future manipulations of both normal and aberrant tissue repair. Copyright 2002 by The American College of Veterinary Surgeons

  13. Pulmonary artery hypertension in childhood: The transforming growth factor-β superfamily-related genes

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2018-04-01

    Full Text Available Pulmonary artery hypertension (PAH is very rare in childhood, and it can be divided into heritable, idiopathic drug- and toxin-induced and other disease (connective tissue disease, human immunodeficiency virus infection, portal hypertension, congenital heart disease, or schistosomiasis-associated types. PAH could not be interpreted solely by pathophysiological theories. The impact of the transforming growth factor-β superfamily-related genes on the development of PAH in children remains to be clarified. Pertinent literature on the transforming growth factor-β superfamily-related genes in relation to PAH in children published after the year 2000 was reviewed and analyzed. Bone morphogenetic protein receptor type II gene mutation promotes cell division or prevents cell death, resulting in an overgrowth of cells in small arteries throughout the lungs. About 20% of individuals with a bone morphogenetic protein receptor type II gene mutation develop symptomatic PAH. In heritable PAH, bone morphogenetic protein receptor type II mutations may be absent; while mutations of other genes, such as type I receptor activin receptor-like kinase 1 and the type III receptor endoglin (both associated with hereditary hemorrhagic telangiectasia, caveolin-1 and KCNK3, the gene encoding potassium channel subfamily K, member 3, can be detected, instead. Gene mutations, environmental changes and acquired adjustment, etc. may explain the development of PAH. The researches on PAH rat model and familial PAH members may facilitate the elucidations of the mechanisms and further provide theories for prophylaxis and treatment of PAH. Key Words: bone morphogenetic proteins, mutation, pulmonary hypertension

  14. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling.

    Science.gov (United States)

    Mori, Yoshikazu; Hirokawa, Takatsugu; Aoki, Katsuyuki; Satomi, Hisanori; Takeda, Shuichi; Aburada, Masaki; Miyamoto, Ken-ichi

    2008-05-01

    We previously reported a quinoxalin-2-one compound (Compound 1) that had inhibitory activity equivalent to existing platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors. Lead optimization of Compound 1 to increase its activity and selectivity, using structural information regarding PDGFbeta R-ligand interactions, is urgently needed. Here we present models of the PDGFbeta R kinase domain complexed with quinoxalin-2-one derivatives. The models were constructed using comparative modeling, molecular dynamics (MD) and ligand docking. In particular, conformations derived from MD, and ligand binding site information presented by alpha-spheres in the pre-docking processing, allowed us to identify optimal protein structures for docking of target ligands. By carrying out molecular modeling and MD of PDGFbeta R in its inactive state, we obtained two structural models having good Compound 1 binding potentials. In order to distinguish the optimal candidate, we evaluated the structural activity relationships (SAR) between the ligand-binding free energies and inhibitory activity values (IC50 values) for available quinoxalin-2-one derivatives. Consequently, a final model with a high SAR was identified. This model included a molecular interaction between the hydrophobic pocket behind the ATP binding site and the substitution region of the quinoxalin-2-one derivatives. These findings should prove useful in lead optimization of quinoxalin-2-one derivatives as PDGFb R inhibitors.

  15. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo.

    Science.gov (United States)

    Dennler, Sylviane; André, Jocelyne; Alexaki, Ismini; Li, Allen; Magnaldo, Thierry; ten Dijke, Peter; Wang, Xiao-Jing; Verrecchia, Franck; Mauviel, Alain

    2007-07-15

    Hedgehog (Hh) and transforming growth factor-beta (TGF-beta) family members are involved in numerous overlapping processes during embryonic development, hair cycle, and cancer. Herein, we show that TGF-beta induces the expression of the Hh signaling molecules Gli1 and Gli2 in various human cell types, including normal fibroblasts and keratinocytes, as well as various cancer cell lines. Gli2 induction by TGF-beta is rapid, independent from Hh receptor signaling, and requires a functional Smad pathway. Gli1 expression is subsequently activated in a Gli2-dependent manner. In transgenic mice overexpressing TGF-beta1 in the skin, Gli1 and Gli2 expression is also elevated and depends on Smad3. In pancreatic adenocarcinoma cell lines resistant to Hh inhibition, pharmacologic blockade of TGF-beta signaling leads to repression of cell proliferation accompanied with a reduction in Gli2 expression. We thus identify TGF-beta as a potent transcriptional inducer of Gli transcription factors. Targeting the cooperation of Hh and TGF-beta signaling may provide new therapeutic opportunities for cancer treatment.

  16. Surgical management of macular holes: results using gas tamponade alone, or in combination with autologous platelet concentrate, or transforming growth factor beta 2.

    LENUS (Irish Health Repository)

    Minihan, M

    2012-02-03

    BACKGROUND: Vitrectomy and gas tamponade has become a recognised technique for the treatment of macular holes. In an attempt to improve the anatomic and visual success of the procedure, various adjunctive therapies--cytokines, serum, and platelets--have been employed. A consecutive series of 85 eyes which underwent macular hole surgery using gas tamponade alone, or gas tamponade with either the cytokine transforming growth factor beta 2 (TGF-beta 2) or autologous platelet concentrate is reported. METHODS: Twenty eyes had vitrectomy and 20% SF6 gas tamponade; 15 had vitrectomy, 20% SF6 gas, and TGF-beta 2; 50 had vitrectomy, 16% C3F8 gas tamponade, and 0.1 ml of autologous platelet concentrate prepared during the procedure. RESULTS: Anatomic success occurred in 86% of eyes, with 96% of the platelet treated group achieving closure of the macular hole. Visual acuity improved by two lines or more in 65% of the SF6 only group, 33% of those treated with TGF-beta 2 and in 74% of the platelet treated group. In the platelet treated group 40% achieved 6\\/12 or better and 62% achieved 6\\/18 or better. The best visual results were obtained in stage 2 holes. CONCLUSION: Vitrectomy for macular holes is often of benefit and patients may recover good visual acuity, especially early in the disease process. The procedure has a number of serious complications, and the postoperative posturing requirement is difficult. Patients need to be informed of such concerns before surgery.

  17. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study

    LENUS (Irish Health Repository)

    Chappell, Sally L

    2011-02-14

    Abstract Background Genetic factors are known to contribute to COPD susceptibility and these factors are not fully understood. Conflicting results have been reported for many genetic studies of candidate genes based on their role in the disease. Genome-wide association studies in combination with expression profiling have identified a number of new candidates including IREB2. A meta-analysis has implicated transforming growth factor beta-1 (TGFbeta1) as a contributor to disease susceptibility. Methods We have examined previously reported associations in both genes in a collection of 1017 white COPD patients and 912 non-diseased smoking controls. Genotype information was obtained for seven SNPs in the IREB2 gene, and for four SNPs in the TGFbeta1 gene. Allele and genotype frequencies were compared between COPD cases and controls, and odds ratios were calculated. The analysis was adjusted for age, sex, smoking and centre, including interactions of age, sex and smoking with centre. Results Our data replicate the association of IREB2 SNPs in association with COPD for SNP rs2568494, rs2656069 and rs12593229 with respective adjusted p-values of 0.0018, 0.0039 and 0.0053. No significant associations were identified for TGFbeta1. Conclusions These studies have therefore confirmed that the IREB2 locus is a contributor to COPD susceptibility and suggests a new pathway in COPD pathogenesis invoking iron homeostasis.

  18. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    Science.gov (United States)

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  19. [Construction of a recombinant adenovirus vector harboring human transforming growth factor-beta type II receptor-IgG1Fc fusion gene].

    Science.gov (United States)

    Jia, Li; Xue, Jian-xin; Lu, You

    2008-12-01

    To construct a recombinant adenoviral vector harboring human transforming growth factor-beta type II receptor-IgG1Fc (TbetaRII-IgG1Fc) fusion gene. The cDNA fragments of human TbetaRII and IgG1Fc genes were amplified by RT-PCR and fused with overlap PCR to obtain the fusion gene TbetaRKK-IgG1Fc. The TbetaRII-IgG1Fc gene was cloned into the shuttle plasmid pAdTrack-CMV, which was linearized and transfected into E.coli BJ 5183 strain containing the adenoviral backbone vector. The recombinant adenovirus vector was constructed by homologous recombination. The recombinant adenoviral plasmid was linearized and transfected into 293 cells, followed by amplification and purification of the virus and detection of TbetaRII-IgG1Fc mRNA expression by RT-PCR. The functional activity of the recombinant adenoviral plasmid was assessed using enzyme-linked immunosorbent assay (ELISA). The results of restriction endonuclease digestion and DNA sequencing indicated correct sequence of the target TbetaRII-IgG1Fc fusion gene. The recombinant adenoviral plasmid expressed hTbetaRII-IgG1Fc and neutralized TGF-beta1 in vitro after infection of the human lung fibroblasts (HLF), as confirmed by RT-PCR and ELISA. The recombinant adenoviral plasmid capable of neutralizing TGF-beta1 in vitro is constructed successfully.

  20. Serum Concentrations of Transforming Growth Factor-Beta 1 in Predicting the Occurrence of Diabetic Retinopathy in Juvenile Patients with Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Katarzyna Zorena

    2013-01-01

    Full Text Available In the present study, we have decided to evaluate if serum transforming growth factor-beta 1 (TGF-β1 concentrations may have diagnostic value in predicting the occurrence of diabetic retinopathy (DR in juvenile patients with type 1 diabetes mellitus (T1DM. The study included 81 children and adolescents with T1DM and 19 control subjects. All study participants had biochemical parameters examined, underwent an eye examination, and 24-hour blood pressure monitoring. Moreover, serum concentrations of TGF-β1 were measured. The group of patients with T1DM and nonproliferative diabetic retinopathy (NPDR had statistically significant higher serum levels of TGF-β1 (P=0.001 as compared to T1DM patients without retinopathy as well as the healthy control subject. The threshold serum TGF-β1 concentrations which had a discriminative ability to predict the presence of DR were calculated using the receiver operating characteristic (ROC curves analysis and amounted to 443 pg/ml. The area under the ROC curve (AUCROC was 0.80, and its population value was in the range of 0.66 to 0.94. The sensitivity and specificity were calculated to be 72% and 88%, respectively. Our results suggest that TGF-β1 serum concentrations may be an additional parameter in predicting the occurrence of DR in juvenile patients with T1DM.

  1. Alkaline phosphatase expression in cultured endothelial cells of aorta and brain microvessels: induction by interleukin-6-type cytokines and suppression by transforming growth factor betas.

    Science.gov (United States)

    Nakazato, H; Deguchi, M; Fujimoto, M; Fukushima, H

    1997-01-01

    Alkaline phosphatase (ALP) activity is markedly high in endothelial cells of the blood-brain barrier (BBB) type but absent from or low in those of the non-BBB type. Interleukin 6 (IL-6) has been identified as a glial cell line-derived factor that induces high ALP activity in cultured aortic endothelial cells. In the present study, we examined the effect of IL-6-type cytokines and transforming growth factor betas (TGF-betas) on ALP expression in cultures of calf pulmonary aortic endothelial (CPAE) cells and porcine brain microvascular endothelial (PBME) cells. Leukemia inhibitory factor, ciliary neurotrophic factor, and oncostatin M, which are known as IL-6-type cytokines, induced high ALP expression in the CPAE cells but not in the PBME cells. ALP levels in these cells were markedly suppressed by culture with TGF-betas. However, in cultured PBME cells, IL-6 and a derivative of cyclic adenosine monophosphate significantly increased ALP activity. Our findings raise the posibility that local concentrations of IL-6, IL-6-type cytokines, and TGF-betas affect the ALP levels in the endothelial cells of aorta and brain microvessels under normal development and also under inflammatory conditions.

  2. Transforming growth factor-betas block cytokine induction of catalase and xanthine oxidase mRNA levels in cultured rat cardiac cells.

    Science.gov (United States)

    Flanders, K C; Bhandiwad, A R; Winokur, T S

    1997-01-01

    We examined the effects of transforming growth factor-beta (TGF-beta) on the mRNA expression of the antioxidative enzymes, catalase, manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD), as well as the oxidative enzyme, xanthine oxidase (XO), in cultures of cardiomyocytes, cardiac non-myocytes, and fetal bovine heart endothelial cells. TGF-betas alone had little effect on expression of these enzymes, but treatment with a combination of interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha increased expression of MnSOD, catalase, and XO in some cell types with little effect on CuZnSOD expression. When TGF-betas were added along with these inflammatory cytokines there was a return to control levels of catalase expression, as well as a dramatic reduction in XO expression. In fetal bovine heart endothelial cells, treatment with inflammatory cytokines increased XO mRNA expression 11.5-fold and inclusion of TGF-betas reduced this 4-5-fold: effects on XO enzyme activity paralleled those seen on mRNA expression. Similar changes in XO expression were seen in cardiomyocytes. In contrast, TGF-betas did not change cytokine-induced MnSOD expression. All three mammalian isoforms of TGF-beta showed similar effects. In summary, TGF-betas may be able to decrease superoxide anion production and subsequent tissue damage by decreasing levels of XO.

  3. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    Full Text Available To study the role of long non-coding RNA (lncRNA MALAT1 in transforming growth factor beta 1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of retinal pigment epithelial (RPE cells.ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1 at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA. The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR vitreous samples.The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.

  4. Mutation in Transforming Growth Factor Beta Induced protein associated with Granular Corneal Dystrophy Type 1 Reduces the Proteolytic Susceptibility through Local Structural Stabilization#

    Science.gov (United States)

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S.; Kristensen, Torsten; Otzen, Daniel E.; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J.; Nielsen, Niels Chr.

    2014-01-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3′ containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. PMID:24129074

  5. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Ahmed, Lamiaa A; Obaid, Al Arqam Z; Zaki, Hala F; Agha, Azza M

    2014-10-05

    Pulmonary hypertension is a progressive disease of various origins that is associated with right ventricular dysfunction. In the present study, the protective effect of diosgenin was investigated in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). Diosgenin (100 mg/kg) was given by oral administration once daily for 3 weeks. At the end of the experiment, mean arterial blood pressure, electrocardiography and echocardiography were recorded. Rats were then sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta contents. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Diosgenin treatment provided a significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats. Furthermore, diosgenin therapy prevented monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression as well as histological analysis. These findings support the beneficial effect of diosgenin in pulmonary hypertension induced by monocrotaline in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  7. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    Science.gov (United States)

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing.

    Science.gov (United States)

    Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E

    2016-09-01

    Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Increased cAMP levels modulate transforming growth factor-beta/Smad-induced expression of extracellular matrix components and other key fibroblast effector functions.

    Science.gov (United States)

    Schiller, Meinhard; Dennler, Sylviane; Anderegg, Ulf; Kokot, Agatha; Simon, Jan C; Luger, Thomas A; Mauviel, Alain; Böhm, Markus

    2010-01-01

    cAMP is a key messenger of many hormones and neuropeptides, some of which modulate the composition of extracellular matrix. Treatment of human dermal fibroblasts with dibutyryl cyclic AMP and forskolin antagonized the inductive effects of transforming growth factor-beta (TGF-beta) on the expression of collagen, connective tissue growth factor, tissue inhibitor of matrix metalloproteinase-1, and plasminogen activator inhibitor type I, four prototypical TGF-beta-responsive genes. Increased intracellular cAMP prevented TGF-beta-induced Smad-specific gene transactivation, although TGF-beta-mediated Smad phosphorylation and nuclear translocation remained unaffected. However, increased cAMP levels abolished TGF-beta-induced interaction of Smad3 with its transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP)/p300. Overexpression of the transcriptional co-activator CBP/p300 rescued Smad-specific gene transcription in the presence of cAMP suggesting that sequestration of limited amounts of CBP/p300 by the activated cAMP/CREB pathway is the molecular basis of this inhibitory effect. These findings were extended by two functional assays. Increased intracellular cAMP levels suppressed the inductive activity of TGF-beta to contract mechanically unloaded collagen lattices and resulted in an attenuation of fibroblast migration of mechanically induced cell layer wounds. Of note, cAMP and TGF-beta synergistically induced hyaluronan synthase 2 (HAS2) expression and hyaluronan secretion, presumably via putative CREB-binding sites adjacent to Smad-binding sites within the HAS2 promoter. Our findings identify the cAMP pathway as a potent but differential and promoter-specific regulator of TGF-beta-mediated effects involved in extracellular matrix homeostasis.

  10. Transforming growth factor beta-1 and interleukin-17 gene transcription in peripheral blood mononuclear cells and the human response to infection.

    LENUS (Irish Health Repository)

    White, Mary

    2012-02-01

    INTRODUCTION: The occurrence of severe sepsis may be associated with deficient pro-inflammatory cytokine production. Transforming growth factor beta-1 (TGFbeta-1) predominantly inhibits inflammation and may simultaneously promote IL-17 production. Interleukin-17 (IL-17) is a recently described pro-inflammatory cytokine, which may be important in auto-immunity and infection. We investigated the hypothesis that the onset of sepsis is related to differential TGFbeta-1 and IL-17 gene expression. METHODS: A prospective observational study in a mixed intensive care unit (ICU) and hospital wards in a university hospital. Patients (59) with severe sepsis; 15 patients with gram-negative bacteraemia but without critical illness and 10 healthy controls were assayed for TGFbeta-1, IL-17a, IL-17f, IL-6 and IL-1beta mRNA in peripheral blood mononuclear cells (PBMC) by quantitative real-time PCR and serum protein levels by ELISA. RESULTS: TGFbeta-1 mRNA levels are reduced in patients with bacteraemia and sepsis compared with controls (p=0.02). IL-6 mRNA levels were reduced in bacteraemic patients compared with septic patients and controls (p=0.008). IL-1beta mRNA levels were similar in all groups, IL-17a and IL-17f mRNA levels are not detectable in peripheral blood mononuclear cells. IL-6 protein levels were greater in patients with sepsis than bacteraemic and control patients (p<0.0001). Activated TGFbeta-1 and IL-17 protein levels were similar in all groups. IL-1beta protein was not detectable in the majority of patients. CONCLUSIONS: Down regulation of TGFbeta-1 gene transcription was related to the occurrence of infection but not the onset of sepsis. Interleukin-17 production in PBMC may not be significant in the human host response to infection.

  11. Endogenous interleukin-22 protects against inflammatory bowel disease but not autoimmune cholangitis in dominant negative form of transforming growth factor beta receptor type II mice.

    Science.gov (United States)

    Yang, G-X; Sun, Y; Tsuneyama, K; Zhang, W; Leung, P S C; He, X-S; Ansari, A A; Bowlus, C; Ridgway, W M; Gershwin, M E

    2016-08-01

    During chronic inflammation, interleukin (IL)-22 expression is up-regulated in both CD4 and CD8 T cells, exerting a protective role in infections. However, in autoimmunity, IL-22 appears to have either a protective or a pathogenic role in a variety of murine models of autoimmunity and, by extrapolation, in humans. It is not clear whether IL-22 itself mediates inflammation or is a by-product of inflammation. We have taken advantage of the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice that develop both inflammatory bowel disease and autoimmune cholangitis and studied the role and the biological function of IL-22 by generating IL-22(-/-) dnTGF-βRII mice. Our data suggest that the influence of IL-22 on autoimmunity is determined in part by the local microenvironment. In particular, IL-22 deficiency exacerbates tissue injury in inflammatory bowel disease, but has no influence on either the hepatocytes or cholangiocytes in the same model. These data take on particular significance in the previously defined effects of IL-17A, IL-12p40 and IL-23p19 deficiency and emphasize that, in colitis, there is a dominant role of IL-23/T helper type 17 (Th17) signalling. Furthermore, the levels of IL-22 are IL-23-dependent. The use of cytokine therapy in patients with autoimmune disease has significant potential, but must take into account the overlapping and often promiscuous effects that can theoretically exacerbate inflammation. © 2016 British Society for Immunology.

  12. Optimization of Methods for Articular Cartilage Surface Tissue Engineering: Cell Density and Transforming Growth Factor Beta Are Critical for Self-Assembly and Lubricin Secretion.

    Science.gov (United States)

    Iwasa, Kenjiro; Reddi, A Hari

    2017-07-01

    Lubricin/superficial zone protein (SZP)/proteoglycan4 (PRG4) plays an important role in boundary lubrication in articular cartilage. Lubricin is secreted by superficial zone chondrocytes and synoviocytes of the synovium. The specific objective of this investigation is to optimize the methods for tissue engineering of articular cartilage surface. The aim of this study is to investigate the effect of cell density on the self-assembly of superficial zone chondrocytes and lubricin secretion as a functional assessment. Superficial zone chondrocytes were cultivated as a monolayer at low, medium, and high densities. Chondrocytes at the three different densities were treated with transforming growth factor beta (TGF-β)1 twice a week or daily, and the accumulated lubricin in the culture medium was analyzed by immunoblots and quantitated by enzyme-linked immunosorbent assay (ELISA). Cell numbers in low and medium densities were increased by TGF-β1; whereas cell numbers in high-density cell cultures were decreased by twice-a-week treatment of TGF-β1. On the other hand, the cell numbers were maintained by daily TGF-β treatment. Immunoblots and quantitation of lubricin by ELISA analysis indicated that TGF-β1 stimulated lubricin secretion by superficial zone chondrocytes at all densities with twice-a-week TGF-β treatment. It is noteworthy that the daily treatment of TGF-β1 increased lubricin much higher compared with twice-a-week treatment. These data demonstrate that daily treatment is optimal for the TGF-β1 response in a higher density of monolayer cultures. These findings have implications for self-assembly of surface zone chondrocytes of articular cartilage for application in tissue engineering of articular cartilage surface.

  13. Matrix metalloproteinase, tissue inhibitor of metalloproteinase and transforming growth factor-beta 1 in frozen shoulder, and their changes as response to intensive stretching and supervised neglect exercise.

    Science.gov (United States)

    Lubis, Andri Maruli Tua; Lubis, Vita Kurniati

    2013-07-01

    Frozen shoulder is characterized with thickening and contracture of joint capsular. The mechanism of this disorder is not yet clear, however, some proteins have been related to frozen shoulder. This study was to compare the serum levels of proteins related to frozen shoulder, such as matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP) and transforming growth factor-beta (TGF-β) between frozen shoulder and normal subjects; and before and after physical exercise active stretching and gentle thawing in frozen shoulder patients. Serum levels of MMP-1, MMP-2, TIMP-1, TIMP-2, and TGF-β1 was measured from frozen shoulder and normal subjects by using ELISA. Functional assessment of shoulder joint in frozen shoulder patients was based on abbreviated Constant score. Frozen shoulder patients were randomly divided into intensive stretching and supervised neglect groups. Abbreviated Constant score and serum samples of frozen shoulder patients were evaluated at baseline, week-6, and week-12 after exercise, while only baseline serum samples of control were measured. MMP/TIMP ratio was calculated from the total sum of MMP-1 and MMP-2 levels divided by the total sum of TIMP-1 and TIMP-2 levels. Baseline MMP-1 and MMP-2 levels were significantly lower, while TIMP-1, TIMP-2, and TGF-β1 levels were significantly higher in frozen shoulder group than in control. Increased MMPs and decreased TIMPs were significantly greater after intensive stretching than after supervised neglect exercise. Abbreviated Constant score improvement was significantly higher in intensive stretching group than in supervised neglect group. Serum levels of MMP-1, MMP-2, TIMP-1, TIMP-2, and TGF-β1 may be associated to frozen shoulder. Active stretching can improve frozen shoulder better than supervised neglect, as demonstrated by the improvement of Constant score.

  14. Evaluation of zinc finger E-box binding homeobox 1 and transforming growth factor-beta2 expression in bladder cancer tissue in comparison with healthy adjacent tissue

    Directory of Open Access Journals (Sweden)

    Ali Mahdavinezhad

    2017-03-01

    Full Text Available Purpose: The fifth most common cancer is allocated to bladder cancer (BC worldwide. Understanding the molecular mechanisms of BC invasion and metastasis to identify target therapeutic strategies will improve disease survival. So the aim of this study was to measure expression rate of zinc finger E-box binding homeobox 1 (ZEB1 and transforming growth factor-beta2 (TGF-β2 mRNA in tissue samples of patients with BC and its healthy adjacent tissue samples and their association with muscle invasion, size and grade of the tumor. Materials and Methods: Tissue samples were collected from 35 newly diagnosed untreated patients with BC from 2013 to 2014. Total RNA was extracted from about 50-mg tissue samples using TRIzol reagent. TAKARA SYBR Premix EX Tag II was applied to determine the rate of mRNA expression by real-time polymerase chain reaction (PCR. To obtain final validation, PCR product of ZEB1 and TGF-β2 were sequenced. STATA 11 software was used to analyze the data. Results: The expression level of ZEB1 in tumor samples was significantly more than of in healthy adjacent tissue samples. Up-regulation of TGF-β2 showed a strong association with muscle invasion (p=0.017. There was also demonstrated a relationship between over expression of ZEB1 with the tumor size (p=0.050. Conclusions: It looks ZEB1 and TGF-β2 had a role in BC patients. In this study ZEB1 expression was higher in BC tissues than that of in healthy control tissues. There was demonstrated a markedly association between overexpression of TGF-β2 and muscle invasion. Therefore, they are supposed to be candidate as potential biomarkers for early detection and progression of BC.

  15. Preoperative oral polymeric diet enriched with transforming growth factor-beta 2 (Modulen) could decrease postoperative morbidity after surgery for complicated ileocolonic Crohn's disease.

    Science.gov (United States)

    Beaupel, Nathan; Brouquet, Antoine; Abdalla, Solafah; Carbonnel, Franck; Penna, Christophe; Benoist, Stéphane

    2017-01-01

    Exclusive polymeric diet enriched with transforming growth factor-beta 2 (ANS-TGF-β2) has been used for remission induction and maintenance in pediatric Crohn's disease (CD). Its use in the preoperative setting has never been evaluated. The aim of this study was to evaluate preoperative ANS-TGF-β2 to decrease postoperative complications after surgery for complicated ileocolonic CD. From 2011 to 2015, data of all consecutive patients who underwent elective surgery for ileocolonic CD were collected prospectively. Preoperative, exclusive ANS-TGF-β2 was administered in high-risk patients with complicated CD. Complicated CD was defined by the presence of obstructive symptoms, and/or steroid treatment, and/or preoperative weight loss >10% and/or perforating CD. Outcomes of high-risk patients receiving preoperative ANS-TGF-β2 were compared to those of low-risk patients with no complicated CD who underwent upfront surgery. Fifty-six patients underwent surgery for ileocolonic CD. Among them, 35 high-risk patients received preoperative ANS-TGF-β2 and 21 low-risk patients underwent upfront surgery. Preoperative full-dose ANS-TGF-β2 was feasible in 34/35 high-risk patients. Discontinuation of steroids during preoperative ANS-TGF-β2 could be achieved in 10/16 patients (62.5%). Postoperative complications rates were 8/35 (23.8%) and 5/21 (22.9%) in high-risk and low-risk patients, respectively (p = 1). Temporary ileocolostomy rates in high-risk patients and in low-risk patients were 4/35 (11%) and 0/21, respectively (p = 0.286) Conclusion: Preoperative ANS-TGF-β2 is feasible in most high-risk patients with complicated ileocolonic CD and could limit the deleterious effects of risk factors of postoperative morbidity. These results need to be confirmed in a large randomized controlled trial.

  16. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Seok; Chang, Jai Won [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Han, Nam Jeong [Department of Cell Biology, Asan Institute for Life Sciences, Seoul (Korea, Republic of); Lee, Sang Koo [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Park, Su-Kil, E-mail: skpark@amc.seoul.kr [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)

    2012-09-10

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  17. Polymorphisms of transforming growth factor beta 1 (RS#1800468 and RS#1800471) and esophageal squamous cell carcinoma among Zhuangese population, China.

    Science.gov (United States)

    Tang, Ren-Guang; Huang, Yong-Zhi; Yao, Li-Min; Xiao, Jian; Lu, Chuan; Yu, Qian

    2013-01-01

    Epidemiological evidence has shown two polymorphisms (namely RS#1800468G>A and RS#1800471G>C) of transforming growth factor-beta 1 (TGF-β1) gene may be involved in the cancer development. However, their role in the carcinogenic process of esophageal squamous cell carcinoma (ESCC) has been less well elaborated. We conducted a hospital-based case-control study including 391 ESCC cases and 508 controls without any evidence of tumors to evaluate the association between these two polymorphisms and ESCC risk and prognosis for Zhuangese population by means of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system (ARMS)-PCR techniques. We found that individuals with the genotypes with RS#1800471 C allele (namely RS#1800471-GC or -CC) had an increased risk of ESCC than those without above genotypes (namely RS#1800471-GG, adjusted odds ratio 3.26 and 5.65, respectively). Further stratification analysis showed that this polymorphism was correlated with tumor histological grades and TNM (tumor, node, and metastasis) stage, and modified the serum levels of TGF-β1. Additionally, RS#1800471 polymorphism affected ESCC prognosis (hazard ratio, 3.40), especially under high serum levels of TGF-β1 conditions. However, RS#1800468 polymorphism was not significantly related to ESCC risk. These findings indicated that TGF-β1 RS#1800471G>C polymorphism may be a genetic modifier for developing ESCC in Zhuangese population. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin increase transforming growth factor {beta} and cause myocardial fibrosis in marmosets (Callithrix jacchus)

    Energy Technology Data Exchange (ETDEWEB)

    Riecke, K.; Grimm, D.; Kossmehl, P.; Paul, M.; Stahlmann, R. [Inst. of Clinical Pharmacology and Toxicology, Benjamin Franklin Medical Center, Freie Univ. Berlin, Berlin (Germany); Shakibaei, M.; Schulze-Tanzil, G. [Inst. of Anatomy, Benjamin Franklin Medical Center, Freie Univ. Berlin, Berlin (Germany)

    2002-06-01

    Epidemiological studies have suggested an association between exposure to dioxins and cardiovascular morbidity and mortality. However, cardiotoxic effects of low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in animals have not been reported so far. We studied the hearts of male marmosets (Callithrix jacchus) after treatment with single subcutaneous doses of 1, 10 or 100 ng TCDD/kg body weight or vehicle (toluene/DMSO 1+2 v/v, 100 {mu}l/kg body weight). The animals were killed 2 or 4 weeks after treatment. Tissue samples of left ventricular myocardium were stained with picrosirius red and examined histologically along with quantitative image analysis. Extracellular matrix proteins were additionally analysed by western blotting. Monkeys showed no overt signs of toxicity nor did their relative heart weights differ significantly depending on treatment. Histology revealed an increase of picrosirius red-positive area above control values in 2 of 4 (1 ng TCDD/kg body weight), 6 of 12 (10 ng/kg) and 6 of 10 (100 ng/kg) marmosets. Western blotting confirmed these histological findings showing an increase of collagen, fibronectin and laminin in the hearts of TCDD-treated animals. Western blotting additionally showed an increased concentration of transforming growth factor {beta}1 (TGF-{beta}1) as well as TGF-{beta} receptor type I which could be a functional link to the effects on extracellular matrix. Our findings might explain the association of TCDD exposure with increased cardiovascular mortality observed in epidemiological studies and should stimulate further research on the role of changes in the extracellular matrix in the toxic effects of dioxins and related substances on other organs. (orig.)

  19. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ping, Yu; Liu, Shasha [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); School of Life Sciences, Zhengzhou University, Zhengzhou 450000 (China); Shi, Xiaojuan; Li, Lifeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Liping [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Huang, Lan [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Zhang, Bin [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Sun, Yan [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences (China); and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  20. Ingredients of Huangqi decoction slow biliary fibrosis progression by inhibiting the activation of the transforming growth factor-beta signaling pathway

    Directory of Open Access Journals (Sweden)

    Du Jin-Xing

    2012-04-01

    Full Text Available Abstract Background Huangqi decoction was first described in Prescriptions of the Bureau of Taiping People's Welfare Pharmacy in Song Dynasty (AD 1078, and it is an effective recipe that is usually used to treat consumptive disease, anorexia, and chronic liver diseases. Transforming growth factor beta 1 (TGFβ1 plays a key role in the progression of liver fibrosis, and Huangqi decoction and its ingredients (IHQD markedly ameliorated hepatic fibrotic lesions induced by ligation of the common bile duct (BDL. However, the mechanism of IHQD on hepatic fibrotic lesions is not yet clear. The purpose of the present study is to elucidate the roles of TGFβ1 activation, Smad-signaling pathway, and extracellular signal-regulated kinase (ERK in the pathogenesis of biliary fibrosis progression and the antifibrotic mechanism of IHQD. Methods A liver fibrosis model was induced by ligation of the common bile duct (BDL in rats. Sham-operation was performed in control rats. The BDL rats were randomly divided into two groups: the BDL group and the IHQD group. IHQD was administrated intragastrically for 4 weeks. At the end of the fifth week after BDL, animals were sacrificed for sampling of blood serum and liver tissue. The effect of IHQD on the TGFβ1 signaling pathway was evaluated by western blotting and laser confocal microscopy. Results Decreased content of hepatic hydroxyproline and improved liver function and histopathology were observed in IHQD rats. Hepatocytes, cholangiocytes, and myofibroblasts in the cholestatic liver injury released TGFβ1, and activated TGFβ1 receptors can accelerate liver fibrosis. IHQD markedly inhibited the protein expression of TGFβ1, TGFβ1 receptors, Smad3, and p-ERK1/2 expression with no change of Smad7 expression. Conclusion IHQD exert significant therapeutic effects on BDL-induced fibrosis in rats through inhibition of the activation of TGFβ1-Smad3 and TGFβ1-ERK1/2 signaling pathways.

  1. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    International Nuclear Information System (INIS)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng; Ping, Yu; Liu, Shasha; Shi, Xiaojuan; Li, Lifeng; Wang, Liping; Huang, Lan; Zhang, Bin; Sun, Yan

    2015-01-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells

  2. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Mi-Sun; Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  3. Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses.

    Science.gov (United States)

    Sun, Ling; Sucosky, Philippe

    2015-06-26

    To explore ex vivo the role of bone morphogenetic protein-4 (BMP-4) and transforming growth factor-beta1 (TGF-β1) in acute valvular response to fluid shear stress (FSS) abnormalities. Porcine valve leaflets were subjected ex vivo to physiologic FSS, supra-physiologic FSS magnitude at normal frequency and supra-physiologic FSS frequency at normal magnitude for 48 h in a double-sided cone-and-plate bioreactor filled with standard culture medium. The role of BMP-4 and TGF-β1 in the valvular response was investigated by promoting or inhibiting the downstream action of those cytokines via culture medium supplementation with BMP-4 or the BMP antagonist noggin, and TGF-β1 or the TGF-β1 inhibitor SB-431542, respectively. Fresh porcine leaflets were used as controls. Each experimental group consisted of six leaflet samples. Immunostaining and immunoblotting were performed to assess endothelial activation in terms of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expressions, paracrine signaling in terms of BMP-4 and TGF-β1 expressions and extracellular matrix (ECM) remodeling in terms of cathepsin L, cathepsin S, metalloproteinases (MMP)-2 and MMP-9 expressions. Immunostained images were quantified by normalizing the intensities of positively stained regions by the number of cells in each image while immunoblots were quantified by densitometry. Regardless of the culture medium, physiologic FSS maintained valvular homeostasis. Tissue exposure to supra-physiologic FSS magnitude in standard medium stimulated paracrine signaling (TGF-β1: 467% ± 22% vs 100% ± 6% in fresh controls, BMP-4: 258% ± 22% vs 100% ± 4% in fresh controls; P 0.05). Supra-physiologic FSS frequency had no effect on endothelial activation and paracrine signaling regardless of the culture medium but TGF-β1 silencing attenuated FSS-induced ECM degradation via MMP-9 downregulation (MMP-9: 302% ± 182% vs 100% ± 42% in fresh controls; P > 0.05). Valvular tissue is sensitive

  4. El factor de crecimiento transformante beta como blanco terapéutico Transforming growth factor-beta as a therapeutic target

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gálvez-Gastélum

    2004-08-01

    Full Text Available El factor de crecimiento transformante beta (TGF-beta es una familia de proteínas que incluye al TGF-beta, activinas y a la proteína morfogénica de hueso (BMP, por sus siglas en inglés, citocinas que son secretadas y se relacionan estructuralmente en diferentes especies de metazoarios. Los miembros de la familia del TGF-beta regulan diferentes funciones celulares como proliferación, apoptosis, diferenciación, migración, y tienen un papel clave en el desarrollo del organismo. El TGF-beta está implicado en varias patologías humanas, incluyendo desórdenes autoinmunes y vasculares, así como enfermedades fibróticas y cáncer. La activación del receptor del TGF-beta propicia su fosforilación en residuos de serina/treonina y dispara la fosforilación de proteínas efectoras intracelulares (smad, que una vez activas se translocan al núcleo para inducir la transcripción de genes blanco, y así regular procesos y funciones celulares. Se están desarrollando novedosas estrategias terapéuticas encaminadas a corregir las alteraciones presentes en patologías que involucran al TGF-beta como actor principal.Transforming growth factor-beta (TGF-beta family members include TGF-beta, activins, and bone morphogenetic proteins (BMP. These proteins are structurally related cytokines secreted in diverse Metazoans. TGF-beta family members regulate cellular functions such as proliferation, apoptosis, differentiation, and migration, and play an important role in organism development. Deregulated TGF-beta family signaling participates in various human pathologies including auto-immune diseases, vascular disorders, fibrotic disease, and cancer. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity, triggers phosphorylation of the intracellular effectors of TGF-beta signaling, the Smads proteins. Once these proteins are activated they translocate into the nucleus, where they induce transcription of target

  5. Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha.

    Science.gov (United States)

    Lurton, J; Soto, H; Narayanan, A S; Raghu, G

    1999-03-01

    Transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) are two polypeptide mediators which are believed to play a role in the evolution of idiopathic pulmonary fibrosis (IPF). We have evaluated the effect of these two substances on the expression of receptors for collagen (cC1q-R) and globular (gC1q-R) domains of C1q and on type I collagen in human lung fibroblasts. Two fibroblast subpopulations differing in C1q receptor expression were obtained by culturing human lung explants in medium containing fresh human serum and heated plasma-derived serum and separating them based on C1q binding [Narayanan, Lurton and Raghu: Am J Resp Cell Mol Biol. 1998; 17:84]. The cells, referred to as HH and NL cells, respectively, were exposed to TGF-beta and TNF-alpha in serum-free conditions. The levels of mRNA were assessed by in situ hybridization and Northern analysis, and protein levels compared after SDS-polyacrylamide gel electrophoresis and Western blotting. NL cells exposed to TGF-beta and TNF-alpha contained 1.4 and 1.6 times as much cC1q-R mRNA, respectively, whereas in HH cells cC1q-R mRNA increased 2.0- and 2.4-fold. The gC1q-R mRNA levels increased to a lesser extent in both cells. These increases were not reflected in protein levels of CC1q-R and gC1q-R, which were similar to or less than controls. Both TGF-beta and TNF-alpha also increased procollagen [I] mRNA levels in both cells. Overall, TNF-alpha caused a greater increase and the degree of response by HH fibroblasts to both TGF-beta and TNF-alpha was higher than NL cells. These results indicated that TGF-beta and TNF-alpha upregulate the mRNA levels for cC1q-R and collagen and that they do not affect gC1q-R mRNA levels significantly. They also indicated different subsets of human lung fibroblasts respond differently to inflammatory mediators.

  6. Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates

    Directory of Open Access Journals (Sweden)

    Silva Raul F

    2012-07-01

    Full Text Available Abstract Background The clinical use of autologous platelet concentrates (also known as platelet-rich plasma on the field of regenerative therapy, in the last decade has been the subject of several studies especially in equine medicine and surgery. The objectives of this study was: 1 to describe and compare the cellular population in whole blood, lower fraction (A and upper fraction (B of platelet concentrates, 2 to measure and compare the transforming growth factor beta 1 (TGF-β1 concentration in plasma and both platelet concentrates after be activated with calcium gluconate or batroxobin plus calcium gluconate and, 3 to determine correlations between cell counts in platelet concentrates and concentrations of TGF-β1. Blood samples were taken from 16 dogs for complete blood count, plasma collection and platelet concentrates preparation. The platelet concentrates (PC were arbitrarily divided into two fractions, specifically, PC-A (lower fraction and PC-B (upper fraction. The Platelet concentrates were analyzed by hemogram. After activated with calcium gluconate or batroxobin plus calcium gluconate, TGF-β1 concentration was determined in supernatants of platelet concentrates and plasma. Results There were differences statistically significant (P 1 concentration between whole blood, plasma and both platelet concentrates. A significant correlation was found between the number of platelets in both platelet concentrates and TGF-β1 concentration. Platelet collection efficiency was 46.34% and 28.16% for PC-A and PC-B, respectively. TGF-β1 concentration efficiency for PC activated with calcium gluconate was 47.75% and 31.77%, for PC-A and PC-B, respectively. PC activated with batroxobin plus CG showed 46.87% and 32.24% for PC-A and PC-B, respectively. Conclusions The methodology used in this study allows the concentration of a number of platelets and TGF-β1 that might be acceptable for a biological effect for clinical or experimental use as a

  7. Intracellular mediators of transforming growth factor β superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo

    Directory of Open Access Journals (Sweden)

    Ishii Shunsuke

    2007-06-01

    Full Text Available Abstract Background Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Results Proteins that are downstream of the transforming growth factor-β superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFβ superfamily for their normal development. Phosphorylated Smad1 (pSmad1, pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Conclusion Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-β superfamily to endosomes is important for the regulation of growth factor signaling.

  8. Fetal antigen 1 (FA1), a circulating member of the epidermal growth factor (EGF) superfamily

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Krogh, T N; Støving, René Klinkby

    1997-01-01

    We describe an ELISA technique for quantification of fetal antigen 1 (FA1), a glycoprotein belonging to the EGF-superfamily. The ELISA is based on immunospecifically purified polyclonal antibodies and has a dynamic range of 0.7-5.3 ng/ml, intra- and inter-assay C.V.s of less than 3.2% and an aver...

  9. Dermal tissue fibrosis in patients with chronic venous insufficiency is associated with increased transforming growth factor-beta1 gene expression and protein production.

    Science.gov (United States)

    Pappas, P J; You, R; Rameshwar, P; Gorti, R; DeFouw, D O; Phillips, C K; Padberg, F T; Silva, M B; Simonian, G T; Hobson, R W; Durán, W N

    1999-12-01

    Pathologic dermal degeneration in patients with chronic venous insufficiency (CVI) is characterized by aberrant tissue remodeling that results in stasis dermatitis, tissue fibrosis, and ulcer formation. The cytochemical processes that regulate these events are unclear. Because transforming growth factor-beta(1) (TGF-beta(1)) is a known fibrogenic cytokine, we hypothesized that the increased production of TGF-beta(1) would be associated with CVI disease progression. Seventy-eight punch biopsy specimens of the lower calf (LC) and the lower thigh (LT) of 52 patients were snap frozen in liquid nitrogen and stratified into four groups according to the Society for Vascular Surgery/International Society for Cardiovascular Surgery CEAP classification (C, clinical; E, etiologic; A, anatomic distribution; and P, pathophysiology). One set of LC biopsy specimens were analyzed for TGF-beta(1) gene expression with quantitative reverse transcriptase-polymerase chain reaction: healthy skin, n = 6; class 4, n = 6; class 5, n = 5; and class 6, n = 7. A second set of biopsy specimens from the LC and LT were analyzed for the amount of bioactive TGF-beta(1) with a certified cell line 64 mink lung epithelial bioassay: healthy skin, n = 8; class 4, n = 23; class 5, n = 13; and class 6, n = 10. The location of TGF-beta(1) was determined at the light and electron microscopy level with immunocytochemistry and immunogold (IMG) labeling. Multiple comparisons were analyzed with a one-way analysis of variance and the Student-Newman-Keuls post hoc tests. The LC and LT comparisons were analyzed with a two-tailed unpaired t test. The TGF-beta(1) gene transcripts for control subjects and patients in classes 4, 5, and 6 were 7.02 +/- 7.33, 43.33 +/- 9.0, 16.13 +/- 7.67, and 7.22 +/- 0.56 x 10(-14) mol/microg total RNA, respectively. The transcripts were significantly elevated in class 4 patients only (P gram of tissue from LC and LT biopsy specimens as compared with healthy skin biopsy specimens

  10. [Association of the tagging single nucleotide polymorphisms in transforming growth factor beta-1 gene with hypertension in the Han nationality population in Xinjiang].

    Science.gov (United States)

    Yang, Jian-feng; Shi, Xiao-peng; Zhao, Dan; Deng, Feng-mei; Zhong, Hua; Wang, Gang; Wang, Zhen-huan; Chen, Xiong-ying; He, Fang

    2010-06-01

    Essential hypertension (EH) was a complex disease resulted from the interaction of cumulative effect of multiple genetic and environment factors. The relationship between the genetic polymorphisms in the transforming growth factor-beta1 (TGF-beta1), the blood levels and EH have been investigated, but the conclusions were different. Therefore, we investigate the relationship between the tagging single nucleotide polymorphisms (tSNPs) (rs1800469, rs2241716, rs11466345, rs2241715, rs4803455) in TGF-beta1 gene, blood levels and EH in the Han nationality population in Xinjiang, to clarity the pattern of linkage disequilibrium (LD) and the feature of the structure of haplotype. Based on the case-control study,we selected 732 (365 EH patients,367 controls) Han Chinese population from the Boertonggu countryside of Shawan region in the Xinjiang Uygur Autonomous Region of China by random cluster sampling. After questionnaire and physical examination, we collected blood samples, and the blood levels of TGF-beta1 were quantified using sandwich ELISA. The polymorphisms of TGF-beta1 gene in the study groups were detected with SNaPshot system. The case-control study in a large group was carried out separately for each of the tSNP and followed up by haplotypes analyses to determine the relation between tSNPs of TGF-beta1 gene and EH in the Han population. (1) The frequencies of alleles A, G of rs11466345 of TGF-beta1 gene in EH group and control group were as follows: 69.7%, 30.3%, 74.4%, 25.6%, respectively. It was demonstrated that the G allele of the rs11466345 polymorphism occurred at a significantly higher frequency in EH patients than in healthy controls (30.3% vs. 25.6%, P 0.05). (2)Except the site of rs11466345, the other tSNPs were in strong LD, and no statistical differences were observed in haplotypes distribution in the followup study between case-control groups (P > 0.05). (3) There were no difference of TGF-beta1 levels between the different genotypes and alleles in

  11. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1994-01-01

    the growth-suppressive effect of TGF-beta 1, the expression of functional pRb, as characterised by nuclear localisation, was examined by immunocytochemistry. Nuclear association of pRb was only seen in two of the five TGF-beta 1-responsive cell lines. These results indicate that in SCLC pRb is not required...

  12. Expression of transforming growth factor beta(1), beta(3), and basic fibroblast growth factor in full-thickness skin wounds of equine limbs and thorax.

    Science.gov (United States)

    Theoret, C L; Barber, S M; Moyana, T N; Gordon, J R

    2001-01-01

    To map the expression of transforming growth factor (TGF)-beta(1), TGF-beta(3), and basic fibroblast growth factor (bFGF) in full-thickness skin wounds of the horse. To determine whether their expression differs between limbs and thorax, to understand the pathogenesis of exuberant granulation tissue. Six wounds were created on one lateral metacarpal area and one midthoracic area of each horse. Sequential wound biopsies allowed comparison of the temporal expression of growth factors between limb and thoracic wounds. Four 2- to 4-year-old horses. Wounds were assessed grossly and histologically at 12 and 24 hours, and 2, 5, 10, and 14 days postoperatively. ELISAs were used to measure the growth factor concentrations of homogenates of wound biopsies taken at the same timepoints. TGF-beta(1) peaked at 24 hours in both locations and returned to baseline in thoracic wounds by 14 days but remained elevated in limb wounds for the duration of the study. Expression kinetics of TGF-beta(3) differed from those of TGF-beta(1). TGF-beta(3) concentrations gradually increased over time, showing a trend toward an earlier and higher peak in thoracic compared with limb wounds. bFGF expression kinetics resembled those of TGF-beta(1), but no statistically significant differences existed between limb and thoracic wounds. Growth factor expression is up-regulated during normal equine wound repair. TGF-beta(1) and TGF-beta(3) show a reciprocal temporal regulation. Statistically significant differences exist between limb and thoracic wounds with respect to TGF-beta(1) expression. The persistence of TGF-beta(1) expression in leg wounds may be related to the development of exuberant granulation tissue in this location, because TGF-beta(1) is profibrotic. Copyright 2001 by The American College of Veterinary Surgeons

  13. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  14. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...... lines express TGF beta-receptors and also produce TGF beta mRNAs....

  15. Interleukin-1 beta Attenuates Myofibroblast Formation and Extracellular Matrix Production in Dermal and Lung Fibroblasts Exposed to Transforming Growth Factor-beta 1

    NARCIS (Netherlands)

    Mia, Masum M.; Boersema, Miriam; Bank, Ruud A.

    2014-01-01

    One of the most potent pro-fibrotic cytokines is transforming growth factor (TGF beta). TGF beta is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1 beta (IL1 beta) can influence the

  16. Increased serum and bone matrix levels of transforming growth factor {beta}1 in patients with GH deficiency in response to GH treatment

    DEFF Research Database (Denmark)

    Ueland, Thor; Lekva, Tove; Otterdal, Kari

    2011-01-01

    Patients with adult onset GH deficiency (aoGHD) have secondary osteoporosis, which is reversed by long-term GH substitution. Transforming growth factor β1 (TGFβ1 or TGFB1) is abundant in bone tissue and could mediate some effects of GH/IGFs on bone. We investigated its regulation by GH/IGF1 in vivo...

  17. Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties.

    Science.gov (United States)

    Narushima, Yuta; Kozuka-Hata, Hiroko; Koyama-Nasu, Ryo; Tsumoto, Kouhei; Inoue, Jun-ichiro; Akiyama, Tetsu; Oyama, Masaaki

    2016-03-01

    Glioblastoma is one of the most malignant brain tumors with poor prognosis and their development and progression are known to be driven by glioblastoma stem cells. Although glioblastoma stem cells lose their cancer stem cell properties during cultivation in serum-containing medium, little is known about the molecular mechanisms regulating signaling alteration in relation to reduction of stem cell-like characteristics. To elucidate the global phosphorylation-related signaling events, we performed a SILAC-based quantitative phosphoproteome analysis of serum-induced dynamics in glioblastoma stem cells established from the tumor tissues of the patient. Among a total of 2876 phosphorylation sites on 1584 proteins identified in our analysis, 732 phosphorylation sites on 419 proteins were regulated through the alteration of stem cell-like characteristics. The integrative computational analyses based on the quantified phosphoproteome data revealed the relevant changes of phosphorylation levels regarding the proteins associated with cytoskeleton reorganization such as Rho family GTPase and Intermediate filament signaling, in addition to transforming growth factor-β receptor type-2 (TGFBR2) as a prominent upstream regulator involved in the serum-induced phosphoproteome regulation. The functional association of transforming growth factor-β receptor type-2 with stem cell-like properties was experimentally validated through signaling perturbation using the corresponding inhibitors, which indicated that transforming growth factor-β receptor type-2 could play an important role as a novel cell fate determinant in glioblastoma stem cell regulation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Transforming growth factor-beta1 (TGF-beta1) and acetylcholine (ACh) alter nitric oxide (NO) and interleukin-1beta (IL-1beta) secretion in human colon adenocarcinoma cells.

    Science.gov (United States)

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2009-10-01

    Colon adenocarcinoma is one of the most common fatal malignancies in Western countries. Progression of this cancer is dependent on tumor microenvironmental signaling molecules such as transforming growth factor-beta (TGF-beta) or acetylcholine (ACh). The present study was conducted to assess the influence of recombinant human transforming growth factor (rhTGF)-beta1 or ACh on nitric oxide (NO) and interleukin-1beta (IL-1beta) secretion by three human colon adenocarcinoma cell lines: HT29, LS180, and SW948, derived from different grade tumors (Duke's stage). The cells were cultured in 2D and 3D (spheroids) conditions. Colon carcinoma cells exhibited different sensitivities to rhTGF-beta1 or ACh dependent on the tumor grade and the culture model. ACh exhibited significant inhibitory effects towards NO, endothelial nitric oxide synthase (eNOS), and IL-1beta secretion especially by tumor cells derived form Duke's C stage of colon carcinoma. rhTGF-beta1 also decreased NO, IL-1beta, and eNOS expression, but its effect was lower than that observed after the administration of ACh. The inhibition of NO and IL-1beta production was more striking in 3D tumor spheroids than in 2D culture monolayers. Taken together, the TGF-beta1-ACh axis may regulate colon carcinoma progression and metastasis by altering NO secretion and influence inflammatory responses by modulating IL-1beta production.

  19. Programmed cell death protein-1/programmed cell death ligand-1 pathway inhibition and predictive biomarkers: understanding transforming growth factor-beta role.

    Science.gov (United States)

    Santarpia, Mariacarmela; González-Cao, María; Viteri, Santiago; Karachaliou, Niki; Altavilla, Giuseppe; Rosell, Rafael

    2015-12-01

    A deeper understanding of the key role of the immune system in regulating tumor growth and progression has led to the development of a number of immunotherapies, including cancer vaccines and immune checkpoint inhibitors. Immune checkpoint inhibitors target molecular pathways involved in immunosuppression, such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, with the goal to enhance the host's own immune anticancer response. In phase I-III trials, anti-PD-1/PD-L1 antibodies have demonstrated to be effective treatment strategies by inducing significant durable tumor responses, with manageable toxicities, in patients with various malignancies, including those traditionally considered non-immunogenic, such as non-small cell lung cancer (NSCLC). Identification of predictive biomarkers to select patients for immune therapies is currently being investigated to improve their therapeutic efficacy. Transforming growth factor-β (TGF-β), a pleiotropic cytokine with immunosuppressive effects on multiple cell types of the innate and adaptive immune system, has emerged as one of the potential key factors modulating response to immune checkpoint inhibitors. However, due to the complexity of the anti-cancer immune response, the predictive value of many other factors related to cancer cells or tumor microenvironment needs to be further explored.

  20. Development of oncolytic adenovirus armed with a fusion of soluble transforming growth factor-beta receptor II and human immunoglobulin Fc for breast cancer therapy.

    Science.gov (United States)

    Seth, Prem; Wang, Zhen-Guo; Pister, Amanda; Zafar, M Behzad; Kim, Sung; Guise, Theresa; Wakefield, Lalage

    2006-11-01

    We have developed an approach to cancer gene therapy in which the oncolytic effects of an adenoviral vector have been combined with selective expression of a soluble form of transforming growth factor (TGF)-beta receptor II fused with Fc (sTGFbetaRIIFc). We chose to use adenoviral dl01/07 mutant because it can replicate in all cancer cells regardless of their genetic defects. An oncolytic adenovirus expressing sTGFbetaRIIFc (Ad.sT- betaRFc) was constructed by homologous recombination. Infection of MDA-MB-231 and MCF-7 human breast cancer cells with Ad.sTbetaRFc produced sTGFbetaRIIFc, which was released into the media. The conditioned media containing sTGFbetaRIIFc could bind with TGF-beta 1 and inhibited TGF-beta-dependent transcription in target cells. Infection of MDA-MB-231, MCF-7, and 76NE human breast cancer cells with Ad.sTbetaRFc resulted in high levels of viral replication, comparable to that of a wild-type dl309 virus. Although some viral replication was observed in actively dividing normal human lung fibroblasts, there was no replication in nonproliferating normal cells. Direct injection of Ad.sTbetaRFc into MDA-MB-231 human breast xenograft tumors grown in nude mice resulted in a significant inhibition of tumor growth, causing tumor regression in more than 85% of the animals. These results indicate that it is possible to construct an oncolytic virus expressing sTGFbetaRIIFc in which both viral replication and transgene expression remain intact, and the recombinant adenovirus is oncolytic in a human tumor xenograft model. On the basis of these results we believe that it may be feasible to develop a cancer gene therapy approach using Ad.sTbetaRFc as an antitumor agent.

  1. Preliminary observations on expression of transforming growth factors beta1 and beta3 in equine full-thickness skin wounds healing normally or with exuberant granulation tissue.

    Science.gov (United States)

    Theoret, Christine L; Barber, Spencer M; Moyana, Terence N; Gordon, John R

    2002-01-01

    To determine whether transforming growth factor (TGF)-beta1 and -beta3 expression differs between equine limb wounds healing normally and those healing with experimentally induced exuberant granulation tissue (EGT). Six wounds were created on the lateral aspect of both metacarpi of each horse; one forelimb was untreated, and the other was bandaged to stimulate the development of EGT. Sequential wound biopsies allowed comparison of growth factor expression between the two types of wound. Four horses (2 to 4 years of age; 350 to 420 kg). Wounds were assessed grossly, histologically, and by enzyme-linked immunosorbent assay (ELISA) for TGF-beta1 and -beta3 expression at 12 and 24 hours and 2, 5, 10, and 14 days postoperatively. Bandaged wounds developed EGT. In all wounds, TGF-beta1 peaked early and remained elevated at 14 days. Peak TGF-beta1 concentration was higher in wounds with EGT, but not significantly so. Expression of TGF-beta3 differed from TGF-beta1, with peak TGF-beta3 concentrations being delayed. Concentrations of TGF-beta3 were higher in wounds healing normally, but this difference was not significant. During both normal and exuberant wound repair, the expression of TGF-beta1 occurred earlier than TGF-beta3 expression. Wounds healing with EGT tended to have higher concentrations of fibrogenic TGF-beta1 and lower concentrations of antifibrotic TGF-beta3 than wounds healing normally, although these differences were not statistically significant. This study suggests that the production of EGT in bandaged wounds may be related to increased expression of fibrogenic TGF-beta1 and decreased expression of antifibrotic TGF-beta3. Further investigation of the roles of TGF-beta1 and -beta3 may be important in understanding the molecular control of EGT in horses. Copyright 2002 by The American College of Veterinary Surgeons

  2. The Role of Transforming Growth Factor Beta-1 in the Progression of HIV/AIDS and Development of Non-AIDS-Defining Fibrotic Disorders

    Directory of Open Access Journals (Sweden)

    Annette J. Theron

    2017-11-01

    Full Text Available Even after attainment of sustained viral suppression following implementation of highly active antiretroviral therapy, HIV-infected persons continue to experience persistent, low-grade, systemic inflammation. Among other mechanisms, this appears to result from ongoing microbial translocation from a damaged gastrointestinal tract. This HIV-related chronic inflammatory response is paralleled by counteracting, but only partially effective, biological anti-inflammatory processes. Paradoxically, however, this anti-inflammatory response not only exacerbates immunosuppression but also predisposes for development of non-AIDS-related, non-communicable disorders. With respect to the pathogenesis of both sustained immunosuppression and the increased frequency of non-AIDS-related disorders, the anti-inflammatory/profibrotic cytokine, transforming growth factor-β1 (TGF-β1, which remains persistently elevated in both untreated and virally suppressed HIV-infected persons, may provide a common link. In this context, the current review is focused on two different, albeit related, harmful activities of TGF-β1 in HIV infection. First, on the spectrum of anti-inflammatory/immunosuppressive activities of TGF-β1 and the involvement of this cytokine, derived predominantly from T regulatory cells, in driving disease progression in HIV-infected persons via both non-fibrotic and profibrotic mechanisms. Second, the possible involvement of sustained elevations in circulating and tissue TGF-β1 in the pathogenesis of non-AIDS-defining cardiovascular, hepatic, pulmonary and renal disorders, together with a brief comment on potential TGF-β1-targeted therapeutic strategies.

  3. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    -dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......We have previously shown that porcine aortic endothelial cells expressing the Y934F platelet-derived growth factor (PDGF) beta-receptor mutant respond to PDGF-BB in a chemotaxis assay at about 100-fold lower concentration than do wild-type PDGF beta-receptor-expressing cells (Hansen, K., Johnell, M......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  4. Effects of Different Concentrations of Opium on the Secretion of Interleukin-6, Interferon-γ and Transforming Growth Factor Beta Cytokines from Jurkat Cells.

    Science.gov (United States)

    Asadikaram, Gholamreza; Igder, Somayeh; Jamali, Zahra; Shahrokhi, Nader; Najafipour, Hamid; Shokoohi, Mostafa; Jafarzadeh, Abdollah; Kazemi-Arababadi, Mohammad

    2015-01-01

    The risk of infectious, autoimmune and immunodeficiency diseases and cancers rise in opioid addicts due to changes in innate and acquired immune responses. Three types of opioid receptors (К-δ-μ) are expressed on the surface of lymphocytes and mononuclear phagocytes. The present study was designed to examine the effects of different concentrations of opium on the secretion of some cytokines produced by lymphocyte cells. Jurkat cells were exposed to different concentrations of opium for periods of 6, 24 and 72 h in cell culture medium. The amount of interleukin-6 (IL-6), interferon-γ (IFN-γ) and transforming growth factor-b (TGF-β) were then measured using enzyme-linked immunosorbent assay (ELISA) method. The results showed that opium increases the secretion of IL-6 in different concentration of opium in 6 h. The amount of IFN-γ decreased in 6 h and increased in 24 h significantly compared with control. On the other hand, opium had an inhibitory effect on the TGF-β secretion in 6, 24 and 72 h. Overall, the study showed that opium stimulates pro-inflammatory and suppressed anti-inflammatory cytokine secretion in Jurkat cells. This may account for the negative effect of opium on the immune system leading to chronic inflammation and a base for many disorders in opium addicts.

  5. Changes of regulatory T cells, transforming growth factor-beta and interleukin-10 in patients with type 1 diabetes mellitus: A systematic review and meta-analysis.

    Science.gov (United States)

    Qiao, Yong-Chao; Shen, Jian; Hong, Xue-Zhi; Liang, Ling; Bo, Chao-Sheng; Sui, Yi; Zhao, Hai-Lu

    2016-09-01

    Regulatory T lymphocyte cells (Treg) associated with interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) have implicated in the development of type 1 diabetes mellitus (T1DM), yet the existing evidence remains unclear. Hereby we performed a systematic review and meta-analysis to characterize the changes in T1DM patients. A total of 1407 T1DM patients and 1373 healthy controls from 40 case-control studies were eventually included in the pooling analysis. Compared with the controls, T1DM patients had decreased frequency of CD4(+)CD25(+)Treg (p=0.0003), CD4(+)CD25(+)Foxp3(+)Treg (p=0.020), and the level of TGF-β (p=0.030). Decrease in IL-10 (p=0.14) was not significant. All the changes remained significant when the studies with low NOS scores and publication bias were excluded. In conclusion, peripheral Treg and serum TGF-β are reduced in type 1 diabetes mellitus whereas changes in serum IL-10 are not significant. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The blood level of transforming growth factor-beta rises in the early stages of acute protein and energy deficit in the weanling mouse.

    Science.gov (United States)

    Monk, Jennifer M; Woodward, Bill

    2010-03-01

    Plasma transforming growth factor (TGF)-beta levels are high in the advanced stages of acute (wasting) pre-pubescent deficits of protein and energy. Consequently, this potently anti-inflammatory cytokine may help to sustain the depression of inflammatory immune competence in acute malnutrition. Our objective was to determine if plasma TGF-beta levels rise during the early stages of acute malnutrition and, secondarily, to confirm the elevation reported previously in advanced weight loss. In two experiments, male and female C57BL/6J mice, initially 19 d old, consumed ad libitum a complete purified diet (group C), or in restricted daily quantities (group R) or had free access to an isoenergetic low-protein diet (group LP). TGF-beta bioactivity in platelet-poor plasma was determined via inhibition of Mv1Lu mink lung cell proliferation after 3 d (Expt 1, early stage) or 14 d (Expt 2, advanced stage) of dietary intervention. At 3 d, mean plasma TGF-beta bioactivities were 802 (C), 2952 (R) and 4678 (LP) pg/ml, and after 14 d mean bioactivities were 1786 (C), 5360 (R) and 5735 (LP) pg/ml. At both time points, the malnourished groups differed from age-matched controls (P

  7. Loss of regulatory characteristics in CD4+CD25+/hiT cells induced by impaired transforming growth factor beta secretion in pneumoconiosis.

    Science.gov (United States)

    Bian, Lu-Qin; Mao, Ling; Bi, Ying; Zhou, Shao-Wei; Chen, Zi-Dan; Wen, Jun; Shi, Jin; Wang, Ling

    2017-12-01

    Pneumoconiosis is caused by the accumulation of airborne dust in the lung, which stimulates a progressive inflammatory response that ultimately results in lung fibrosis and respiratory failure. It is possible that regulatory cells in the immune system could function to suppress inflammation and possibly slow or reverse disease progression. However, results in this study suggest that in pneumoconiosis patients, the regulatory T cells (Tregs) and B cells are functionally impaired. First, we found that pneumoconiosis patients presented an upregulation of CD4 + CD25 + T cells compared to controls, whereas the CD4 + CD25 + and CD4 + CD25 hi T cells were enriched with Th1- and Th17-like cells but not Foxp3-expressing Treg cells and evidenced by significantly higher T-bet, interferon (IFN)-γ, and interleukin (IL)-17 expression but lower Foxp3 and transforming growth factor (TGF)-β expression. Regarding the CD4 + CD25 hi T-cell subset, the frequency of this cell type in pneumoconiosis patients was significantly reduced compared to controls, together with a reduction in Foxp3 and TGF-β and an enrichment in T-bet, RORγt, IFN-γ, and IL-17. This skewing toward Th1 and Th17 types of inflammation could be driven by monocytes and B cells, since after depleting CD14 + monocytes and CD19 + B cells, the levels of IFN-γ and IL-17 were significantly decreased. Whole peripheral blood mononuclear cells and isolated monocytes and B cells in pneumoconiosis patients also presented reduced capacity of TGF-β secretion. Furthermore, monocytes and B cells from pneumoconiosis patients presented reduced capacity in inducing Foxp3 upregulation, a function that could be rescued by exogenous TGF-β. Together, these data indicated a potential pathway for the progression of pneumoconiosis through a loss of Foxp3 + Treg cells associated with impaired TGF-β secretion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  8. The Int7G24A variant of transforming growth factor-beta receptor type I is a risk factor for colorectal cancer in the male Spanish population: a case-control study

    International Nuclear Information System (INIS)

    Castillejo, Adela; Guillén-Ponce, Carmen; Carrato, Alfredo; Soto, José-Luís; Mata-Balaguer, Trinidad; Guarinos, Carla; Castillejo, María-Isabel; Martínez-Cantó, Ana; Barberá, Víctor-Manuel; Montenegro, Paola; Ochoa, Enrique; Lázaro, Rafael

    2009-01-01

    The Int7G24A variant of transforming growth factor-beta receptor type I (TGFBR1) has been shown to increase the risk for kidney, ovarian, bladder, lung and breast cancers. Its role in colorectal cancer (CRC) has not been established. The aims of this study were to assess the association of TGFBR1*Int7G24A variant with CRC occurrence, patient age, gender, tumour location and stage. We performed a case-control study with 504 cases of sporadic CRC; and 504 non-cancerous age, gender and ethnically matched controls. Genotyping analysis was performed using allelic discrimination assay by real time PCR. The Int7G24A variant was associated with increased CRC incidence in an additive model of inheritance (P for trend = 0.005). No significant differences were found between Int7G24A genotypes and tumour location or stage. Interestingly, the association of the Int7G24A variant with CRC risk was significant in men (odds ratio 4.10 with 95% confidence intervals 1.41-11.85 for homozygous individuals; P for trend = 0.00023), but not in women. We also observed an increase in susceptibility to CRC for individuals aged less than 70 years. Our data suggest that the Int7G24A variant represents a risk factor for CRC in the male Spanish population

  9. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration

    Science.gov (United States)

    2011-01-01

    Introduction Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair. Methods A micro-wound assay was used to assess meniscal cell migration and proliferation in response to the following treatments for 0, 24, or 48 hours: 0 to 10 ng/mL IL-1, TNF-α, or TGF-β1, in the presence or absence of 10% serum. Proliferated and total cells were fluorescently labeled and imaged using confocal laser scanning microscopy and the number of proliferated, migrated, and total cells was determined in the micro-wound and edges of each image. Meniscal cell proliferation was also assessed throughout meniscal repair model explants treated with 0 or 10 ng/mL IL-1, TNF-α, or TGF-β1 for 14 days. At the end of the culture period, biomechanical testing and histological analyses were also performed. Statistical differences were assessed using an ANOVA and Newman-Keuls post hoc test. Results IL-1 and TNF-α decreased cell proliferation in both cell and tissue models of meniscal repair. In the presence of serum, TGF-β1 increased outer zone cell proliferation in the micro-wound and in the cross section of meniscal repair model explants. Both IL-1 and TNF-α decreased the integrative shear strength of repair and extracellular matrix deposition in the meniscal repair model system

  10. Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain.

    Science.gov (United States)

    Pál, Gabriella; Vincze, Csilla; Renner, Éva; Wappler, Edina A; Nagy, Zoltán; Lovas, Gábor; Dobolyi, Arpád

    2012-01-01

    Transforming growth factor-βs (TGF-β1-3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1-3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.

  11. Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain.

    Directory of Open Access Journals (Sweden)

    Gabriella Pál

    Full Text Available Transforming growth factor-βs (TGF-β1-3 are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1-3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h or permanent (24 h middle cerebral artery occlusion (MCAO using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.

  12. Phase I study of GC1008 (fresolimumab: a human anti-transforming growth factor-beta (TGFβ monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    John C Morris

    Full Text Available In advanced cancers, transforming growth factor-beta (TGFβ promotes tumor growth and metastases and suppresses host antitumor immunity. GC1008 is a human anti-TGFβ monoclonal antibody that neutralizes all isoforms of TGFβ. Here, the safety and activity of GC1008 was evaluated in patients with advanced malignant melanoma and renal cell carcinoma.In this multi-center phase I trial, cohorts of patients with previously treated malignant melanoma or renal cell carcinoma received intravenous GC1008 at 0.1, 0.3, 1, 3, 10, or 15 mg/kg on days 0, 28, 42, and 56. Patients achieving at least stable disease were eligible to receive Extended Treatment consisting of 4 doses of GC1008 every 2 weeks for up to 2 additional courses. Pharmacokinetic and exploratory biomarker assessments were performed.Twenty-nine patients, 28 with malignant melanoma and 1 with renal cell carcinoma, were enrolled and treated, 22 in the dose-escalation part and 7 in a safety cohort expansion. No dose-limiting toxicity was observed, and the maximum dose, 15 mg/kg, was determined to be safe. The development of reversible cutaneous keratoacanthomas/squamous-cell carcinomas (4 patients and hyperkeratosis was the major adverse event observed. One malignant melanoma patient achieved a partial response, and six had stable disease with a median progression-free survival of 24 weeks for these 7 patients (range, 16.4-44.4 weeks.GC1008 had no dose-limiting toxicity up to 15 mg/kg. In patients with advanced malignant melanoma and renal cell carcinoma, multiple doses of GC1008 demonstrated acceptable safety and preliminary evidence of antitumor activity, warranting further studies of single agent and combination treatments.Clinicaltrials.gov NCT00356460.

  13. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Témoin de l'Infarctus du Myocarde (ECTIM) Study.

    Science.gov (United States)

    Cambien, F; Ricard, S; Troesch, A; Mallet, C; Générénaz, L; Evans, A; Arveiler, D; Luc, G; Ruidavets, J B; Poirier, O

    1996-11-01

    Transforming growth factor-beta 1 (TGF-beta 1) plays an important role in the modulation of cellular growth and differentiation and the production and degradation of the extracellular matrix. A number of experimental results suggest that TGF-beta 1 may be involved in cardiovascular physiopathology. In the present study, we assessed whether the TGF-beta 1 gene is a candidate gene for coronary heart disease or hypertension. We screened the coding region and 2181 bp upstream of the TGF-beta gene for polymorphisms and identified seven polymorphisms: 3 in the upstream region of the gene at positions -988, -800, and -509 from the first transcribed nucleotide; 1 in a nontranslated region at position +72; 2 in the signal peptide sequence Leu10-->Pro, Arg25-->Pro; and 1 in the region of the gene coding for the precursor part of the protein not present in the active form, Thr263-->Ile. We analyzed these TGF-beta 1 polymorphisms in 563 patients with myocardial infarction and 629 control subjects from four regions in Northern Ireland and France. The Pro25 allele was more frequent in patients than in control subjects in Belfast (P < .01) and Strasbourg (P < .05). The TGF-beta 1 polymorphisms were not associated with the degree of angiographically assessed coronary artery disease in patients. The presence of a Pro25 allele was associated with a lower systolic pressure in the four control groups (P < .002), and a history of hypertension was significantly less frequent in homozygotes or heterozygotes for Pro25 than in hormozygotes for Arg25 (odds ratio, 0.43, 95% confidence interval, 0.19 to 0.92; P < .03). Since the Pro25 allele was associated with an increased risk of myocardial infarction and a reduced risk of hypertension, we favor a cautious interpretation of these apparently inconsistent results. Other studies will need to verify whether these associations are real.

  14. Ethanol induces apoptotic death of developing beta-endorphin neurons via suppression of cyclic adenosine monophosphate production and activation of transforming growth factor-beta1-linked apoptotic signaling.

    Science.gov (United States)

    Chen, Cui Ping; Kuhn, Peter; Chaturvedi, Kirti; Boyadjieva, Nadka; Sarkar, Dipak K

    2006-03-01

    The mechanism by which ethanol induces beta-endorphin (beta-EP) neuronal death during the developmental period was determined using fetal rat hypothalamic cells in primary cultures. The addition of ethanol to hypothalamic cell cultures stimulated apoptotic cell death of beta-EP neurons by increasing caspase-3 activity. Ethanol lowered the levels of adenylyl cyclase (AC)7 mRNA, AC8 mRNA, and/or cAMP in hypothalamic cells, whereas a cAMP analog blocked the apoptotic action of ethanol on beta-EP neurons. The AC inhibitor dideoxyadenosine (DDA) increased cell apoptosis and reduced the number of beta-EP neurons, and it potentiated the apoptotic action of ethanol on these neurons. beta-EP neurons in hypothalamic cultures showed immunoreactivity to transforming growth factor-beta1 (TGF-beta1) protein. Ethanol and DDA increased TGF-beta1 production and/or release from hypothalamic cells. A cAMP analog blocked the activation by ethanol of TGF-beta1 in these cells. TGF-beta1 increased apoptosis of beta-EP neurons, but it did not potentiate the action of ethanol or DDA actions on these neurons. TGF-beta1 neutralizing antibody blocked the apoptotic action of ethanol on beta-EP neurons. Determination of TGF-beta1-controlled cell apoptosis regulatory gene levels in hypothalamic cell cultures and in isolated beta-EP neurons indicated that ethanol, TGF-beta1, and DDA similarly alter the expression of these genes in these cells. These data suggest that ethanol increases beta-EP neuronal death during the developmental period by cellular mechanisms involving, at least partly, the suppression of cAMP production and activation of TGF-beta1-linked apoptotic signaling.

  15. The role of tumor necrosis factor-alpha -308 G/A and transforming growth factor-beta 1 -915 G/C polymorphisms in childhood idiopathic thrombocytopenic purpura

    Directory of Open Access Journals (Sweden)

    Emel Okulu

    2011-09-01

    Full Text Available Objective: To increase our understanding of the etiology of idiopathic thrombocytopenic purpura (ITP some cytokine gene polymorphisms were analyzed for susceptibility to the disease. The aim of this study was to investigate the role of tumor necrosis factor-alpha (TNF-α -308 G/A and transforming growth factor-beta 1 (TGF-β1 –915 G/C polymorphisms in the development and clinical progression of childhood ITP.Materials and Methods: In all, 50 pediatric patients with ITP (25 with acute ITP and 25 with chronic ITP and 48 healthy controls were investigated via LightCycler® PCR analysis for TNF-α -308 G/A and TGF-β1 -915 G/C polymorphisms.Results: The frequency of TNF-α -308 G/A polymorphism was 20%, 16%, and 22.9% in the acute ITP patients, chronic ITP patients, and controls, respectively (p>0.05. The frequency of TGF-β1 -915 G/C polymorphism was 16%, 8%, and 8.3% in the acute ITP patients, chronic ITP patients, and controls, respectively (p>0.05. The risk of developing ITP and clinical progression were not associated with TNF-α -308 G/A (OR: 0.738, 95% CI: 0.275-1.981, and OR: 0.762, 95% CI: 0.179-3.249 or TGF-β1 -915 G/C (OR: 1.5, 95% CI: 0.396-5.685, and OR: 0.457, 95% CI: 0.076-2.755 polymorphisms. Conclusion: The frequency of TNF-α -308 G/A and TGF-β1 -915 G/C polymorphisms did not differ between pediatric ITP patients and healthy controls, and these polymorphisms were not associated with susceptibility to the development and clinical progression of the disease.

  16. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling.

    Science.gov (United States)

    Lin, Po-Shuen; Chang, Hsiao-Hua; Yeh, Chien-Yang; Chang, Mei-Chi; Chan, Chiu-Po; Kuo, Han-Yueh; Liu, Hsin-Cheng; Liao, Wan-Chuen; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2017-05-01

    In order to clarify the role of transforming growth factor beta 1 (TGF-β1) in pulp repair/regeneration responses, we investigated the differential signaling pathways responsible for the effects of TGF-β1 on collagen turnover, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human dental pulp cells. Pulp cells were exposed to TGF-β1 with/without pretreatment and coincubation by 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenyl mercapto)butadiene (U0126; a mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] inhibitor) and 4-(5-benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H- imidazol-2-yl)-benzamide hydrate (SB431542; an activin receptor-like kinase-5/Smad signaling inhibitor). Sircol collagen assay was used to measure cellular collagen content. Culture medium procollagen I, TIMP-1, and MMP-3 levels were determined by enzyme-linked immunosorbent assay. TGF-β1 increased the collagen content, procollagen I, and TIMP-1 production, but slightly decreased MMP-3 production of pulp cells. SB431542 and U0126 prevented the TGF-β1-induced increase of collagen content and TIMP-1 production of dental pulp cells. These results indicate that TGF-β1 may be involved in the healing/regeneration processes of dental pulp in response to injury by stimulation of collagen and TIMP-1 production. These events are associated with activin receptor-like kinase-5/Smad2/3 and MEK/ERK signaling. Copyright © 2016. Published by Elsevier B.V.

  17. Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways.

    Science.gov (United States)

    Liu, Yun; Cao, Yonggang; Sun, Shuyang; Zhu, Jinquan; Gao, Shan; Pang, Jie; Zhu, Daling; Sun, Zengxian

    2016-08-01

    Transforming growth factor-beta1 (TGFβ1) and Phosphatase and Tensin homolog deleted on chromosome ten (PTEN) are involved in the regulation of proliferation, differentiation, migration and apoptosis of various cell types. In previous studies, we have shown that TGFβ1 and PTEN play an important role in the progression of pulmonary vascular remodeling induced by pulmonary artery smooth muscle cells (PASMCs). However, the mechanisms involved in the activation of PASMCs between TGFβ1 and PTEN pathways remain unknown. We found that pulmonary vascular walls in hypoxic pulmonary arterial hypertension (PAH) rats were thicker than the vessels from normal rats in vivo. Substantially higher levels of TGFβ1 and significant loss of PTEN expression were observed in the lungs of PAH rats when compared with normoxia. Meanwhile, AKT, a downstream proliferative signaling protein of the PTEN antagonist PI3K, was markedly activated in the lungs of PAH rats. In vitro studies using PASMCs showed that TGFβ1 increased cell proliferation in PTEN-dependent manner. Moreover, we found that TGFβ1 enhanced cell survival, up-regulated the expression of Bcl-2 and procaspase-3, decreased the number of TUNEL-positive cells and caspase-3 expression in PASMCs under serum-deprived (SD) condition via PI3K/AKT pathway. The results further establish that TGFβ1 promoted PAH by decreasing PTEN expression and increasing PI3K/AKT activation in the lung. In conclusion, TGFβ1 mediated PTEN inactivation and resistance to apoptosis seems to be key mediators of lung vascular remodeling associated with PAH. These findings further clarify molecular mechanisms that support targeting PTEN/AKT signaling pathway to attenuate pathogenic derangements in PAH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Therapy with radio-attenuated vaccine in experimental murine visceral leishmaniasis showed enhanced T cell and inducible nitric oxide synthase levels, suppressed tumor growth factor-beta production with higher expression of some signaling molecules.

    Science.gov (United States)

    Datta, Sanchita; Roy, Syamal; Manna, Madhumita

    2015-01-01

    Visceral leishmaniasis (VL) or Kala-Azar (KA) is one of the most deadly forms of disease among all neglected tropical diseases. There are no satisfactory drugs or vaccine candidates available for this dreaded disease. Our previous studies showed promising therapeutic and prophylactic efficacy of the live, radio-attenuated parasites through intramuscular (I.M.) and intraperitoneal (I.P.) route in BALB/c mice model. The T-cell proliferation level, the mRNA expression level of inducible nitric oxide synthase (iNOS) and tumor growth factor-beta (TGF-β) genes and finally the phosphorylation levels of phosphoinositide dependent kinase 1 (PDK1), phosphoinositide 3 kinase (PI3K) and p38 mitogen activated protein kinase (p38MAPK) molecules were checked in BALB/c mice model immunized with radio-attenuated Leishmania donovani parasites through I.M. route. Higher T-cell proliferation, increased iNOS level, and suppressed TGF-β level were found in treated infected animal groups (100 and 150Gy) in relation to untreated infected animals. Likewise, phosphorylation levels of PDK1, PI3K and p38MAPK of these two groups were increased when compared to untreated infected controls. The clearance of the parasites from treated infected groups of animals may be mediated by the restoration of T-cell due to therapy with radio-attenuated L. donovani parasites. The killing of parasites was mediated by increase in nitric oxide release through PDK1, PI3K and p38MAPK signaling pathways. A lower TGF-β expression has augmented the restored Th1 ambience in the 100 and 150Gy treated animal groups proving further the efficacy of the candidate vaccine. Copyright © 2015. Published by Elsevier Editora Ltda.

  19. Association of Transforming Growth Factor Beta-1 (TGF-β1) Genetic Variation with Type 2 Diabetes and End Stage Renal Disease in Two Large Population Samples from North India.

    Science.gov (United States)

    Raina, Priyanka; Sikka, Ruhi; Kaur, Ramandeep; Sokhi, Jasmine; Matharoo, Kawaljit; Singh, Virinder; Bhanwer, A J S

    2015-05-01

    Geographic and ethnic differences impart an immense influence on the genetic susceptibility to Type 2 diabetes (T2D) and diabetic nephropathy (DN). Transforming growth factor-beta1 (TGF-β1), a ubiquitously expressed pro-fibrotic cytokine plays a pivotal role in mediating the hypertrophic and fibrotic manifestations of DN. The present study is aimed to study the association of TGF-β1 g.869T>C (rs1800470) and g.-509C>T (rs1800469) polymorphism in T2D and end stage renal disease (ESRD) cases from the two geographically and ethnically different populations from North India. A total of 1313 samples comprising 776 samples from Punjab (204 with ESRD, 257 without ESRD, and 315 healthy controls) and 537 samples from Jammu and Kashmir (150 with ESRD, 187 without ESRD, and 200 controls) were genotyped for TGF-β1 (rs1800470 and rs1800469) using ARMS-PCR. The CC genotype of rs1800470 increased ESRD risk by 3.1-4.5-fold in both populations. However, for rs1800469, the TT genotype provided 5.5-fold risk towards ESRD cases from Jammu and Kashmir and no risk for the cases from Punjab. The haplotype C-T conferred nearly a 2-3-fold risk towards T2D and ESRD and diplotype CC-CT conferred a 4-fold risk towards ESRD. Our results conclude that TGF-β1 (rs1800470) may increase the risk of both ESRD and T2D in both populations, but TGF-β1 (rs1800469) provided risk for only ESRD in the population of Jammu and Kashmir. The present study is one of the large sample sized genetic association studies of T2D and ESRD from Indian population and adds to the scholarship on global health omics.

  20. Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer Transforming growth factor beta-1: structure, function and regulation mechanisms in cancer

    Directory of Open Access Journals (Sweden)

    Oscar Peralta-Zaragoza

    2001-08-01

    Full Text Available El factor de crecimiento transformante beta-1 (TGF-beta1 es sintetizado por muchas estirpes celulares como linfocitos, macrófagos y células dendríticas, y su expresión regula de manera autócrina o parácrina la diferenciación, proliferación y el estado de activación de éstas y muchas otras células. En general, el TGF-beta1 tiene propiedades pleiotrópicas en el contexto de la respuesta inmune durante el desarrollo de infecciones y procesos neoplásicos; sin embargo, los mecanismos de acción y regulación de la expresión de esta citocina aún no se comprenden del todo. En la presente revisión se describen las propiedades biológicas y los procesos moleculares que regulan la expresión del TGF-beta1, para entender los efectos de esta citocina durante la proliferación y la diferenciación celular. El conocimiento de los mecanismos moleculares de la regulación del TGF-beta1 puede representar una importante estrategia de tratamiento del cáncer. El texto completo en inglés de este artículo está disponible en: http://www.insp.mx/salud/index.htmlTransforming growth factor beta-1 (TGF-beta1 is produced by several cell lineages such as lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these and other cells. In general, TGF-beta1 has pleiotropic properties on the immune response during the development of infection diseases and cancer; however, the mechanisms of action and regulation of gene expression of this cytokine are poorly understood, In this review, the biological properties and the molecular mechanisms that regulate TGF-beta1 gene expression are described, to understand the role of this cytokine in growth and cell differentiation. The knowledge of molecular mechanisms of gene expression of TGF-beta1 may serve to develop new cancer therapies. The English version of this paper is available at: http://www.insp.mx/salud/index.html

  1. The c.29T>C polymorphism of the transforming growth factor beta-1 (TGFB1) gene, bone mineral density and the occurrence of low-energy fractures in patients with inflammatory bowel disease.

    Science.gov (United States)

    Krela-Kaźmierczak, I; Michalak, M; Wawrzyniak, A; Szymczak, A; Eder, P; Łykowska-Szuber, L; Kaczmarek-Ryś, M; Drwęska-Matelska, N; Skrzypczak-Zielińska, M; Linke, K; Słomski, R

    2017-12-01

    Gastrointestinal tract conditions are frequently associated with low bone mineral density and increased risk of fractures due to osteoporosis, the latter concerning particularly inflammatory bowel disease (IBD) patients. One of the candidate genes involved in osteoporosis is the transforming growth factor beta-1 (TGFB1) whose polymorphisms may be responsible for the development of this disease. The aim of this study was to analyse the frequency of TGFB1 polymorphic variants and determine the association between the c.29T>C TGFB1 polymorphism, and bone mineral density and fractures in IBD patients. The study subjects included 198 IBD patients [100 suffering from Crohn's disease (CD) and 98 from ulcerative colitis (UC)] and 41 healthy volunteers as a control group. Densitometric bone measurements were obtained using dual energy X-ray absorptiometry. The TGFB1 genotyping was conducted using restriction fragments length polymorphism. We conducted an analysis of genotype distribution's concordance with Hardy-Weinberg equilibrium. We found statistically significant differences in lumbar spine (L2-L4) and femoral neck BMD and T-scores between CD, UC and control subgroups. The distribution of TGFB1 polymorphic variants among CD and UC patients was concordant with Hardy-Weinberg equilibrium. There were no statistically significant differences in densitometric parameters (lumbar spine and femoral neck BMD, T-score, and Z-score) between carriers of different TGFB1 polymorphisms among IBD (CD and UC) patients nor among controls. We have found no statistically significant differences in the prevalence of low-energy fractures between groups of different TGFB1 polymorphic variant carriers. The allele dose effect, recessive effect and dominant effect analysis did not show an association between low-energy fractures and the TGFB1 polymorphisms among CD and UC patients. We have not observed an association between the c.29T>C TGFB1 polymorphic variant and the bone mineral density

  2. Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis.

    Science.gov (United States)

    Hernandez-Pando, R; Orozco, H; Arriaga, K; Sampieri, A; Larriva-Sahd, J; Madrid-Marina, V

    1997-01-01

    A mouse model of pulmonary tuberculosis induced by the intratracheal instillation of live and virulent mycobacteria strain H37-Rv was used to examine the relationship of the histopathological findings with the local kinetics production and cellular distribution of tumour necrosis factor-alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) and transforming growth factor-beta (TGF-beta). The histopathological and immunological studies showed two phases of the disease: acute or early and chronic or advanced. The acute phase was characterized by inflammatory infiltrate in the alveolar-capillary interstitium, blood vessels and bronchial wall with formation of granulomas. During this acute phase, which lasted from 1 to 28 days, high percentages of TNF-alpha and IL-1 alpha immunostained activated macrophages were observed principally in the interstium-intralveolar inflammatory infiltrate and in granulomas. Electron microscopy studies of these cells, showed extensive rough endoplasmic reticulum, numerous lysosomes and occasional mycobacteria. Double labelling with colloid gold showed that TNF-alpha and IL-1 alpha were present in the same cells, but were confined to separate vacuoles near the Golgi area, and mixed in larger vacuoles near to cell membrane. The concentration of TNF-alpha and IL-1 alpha as well as their respective mRNAs were elevated in the early phase, particularly at day 3 when the bacillary count decreased. A second peak was seen at days 14 and 21-28 when granulomas appeared and evolved to full maturation. In contrast, TGF-beta production and numbers of immunoreactive cells were low in comparison with the advanced phase of the disease. The chronic phase was characterized by histopathological changes indicative of more severity (i.e. pneumonia, focal necrosis and extensive interstitial fibrosis) with a decrease in the TNF-alpha and IL-1 alpha production that coincided with the highest level of TGF-beta. The bacillary counts were highest as the macrophages

  3. Major facilitator superfamily domain-containing protein 2a (MFSD2A has roles in body growth, motor function, and lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Justin H Berger

    Full Text Available The metabolic adaptations to fasting in the liver are largely controlled by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα, where PPARα upregulates genes encoding the biochemical pathway for β-oxidation of fatty acids and ketogenesis. As part of an effort to identify and characterize nutritionally regulated genes that play physiological roles in the adaptation to fasting, we identified Major facilitator superfamily domain-containing protein 2a (Mfsd2a as a fasting-induced gene regulated by both PPARα and glucagon signaling in the liver. MFSD2A is a cell-surface protein homologous to bacterial sodium-melibiose transporters. Hepatic expression and turnover of MFSD2A is acutely regulated by fasting/refeeding, but expression in the brain is constitutive. Relative to wildtype mice, gene-targeted Mfsd2a knockout mice are smaller, leaner, and have decreased serum, liver and brown adipose triglycerides. Mfsd2a knockout mice have normal liver lipid metabolism but increased whole body energy expenditure, likely due to increased β-oxidation in brown adipose tissue and significantly increased voluntary movement, but surprisingly exhibited a form of ataxia. Together, these results indicate that MFSD2A is a nutritionally regulated gene that plays myriad roles in body growth and development, motor function, and lipid metabolism. Moreover, these data suggest that the ligand(s that are transported by MFSD2A play important roles in these physiological processes and await future identification.

  4. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.

    Science.gov (United States)

    Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2014-06-01

    Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down

  5. High value of the radiobiological parameter Dq correlates to expression of the transforming growth factor beta type II receptor in a panel of small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Krarup, M; Nørgaard, P

    1998-01-01

    Our panel of SCLC cell lines have previously been examined for their radiobiological characteristics and sensitivity to treatment with TGF beta 1. In this study we examined the possible correlations between radiobiological parameters and the expression of the TGF beta type II receptor (TGF beta......-rII). We have, in other studies, shown that the presence of TGF beta-rII was mandatory for transmitting the growth inhibitory effect of TGF beta. The results showed a statistically significant difference in Dq, i.e. the shoulder width of the survival curve, between cell lines expressing TGF beta......-rII and cell lines which did not express the receptor (P = 0.01). Cell lines expressing TGF beta-rII had a high Dq-value. TGF beta-rII expression did not correlate with any other radiobiological parameters. We suggest that an intact growth inhibitory pathway mediated by the TGF beta-rII may have a significant...

  6. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Parry, Renate [Varian Medical Systems, Palo Alto, California (United States); Barcellos-Hoff, Mary Helen, E-mail: mhbarcellos-hoff@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  7. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta , and interleukin-4 mRNA levels.

    Science.gov (United States)

    Roberts, Teri; Beyers, Nulda; Aguirre, Ana; Walzl, Gerhard

    2007-03-15

    The balance between effector and regulatory responses after Mycobacterium tuberculosis infection may dictate outcome and progression to active disease. We investigated effector and regulatory T cell responses in bacille Calmette-Guerin (BCG)-stimulated peripheral blood mononuclear cells and whole blood cultures from persons with active tuberculosis (TB), persons with TB at the end of 6 months of treatment, and healthy control subjects with latent TB infection. All 3 groups displayed BCG-induced increases in effector and regulatory T cell phenotypes as defined by CD4(+)CD25(lo) and CD4(+)CD25(hi) T cells, respectively. In case patients with active disease, BCG stimulation induced the lowest increase of CD25, CD4(+)CD25(hi), CTLA-4, and interferon- gamma . However, these case patients expressed the highest mRNA levels of forkhead box P3, transforming growth factor (TGF)- beta , and interleukin (IL)-4 and a lower T-bet : GATA-3 ratio. There were no significant differences in IL-4 delta 2, IL-10, or TGF- beta receptor-II mRNA expression between groups. Together, these results suggest that immunosuppression seen after mycobacterial stimulation in case patients with active TB is associated with naturally occurring regulatory T cells.

  8. Impact of Auditory Integrative Training (AIT) on Transforming Growth Factor Beta 1 (TGF-β1) and Its Effect on Behavioural and Social Emotions in Children with Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Al-Ayadhi, Laila; Alhowikan, Abdulrahman; Halepoto, Dost

    2018-01-03

    To explore the impact of auditory integrative training (AIT) on inflammatory biomarker transforming growth factor-β1 (TGF-β1) and to assess its effect on social behaviours in children with autism spectrum disorder (ASD). In this cross-sectional study 15 subjects (14 males, I female) with ASD aged 3-12 years were recruited. All subjects were screened for autism by Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Plasma levels of TGF-β1 in all subjects were measured using sandwich enzyme immunoassay (ELISA) immediately after the AIT sessions and after 1 and 3 months. Pre-AIT and post-AIT behavioural scores were also calculated for each child using the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and the Short Sensory Profile (SSP). Data was analysed using the Statistical Package for the Social Sciences (SPSS) computer program (SPSS 21.0 for Windows, Chicago, Illinois, USA). Plasma levels of TGF-β1 significantly increased to 85% immediately (20.13±12, p communication in children with ASD. Furthermore TGF-β1was associated with the severity of all tested scores (CARS, SRS and SSP); if confirmed in studies on larger sample sizes, TGF-β1 may be considered as a marker of severity of ASD and to assess efficacy of therapeutic interventions. ©2018The Author(s). Published by S. Karger AG, Basel.

  9. Assessment of plasma and urinary transforming growth factor beta 1 ...

    African Journals Online (AJOL)

    Egyptian Journal of Pediatric Allergy and Immunology (The). Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 1 (2011) >. Log in or Register to get access to full text downloads.

  10. The evolving doublecortin (DCX superfamily

    Directory of Open Access Journals (Sweden)

    Sapir Tamar

    2006-07-01

    Full Text Available Abstract Background Doublecortin (DCX domains serve as protein-interaction platforms. Mutations in members of this protein superfamily are linked to several genetic diseases. Mutations in the human DCX gene result in abnormal neuronal migration, epilepsy, and mental retardation; mutations in RP1 are associated with a form of inherited blindness, and DCDC2 has been associated with dyslectic reading disabilities. Results The DCX-repeat gene family is composed of eleven paralogs in human and in mouse. Its evolution was followed across vertebrates, invertebrates, and was traced to unicellular organisms, thus enabling following evolutionary additions and losses of genes or domains. The N-terminal and C-terminal DCX domains have undergone sub-specialization and divergence. Developmental in situ hybridization data for nine genes was generated. In addition, a novel co-expression analysis for most human and mouse DCX superfamily-genes was performed using high-throughput expression data extracted from Unigene. We performed an in-depth study of a complete gene superfamily using several complimentary methods. Conclusion This study reveals the existence and conservation of multiple members of the DCX superfamily in different species. Sequence analysis combined with expression analysis is likely to be a useful tool to predict correlations between human disease and mouse models. The sub-specialization of some members due to restricted expression patterns and sequence divergence may explain the successful addition of genes to this family throughout evolution.

  11. Fetal antigen 1, a member of the epidermal growth factor superfamily, in neurofibromas and serum from patients with neurofibromatosis type 1

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Schroder, H D; Teisner, B

    1999-01-01

    ), also called von Recklinghausen disease, involves aberrant growth of tissues derived from the neural crest, the expression of FA1 was examined in neurofibroma skin biopsies and serum from patients with NF-1. FA1 was found in the spindle cells of all (n = 10) skin tumour specimens from adult NF-1...

  12. The Ras superfamily G-proteins.

    Science.gov (United States)

    Tetlow, Ashley L; Tamanoi, Fuyuhiko

    2013-01-01

    The Ras superfamily G-proteins are monomeric proteins of approximately 21kDa that act as a molecular switch to regulate a variety of cellular processes. The structure of the Ras superfamily G-proteins, their regulators as well as posttranslational modification of these proteins leading to their membrane association have been elucidated. The Ras superfamily G-proteins interact at their effector domains with their downstream effectors via protein-protein interactions. Mutational activation or overexpression of the Ras superfamily G-proteins has been observed in a number of human cancer cases. Over the years, a variety of approaches to inhibit the Ras superfamily G-proteins have been developed. These different approaches are discussed in this volume. © 2013 Elsevier Inc. All rights reserved.

  13. Influence of fluor salts, hormone replacement therapy and calcitonin on the concentration of insulin-like growth factor (IGF)-I, IGF-II and transforming growth factor-beta 1 in human iliac crest bone matrix from patients with primary osteoporosis.

    Science.gov (United States)

    Pepene, C E; Seck, T; Diel, I; Minne, H W; Ziegler, R; Pfeilschifter, J

    2004-01-01

    Data from cell culture experiments suggest that local growth factors (GFs) may mediate the effects of estrogens, calcitonin or fluor ions on the skeleton. To assess the in vivo relevance of the in vitro reports, the effect of fluor salts, hormone replacement therapy (HRT) and calcitonin on the concentrations of IGF-I, IGF-II and transforming growth factor (TGF)-beta 1 in bone matrix extracts from osteoporotic patients was evaluated. Iliac crest bone biopsies were obtained from 170 patients (76 men and 94 women) with primary osteoporosis aged 55.5+/-0.8 Years. Bone matrix extraction was performed based on a guanidine-HCl/ethylendiamine-tetra-acetic acid method. In comparison with age- and body mass index (BMI)-matched controls, no influence of long-term therapy with fluor ions (n=41) or calcitonin (n=16) on the bone matrix concentration of GFs was noticed. Postmenopausal women with osteoporosis on HRT (n=39) had lower skeletal IGF-I but not IGF-II levels as compared with age- and BMI-matched non-users. However, the lower rate of bone turnover in women with HRT may account for this difference, since the significance was lost after adjustment for alkaline phosphatase. Likewise, a tendency for lower TGF-beta 1 levels was observed in HRT users as compared with non-users but was lost after adjustment for bone turnover. None of the therapies influenced the serum levels of GFs when patients receiving continuous therapy for at least 1 Year before bone biopsy were considered. Our data suggest no direct effect of fluor therapy on skeletal GFs levels. At the concentrations used, neither HRT nor calcitonin appeared to exert any significant influence on serum or bone matrix GF levels.

  14. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15.

    Science.gov (United States)

    Tsai, V W W; Lin, S; Brown, D A; Salis, A; Breit, S N

    2016-02-01

    Anorexia-cachexia associated with cancer and other diseases is a common and often fatal condition representing a large area of unmet medical need. It occurs most commonly in advanced cancer and is probably a consequence of molecules released by tumour cells, or tumour-associated interstitial or immune cells. These may then act directly on muscle to cause atrophy and/or may cause anorexia, which then leads to loss of both fat and lean mass. Although the aetiological triggers for this syndrome are not well characterized, recent data suggest that MIC-1/GDF15, a transforming growth factor-beta superfamily cytokine produced in large amounts by cancer cells and as a part of other disease processes, may be an important trigger. This cytokine acts on feeding centres in the hypothalamus and brainstem to cause anorexia leading to loss of lean and fat mass and eventually cachexia. In animal studies, the circulating concentrations of MIC-1/GDF15 required to cause this syndrome are similar to those seen in patients with advanced cancer, and at least some epidemiological studies support an association between MIC-1/GDF15 serum levels and measures of nutrition. This article will discuss its mechanisms of central appetite regulation, and the available data linking this action to anorexia-cachexia syndromes that suggest it is a potential target for therapy of cancer anorexia-cachexia and conversely may also be useful for the treatment of severe obesity.

  15. Transforming Growth Factor Beta Signaling in Growth of Estrogen-Insensitive Metastatic Bone Lesions

    Science.gov (United States)

    2012-01-01

    Oncol2008 Jan;19(1):73-80. [17] Edwin F, Wiepz GJ, Singh R, Peet CR, Chaturvedi D, Bertics PJ, Patel TB. A historical perspective of the EGF receptor...Development2008 Mar;135(6):995-1003. [72] Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, Kelly PA, Ormandy CJ. Prolactin controls...BRCA1 mutation carriers. Nat Med2009 Aug;15(8):907-13. [86] Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L

  16. The T-superfamily of conotoxins.

    Science.gov (United States)

    Walker, C S; Steel, D; Jacobsen, R B; Lirazan, M B; Cruz, L J; Hooper, D; Shetty, R; DelaCruz, R C; Nielsen, J S; Zhou, L M; Bandyopadhyay, P; Craig, A G; Olivera, B M

    1999-10-22

    We report the discovery and initial characterization of the T-superfamily of conotoxins. Eight different T-superfamily peptides from five Conus species were identified; they share a consensus signal sequence, and a conserved arrangement of cysteine residues (- -CC- -CC-). T-superfamily peptides were found expressed in venom ducts of all major feeding types of Conus; the results suggest that the T-superfamily will be a large and diverse group of peptides, widely distributed in the 500 different Conus species. These peptides are likely to be functionally diverse; although the peptides are small (11-17 amino acids), their sequences are strikingly divergent, with different peptides of the superfamily exhibiting varying extents of post-translational modification. Of the three peptides tested for in vivo biological activity, only one was active on mice but all three had effects on fish. The peptides that have been extensively characterized are as follows: p5a, GCCPKQMRCCTL*; tx5a, gammaCCgammaDGW(+)CCT( section sign)AAO; and au5a, FCCPFIRYCCW (where gamma = gamma-carboxyglutamate, W(+) = bromotryptophan, O = hydroxyproline, T( section sign) = glycosylated threonine, and * = COOH-terminal amidation). We also demonstrate that the precursor of tx5a contains a functional gamma-carboxylation recognition signal in the -1 to -20 propeptide region, consistent with the presence of gamma-carboxyglutamate residues in this peptide.

  17. The nitrilase superfamily: classification, structure and function

    Science.gov (United States)

    Pace, Helen C; Brenner, Charles

    2001-01-01

    The nitrilase superfamily consists of thiol enzymes involved in natural product biosynthesis and post-translational modification in plants, animals, fungi and certain prokaryotes. On the basis of sequence similarity and the presence of additional domains, the superfamily can be classified into 13 branches, nine of which have known or deduced specificity for specific nitrile- or amide-hydrolysis or amide-condensation reactions. Genetic and biochemical analysis of the family members and their associated domains assists in predicting the localization, specificity and cell biology of hundreds of uncharacterized protein sequences. PMID:11380987

  18. The SUPERFAMILY database in 2007: families and functions

    OpenAIRE

    Wilson, Derek; Madera, Martin; Vogel, Christine; Chothia, Cyrus; Gough, Julian

    2006-01-01

    The SUPERFAMILY database provides protein domain assignments, at the SCOP ?superfamily? level, for the predicted protein sequences in over 400 completed genomes. A superfamily groups together domains of different families which have a common evolutionary ancestor based on structural, functional and sequence data. SUPERFAMILY domain assignments are generated using an expert curated set of profile hidden Markov models. All models and structural assignments are available for browsing and downloa...

  19. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.

    Science.gov (United States)

    Seader, Victoria H; Thornsberry, Jennifer M; Carey, Robert E

    2016-03-01

    Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242 ). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409-419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x ). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089 ). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12-13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms.

  20. Relationship between Apolipoprotein Superfamily and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Lin Li

    2017-01-01

    Conclusions: The Apo superfamily has been proved to be closely involved in the initiation, progression, and prognosis of PD. Apos and their genes are of great value in predicting the susceptibility of PD and hopeful to become the target of medical intervention to prevent the onset of PD or slow down the progress. Therefore, further large-scale studies are warranted to elucidate the precise mechanisms of Apos in PD.

  1. Dynamic monitoring of cellular remodeling induced by the transforming growth factor-beta1

    Czech Academy of Sciences Publication Activity Database

    Staršíchová, Andrea; Kubala, Lukáš; Lincová, Eva; Pernicová, Zuzana; Kozubík, Alois; Souček, Karel

    2009-01-01

    Roč. 11, č. 1 (2009), s. 316-324 ISSN 1480-9222 R&D Projects: GA ČR(CZ) GA204/07/0834 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : real-time cell analysis * cell plasticity * epithelial-mesenchymal transition Subject RIV: BO - Biophysics Impact factor: 0.750, year: 2009

  2. Targeting Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone

    Science.gov (United States)

    2013-01-01

    solely explained by an age- or menopausal - related decrease in bone mass [2,3], new anti-fracture therapies should also address other determinants of...to postmenopausal osteoporosis , certain diseases such as diabetes [1] and chronic kidney disease [2] also increase fracture risk. While an age- related ...fractures and bone mineral density in post- menopausal women with osteoporosis . N Engl J Med. 2001;344 (19):1434–41. 6. Shane E, Burr D, Ebeling PR, et

  3. Exercise-induced changes in circulating levels of transforming growth factor-beta-1 in humans

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Kjaer, Michael

    2003-01-01

    ) pg ml(-1), mean (SE)], and did not differ between days, indicating that platelet activation was minimal. Several alterations in the blood sampling procedure did not affect results, while a 40% increase was seen when blood was not cooled appropriately prior to centrifugation. A moderate intra...

  4. p38 Mitogen-Activated Protein Kinase in Metastasis Associated with Transforming Growth Factor Beta

    Science.gov (United States)

    2006-06-01

    Borrelli , M. J.; Xu, Z. Q.; Meredith, M. J.; Domann, F. E.; Freeman, M. L. Inhibition of the 26S proteasome induces expression of GLCLC, the catalytic...Wound Closure and Transwell Motility Assays—For wound closure assays, confluent cell monolayers were wounded by manually scraping the cells with a...Cytogenetics 163 (2005) 123–129[20] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual . 2nd ed. NewYork, NY: Cold Spring Harbor

  5. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg

    2001-01-01

    Using a CD4+ T-cell-transplanted SCID mouse model of colitis, we have analyzed TGF-beta transcription and translation in advanced disease. By in situ hybridization, the epithelium of both control and inflamed tissues transcribed TGF-beta1 and TGF-beta3 mRNAs, but both were expressed significantly...... TGF-beta. By ELISA, very low levels (0-69 pg/mg) of soluble total or active TGF-beta were detected in hypotonic tissue lysates. TGF-beta1 and TGF-beta3 are produced by SCID mouse colon and transcription is increased in the colitis caused by transplantation of CD4+ T-cells, but this does not result...

  6. Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus

    DEFF Research Database (Denmark)

    Malmström, Johan; Lindberg, Henrik Have; Lindberg, Claes

    2004-01-01

    is to participate in the depolymerization and stabilization of the microfilaments. These results show that TGF-beta(1) induces not only alpha-SMA but a whole set of actin-associated proteins that may contribute to the increased contractile properties of the myofibroblast. These proteins accompany the induced...

  7. Posttreatment plasma transforming growth factor beta 1 (TGF-beta1) level

    Czech Academy of Sciences Publication Activity Database

    Feltl, D.; Závadová, E.; Pála, M.; Hozák, Pavel

    2005-01-01

    Roč. 52, č. 5 (2005), s. 393-397 ISSN 0028-2685 R&D Projects: GA AV ČR(CZ) IAA5039202 Institutional research plan: CEZ:AV0Z50390512 Keywords : head and neck cancer * late morbidity Subject RIV: EE - Microbiology, Virology Impact factor: 0.731, year: 2005

  8. The dynamics of plasma transforming growth factor beta 1 (TGF-beta1) level

    Czech Academy of Sciences Publication Activity Database

    Feltl, D.; Závadová, E.; Pála, M.; Hozák, Pavel

    2005-01-01

    Roč. 41, č. 2 (2005), s. 208-213 ISSN 1368-8375 R&D Projects: GA AV ČR(CZ) IAA5039202 Institutional research plan: CEZ:AV0Z50390512 Keywords : Head and neck cancer * radiotherapy Subject RIV: EA - Cell Biology Impact factor: 2.266, year: 2005

  9. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2006-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 along with the activation of TGFb signaling pathway with the restoration of TGFb receptor II...

  10. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2005-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 a with the activation of TGFb signaling pathway with the restoration of TGFbeta receptor II...

  11. Serum transforming growth factor-beta1 in asthmatic children | El ...

    African Journals Online (AJOL)

    Reevaluation during steady state asthma was carried out for 8 patients with mild persistent asthma and 9 with severe persistent asthma. Results: During acute asthma exacerbations, the mean serum TGF-beta1 was significantly elevated in mild asthma (77.04 ± 57.04 ng/ml) compared to controls (21.81 ± 22.09 ng/ml).

  12. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg

    2001-01-01

    -beta1 showed that all cells produced perinuclear latent TGF-beta1. The epithelial cell basal latent protein resulted in only low levels of subepithelial active protein, which co-localized with collagen IV and laminin in diseased and control tissue. Infiltrating cells expressed very low levels of active...

  13. Regulatory T lymphocytes and transforming growth factor beta in epithelial ovarian tumors-prognostic significance.

    Science.gov (United States)

    Winkler, Izabela; Wilczynska, Barbara; Bojarska-Junak, Agnieszka; Gogacz, Marek; Adamiak, Aneta; Postawski, Krzysztof; Darmochwal-Kolarz, Dorota; Rechberger, Tomasz; Tabarkiewicz, Jacek

    2015-06-17

    Regulatory T lymphocytes (Treg) are characterized by the presence of CD4+ surface antigen. Today the transcription factor FOXP3 is considered to be the most specific marker of Treg cells. The aim of the study was to estimate the percentage of Treg in peripheral blood and the tissue of the epithelial ovarian tumor and blood serum TGF-beta concentrations and relationships between them. Moreover, the aim of the study was to answer the question whether the percentage of Treg lymphocytes affects the time of survival in patients with ovarian cancer. The patients were divided into four groups, depending on the histopathological examination result: I--a group without any pathology within the ovaries (C; n = 20), II--a group with benign tumors (B; n = 25), III - with borderline tumors (BR; n = 11), IV--a group with cancer of the ovary (M; n = 24). The percentage of Treg lymphocytes in peripheral blood and the tissue was assessed using the flow cytometry method. TGF-beta cytokine concentration was estimated with the ELISA immunoenzymatic test. Statistical analysis of the results was conducted using the computer program Statistica 10.0PL (StatSoft, Inc). No significant differences were found in percentages of Treg lymphocytes in peripheral blood between individual groups of patients (p = 0.11). However, we observed marked differences in the tissue of malignant and non-malignant tumors between individual groups of patients (p = 0.003). The analysis with the post hoc test revealed significantly higher TGF-beta concentration in the group of women with malignant tumors. Moreover, no relationship was found between TGF-beta concentration and the percentage of Treg cells in peripheral blood and tumors of the ovary. No correlation was found between the percentage of Treg lymphocytes in peripheral blood (p = 0.4) and the tissue of ovarian tumors (p = 0.3) and the time of survival of patients with ovarian cancer. The recruitment of Treg lymphocytes toward the tumor is one of the mechanisms of escape of neoplasm from the response of the immune system. The percentage of Treg lymphocytes in peripheral blood and the neoplastic tissue does not influence the time of survival of patients with ovarian cancer.

  14. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain.

    Directory of Open Access Journals (Sweden)

    Laura De Laporte

    Full Text Available Tenascin C (TNC is an extracellular matrix protein that is upregulated during development as well as tissue remodeling. TNC is comprised of multiple independent folding domains, including 15 fibronectin type III-like (TNCIII domains. The fifth TNCIII domain (TNCIII5 has previously been shown to bind heparin. Our group has shown that the heparin-binding fibronectin type III domains of fibronectin (FNIII, specifically FNIII12-14, possess affinity towards a large number of growth factors. Here, we show that TNCIII5 binds growth factors promiscuously and with high affinity. We produced recombinant fragments of TNC representing the first five TNCIII repeats (TNCIII1-5, as well as subdomains, including TNCIII5, to study interactions with various growth factors. Multiple growth factors of the platelet-derived growth factor (PDGF family, the fibroblast growth factor (FGF family, the transforming growth factor beta (TGF-β superfamily, the insulin-like growth factor binding proteins (IGF-BPs, and neurotrophins were found to bind with high affinity to this region of TNC, specifically to TNCIII5. Surface plasmon resonance was performed to analyze the kinetics of binding of TNCIII1-5 with TGF-β1, PDGF-BB, NT-3, and FGF-2. The promiscuous yet high affinity of TNC for a wide array of growth factors, mediated mainly by TNCIII5, may play a role in multiple physiological and pathological processes involving TNC.

  15. Origin and evolution of TNF and TNF receptor superfamilies

    Science.gov (United States)

    The tumor necrosis factor superfamily (TNFSF) and the TNF receptor superfamily (TNFRSF) have an ancient evolutionary origin that can be traced back to single copy genes within Arthropods. In humans, 18 TNFSF and 29 TNFRSF genes have been identified. Evolutionary models account for the increase in g...

  16. [Experimental models of diabetes mellitus of the 1st and 2nd types in rats: regulation of activity of glycogen synthase by peptides of the insulin superfamily and by epidermal growth factor in skeletal muscles].

    Science.gov (United States)

    Kuznetsova, L A; Chistiakova, O V

    2012-01-01

    The regulatory effect of peptides of the insulin hyperfamily--insulin, insulin-like growth factor (IGF-1), and relaxin, as well as of epidermal growth factor (EGF) on activity of glycogen synthase (GS) in rat skeletal muscles was studied in norm and in experimental diabetes mellitus of the 1st and 2nd types (DM1, DM2). In norm, peptides in vitro stimulated maximally the GS activity at a concentration of 10-8 M. The row of efficiency of the peptide action was as follows: insulin > IGF-1 > relaxin. In DM1 the basal GS activity did not change, while effect of insulin in vitro was decreased more sharply as compared with action of IGF-1 and relaxin at the 30th day of development of diabetes, i. e., the efficiency row was as follows: IGF-1 = relaxin > insulin. Administration of insulin in vivo did not restore sensitivity of the enzyme to the action of hormone in DM1. In DM2, the GS activity (both the total and active form) decreased. while the stimulatory effect ofpeptides and EGF on the enzyme was absent. Insulin introduced in vitro did not lead to restoration of the enzyme reaction. The conclusion has been made that the insulin resistance affects the basal GS activity in rat skeletal muscles as well as the regulation of the enzyme by peptides of the insulin nature and by EGF, which is more obvious in DM2, than in DM1.

  17. CAP protein superfamily members in Toxocara canis.

    Science.gov (United States)

    Stroehlein, Andreas J; Young, Neil D; Hall, Ross S; Korhonen, Pasi K; Hofmann, Andreas; Sternberg, Paul W; Jabbar, Abdul; Gasser, Robin B

    2016-06-24

    Proteins of the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are recognized or proposed to play roles in parasite development and reproduction, and in modulating host immune attack and infection processes. However, little is known about these proteins for most parasites. In the present study, we explored CAP proteins of Toxocara canis, a socioeconomically important zoonotic roundworm. To do this, we mined and curated transcriptomic and genomic data, predicted and curated full-length protein sequences (n = 28), conducted analyses of these data and studied the transcription of respective genes in different developmental stages of T. canis. In addition, based on information available for Caenorhabditis elegans, we inferred that selected genes (including lon-1, vap-1, vap-2, scl-1, scl-8 and scl-11 orthologs) of T. canis and their interaction partners likely play central roles in this parasite's development and/or reproduction via TGF-beta and/or insulin-like signaling pathways, or via host interactions. In conclusion, this study could provide a foundation to guide future studies of CAP proteins of T. canis and related parasites, and might assist in finding new interventions against diseases caused by these parasites.

  18. Aldehyde dehydrogenase protein superfamily in maize.

    Science.gov (United States)

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.

  19. Regulation of TGF-β Superfamily Signaling by SMAD Mono-Ubiquitination

    Science.gov (United States)

    Xie, Feng; Zhang, Zhengkui; van Dam, Hans; Zhang, Long; Zhou, Fangfang

    2014-01-01

    TGF-β(transforming growth factor-β) superfamily signaling mediators are important regulators of diverse physiological and pathological events. TGF-β signals are transduced by transmembrane type I and type II serine/threonine kinase receptors and their downstream effectors, the SMAD (drosophila mothers against decapentaplegic protein) proteins. Numerous studies have already demonstrated crucial regulatory roles for modification of TGF-β pathway components by poly-ubiquitination. Recently, several studies also uncovered mono-ubiquitination of SMADs as a mechanism for SMAD activation or inactivation. Mono-ubiquitination and subsequent deubiquitination of SMAD proteins accordingly play important roles in the control of TGF-β superfamily signaling. This review highlights the major pathways regulated by SMAD mono-ubiquitination. PMID:25317929

  20. Update on the olfactory receptor (OR gene superfamily

    Directory of Open Access Journals (Sweden)

    Olender Tsviya

    2008-09-01

    Full Text Available Abstract The olfactory receptor gene (OR superfamily is the largest in the human genome. The superfamily contains 390 putatively functional genes and 465 pseudogenes arranged into 18 gene families and 300 subfamilies. Even members within the same subfamily are often located on different chromosomes. OR genes are located on all autosomes except chromosome 20, plus the X chromosome but not the Y chromosome. The gene:pseudogene ratio is lowest in human, higher in chimpanzee and highest in rat and mouse -- most likely reflecting the greater need of olfaction for survival in the rodent than in the human. The OR genes undergo allelic exclusion, each sensory neurone expressing usually only one odourant receptor allele; the mechanism by which this phenomenon is regulated is not yet understood. The nomenclature system (based on evolutionary divergence of genes into families and subfamilies of the OR gene superfamily has been designed similarly to that originally used for the CYP gene superfamily.

  1. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    Directory of Open Access Journals (Sweden)

    Turk Vito

    2009-11-01

    Full Text Available Abstract Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future

  2. Phylogenomic analysis of the GIY-YIG nuclease superfamily

    Directory of Open Access Journals (Sweden)

    Bujnicki Janusz M

    2006-04-01

    Full Text Available Abstract Background The GIY-YIG domain was initially identified in homing endonucleases and later in other selfish mobile genetic elements (including restriction enzymes and non-LTR retrotransposons and in enzymes involved in DNA repair and recombination. However, to date no systematic search for novel members of the GIY-YIG superfamily or comparative analysis of these enzymes has been reported. Results We carried out database searches to identify all members of known GIY-YIG nuclease families. Multiple sequence alignments together with predicted secondary structures of identified families were represented as Hidden Markov Models (HMM and compared by the HHsearch method to the uncharacterized protein families gathered in the COG, KOG, and PFAM databases. This analysis allowed for extending the GIY-YIG superfamily to include members of COG3680 and a number of proteins not classified in COGs and to predict that these proteins may function as nucleases, potentially involved in DNA recombination and/or repair. Finally, all old and new members of the GIY-YIG superfamily were compared and analyzed to infer the phylogenetic tree. Conclusion An evolutionary classification of the GIY-YIG superfamily is presented for the very first time, along with the structural annotation of all (subfamilies. It provides a comprehensive picture of sequence-structure-function relationships in this superfamily of nucleases, which will help to design experiments to study the mechanism of action of known members (especially the uncharacterized ones and will facilitate the prediction of function for the newly discovered ones.

  3. Structure and Function of the LmbE-like Superfamily

    Directory of Open Access Journals (Sweden)

    Shane Viars

    2014-05-01

    Full Text Available The LmbE-like superfamily is comprised of a series of enzymes that use a single catalytic metal ion to catalyze the hydrolysis of various substrates. These substrates are often key metabolites for eukaryotes and prokaryotes, which makes the LmbE-like enzymes important targets for drug development. Herein we review the structure and function of the LmbE-like proteins identified to date. While this is the newest superfamily of metallohydrolases, a growing number of functionally interesting proteins from this superfamily have been characterized. Available crystal structures of LmbE-like proteins reveal a Rossmann fold similar to lactate dehydrogenase, which represented a novel fold for (zinc metallohydrolases at the time the initial structure was solved. The structural diversity of the N-acetylglucosamine containing substrates affords functional diversity for the LmbE-like enzyme superfamily. The majority of enzymes identified to date are metal-dependent deacetylases that catalyze the hydrolysis of a N-acetylglucosamine moiety on substrate using a combination of amino acid side chains and a single bound metal ion, predominantly zinc. The catalytic zinc is coordinated to proteins via His2-Asp-solvent binding site. Additionally, studies indicate that protein dynamics play important roles in regulating access to the active site and facilitating catalysis for at least two members of this protein superfamily.

  4. Meeting report - TGF-β superfamily: signaling in development and disease.

    Science.gov (United States)

    Zhang, Ying E; Newfeld, Stuart J

    2013-11-01

    The latest advances on the transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways were reported at the July 2013 FASEB Summer Research Conference 'The TGF-β Superfamily: Development and Disease'. The meeting was held in Steamboat Springs, Colorado, USA at 6700 feet above sea level in the Rocky Mountains. This was the seventh biannual meeting in the series. In attendance were investigators from a broad range of disciplines with a common interest in the mechanics of TGF-β and BMP signaling pathways, their normal developmental and homeostatic functions, and the diseases associated with pathway misregulation.

  5. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi.

    Science.gov (United States)

    Li, Juan; Gu, Fei; Wu, Runian; Yang, JinKui; Zhang, Ke-Qin

    2017-03-30

    Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.

  6. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review

    Directory of Open Access Journals (Sweden)

    Fernanda Cavallari de Castro

    2016-08-01

    Full Text Available Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9 and the bone morphogenetic protein 15 (BMP15, belong to the transforming growth factor beta (TGF-β superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR. These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

  7. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    user

    2011-03-07

    ). Expression of transforming growth factor-beta s 1-4 in chicken embryo chondrocytes and myocytes. Dev. Biol. 143: 135-. 148. Javanrouh A, Banabazi MH, Esmaeilkhanian S, Amirinia C, Seyedabadi. HR, Emrani H (2006).

  8. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases

    Directory of Open Access Journals (Sweden)

    Purta Elzbieta

    2007-03-01

    Full Text Available Abstract Background SPOUT methyltransferases (MTases are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080

  9. Chemotherapeutic Targeting of Fibulin-5 to Suppress Breast Cancer Invasion and Metastasis Simulated by Transforming Growth Factor-Beta

    Science.gov (United States)

    2012-01-01

    demonstrated the ability of the c-Abl antagonist, Gleevec ( Imatinib ) to elicit EMT programs and disease progression of TNBCs [24]. Given these apparent...malignant MECs to access their role in regulating MEC response to TGF-β both in vitro and in vivo. Initial targets are members of the MMP family of

  10. The change of transforming growth factor {beta} 1 (TGF- {beta} 1) expression by melatonin in irradiated lung

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seong Soon; Choi, Ihl Bohng [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-09-15

    The changed expressions of TGF- {beta} 1, as a key cytokine in the fibrotic process, due to melatonin with potent antioxidative effects, were investigated in the irradiated lung using fibrosis-sensitive C57BL/6 mice. Female C57BL/6 mice were divided into control irradiation-only, and melatonin (300 mg/kg i.p. 1 hr before irradiation) pretreatment groups. The thoraces of the mice were irradiated with a single dose of 12 Gy. The mRNA expressions of TGF-{beta} 1 in the lung tissue 2 and 4 weeks after irradiation were quantified using semiquantitive RT-PCR, and the cellular origin and expression levels of TGF- {beta} 1 protein were identified using immunohistochemical staining. The relative mRNA expression levels in the irradiation-only and melatonin pretreatment group 2 and 4 weeks after irradiation were 1.92- and 1.80-fold ({rho} = 0.064) and 2.38- and 1.94-fold ({rho} = 0.004) increased, respectively compared to those in the control group. Increased expressions of TGF- {beta} 1 protein were prominently detected in regions of histopathological radiation injury, with alveolar macrophages and septal epithelial cells serving as important sources of TGF- {beta} 1 expression. At 2 and 4 weeks after irradiation, the expression levels of protein were 15.8% vs. 16.9% ({rho} = 0.565) and 36.1% vs. 25.7% ({rho} = 0.009), respectively. The mRNA and protein expressions of TGF- {beta} 1 in the lung tissue following thoracic irradiation with 12 Gy were significantly decreased by melatonin pretreatment at 4 weeks. These results indicate that melatonin may have a possible application as an antifibrotic agent in radiation-induced lung injury.

  11. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  12. Transforming growth factor-beta1 null mutation causes infertility in male mice associated with testosterone deficiency and sexual dysfunction.

    Science.gov (United States)

    Ingman, Wendy V; Robertson, Sarah A

    2007-08-01

    TGFbeta1 is a multifunctional cytokine implicated in gonad and secondary sex organ development, steroidogenesis, and spermatogenesis. To determine the physiological requirement for TGFbeta1 in male reproduction, Tgfb1 null mutant mice on a Prkdc(scid) immunodeficient background were studied. TGFbeta1-deficient males did not deposit sperm or induce pseudopregnancy in females, despite an intact reproductive tract with morphologically normal penis, seminal vesicles, and testes. Serum and intratesticular testosterone and serum androstenedione were severely diminished in TGFbeta1-deficient males. Testosterone deficiency was secondary to disrupted pituitary gonadotropin secretion because serum LH and to a lesser extent serum FSH were reduced, and exogenous LH replacement with human chorionic gonadotropin (hCG) induced serum testosterone to control levels. In the majority of TGFbeta1-deficient males, spermatogenesis was normal and sperm were developmentally competent as assessed by in vitro fertilization. Analysis of sexual behavior revealed that although TGFbeta1 null males showed avid interest in females and engaged in mounting activity, intromission was infrequent and brief, and ejaculation was not attained. Administration of testosterone to adult males, even after neonatal androgenization, was ineffective in restoring sexual function; however, erectile reflexes and ejaculation could be induced by electrical stimulation. These studies demonstrate the profound effect of genetic deficiency in TGFbeta1 on male fertility, implicating this cytokine in essential roles in the hypothalamic-pituitary-gonadal axis and in testosterone-independent regulation of mating competence.

  13. Transforming growth factor-beta promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune response.

    Directory of Open Access Journals (Sweden)

    Nicole Bedke

    Full Text Available Rhinovirus (RV infection is a major cause of asthma exacerbations which may be due to a deficient innate immune response in the bronchial epithelium. We hypothesized that the pleiotropic cytokine, TGF-β, influences interferon (IFN production by primary bronchial epithelial cells (PBECs following RV infection. Exogenous TGF-β(2 increased RV replication and decreased IFN protein secretion in response to RV or double-stranded RNA (dsRNA. Conversely, neutralizing TGF-β antibodies decreased RV replication and increased IFN expression in response to RV or dsRNA. Endogenous TGF-β(2 levels were higher in conditioned media of PBECs from asthmatic donors and the suppressive effect of anti-TGF-β on RV replication was significantly greater in these cells. Basal SMAD-2 activation was reduced when asthmatic PBECs were treated with anti-TGF-β and this was accompanied by suppression of SOCS-1 and SOCS-3 expression. Our results suggest that endogenous TGF-β contributes to a suppressed IFN response to RV infection possibly via SOCS-1 and SOCS-3.

  14. Comparison of the Effects of Hyperbaric Oxygenation and Transforming Growth Factor Beta on Wound Healing in Rats

    Science.gov (United States)

    1994-01-01

    the Veterinary Sciences Division of the Armstrong Laboratory (AFMC), Brooks AFB, Texas, under job order number 2312W405. When Government drawings...102 ACKNOWLEDGMENTS The authors wish to thank the Veterinary Resources Branch (OEVR), Veterinary Sciences Division, for providing assistance in...procuring and housing animals, the Comparative Pathology Branch (OEVP), Veterinary Sciences Division, for providing histological processing and evaluation of

  15. Transforming growth factor-beta 1, 2, and 3 can inhibit epithelial tissue outgrowth on smooth and microgrooved substrates.

    NARCIS (Netherlands)

    Walboomers, X.F.; Dalton, B.A.; Evans, M.D.; Steele, J.G.; Jansen, J.A.

    2002-01-01

    In this study, we describe the influence of parallel surface microgrooves, and of TGF-beta, on the outgrowth of corneal epithelial tissue. Microgrooves (depth 1 microm, width 1-10 microm) were made in polystyrene culturing surfaces. These surfaces were left untreated, or loaded with TGF-beta 1, 2,

  16. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.

    2007-01-01

    Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMITV...

  17. Axolotl as a Model to Study Scarless Wound Healing in Vertebrates: Role of the Transforming Growth Factor Beta Signaling Pathway.

    Science.gov (United States)

    Denis, Jean-François; Lévesque, Mathieu; Tran, Simon D; Camarda, Aldo-Joseph; Roy, Stéphane

    2013-06-01

    The skin is our largest organ, with the primary role of protection against assaults from the outside world. It also suffers frequent damage, from minor scrapes to, more rarely, complete destruction such as in third-degree burns. It is therefore, by its nature, an organ that would benefit tremendously from being able to regenerate itself. This review highlights the axolotl, a less well-known model organism capable of scarless wound healing and regeneration. Axolotls are salamanders with unsurpassed healing and regenerative capacities. Understanding how these animals can regenerate their tissues could help identify the pathways that need to be activated or inhibited in humans to improve wound healing. Presently, there are no therapies leading to skin regeneration or scarless wound healing. Various animal models have thus been developed for use in research, such as mice and pigs, to help us understand how wound healing could be improved or stimulated. However, these more common models cannot regenerate and, consequently, cannot direct us toward a solution to regenerate damaged tissues. Axolotls, on the other hand, can regenerate perfectly and therefore may offer avenues to identify molecular targets for therapeutic intervention. Identifying signaling pathways regulating tissue regeneration in vertebrate models is important. The use of animals such as axolotls, which hold the secret of full regeneration, will likely play a significant role in helping us achieve scarless wound healing for humans.

  18. Transforming growth factor beta-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro

    Directory of Open Access Journals (Sweden)

    Sabido Odile

    2005-06-01

    Full Text Available Abstract Background TGF beta and its receptors are present in both germ cells and somatic cells of the male gonad. However, knock-out strategies for studying spermatogenesis regulation by TGF beta have been disappointing since TGF beta-or TGF beta receptor-null mice do not survive longer than a few weeks. Methods In the present study, we addressed the role of TGF beta-1 on the completion of meiosis by rat pachytene spermatocytes (PS cocultured with Sertoli cells. Identification and counting of meiotic cells were performed by cytology and cytometry. Results Under our culture conditions, some PS differentiated into round spermatids (RS. When TGF beta-1 was added to the culture medium, neither the number of PS or of secondary spermatocytes nor the half-life of RS was modified by the factor. By contrast, the number of RS and the amount of TP1 mRNA were lower in TGF beta-1-treated cultures than in control cultures. Very few metaphase I cells were ever observed both in control and TGF beta-1-treated wells. Higher numbers of metaphase II were present and their number was enhanced by TGF beta-1 treatment. A TGF beta-like bioactivity was detected in control culture media, the concentration of which increased with the time of culture. Conclusion These results indicate that TGF beta-1 did not change greatly, if any, the yield of the first meiotic division but likely enhanced a bottleneck at the level of metaphase II. Taken together, our results suggest strongly that TGF beta participates in an auto/paracrine pathway of regulation of the meiotic differentiation of rat spermatocytes.

  19. Chemotherapeutic Targeting of Fibulin-5 to Suppress Breast Cancer Invasion and Metastasis Stimulated by Transforming Growth Factor-Beta

    Science.gov (United States)

    2012-10-22

    been correlated with the development of TGF-β resistance in cancers of the colon, pancreas, ovary, breast, cervix , head and neck, and in T and B cell...be contraindicated in breast cancer patients. Accordingly, recent clinical trials de - signed to assess the efficacy of c-Abl antagonism in pre...mechanisms in cancer . Mol Biotechnol 46:308–316 Bandyopadhyay A, Wang L, Agyin J, Tang Y, Lin S, Yeh IT, De K, Sun LZ (2010) Doxorubicin in combination

  20. Increase Concentration of Transforming Growth Factor Beta (TGF-β in Breast Milk of Mothers With Psychological Disorders

    Directory of Open Access Journals (Sweden)

    Mamak Shariat

    2017-09-01

    Full Text Available Several studies have shown an imbalance between proinflammatory and anti-inflammatory cytokines in depression and anxiety disorders. However, less attention has been paid to the role of cytokines in psychological disorder in mothers who breastfeed. This study looks at whether concentration levels of TGF-β2 are altered in anxious and depressive breastfeeding mothers. This study checked the concentration level of TGF-B2 in relation with psychological symptoms on 110 breastfeeding mothers; based on random sampling method with using of Beck Depression Inventory (BDI, General Health Questionnaire (GHQ and Spielberger Stress Scale (STAI in 2015 also TGF-β2 was measured in breast milk using ELISA. We used of Pearson Correlation Method, independent t-test and one-way analysis of variance (ANOVA to analyze the data. Psychological symptoms (Anxiety and depression showed positive correlation with TGF-Beta level in which relationships were significant (P=0.01. Psychological problems may be uniquely associated with the level of TGF-β in breast milk. More attention should be paid to the mental health of mothers during breastfeeding, and more research needs to be done in this subject to clarify the relationship between psychological variables with the level of TGF-β in breast milk.

  1. Nerve growth factor beta polypeptide (NGFB) genetic variability: association with the methadone dose required for effective maintenance treatment

    OpenAIRE

    Levran, Orna; Peles, Einat; Hamon, Sara; Randesi, Matthew; Zhao, Connie; Zhang, Bin; Adelson, Miriam; Kreek, Mary Jeanne

    2011-01-01

    Opioid addiction is a chronic disease with high genetic contribution and a large inter-individual variability in therapeutic response. The goal of this study was to identify pharmacodynamic factors that modulate methadone dose requirement. The neurotrophin family is involved in neural plasticity, learning memory and behavior and deregulated neural plasticity may underlie the pathophysiology of drug addiction. BDNF was shown to affect the response to methadone maintenance treatment. This study...

  2. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres.

    Science.gov (United States)

    Hossain, Mohammed Akhter; Wade, John D

    2017-09-19

    The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious

  3. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi

    OpenAIRE

    Juan Li; Fei Gu; Runian Wu; JinKui Yang; Ke-Qin Zhang

    2017-01-01

    Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal king...

  4. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa).

    Science.gov (United States)

    Sarkar, Neelam K; Kundnani, Preeti; Grover, Anil

    2013-07-01

    Heat stress results in misfolding and aggregation of cellular proteins. Heat shock proteins (Hsp) enable the cells to maintain proper folding of proteins, both in unstressed as well as stressed conditions. Hsp70 genes encode for a group of highly conserved chaperone proteins across the living systems encompassing bacteria, plants, and animals. In the cellular chaperone network, Hsp70 family proteins interconnect other chaperones and play a dominant role in various cell processes. To assess the functionality of rice Hsp70 genes, rice genome database was analyzed. Rice genome contains 32 Hsp70 genes. Rice Hsp70 superfamily genes are represented by 24 Hsp70 family and 8 Hsp110 family members. Promoter and transcript expression analysis divulges that Hsp70 superfamily genes plays important role in heat stress. Ssc1 (mitochondrial Hsp70 protein in yeast) deleted yeast show compromised growth at 37 °C. Three mitochondrial rice Hsp70 sequences (i.e., mtHsp70-1, mtHsp70-2, and mtHsp70-3) complemented the Ssc1 mutation of yeast to differential extents. The information presented in this study provides detailed understanding of the Hsp70 protein family of rice, the crop species that is the major food for the world population.

  5. Systematic classification of the His-Me finger superfamily.

    Science.gov (United States)

    Jablonska, Jagoda; Matelska, Dorota; Steczkiewicz, Kamil; Ginalski, Krzysztof

    2017-11-16

    The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The Evolution of the Actin Binding NET Superfamily

    Directory of Open Access Journals (Sweden)

    Tim eHawkins

    2014-06-01

    Full Text Available The arabidopsis Networked protein superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in arabidopsis which group into 4 distinct clades or subfamilies. NET homologues are absent from the genomes of metazoa and fungi, furthermore in Plantae NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single subfamily of the NET proteins are found encoded in the club moss genome; an extant species of the earliest vascular plants. Gymnosperms have examples from subfamilies 4 and 3 with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 subfamilies, the NET1 and pollen-expressed NET2 subfamilies are only found as independent sequences in angiosperms. This is consistent with the divergence of reproductive actin. The four subfamilies are conserved across monocots and eudicots with the numbers of members of each clade expanding at this point due in part to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants they have continued to develop and diversify in a manner which has mirrored the divergence and complexity of plant species through evolution in the ‘March of Progress’.

  7. Evolutionary analysis of the ENTH/ANTH/VHS protein superfamily reveals a coevolution between membrane trafficking and metabolism

    Directory of Open Access Journals (Sweden)

    De Craene Johan-Owen

    2012-07-01

    Full Text Available Abstract Background Membrane trafficking involves the complex regulation of proteins and lipids intracellular localization and is required for metabolic uptake, cell growth and development. Different trafficking pathways passing through the endosomes are coordinated by the ENTH/ANTH/VHS adaptor protein superfamily. The endosomes are crucial for eukaryotes since the acquisition of the endomembrane system was a central process in eukaryogenesis. Results Our in silico analysis of this ENTH/ANTH/VHS superfamily, consisting of proteins gathered from 84 complete genomes representative of the different eukaryotic taxa, revealed that genomic distribution of this superfamily allows to discriminate Fungi and Metazoa from Plantae and Protists. Next, in a four way genome wide comparison, we showed that this discriminative feature is observed not only for other membrane trafficking effectors, but also for proteins involved in metabolism and in cytokinesis, suggesting that metabolism, cytokinesis and intracellular trafficking pathways co-evolved. Moreover, some of the proteins identified were implicated in multiple functions, in either trafficking and metabolism or trafficking and cytokinesis, suggesting that membrane trafficking is central to this co-evolution process. Conclusions Our study suggests that membrane trafficking and compartmentalization were not only key features for the emergence of eukaryotic cells but also drove the separation of the eukaryotes in the different taxa.

  8. Sequence-based protein superfamily classification using computational intelligence techniques: a review.

    Science.gov (United States)

    Vipsita, Swati; Rath, Santanu Kumar

    2015-01-01

    Protein superfamily classification deals with the problem of predicting the family membership of newly discovered amino acid sequence. Although many trivial alignment methods are already developed by previous researchers, but the present trend demands the application of computational intelligent techniques. As there is an exponential growth in size of biological database, retrieval and inference of essential knowledge in the biological domain become a very cumbersome task. This problem can be easily handled using intelligent techniques due to their ability of tolerance for imprecision, uncertainty, approximate reasoning, and partial truth. This paper discusses the various global and local features extracted from full length protein sequence which are used for the approximation and generalisation of the classifier. The various parameters used for evaluating the performance of the classifiers are also discussed. Therefore, this review article can show right directions to the present researchers to make an improvement over the existing methods.

  9. Growth-differentiation factor-8 (GDF-8 in the uterus: its identification and functional significance in the golden hamster

    Directory of Open Access Journals (Sweden)

    O Wai Sum

    2009-11-01

    Full Text Available Abstract Transforming growth factor-beta superfamily regulates many aspects of reproduction in the female. We identified a novel member of this family, growth-differentiation factor 8 (GDF-8 in the 72 h post coital uterine fluid of the golden hamster by proteomic techniques. Uterine GDF-8 mRNA decreased as pregnancy progressed while its active protein peaked at 72 h post coitus (hpc and thereafter stayed at a lower level. At 72 hpc, the GDF-8 transcript was localized to the endometrial epithelium while its protein accumulated in the stroma. Exogenous GDF-8 slowed down proliferation of primary cultures of uterine smooth muscle cells (SMC and endometrial epithelial cells (EEC. In addition, GDF-8 attenuated the release of LIF (leukaemia inhibiting factor by EEC. As for the embryo in culture, GDF-8 promoted proliferation of the trophotoderm (TM and hatching but discouraged attachment. Our study suggests that GDF-8 could regulate the behavior of preimplantation embryos and fine-tune the physiology of uterine environment during pregnancy.

  10. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Batot, Gaëlle; Michalska, Karolina; Ekberg, Greg; Irimpan, Ervin M.; Joachimiak, Grazyna; Jedrzejczak, Robert; Babnigg, Gyorgy; Hayes, Christopher S.; Joachimiak, Andrzej; Goulding, Celia W.

    2017-04-10

    Contact-dependent growth inhibition (CDI) is an important mechanism of inter-bacterial competition found in many Gram-negative pathogens. CDI+ cells express cell-surface CdiA proteins that bind neighboring bacteria and deliver C-terminal toxin domains (CdiA-CT) to inhibit target-cell growth. CDI+ bacteria also produce CdiI immunity proteins, which specifically neutralize cognate CdiA-CT toxins to prevent self-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(Ykris) complex from Yersinia kris-tensenii ATCC 33638. CdiA-CTYkris adopts the same fold as angiogenin and other RNase A paralogs, but the toxin does not share sequence similarity with these nucleases and lacks the characteristic disulfide bonds of the superfamily. Consistent with the structural homology, CdiA-CTYkris has potent RNase activity in vitro and in vivo. Structure-guided mutagenesis reveals that His175, Arg186, Thr276 and Tyr278 contribute to CdiA-CTYkris activity, suggesting that these residues participate in substrate binding and/or catalysis. CdiI(Ykris) binds directly over the putative active site and likely neutralizes toxicity by blocking access to RNA substrates. Significantly, CdiA-CTYkris is the first non-vertebrate protein found to possess the RNase A superfamily fold, and homologs of this toxin are associated with secretion systems in many Gram-negative and Gram-positive bacteria. These observations suggest that RNase Alike toxins are commonly deployed in inter-bacterial competition.

  11. Evolution of substrate specificity and protein-protein interactions in three enzyme superfamilies

    OpenAIRE

    Plach, Maximilian

    2017-01-01

    Superfamilies are a classification system to combine proteins that are related through a common evolutionary origin, share similar sequences, structures, and core reaction mechanisms, but exert different functions. Today, for most superfamilies tens of thousands of sequences and hundreds of structures are known and most of the different functions of their members have been elucidated. Superfamilies thus provide a formal and biologically sensible framework to study evolutionary relationships be...

  12. Comparative analysis of cation/proton antiporter superfamily in plants

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Chuyu [ORNL; Yang, Xiaohan [ORNL; Xia, Xinli [Beijing Forestry University, China; Yin, Weilun [Beijing Forestry University, China

    2013-01-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant specieswas reported.We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiospermspecies. Sliding windowanalysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and foundmostmotifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants.

  13. The Arabidopsis thaliana ABC protein superfamily, a complete inventory.

    Science.gov (United States)

    Sánchez-Fernández, R; Davies, T G; Coleman, J O; Rea, P A

    2001-08-10

    We describe the first complete inventory of ATP-binding cassette (ABC) proteins from a multicellular organism, the model plant Arabidopsis thaliana. By the application of several search criteria, Arabidopsis was found to contain a total of 129 open reading frames (ORFs) capable of encoding ABC proteins, of which 103 possessed contiguous transmembrane spans and were identified as putative intrinsic membrane proteins. Fifty-two of the putative intrinsic membrane proteins contained at least two transmembrane domains (TMDs) and two nucleotide-binding folds (NBFs) and could be classified as belonging to one of five subfamilies of full-molecule transporters. The other 51 putative membrane proteins, all of which were half-molecule transporters, fell into five subfamilies. Of the remaining ORFs identified, all of which encoded proteins lacking TMDs, 11 could be classified into three subfamilies. There were no obvious homologs in other organisms for 15 of the ORFs which encoded a heterogeneous group of non-intrinsic ABC proteins (NAPs). Unrooted phylogenetic analyses substantiated the subfamily designations. Notable features of the Arabidopsis ABC superfamily was the presence of a large yeast-like PDR subfamily, and the absence of genes encoding bona fide cystic fibrosis transmembrane conductance regulator (CFTR), sulfonylurea receptor (SUR), and heavy metal tolerance factor 1 (HMT1) homologs. Arabidopsis was unusual in its large allocation of ORFs (a minimum of 0.5%) to members of the ABC protein superfamily.

  14. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  15. Protein superfamily classification using fuzzy rule-based classifier.

    Science.gov (United States)

    Mansoori, Eghbal G; Zolghadri, Mansoor J; Katebi, Seraj D

    2009-03-01

    In this paper, we have proposed a fuzzy rule-based classifier for assigning amino acid sequences into different superfamilies of proteins. While the most popular methods for protein classification rely on sequence alignment, our approach is alignment-free and so more human readable. It accounts for the distribution of contiguous patterns of n amino acids ( n-grams) in the sequences as features, alike other alignment-independent methods. Our approach, first extracts a plenty of features from a set of training sequences, then selects only some best of them, using a proposed feature ranking method. Thereafter, using these features, a novel steady-state genetic algorithm for extracting fuzzy classification rules from data is used to generate a compact set of interpretable fuzzy rules. The generated rules are simple and human understandable. So, the biologists can utilize them, for classification purposes, or incorporate their expertise to interpret or even modify them. To evaluate the performance of our fuzzy rule-based classifier, we have compared it with the conventional nonfuzzy C4.5 algorithm, beside some other fuzzy classifiers. This comparative study is conducted through classifying the protein sequences of five superfamily classes, downloaded from a public domain database. The obtained results show that the generated fuzzy rules are more interpretable, with acceptable improvement in the classification accuracy.

  16. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  17. TNF Superfamily: A Growing Saga of Kidney Injury Modulators

    Directory of Open Access Journals (Sweden)

    Maria D. Sanchez-Niño

    2010-01-01

    Full Text Available Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF and Fas ligand regulate renal cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses. TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCl21 and CCL19 expression through NF-kappaB inducing kinase (NIK- dependent RelB/NF-kappaB2 complexes. In vivo TWEAK promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily cytokines, including multipronged approaches targeting several cytokines should be further explored.

  18. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  19. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Directory of Open Access Journals (Sweden)

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  20. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.

    Science.gov (United States)

    Pabis, Anna; Kamerlin, Shina Caroline Lynn

    2016-04-01

    Catalytic promiscuity, that is, the ability of single enzymes to facilitate the turnover of multiple, chemically distinct substrates, is a widespread phenomenon that plays an important role in the evolution of enzyme function. Additionally, such pre-existing multifunctionality can be harnessed in artificial enzyme design. The members of the alkaline phosphatase superfamily have served extensively as both experimental and computational model systems for enhancing our understanding of catalytic promiscuity. In this Opinion, we present key recent computational studies into the catalytic activity of these highly promiscuous enzymes, highlighting the valuable insight they have provided into both the molecular basis for catalytic promiscuity in general, and its implications for the evolution of phosphatase activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The cellulose synthase superfamily in fully sequenced plants and algae

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2009-07-01

    Full Text Available Abstract Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl families and one cellulose synthase (CesA family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ, providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.

  2. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary.

    Science.gov (United States)

    Bray, James E; Marsden, Brian D; Oppermann, Udo

    2009-03-16

    The short-chain dehydrogenase/reductase (SDR) superfamily represents one of the largest protein superfamilies known to date. Enzymes of this family usually catalyse NAD(P)(H) dependent reactions with a substrate spectrum ranging from polyols, retinoids, steroids and fatty acid derivatives to xenobiotics. We have currently identified 73 SDR superfamily members within the human genome. A status report of the human SDR superfamily is provided in terms of 3D structure determination, co-factor preferences, subcellular localisation and functional annotation. A simple scoring system for measuring structural and functional information (SFS score) has also been introduced to monitor the status of 5 key metrics. Currently there are 17 SDR members with an SFS score of zero indicating that almost a quarter of the human SDR superfamily lacks substantial functional annotation.

  3. Transforming Growth Factor-beta 1 Involved in the Pathogenesis of Endometriosis through Regulating Expression of Vascular Endothelial Growth Factor under Hypoxia

    Directory of Open Access Journals (Sweden)

    Yue-Xin Yu

    2017-01-01

    Conclusions: The data support the hypothesis that TGF-β1 is involved in the pathogenesis of EMs through regulating VEGF expression. An additive effect of TGF-β1 and hypoxia is taking place at the transcriptional level.

  4. Characterization of the Tetraspan Junctional Complex (4JC) superfamily.

    Science.gov (United States)

    Chou, Amy; Lee, Andre; Hendargo, Kevin J; Reddy, Vamsee S; Shlykov, Maksim A; Kuppusamykrishnan, Harikrishnan; Medrano-Soto, Arturo; Saier, Milton H

    2017-03-01

    Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'.

    Science.gov (United States)

    Kurakula, Kondababu; Hamers, Anouk A J; de Waard, Vivian; de Vries, Carlie J M

    2013-04-10

    Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in atherosclerosis, which is a multifactorial disease of the vessel wall. Various cell types are involved in this chronic inflammatory pathology in which multiple cellular processes and numerous genes are dysregulated. Systemic risk factors for atherosclerosis are among others adverse blood lipid profiles, enhanced circulating cytokine levels, as well as increased blood pressure. Since many Nuclear Receptors modulate lipid profiles or regulate blood pressure they indirectly affect atherosclerosis. In the present review, we focus on the functional involvement of Nuclear Receptors within the atherosclerotic vessel wall, more specifically on their modulation of cellular functions in endothelial cells, smooth muscle cells and macrophages. Collectively, this overview shows that most of the Nuclear Receptors are athero-protective in atherosclerotic lesions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda).

    Science.gov (United States)

    Uribe, Juan E; Colgan, Don; Castro, Lyda R; Kano, Yasunori; Zardoya, Rafael

    2016-11-01

    Despite the extraordinary morphological and ecological diversity of Neritimorpha, few studies have focused on the phylogenetic relationships of this lineage of gastropods, which includes four extant superfamilies: Neritopsoidea, Hydrocenoidea, Helicinoidea, and Neritoidea. Here, the nucleotide sequences of the complete mitochondrial genomes of Georissa bangueyensis (Hydrocenoidea), Neritina usnea (Neritoidea), and Pleuropoma jana (Helicinoidea) and the nearly complete mt genomes of Titiscania sp. (Neritopsoidea) and Theodoxus fluviatilis (Neritoidea) were determined. Phylogenetic reconstructions using probabilistic methods were based on mitochondrial (13 protein coding genes and two ribosomal rRNA genes), nuclear (partial 28S rRNA, 18S rRNA, actin, and histone H3 genes) and combined sequence data sets. All phylogenetic analyses except one converged on a single, highly supported tree in which Neritopsoidea was recovered as the sister group of a clade including Helicinoidea as the sister group of Hydrocenoidea and Neritoidea. This topology agrees with the fossil record and supports at least three independent invasions of land by neritimorph snails. The mitochondrial genomes of Titiscania sp., G. bangueyensis, N. usnea, and T. fluviatilis share the same gene organization previously described for Nerita mt genomes whereas that of P. jana has undergone major rearrangements. We sequenced about half of the mitochondrial genome of another species of Helicinoidea, Viana regina, and confirmed that this species shares the highly derived gene order of P. jana. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Inhibitors of Nucleotidyltransferase Superfamily Enzymes Suppress Herpes Simplex Virus Replication

    Science.gov (United States)

    Wang, Hong; Tollefson, Ann E.; Ying, Baoling; Korom, Maria; Cheng, Xiaohong; Cao, Feng; Davis, Katie L.; Wold, William S. M.

    2014-01-01

    Herpesviruses are large double-stranded DNA viruses that cause serious human diseases. Herpesvirus DNA replication depends on multiple processes typically catalyzed by nucleotidyltransferase superfamily (NTS) enzymes. Therefore, we investigated whether inhibitors of NTS enzymes would suppress replication of herpes simplex virus 1 (HSV-1) and HSV-2. Eight of 42 NTS inhibitors suppressed HSV-1 and/or HSV-2 replication by >10-fold at 5 μM, with suppression at 50 μM reaching ∼1 million-fold. Five compounds in two chemical families inhibited HSV replication in Vero and human foreskin fibroblast cells as well as the approved drug acyclovir did. The compounds had 50% effective concentration values as low as 0.22 μM with negligible cytotoxicity in the assays employed. The inhibitors suppressed accumulation of viral genomes and infectious particles and blocked events in the viral replication cycle before and during viral DNA replication. Acyclovir-resistant mutants of HSV-1 and HSV-2 remained highly sensitive to the NTS inhibitors. Five of six NTS inhibitors of the HSVs also blocked replication of another herpesvirus pathogen, human cytomegalovirus. Therefore, NTS enzyme inhibitors are promising candidates for new herpesvirus treatments that may have broad efficacy against members of the herpesvirus family. PMID:25267681

  8. Growth factors and kinases in glioblastoma growth

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Peña-Ortiz

    2016-10-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive type of brain cancer, having the highest invasion, migration, proliferation, and angiogenesis rates. Several signaling pathways are involved in the regulation of these processes including growth factors and their tyrosine kinase receptors, such as vascular endothelial growth factor (VEGF, transforming growth factor beta (TGFβ, fibroblast growth factor (FGF, platelet-derived growth factor (PDGF, and insulin-like growth factor–I (IGF–I. Different kinases and regulators also participate in signaling pathways initiated by growth factors, such as mitogen-activated kinases (MAPK, protein kinases C (PKC, phosphatidylinositol-3 kinases (PI3K, protein kinase B (PKB or Akt, glycogen synthase kinase 3β (GSK3β, the mTOR complex, and Bcl-2. In this review, we will focus on the role of these proteins as possible therapeutic targets in GBM.

  9. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid.

    Science.gov (United States)

    Johnson, Matthew C; Tatum, Kelsey B; Lynn, Jason S; Brewer, Tess E; Lu, Stephen; Washburn, Brian K; Stroupe, M Elizabeth; Jones, Kathryn M

    2015-11-01

    Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail

  10. Two-Stage Approach for Protein Superfamily Classification

    Directory of Open Access Journals (Sweden)

    Swati Vipsita

    2013-01-01

    Full Text Available We deal with the problem of protein superfamily classification in which the family membership of newly discovered amino acid sequence is predicted. Correct prediction is a matter of great concern for the researchers and drug analyst which helps them in discovery of new drugs. As this problem falls broadly under the category of pattern classification problem, we have made all efforts to optimize feature extraction in the first stage and classifier design in the second stage with an overall objective to maximize the performance accuracy of the classifier. In the feature extraction phase, Genetic Algorithm- (GA- based wrapper approach is used to select few eigenvectors from the principal component analysis (PCA space which are encoded as binary strings in the chromosome. On the basis of position of 1’s in the chromosome, the eigenvectors are selected to build the transformation matrix which then maps the original high-dimension feature space to lower dimension feature space. Using PCA-NSGA-II (non-dominated sorting GA, the nondominated solutions obtained from the Pareto front solve the trade-off problem by compromising between the number of eigenvectors selected and the accuracy obtained by the classifier. In the second stage, recursive orthogonal least square algorithm (ROLSA is used for training radial basis function network (RBFN to select optimal number of hidden centres as well as update the output layer weighting matrix. This approach can be applied to large data set with much lower requirements of computer memory. Thus, very small architectures having few number of hidden centres are obtained showing higher level of performance accuracy.

  11. Structural updates of alignment of protein domains and consequences on evolutionary models of domain superfamilies.

    Science.gov (United States)

    Mutt, Eshita; Rani, Sudha Sane; Sowdhamini, Ramanathan

    2013-11-15

    Influx of newly determined crystal structures into primary structural databases is increasing at a rapid pace. This leads to updation of primary and their dependent secondary databases which makes large scale analysis of structures even more challenging. Hence, it becomes essential to compare and appreciate replacement of data and inclusion of new data that is critical between two updates. PASS2 is a database that retains structure-based sequence alignments of protein domain superfamilies and relies on SCOP database for its hierarchy and definition of superfamily members. Since, accurate alignments of distantly related proteins are useful evolutionary models for depicting variations within protein superfamilies, this study aims to trace the changes in data in between PASS2 updates. In this study, differences in superfamily compositions, family constituents and length variations between different versions of PASS2 have been tracked. Studying length variations in protein domains, which have been introduced by indels (insertions/deletions), are important because theses indels act as evolutionary signatures in introducing variations in substrate specificity, domain interactions and sometimes even regulating protein stability. With this objective of classifying the nature and source of variations in the superfamilies during transitions (between the different versions of PASS2), increasing length-rigidity of the superfamilies in the recent version is observed. In order to study such length-variant superfamilies in detail, an improved classification approach is also presented, which divides the superfamilies into distinct groups based on their extent of length variation. An objective study in terms of transition between the database updates, detailed investigation of the new/old members and examination of their structural alignments is non-trivial and will help researchers in designing experiments on specific superfamilies, in various modelling studies, in linking

  12. Growth factors VEGF and TGF-beta1 in peritoneal dialysis

    NARCIS (Netherlands)

    Zweers, M. M.; de Waart, D. R.; Smit, W.; Struijk, D. G.; Krediet, R. T.

    1999-01-01

    The morphologic alterations in the kidney and the retina that can be present in patients with diabetic microangiopathy are mediated by growth factors. Vascular endothelial growth factor (VEGF) is a mediator of neoangiogenesis in diabetic retinopathy. Transforming growth factor-beta (TGF-beta) is

  13. Spectroscopic Signature of a Ubiquitous Metal Binding Site in the Metallo-beta-lactamase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    V Campos-Bermudez; J Gonzalez; D Tierney; A Vila

    2011-12-31

    The metallo-{beta}-lactamase (M{beta}L) superfamily is a functionally diverse group of metalloproteins sharing a distinctive {alpha}{beta}/{alpha}{beta} fold and a characteristic metal binding motif. A large number of open reading frames identified in genomic sequencing efforts have been annotated as members of this superfamily through sequence comparisons. However, structural and functional studies performed on purified proteins are normally needed to unequivocally include a newly discovered protein in the M{beta}L superfamily. Here we report the spectroscopic characterization of recombinant YcbL, a gene product annotated as a member of the M{beta}L superfamily whose function in vivo remains unknown. By taking advantage of the structural features characterizing the M{beta}L superfamily metal binding motif, we performed spectroscopic studies on Zn(II)- and Co(II)-substituted YcbL to structurally interrogate the metal binding site. The dinuclear center in Co(II)-YcbL was shown to display characteristic electronic absorption features in the visible region, which were also observed in an engineered M{beta}L aimed at mimicking this metal site. Thus, the spectroscopic features reported herein can be employed as a signature to readily identify and characterize the presence of these ubiquitous metal binding sites.

  14. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases.

    Science.gov (United States)

    Makarova, K S; Aravind, L; Koonin, E V

    1999-08-01

    Computer analysis using profiles generated by the PSI-BLAST program identified a superfamily of proteins homologous to eukaryotic transglutaminases. The members of the new protein superfamily are found in all archaea, show a sporadic distribution among bacteria, and were detected also in eukaryotes, such as two yeast species and the nematode Caenorhabditis elegans. Sequence conservation in this superfamily primarily involves three motifs that center around conserved cysteine, histidine, and aspartate residues that form the catalytic triad in the structurally characterized transglutaminase, the human blood clotting factor XIIIa'. On the basis of the experimentally demonstrated activity of the Methanobacterium phage pseudomurein endoisopeptidase, it is proposed that many, if not all, microbial homologs of the transglutaminases are proteases and that the eukaryotic transglutaminases have evolved from an ancestral protease.

  15. Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation.

    Science.gov (United States)

    Kumar, Sanath; He, Guixin; Kakarla, Prathusha; Shrestha, Ugina; Ranjana, K C; Ranaweera, Indrika; Willmon, T Mark; Barr, Sharla R; Hernandez, Alberto J; Varela, Manuel F

    2016-01-01

    Causative agents of infectious disease that are multidrug resistant bacterial pathogens represent a serious public health concern due to the increasingly difficult nature of achieving efficacious clinical treatments. Of the various acquired and intrinsic antimicrobial agent resistance determinants, integral-membrane multidrug efflux pumps of the major facilitator superfamily constitute a major mechanism of bacterial resistance. The major facilitator superfamily (MFS) encompasses thousands of known related secondary active and passive solute transporters, including multidrug efflux pumps, from bacteria to humans. This review article addresses recent developments involving the targeting by various modulators of bacterial multidrug efflux pumps from the major facilitator superfamily. It is currently of tremendous interest to modulate bacterial multidrug efflux pumps in order to eventually restore the clinical efficacy of therapeutic agents against recalcitrant bacterial infections. Such MFS multidrug efflux pumps are good targets for modulation.

  16. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.

    Science.gov (United States)

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem; Doukov, Tzanko; Swan, Jeffrey; Herschlag, Daniel

    2017-12-22

    Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. We mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of these pruned enzymes with a series of substrates. A substantial rate enhancement of ∼10 11 -fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7 -10 8 -fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Mm19, a Mycoplasma meleagridis Major Surface Nuclease that Is Related to the RE_AlwI Superfamily of Endonucleases.

    Directory of Open Access Journals (Sweden)

    Elhem Yacoub

    Full Text Available Mycoplasma meleagridis infection is widespread in turkeys, causing poor growth and feathering, airsacculitis, osteodystrophy, and reduction in hatchability. Like most mycoplasma species, M. meleagridis is characterized by its inability to synthesize purine and pyrimidine nucleotides de novo. Consistent with this intrinsic deficiency, we here report the cloning, expression, and characterization of a M. meleagridis gene sequence encoding a major surface nuclease, referred to as Mm19. Mm19 consists of a 1941-bp ORF encoding a 646-amino-acid polypeptide with a predicted molecular mass of 74,825 kDa. BLASTP analysis revealed a significant match with the catalytic/dimerization domain of type II restriction enzymes of the RE_AlwI superfamily. This finding is consistent with the genomic location of Mm19 sequence, which dispalys characteristics of a typical type II restriction-modification locus. Like intact M. meleagridis cells, the E. coli-expressed Mm19 fusion product was found to exhibit a nuclease activity against plasmid DNA, double-stranded DNA, single-stranded DNA, and RNA. The Mm19-associated nuclease activity was consistently enhanced with Mg2+ divalent cations, a hallmark of type II restriction enzymes. A rabbit hyperimmune antiserum raised against the bacterially expressed Mm19 strongly reacted with M. meleagridis intact cells and fully neutralized the surface-bound nuclease activity. Collectively, the results show that M. meleagridis expresses a strong surface-bound nuclease activity, which is the product of a single gene sequence that is related to the RE_AlwI superfamily of endonucleases.

  18. Keanekaragaman Jenis Kupu-Kupu Superfamili Papilionoidae di Banyuwindu, Limbangan Kendal

    Directory of Open Access Journals (Sweden)

    Ratna Oqtafiana

    2013-03-01

    Full Text Available Kupu-kupu turut memberi andil dalam mempertahankan keseimbangan ekosistem dan memperkaya keanekaragaman hayati. Tujuan dari penelitian ini adalah untuk mengetahui keanekaragaman jenis kupu-kupu superfamili Papilionoidae di Dukuh Banyuwindu Desa Limbangan Kecamatan Limbangan Kabupaten Kendal khususnya di habitat hutan sekunder, permukiman, Daerah Aliran Sungai (DAS dan persawahan.Populasi dalam penelitian ini adalah semua jenis kupu-kupu superfamili Papilionoidae yang ada di Banyuwindu, Limbangan Kendal. Sampel penelitian ini adalah jenis kupu-kupu superfamili Papilionoidae yang teramati di Banyuwindu Limbangan Kendal khususnya di habitat hutan sekunder, permukiman, DAS dan persawahan. Penelitian dilakukan dengan metode Indeks Point Abudance (IPA atau metode titik hitung.Hasil penelitian ditemukan sebanyak 62 jenis kupu-kupu superfamili Papilionoidae yang terdiri dari 737 individu yang tergolong kedalam empat famili yaitu Papilionidae, Pieridae, Lycaenidae dan Nymphalidae. Hasil analisis indeks keanekaragaman jenis berkisar antara 2,74-3,09, indeks kemerataan jenis berkisar antara 0,86-0,87 dan memiliki dominansi berkisar antara 0,07-0,09. Indeks keanekaragaman jenis dan indeks kemerataan jenis tertinggi tercatat pada habitat permukiman yaitu 3,09 dan 0,87 dan memiliki dominansi 0,07 sedangkan terendah tercatat pada habitat persawahan yaitu 2,74 dan 0,86 dan memiliki dominansi 0,07.Butterfly also contribute in maintaining the ecological balance and enrich biodiversity. The aim of this research was to determine the diversity of butterflies’ superfamily Papilionoidae in Banyuwindu Hamlet Limbangan Sub district Kendal Regency, especially in the secondary forest habitat, settlements, river flow area (RFA and rice field. The population in this research were all kinds of butterflies’ Papilionoidae superfamily in Banyuwindu, Limbangan Kendal. The sample was kind of butterfly superfamily Papilionoidae that observed in Banyuwindu Limbangan Kendal

  19. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily

    DEFF Research Database (Denmark)

    Østergaard, L; Lauvergeat, V; Naested, H

    2001-01-01

    are highly divergent, suggesting differential regulation of the CRL genes. Phylogenetic analysis placed CRL1 and CRL2 in a separate branch of the DFR superfamily. Northern blotting showed strong AtCRL1 induction by abscisic acid (ABA), drought, and heat shock, and high expression level in seeds, thus......Two tandem genes were identified on Arabidopsis chromosome II (AtCRL1 and AtCRL2) encoding proteins with homology to members of the dihydroflavonol-4-reductase (DFR) superfamily. The encoded CRL1 and CRL2 proteins share 87% mutual amino acid sequence identity whereas their promoter regions...

  20. WRKY transcription factor superfamily: Structure, origin and functions

    African Journals Online (AJOL)

    WRKY transcription factors regulate the expression of pathogen-induced, senescence-induced, abscisic acid (ABA)-induced, gibberellic acid (GA)-induced and salcylic acid (SA)-induced genes and play an important role in the regulation of plant growth and development as well as in their response to many kinds of biotic ...

  1. serum transforming growth factor b1 and prostate

    African Journals Online (AJOL)

    rum marker for prostate cancer, its low speci- ficity for the detection of prostate cancer, es- pecially in the grey zone of PSA, is a problem1. Therefore, more effective tumor markers for prostate cancer are being sought. A potential candidate marker is the transforming growth factor beta (TGF-B). TGF-l31 has gained con-.

  2. Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes.

    Science.gov (United States)

    Carey, Robert E; Hepler, Nathan K; Cosgrove, Daniel J

    2013-01-03

    Expansins are plant cell wall loosening proteins encoded by a large superfamily of genes, consisting of four families named EXPA, EXPB, EXLA, and EXLB. The evolution of the expansin superfamily is well understood in angiosperms, thanks to synteny-based evolutionary studies of the gene superfamily in Arabidopsis, rice, and Populus. Analysis of the expansin superfamily in the moss Physcomitrella patens revealed a superfamily without EXLA or EXLB genes that has evolved considerably and independently of angiosperm expansins. The sequencing of the Selaginella moellendorffii genome has allowed us to extend these analyses into an early diverging vascular plant. The expansin superfamily in Selaginella moellendorffii has now been assembled from genomic scaffolds. A smaller (and less diverse) superfamily is revealed, consistent with studies of other gene families in Selaginella. Selaginella has an expansin superfamily, which, like Physcomitrella, lacks EXLA or EXLB genes, but does contain two EXPA genes that are related to a particular Arabidopsis-rice clade involved in root hair development. From sequence-based phylogenetic analysis, most Selaginella expansins lie outside the Arabidopsis-rice clades, leading us to estimate the minimum number of expansins present in the last common ancestor of Selaginella and angiosperms at 2 EXPA genes and 1 EXPB gene. These results confirm Selaginella as an important intermediary between bryophytes and angiosperms.

  3. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    Science.gov (United States)

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  4. Transforming growth factor-beta binding receptor endoglin (CD105) expression in esophageal cancer and in adjacent nontumorous esophagus as prognostic predictor of recurrence.

    Science.gov (United States)

    Bellone, Graziella; Solerio, Dino; Chiusa, Luigi; Brondino, Gabriele; Carbone, Anna; Prati, Adriana; Scirelli, Tiziana; Camandona, Michele; Palestro, Giorgio; Dei Poli, Marcello

    2007-11-01

    We hypothesized that the potent neovascularization marker endoglin (CD105), by differentially highlighting a subset of microvessels (MV) in esophageal cancer (EC), could provide better prognostic/therapeutic information than the panendothelial marker CD34, which also highlights MV. Endoglin messenger ribonucleic acid (mRNA) expression in normal, malignant, and adjacent nontumorous esophagus tissue was quantified by real-time reverse-transcription polymerase chain reaction (RT-PCR). Sections of formalin-fixed, paraffin-embedded tissues were analyzed immunohistochemically for CD105 and CD34. MV density was counted following a standard protocol. Circulating soluble endoglin levels were determined in patient and control sera, and compared with clinical outcome. CD105 mRNA was upregulated by a median factor of 2.89 in ECs versus controls. In 28% of patients, CD105 mRNA was upregulated by a median factor of 2.65 in adjacent non-tumorous versus normal tissue. In tumor tissues, CD105 was stained negatively or positively only in a subset of MV. CD34 always showed positive extensive MV staining. In adjacent nontumorous esophagus, CD105 rarely showed diffuse MV staining, while CD34 stained blood-vessel endothelial cells in all non-neoplastic tissue. CD105 expression was high in residual highly dysplastic Barrett's-type mucosa associated with some adenocarcinomas. No statistically significant difference in endoglin serum levels appeared between patients and normal subjects. Correlation with clinicopathological data showed higher intra-tumor MV-CD105+ scores at more-advanced clinical stages. High-scoring MV-CD105+ patients had significantly shorter disease-free and overall survival; MV-CD34+ density was not survival related. Diffuse CD105 expression in adjacent nontumorous esophagus predicted poorer disease-free and overall survival. Our findings could help identify EC patients who may benefit from targeted anti-angiogenic therapies.

  5. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  6. Transforming Growth Factor Beta-Induced Factor 2-Linked X (TGIF2LX Regulates Two Morphogenesis Genes, Nir1 and Nir2 in Human Colorectal

    Directory of Open Access Journals (Sweden)

    Gholam Reza Mobini

    2016-05-01

    Full Text Available A member of homeodomain protein namely TGIF2LX has been implicated as a tumor suppressor gene in human malignancy as well as in spermatogenesis. However, to our knowledge, dynamic functional evidence of the TGIF2LX has not yet been provided. The aim of the present study was to investigate the human TGIF2LX target gene(s using a cDNA-AFLP as a differential display method. A pEGFP-TGIF2LX construct containing the wild-type TGIF2LX cDNA was stably transfected into SW48 cells. UV microscopic analysis and Real-time RT-PCR were used to confirm TGIF2LX expression. The mRNA expressions of TGIF2LX in transfected SW48 cells, the cells containing empty vector (pEGFP-N, and untransfected cells were compared. Also, a Real-time PCR technique was applied to validate cDNA-AFLP results. The results revealed a significant down-regulation and up-regulationby TGIF2LX of Nir1 and Nir2 genes, respectively. The genes are engaged in the cell morphogenesis process. Our findings may provide new insight into the complex molecular pathways underlying colorectal cancer development.

  7. Modulation role of angelica sinensis on transforming growth factor beta 1 (TGF-β1) expression induced by radiation in the lung tissue

    International Nuclear Information System (INIS)

    Xie Conghua; Zhou Yunfeng; Peng Gang; Zhou Fuxiang; Zhang Gong; Liang Chen; Liu Hui; Chen Ji; Xia Mingtong

    2005-01-01

    Objective: To investigate the ability of Angelica Sinensis to affect the radiation- induced TGF-β 1 release in the animal model, so as to find an effective method to reduce the lung toxicity after thoracic irradiation. Methods: The thoraces of C57BL/6 mice were exposed to either sham irradiation or single fraction of 12 Gy. Four study groups were defined: those that received neither irradiation nor Angelica Sinensis (NT group), those that received Angelica Sinensis but no irradiation (AS group), those that underwent irradiation without Angelica Sinensis (XRT group) and those that received both Angelica Sinensis and irradiation (AS/XRT group). Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 24, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation) . The TGF-β 1 mRNA expressions in the lung tissue were quantified by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemical Streptavidin-Peroxidase method and positive cell counting were used for objective quantification of TGF-β 1 protein expression. Results: NT and AS groups exhibited low levels of TGF-β 1 protein expression with positive cell counts between 9 and 31. And there is an significantly elevated level of TGF-β 1 positive inflammatory cells in XRT group (P 1 in XRT group was significantly higher than the nonirradiated groups (P 1 response on mRNA level, but the statistical comparison of the TNF-αmRNA expression between the XRT and AS/XRT treatment-group was not significant (P=0.054). Conclusion: This study demonstrates a significant radiation-induced increase of TGF-β 1 (on mRNA and protein level) in the lung tissue, and the predominant localisation of TGF-β 1 in areas of inflammatory cell infiltrates suggests involvement of this cytokine in the pathogenesis of radiation-induced lung injury. In addition, we observed a pronounced decrease of mRNA and protein production of the TGF-β 1 in the AS/XRT group as compared to the XRT group. Therefore our results indicate that Angelica Sinensis down-regulates the radiation-induced TGF-β 1 release in the lung tissue, and it is maybe one of the possible mechanisms of this drug to reduce the lung toxicity after thoracic irradiation. (authors)

  8. Plasma concentrations of transforming growth factor beta 1 in non-progressive HIV-1 infection correlates with markers of disease progression.

    Science.gov (United States)

    Maina, Edward K; Abana, C Z; Bukusi, E A; Sedegah, M; Lartey, M; Ampofo, W K

    2016-05-01

    The human immunodeficiency virus (HIV) infection shows variable rate of disease progression. The underlying biological and molecular mechanisms involved in determining progression of HIV infection are not fully understood. The aims of this study were to determine plasma concentrations of active TGF β 1, Th1 and Th2 cytokines in patients with non-progressive and those with progressive HIV-1 infection, as well as to determine if there is an association of these cytokines to disease progression. In a cross-sectional study of 61 HIV-1 infected individuals categorized according to disease progression as having non-progressive HIV-1 infection (n=14) and progressive infection (n=47), plasma levels of active TGF β 1, INF-γ, TNF-α, IL-10, IL-1β, IL-12p70 and IL-13 were compared with HIV uninfected healthy controls (n=12). Plasma concentration of these cytokines was measured using a highly sensitive luminex200 XMAP assay. Pearson correlation test was used to assess the correlation of cytokines with CD4+ and CD8+ T cells, CD4:CD8 ratio and plasma HIV-1 RNA in the different study groups. Plasma concentrations of TGF β 1 and IL-10 were significantly decreased while IL-1β, IL-12p70 and TNF-α were increased in patients with non-progressive HIV-1 infection compared to patients with progressive infection. Plasma levels of TGF β 1 and IL-10 showed an inverse correlation with CD8+ T cell counts and CD4:CD8 ratios in patients with non-progressive HIV-1 infection, while plasma HIV-1 RNA positively correlated with CD4+ T cell counts. Plasma levels of TNF-α, IL-1β, IL-12p70 and IL-13 positively correlated with CD4+ T cell counts and inversely correlated with plasma HIV-1 RNA, CD8+ T cell count and CD4:CD8 ratio in patients with non-progressive infection. The correlation of cytokines to the state of T-lymphocyte and plasma HIV-1 RNA found in this study may provide insight into the role of cytokines in both progressive and non-progressive HIV-1 infection. Additionally, these findings may have implications for systemic cytokine-based therapies in HIV-1 infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats

    DEFF Research Database (Denmark)

    Lehrmann, E; Kiefer, R; Christensen, Thomas

    1998-01-01

    source of TGF-beta1 mRNA following experimental focal cerebral ischemia. Consequently, TGF-beta1-mediated functions may be exerted by microglia both in the early degenerative phase, and later in combination with blood-borne macrophages, in the remodeling and healing phase after focal cerebral ischemia....

  10. Arg25Pro polymorphism of transforming growth factor-beta1 and its role in the pathogenesis of essential hypertension in Russian population of the Central Chernozem Region.

    Science.gov (United States)

    Ivanov, V P; Solodilova, M A; Polonnikov, A V; Belugin, D A; Shestakov, A M; Ushachev, D V; Khoroshaya, I V; Katargina, L N; Kozhukhov, M A; Kolesnikova, O E

    2007-07-01

    We studied the relationship between Arg25Pro polymorphism of TGFbeta1 gene and predisposition to essential hypertension in the Russian population of Central Chernozem Region (n=402). An association was found between 25Pro allele and 25ArgPro genotype with low risk of essential hypertension in male individuals.

  11. Transforming growth factor beta isoforms regulation of Akt activity and XIAP levels in rat endometrium during estrous cycle, in a model of pseudopregnancy and in cultured decidual cells

    Directory of Open Access Journals (Sweden)

    Asselin Eric

    2009-08-01

    Full Text Available Abstract Background During the estrous cycle, the rat uterine endometrium undergoes many changes such as cell proliferation and apoptosis. If implantation occurs, stromal cells differentiate into decidual cells and near the end of pregnancy, a second wave of apoptosis occurs. This process called decidual regression, is tightly regulated as is it crucial for successful pregnancy. We have previously shown that TGF-beta1, TGF-beta2 and TGF-beta3 are expressed in the endometrium during decidual basalis regression, but although we had demonstrated that TGF- beta1 was involved in the regulation of apoptosis in decidual cells, the ability of TGF- beta2 and TGF-beta3 isoforms to trigger apoptotic mechanisms in these cells remains unknown. Moreover, we hypothesized that the TGF-betas were also present and regulated in the non-pregnant endometrium during the estrous cycle. The aim of the present study was to determine and compare the specific effect of each TGF-β isoform in the regulation of apoptosis in sensitized endometrial stromal cells in vitro, and to investigate the regulation of TGF-beta isoforms in the endometrium during the estrous cycle in vivo. Methods Rats with regular estrous cycle (4 days were killed at different days of estrous cycle (diestrus, proestrus, estrus and metestrus. Pseudopregnancy was induced with sex steroids in ovariectomized rats and rats were killed at different days (days 1–9. Uteri were collected and either fixed for immunohistochemical staining (IHC or processed for RT-PCR and Western analyses. For the in vitro part of the study, rats were ovariectomized and decidualization was induced using sex steroids. Endometrial stromal decidual cells were purified, cultured and treated with different concentrations of TGF-beta isoforms. Results Our results showed that all three TGF-beta isoforms are present, but are localized differently in the endometrium during the estrous cycle and their expression is regulated differently during pseudopregnancy. In cultured stromal cells, we found that TGF-beta3 isoform induced Smad2 phosphorylation, indicating that the Smad pathway is activated by TGF-beta3 in these cells. Furthermore, TGF-beta2 and TGF-beta3 induced a dose-dependant increase of apoptosis in cultured stromal cells, as demonstrated by Hoechst nuclear staining. Noteworthy, TGF-beta2 and TGF-beta3 reduced the level of the anti-apoptotic XIAP protein, as well as the level of phosphorylated/active Akt, a well known survival protein, in a dose-dependent manner. Conclusion Those results suggest that TGF-beta might play an important role in the remodelling endometrium during the estrous cycle and in the regulation of apoptosis in rat decidual cells, in which inhibition of Akt survival pathway might be an important mechanism involved in the regulation of apoptosis.

  12. Acquired genetic and functional alterations associated with transforming growth factor beta type I resistance in Hep3B human hepatocellular carcinoma cell line

    Czech Academy of Sciences Publication Activity Database

    Zimonjic, D. B.; Zhou, X. L.; Lee, J. S.; Ullmannová-Benson, Veronika; Tripathi, V.; Thorgeirsson,, S. S.; Popescu,, N. C.

    2009-01-01

    Roč. 13, č. 9 (2009), s. 3985-3992 ISSN 1582-1838 Institutional research plan: CEZ:AV0Z50200510 Keywords : expression profiling * hcc * resistance Subject RIV: EC - Immunology Impact factor: 5.228, year: 2009

  13. Development of a transgenic goat model wih cardiac-specific overexpression of transforming growth factor - {beta} 1 to study the relationship between atrial fibrosis and atrial fibrillation

    Science.gov (United States)

    Studies on patients, large animal models and transgenic mouse models have shown a strong association of atrial fibrosis with atrial fibrillation (AF). However, it is unclear whether there is a causal relationship between atrial fibrosis and AF or whether these events appear as a result of independen...

  14. Spatial and temporal expression of types I and II receptors for transforming growth factor beta in normal equine skin and dermal wounds.

    Science.gov (United States)

    De Martin, Isabelle; Theoret, Christine L

    2004-01-01

    To describe immunolocalization of TGF-beta receptors (RI and RII) in normal equine skin and in thoracic or limb wounds, healing normally or with exuberant granulation tissue (EGT). Group A: six wounds on one metacarpus and one midthoracic area. Group B: six wounds on both metacarpi, one of which was bandaged to stimulate EGT. Immunohistochemistry was used to detect RI and RII expression in wound margins. Eight horses, randomly assigned to one of two study groups. Neutralizing polyclonal anti-rabbit RI and RII antibodies were used to detect spatial expression of RI and RII in biopsies obtained before wounding, at 12 and 24 hours, and 5, 10 and 14 days after wounding. RI and RII were co-localized in both unwounded and wounded skin. There were no differences in cell types staining positively between tissues obtained from the limb and the thorax, or from normally healing limb wounds and limb wounds with EGT, at any time. Because of increased cellularity within EGT, staining intensity of limb wounds with 'proud flesh' was greater than limb wounds healing normally, and thoracic wounds, during the proliferative phase of repair. Strong expression of RI and RII, particularly in limb wounds with EGT, suggested that signalling for stimulation of matrix proteins is in place to contribute to scarring. This information may help determine the appropriate time for using receptor antagonists to prevent scarring of limb wounds of horses.

  15. Cell Adhesion Molecules of the Immunoglobulin Superfamily in the Nervous System

    DEFF Research Database (Denmark)

    Walmod, Peter Schledermann; Pedersen, Martin Volmer; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) are proteins mediating cell-cell or cell-extracellular matrix (ECM) interactions. CAMs are traditionally divided into four groups, the cadherins, the selectins, the integrins and CAMs belonging to the immunoglobulin superfamily (IgSF). The present chapter describes...

  16. Spatial and temporal expression of immunoglobulin superfamily member 1 in the rat

    NARCIS (Netherlands)

    Joustra, Sjoerd D.; Meijer, Onno C.; Heinen, Charlotte A.; Mol, Isabel M.; Laghmani, El Houari; Sengers, Rozemarijn M. A.; Carreno, Gabriela; van Trotsenburg, A. S. Paul; Biermasz, Nienke R.; Bernard, Daniel J.; Wit, Jan M.; Oostdijk, Wilma; van Pelt, Ans M. M.; Hamer, Geert; Wagenaar, Gerry T. M.

    2015-01-01

    Loss-of-function mutations in the immunoglobulin superfamily member 1 (IGSF1) gene cause an X-linked syndrome of central hypothyroidism, macroorchidism, variable prolactin and GH deficiency, delayed pubertal testosterone rise, and obesity. To understand the pathophysiology of this syndrome,

  17. Disease causing mutations in the TNF and TNFR superfamilies: Focus on molecular mechanisms driving disease

    NARCIS (Netherlands)

    Lobito, Adrian A.; Gabriel, Tanit L.; Medema, Jan Paul; Kimberley, Fiona C.

    2011-01-01

    The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies comprise multidomain proteins with diverse roles in cell activation, proliferation and cell death. These proteins play pivotal roles in the initiation, maintenance and termination of immune responses and have vital roles outside

  18. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  19. A Novel Member of the Insulin-Like Growth Factor Binding Protein Superfamily in Prostate Cancer

    Science.gov (United States)

    2004-02-01

    demonstrated in human pregnancy variety of biological fluids, their presumed function is to serum, in which circulating IGFBP-3 was found primarily in protect...work was supported by NIH Grants CA-58110 and DK-51513 (to R.G.R.), American Cancer Society Grant RPG -99-103-01-TBE, Department This results in a 4...blotting. in the 150K complex during pregnancy . J Clin Endocrinol Metab 71:797-805 Endocrinology 137:5751-5754 8. Giudice LC, Farrell EM, Pham H, Lamson G

  20. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Directory of Open Access Journals (Sweden)

    Nils Widderich

    Full Text Available Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa, we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (SaEctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of

  1. A Comprehensive Bioinformatics Analysis of the Nudix Superfamily in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    D. Gunawardana

    2009-01-01

    Full Text Available Nudix enzymes are a superfamily with a conserved common reaction mechanism that provides the capacity for the hydrolysis of a broad spectrum of metabolites. We used hidden Markov models based on Nudix sequences from the PFAM and PROSITE databases to identify Nudix hydrolases encoded by the Arabidopsis genome. 25 Nudix hydrolases were identified and classified into 11 individual families by pairwise sequence alignments. Intron phases were strikingly conserved in each family. Phylogenetic analysis showed that all multimember families formed monophyletic clusters. Conserved familial sequence motifs were identified with the MEME motif analysis algorithm. One motif (motif 4 was found in three diverse families. All proteins containing motif 4 demonstrated a degree of preference for substrates containing an ADP moiety. We conclude that HMM model-based genome scanning and MEME motif analysis, respectively, can significantly improve the identification and assignment of function of new members of this mechanistically-diverse protein superfamily.

  2. Evolutionary Pattern of N-Glycosylation Sequon Numbers in Eukaryotic ABC Protein Superfamilies

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Buus, Ole Thomsen; Wollenweber, Bernd

    2010-01-01

    and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average......, but the sequon density was significantly lower owing to the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher sequon density, and both serine and threonine containing sequons (NXS and NXT) have been positively selected...... higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord- ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and the results are discussed in an evolutionary perspective...

  3. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily

    DEFF Research Database (Denmark)

    Østergaard, L; Lauvergeat, V; Naested, H

    2001-01-01

    Two tandem genes were identified on Arabidopsis chromosome II (AtCRL1 and AtCRL2) encoding proteins with homology to members of the dihydroflavonol-4-reductase (DFR) superfamily. The encoded CRL1 and CRL2 proteins share 87% mutual amino acid sequence identity whereas their promoter regions...... are highly divergent, suggesting differential regulation of the CRL genes. Phylogenetic analysis placed CRL1 and CRL2 in a separate branch of the DFR superfamily. Northern blotting showed strong AtCRL1 induction by abscisic acid (ABA), drought, and heat shock, and high expression level in seeds, thus...... resembling the expression pattern of late embryogenic abundant ABA-responsive genes. Differential expression of the two genes during plant development was confirmed in plants expressing transcriptional fusions between the two promoters and the Escherichia coli beta-glucuronidase reporter gene. This showed...

  4. Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology.

    Directory of Open Access Journals (Sweden)

    Lars Malmström

    2007-04-01

    Full Text Available Saccharomyces cerevisiae is one of the best-studied model organisms, yet the three-dimensional structure and molecular function of many yeast proteins remain unknown. Yeast proteins were parsed into 14,934 domains, and those lacking sequence similarity to proteins of known structure were folded using the Rosetta de novo structure prediction method on the World Community Grid. This structural data was integrated with process, component, and function annotations from the Saccharomyces Genome Database to assign yeast protein domains to SCOP superfamilies using a simple Bayesian approach. We have predicted the structure of 3,338 putative domains and assigned SCOP superfamily annotations to 581 of them. We have also assigned structural annotations to 7,094 predicted domains based on fold recognition and homology modeling methods. The domain predictions and structural information are available in an online database at http://rd.plos.org/10.1371_journal.pbio.0050076_01.

  5. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function

    Science.gov (United States)

    Jurberg, Arnon Dias; Vasconcelos-Fontes, Larissa; Cotta-de-Almeida, Vinícius

    2015-01-01

    Multiple signaling pathways control every aspect of cell behavior, organ formation, and tissue homeostasis throughout the lifespan of any individual. This review takes an ontogenetic view focused on the large superfamily of TGF-β/bone morphogenetic protein ligands to address thymus morphogenesis and function in T cell differentiation. Recent findings on a role of GDF11 for reversing aging-related phenotypes are also discussed. PMID:26441956

  6. DUF538 protein superfamily is predicted to be chlorophyll hydrolyzing enzymes in plants

    OpenAIRE

    Gholizadeh, Ashraf

    2015-01-01

    The possible hydrolytic activity towards chlorophyll molecules was predicted for DUF538 protein superfamily in plants. It was examined by using computational as well as experimental tools including in vitro chlorophyll degradation, antioxidant compounds production and in vivo real-time gene expression tests. Comparison of the computational data with the experimental results indicated that DUF538 proteins might be chlorophyll hydrolyzing enzyme (most probably carboxyesterase) which degrade chl...

  7. Recent advances in the study of enzyme promiscuity in the tautomerase superfamily.

    Science.gov (United States)

    Baas, Bert-Jan; Zandvoort, Ellen; Geertsema, Edzard M; Poelarends, Gerrit J

    2013-05-27

    Catalytic promiscuity and evolution: Many enzymes exhibit catalytic promiscuity--the ability to catalyze reactions other than their biologically relevant one. These reactions can serve as starting points for both natural and laboratory evolution of new enzymatic functions. Recent advances in the study of enzyme promiscuity in the tautomerase superfamily are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Taxonomic distribution and origins of the extended LHC (light-harvesting complex antenna protein superfamily

    Directory of Open Access Journals (Sweden)

    Brinkmann Henner

    2010-07-01

    Full Text Available Abstract Background The extended light-harvesting complex (LHC protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS. The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae: glaucophytes, red algae and green plants (Viridiplantae. By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the

  9. BOC, an Ig superfamily member, associates with CDO to positively regulate myogenic differentiation

    OpenAIRE

    Kang, Jong-Sun; Mulieri, Philip J.; Hu, Yulan; Taliana, Lavinia; Krauss, Robert S.

    2002-01-01

    CDO is a cell surface receptor-like protein that positively regulates myogenic differentiation. Reported here is the identification of BOC, which, with CDO, defines a newly recognized subfamily within the immunoglobulin superfamily. cdo and boc are co-expressed in muscle precursors in the developing mouse embryo. Like CDO, BOC accelerates differentiation of cultured myoblast cell lines and participates in a positive feedback loop with the myogenic transcription factor, MyoD. CDO and BOC form ...

  10. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    Directory of Open Access Journals (Sweden)

    Hoda Mirsafian

    2014-01-01

    Full Text Available Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure.

  11. Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors.

    Science.gov (United States)

    Gilbreth, Ryan N; Novarra, Shabazz; Wetzel, Leslie; Florinas, Stelios; Cabral, Horacio; Kataoka, Kazunori; Rios-Doria, Jonathan; Christie, Ronald J; Baca, Manuel

    2016-07-28

    Receptor clustering is important for signaling among the therapeutically relevant TNFR superfamily of receptors. In nature, this clustering is driven by trimeric ligands often presented in large numbers as cell surface proteins. Molecules capable of driving similar levels of clustering could make good agonists and hold therapeutic value. However, recapitulating such extensive clustering using typical biotherapeutic formats, such as antibodies, is difficult. Consequently, generating effective agonists of TNFR superfamily receptors is challenging. Toward addressing this challenge we have used lipid- and polyion complex-based micelles as platforms for presenting receptor-binding biologics in a multivalent format that facilitates receptor clustering and imparts strong agonist activity. We show that receptor-binding scFvs or small antibody mimetics that have no agonist activity on their own can be transformed into potent agonists through multivalent presentation on a micelle surface and that the activity of already active multivalent agonists can be enhanced. Using this strategy, we generated potent agonists against two different TNFR superfamily receptors and mouse tumor model studies demonstrate that these micellar agonists have therapeutic efficacy in vivo. Due to its ease of implementation and applicability independent of agonist molecular format, we anticipate that this strategy could be useful for developing agonists to a variety of receptors that rely on clustering to signal. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae.

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    Full Text Available Animal venoms represent a vast library of bioactive peptides and proteins with proven potential, not only as research tools but also as drug leads and therapeutics. This is illustrated clearly by marine cone snails (genus Conus, whose venoms consist of mixtures of hundreds of peptides (conotoxins with a diverse array of molecular targets, including voltage- and ligand-gated ion channels, G-protein coupled receptors and neurotransmitter transporters. Several conotoxins have found applications as research tools, with some being used or developed as therapeutics. The primary objective of this study was the large-scale discovery of conotoxin sequences from the venom gland of an Australian cone snail species, Conus victoriae. Using cDNA library normalization, high-throughput 454 sequencing, de novo transcriptome assembly and annotation with BLASTX and profile hidden Markov models, we discovered over 100 unique conotoxin sequences from 20 gene superfamilies, the highest diversity of conotoxins so far reported in a single study. Many of the sequences identified are new members of known conotoxin superfamilies, some help to redefine these superfamilies and others represent altogether new classes of conotoxins. In addition, we have demonstrated an efficient combination of methods to mine an animal venom gland and generate a library of sequences encoding bioactive peptides.

  13. Conotoxin superfamily prediction using diffusion maps dimensionality reduction and subspace classifier.

    Science.gov (United States)

    Yin, Jiang-Bo; Fan, Yong-Xian; Shen, Hong-Bin

    2011-09-01

    Conotoxins are disulfide-rich small peptides that are invaluable channel-targeted peptides and target neuronal receptors, which have been demonstrated to be potent pharmaceuticals in the treatment of Alzheimer's disease, Parkinson's disease, and epilepsy. Accurate prediction of conotoxin superfamily would have many important applications towards the understanding of its biological and pharmacological functions. In this study, a novel method, named dHKNN, is developed to predict conotoxin superfamily. Firstly, we extract the protein's sequential features composed of physicochemical properties, evolutionary information, predicted secondary structures and amino acid composition. Secondly, we use the diffusion maps for dimensionality reduction, which interpret the eigenfunctions of Markov matrices as a system of coordinates on the original data set in order to obtain efficient representation of data geometric descriptions. Finally, an improved K-local hyperplane distance nearest neighbor subspace classifier method called dHKNN is proposed for predicting conotoxin superfamilies by considering the local density information in the diffusion space. The overall accuracy of 91.90% is obtained through the jackknife cross-validation test on a benchmark dataset, indicating the proposed dHKNN is promising.

  14. TNF and TNF Receptor Superfamily Members in HIV infection: New Cellular Targets for Therapy?

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-01-01

    Full Text Available Tumor necrosis factor (TNF and TNF receptors (TNFR superfamily members are engaged in diverse cellular phenomena such as cellular proliferation, morphogenesis, apoptosis, inflammation, and immune regulation. Their role in regulating viral infections has been well documented. Viruses have evolved with numerous strategies to interfere with TNF-mediated signaling indicating the importance of TNF and TNFR superfamily in viral pathogenesis. Recent research reports suggest that TNF and TNFRs play an important role in the pathogenesis of HIV. TNFR signaling modulates HIV replication and HIV proteins interfere with TNF/TNFR pathways. Since immune activation and inflammation are the hallmark of HIV infection, the use of TNF inhibitors can have significant impact on HIV disease progression. In this review, we will describe how HIV infection is modulated by signaling mediated through members of TNF and TNFR superfamily and in turn how these latter could be targeted by HIV proteins. Finally, we will discuss the emerging therapeutics options based on modulation of TNF activity that could ultimately lead to the cure of HIV-infected patients.

  15. Origination, expansion, evolutionary trajectory, and expression bias of AP2/ERF superfamily in Brassica napus

    Directory of Open Access Journals (Sweden)

    Xiaoming Song

    2016-08-01

    Full Text Available The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV. This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance.

  16. A Streptomyces-specific member of the metallophosphatase superfamily contributes to spore dormancy and interaction with Aspergillus proliferans.

    Science.gov (United States)

    Lamp, Jessica; Weber, Maren; Cingöz, Gökhan; Ortiz de Orué Lucana, Darío; Schrempf, Hildgund

    2013-05-01

    We have identified, cloned and characterized a formerly unknown protein from Streptomyces lividans spores. The deduced protein belongs to a novel member of the metallophosphatase superfamily and contains a phosphatase domain and predicted binding sites for divalent ions. Very close relatives are encoded in the genomic DNA of many different Streptomyces species. As the deduced related homologues diverge from other known phosphatase types, we named the protein MptS (metallophosphatase type from Streptomyces). Comparative physiological and biochemical investigations and analyses by fluorescence microscopy of the progenitor strain, designed mutants carrying either a disruption of the mptS gene or the reintroduced gene as fusion with histidine codons or the egfp gene led to the following results: (i) the mptS gene is transcribed in the course of aerial mycelia formation. (ii) The MptS protein is produced during the late stages of growth, (iii) accumulates within spores, (iv) functions as an active enzyme that releases inorganic phosphate from an artificial model substrate, (v) is required for spore dormancy and (vi) MptS supports the interaction amongst Streptomyces lividans spores with conidia of the fungus Aspergillus proliferans. We discuss the possible role(s) of MptS-dependent enzymatic activity and the implications for spore biology. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey.

    Science.gov (United States)

    Aggarwal, Bharat B; Gupta, Subash C; Kim, Ji Hye

    2012-01-19

    Although activity that induced tumor regression was observed and termed tumor necrosis factor (TNF) as early as the 1960s, the true identity of TNF was not clear until 1984, when Aggarwal and coworkers reported, for the first time, the isolation of 2 cytotoxic factors: one, derived from macrophages (molecular mass 17 kDa), was named TNF, and the second, derived from lymphocytes (20 kDa), was named lymphotoxin. Because the 2 cytotoxic factors exhibited 50% amino acid sequence homology and bound to the same receptor, they came to be called TNF-α and TNF-β. Identification of the protein sequences led to cloning of their cDNA. Based on sequence homology to TNF-α, now a total of 19 members of the TNF superfamily have been identified, along with 29 interacting receptors, and several molecules that interact with the cytoplasmic domain of these receptors. The roles of the TNF superfamily in inflammation, apoptosis, proliferation, invasion, angiogenesis, metastasis, and morphogenesis have been documented. Their roles in immunologic, cardiovascular, neurologic, pulmonary, and metabolic diseases are becoming apparent. TNF superfamily members are active targets for drug development, as indicated by the recent approval and expanding market of TNF blockers used to treat rheumatoid arthritis, psoriasis, Crohns disease, and osteoporosis, with a total market of more than US $20 billion. As we learn more about this family, more therapeutics will probably emerge. In this review, we summarize the initial discovery of TNF-α, and the insights gained regarding the roles of this molecule and its related family members in normal physiology and disease.

  18. Lachesin: an immunoglobulin superfamily protein whose expression correlates with neurogenesis in grasshopper embryos.

    Science.gov (United States)

    Karlstrom, R O; Wilder, L P; Bastiani, M J

    1993-06-01

    We describe the developmental expression in grasshopper (Schistocerca americana) and molecular characterization in grasshopper and fruit fly (Drosophila melanogaster) of Lachesin, a novel immunoglobulin superfamily protein. Lachesin is expressed on the surfaces of differentiating neuronal cells from the onset of neurogenesis in both the central and peripheral nervous systems. Lachesin expression begins in some cells of the neurogenic ectoderm immediately after engrailed expression begins in the posterior cells of each future segment. All neurogenic cells express Lachesin early, but only those cells that become neuroblasts continue to express Lachesin. Ectodermal cells in the neurogenic region that adopt non-neuronal fates lose Lachesin at the time that they diverge from a potentially neurogenic pathway. Neuroblasts, ganglion mother cells and neurons all express Lachesin early in their lives, but expression becomes restricted to a subset of neurons as development progresses. Sensory neurons express Lachesin as they delaminate from the body wall ectoderm. Lachesin is also present on growing axons of the CNS and PNS and becomes restricted to a subset of axons later in development. This expression is unique among known insect neurogenic genes and suggests a role for Lachesin in early neuronal differentiation and axon outgrowth. Grasshopper Lachesin is a 38 x 10(3) M(r) protein linked to cell membranes through a glycosyl phosphatidylinositol anchor. We have cloned the Lachesin gene from both grasshopper and fly. The proteins are highly conserved (70% identical) between the two species. Lachesin is similar to Drosophila amalgam, bovine OBCAM and the human poliovirus receptor, putting it into a subgroup of the immunoglobulin superfamily containing one V- and two C2-type immunoglobulin domains. Lachesin is also similar to several other vertebrate immunoglobulin superfamily proteins (TAG-1, F11, L1 and NgCAM) known to function in neurite outgrowth and other cell surface

  19. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  20. FLORA: a novel method to predict protein function from structure in diverse superfamilies.

    Directory of Open Access Journals (Sweden)

    Oliver C Redfern

    2009-08-01

    Full Text Available Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA that automatically generates structural motifs associated with different functional sub-families (FSGs within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2-3 fold increase in coverage at low error rates popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (alpha, beta, alphabeta and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues.

  1. Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes

    Directory of Open Access Journals (Sweden)

    Frese Marc-André

    2009-08-01

    Full Text Available Abstract Background Intron gains reportedly are very rare during evolution of vertebrates, and the mechanisms underlying their creation are largely unknown. Previous investigations have shown that, during metazoan radiation, the exon-intron patterns of serpin superfamily genes were subject to massive changes, in contrast to many other genes. Results Here we investigated intron dynamics in the serpin superfamily in lineages pre- and postdating the split of vertebrates. Multiple intron gains were detected in a group of ray-finned fishes, once the canonical groups of vertebrate serpins had been established. In two genes, co-occurrence of non-standard introns was observed, implying that intron gains in vertebrates may even happen concomitantly or in a rapidly consecutive manner. DNA breakage/repair processes associated with genome compaction are introduced as a novel factor potentially favoring intron gain, since all non-canonical introns were found in a lineage of ray-finned fishes that experienced genomic downsizing. Conclusion Multiple intron acquisitions were identified in serpin genes of a lineage of ray-finned fishes, but not in any other vertebrates, suggesting that insertion rates for introns may be episodically increased. The co-occurrence of non-standard introns within the same gene discloses the possibility that introns may be gained simultaneously. The sequences flanking the intron insertion points correspond to the proto-splice site consensus sequence MAG↑N, previously proposed to serve as intron insertion site. The association of intron gains in the serpin superfamily with a group of fishes that underwent genome compaction may indicate that DNA breakage/repair processes might foster intron birth.

  2. Radiation of the Tnt1 retrotransposon superfamily in three Solanaceae genera

    Science.gov (United States)

    Manetti, Maria E; Rossi, Magdalena; Costa, Ana PP; Clausen, Andrea M; Van Sluys, Marie-Anne

    2007-01-01

    Background Tnt1 was the first active plant retrotransposon identified in tobacco after nitrate reductase gene disruption. The Tnt1 superfamily comprises elements from Nicotiana (Tnt1 and Tto1) and Lycopersicon (Retrolyc1 and Tlc1) species. The study presented here was conducted to characterise Tnt1-related sequences in 20 wild species of Solanum and five cultivars of Solanum tuberosum. Results Tnt1-related sequences were amplified from total genomic DNA using a PCR-based approach. Purified fragments were cloned and sequenced, and clustering analysis revealed three groups that differ in their U3 region. Using a network approach with a total of 453 non-redundant sequences isolated from Solanum (197), Nicotiana (140) and Lycopersicon (116) species, it is demonstrated that the Tnt1 superfamily can be treated as a population to resolve previous phylogenetic multifurcations. The resulting RNAseH network revealed that sequences group according to the Solanaceae genus, supporting a strong association with the host genome, whereas tracing the U3 region sequence association characterises the modular evolutionary pattern within the Tnt1 superfamily. Within each genus, and irrespective of species, nearly 20% of Tnt1 sequences analysed are identical, indicative of being part of an active copy. The network approach enabled the identification of putative "master" sequences and provided evidence that within a genus these master sequences are associated with distinct U3 regions. Conclusion The results presented here support the hypothesis that the Tnt1 superfamily was present early in the evolution of Solanaceae. The evidence also suggests that the RNAseH region of Tnt1 became fixed at the host genus level whereas, within each genus, propagation was ensured by the diversification of the U3 region. Different selection pressures seemed to have acted on the U3 and RNAseH modules of ancestral Tnt1 elements, probably due to the distinct functions of these regions in the retrotransposon

  3. Regulation of ovarian function: the role of anti-Mullerian hormone

    NARCIS (Netherlands)

    A.L.L. Durlinger (Alexandra); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2002-01-01

    textabstractAnti-Mullerian hormone (AMH), also known as Mullerian inhibiting substance, is a member of the transforming growth factor beta superfamily of growth and differentiation factors. In contrast to other members of the family, which exert a broad range of functions in

  4. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion.

    Science.gov (United States)

    Farré, Domènec; Martínez-Vicente, Pablo; Engel, Pablo; Angulo, Ana

    2017-05-01

    Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nitrilase superfamily aryl acylamidase from the halotolerant mangrove Streptomyces sp. 211726.

    Science.gov (United States)

    Ma, Yanling; Xu, Wei; Zhang, Jun; Zhang, Sihong; Hong, Kui; Deng, Zixin; Sun, Yuhui

    2014-10-01

    A novel nitrilase superfamily amidase gene, designated azl13, was cloned from Streptomyces sp. 211726. Bioinformatic and biochemical analysis indicated that Azl13 belongs to a new subfamily in branch 13 of the nitrilase superfamily. His6-Azl13 was expressed in Escherichia coli BL21(DE3) and had the expected molecular mass of 31 kDa, and the enzymatic activity was best at 40 °C, pH 8.0. His6-Azl13 had amidase, aryl acylamidase, and acyl transferase activities, and it displayed an unusually wide substrate spectrum. His6-Azl13 was most active on 4-guanidinobutyramide, which is probably its natural substrate, moderately active on short-chain aliphatic amides and weakly active hydrolyzing aromatic and heterocyclic amides. His6-Azl13 also catalyzed acyl transfer to hydroxylamine from acetamide or the herbicide propanil. The substrate spectrum differs from that of the Pseudomonas amidase RamA, probably reflecting high salinity adaptation. The broad substrate spectrum of Azl13 is potentially useful for chemical synthesis and biodegradation.

  6. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    Directory of Open Access Journals (Sweden)

    De Souza Robson F

    2009-08-01

    Full Text Available Abstract The Anabaena sensory rhodopsin transducer (ASRT is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

  7. Isolation of a novel LPS-induced component of the ML superfamily in Ciona intestinalis.

    Science.gov (United States)

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2015-11-01

    ML superfamily represents a group of proteins playing important roles in lipid metabolism and innate immune response. In this study, we report the identification of the first component of the ML superfamily in the invertebrate Ciona intestinalis by means of a subtractive hybridization strategy. Sequence homology and phylogenetic analysis showed that this protein forms a specific clade with vertebrate components of the Niemann-Pick type C2 protein and, for this reason, it has been named Ci-NPC2. The putative Ci-NPC2 is a 150 amino acids long protein with a short signal peptide, seven cysteine residues, three putative lipid binding site and a three-dimensional model showing a characteristic β-strand structure. Gene expression analysis demonstrated that the Ci-NPC2 protein is positively upregulated after LPS inoculum with a peak of expression 1 h after challenge. Finally, in-situ hybridization demonstrated that the Ci-NPC2 protein is preferentially expressed in hemocytes inside the vessel lumen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. TGF-β superfamily signaling in testis formation and early male germline development.

    Science.gov (United States)

    Young, Julia C; Wakitani, Shoichi; Loveland, Kate L

    2015-09-01

    The TGF-β ligand superfamily contains at least 40 members, many of which are produced and act within the mammalian testis to facilitate formation of sperm. Their progressive expression at key stages and in specific cell types determines the fertility of adult males, influencing testis development and controlling germline differentiation. BMPs are essential for the interactive instructions between multiple cell types in the early embryo that drive initial specification of gamete precursors. In the nascent foetal testis, several ligands including Nodal, TGF-βs, Activins and BMPs, serve as key masculinizing switches by regulating male germline pluripotency, somatic and germline proliferation, and testicular vascularization and architecture. In postnatal life, local production of these factors determine adult testis size by regulating Sertoli cell multiplication and differentiation, in addition to specifying germline differentiation and multiplication. Because TGF-β superfamily signaling is integral to testis formation, it affects processes that underlie testicular pathologies, including testicular cancer, and its potential to contribute to subfertility is beginning to be understood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evolutionary Pattern of N-Glycosylation Sequon Numbers  in Eukaryotic ABC Protein Superfamilies

    Directory of Open Access Journals (Sweden)

    R. Shyama Prasad Rao

    2010-02-01

    Full Text Available Many proteins contain a large number of NXS/T sequences (where X is any amino acid except proline which are the potential sites of asparagine (N linked glycosylation. However, the patterns of occurrence of these N-glycosylation sequons in related proteins or groups of proteins and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average, but the sequon density was significantly lower owing to the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher sequon density, and both serine and threonine containing sequons (NXS and NXT have been positively selected—against the recent findings of only threonine specific Darwinian selection of sequons in proteins. The occurrence of sequons was positively correlated with the frequency of sequon specific amino acids and negatively correlated with proline and the NPS/T sequences. Further, the NPS/T sequences were significantly higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord- ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and the results are discussed in an evolutionary perspective.

  10. The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily.

    Science.gov (United States)

    Schwartz, Chad; De Donatis, Gian Marco; Fang, Huaming; Guo, Peixuan

    2013-08-15

    The AAA+ superfamily of proteins is a class of motor ATPases performing a wide range of functions that typically exist as hexamers. The ATPase of phi29 DNA packaging motor has long been a subject of debate in terms of stoichiometry and mechanism of action. Here, we confirmed the stoichiometry of phi29 motor ATPase to be a hexamer and provide data suggesting that the phi29 motor ATPase is a member of the classical hexameric AAA+ superfamily. Native PAGE, EMSA, capillary electrophoresis, ATP titration, and binomial distribution assay show that the ATPase is a hexamer. Mutations in the known Walker motifs of the ATPase validated our previous assumptions that the protein exists as another member of this AAA+ superfamily. Our data also supports the finding that the phi29 DNA packaging motor uses a revolution mechanism without rotation or coiling (Schwartz et al., this issue). Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Cloning of genomic sequences of three crustacean hyperglycemic hormone superfamily genes and elucidation of their roles of regulating insulin-like androgenic gland hormone gene.

    Science.gov (United States)

    Li, Fajun; Bai, Hongkun; Zhang, Wenyi; Fu, Hongtuo; Jiang, Fengwei; Liang, Guoxia; Jin, Shubo; Sun, Shengming; Qiao, Hui

    2015-04-25

    The insulin-like androgenic gland hormone (IAG) gene in crustaceans plays an important role in male sexual differentiation, metabolism, and growth. However, the upstream regulation of IAG signaling schemes remains poorly studied. In the present study, we cloned the 5' flanking sequence of IAG and full-length genomic sequences of gonad-inhibiting hormone (Mn-GIH), molt-inhibiting hormone (Mn-MIH) and crustacean hyperglycemic hormone (Mn-CHH) in Macrobrachium nipponense. We identified the transcription factor-binding sites in the 5' flanking sequence of IAG and investigated the exon-intron patterns of the three CHH superfamily genes. Each CHH superfamily gene consisted of two introns separating three exons. Mn-GIH and Mn-MIH shared the same intron insertion sites, which differed from Mn-CHH. We provided DNA-level evidence for the type definition. We also identified two cAMP response elements in the 5' untranslated region. We further investigated the regulatory relationships between Mn-GIH, Mn-MIH, and Mn-CHH and IAG at the transcriptional level by injection of double-stranded RNA (dsRNA). IAG transcription levels were significantly increased to 660.2%, 472.9%, and 112.4% of control levels in the Mn-GIH dsRNA, Mn-MIH dsRNA, and Mn-CHH dsRNA groups, respectively. The results clearly demonstrated that Mn-GIH and Mn-MIH, but not Mn-CHH, negatively regulate the expression of the IAG gene. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Fuconate Dehydratase from Xanthomonas campestris

    Energy Technology Data Exchange (ETDEWEB)

    Yew,W.; Fedorov, A.; Fedorov, E.; Rakus, J.; Pierce, R.; Almo, S.; Gerlt, J.

    2006-01-01

    Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report the authors use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI: 21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of th third, fourth, and fifth-strands in the (/)7-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and sixth-strands (His 351 and Asp 324, respectively), and a Glue at the end of the eighth-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L

  13. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    Directory of Open Access Journals (Sweden)

    Daniel L Parton

    2016-06-01

    Full Text Available The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (superfamilies, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest, reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human

  14. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice

    Directory of Open Access Journals (Sweden)

    Tu Yuanyuan

    2010-12-01

    Full Text Available Abstract Background The cellulose synthase and cellulose synthase-like gene superfamily (CESA/CSL is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (Oryza sativa L. genome has been sequenced for a few years, the global expression profiling patterns and functions of the OsCESA/CSL superfamily remain largely unknown. Results A total of 45 identified members of OsCESA/CSL were classified into two clusters based on phylogeny and motif constitution. Duplication events contributed largely to the expansion of this superfamily, with Cluster I and II mainly attributed to tandem and segmental duplication, respectively. With microarray data of 33 tissue samples covering the entire life cycle of rice, fairly high OsCESA gene expression and rather variable OsCSL expression were observed. While some members from each CSL family (A1, C9, D2, E1, F6 and H1 were expressed in all tissues examined, many of OsCSL genes were expressed in specific tissues (stamen and radicles. The expression pattern of OsCESA/CSL and OsBC1L which extensively co-expressed with OsCESA/CSL can be divided into three major groups with ten subgroups, each showing a distinct co-expression in tissues representing typically distinct cell wall constitutions. In particular, OsCESA1, -3 & -8 and OsCESA4, -7 & -9 were strongly co-expressed in tissues typical of primary and secondary cell walls, suggesting that they form as a cellulose synthase complex; these results are similar to the findings in Arabidopsis. OsCESA5/OsCESA6 is likely partially redundant with OsCESA3 for OsCESA complex organization in the specific tissues (plumule and radicle. Moreover, the phylogenetic comparison in rice, Arabidopsis and other species can provide clues for the prediction of orthologous gene expression patterns. Conclusions The study characterized the CESA/CSL of rice using an integrated approach comprised of phylogeny, transcriptional

  15. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.

    Science.gov (United States)

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.

  16. Oligonucleotide primers for specific detection of actinobacterial laccases from superfamilies I and K.

    Science.gov (United States)

    Fernandes, Tatiana Alves Rigamonte; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes; Zucchi, Tiago Domingues

    2014-08-01

    Although many putative laccase-like genes have been assigned to members of the phylum Actinobacteria, few of the related enzymes have been characterized so far. It is noteworthy, however, that this small number of enzymes has presented properties with industrial relevance. This observation, combined with the recognized biotechnological potential and the capability of this phylum to degrade recalcitrant soil polymers, has attracted attention for bioprospective approaches. In the present work, we have designed and tested primers that were specific for detection of sub-groups of laccase-like genes within actinomycetes, which corresponded to the superfamilies I and K from the classification presented by the laccase and multicopper oxidase engineering database. The designed primers have amplified laccase-like gene fragments from actinomycete isolates that were undetectable by primers available from the literature. Furthermore, phylogenetic alignments suggest that some of these fragments may belong to new laccases-like proteins, and thus emphasize the benefits of designing subgroup-specific primers.

  17. Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins.

    Science.gov (United States)

    Wistow, G

    1990-02-01

    A search of sequence databases shows that spherulin 3a, an encystment-specific protein of Physarum polycephalum, is probably structurally related to the beta- and gamma-crystallins, vertebrate ocular lens proteins, and to Protein S, a sporulation-specific protein of Myxococcus xanthus. The beta- and gamma-crystallins have two similar domains thought to have arisen by two successive gene duplication and fusion events. Molecular modeling confirms that spherulin 3a has all the characteristics required to adopt the tertiary structure of a single gamma-crystallin domain. The structure of spherulin 3a thus illustrates an earlier stage in the evolution of this protein superfamily. The relationship of beta- and gamma-crystallins to spherulin 3a and Protein S suggests that the lens proteins were derived from an ancestor with a role in stress-response, perhaps a response to osmotic stress.

  18. The Tumor Necrosis Factor Superfamily of Cytokines in the Inflammatory Myopathies: Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2012-01-01

    Full Text Available The idiopathic inflammatory myopathies (IM represent a heterogeneous group of autoimmune diseases, of which dermatomyositis (DM, polymyositis (PM, and sporadic inclusion body myositis (IBM are the most common. The crucial role played by tumor necrosis factor alpha (TNFα in the IM has long been recognized. However, so far, 18 other members of the TNF superfamily have been characterized, and many of these have not yet received the attention they deserve. In this paper, we summarize current findings for all TNF cytokines in IM, pinpointing what we know already and where current knowledge fails. For each TNF family member, possibilities for treating inflammatory diseases in general and the IM in particular are explored.

  19. Cell Adhesion Molecules of the Immunoglobulin Superfamily in the Nervous System

    DEFF Research Database (Denmark)

    Walmod, Peter Schledermann; Pedersen, Martin Volmer; Berezin, Vladimir

    2007-01-01

    CAMs belonging to IgSF, that exclusively or in part, are expressed in the nervous system. The chapter includes descriptions of myelin protein zero (P0), integrin-associated protein (CD47), neuroplastin, activated leukocyte-cell adhesion molecule (ALCAM), melanoma cell adhesion molecule (MCAM......Cell adhesion molecules (CAMs) are proteins mediating cell-cell or cell-extracellular matrix (ECM) interactions. CAMs are traditionally divided into four groups, the cadherins, the selectins, the integrins and CAMs belonging to the immunoglobulin superfamily (IgSF). The present chapter describes......), myelinassociated glycoprotein (MAG), the neural cell adhesion molecules 1 and 2 (NCAM, NCAM2), Down Syndrome cell adhesion molecule (DSCAM) and Down Syndrome cell adhesion molecule-like-1 (DSCAML1), sidekick 1 and 2 (SDK1, SDK2), signal-regulatory proteins (SIRPs), nectins, nectin-like proteins (necls...

  20. Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function.

    Science.gov (United States)

    Sytnyk, Vladimir; Leshchyns'ka, Iryna; Schachner, Melitta

    2017-05-01

    Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis.

    Directory of Open Access Journals (Sweden)

    Ke Wu

    Full Text Available Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST, cytochrome P450 (CYP and carboxyl/cholinesterase (CCE gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J' and J" clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J' and J" clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis.

  2. HLA superfamily assignment is a predictor of immune response to cancer testis antigens and survival in ovarian cancer.

    Science.gov (United States)

    Szender, J Brian; Eng, Kevin H; Matsuzaki, Junko; Miliotto, Anthony; Gnjatic, Sacha; Tsuji, Takemasa; Odunsi, Kunle

    2016-07-01

    To characterize the association between major histocompatibility complex (MHC) types and spontaneous antibody development to the cancer testis (CT) antigen NY-ESO-1. Tumor expression of NY-ESO-1 and serum antibodies to NY-ESO-1 were characterized in addition to human leukocyte antigen (HLA) type for patients with epithelial ovarian cancer. HLA types were assigned to structure-based superfamilies and statistical associations were examined. HLA types were compared to existing reference libraries of HLA frequencies in a European-Caucasian American population. Out of 126 patients identified, 81% were expression positive and 48% had spontaneous antibody responses to NY-ESO-1. There was an association between HLA-B superfamily and seropositivity among patients with tumors expressing NY-ESO-1 (pHLA-B superfamily assignment were driven by HLA-B44. Among all patients, the B27 superfamily was over-represented compared with the general population (pHLA type appears to be associated with spontaneous anti-CT antigen antibodies, as well as with the overall risk of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Oribatid Mites of the Superfamilies Gymnodamaeoidea and Plater emaeoidea (Acari: Oribatida fr om S teppe of Russia

    Directory of Open Access Journals (Sweden)

    Badamdorj Bayartogtokh

    2004-06-01

    Full Text Available Oribatid mites belonging to the superfamilies Gymnodamaeoidea and Plateremaeoidea collected from steppe soils of Russia are studied. Two new species, Pedrocortesella minuta sp. nov . and Pleodamaeus tuberculatus sp. nov . are described. In addition, three known species, Licnodamaeus pulcherrimus (Paoli, 1908 and Plesiodamaeus glaber Mihelèiè, 1957 are r edescribed, with notes on their distributions.

  4. The chemical versatility of the beta-alpha-beta fold : Catalytic promiscuity and divergent evolution in the tautomerase superfamily

    NARCIS (Netherlands)

    Poelarends, G. J.; Veetil, V. Puthan; Whitman, C. P.

    2008-01-01

    Tautomerase superfamily members have an amino-terminal proline and a beta-alpha-beta fold, and include 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), trans- and cis-3-chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively), malonate semialdehyde

  5. Insulin-like growth factor binding protein-3 is required for the regulation of rat oval cell proliferation and differentiation in the 2AAF/PHX model

    Directory of Open Access Journals (Sweden)

    Nicole C Steiger-Luther

    2010-02-01

    RNA (siRNA treated animals determined that expression of TGFβ family members, including TGF-βRII and Smads 2–4, were significantly downregulated compared to animals at day 9 post-PHx alone or animals that received negative control siRNA. In conclusion, IGFBP-3 may function as a potent chemoattractant of oval cells during specific types of liver regeneration and may be involved in regulating oval cell proliferation and differentiation in vivo via the TGF-β pathway.Keywords: hepatic stem cells, transforming growth factor-beta, N-2-acetylaminofluorene (2AAF, partial hepatectomy (PHx

  6. Human activin-A is expressed in the atherosclerotic lesion and promotes the contractile phenotype of smooth muscle cells

    NARCIS (Netherlands)

    M.A. Engelse (Marten); J.M. Neele; T.A.E. van Achterberg (Tanja); B.E. van Aken (Benien); R.H.N. van Schaik (Ron); H. Pannekoek (Hans); C.J.M. de Vries (Carlie)

    1999-01-01

    textabstractActivin is a member of the transforming growth factor-beta superfamily, and it modulates the proliferation and differentiation of various target cells. In this study, we investigated the role of activin in the initiation and progression of human atherosclerosis. The

  7. The bone morphogenetic protein pathway is active in human colon adenomas and inactivated in colorectal cancer

    NARCIS (Netherlands)

    Kodach, Liudmila L.; Bleurning, Sylvia A.; Musler, Alex R.; Peppelenbosch, Maikel R.; Hommes, Daniel W.; van den Brink, Gijs R.; van Noesel, Carel J. M.; Offerhaus, G. Johan A.; Hardwick, James C. H.

    2008-01-01

    BACKGROUND. Transforming growth factor beta (TGF beta) is important in colorectal cancer (CRQ progression. Bone morphogenetic proteins (BMPs), a subgroup within the TGF beta superfamily, recently also have been implicated in CRC, but their precise role in CRC has yet to be investigated. METHODS. The

  8. Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish.

    NARCIS (Netherlands)

    Monteiro, R.; van Dinther, M.; Bakkers, J.; Wilkinson, R.; Patient, R.; ten Dijke, P.; Mummery, C.L.

    2008-01-01

    Ligands of the transforming growth factor beta (TGFbeta) superfamily, like Nodal and bone morphogenetic protein (BMP), are pivotal to establish left-right (LR) asymmetry in vertebrates. However, the receptors mediating this process are unknown. Here we identified two new type II receptors for BMPs

  9. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis

    NARCIS (Netherlands)

    Mia, Masum M.; Bank, Ruud A.

    Fibrosis is a chronic disorder affecting many organs. A universal process in fibrosis is the formation of myofibroblasts and the subsequent collagen deposition by these cells. Transforming growth factor beta1 (TGF beta 1) plays a major role in the formation of myofibroblasts, e.g. by activating

  10. Radical SAM, A Novel Protein Superfamily Linking Unresolved Steps in Familiar Biosynthetic Pathways with Radical Mechanisms: Functional Characterization Using New Analysis and Information Visualization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Heidi J.; Chen, Guang; Hetzler, Elizabeth G.; Reyes Spindola, Jorge F.; Miller, Nancy E.

    2001-03-01

    A large protein superfamily with over 500 members has been discovered and analyzed using powerful new bioinformatics and information visualization methods. Evidence exists that these proteins generate a 5?-deoxyadenosyl radical by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. Radical SAM superfamily proteins function in DNA precursor, vitamin, cofactor, antibiotic, and herbicide biosynthesis in a collection of basic and familiar pathways. One of the members is interferon-inducible and is considered a candidate drug target for osteoporosis. The identification of this superfamily suggests that radical-based catalysis is important in a number of previously well-studied but unresolved biochemical pathways.

  11. Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

    Directory of Open Access Journals (Sweden)

    Elisson A C Romanel

    Full Text Available BACKGROUND: The B3 DNA binding domain includes five families: auxin response factor (ARF, abscisic acid-insensitive3 (ABI3, high level expression of sugar inducible (HSI, related to ABI3/VP1 (RAV and reproductive meristem (REM. The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily. METHODOLOGY: In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family. CONCLUSIONS: Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.

  12. Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily.

    Science.gov (United States)

    Yun, Seongsik; Furlong, Michael; Sim, Mikang; Cho, Minah; Park, Sumi; Cho, Eun Bee; Reyes-Alcaraz, Arfaxad; Hwang, Jong-Ik; Kim, Jaebum; Seong, Jae Young

    2015-11-01

    In humans, numerous genes encode neuropeptides that comprise a superfamily of more than 70 genes in approximately 30 families and act mainly through rhodopsin-like G protein-coupled receptors (GPCRs). Two rounds of whole-genome duplication (2R WGD) during early vertebrate evolution greatly contributed to proliferation within gene families; however, the mechanisms underlying the initial emergence and diversification of these gene families before 2R WGD are largely unknown. In this study, we analyzed 25 vertebrate rhodopsin-like neuropeptide GPCR families and their cognate peptides using phylogeny, synteny, and localization of these genes on reconstructed vertebrate ancestral chromosomes (VACs). Based on phylogeny, these GPCR families can be divided into five distinct clades, and members of each clade tend to be located on the same VACs. Similarly, their neuropeptide gene families also tend to reside on distinct VACs. Comparison of these GPCR genes with those of invertebrates including Drosophila melanogaster, Caenorhabditis elegans, Branchiostoma floridae, and Ciona intestinalis indicates that these GPCR families emerged through tandem local duplication during metazoan evolution prior to 2R WGD. Our study describes a presumptive evolutionary mechanism and development pathway of the vertebrate rhodopsin-like GPCR and cognate neuropeptide families from the urbilaterian ancestor to modern vertebrates. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  14. Correlated Mutation in the Evolution of Catalysis in Uracil DNA Glycosylase Superfamily

    Science.gov (United States)

    Xia, Bo; Liu, Yinling; Guevara, Jose; Li, Jing; Jilich, Celeste; Yang, Ye; Wang, Liangjiang; Dominy, Brian N.; Cao, Weiguo

    2017-04-01

    Enzymes in Uracil DNA glycosylase (UDG) superfamily are essential for the removal of uracil. Family 4 UDGa is a robust uracil DNA glycosylase that only acts on double-stranded and single-stranded uracil-containing DNA. Based on mutational, kinetic and modeling analyses, a catalytic mechanism involving leaving group stabilization by H155 in motif 2 and water coordination by N89 in motif 3 is proposed. Mutual Information analysis identifies a complexed correlated mutation network including a strong correlation in the EG doublet in motif 1 of family 4 UDGa and in the QD doublet in motif 1 of family 1 UNG. Conversion of EG doublet in family 4 Thermus thermophilus UDGa to QD doublet increases the catalytic efficiency by over one hundred-fold and seventeen-fold over the E41Q and G42D single mutation, respectively, rectifying the strong correlation in the doublet. Molecular dynamics simulations suggest that the correlated mutations in the doublet in motif 1 position the catalytic H155 in motif 2 to stabilize the leaving uracilate anion. The integrated approach has important implications in studying enzyme evolution and protein structure and function.

  15. Relative Stabilities of Conserved and Non-Conserved Structures in the OB-Fold Superfamily

    Directory of Open Access Journals (Sweden)

    Andrei T. Alexandrescu

    2009-05-01

    Full Text Available The OB-fold is a diverse structure superfamily based on a β-barrel motif that is often supplemented with additional non-conserved secondary structures. Previous deletion mutagenesis and NMR hydrogen exchange studies of three OB-fold proteins showed that the structural stabilities of sites within the conserved β-barrels were larger than sites in non-conserved segments. In this work we examined a database of 80 representative domain structures currently classified as OB-folds, to establish the basis of this effect. Residue-specific values were obtained for the number of Cα-Cα distance contacts, sequence hydrophobicities, crystallographic B-factors, and theoretical B-factors calculated from a Gaussian Network Model. All four parameters point to a larger average flexibility for the non-conserved structures compared to the conserved β-barrels. The theoretical B-factors and contact densities show the highest sensitivity.Our results suggest a model of protein structure evolution in which novel structural features develop at the periphery of conserved motifs. Core residues are more resistant to structural changes during evolution since their substitution would disrupt a larger number of interactions. Similar factors are likely to account for the differences in stability to unfolding between conserved and non-conserved structures.

  16. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily.

    Science.gov (United States)

    Sang, Pau Biak; Srinath, Thiruneelakantan; Patil, Aravind Goud; Woo, Eui-Jeon; Varshney, Umesh

    2015-09-30

    Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Diversity of the Superfamily of Phloem Lectins (Phloem Protein 2) in Angiosperms1

    Science.gov (United States)

    Dinant, Sylvie; Clark, Anna M.; Zhu, Yanmin; Vilaine, Françoise; Palauqui, Jean-Christophe; Kusiak, Chantal; Thompson, Gary A.

    2003-01-01

    Phloem protein 2 (PP2) is one of the most abundant and enigmatic proteins in the phloem sap. Although thought to be associated with structural P-protein, PP2 is translocated in the assimilate stream where its lectin activity or RNA-binding properties can exert effects over long distances. Analyzing the diversity of these proteins in vascular plants led to the identification of PP2-like genes in species from 17 angiosperm and gymnosperm genera. This wide distribution of PP2 genes in the plant kingdom indicates that they are ancient and common in vascular plants. Their presence in cereals and gymnosperms, both of which lack structural P-protein, also supports a wider role for these proteins. Within this superfamily, PP2 proteins have considerable size polymorphism. This is attributable to variability in the length of the amino terminus that extends from a highly conserved domain. The conserved PP2 domain was identified in the proteins encoded by six genes from several cucurbits, celery (Apium graveolens), and Arabidopsis that are specifically expressed in the sieve element-companion cell complex. The acquisition of additional modular domains in the amino-terminal extensions of other PP2-like proteins could reflect divergence from its phloem function. PMID:12529520

  18. Genome and transcriptome-wide analyses of cellulose synthase gene superfamily in soybean.

    Science.gov (United States)

    Nawaz, Muhammad Amjad; Rehman, Hafiz Mamoon; Baloch, Faheem Shehzad; Ijaz, Babar; Ali, Muhammad Amjad; Khan, Iqrar Ahmad; Lee, Jeong Dong; Chung, Gyuhwa; Yang, Seung Hwan

    2017-08-01

    The plant cellulose synthase gene superfamily belongs to the category of type-2 glycosyltransferases, and is involved in cellulose and hemicellulose biosynthesis. These enzymes are vital for maintaining cell-wall structural integrity throughout plant life. Here, we identified 78 putative cellulose synthases (CS) in the soybean genome. Phylogenetic analysis against 40 reference Arabidopsis CS genes clustered soybean CSs into seven major groups (CESA, CSL A, B, C, D, E and G), located on 19 chromosomes (except chromosome 18). Soybean CS expansion occurred in 66 duplication events. Additionally, we identified 95 simple sequence repeat makers related to 44 CSs. We next performed digital expression analysis using publically available datasets to understand potential CS functions in soybean. We found that CSs were highly expressed during soybean seed development, a pattern confirmed with an Affymatrix soybean IVT array and validated with RNA-seq profiles. Within CS groups, CESAs had higher relative expression than CSLs. Soybean CS models were designed based on maximum average RPKM values. Gene co-expression networks were developed to explore which CSs could work together in soybean. Finally, RT-PCR analysis confirmed the expression of 15 selected CSs during all four seed developmental stages. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.

    Science.gov (United States)

    Robinson, Serina L; Badalamenti, Jonathan P; Dodge, Anthony G; Tassoulas, Lambros J; Wackett, Lawrence P

    2018-03-12

    Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min -1 mg -1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Identification of the GTPase superfamily in Mycoplasma synoviae and Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Clayton Luiz Borges

    2007-01-01

    Full Text Available Mycoplasmas are the smallest known prokaryotes with self-replication ability. They are obligate parasites, taking up many molecules of their hosts and acting as pathogens in men, animals, birds and plants. Mycoplasma hyopneumoniae is the infective agent of swine mycoplasmosis and Mycoplasma synoviae is responsible for subclinical upper respiratory infections that may result in airsacculitis and synovitis in chickens and turkeys. These highly infectious organisms present a worldwide distribution and are responsible for major economic problems. Proteins of the GTPase superfamily occur in all domains of life, regulating functions such as protein synthesis, cell cycle and differentiation. Despite their functional diversity, all GTPases are believed to have evolved from a single common ancestor. In this work we have identified mycoplasma GTPases by searching the complete genome databases of Mycoplasma synoviae and Mycoplasma hyopneumoniae, J (non-pathogenic and 7448 (pathogenic strains. Fifteen ORFs encoding predicted GTPases were found in M. synoviae and in the two strains of M. hyopneumoniae. Searches for conserved G domains in GTPases were performed and the sequences were classified into families. The GTPase phylogenetic analysis showed that the subfamilies were well resolved into clades. The presence of GTPases in the three strains suggests the importance of GTPases in 'minimalist' genomes.

  1. Plum, an immunoglobulin superfamily protein, regulates axon pruning by facilitating TGF-β signaling.

    Science.gov (United States)

    Yu, Xiaomeng M; Gutman, Itai; Mosca, Timothy J; Iram, Tal; Ozkan, Engin; Garcia, K Christopher; Luo, Liqun; Schuldiner, Oren

    2013-05-08

    Axon pruning during development is essential for proper wiring of the mature nervous system, but its regulation remains poorly understood. We have identified an immunoglobulin superfamily (IgSF) transmembrane protein, Plum, that is cell autonomously required for axon pruning of mushroom body (MB) γ neurons and for ectopic synapse refinement at the developing neuromuscular junction in Drosophila. Plum promotes MB γ neuron axon pruning by regulating the expression of Ecdysone Receptor-B1, a key initiator of axon pruning. Genetic analyses indicate that Plum acts to facilitate signaling of Myoglianin, a glial-derived TGF-β, on MB γ neurons upstream of the type-I TGF-β receptor Baboon. Myoglianin, Baboon, and Ecdysone Receptor-B1 are also required for neuromuscular junction ectopic synapse refinement. Our study highlights both IgSF proteins and TGF-β facilitation as key promoters of developmental axon elimination and demonstrates a mechanistic conservation between MB axon pruning during metamorphosis and the refinement of ectopic larval neuromuscular connections. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. BOC, an Ig superfamily member, associates with CDO to positively regulate myogenic differentiation

    Science.gov (United States)

    Kang, Jong-Sun; Mulieri, Philip J.; Hu, Yulan; Taliana, Lavinia; Krauss, Robert S.

    2002-01-01

    CDO is a cell surface receptor-like protein that positively regulates myogenic differentiation. Reported here is the identification of BOC, which, with CDO, defines a newly recognized subfamily within the immunoglobulin superfamily. cdo and boc are co-expressed in muscle precursors in the developing mouse embryo. Like CDO, BOC accelerates differentiation of cultured myoblast cell lines and participates in a positive feedback loop with the myogenic transcription factor, MyoD. CDO and BOC form complexes in a cis fashion via association of both their ectodomains and their intracellular domains. A soluble fusion protein that contains the entire BOC ectodomain functions similarly to full-length BOC to promote myogenic differentiation, indicating that the intracellular region is dispensable for its activity in this system. Furthermore, a dominant-negative form of CDO inhibits the pro-myogenic effects of soluble BOC, suggesting that BOC is dependent on CDO for its activity. CDO and BOC are proposed to be components of a receptor complex that mediates some of the cell–cell interactions between muscle precursors that are required for myogenesis. PMID:11782431

  3. Structure of TTHA1623, a novel metallo-β-lactamase superfamily protein from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    Yamamura, Akihiro; Okada, Akitoshi; Kameda, Yasuhiro; Ohtsuka, Jun; Nakagawa, Noriko; Ebihara, Akio; Nagata, Koji; Tanokura, Masaru

    2009-01-01

    The crystal structures of TTHA1623 from T. thermophilus HB8 in an iron-bound and a zinc-bound form have been determined to 2.8 and 2.2 Å resolution, respectively. TTHA1623 is a metallo-β-lactamase superfamily protein from the extremely thermophilic bacterium Thermus thermophilus HB8. Homologues of TTHA1623 exist in a wide range of bacteria and archaea and one eukaryote, Giardia lamblia, but their function remains unknown. To analyze the structural properties of TTHA1623, the crystal structures of its iron-bound and zinc-bound forms have been determined to 2.8 and 2.2 Å resolution, respectively. TTHA1623 possesses an αββα-fold similar to that of other metallo-β-lactamase superfamily proteins with glyoxalase II-type metal coordination. However, TTHA1623 exhibits a putative substrate-binding pocket with a unique shape

  4. Systematics of some Lower and Middle Devonian spiriferid brachiopods from Gaspe with a revision of the superfamily Delthyridoidea

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Lespérance, P.J.

    1999-01-01

    The component subfamilies of the Delthyridoidea are critically reviewed and subjected to phylogenetic analysis. This shows the presence of two clades, assigned to the Delthyrididae and Acrospiriferidae, within the superfamily. The subfamilial categories are redefined mainly on the basis of the ch......The component subfamilies of the Delthyridoidea are critically reviewed and subjected to phylogenetic analysis. This shows the presence of two clades, assigned to the Delthyrididae and Acrospiriferidae, within the superfamily. The subfamilial categories are redefined mainly on the basis...... of the characters used in the phylogenetic analysis. The spiriferid, mainly delthyridide, Gaspe fauna is formally revised and redescribed. This new taxonomic treatment leads to more precise biostratigraphy and to the recognition of a new subfamily, the Gaspespiriferinae, based on the new genus Gaspespirifer. Five...... new species aye described: Howellella (Howellella) forillonensis, Brachyspirifer (Brachyspirifer) briseboisi, Paraspirifer desbiensi, Brevispirifer florentinus, and B. quebecensis, The occurrence of Brevispirifer species with Middle Devonian chonetaceans confirms the presence of marine Eifelian strata...

  5. Systematics of some Lower and Middle Devonian spiriferid brachiopods from Gaspe with a revision of the superfamily Delthyridoidea

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Lespérance, P.J.

    1999-01-01

    The component subfamilies of the Delthyridoidea are critically reviewed and subjected to phylogenetic analysis. This shows the presence of two clades, assigned to the Delthyrididae and Acrospiriferidae, within the superfamily. The subfamilial categories are redefined mainly on the basis of the ch...... Brachyspirifer, Paraspirifer, and Vandercammenina are in Gaspe. This reinforces the hypothesis that Gaspe served as a stepping stone for Rhenish species invading North America in Pragian and Emsian times, as previously suggested by bivalve biogeography....

  6. Comparative genomic study of ALDH gene superfamily in Gossypium: A focus on Gossypium hirsutum under salt stress.

    Directory of Open Access Journals (Sweden)

    Yating Dong

    Full Text Available Aldehyde dehydrogenases (ALDHs are a superfamily of enzymes which play important role in the scavenging of active aldehydes molecules. In present work, a comprehensive whole-genomic study of ALDH gene superfamily was carried out for an allotetraploid cultivated cotton species, G. hirsutum, as well as in parallel relative to their diploid progenitors, G. arboreum and G. raimondii. Totally, 30 and 58 ALDH gene sequences belong to 10 families were identified from diploid and allotetraploid cotton species, respectively. The gene structures among the members from same families were highly conserved. Whole-genome duplication and segmental duplication might be the major driver for the expansion of ALDH gene superfamily in G. hirsutum. In addition, the expression patterns of GhALDH genes were diverse across tissues. Most GhALDH genes were induced or repressed by salt stress in upland cotton. Our observation shed lights on the molecular evolutionary properties of ALDH genes in diploid cottons and their alloallotetraploid derivatives. It may be useful to mine key genes for improvement of cotton response to salt stress.

  7. The Association between Gene-Environment Interactions and Diseases Involving the Human GST Superfamily with SNP Variants

    Directory of Open Access Journals (Sweden)

    Antoinesha L. Hollman

    2016-03-01

    Full Text Available Exposure to environmental hazards has been associated with diseases in humans. The identification of single nucleotide polymorphisms (SNPs in human populations exposed to different environmental hazards, is vital for detecting the genetic risks of some important human diseases. Several studies in this field have been conducted on glutathione S-transferases (GSTs, a phase II detoxification superfamily, to investigate its role in the occurrence of diseases. Human GSTs consist of cytosolic and microsomal superfamilies that are further divided into subfamilies. Based on scientific search engines and a review of the literature, we have found a large amount of published articles on human GST super- and subfamilies that have greatly assisted in our efforts to examine their role in health and disease. Because of its polymorphic variations in relation to environmental hazards such as air pollutants, cigarette smoke, pesticides, heavy metals, carcinogens, pharmaceutical drugs, and xenobiotics, GST is considered as a significant biomarker. This review examines the studies on gene-environment interactions related to various diseases with respect to single nucleotide polymorphisms (SNPs found in the GST superfamily. Overall, it can be concluded that interactions between GST genes and environmental factors play an important role in human diseases.

  8. Galatheoidea are not monophyletic - molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.

    Science.gov (United States)

    Schnabel, K E; Ahyong, S T; Maas, E W

    2011-02-01

    The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Data on the phosphorylation state of the catalytic serine of enzymes in the α-D-phosphohexomutase superfamily

    Directory of Open Access Journals (Sweden)

    Yingying Lee

    2017-02-01

    Full Text Available Most enzymes in the α-D-phosphohexomutase superfamily catalyze the reversible conversion of 1- to 6-phosphosugars. They play important roles in carbohydrate and sugar nucleotide metabolism, and participate in the biosynthesis of polysaccharides, glycolipids, and other exoproducts. Mutations in genes encoding these enzymes are associated with inherited metabolic diseases in humans, including glycogen storage disease and congenital disorders of glycosylation. Enzymes in the superfamily share a highly conserved active site serine that participates in the multi-step phosphoryl transfer reaction. Here we provide data on the effects of various phosphosugar ligands on the phosphorylation of this serine, as monitored by electrospray ionization mass spectrometry (ESI-MS data on the intact proteins. We also show data on the longevity of the phospho-enzyme under various solution conditions in one member of the superfamily from Pseudomonas aeruginosa, and present inhibition data for several ligands. These data should be useful for the production of homogeneous samples of phosphorylated or unphosphorylated proteins, which are essential for biophysical characterization of these enzymes.

  10. The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages.

    Science.gov (United States)

    Brewer, Tess E; Stroupe, M Elizabeth; Jones, Kathryn M

    2014-02-01

    Phage ΦM12 is an important transducing phage of the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. Here we report the genome, phylogenetic analysis, and proteome of ΦM12, the first report of the genome and proteome of a rhizobium-infecting T4-superfamily phage. The structural genes of ΦM12 are most similar to T4-superfamily phages of cyanobacteria. ΦM12 is the first reported T4-superfamily phage to lack genes encoding class I ribonucleotide reductase (RNR) and exonuclease dexA, and to possess a class II coenzyme B12-dependent RNR. ΦM12's novel collection of genes establishes it as the founder of a new group of T4-superfamily phages, fusing features of cyanophages and phages of enteric bacteria. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Phylogenetic approach for inferring the origin and functional evolution of bacterial ADP-ribosylation superfamily.

    Science.gov (United States)

    Chellapandi, P; Sakthishree, S; Bharathi, M

    2013-09-01

    Bacterial ADP-ribosyltransferases (BADPRTs) are extensively contributed to determine the strain-specific virulence state and pathogenesis in human hosts. Understanding molecular evolution and functional diversity of the BADPRTs is an important standpoint to describe the fundamental behind in the vaccine designing for bacterial infections. In the present study, we have evaluated the origin and functional evolution of conserved domains within the BADPRTs by analyzing their sequence-function relationship. To represent the evolution history of BADPRTs, phylogenetic trees were constructed based on their protein sequence, structure and conserved domains using different evolutionary programs. Sequence divergence and genetic diversity were studied herein to deduce the functional evolution of conserved domains across the family and superfamily. The results of sequence similarity search have shown that three hypothetical proteins (above 90%) were identical to the members of BADPRTs and their functions were annotated by phylogenetic approach. Phylogenetic analysis of this study has revealed the family members of BADPRTs were phylogenetically related to one another, functionally diverged within the same family, and dispersed into closely related bacteria. The presence of core substitution pattern in the conserved domains would determine the family-specific function of BADPRTs. Functional diversity of the BADPRTs was exclusively distinguished by Darwinian positive selection (diphtheria toxin C and pertussis toxin S) and neutral selection (arginine ADP-ribosyltransferase, enterotoxin A and binary toxin A) acting on the existing domains. Many of the family members were sharing their sequence-specific features from members in the arginine ADP-ribosyltransferase family. Conservative functions of members in the BADPRTs have shown to be expanded only within closely related families, and retained as such in pathogenic bacteria by evolutionary process (domain duplication or

  12. Fauna Europaea: Coleoptera 2 (excl. series Elateriformia, Scarabaeiformia, Staphyliniformia and superfamily Curculionoidea)

    Science.gov (United States)

    Alonso Zarazaga, Miguel-Angel; Slipinski, Adam; Nilsson, Anders; Jelínek, Josef; Taglianti, Augusto Vigna; Turco, Federica; Otero, Carlos; Canepari, Claudio; Kral, David; Liberti, Gianfranco; Sama, Gianfranco; Nardi, Gianluca; Löbl, Ivan; Horak, Jan; Kolibac, Jiri; Háva, Jirí; Sapiejewski, Maciej; Jäch, Manfred; Bologna, Marco Alberto; Biondi, Maurizio; Nikitsky, Nikolai B.; Mazzoldi, Paolo; Zahradnik, Petr; Wegrzynowicz, Piotr; Constantin, Robert; Gerstmeier, Roland; Zhantiev, Rustem; Fattorini, Simone; Tomaszewska, Wioletta; Rücker, Wolfgang H.; Vazquez-Albalate, Xavier; Cassola, Fabio; Angelini, Fernando; Johnson, Colin; Schawaller, Wolfgang; Regalin, Renato; Baviera, Cosimo; Rocchi, Saverio; Cianferoni, Fabio; Beenen, Ron; Schmitt, Michael; Sassi, David; Kippenberg, Horst; Zampetti, Marcello Franco; Trizzino, Marco; Chiari, Stefano; Carpaneto, Giuseppe Maria; Sabatelli, Simone

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Coleoptera represent a huge assemblage of holometabolous insects, including as a whole more than 200 recognized families and some 400,000 described species worldwide. Basic information is summarized on their biology, ecology, economic relevance, and estimated number of undescribed species worldwide. Little less than 30,000 species are listed from Europe. The Coleoptera 2 section of the Fauna Europaea database (Archostemata, Myxophaga, Adephaga and Polyphaga excl. the series Elateriformia, Scarabaeiformia, Staphyliniformia and the superfamily Curculionoidea) encompasses 80 families (according to the previously accepted family-level systematic framework) and approximately 13,000 species. Tabulations included a complete list of the families dealt with, the number of species in each, the names of all involved specialists, and, when possible, an estimate of the gaps in terms of total number of species at an European level. A list of some recent useful references is appended. Most families included in the Coleoptera 2 Section have been updated in the most recent release of the Fauna Europaea index, or are ready to be updated as soon as the FaEu data management environment completes its migration from Zoological Museum Amsterdam to Berlin Museum für Naturkunde

  13. Diverticulitis and Crohn's disease have distinct but overlapping tumor necrosis superfamily 15 haplotypes.

    Science.gov (United States)

    Connelly, Tara M; Choi, Christine S; Berg, Arthur S; Harris, Leonard; Coble, Joel; Koltun, Walter A

    2017-06-15

    Diverticulitis (DD) and Crohn's disease (CD) have overlapping features including bowel structuring, inflammation, and infection. Tumor necrosis superfamily 15 (TNFSF15) is an immunoregulatory, anti-angiogenic gene. CD has been previously associated with a haplotype of five TNFSF15 single-nucleotide polymorphism alleles: rs3810936 (G allele), rs6478108 (A), rs6478109 (G), rs7848647 (G), and rs7869487 (A). We aimed to determine the TNFSF15 risk haplotype for DD versus controls with a subgroup analysis of youthful DD patients (aged ≤55 y) versus older controls (aged ≥55 y). A total of 148 diverticulitis patients (90 aged ≤55 y) and 200 controls (87 aged ≥55 y) were genotyped using our custom-designed Illumina Veracode microarray chip. Genotypes from rs3810936, rs6478108, rs6478109, rs7848647, rs7869487 and two additional TNFSF15 single nucleotide polymorphisms, rs3810936 and rs11554257, were analyzed. PHASE version 2.1, R with HaploStats and the Broad Institute's Haploview program were used for statistics and imputed haplotype frequency. Permutation corrected for multiple comparisons. The CD GAGGA haplotype was significantly associated with diverticulitis (P = 0.03) in the all DD versus all controls comparison. A second haplotype, rs6478108 (A), rs6478109 (G), rs7869487 (A), and rs4263839 (G), was also associated with DD in this cohort (P = 0.025). A third haplotype rs6478108 (A), rs6478109 (G), rs7848647 (G) and rs7869487 (A), rs4263839 (G) was demonstrated in the DD 55 comparison (P = 0.045). Distinct but overlapping TNFSF15 haplotypes were demonstrated in diverticulitis patients versus healthy controls when compared with the known Crohn's risk haplotype suggesting similar but distinct genetic predispositions. This study strengthens the role for a genetic predisposition to diverticulitis that involves the TNFSF15 gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling.

    Science.gov (United States)

    Ersoy, Baran A; Tarun, Akansha; D'Aquino, Katharine; Hancer, Nancy J; Ukomadu, Chinweike; White, Morris F; Michel, Thomas; Manning, Brendan D; Cohen, David E

    2013-07-30

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenced by insulin-independent IRS2 activation after knockdown, genetic ablation, or chemical inhibition of PC-TP. In addition, IRS2 was activated after knockdown of THEM2, providing support for a role for the interaction of PC-TP with THEM2 in suppressing insulin signaling. Additionally, we showed that PC-TP bound to tuberous sclerosis complex 2 (TSC2) and stabilized the components of the TSC1-TSC2 complex, which functions to inhibit mTORC1. Preventing phosphatidylcholine from binding to PC-TP disrupted interactions of PC-TP with THEM2 and TSC2, and disruption of the PC-TP-THEM2 complex was associated with increased activation of both IRS2 and mTORC1. In livers of mice with genetic ablation of PC-TP or that had been treated with a PC-TP inhibitor, steady-state amounts of IRS2 were increased, whereas those of TSC2 were decreased. These findings reveal a phospholipid-dependent mechanism that suppresses insulin signaling downstream of its receptor.

  15. The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns.

    Science.gov (United States)

    Moummou, Hanane; Kallberg, Yvonne; Tonfack, Libert Brice; Persson, Bengt; van der Rest, Benoît

    2012-11-20

    Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved 'Rossmann-fold' structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs), improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce. Wide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM) based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types - 'classical', 'extended' and 'divergent' - but a minority (10% of the predicted SDRs) could not be classified into these general types ('unknown' or 'atypical' types). In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families - tropinone reductase-like proteins (SDR65C), 'ABA2-like'-NAD dehydrogenase (SDR110C), 'salutaridine/menthone-reductase-like' proteins (SDR114C), 'dihydroflavonol 4-reductase'-like proteins (SDR108E) and 'isoflavone-reductase-like' (SDR460A) proteins - have undergone significant functional diversification within vascular plants since they diverged from Bryophytes. Interestingly, these diversified families are either involved in the secondary metabolism routes (terpenoids, alkaloids, phenolics) or participate in developmental processes (hormone biosynthesis or catabolism, flower development), in opposition to SDR families involved in primary

  16. Functional Identification and Structure Determination of Two Novel Prolidases from cog1228 in the Amidohydrolase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao Feng; Patskovsky, Yury; Xu, Chengfu; Fedorov, Alexander A.; Fedorov, Elena V.; Sisco, Abby A.; Sauder, J. Michael; Burley, Stephen K.; Almo, Steven C.; Raushel, Frank M. (Einstein); (TAM); (Lilly)

    2010-12-07

    Two uncharacterized enzymes from the amidohydrolase superfamily belonging to cog1228 were cloned, expressed, and purified to homogeneity. The two proteins, Sgx9260c (gi|44242006) and Sgx9260b (gi|44479596), were derived from environmental DNA samples originating from the Sargasso Sea. The catalytic function and substrate profiles for Sgx9260c and Sgx9260b were determined using a comprehensive library of dipeptides and N-acyl derivative of L-amino acids. Sgx9260c catalyzes the hydrolysis of Gly-L-Pro, L-Ala-L-Pro, and N-acyl derivatives of L-Pro. The best substrate identified to date is N-acetyl-L-Pro with a value of k{sub cat}/K{sub m} of 3 x 10{sup 5} M{sup -1} s{sup -1}. Sgx9260b catalyzes the hydrolysis of L-hydrophobic L-Pro dipeptides and N-acyl derivatives of L-Pro. The best substrate identified to date is N-propionyl-L-Pro with a value of k{sub cat}/K{sub m} of 1 x 10{sup 5} M{sup -1} s{sup -1}. Three-dimensional structures of both proteins were determined by X-ray diffraction methods (PDB codes 3MKV and 3FEQ). These proteins fold as distorted ({beta}/{alpha})8-barrels with two divalent cations in the active site. The structure of Sgx9260c was also determined as a complex with the N-methylphosphonate derivative of L-Pro (PDB code 3N2C). In this structure the phosphonate moiety bridges the binuclear metal center, and one oxygen atom interacts with His-140. The {alpha}-carboxylate of the inhibitor interacts with Tyr-231. The proline side chain occupies a small substrate binding cavity formed by residues contributed from the loop that follows {beta}-strand 7 within the ({beta}/{alpha})8-barrel. A total of 38 other proteins from cog1228 are predicted to have the same substrate profile based on conservation of the substrate binding residues. The structure of an evolutionarily related protein, Cc2672 from Caulobacter crecentus, was determined as a complex with the N-methylphosphonate derivative of L-arginine (PDB code 3MTW).

  17. A Survey of the ATP-Binding Cassette (ABC Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis.

    Directory of Open Access Journals (Sweden)

    Greta Carmona-Antoñanzas

    Full Text Available Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837, are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences, C (11 and G (2. The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance.

  18. A Survey of the ATP-Binding Cassette (ABC) Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis).

    Science.gov (United States)

    Carmona-Antoñanzas, Greta; Carmichael, Stephen N; Heumann, Jan; Taggart, John B; Gharbi, Karim; Bron, James E; Bekaert, Michaël; Sturm, Armin

    2015-01-01

    Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance.

  19. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  20. Mutations in a Conserved Domain of E. coli MscS to the Most Conserved Superfamily Residue Leads to Kinetic Changes.

    Directory of Open Access Journals (Sweden)

    Hannah R Malcolm

    Full Text Available In Escherichia coli (E. coli the mechanosensitive channel of small conductance, MscS, gates in response to membrane tension created from acute external hypoosmotic shock, thus rescuing the bacterium from cell lysis. E. coli MscS is the most well studied member of the MscS superfamily of channels, whose members are found throughout the bacterial and plant kingdoms. Homology to the pore lining helix and upper vestibule domain of E. coli MscS is required for inclusion into the superfamily. Although highly conserved, in the second half of the pore lining helix (TM3B, E. coli MscS has five residues significantly different from other members of the superfamily. In superfamilies such as this, it remains unclear why variations within such a homologous region occur: is it tolerance of alternate residues, or does it define functional variance within the superfamily? Point mutations (S114I/T, L118F, A120S, L123F, F127E/K/T and patch clamp electrophysiology were used to study the effect of changing these residues in E. coli MscS on sensitivity and gating. The data indicate that variation at these locations do not consistently lead to wildtype channel phenotypes, nor do they define large changes in mechanosensation, but often appear to effect changes in the E. coli MscS channel gating kinetics.

  1. Generic revision of the large-winged mite superfamily Galumnoidea (Acari, Oribatida) of the world.

    Science.gov (United States)

    Ermilov, Sergey G; Klimov, Pavel B

    2017-11-27

    Genus-level taxa in the oribatid mite superfamily Galumnoidea (Acari, Oribatida) are revised based on morphology of adults and a previously published phylogenetic analysis. We give a concise overview of the general morphology of Galumnoidea, diagnoses and a key for families, genera, and subgenera, and a taxonomic list with two families, 39 genera, 9 non-nominal subgenera, and 590 species. The following nomenclatorial changes to genus-group taxa resulted from our revision: Allogalumna (Allogalumna) Grandjean, 1936 (=Xenogalumna Balogh, 1960(b) syn. nov.), Flagellozetes (Cosmogalumna) Aoki, 1988 comb. nov. (from Galumna (Cosmogalumna)), Flagellozetes (Variogalumna) Mahunka, 1995 stat. nov., Galumna (Galumna) Heyden, 1826 (=Rostrogalumna Engelbrecht, 1973 syn. nov.), Pilogalumna Grandjean, 1956(a) (=Disparagalumna Hammer, 1973 syn. nov.), Trichogalumna (Tanzanycha) Koçak & Kemal, 2008 stat. nov., Galumnella Berlese, 1916(a) (=Monogalumnella Mahunka, 1986 syn. nov. =Trichogalumnella Mahunka, 1992 syn. nov., =Bigalumnella Mahunka, 1994 syn. nov.). The following changes are made to species-group nomenclature: Angulogalumna areolata (Starý, 2005) comb. nov. (from Cuspidogalumna) et stat. ressur. (=Galumna (Angulogalumna) staryi Subías, 2010 syn. nov. replacement name for secondary homonym Galumna (Angulogalumna) areolata (Starý, 2005)), Allogalumna (Allogalumna) longula (Balogh, 1960(b)) comb. nov. (from Xenogalumna), Flagellozetes (Cosmogalumna) areticulata (Ermilov, Sandmann, Klarner, Widyastuti & Scheu, 2015(d)) comb. nov. (from Galumna (Cosmogalumna)), F. (C.) dongnaiensis (Ermilov & Anichkin, 2013) comb. nov. (from Galumna (Cosmogalumna)), F. (C.) ekaterinae (Ermilov & Friedrich, 2016(b)) comb. nov. (from Galumna (Cosmogalumna)), F. (C.) hiroyoshii (Nakamura & Fujikawa, 2004) comb. nov. (from Galumna (Cosmogalumna)), F. (C.) ornata (Aoki, 1988) comb. nov. (from Galumna (Cosmogalumna)), F. (C.) imperfectus (Aoki & Hu, 1993) comb. nov. (from Galumna (Cosmogalumna

  2. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Directory of Open Access Journals (Sweden)

    Dae Seok Eom

    Full Text Available The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11. We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  3. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mushegian, Arcady R., E-mail: mushegian2@gmail.com [Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es [Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 València (Spain); The Santa Fe Institute, Santa Fe, NM 87501 (United States)

    2015-02-15

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, and positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.

  4. Evolutionary Expansion of the Amidohydrolase Superfamily in Bacteria in Response to the Synthetic Compounds Molinate and Diuron

    Science.gov (United States)

    Sugrue, Elena; Fraser, Nicholas J.; Hopkins, Davis H.; Carr, Paul D.; Khurana, Jeevan L.; Oakeshott, John G.; Scott, Colin

    2015-01-01

    The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible. PMID:25636851

  5. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shanshan; Li, Han; Gao, Feng; Zhou, Ying, E-mail: zhouying@moon.ibp.ac.cn

    2015-08-07

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryo development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. - Highlights: • The crystal structure of recombinant fTHEM2 is presented. • fTHEM2 is capable of hydrolyzing palmitoyl-CoA. • The influence of fTHEM2 on early embryo development is demonstrated.

  6. The Unique Role of the ECERIFERUM2-LIKE Clade of the BAHD Acyltransferase Superfamily in Cuticular Wax Metabolism.

    Science.gov (United States)

    Haslam, Tegan M; Gerelle, Wesley K; Graham, Sean W; Kunst, Ljerka

    2017-06-13

    The elongation of very-long-chain fatty acids is a conserved process used for the production of many metabolites, including plant cuticular waxes. The elongation of precursors of the most abundant cuticular wax components of some plants, however, is unique in requiring ECERIFERUM2-LIKE (CER2-LIKE) proteins. CER2-LIKEs are a clade within the BAHD superfamily of acyltransferases. They are known to be required for cuticular wax production in both Arabidopsis and maize based on mutant studies. Heterologous expression of Arabidopsis and rice CER2-LIKEs in Saccharomyces cerevisiae has demonstrated that they modify the chain-length specificity of elongation when paired with particular condensing enzymes. Despite sequence homology, CER2-LIKEs are distinct from the BAHD superfamily in that they do not appear to use acyl transfer activity to fulfill their biological function. Here, we review the discovery and characterization of CER2-LIKEs, propose several models to explain their function, and explore the importance of CER2-LIKE proteins for the evolution of plant cuticles.

  7. The Unique Role of the ECERIFERUM2-LIKE Clade of the BAHD Acyltransferase Superfamily in Cuticular Wax Metabolism

    Directory of Open Access Journals (Sweden)

    Tegan M. Haslam

    2017-06-01

    Full Text Available The elongation of very-long-chain fatty acids is a conserved process used for the production of many metabolites, including plant cuticular waxes. The elongation of precursors of the most abundant cuticular wax components of some plants, however, is unique in requiring ECERIFERUM2-LIKE (CER2-LIKE proteins. CER2-LIKEs are a clade within the BAHD superfamily of acyltransferases. They are known to be required for cuticular wax production in both Arabidopsis and maize based on mutant studies. Heterologous expression of Arabidopsis and rice CER2-LIKEs in Saccharomyces cerevisiae has demonstrated that they modify the chain-length specificity of elongation when paired with particular condensing enzymes. Despite sequence homology, CER2-LIKEs are distinct from the BAHD superfamily in that they do not appear to use acyl transfer activity to fulfill their biological function. Here, we review the discovery and characterization of CER2-LIKEs, propose several models to explain their function, and explore the importance of CER2-LIKE proteins for the evolution of plant cuticles.

  8. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.

    Science.gov (United States)

    Dong, Zheng; Zhou, Hongyu; Tao, Peng

    2018-02-01

    PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.

  9. Tracing the Evolutionary History of the CAP Superfamily of Proteins Using Amino Acid Sequence Homology and Conservation of Splice Sites.

    Science.gov (United States)

    Abraham, Anup; Chandler, Douglas E

    2017-10-01

    Proteins of the CAP superfamily play numerous roles in reproduction, innate immune responses, cancer biology, and venom toxicology. Here we document the breadth of the CAP (Cysteine-RIch Secretory Protein (CRISP), Antigen 5, and Pathogenesis-Related) protein superfamily and trace the major events in its evolution using amino acid sequence homology and the positions of exon/intron borders within their genes. Seldom acknowledged in the literature, we find that many of the CAP subfamilies present in mammals, where they were originally characterized, have distinct homologues in the invertebrate phyla. Early eukaryotic CAP genes contained only one exon inherited from prokaryotic predecessors and as evolution progressed an increasing number of introns were inserted, reaching 2-5 in the invertebrate world and 5-15 in the vertebrate world. Focusing on the CRISP subfamily, we propose that these proteins evolved in three major steps: (1) origination of the CAP/PR/SCP domain in bacteria, (2) addition of a small Hinge domain to produce the two-domain SCP-like proteins found in roundworms and anthropoids, and (3) addition of an Ion Channel Regulatory domain, borrowed from invertebrate peptide toxins, to produce full length, three-domain CRISP proteins, first seen in insects and later to diversify into multiple subtypes in the vertebrate world.

  10. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Fink, Lisbeth Nielsen; Frøkiær, Hanne

    2007-01-01

    maintenance of the gut immune homeostasis. Here we report novel crosstalk mechanisms between the human enterocyte cell line, Caco2, and underlying human monocyte-derived DC in a transwell model where Gram-positive (G+) commensals prevent Toll-like receptor-4 (TLR4)-dependent Escherichia coli...

  11. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Lorentzen, J C; Mustafa, M I

    1996-01-01

    Experimental autoimmune encephalomyelitis (EAE) in rats is typically a brief and monophasic disease with sparse demyelination. However, inbred DA rats develop a demyelinating, prolonged and relapsing encephalomyelitis after immunization with rat spinal cord in incomplete Freund's adjuvant...

  12. Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Mustafa, M; Ljungdahl, A

    1995-01-01

    to limit central nervous system (CNS) inflammation. In lymphoid organs, primed MBP 63-88 reactive T cells showed an interesting time-dependent evolution of their cytokine production in vitro. Thus, early after immunization there was a conspicuous MBP 63-88-induced production of both IFN-gamma and IL-4......-beta) both in sections of spinal cords and the antigen-induced expression of these cytokines by lymphoid cells after stimulation with a dominant encephalitogenic peptide of MBP (MBP 63-88) during the course of actively induced experimental autoimmune encephalomyelitis (EAE) in Lewis rats. In spinal cords...... autoimmunity systemically....

  13. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata.

    Directory of Open Access Journals (Sweden)

    Li-Hung Chen

    Full Text Available Major Facilitator Superfamily (MFS transporters play an important role in multidrug resistance in fungi. We report an AaMFS19 gene encoding a MFS transporter required for cellular resistance to oxidative stress and fungicides in the phytopathogenic fungus Alternaria alternata. AaMFS19, containing 12 transmembrane domains, displays activity toward a broad range of substrates. Fungal mutants lacking AaMFS19 display profound hypersensitivities to cumyl hydroperoxide, potassium superoxide, many singlet oxygen-generating compounds (eosin Y, rose Bengal, hematoporphyrin, methylene blue, and cercosporin, and the cell wall biosynthesis inhibitor, Congo red. AaMFS19 mutants also increase sensitivity to copper ions, clotrimazole, fludioxonil, and kocide fungicides, 2-chloro-5-hydroxypyridine (CHP, and 2,3,5-triiodobenzoic acid (TIBA. AaMFS19 mutants induce smaller necrotic lesions on leaves of a susceptible citrus cultivar. All observed phenotypes in the mutant are restored by introducing and expressing a wild-type copy of AaMFS19. The wild-type strain of A. alternata treated with either CHP or TIBA reduces radial growth and formation and germination of conidia, increases hyphal branching, and results in decreased expression of the AaMFS19 gene. The expression of AaMFS19 is regulated by the Yap1 transcription activator, the Hog1 and Fus3 mitogen-activated protein (MAP kinases, the 'two component' histidine kinase, and the Skn7 response regulator. Our results demonstrate that A. alternata confers resistance to different chemicals via a membrane-bound MFS transporter.

  14. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Shu-Ting Pan

    2016-06-01

    Full Text Available The human cytochrome P450 (CYP superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA (“Orthologous MAtrix” Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery.

  15. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  16. Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1b on CD8+ T Cells and TNF Receptor Superfamily Member 1a on Non-CD8+ T Cells Contribute Significantly to Upper Genital Tract Pathology Following Chlamydial Infection.

    Science.gov (United States)

    Manam, Srikanth; Thomas, Joshua D; Li, Weidang; Maladore, Allison; Schripsema, Justin H; Ramsey, Kyle H; Murthy, Ashlesh K

    2015-06-15

    We demonstrated previously that tumor necrosis factor α (TNF-α)-producing Chlamydia-specific CD8(+) T cells cause oviduct pathological sequelae. In the current study, we used wild-type C57BL/6J (WT) mice with a deficiency in genes encoding TNF receptor superfamily member 1a (TNFR1; TNFR1 knockout [KO] mice), TNF receptor superfamily member 1b (TNFR2; TNFR2 KO mice), and both TNFR1 and TNFR2 (TNFR1/2 double KO [DKO] mice) and mix-match adoptive transfers of CD8(+) T cells to study chlamydial pathogenesis. TNFR1 KO, TNFR2 KO, and TNFR1/2 DKO mice displayed comparable clearance of primary or secondary genital Chlamydia muridarum infection but significantly reduced oviduct pathology, compared with WT animals. The Chlamydia-specific total cellular cytokine response in splenic and draining lymph nodes and the antibody response in serum were comparable between the WT and KO animals. However, CD8(+) T cells from TNFR2 KO mice displayed significantly reduced activation (CD11a expression and cytokine production), compared with TNFR1 KO or WT animals. Repletion of TNFR2 KO mice with WT CD8(+) T cells but not with TNFR2 KO CD8(+) T cells and repletion of TNFR1 KO mice with either WT or TNFR1 KO CD8(+) T cells restored oviduct pathology to WT levels in both KO groups. Collectively, these results demonstrate that TNFR2-bearing CD8(+) T cells and TNFR1-bearing non-CD8(+) T cells contribute significantly to oviduct pathology following genital chlamydial infection. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Hydrogen/deuterium exchange and mass spectrometric analysis of a protein containing multiple disulfide bonds: Solution structure of recombinant macrophage colony stimulating factor-beta (rhM-CSFβ)

    Science.gov (United States)

    Yan, Xuguang; Zhang, Heidi; Watson, Jeffrey; Schimerlik, Michael I.; Deinzer, Max L.

    2002-01-01

    Studies with the homodimeric recombinant human macrophage colony-stimulating factor beta (rhM-CSFβ), show for the first time that a large number (9) of disulfide linkages can be reduced after amide hydrogen/deuterium (H/D) exchange, and the protein digested and analyzed successfully for the isotopic composition by electrospray mass spectrometry. Analysis of amide H/D after exchange-in shows that in solution the conserved four-helix bundle of (rhM-CSFβ) has fast and moderately fast exchangeable sections of amide hydrogens in the αA helix, and mostly slow exchanging sections of amide hydrogens in the αB, αC, and αD helices. Most of the amide hydrogens in the loop between the β1 and β4 sheets exhibited fast or moderately fast exchange, whereas in the amino acid 63–67 loop, located at the interface of the two subunits, the exchange was slow. Solvent accessibility as measured by H/D exchange showed a better correlation with the average depth of amide residues calculated from reported X-ray crystallographic data for rhM-CSFα than with the average B-factor. The rates of H/D exchange in rhM-CSFβ appear to correlate well with the exposed surface calculated for each amino acid residue in the crystal structure except for the αD helix. Fast hydrogen isotope exchange throughout the segment amino acids 150–221 present in rhM-CSFβ, but not rhM-CSFα, provides evidence that the carboxy-terminal region is unstructured. It is, therefore, proposed that the anomalous behavior of the αD helix is due to interaction of the carboxy-terminal tail with this helical segment. PMID:12192067

  18. Growth factor transgenes interactively regulate articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  19. Growth/differentiation factor-15: prostate cancer suppressor or promoter?

    Czech Academy of Sciences Publication Activity Database

    Vaňhara, P.; Hampl, A.; Kozubík, Alois; Souček, Karel

    2012-01-01

    Roč. 15, č. 4 (2012), s. 320-328 ISSN 1365-7852 R&D Projects: GA MZd NS9600; GA MZd NS9956 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : MACROPHAGE-INHIBITORY CYTOKINE-1 * GROWTH-DIFFERENTIATION FACTOR-15 * TGF-BETA SUPERFAMILY Subject RIV: BO - Biophysics Impact factor: 2.811, year: 2012

  20. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator.

    Directory of Open Access Journals (Sweden)

    Vicky Wang-Wei Tsai

    Full Text Available The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1(-/- weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1(-/- mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1(-/- mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.

  1. KinMutRF: a random forest classifier of sequence variants in the human protein kinase superfamily

    DEFF Research Database (Denmark)

    Pons, Tirso; Vazquez, Miguel; Matey-Hernandez, María Luisa

    2016-01-01

    remains challenging: cells tolerate most genomic alterations and only a minor fraction disrupt molecular function sufficiently and drive disease. Results: KinMutRF is a novel random-forest method to automatically identify pathogenic variants in human kinases. Twenty six decision trees implemented......Background: The association between aberrant signal processing by protein kinases and human diseases such as cancer was established long time ago. However, understanding the link between sequence variants in the protein kinase superfamily and the mechanistic complex traits at the molecular level...... as a random forest ponder a battery of features that characterize the variants: a) at the gene level, including membership to a Kinbase group and Gene Ontology terms; b) at the PFAM domain level; and c) at the residue level, the types of amino acids involved, changes in biochemical properties, functional...

  2. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-10-01

    Full Text Available Abstract Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. Reviewers This article was reviewed by Eugene Koonin and Mark Ragan.

  3. RECEPTOR SUPERFAMILY OF TUMOR NECROSIS FACTOR Α, AND HSP90 HEAT SHOCK PROTEIN: A MOLECULAR BASIS FOR INTERACTIONS

    Directory of Open Access Journals (Sweden)

    N. V. Ryazantseva

    2011-01-01

    Full Text Available Abstract.  A  study  was  performed  aiming  to  investigate  interactions  between  TNFα  receptor  (TNF1 superfamily and heat shock protein Hsp90, using a Jurkat tumor cell line. The tumor cells cultured in presence of Hsp90 inhibitor (17-AAG showed increased numbers of cells, presenting surface TNFR1 and FasR, which facilitate  triggering  of  programmed  cell  death.  It  was  also  revealed  that  Hsp90  blockage  under  the  in  vitro conditions causes a decrease in FasL, while not affecting TNFα and sTNFR1 production by the tumor cells. (Med. Immunol., 2011, vol. 13, N 2-3, pp 247-252 

  4. A novel inhibitor of α9α10 nicotinic acetylcholine receptors from Conus vexillum delineates a new conotoxin superfamily.

    Directory of Open Access Journals (Sweden)

    Sulan Luo

    Full Text Available Conotoxins (CTxs selectively target a range of ion channels and receptors, making them widely used tools for probing nervous system function. Conotoxins have been previously grouped into superfamilies according to signal sequence and into families based on their cysteine framework and biological target. Here we describe the cloning and characterization of a new conotoxin, from Conus vexillum, named αB-conotoxin VxXXIVA. The peptide does not belong to any previously described conotoxin superfamily and its arrangement of Cys residues is unique among conopeptides. Moreover, in contrast to previously characterized conopeptide toxins, which are expressed initially as prepropeptide precursors with a signal sequence, a ''pro'' region, and the toxin-encoding region, the precursor sequence of αB-VxXXIVA lacks a ''pro'' region. The predicted 40-residue mature peptide, which contains four Cys, was synthesized in each of the three possible disulfide arrangements. Investigation of the mechanism of action of αB-VxXXIVA revealed that the peptide is a nicotinic acetylcholine receptor (nAChR antagonist with greatest potency against the α9α10 subtype. (1H nuclear magnetic resonance (NMR spectra indicated that all three αB-VxXXIVA isomers were poorly structured in aqueous solution. This was consistent with circular dichroism (CD results which showed that the peptides were unstructured in buffer, but adopted partially helical conformations in aqueous trifluoroethanol (TFE solution. The α9α10 nAChR is an important target for the development of analgesics and cancer chemotherapeutics, and αB-VxXXIVA represents a novel ligand with which to probe the structure and function of this protein.

  5. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam.

    Science.gov (United States)

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As(V) than the wild homo type. Higher percentage of DMA(V) in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As(V) to As(III). Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Analysis of the Active-Site Mechanism of Tyrosyl-DNA Phosphodiesterase I: A Member of the Phospholipase D Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Stefan; Comeaux, Evan Q.; Jafari, Nauzanene; Bharatham, Nagakumar; Bashford, Donald; White, Stephen W.; van Waardenburg, Robert C.A.M. (UAB); (SJCH)

    2012-03-15

    Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines - one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK{sub a} of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.

  7. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-01-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST ω1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST ω2 (GSTO2) Asn142Asp, GST π1 (GSTP1) Ile105Val, GST μ1 (GSTM1) wild/null, and GST θ1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As V than the wild homo type. Higher percentage of DMA V in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As V to As III . Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  8. A novel mechanism of iron-core formation by Pyrococcus furiosus archaeoferritin, a member of an uncharacterized branch of the ferritin-like superfamily

    NARCIS (Netherlands)

    Honarmand Ebrahimi, K.; Hagedoorn, P.L.; Van der Weel, L.; Verhaert, P.D.E.M.; Hagen, W.R.

    2012-01-01

    Storage of iron in a nontoxic and bioavailable form is essential for many forms of life. Three subfamilies of the ferritin-like superfamily, namely, ferritin, bacterioferritin, and Dps (DNA-binding proteins from starved cells), are able to store iron. Although the function of these iron-storage

  9. Aspergillus niger protein estA defines a new class of fungal esterases within the alfa/beta hydrolase fold superfamily of proteins

    NARCIS (Netherlands)

    Bourne, Y.; Hasper, A.A.; Chahinian, H.; Juin, M.; Graaff, de L.H.

    2004-01-01

    From the fungus Aspergillus niger, we identified a new gene encoding protein EstA, a member of the alpha/beta-hydrolase fold superfamily but of unknown substrate specificity. EstA was overexpressed and its crystal structure was solved by molecular replacement using a lipaseacetylcholinesterase

  10. Structure of the human CD97 gene: exon shuffling has generated a new type of seven-span transmembrane molecule related to the secretin receptor superfamily

    NARCIS (Netherlands)

    Hamann, J. [=Jörg; Hartmann, E.; van Lier, R. A.

    1996-01-01

    Recent cDNA cloning of EMR1 and CD97 suggests the existence of a new group of seven-span transmembrane (7-TM) molecules, likely encoded by a gene cluster on the short arm of chromosome 19. The membrane-spanning region of both molecules is homologous to the secretin receptor (SecR) superfamily, a

  11. Regulation of fetal male germ cell development by members of the TGFβ superfamily

    Directory of Open Access Journals (Sweden)

    Cassy Spiller

    2017-10-01

    Full Text Available There is now substantial evidence that members of the transforming growth factor-β (TGFβ family regulate germ cell development in the mouse fetal testis. Correct development of germ cells during fetal life is critical for establishment of effective spermatogenesis and for avoiding the formation of testicular germ cell cancer in later life. Here we consider the evidence for involvement of various TGFβ family members, attempt to reconcile discrepancies and clarify what we believe to be the likely in vivo roles of these factors.

  12. Regulation of fetal male germ cell development by members of the TGFβ superfamily.

    Science.gov (United States)

    Spiller, Cassy; Burnet, Guillaume; Bowles, Josephine

    2017-10-01

    There is now substantial evidence that members of the transforming growth factor-β (TGFβ family) regulate germ cell development in the mouse fetal testis. Correct development of germ cells during fetal life is critical for establishment of effective spermatogenesis and for avoiding the formation of testicular germ cell cancer in later life. Here we consider the evidence for involvement of various TGFβ family members, attempt to reconcile discrepancies and clarify what we believe to be the likely in vivo roles of these factors. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function*

    Science.gov (United States)

    Luo, Min; Gamage, Thameesha T.; Arentson, Benjamin W.; Schlasner, Katherine N.; Becker, Donald F.; Tanner, John J.

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) catalyze the NAD(P)+-dependent oxidation of aldehydes to carboxylic acids and are important for metabolism and detoxification. Although the ALDH superfamily fold is well established, some ALDHs contain an uncharacterized domain of unknown function (DUF) near the C terminus of the polypeptide chain. Herein, we report the first structure of a protein containing the ALDH superfamily DUF. Proline utilization A from Sinorhizobium meliloti (SmPutA) is a 1233-residue bifunctional enzyme that contains the DUF in addition to proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase catalytic modules. Structures of SmPutA with a proline analog bound to the proline dehydrogenase site and NAD+ bound to the ALDH site were determined in two space groups at 1.7–1.9 Å resolution. The DUF consists of a Rossmann dinucleotide-binding fold fused to a three-stranded β-flap. The Rossmann domain resembles the classic ALDH superfamily NAD+-binding domain, whereas the flap is strikingly similar to the ALDH superfamily dimerization domain. Paradoxically, neither structural element performs its implied function. Electron density maps show that NAD+ does not bind to the DUF Rossmann fold, and small-angle X-ray scattering reveals a novel dimer that has never been seen in the ALDH superfamily. The structure suggests that the DUF is an adapter domain that stabilizes the aldehyde substrate binding loop and seals the substrate-channeling tunnel via tertiary structural interactions that mimic the quaternary structural interactions found in non-DUF PutAs. Kinetic data for SmPutA indicate a substrate-channeling mechanism, in agreement with previous studies of other PutAs. PMID:27679491

  14. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function.

    Science.gov (United States)

    Luo, Min; Gamage, Thameesha T; Arentson, Benjamin W; Schlasner, Katherine N; Becker, Donald F; Tanner, John J

    2016-11-11

    Aldehyde dehydrogenases (ALDHs) catalyze the NAD(P) + -dependent oxidation of aldehydes to carboxylic acids and are important for metabolism and detoxification. Although the ALDH superfamily fold is well established, some ALDHs contain an uncharacterized domain of unknown function (DUF) near the C terminus of the polypeptide chain. Herein, we report the first structure of a protein containing the ALDH superfamily DUF. Proline utilization A from Sinorhizobium meliloti (SmPutA) is a 1233-residue bifunctional enzyme that contains the DUF in addition to proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase catalytic modules. Structures of SmPutA with a proline analog bound to the proline dehydrogenase site and NAD + bound to the ALDH site were determined in two space groups at 1.7-1.9 Å resolution. The DUF consists of a Rossmann dinucleotide-binding fold fused to a three-stranded β-flap. The Rossmann domain resembles the classic ALDH superfamily NAD + -binding domain, whereas the flap is strikingly similar to the ALDH superfamily dimerization domain. Paradoxically, neither structural element performs its implied function. Electron density maps show that NAD + does not bind to the DUF Rossmann fold, and small-angle X-ray scattering reveals a novel dimer that has never been seen in the ALDH superfamily. The structure suggests that the DUF is an adapter domain that stabilizes the aldehyde substrate binding loop and seals the substrate-channeling tunnel via tertiary structural interactions that mimic the quaternary structural interactions found in non-DUF PutAs. Kinetic data for SmPutA indicate a substrate-channeling mechanism, in agreement with previous studies of other PutAs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response.

    Science.gov (United States)

    Wang, Wei; Jiang, Wei; Liu, Juge; Li, Yang; Gai, Junyi; Li, Yan

    2017-07-07

    Aldehyde dehydrogenases (ALDHs) represent a group of enzymes that detoxify aldehydes by facilitating their oxidation to carboxylic acids, and have been shown to play roles in plant response to abiotic stresses. However, the comprehensive analysis of ALDH superfamily in soybean (Glycine max) has been limited. In present study, a total of 53 GmALDHs were identified in soybean, and grouped into 10 ALDH families according to the ALDH Gene Nomenclature Committee and phylogenetic analysis. These groupings were supported by their gene structures and conserved motifs. Soybean ALDH superfamily expanded mainly by whole genome duplication/segmental duplications. Gene network analysis identified 1146 putative co-functional genes of 51 GmALDHs. Gene Ontology (GO) enrichment analysis suggested the co-functional genes of these 51 GmALDHs were enriched (FDR soybean tissues. The expression levels of 13 GmALDHs were significantly up-regulated and 14 down-regulated in response to water deficit. The occurrence frequencies of three drought-responsive cis-elements (ABRE, CRT/DRE, and GTGCnTGC/G) were compared in GmALDH genes that were up-, down-, or non-regulated by water deficit. Higher frequency of these three cis-elements was observed for the group of up-regulated GmALDH genes as compared to the group of down- or non- regulated GmALDHs by drought stress, implying their potential roles in the regulation of soybean response to drought stress. A total of 53 ALDH genes were identified in soybean genome and their phylogenetic relationships and duplication patterns were analyzed. The potential functions of GmALDHs were predicted by analyses of their co-functional gene networks, gene expression profiles, and cis-regulatory elements. Three GmALDH genes, including GmALDH3H2, GmALDH12A2 and GmALDH18B3, were highly induced by drought stress in soybean leaves. Our study provides a foundation for future investigations of GmALDH gene function in soybean.

  16. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  17. Mutations in SERPINB7, Encoding a Member of the Serine Protease Inhibitor Superfamily, Cause Nagashima-type Palmoplantar Keratosis

    Science.gov (United States)

    Kubo, Akiharu; Shiohama, Aiko; Sasaki, Takashi; Nakabayashi, Kazuhiko; Kawasaki, Hiroshi; Atsugi, Toru; Sato, Showbu; Shimizu, Atsushi; Mikami, Shuji; Tanizaki, Hideaki; Uchiyama, Masaki; Maeda, Tatsuo; Ito, Taisuke; Sakabe, Jun-ichi; Heike, Toshio; Okuyama, Torayuki; Kosaki, Rika; Kosaki, Kenjiro; Kudoh, Jun; Hata, Kenichiro; Umezawa, Akihiro; Tokura, Yoshiki; Ishiko, Akira; Niizeki, Hironori; Kabashima, Kenji; Mitsuhashi, Yoshihiko; Amagai, Masayuki

    2013-01-01

    “Nagashima-type” palmoplantar keratosis (NPPK) is an autosomal recessive nonsyndromic diffuse palmoplantar keratosis characterized by well-demarcated diffuse hyperkeratosis with redness, expanding on to the dorsal surfaces of the palms and feet and the Achilles tendon area. Hyperkeratosis in NPPK is mild and nonprogressive, differentiating NPPK clinically from Mal de Meleda. We performed whole-exome and/or Sanger sequencing analyses of 13 unrelated NPPK individuals and identified biallelic putative loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily. We identified a major causative mutation of c.796C>T (p.Arg266∗) as a founder mutation in Japanese and Chinese populations. SERPINB7 was specifically present in the cytoplasm of the stratum granulosum and the stratum corneum (SC) of the epidermis. All of the identified mutants are predicted to cause premature termination upstream of the reactive site, which inhibits the proteases, suggesting a complete loss of the protease inhibitory activity of SERPINB7 in NPPK skin. On exposure of NPPK lesional skin to water, we observed a whitish spongy change in the SC, suggesting enhanced water permeation into the SC due to overactivation of proteases and a resultant loss of integrity of the SC structure. These findings provide an important framework for developing pathogenesis-based therapies for NPPK. PMID:24207119

  18. Identification of a WNT5A-Responsive Degradation Domain in the Kinesin Superfamily Protein KIF26B

    Directory of Open Access Journals (Sweden)

    Edith P. Karuna

    2018-04-01

    Full Text Available Noncanonical WNT pathways function independently of the β-catenin transcriptional co-activator to regulate diverse morphogenetic and pathogenic processes. Recent studies showed that noncanonical WNTs, such as WNT5A, can signal the degradation of several downstream effectors, thereby modulating these effectors’ cellular activities. The protein domain(s that mediates the WNT5A-dependent degradation response, however, has not been identified. By coupling protein mutagenesis experiments with a flow cytometry-based degradation reporter assay, we have defined a protein domain in the kinesin superfamily protein KIF26B that is essential for WNT5A-dependent degradation. We found that a human disease-causing KIF26B mutation located at a conserved amino acid within this domain compromises the ability of WNT5A to induce KIF26B degradation. Using pharmacological perturbation, we further uncovered a role of glycogen synthase kinase 3 (GSK3 in WNT5A regulation of KIF26B degradation. Lastly, based on the identification of the WNT5A-responsive domain, we developed a new reporter system that allows for efficient profiling of WNT5A-KIF26B signaling activity in both somatic and stem cells. In conclusion, our study identifies a new protein domain that mediates WNT5A-dependent degradation of KIF26B and provides a new tool for functional characterization of noncanonical WNT5A signaling in cells.

  19. GH97 is a new family of glycoside hydrolases, which is related to the α-galactosidase superfamily

    Directory of Open Access Journals (Sweden)

    Naumoff Daniil G

    2005-08-01

    Full Text Available Abstract Background As a rule, about 1% of genes in a given genome encode glycoside hydrolases and their homologues. On the basis of sequence similarity they have been grouped into more than ninety GH families during the last 15 years. The GH97 family has been established very recently and initially included only 18 bacterial proteins. However, the evolutionary relationship of the genes encoding proteins of this family remains unclear, as well as their distribution among main groups of the living organisms. Results The extensive search of the current databases allowed us to double the number of GH97 family proteins. Five subfamilies were distinguished on the basis of pairwise sequence comparison and phylogenetic analysis. Iterative sequence analysis revealed the relationship of the GH97 family with the GH27, GH31, and GH36 families of glycosidases, which belong to the α-galactosidase superfamily, as well as a more distant relationship with some other glycosidase families (GH13 and GH20. Conclusion The results of this study show an unexpected sequence similarity of GH97 family proteins with glycoside hydrolases from several other families, that have (β/α8-barrel fold of the catalytic domain and a retaining mechanism of the glycoside bond hydrolysis. These data suggest a common evolutionary origin of glycosidases representing different families and clans.

  20. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings.

    Science.gov (United States)

    McGowan, C P; Skinner, J; Biewener, A A

    2008-02-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (approximately 250 kg) were likely limited in locomotor capacity.

  1. Extracellular Ribonuclease from Bacillus licheniformis (Balifase, a New Member of the N1/T1 RNase Superfamily

    Directory of Open Access Journals (Sweden)

    Yulia Sokurenko

    2016-01-01

    Full Text Available The N1/T1 RNase superfamily comprises enzymes with well-established antitumor effects, such as ribotoxins secreted by fungi, primarily by Aspergillus and Penicillium species, and bacterial RNase secreted by B. pumilus (binase and B. amyloliquefaciens (barnase. RNase is regarded as an alternative to classical chemotherapeutic agents due to its selective cytotoxicity towards tumor cells. New RNase with a high degree of structural similarity with binase (73% and barnase (74% was isolated and purified from Bacillus licheniformis (balifase, calculated molecular weight 12421.9 Da, pI 8.91. The protein sample with enzymatic activity of 1.5 × 106 units/A280 was obtained. The physicochemical properties of balifase are similar to those of barnase. However, in terms of its gene organization and promoter activity, balifase is closer to binase. The unique feature of balifase gene organization consists in the fact that genes of RNase and its inhibitor are located in one operon. Similarly to biosynthesis of binase, balifase synthesis is induced under phosphate starvation; however, in contrast to binase, balifase does not form dimers under natural conditions. We propose that the highest stability of balifase among analyzed RNase types allows the protein to retain its structure without oligomerization.

  2. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily.

    Science.gov (United States)

    Skarydová, Lucie; Wsól, Vladimír

    2012-05-01

    The best known, most widely studied enzyme system in phase I biotransformation is cytochrome P450 (CYP), which participates in the metabolism of roughly 9 of 10 drugs in use today. The main biotransformation isoforms of CYP are associated with the membrane of the endoplasmatic reticulum (ER). Other enzymes that are also active in phase I biotransformation are carbonyl reducing enzymes. Much is known about the role of cytosolic forms of carbonyl reducing enzymes in the metabolism of xenobiotics, but their microsomal forms have been mostly poorly studied. The only well-known microsomal carbonyl reducing enzyme taking part in the biotransformation of xenobiotics is 11β-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase superfamily. Physiological roles of microsomal carbonyl reducing enzymes are better known than their participation in the metabolism of xenobiotics. This review is a summary of the fragmentary information known about the roles of the microsomal forms. Besides 11β-hydroxysteroid dehydrogenase 1, it has been reported, so far, that retinol dehydrogenase 12 participates only in the detoxification of unsaturated aldehydes formed upon oxidative stress. Another promising group of microsomal biotransformation carbonyl reducing enzymes are some members of 17β-hydroxysteroid dehydrogenases. Generally, it is clear that this area is, overall, quite unexplored, but carbonyl reducing enzymes located in the ER have proven very interesting. The study of these enzymes could shed new light on the metabolism of several clinically used drugs or they could become an important target in connection with some diseases.

  3. Myelin-oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex

    Energy Technology Data Exchange (ETDEWEB)

    Pham-Dinh, D.; Dautigny, A. (Institut des Neurosciences, Paris (France)); Mattei, M.G.; Roeckel, N. (Institut National de la Sante et de la Recherche Medicale Unite, Marseille (France)); Nussbaum, J.H.; Roussel, G. (Centre National de la Recherche Scientifique Unite, Strasbourg (France)); Pontarotti, P. (Centre Natinal de la Recherche Scientifique Unite, Toulouse (France)); Mather, I.H. (Univ. of Maryland, College Park, MD (United States)); Artzt, K. (Univ. of Texas, Austin, TX (United States)); Lindahl, K.F. (Univ. of Texas Southwestern Medical Center, Dallas, TX (United States))

    1993-09-01

    Myelin/oligodendrocyte glycoprotein (MOG) is found on the surface of myelinating oligodendrocytes and external lamellae of myelin sheaths in the central nervous system, and it is target antigen in experimental autoimmune encephalomyelitis and multiple sclerosis. The authors have isolated bovine, mouse, and rat MOG cDNA clones and shown that the developmental pattern of MOG expression in the rat central nervous system coincides with the late stages of myelination. The amino-terminal, extracellular domain of MOG has characteristics of an immunoglobulin variable domain and is 46% and 41% identical with the amino terminus of bovine butyrophilin (expressed in the lactating mammary gland) and B-G antigens of the chicken major histocompatibility complex (MHC), respectively; these proteins thus form a subset of the immunoglobulin superfamily. The homology between MOG and B-G extends beyond their structure and genetic mapping to their ability to induce strong antibody responses and has implications for the role of MOG in pathological, autoimmune conditions. The authors colocalized the MOG and BT genes to the human MHC on chromosome 6p21.3-p22. The mouse MOG gene was mapped to the homologous band C of chromosome 17, within the M region of the mouse MHC. 38 refs., 6 figs.

  4. Exploring the role of cellular homologous of the 30K-superfamily of plant virus movement proteins.

    Science.gov (United States)

    Carrasco, José L; Sánchez-Navarro, Jesús A; Elena, Santiago F

    2018-02-21

    Genes orthologous to the 30K-superfamily of movement proteins (MP) from plant viruses have been recently discovered by bioinformatics analyses as integrated elements in the genome of most vascular plants. However, their functional relevance for plants is still unclear. Here, we undertake some preliminary steps into the functional characterization of one of these putative MP genes found in Arabidopsis thaliana. We found that the AtMP gene is expressed at different stages of the plant development, with accumulation being highest in flowers but lowest in mature siliques. We also found down-regulation of the gene may result in a small delay in plant development and in an exacerbation of the negative effect of salinity in germination efficiency. We have also explored whether changes in expression of the endogenous AtMP have any effect on susceptibility to infection with several viruses, and found that the infectivity of tobacco rattle tobravirus was strongly dependent on the expression of the endogenous AtMP. Finally, we have cloned the endogenous MP from four different plant species into an expression vector that allows for specifically assessing their activity as cell-to-cell movement proteins and have shown that though some may still retain the ancestral activity, they do so in a quite inefficient manner, thus suggesting they have acquired a novel function during adaptation to the host genome. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  6. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    Science.gov (United States)

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  7. Role of a new member of IGFBP superfamily, IGFBP-rP10, in proliferation and differentiation of osteoblastic cells

    International Nuclear Information System (INIS)

    Shibata, Yasuaki; Tsukazaki, Tomoo; Hirata, Kazunari; Xin Cheng; Yamaguchi, Akira

    2004-01-01

    Bone regeneration is critically regulated by various molecules. To identify the new genes involved in bone regeneration, we performed microarray-based gene expression analysis using a mouse bone regeneration model. We identified a new member of the IGFBP superfamily, designated IGFBP-rP10, whose expression is up-regulated at the early phase of bone regeneration. IGFBP-rP10 consists of an IGFBP homologous domain followed by a Kazal-type protein inhibitor domain and an immunoglobulin G-like domain. A real-time-based RT-PCR analysis demonstrated that various tissues including bone expressed IGFBP-rP10 mRNA in various degrees, and confirmed an up-regulation at the early phase of bone regeneration. In situ hybridization revealed that osteoblastic cells expressed IGFPB-rP10 mRNA during bone regeneration. Bone morphogenetic protein-2 increased the expression level of IGFBP-rP10 mRNA in various cells including C3H10T1/2, MC3T3-E1, C2C12, and primary murine osteoblastic cells. The addition of recombinant mouse IGFBP-rP10 promoted the proliferation of these cells but failed to stimulate alkaline phosphatase activity. These results suggest that IGFBP-rP10 is involved in the proliferation of osteoblasts during bone formation and bone regeneration

  8. Anatomo-pathological aspects of parasitism by nematodes of the superfamily Metastrongyloidea in wild crab-eating fox (Cerdocyon thous in Midwestern Brazil

    Directory of Open Access Journals (Sweden)

    Jair Alves Ferreira Júnior

    Full Text Available ABSTRACT: Nematodes of the superfamily Metastrongyloidea affect the respiratory, cardiovascular, and nervous systems of domestic carnivores and are uncommonly detected in wild animals. This report describes the lesions associated with pulmonary parasitism by nematodes of the superfamily Metastrongyloidea in a wild crab-eating fox ( Cerdocyon thous in the Federal District, Brazil. Grossly, there was pulmonary hyperemia, edema, and emphysema. Microscopically, there was granulomatous arteritis associated with intravascular metastrongylid. The anatomical location, characteristic lesion, and histological features of the parasite suggested that the nematode involved in this case is Angiostrongylus vasorum . This worm is frequently reported parasitizing pulmonary arteries of domestic canids but is uncommonly described in wild canids in Midwestern Brazil.

  9. Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with 3′ to 5′ translocase and helicase activities

    OpenAIRE

    Yakovleva, Lyudmila; Shuman, Stewart

    2012-01-01

    Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and...

  10. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly.

    OpenAIRE

    Slonim, L N; Pinkner, J S; Brändén, C I; Hultgren, S J

    1992-01-01

    The assembly of adhesive pili in Gram-negative bacteria is modulated by specialized periplasmic chaperone systems. PapD is the prototype member of the superfamily of periplasmic pilus chaperones. Previously, the alignment of chaperone sequences superimposed on the three dimensional structure of PapD revealed the presence of invariant, conserved and variable amino acids. Representative residues that protruded into the PapD cleft were targeted for site directed mutagenesis to investigate the pi...

  11. A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by Fenton reaction.

    Directory of Open Access Journals (Sweden)

    Masaki Takatsuka

    Full Text Available Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that are distributed in all three domains of life: bacteria, archaea, and eukaryotes. These proteins minimize hydroxyl radical formation by ferroxidase activity that converts Fe(2+ into Fe(3+ and sequesters iron by storing it as a mineral inside a protein cage. In this study, we discovered that mycobacterial DNA-binding protein 1 (MDP1, a histone-like protein, has similar activity to ferritin superfamily proteins. MDP1 prevented the Fenton reaction and protects DNA by the ferroxidase activity. The K(m values of the ferroxidase activity by MDP1 of Mycobacterium bovis bacillus Calmette-Guérin (BCG-3007c, Mycobacterium tuberculosis (Rv2986c, and Mycobacterium leprae (ML1683; ML-LBP were 0.292, 0.252, and 0.129 mM, respectively. Furthermore, one MDP1 molecule directly captured 81.4±19.1 iron atoms, suggesting the role of this protein in iron storage. This study describes for the first time a ferroxidase-iron storage protein outside of the ferritin superfamily proteins and the protective role of this bacterial protein from DNA damage.

  12. Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Rawlings, Neil D.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A. (SG); (Wellcome)

    2012-07-11

    NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, 'closed' conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes.

  13. Superfamilies SDR and MDR: from early ancestry to present forms. Emergence of three lines, a Zn-metalloenzyme, and distinct variabilities.

    Science.gov (United States)

    Jörnvall, Hans; Hedlund, Joel; Bergman, Tomas; Oppermann, Udo; Persson, Bengt

    2010-05-21

    Two large gene and protein superfamilies, SDR and MDR (short- and medium-chain dehydrogenases/reductases), were originally defined from analysis of alcohol and polyol dehydrogenases. The superfamilies contain minimally 82 and 25 genes, respectively, in humans, minimally 324 and 86 enzyme families when known lines in other organisms are also included, and over 47,000 and 15,000 variants in existing sequence data bank entries. SDR enzymes have one-domain subunits without metal and MDR two-domain subunits without or with zinc, and these three lines appear to have emerged in that order from the universal cellular ancestor. This is compatible with their molecular architectures, present multiplicity, and overall distribution in the kingdoms of life, with SDR also of viral occurrence. An MDR-zinc, when present, is often, but not always, catalytic. It appears also to have a structural role in inter-domain interactions, coenzyme binding and substrate pocket formation, as supported by domain variability ratios and ligand positions. Differences among structural and catalytic zinc ions may be relative and involve several states. Combined, the comparisons trace evolutionary properties of huge superfamilies, with partially redundant enzymes in cellular redox functions. 2010 Elsevier Inc. All rights reserved.

  14. Bifunctional phosphoglucose/phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily.

    Science.gov (United States)

    Hansen, Thomas; Wendorff, Daniel; Schönheit, Peter

    2004-01-16

    The hyperthermophilic crenarchaeon Aeropyrum pernix contains phosphoglucose isomerase (PGI) activity. However, obvious homologs with significant identity to known PGIs could not be identified in the sequenced genome of this organism. The PGI activity from A. pernix was purified and characterized. Kinetic analysis revealed that, unlike all known PGIs, the enzyme catalyzed reversible isomerization not only of glucose 6-phosphate but also of epimeric mannose 6-phosphate at similar catalytic efficiency, thus defining the protein as bifunctional phosphoglucose/phosphomannose isomerase (PGI/PMI). The gene pgi/pmi encoding PGI/PMI (open reading frame APE0768) was identified by matrix-assisted laser desorption ionization time-of-flight analyses; the gene was overexpressed in Escherichia coli as functional PGI/PMI. Putative PGI/PMI homologs were identified in several (hyper)thermophilic archaea and two bacteria. The homolog from Thermoplasma acidophilum (Ta1419) was overexpressed in E. coli, and the recombinant enzyme was characterized as bifunctional PGI/PMI. PGI/PMIs showed low sequence identity to the PGI superfamily and formed a distinct phylogenetic cluster. However, secondary structure predictions and the presence of several conserved amino acids potentially involved in catalysis indicate some structural and functional similarity to the PGI superfamily. Thus, we propose that bifunctional PGI/PMI constitutes a novel protein family within the PGI superfamily.

  15. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    International Nuclear Information System (INIS)

    Akana, J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common (β/α) 8 -barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn 2+ which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn 2+ and inactive apoenzyme cannot be prepared, the affinity for Zn 2+ is decreased by alanine substitutions for the two histidine residues that coordinate the Zn 2+ ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn 2+ . The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn 2+ that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn 2+ and participate as acid/base catalysts are not conserved. We conclude that only the phosphate

  16. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton.

    Science.gov (United States)

    Guo, Xinlei; Wang, Yuanyuan; Lu, Hejun; Cai, Xiaoyan; Wang, Xingxing; Zhou, Zhongli; Wang, Chunying; Wang, Yuhong; Zhang, Zhenmei; Wang, Kunbo; Liu, Fang

    2017-09-10

    In plants, aldehyde dehydrogenases (ALDHs) function as 'aldehyde scavengers' by removing reactive aldehydes and thus play important roles in stress responses. To date, 30 ALDHs have been identified in Gossypium raimondii, whereas ALDHs have not been studied in Gossypium arboreum or in tetraploid cotton. In this study, we identified 30, 59 and 59 aldehyde dehydrogenase (ALDH) genes from G. arboreum, G. hirsutum and G. barbadense, respectively. Gene structure analysis revealed that members of the same family exhibit similar exon-intron structures and structural domains, and all members of the ALDH18 family possess a distinct AA-kinase domain. Synteny analysis showed that segmental and tandem duplications have played an important role in the expansion and evolution of ALDHs in cotton. Phylogenetic and synteny analysis between G. arboreum and G. raimondii demonstrated that all GaALDHs and GrALDHs are orthologous and that most GaALDHs are located in syntenic blocks corresponding to those of G. raimondii, implying that these genes appeared before the divergence of G. arboreum and G. raimondii and that no expansion of the ALDH superfamily has occurred in these two cotton species. Quantitative real-time PCR analysis revealed that the majority of GaALDHs and GhALDHs are up-regulated under conditions of high salinity and drought, indicating that these genes may be stress responsive. The findings of this study, based on genome-wide identification of ALDHs in Gossypium and analysis of their evolution and expression, provide a foundation for further analysis of ALDHs and suggest potential target genes for improving stress resistance in cotton. Copyright © 2017. Published by Elsevier B.V.

  17. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily.

    Science.gov (United States)

    Zahniser, Megan P D; Prasad, Shreenath; Kneen, Malea M; Kreinbring, Cheryl A; Petsko, Gregory A; Ringe, Dagmar; McLeish, Michael J

    2017-03-01

    Benzaldehyde dehydrogenase from Pseudomonas putida (PpBADH) belongs to the Class 3 aldehyde dehydrogenase (ALDH) family. The Class 3 ALDHs are unusual in that they are generally dimeric (rather than tetrameric), relatively non-specific and utilize both NAD+ and NADP+. To date, X-ray structures of three Class 3 ALDHs have been determined, of which only two have cofactor bound, both in the NAD+ form. Here we report the crystal structure of PpBADH in complex with NADP+ and a thioacyl intermediate adduct. The overall architecture of PpBADH resembles that of most other members of the ALDH superfamily, and the cofactor binding residues are well conserved. Conversely, the pattern of cofactor binding for the rat Class 3 ALDH differs from that of PpBADH and other ALDHs. This has been interpreted in terms of a different mechanism for the rat enzyme. Comparison with the PpBADH structure, as well as multiple sequence alignments, suggest that one of two conserved glutamates, at positions 215 (209 in rat) and 337 (333 in rat), would act as the general base necessary to hydrolyze the thioacyl intermediate. While the latter is the general base in the rat Class 3 ALDH, site-specific mutagenesis indicates that Glu215 is the likely candidate for PpBADH, a result more typical of the Class 1 and 2 ALDH families. Finally, this study shows that hydride transfer is not rate limiting, lending further credence to the suggestion that PpBADH is more similar to the Class 1 and 2 ALDHs than it is to other Class 3 ALDHs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  20. Novel evolutionary lineages of the invertebrate oxytocin/vasopressin superfamily peptides and their receptors in the common octopus (Octopus vulgaris)

    Science.gov (United States)

    Kanda, Atsuhiro; Satake, Honoo; Kawada, Tsuyoshi; Minakata, Hiroyuki

    2004-01-01

    The common octopus, Octopus vulgaris, is the first invertebrate species that was shown to possess two oxytocin/vasopressin (OT/VP) superfamily peptides, octopressin (OP) and cephalotocin (CT). Previously, we cloned a GPCR (G-protein-coupled receptor) specific to CT [CTR1 (CT receptor 1)]. In the present study, we have identified an additional CTR, CTR2, and a novel OP receptor, OPR. Both CTR2 and OPR include domains and motifs typical of GPCRs, and the intron– exon structures are in accord with those of OT/VP receptor genes. CTR2 and OPR expressed in Xenopus oocytes induced calcium-mediated inward chloride current in a CT- and OP-specific manner respectively. Several regions and residues, which are requisite for binding of the vertebrate OT/VP receptor family with their ligands, are highly conserved in CTRs, but not in OPR. These different sequences between CTRs and OPR, as well as the amino acid residues of OP and CT at positions 2–5, were presumed to play crucial roles in the binding selectivity to their receptors, whereas the difference in the polarity of OT/VP family peptide residues at position 8 confers OT and VP with the binding specificity in vertebrates. CTR2 mRNA was present in various peripheral tissues, and OPR mRNA was detected in both the nervous system and peripheral tissues. Our findings suggest that the CT and OP genes, similar to the OT/VP family, evolved through duplication, but the ligand–receptor selectivity were established through different evolutionary lineages from those of their vertebrate counterparts. PMID:15504101

  1. The short mRNA isoform of the immunoglobulin superfamily, member 1 gene encodes an intracellular glycoprotein.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Mutations in the immunoglobulin superfamily, member 1 gene (IGSF1/Igsf1 cause an X-linked form of central hypothyroidism. The canonical form of IGSF1 is a transmembrane glycoprotein with 12 immunoglobulin (Ig loops. The protein is co-translationally cleaved into two sub-domains. The carboxyl-terminal domain (CTD, which contains the last 7 Ig loops, is trafficked to the plasma membrane. Most pathogenic mutations in IGSF1 map to the portion of the gene encoding the CTD. IGSF1/Igsf1 encodes a variety of transcripts. A little studied, but abundant splice variant encodes a truncated form of the protein, predicted to contain the first 2 Ig loops of the full-length IGSF1. The protein (hereafter referred to as IGSF1 isoform 2 or IGSF1-2 is likely retained in most individuals with IGSF1 mutations. Here, we characterized basic biochemical properties of the protein as a foray into understanding its potential function. IGSF1-2, like the IGSF1-CTD, is a glycoprotein. In both mouse and rat, the protein is N-glycosylated at a single asparagine residue in the first Ig loop. Contrary to earlier predictions, neither the murine nor rat IGSF1-2 is secreted from heterologous or homologous cells. In addition, neither protein associates with the plasma membrane. Rather, IGSF1-2 appears to be retained in the endoplasmic reticulum. Whether the protein plays intracellular functions or is trafficked through the secretory pathway under certain physiologic or pathophysiologic conditions has yet to be determined.

  2. Mouse RC/BTB2, a Member of the RCC1 Superfamily, Localizes to Spermatid Acrosomal Vesicles

    Science.gov (United States)

    Shen, Xuening; Nagarkatti-Gude, David R.; Hess, Rex A.; Henderson, Scott C.; Strauss, Jerome F.; Zhang, Zhibing

    2012-01-01

    Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5′-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation. PMID:22768142

  3. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  4. Effect of Growth factors, estradiol 17-ß, and short chain fatty acids on the intestinal HT29-MTX cells

    DEFF Research Database (Denmark)

    Giromini, Carlotta; Baldi, Antonella; Fusi, Eleonora

    2015-01-01

    Peptides growth factors, hormones, and short chain fatty acids (SCFAs) are constantly in contact with the human bowel when secreted by gland or ingested by food, as milk and colostrum, or, as in the case of SCFAs, produced by fermentation processes. This study considers the effect of growth factors...... studies. The effect of insulin-like growth factors (IGF)-I, epidermal growth factors (EGF), transforming growth factor alpha (TGF-α), transforming growth factor beta (TGF-β), estradiol 17-β and butyrate, propionate, and acetate was assessed on metabolic activity and proliferation of E12 cells using Alamar...... of the cells. Further, a dose-dependent inhibition of cell metabolic activity was detected in the presence of all SCFAs tested. Butyrate showed to be the most active in the inhibition of E12 metabolic activity and its effect was enhanced by the presence of propionate and acetate. E12 cells, in undifferentiated...

  5. [Origin and evolution of parasitism in mites of the infraorder Eleutherengona (Acari: Prostigmata). Report II. Superfamily Cheyletoidea].

    Science.gov (United States)

    Bochkov, A V

    2009-01-01

    these eggs were laid by feather mites (Astigmata: Psoroptidia). These rounded shape eggs, however, are more similar with those of Cheyletoidea, than with the boomerang-shape eggs of feather mites. The position of the subfamily Ophioptinae associated with snakes of the superfamily Colubroidea in the core of the family Harpirhynchidae (bird parasites) is explained by the switching of its ancestor from passerine birds. Certain snakes feed on nestlings and adult birds, and most of these preys are small passerine birds.

  6. Functional Characterization of TaFUSCA3, a B3-Superfamily Transcription Factor Gene in the Wheat

    Directory of Open Access Journals (Sweden)

    Fusheng Sun

    2017-06-01

    Full Text Available The end-use quality of wheat, including its unique rheology and viscoelastic properties, is predominantly determined by the composition and concentration of gluten proteins. While, the mechanism regulating expression of the seed storage protein (SSP genes and other related genes in wheat remains unclear. In this study, we report on the cloning and functional identification of TaFUSCA3, a B3-superfamily transcription factor (TF gene in wheat. Sequence alignment indicated that wheat and barley FUSCA3 genes are highly conserved. Quantitative reverse-transcription (qRT-PCR analysis showed that the transcript of TaFUSCA3 was accumulated mostly in the stamens and the endosperms of immature wheat seeds. Yeast-one-hybrid results proved that the full-length TaFUSCA3 and its C-terminal region had transcriptional activities. Yeast-two-hybrid and bimolecular fluorescence complementation assays indicated that TaFUSCA3 could activate the expression of the high molecular weight glutenin subunit gene Glu-1Bx7 and interact with the seed-specific bZIP protein TaSPA. DNA-protein-interaction enzyme-linked immunosorbent assay demonstrated that TaFUSCA3 specifically recognizes the RY-box of the Glu-1Bx7 promoter region. Transient expression results showed that TaFUSCA3 could trans-activate the Glu-1Bx7 promoter, which contains eight RY-box sequences. TaFUSCA3 was unable to activate the downstream transcription when the RY-box was fully mutated. TaFUSCA3 could activate the transcription of the At2S3 gene promoter in a complementation of loss-of-function experiment using the Arabidopsis thaliana line fus3-3, which is a FUSCA3 mutant, demonstrating the evolutionary conservation of the TaFUSCA3 gene. In conclusion, the wheat B3-type TF, TaFUSCA3, is functional conserved between monocot and dicot, and could regulate SSP gene expression by interacting specifically with TaSPA.

  7. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda.

    Science.gov (United States)

    Stavang, Jon Anders; Chauvigné, Francois; Kongshaug, Heidi; Cerdà, Joan; Nilsen, Frank; Finn, Roderick Nigel

    2015-08-19

    An emerging field in biomedical research is focusing on the roles of aquaporin water channels in parasites that cause debilitating or lethal diseases to their vertebrate hosts. The primary vectorial agents are hematophagous arthropods, including mosquitoes, flies, ticks and lice, however very little is known concerning the functional diversity of aquaporins in non-insect members of the Arthropoda. Here we conducted phylogenomic and functional analyses of aquaporins in the salmon louse, a marine ectoparasitic copepod that feeds on the skin and body fluids of salmonids, and used the primary structures of the isolated channels to uncover the genomic repertoires in Arthropoda. Genomic screening identified 7 aquaporin paralogs in the louse in contrast to 42 in its host the Atlantic salmon. Phylogenetic inference of the louse nucleotides and proteins in relation to orthologs identified in Chelicerata, Myriapoda, Crustacea and Hexapoda revealed that the arthropod aquaporin superfamily can be classified into three major grades (1) classical aquaporins including Big brain (Bib) and Prip-like (PripL) channels (2) aquaglyceroporins (Glp) and (3) unorthodox aquaporins (Aqp12-like). In Hexapoda, two additional subfamilies exist as Drip and a recently classified entomoglyceroporin (Eglp) group. Cloning and remapping the louse cDNAs to the genomic DNA revealed that they are encoded by 1-7 exons, with two of the Glps being expressed as N-terminal splice variants (Glp1_v1, -1_v2, -3_v1, -3_v2). Heterologous expression of the cRNAs in amphibian oocytes demonstrated that PripL transports water and urea, while Bib does not. Glp1_v1, -2, -3_v1 and -3_v2 each transport water, glycerol and urea, while Glp1_v2 and the Aqp12-like channels were retained intracellularly. Transcript abundance analyses revealed expression of each louse paralog at all developmental stages, except for glp1_v1, which is specific to preadult and adult males. Our data suggest that the aquaporin repertoires of

  8. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    Science.gov (United States)

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  9. Crystal structure of a crustacean hyperglycemic hormone (CHH) precursor suggests structural variety in the C-terminal regions of CHH superfamily members.

    Science.gov (United States)

    Tsutsui, Naoaki; Sakamoto, Tatsuya; Arisaka, Fumio; Tanokura, Masaru; Nagasawa, Hiromichi; Nagata, Koji

    2016-12-01

    The crustacean hyperglycemic hormone (CHH) is one of the major hormones in crustaceans, and peptides belonging to the CHH superfamily have been found in diverse ecdysozoans. Although the basic function of CHH is to control energy metabolism, it also plays various roles in crustacean species, such as in molting and vitellogenesis. Here, we present the crystal structure of Pej-SGP-I-Gly, a partially active precursor of CHH from the kuruma prawn Marsupenaeus japonicus, which has an additional Gly residue in place of the C-terminal amide group of the mature Pej-SGP-I. The 1.6-angstrom crystal structure showed not only the common CHH superfamily scaffold comprising three α-helices, three disulfide bridges, and a hydrophobic core but also revealed that the C-terminal part has a variant backbone fold that is specific to Pej-SGP-I-Gly. The α-helix 4 of Pej-SGP-I-Gly was much longer than that of molt-inhibiting hormone (Pej-MIH) from the same species, and as a result, the following C-terminal helix, corresponding to α-helix 5 in MIH, was not formed. Unlike monomeric Pej-MIH, Pej-SGP-I-Gly forms a homodimer in the crystal structure via its unique α-helix 4. The unexpected dissimilar folds between Pej-SGP-I-Gly and Pej-MIH appear to be the result of their distinct C-terminal amino acid sequences. Variations in amino acid sequences and lengths and the resulting variety of backbone folds allow the C-terminal and sterically adjoining regions to confer different hormonal activities in diverse CHH superfamily members. Structural data are available in the PDB under the accession number 5B5I. © 2016 Federation of European Biochemical Societies.

  10. Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily

    Directory of Open Access Journals (Sweden)

    Feder Marcin

    2007-07-01

    Full Text Available Abstract Background The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases exhibit a common PD-(D/EXK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI and half-pipe (R.PabI, and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally. Results Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme. Conclusion Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our

  11. Using hydrogen/deuterium exchange mass spectrometry to define the specific interactions of the phospholipase A2 superfamily with lipid substrates, inhibitors, and membranes.

    Science.gov (United States)

    Cao, Jian; Burke, John E; Dennis, Edward A

    2013-01-18

    The phospholipase A(2) (PLA(2)) superfamily consists of 16 groups and many subgroups and constitutes a diverse set of enzymes that have a common catalytic activity due to convergent evolution. However, different PLA(2) types have unique three-dimensional structures and catalytic residues as well as specific tissue localization and distinct biological functions. Understanding how the different PLA(2) enzymes associate with phospholipid membranes, specific phospholipid substrate molecules, and inhibitors on a molecular basis has advanced in recent years due to the introduction of hydrogen/deuterium exchange mass spectrometry. Its theory, practical considerations, and application to understanding PLA(2)/membrane interactions are addressed.

  12. Using Hydrogen/Deuterium Exchange Mass Spectrometry to Define the Specific Interactions of the Phospholipase A2 Superfamily with Lipid Substrates, Inhibitors, and Membranes*

    Science.gov (United States)

    Cao, Jian; Burke, John E.; Dennis, Edward A.

    2013-01-01

    The phospholipase A2 (PLA2) superfamily consists of 16 groups and many subgroups and constitutes a diverse set of enzymes that have a common catalytic activity due to convergent evolution. However, different PLA2 types have unique three-dimensional structures and catalytic residues as well as specific tissue localization and distinct biological functions. Understanding how the different PLA2 enzymes associate with phospholipid membranes, specific phospholipid substrate molecules, and inhibitors on a molecular basis has advanced in recent years due to the introduction of hydrogen/deuterium exchange mass spectrometry. Its theory, practical considerations, and application to understanding PLA2/membrane interactions are addressed. PMID:23209293

  13. Molecular and Functional Characterization of Mouse S5D-SRCRB: A New Group B Member of the Scavenger Receptor Cysteine-Rich Superfamily

    DEFF Research Database (Denmark)

    Miró-Julià, Cristina; Roselló, Sandra; Martínez, Vanesa G

    2011-01-01

    The scavenger receptor cysteine-rich superfamily (SRCR-SF) members are transmembrane and/or secreted receptors exhibiting one or several repeats of a cysteine-rich protein module of ∼100 aa, named scavenger receptor cysteine-rich (SRCR). Two types of SRCR domains (A or B) have been reported, which...... differ in the number of coding exons and intradomain cysteines. Although no unifying function has been reported for SRCR-SF members, recognition of pathogen-associated molecular patterns (PAMPs) was recently shown for some of them. In this article, we report the structural and functional characterization...

  14. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  15. Unusual N-prenylation in diazepinomicin biosynthesis: the farnesylation of a benzodiazepine substrate is catalyzed by a new member of the ABBA prenyltransferase superfamily.

    Science.gov (United States)

    Bonitz, Tobias; Zubeil, Florian; Grond, Stephanie; Heide, Lutz

    2013-01-01

    The bacterium Micromonospora sp. RV115, isolated from a marine sponge, produces the unusual metabolite diazepinomicin, a prenylated benzodiazepine derivative. We have cloned the prenyltransferase gene dzmP from this organism, expressed it in Escherichia coli, and the resulting His8-tagged protein was purified and investigated biochemically. It was found to catalyze the farnesylation of the amide nitrogen of dibenzodiazepinone. DzmP belongs to the ABBA prenyltransferases and is the first member of this superfamily which utilizes farnesyl diphosphate as genuine substrate. All previously discovered members utilize either dimethylallyl diphosphate (C5) or geranyl diphosphate (C10). Another putative diazepinomicin biosynthetic gene cluster was identified in the genome of Streptomyces griseoflavus Tü4000, suggesting that the formation of diazepinomicin is not restricted to the genus Micromonospora. The gene cluster contains a gene ssrg_00986 with 61.4% identity (amino acid level) to dzmP. The gene was expressed in E. coli, and the purified protein showed similar catalytic properties as DzmP. Both enzymes also accepted other phenolic or phenazine substrates. ABBA prenyltransferases are useful tools for chemoenzymatic synthesis, due to their nature as soluble, stable biocatalysts. The discovery of DzmP and Ssrg_00986 extends the isoprenoid substrate range of this superfamily. The observed prenylation of an amide nitrogen is an unusual biochemical reaction.

  16. Cloning of a human epididymis-specific mRNA, HE6, encoding a novel member of the seven transmembrane-domain receptor superfamily.

    Science.gov (United States)

    Osterhoff, C; Ivell, R; Kirchhoff, C

    1997-04-01

    A novel gene product, HE6, showing homology to the seven transmembrane-domain (Tm7) receptor superfamily, has been cloned by differential screening from a human epididymal cDNA library. The cDNA clone represented an abundant approximately 5-kb mRNA, comprising 0.01% of the cDNA library. Northern blot analysis including various human tissues revealed an epididymis-specific expression. In situ transcript hybridization localized the mRNA within the epithelial cells lining the epididymal duct. Southern blot analysis, employing a fragment encoding part of the amino-terminal extracellular domain as a probe, identified an autosomal single-copy gene in the human genome. Homologous cDNA products showing 90% sequence identity were observed in the epididymides of all mammalian species investigated. A cloning and sequencing strategy, combining approximately 3.7-kb cDNA fragments obtained by conventional cDNA library construction with overlapping 5' rapid amplification of cDNA ends (RACE) fragments, yielded total sequence information of 4.7 kb for the human mRNA. This sequence comprises a long open reading frame of 3.1 kb. A homology search for related sequences revealed highest similarity (25% amino acid identity) with the secretin/vasoactive intestinal peptide (VIP) superfamily of G-protein-coupled receptors. The predicted extracellular amino-terminal extension, however, was much longer than in the other members, and showed similarity to highly glycosylated mucin-like cell-surface molecules.

  17. The 1.8-Å resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: A member of the DJ-1/ThiJ/PfpI superfamily

    Science.gov (United States)

    Wilson, Mark A.; Amour, Courtney V. St.; Collins, Jennifer L.; Ringe, Dagmar; Petsko, Gregory A.

    2004-01-01

    The yeast gene YDR533C encodes a protein belonging to the DJ-1/ThiJ/PfpI superfamily. This family includes the human protein DJ-1, which is mutated in autosomal recessive early-onset Parkinson's disease. The function of DJ-1 and its yeast homologue YDR533Cp is unknown. We report here the crystal structure of YDR533Cp at 1.8-Å resolution. The structure indicates that the closest relative to YDR533Cp is the Escherichia coli heat shock protein Hsp31 (YedU), which has both chaperone and protease activity. As expected, the overall fold of the core domain of YDR533Cp is also similar to that of DJ-1 and the bacterial protease PfpI. YDR533Cp contains a possible catalytic triad analogous to that of Hsp31 and an additional domain that is present in Hsp31 but is not seen in DJ-1 and other members of the family. The cysteine in this triad (Cys-138) is oxidized in this crystal structure, similar to modifications seen in the corresponding cysteine in the crystal structure of DJ-1. YDR533Cp appears to be a dimer both in solution and the crystal, but this dimer is formed by a different interface than that found in Hsp31 or other members of the superfamily. PMID:14745011

  18. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    Science.gov (United States)

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  19. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods

    Science.gov (United States)

    Sofia, Heidi J.; Chen, Guang; Hetzler, Beth G.; Reyes-Spindola, Jorge F.; Miller, Nancy E.

    2001-01-01

    A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships. PMID:11222759

  20. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Cindy [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Mueller, Uwe [Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Sun, Lianli [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Zhao, Yu [Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Stöckigt, Joachim, E-mail: stoeckig@mail.uni-mainz.de [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China)

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia