WorldWideScience

Sample records for growth factor tgf

  1. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1994-01-01

    Transforming growth factor-beta (TGF-beta) is a polypeptide with multiple physiological functions. Isoforms of this growth factor have important roles in control of the cell cycle, in regulation of cell-cell interactions and in growth and development. Malignant transformation has been shown to be

  2. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...... lines express TGF beta-receptors and also produce TGF beta mRNAs....

  3. Factores de crecimiento III: factores transformadores del crecimiento (TGF Growth factors III part: transforming growth factors (TGF

    Directory of Open Access Journals (Sweden)

    Hilda Norha Jaramillo Londoño

    1996-04-01

    Full Text Available Se presenta una revisión de los conceptos básicos sobre los factores transformadores del crecimiento, tanto alfa como beta, incluyendo los siguientes aspectos: consideraciones generales, estructura bioquímica, concentraciones, proteínas transportadoras, receptores, mecanismos de acción y efectos biológicos. A review is presented on the basic concepts of Transforming Growth Factors both a and p; it includes general considerations, biochemical structure, concentrations, binding proteins, receptors, mechanisms of action, and biological effects.

  4. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    Science.gov (United States)

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  5. Growth factors VEGF and TGF-beta1 in peritoneal dialysis

    NARCIS (Netherlands)

    Zweers, M. M.; de Waart, D. R.; Smit, W.; Struijk, D. G.; Krediet, R. T.

    1999-01-01

    The morphologic alterations in the kidney and the retina that can be present in patients with diabetic microangiopathy are mediated by growth factors. Vascular endothelial growth factor (VEGF) is a mediator of neoangiogenesis in diabetic retinopathy. Transforming growth factor-beta (TGF-beta) is

  6. Age-Dependent Decrease in Serum Transforming Growth Factor (TGF-Beta 1 in Healthy Japanese Individuals; Population Study of Serum TGF-Beta 1 Level in Japanese

    Directory of Open Access Journals (Sweden)

    Yoshihiro Okamoto

    2005-01-01

    Full Text Available Transforming growth factor-beta1 (TGF-β1, a multi-functional cytokine, is involved in regulating a variety of cellular activities and the serum/plasma TGF-β1 level is altered with various diseases. However, most published reports have described adult patients, and so we investigated the clinical significance of serum TGF-β1 level in pediatric patients. The diagnostic application of the measurement of serum TGF-β1 level depends critically on the control value, however, there is no information on the control value of serum TGF-β1 for children.

  7. Prodomain-growth factor swapping in the structure of pro-TGF-β1.

    Science.gov (United States)

    Zhao, Bo; Xu, Shutong; Dong, Xianchi; Lu, Chafen; Springer, Timothy A

    2018-02-02

    TGF-β is synthesized as a proprotein that dimerizes in the endoplasmic reticulum. After processing in the Golgi to cleave the N-terminal prodomain from the C-terminal growth factor (GF) domain in each monomer, pro-TGF-β is secreted and stored in latent complexes. It is unclear which prodomain and GF monomer are linked before proprotein convertase cleavage and how much conformational change occurs following cleavage. We have determined a structure of pro-TGF-β1 with the proprotein convertase cleavage site mutated to mimic the structure of the TGF-β1 proprotein. Structure, mutation, and model building demonstrate that the prodomain arm domain in one monomer is linked to the GF that interacts with the arm domain in the other monomer in the dimeric structure ( i.e. the prodomain arm domain and GF domain in each monomer are swapped). Swapping has important implications for the mechanism of biosynthesis in the TGF-β family and is relevant to the mechanism for preferential formation of heterodimers over homodimers for some members of the TGF-β family. Our structure, together with two previous ones, also provides insights into which regions of the prodomain-GF complex are highly structurally conserved and which are perturbed by crystal lattice contacts. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyung; Barron, Lindsey; Hinck, Cynthia S.; Petrunak, Elyse M.; Cano, Kristin E.; Thangirala, Avinash; Iskra, Brian; Brothers, Molly; Vonberg, Machell; Leal, Belinda; Richter, Blair; Kodali, Ravindra; Taylor, Alexander B.; Du, Shoucheng; Barnes, Christopher O.; Sulea, Traian; Calero, Guillermo; Hart, P. John; Hart, Matthew J.; Demeler, Borries; Hinck, Andrew P. (Texas-HSC); (NRCC); (Pitt)

    2017-02-22

    The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor required for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.

  9. Transforming Growth Factor β1 (TGF-β1) in the Sera of Postmenopausal Osteoporotic Females.

    Science.gov (United States)

    Faraji, Aazam; Abtahi, Shabnam; Ghaderi, Abbas; Samsami Dehaghani, Alamtaj

    2016-10-01

    Postmenopausal osteoporosis is a major cause of morbidity in postmenopausal females. Transforming growth factor β1 (TGF-β1) and interleukin 18 (IL-18) play complex roles in normal bone metabolism, and in pathophysiology of postmenopausal osteoporosis. The aim of this study was to design an analytic cross sectional study in order to further clarify the role of TGF-β1 and IL-18 in osteoporosis of postmenopausal females. A cross sectional study including 65 postmenopausal osteoporotic females as cases and 69 postmenopausal females of similar age without osteoporosis as controls was conducted. Dual energy X-ray absorptiometry (DXA) was used to determine bone mass density (BMD) of participants and T-scoring was applied to establish whether the patient has osteoporosis or not. Serum TGF-β1 and IL-18 levels were measured by quantitative sandwich Enzyme linked immunosorbent assay (ELISA). Serum TGF-β1 levels were significantly higher in osteoporotic postmenopausal females than non-osteoporotic individuals (23.8 vs. 15.8 ng/mL; P = 0.009). There was no difference between IL-18 levels in the sera of osteoporotic and non-osteoporotic postmenopausal females in this study. There was a positive correlation between body mass index (BMI) and serum level of TGF-β1 (P = 0.04). Our study demonstrated that TGF-β1 serum levels is higher in osteoporotic postmenopausal females than non-osteoporotic ones, and probably aberrant increase in TGF-β1 in postmenopausal females can result in uncoupled bone resorption and formation, which leads to osteoporosis.

  10. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis.

    Science.gov (United States)

    Gonzalo-Gil, E; Criado, G; Santiago, B; Dotor, J; Pablos, J L; Galindo, M

    2013-11-01

    The aim of this study was to analyse the distribution of regulatory and inhibitory mothers against decapentaplegic homologue (Smad) proteins as markers of active transforming growth factor (TGF)-β signalling in rheumatoid arthritis (RA) synovial tissue and to investigate the effect of TGF-β blockade in the development and progression of collagen-induced arthritis. The expression of Smad proteins in synovial tissues from RA, osteoarthritic and healthy controls was analysed by immunohistochemistry. Arthritis was induced in DBA/1 mice by immunization with chicken type-II collagen (CII). TGF-β was blocked in vivo with the specific peptide p17 starting at the time of immunization or on the day of arthritis onset. T cell population frequencies and specific responses to CII were analysed. The expression of cytokines and transcription factors was quantified in spleen and joint samples. Statistical differences between groups were compared using the Mann-Whitney U-test or one-way analysis of variance (anova) using the Kruskal-Wallis test. p-Smad-2/3 and inhibitory Smad-7 expression were detected in RA and control tissues. In RA, most lymphoid infiltrating cells showed nuclear p-Smad-2/3 without Smad-7 expression. Treatment with TGF-β antagonist did not affect clinical severity, joint inflammation and cartilage damage in collagen-induced arthritis. Frequency of T cell subsets, mRNA levels of cytokines and transcription factors, specific proliferation to CII, serum interleukin (IL)-6 and anti-CII antibodies were comparable in p17 and phosphate-buffered saline (PBS)-treated groups. The pattern of Smad proteins expression demonstrates active TGF-β signalling in RA synovium. However, specific TGF-β blockade does not have a significant effect in the mice model of collagen-induced arthritis. © 2013 British Society for Immunology.

  11. Transforming Growth Factor-Beta (TGF-β Signaling in Paravertebral Muscles in Juvenile and Adolescent Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Roman Nowak

    2014-01-01

    Full Text Available Most researchers agree that idiopathic scoliosis (IS is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.. Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis.

  12. Transforming Growth Factor-Beta (TGF-β) Signaling in Paravertebral Muscles in Juvenile and Adolescent Idiopathic Scoliosis

    Science.gov (United States)

    Kwiecien, Magdalena

    2014-01-01

    Most researchers agree that idiopathic scoliosis (IS) is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs) and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.). Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis. PMID:25313366

  13. Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis.

    Science.gov (United States)

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Cammarata, Matteo

    2016-02-01

    Transforming growth factor (TGF-β) is a well-known component of a regulatory cytokines superfamily that has pleiotropic functions in a broad range of cell types and is involved, in vertebrates, in numerous physiological and pathological processes. In the current study, we report on Ciona intestinalis molecular characterisation and expression of a transforming growth factor β homologue (CiTGF-β). The gene organisation, phylogenetic tree and modelling supported the close relationship with the mammalian TGF suggesting that the C. intestinalis TGF-β gene shares a common ancestor in the chordate lineages. Functionally, real-time PCR analysis showed that CiTGF-β was transcriptionally upregulated in the inflammatory process induced by LPS inoculation, suggesting that is involved in the first phase and significant in the secondary phase of the inflammatory response in which cell differentiation occurs. In situ hybridisation assays revealed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by cluster of hemocytes inside the pharynx vessels. These data supported the view that CiTGF-β is a potential molecule in immune defence systems against bacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. TGF-β1(Transforming Growth Factor-β1) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity.

    Science.gov (United States)

    Salvarani, Nicolò; Maguy, Ange; De Simone, Stefano A; Miragoli, Michele; Jousset, Florian; Rohr, Stephan

    2017-05-01

    TGF-β 1 (transforming growth factor-β 1 ) importantly contributes to cardiac fibrosis by controlling differentiation, migration, and collagen secretion of cardiac myofibroblasts. It is still elusive, however, to which extent TGF-β 1 alters the electrophysiological phenotype of myofibroblasts and cardiomyocytes and whether it affects proarrhythmic myofibroblast-cardiomyocyte crosstalk observed in vitro. Patch-clamp recordings of cultured neonatal rat ventricular myofibroblasts revealed that TGF-β 1 , applied for 24 to 48 hours at clinically relevant concentrations (≤2.5 ng/mL), causes substantial membrane depolarization concomitant with a several-fold increase of transmembrane currents. Transcriptome analysis revealed TGF-β 1 -dependent changes in 29 of 63 ion channel/pump/connexin transcripts, indicating a pleiotropic effect on the electrical phenotype of myofibroblasts. Whereas not affecting cardiomyocyte membrane potentials and cardiomyocyte-cardiomyocyte gap junctional coupling, TGF-β 1 depolarized cardiomyocytes coupled to myofibroblasts by ≈20 mV and increased gap junctional coupling between myofibroblasts and cardiomyocytes >5-fold as reflected by elevated connexin 43 and consortin transcripts. TGF-β 1 -dependent cardiomyocyte depolarization resulted from electrotonic crosstalk with myofibroblasts as demonstrated by immediate normalization of cardiomyocyte electrophysiology after targeted disruption of coupled myofibroblasts and by cessation of ectopic activity of cardiomyocytes coupled to myofibroblasts during pharmacological gap junctional uncoupling. In cardiac fibrosis models exhibiting slow conduction and ectopic activity, block of TGF-β 1 signaling completely abolished both arrhythmogenic conditions. TGF-β 1 profoundly alters the electrophysiological phenotype of cardiac myofibroblasts. Apart from possibly contributing to the control of cell function in general, the changes proved to be pivotal for proarrhythmic myofibroblast

  15. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Morthorst, Stine Kjær; Mogensen, Johanne Bay

    2017-01-01

    are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination...

  16. The role of transforming growth factor-beta (TGF-beta during ovarian follicular development in sheep

    Directory of Open Access Journals (Sweden)

    Quirke Laurel D

    2004-11-01

    Full Text Available Abstract Background Recently, several members of the transforming growth factor-beta (TGF-beta superfamily have been shown to be essential for regulating the growth and differentiation of ovarian follicles and thus fertility. Methods Ovaries of neonatal and adult sheep were examined for expression of the TGF-betas 1–3 and their receptors (RI and RII by in situ hybridization using ovine cDNAs. The effects of TGF-beta 1 and 2 on proliferation and differentiation of ovine granulosa cells in vitro were also studied. Results The expression patterns of TGF-beta 1 and 2 were similar in that both mRNAs were first observed in thecal cells of type 3 (small pre-antral follicles. Expression of both mRNAs continued to be observed in the theca of larger follicles and was also present in cells within the stroma and associated with the vascular system of the ovary. There was no evidence for expression in granulosa cells or oocytes. Expression of TGF-beta 3 mRNA was limited to cells associated with the vascular system within the ovary. TGFbetaRI mRNA was observed in oocytes from the type 1 (primordial to type 5 (antral stages of follicular growth and granulosa and thecal cells expressed this mRNA at the type 3 (small pre-antral and subsequent stages of development. The TGFbetaRI signal was also observed in the ovarian stroma and vascular cells. In ovarian follicles, mRNA encoding TGFbetaRII was restricted to thecal cells of type 3 (small pre-antral and larger follicles. In addition, expression was also observed in some cells of the surface epithelium and in some stromal cells. In granulosa cells cultured for 6 days, both TGF-beta 1 and 2 decreased, in a dose dependent manner, both the amount of DNA and concentration of progesterone. Conclusion In summary, mRNA encoding both TGF-beta 1 and 2 were synthesized by ovarian theca, stroma and cells of the vascular system whereas TGF-beta 3 mRNA was synthesized by vascular cells. Luteinizing granulosa cells also

  17. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  18. Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8+ T lymphocytes.

    Science.gov (United States)

    Papadakis, Konstantinos A; Krempski, James; Reiter, Jesse; Svingen, Phyllis; Xiong, Yuning; Sarmento, Olga F; Huseby, April; Johnson, Aaron J; Lomberk, Gwen A; Urrutia, Raul A; Faubion, William A

    2015-03-01

    KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-β1 (TGF-β1) signaling in CD4(+) T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-β receptor II (TGF-βRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8(+) T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10(-/-) CD8(+) T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8(+) T cells from the spleen of adult mice express lower levels of surface TGF-βRII (TβRII). Congruently, in vitro activation of KLF10-deficient CD8(+) T cells upregulate TGF-βRII to a lesser extent compared with wild-type (WT) CD8(+) T cells, which results in attenuated Smad2 phosphorylation following TGF-β1 stimulation compared with WT CD8(+) T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-βRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-βRII among viral-specific KLF10(-/-) CD8(+) T cells and a higher percentage of IFN-γ-producing CD8(+) T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-βRII in CD8(+) T cells. Thus, KLF10 regulation of TGF-βRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-β1/TGF-βRII signaling pathway is crucial. Copyright © 2015 the American Physiological Society.

  19. Identification of a novel transforming growth factor-β (TGF-β6 gene in fish: regulation in skeletal muscle by nutritional state

    Directory of Open Access Journals (Sweden)

    Jakowlew Sonia B

    2010-05-01

    Full Text Available Abstract Background The transforming growth factor-β (TGF-β family constitutes of dimeric proteins that regulate the growth, differentiation and metabolism of many cell types, including that of skeletal muscle in mammals. The potential role of TGF-βs in fish muscle growth is not known. Results Here we report the molecular characterization, developmental and tissue expression and regulation by nutritional state of a novel TGF-β gene from a marine fish, the gilthead sea bream Sparus aurata. S. aurata TGF-β6 is encoded by seven exons 361, 164, 133, 111, 181, 154, and 156 bp in length and is translated into a 420-amino acid peptide. The exons are separated by six introns: >643, 415, 93, 1250, 425 and >287 bp in length. Although the gene organization is most similar to mouse and chicken TGF-β2, the deduced amino acid sequence represents a novel TGF-β that is unique to fish that we have named TGF-β6. The molecule has conserved putative functional residues, including a cleavage motif (RXXR and nine cysteine residues that are characteristic of TGF-β. Semi-quantitative analysis of TGF-β6 expression revealed differential expression in various tissues of adult fish with high levels in skin and muscle, very low levels in liver, and moderate levels in other tissues including brain, eye and pituitary. TGF-β6 is expressed in larvae on day of hatching and increases as development progresses. A fasting period of five days of juvenile fish resulted in increased levels of TGF-β6 expression in white skeletal muscle compared to that in fed fish, which was slightly attenuated by one injection of growth hormone. Conclusion Our findings provide valuable insights about genomic information and nutritional regulation of TGF-β6 which will aid the further investigation of the S. aurata TGF-β6 gene in association with muscle growth. The finding of a novel TGF-β6 molecule, unique to fish, will contribute to the understanding of the evolution of the TGF

  20. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells.

    Science.gov (United States)

    Kim, Eun-Sook; Kim, Mi-Sung; Moon, Aree

    2005-01-21

    To address how transforming growth factor (TGF)-beta and oncogenic H-ras signal transduction pathways interact with each other in the malignant progression of breast epithelial cells, we investigated the role of TGF-beta signaling pathway in invasive and migrative properties of H-ras-transformed MCF10A human breast epithelial cells in this study. Here we show that TGF-beta treatment significantly enhanced invasion and migration of H-ras MCF10A cells. H-ras-mediated activation of p38 MAPK and ERK-1/2 was stimulated by TGF-beta. TGF-beta increased expression of matrix metalloproteinase (MMP)-2 through transcriptional activation while TGF-beta-stimulated MMP-9 up-regulation did not occur at transcription level. Activation of p38 MAPK pathway was required for TGF-beta-induced cell migration, invasion and MMP-2/-9 up-regulation, indicating a critical role of p38 MAPK signaling in TGF-beta-promoted tumor progression of H-ras-activated cells. ERKs signaling was also crucial for TGF-beta-enhanced invasive and migrative phenotypes but the up-regulation of MMP-2/-9 was not dependent on ERKs activity. Taken together, we show that TGF-beta promotes H-ras-mediated cell migration and invasive phenotypes in which p38 MAPK and ERKs signaling pathways are involved. Our findings revealing how H-ras and TGF-beta signal pathways interact with each other in MCF10A human breast cells may provide an insight into molecular mechanisms for contribution of TGF-beta to a malignant progression of breast cancer in collaboration with activated H-ras.

  1. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    Science.gov (United States)

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  2. Study on the changes of serum levels of polypeptide growth factors (EGF, TGF-α) and related hormones (gastrin, somatostatin) in patients with peptic ulcer

    International Nuclear Information System (INIS)

    Cao Jianfan; Ma Yunbao; Zhang Xiaoyi

    2005-01-01

    Objective: To study the possible roles of EGF, TGF-α, gastrin and somatostatin in the pathogenesis of peptic ulcer by measuring the changes of serum levels of those four parameters in the patients with peptic ulcer. Methods: Serum levels of epidermal growth factor (EGF), transforming growth factor-α (TGF-α), gastrin (Gas) and somatostatin (SS) were measured with RIA in 30 patients with gastric ulcer, 32 patients with duodenal ulcer and 30 controls. Results: Serum levels of gastrin and EGF were significantly higher in the patients with peptic ulcer than those in the controls (both P 0.05). However, serum TGF-α levels were significantly lower in the ulcer patients than those in the controls (P<0.01). Conclusion: Changes of serum levels of gastrin, EGF and TGF-α were quite significant in the ulcer patients and determining of which might be of clinical meanings. Determination of somatostatin changes seemed to be of less importance. (authors)

  3. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis.

    Science.gov (United States)

    Ozkan, Korhan; Eralp, Levent; Kocaoglu, Mehmet; Ahishali, Bulent; Bilgic, Bilge; Mutlu, Zihni; Turker, Mehmet; Ozkan, Feyza Unlu; Sahin, Kemal; Guven, Melih

    2007-04-01

    Distraction osteogenesis is a well established clinical treatment for limb length discrepancy and skeletal deformities. Transforming growth factor beta 1 (TGF-beta1) is a multifunctional peptide which controls proliferation and expression of cells specific to bone like chondrocytes, osteoblasts, osteoclasts including mesenchymal precursor cells. To decrease the external fixation time with increasing the strength of regenerate (newly formed bone after distraction) we tested the effect of locally applied transforming growth factor beta 1 on distraction osteogenesis. A total of 28 mature female white New zealand rabbits weighing 3,5 kg-4,5 kg were studied. 10 animals were belonging to biomechanical testing group (5 for the study and 5 for the control subgroups), and the others were to histology group. In biomechanical group after tibial osteotomy TGF-beta1 was applied subperiosteally for 5 days just proximal to osteotomy site. Control group received only the solvent. Seven days after tibial osteotomy distraction was started at a rate of 0.25 mm/12 hours for 3 weeks with a unilateral fixator. Rabbits were sacrificed at the end of a consolidation period 8 week after tibial osteotomy. We assessed density of the elongation zone of rabbit tibial bones with the computed tomography. Then biomechanical parametres were assessed using the torsional testing using the material testing machine. In histology group rabbits were classified as control and study (rabbits that were given TGF-beta1). Rabbits were sacrificed at the end of first week, second week and fourth week also at the end of consolidation period 8 week after tibial osteotomy. Immunohistochemical and histologic parameters were examined. Biomechanical testing was applied as torsional testing. These values are used in determination of maximal loading, stiffness and energy absorbed during testing (brittleness). The histomorphometric examination looked for the differences between the study and control groups in terms of

  4. Differential role of Sloan–Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells

    Science.gov (United States)

    Khan, Shafiq A.

    2012-01-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling. PMID:22843506

  5. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells.

    Science.gov (United States)

    Vo, BaoHan T; Cody, Bianca; Cao, Yang; Khan, Shafiq A

    2012-11-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling.

  6. Clinical significance of determination of serum collagen type IV (IV-C) and transforming growth factor beta1(TGF-β1) levels in patients with diabetic nephropathy

    International Nuclear Information System (INIS)

    Xie Hongfang; Peng Liang

    2006-01-01

    Objective: To investigate the clinical significance of determination of serum collagen type IV (IV-C) and transforming growth factor beta 1 (TGF-β 1 ) levels in patients with diabetic nephropathy. Methods: Serum IV-C levels ( with RIA) and TGF-β 1 levels (with ELISA) were determined in 30 controls and 105 patients with type II diabetis mellitus (45 with diabetic nephropathy and 60 without nephropathy). Results: The serum levels of IV-C and TGF-β 1 in diabetic patients with nephropathy were significantly higher than those in controls (P 0.05). Conclusion: Serum IV-C and TGF-β 1 , levels increased gradually as the diabetic nephropathy got more severe, they could be used as sensitive markers for early diagnosis of development of diabetic nephropathy. (authors)

  7. Transforming growth factor-beta1 (TGF-beta1) in plasma is associated with preeclampsia risk in Peruvian women with systemic inflammation.

    Science.gov (United States)

    Muy-Rivera, Martin; Sanchez, Sixto E; Vadachkoria, Surab; Qiu, Chunfang; Bazul, Victor; Williams, Michelle A

    2004-04-01

    In a case-control study of 100 preeclamptics and 100 controls, we assessed plasma transforming growth factor-beta1 (TGF-beta1) concentrations in relation to preeclampsia risk among Peruvian women with and without systemic inflammation. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). The OR of preeclampsia increased across quartiles of TGF-beta1 concentrations. Women with elevated TGF-beta1 and a proinflammatory profile experienced the highest risk of preeclampsia (OR = 15.4, 95% CI 4.7-50.4). Our results confirm an association between TGF-beta1 and risk of preeclampsia and extend the literature by indicating a strong association in women with systemic inflammation.

  8. Adrenalectomy promotes a permanent decrease of plasma corticoid levels and a transient increase of apoptosis and the expression of Transforming Growth Factor β1 (TGF-β1 in hippocampus: effect of a TGF-β1 oligo-antisense

    Directory of Open Access Journals (Sweden)

    Lara Hernán E

    2006-05-01

    Full Text Available Abstract Background Corticosterone reduction produced by adrenalectomy (ADX induces apoptosis in dentate gyrus (DG of the hippocampus, an effect related to an increase in the expression of the pro-apoptotic gene bax. However it has been reported that there is also an increase of the anti-apoptotic gene bcl-2, suggesting the promotion of a neuroprotective phenomenon, perhaps related to the expression of transforming growth factor β1 (TGF-β1. Thus, we have investigated whether TGF-β1 levels are induced by ADX, and whether apoptosis is increased by blocking the expression of TGF-β1 with an antisense oligonucleotide (ASO administered intracerebrally in corticosterone depleted rats. Results It was observed an increase of apoptosis in DG, 2 and 5 days after ADX, in agreement with a reduction of corticosterone levels. However, the effect of ADX on the number of apoptotic positive cells in DG was decreased 5 days after the lesion. In CA1–CA3 regions, the effect was only observed 2 days after ADX. TGF-β1 mRNA levels were increased 2 days after ADX. The sustained intracerebro-ventricular administration of a TGF-β1 ASO via an osmotic mini pump increased apoptosis levels in CA and DG regions 5 days after ADX as well as sham-operated control animals. No significant effect was observed following a scrambled-oligodeoxynucleotide treatment. Conclusion The changes in both the pattern and the magnitude of apoptotic-cell morphology observed 2 and 5 days after ADX suggest that, as a consequence of the reduction of corticosteroids, some trophic mechanisms restricting cell death to a particular time window are elicited. Sustained intracerebral administration of TGF-β1 ASO increased the apoptosis promoted by ADX, suggesting that TGF-β1 plays an anti-apoptotic role in vivo in hippocampus.

  9. RETINOIC ACID INDUCTION OF CLEFT PALATE IN EGF AND TGF-ALPHA KNOCKOUT MICE: STAGE SPECIFIC INFLUENCES OF GROWTH FACTOR EXPRESSION

    Science.gov (United States)

    ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.<...

  10. Patterns of secretion of transforming growth factor-alpha (TGF-alpha) in experimental silicosis. Acute and subacute effects of cristobalite exposure in the rat.

    Science.gov (United States)

    Absher, M; Sjöstrand, M; Baldor, L C; Hemenway, D R; Kelley, J

    1993-01-01

    Transforming growth factor-alpha (TGF-alpha) a cytokine having potent mitogenic activity for epithelial and mesenchymal cells, may play a role in the lung remodeling of silicosis. Lung macrophages are among the major cells producing TGF-alpha in a lung tissue. A pivotal event in the cascade of pathologic events leading to pulmonary silicosis is the interaction between inhaled silica and macrophages. TGF-alpha may be critical in directing the proliferation of type II pneumocytes that characterize silicosis. An inhalation model of brief exposure of pathogen-restricted male rats to 25 mg/M3 cristobalite, a highly reactive form of silicon dioxide was used to study experimental silicosis. This model is characterized by a rapid, intense, and sustained increase in macrophages, neutrophils, and lymphocytes in both alveolar and interstitial compartments of the lung. TGF-alpha was measured in an A431 cell proliferation assay made specific with the use of anti-TGF-alpha neutralizing antiserum in epithelial lining fluid (ELF) and conditioned media harvested from cultured alveolar and interstitial macrophages. Soluble TGF-alpha levels found in ELF were slightly elevated above control values during the exposure period, then increased 5-fold during the 20 weeks after the 8-day exposure period. Secretion of TGF-alpha by macrophages was elevated during exposure to cristobalite but then fell during the early post exposure period. Marked elevations in TGF-alpha secretion from both interstitial and alveolar macrophages (10- and 12-fold, respectively) occurred 8-16 weeks after cessation of exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. EFFECTS OF EPIDERMAL GROWTH FACTOR (EGF), TRANSFORMING GROWTH FACTOR- (TGF), AND 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN ON FUSION OF EMBRYONIC PALATES IN SERUM-FREE ORGAN CULTURE USING WILD-TYPE, EGF KNOCKOUT, AND TGF KNOCKOUT MOUSE STRAINS

    Science.gov (United States)

    Backround: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, producing cleft palate (CP). TCDD exposure disrupts expression of epidermal growth factor (EGF) receptor, EGF, and transforming growth factor- (TGF) in the palate and affects proliferation and different...

  12. Layer-by-Layer Thin Films for Co-Delivery of TGF-β siRNA and Epidermal Growth Factor to Improve Excisional Wound Healing.

    Science.gov (United States)

    Mandapalli, Praveen Kumar; Labala, Suman; Jose, Anup; Bhatnagar, Shubhmita; Janupally, Renuka; Sriram, Dharmarajan; Venuganti, Venkata Vamsi Krishna

    2017-04-01

    The major challenge with treatment of dermal wounds is accelerating healing process, while preventing the scar formation. Herein, we have fabricated layer-by-layer (LbL) polyelectrolyte multilayer films containing epidermal growth factor (EGF) and TGF-β siRNA to improve excisional wound healing and decrease scar formation. The chitosan and sodium alginate LbL thin films showed 13.0 MPa tensile strength and 2.22 N/cm 2 skin adhesion strength. The LbL thin films were found to be cytocompatible, where A431 epidermal keratinocytes adhered to the film and showed 86.2 ± 0.8% cell growth compared with cells cultured in the absence of LbL thin film. In contrast, LbL thin film did not promote the Escherichia coli and Staphylococcus aureus bacterial colony formation. In a C57BL/6 mouse excisional wound model, application of LbL thin films containing TGF-β siRNA significantly (p < 0.05) reduced the TGF-β protein expression and collagen production. The LbL thin films containing EGF showed improved wound contraction (<9 days post excision). The co-delivery of TGF-β siRNA and EGF using LbL thin films resulted in accelerated wound healing and decreased collagen deposition. Furthermore, the LbL thin films with TGF-β siRNA and EGF combination showed greater reepithelialization. Taken together, we have successfully demonstrated the co-delivery of TGF-β siRNA and EGF peptide using LbL thin films to promote wound healing and decrease scar formation.

  13. Bone Morphogenetic Protein (BMP-4 and BMP-7 regulate differentially Transforming Growth Factor (TGF-β1 in normal human lung fibroblasts (NHLF

    Directory of Open Access Journals (Sweden)

    Lloyd Clare M

    2010-06-01

    Full Text Available Abstract Background Airway remodelling is thought to be under the control of a complex group of molecules belonging to the Transforming Growth Factor (TGF-superfamily. The Bone Morphogenetic Proteins (BMPs belong to this family and have been shown to regulate fibrosis in kidney and liver diseases. However, the role of BMPs in lung remodelling remains unclear. BMPs may regulate tissue remodelling in asthma by controlling TGF-β-induced profibrotic functions in lung fibroblasts. Methods Cell cultures were exposed to TGF-β1 alone or in the presence of BMP-4 or BMP-7; control cultures were exposed to medium only. Cell proliferation was assessed by quantification of the incorporation of [3H]-thymidine. The expression of the mRNA encoding collagen type I and IV, tenascin C and fibronectin in normal human lung fibroblasts (NHLF was determined by real-time quantitative PCR and the main results were confirmed by ELISA. Cell differentiation was determined by the analysis of the expression of α-smooth muscle actin (α-SMA by western blot and immunohistochemistry. The effect on matrix metalloproteinase (MMP activity was assessed by zymography. Results We have demonstrated TGF-β1 induced upregulation of mRNAs encoding the extracellular matrix proteins, tenascin C, fibronectin and collagen type I and IV when compared to unstimulated NHLF, and confirmed these results at the protein level. BMP-4, but not BMP-7, reduced TGF-β1-induced extracellular matrix protein production. TGF-β1 induced an increase in the activity of the pro-form of MMP-2 which was inhibited by BMP-7 but not BMP-4. Both BMP-4 and BMP-7 downregulated TGF-β1-induced MMP-13 release compared to untreated and TGF-β1-treated cells. TGF-β1 also induced a myofibroblast-like transformation which was partially inhibited by BMP-7 but not BMP-4. Conclusions Our study suggests that some regulatory properties of BMP-7 may be tissue or cell type specific and unveil a potential regulatory role for

  14. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Andersen, Kasper; Clement, Christian Alexandro

    2014-01-01

    proteins/genes were analysed by immunocytochemistry and quantitative RT-PCR.TGF-β superfamily genes with overall highest mRNA expressions levels included growth differentiation factors 9 (GDF9), bone morphogenic protein-15 (BMP15), BMP6, BMP-receptor-2 (BMPR2), anti-Müllerian hormone receptor 2 (AMHR2......In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling...... growth. Moreover, the presence of multiple TGF-β/BMP antagonists imply that certain growth factors are subjected to local regulation on different levels which address another important level of intraovarian regulation of follicle development in humans....

  15. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1 in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT in Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Seiji Mori

    Full Text Available Epithelial-to-mesenchymal transition (EMT plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β and fibroblast growth factors (FGF secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2. We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.

  16. Down-regulation of transforming growth factor-β type II receptor (TGF-βRII protein and mRNA expression in cervical cancer

    Directory of Open Access Journals (Sweden)

    Gariglio Patricio

    2008-01-01

    Full Text Available Abstract Background Cervical carcinogenesis is a multistep process initiated by "high risk" human papillomaviruses (HR-HPV, most commonly HPV16. The infection per se is, however, not sufficient to induce malignant conversion. Transforming Growth Factor β (TGF-β inhibits epithelial proliferation and altered expression of TGF-β or its receptors may be important in carcinogenesis. One cofactor candidate to initiate neoplasia in cervical cancer is the prolonged exposure to sex hormones. Interestingly, previous studies demonstrated that estrogens suppress TGF-β induced gene expression. To examine the expression of TGF-β2, TGF-βRII, p15 and c-myc we used in situ RT-PCR, real-time PCR and immunohistochemistry in transgenic mice expressing the oncogene E7 of HPV16 under control of the human Keratin-14 promoter (K14-E7 transgenic mice and nontransgenic control mice treated for 6 months with slow release pellets of 17β-estradiol. Results Estrogen-induced carcinogenesis was accompanied by an increase in the incidence and distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-E7 mice. TGF-β2 mRNA and protein levels increased in K14-E7 transgenic mice as compared with nontransgenic mice and further increased after hormone-treatment in both nontransgenic and transgenic mice. In contrast, TGF-βRII mRNA and protein levels were decreased in K14-E7 transgenic mice compared to nontransgenic mice and these levels were further decreased after hormone treatment in transgenic mice. We also observed that c-myc mRNA levels were high in K14-E7 mice irrespective of estrogen treatment and were increased in estrogen-treated nontransgenic mice. Finally we found that p15 mRNA levels were not increased in K14-E7 mice. Conclusion These results suggest that the synergy between estrogen and E7 in inducing cervical cancer may in part reflect the ability of both factors to modulate TGF-β signal transduction.

  17. Posttreatment plasma transforming growth factor beta 1 (TGF-beta1) level

    Czech Academy of Sciences Publication Activity Database

    Feltl, D.; Závadová, E.; Pála, M.; Hozák, Pavel

    2005-01-01

    Roč. 52, č. 5 (2005), s. 393-397 ISSN 0028-2685 R&D Projects: GA AV ČR(CZ) IAA5039202 Institutional research plan: CEZ:AV0Z50390512 Keywords : head and neck cancer * late morbidity Subject RIV: EE - Microbiology, Virology Impact factor: 0.731, year: 2005

  18. The dynamics of plasma transforming growth factor beta 1 (TGF-beta1) level

    Czech Academy of Sciences Publication Activity Database

    Feltl, D.; Závadová, E.; Pála, M.; Hozák, Pavel

    2005-01-01

    Roč. 41, č. 2 (2005), s. 208-213 ISSN 1368-8375 R&D Projects: GA AV ČR(CZ) IAA5039202 Institutional research plan: CEZ:AV0Z50390512 Keywords : Head and neck cancer * radiotherapy Subject RIV: EA - Cell Biology Impact factor: 2.266, year: 2005

  19. Transforming growth factor expression (TGF-β) correlate with serum level of malondialdehyde (MDA) after EVOO administration in preclinical rat models of preeclampsia

    Science.gov (United States)

    Ilyas, Syafruddin; Hutahaean, Salomo; Evi Irianti, dan

    2018-03-01

    Preeclampsia can cause cell death either apoptosis or necrosis. One cause is the disturbance of the emergence of malondialdehyde (MDA). Very few reports on the role of Transforming Growth Factor Expression (TGF-β) in the remodeling process of placental cells and their association with serum MDA content. Research of true experiment with complete randomized design (CRD) with five treatment groups. The first group, preeclampsia negative control (T0). The second group, preeclamptic rats model (T1). The third group, preeclamptic rats model+EVOO 0.45g/kg-Body Weight/day (T2). The fourth group, preeclamptic rats model+EVOO 0.90g/kg-BW/day (T3). The fifth group, preeclamptic rats model+EVOO 1.8 g/kg-BW/day (T4). The results showed a significant effect of EVOO on TGF-β expression in preeclampsia rats, meaning that there was a role of TGF-β against pre-eclampsia placenta remodeling. There was a positive and strong relationship (r=0.494) as well as a very significant relationship (p<0.01) between TGF-β and the serum MDA.

  20. Biomechanic and histologic analysis of fibroblastic effects of tendon-to-bone healing by transforming growth factor β1 (TGF-β1) in rotator cuff tears.

    Science.gov (United States)

    Zhang, Chong; Liu, Yu-Jie

    2017-12-01

    To evaluate the effect of transforming growth factor β1 (TGF-β1) on tendon-to-bone reconstruction of rotator cuff tears. Seventy-two rat supraspinatus tendons were transected and reconstructed in situ. At 8 and 16 weeks, specimens of three groups; that is control, L-dose (low dose), and H-dose (high dose) were harvested and underwent a biomechanical test to evaluate the maximum load and stiffness values. Histology sections of the tendon-to-bone interface were identified by hematoxylin-eosin or Masson trichrome stain. Collagen type III was observed by picric acid sirius red staining under polarized light. The level of insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) was measured by the enzyme-linked immunosorbent assay (ELISA) method. Collagen type III of the H-dose group had a significant difference in histology structure compared with the L-dose group (P<0.05). The maximum load and stiffness decreased significantly in the control group compared with the values of the L-dose and H-dose groups. The stiffness among the three groups differed significantly at the same postoperative time (P<0.05). Interestingly, progressive reestablishment of collagen type III affected tendon-to-bone healing significantly in the later stages. The H-dose was associated with an increased collagen type III morphology stimulated by TGF-β1.

  1. Increase Concentration of Transforming Growth Factor Beta (TGF-β in Breast Milk of Mothers With Psychological Disorders

    Directory of Open Access Journals (Sweden)

    Mamak Shariat

    2017-09-01

    Full Text Available Several studies have shown an imbalance between proinflammatory and anti-inflammatory cytokines in depression and anxiety disorders. However, less attention has been paid to the role of cytokines in psychological disorder in mothers who breastfeed. This study looks at whether concentration levels of TGF-β2 are altered in anxious and depressive breastfeeding mothers. This study checked the concentration level of TGF-B2 in relation with psychological symptoms on 110 breastfeeding mothers; based on random sampling method with using of Beck Depression Inventory (BDI, General Health Questionnaire (GHQ and Spielberger Stress Scale (STAI in 2015 also TGF-β2 was measured in breast milk using ELISA. We used of Pearson Correlation Method, independent t-test and one-way analysis of variance (ANOVA to analyze the data. Psychological symptoms (Anxiety and depression showed positive correlation with TGF-Beta level in which relationships were significant (P=0.01. Psychological problems may be uniquely associated with the level of TGF-β in breast milk. More attention should be paid to the mental health of mothers during breastfeeding, and more research needs to be done in this subject to clarify the relationship between psychological variables with the level of TGF-β in breast milk.

  2. Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-beta1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Kassem, M

    2002-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGFs) are all important bone regulatory factors known to affect proliferation and differentiation of human bone-forming cells (osteoblasts). We have previously shown that TGF-beta1...... increased IGF-I and IGF-binding protein (IGFBP)-3 production in human bone marrow stromal (hMS) osteoblast progenitors and calcitriol stimulated IGFBP-3 and IGFBP-4 production. As interaction between signaling pathways of these factors has been reported, the present study aimed at examining the concerted...... actions on components of the IGF-system. We report that co-treatment with TGF-beta1 and calcitriol resulted in a synergistic increase in IGFBP-3 production, thereby suggesting that the effects of these factors on hMS osteoblast differentiation may involve the observed increase in IGFBP-3....

  3. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  4. The change of transforming growth factor {beta} 1 (TGF- {beta} 1) expression by melatonin in irradiated lung

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seong Soon; Choi, Ihl Bohng [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-09-15

    The changed expressions of TGF- {beta} 1, as a key cytokine in the fibrotic process, due to melatonin with potent antioxidative effects, were investigated in the irradiated lung using fibrosis-sensitive C57BL/6 mice. Female C57BL/6 mice were divided into control irradiation-only, and melatonin (300 mg/kg i.p. 1 hr before irradiation) pretreatment groups. The thoraces of the mice were irradiated with a single dose of 12 Gy. The mRNA expressions of TGF-{beta} 1 in the lung tissue 2 and 4 weeks after irradiation were quantified using semiquantitive RT-PCR, and the cellular origin and expression levels of TGF- {beta} 1 protein were identified using immunohistochemical staining. The relative mRNA expression levels in the irradiation-only and melatonin pretreatment group 2 and 4 weeks after irradiation were 1.92- and 1.80-fold ({rho} = 0.064) and 2.38- and 1.94-fold ({rho} = 0.004) increased, respectively compared to those in the control group. Increased expressions of TGF- {beta} 1 protein were prominently detected in regions of histopathological radiation injury, with alveolar macrophages and septal epithelial cells serving as important sources of TGF- {beta} 1 expression. At 2 and 4 weeks after irradiation, the expression levels of protein were 15.8% vs. 16.9% ({rho} = 0.565) and 36.1% vs. 25.7% ({rho} = 0.009), respectively. The mRNA and protein expressions of TGF- {beta} 1 in the lung tissue following thoracic irradiation with 12 Gy were significantly decreased by melatonin pretreatment at 4 weeks. These results indicate that melatonin may have a possible application as an antifibrotic agent in radiation-induced lung injury.

  5. TGF-B1 activation in human hamstring cells through growth factor binding peptides on polycaprolactone surfaces

    NARCIS (Netherlands)

    Ribeiro Pereira Simões Crispim, João Francisco; Fernandes, H.A.M.; Fu, S.C.; Lee, Y.W.; Jonkheijm, Pascal; Saris, Daniël B.F.

    2017-01-01

    The administration of soluble growth factors (GFs) to injured tendons and ligaments (T/L) is known to promote and enhance the healing process. However, the administration of GFs is a complex, expensive and heavily-regulated process and only achieved by employing supraphysiological GF concentrations.

  6. TGF-β1 activation in human hamstring cells through growth factor binding peptides on polycaprolactone surfaces

    NARCIS (Netherlands)

    Crispim, J.; Fernandes, H. A M; Fu, S. C.; Lee, Y. W.; Jonkheijm, P.; Saris, D. B F

    2017-01-01

    The administration of soluble growth factors (GFs) to injured tendons and ligaments (T/L) is known to promote and enhance the healing process. However, the administration of GFs is a complex, expensive and heavily-regulated process and only achieved by employing supraphysiological GF concentrations.

  7. Transforming growth factor-β (TGF-β) activation in cutaneous wounds after topical application of aloe vera gel.

    Science.gov (United States)

    Takzaree, Nasrin; Hadjiakhondi, Abbas; Hassanzadeh, Gholamreza; Rouini, Mohammad Reza; Manayi, Azadeh; Zolbin, Masoumeh Majidi

    2016-12-01

    Aloe vera is a medicinal plant used to treat various skin diseases. The effects of using aloe vera gel on the healing process were investigated by microscopic methods, cell counting, and TGF-β gene expression in the wound bed. Sixty Wistar rats weighing 200-250 g were placed under anesthesia in sterile conditions. A square 1.5 cm × 1.5 cm wound was made on the back of the neck. The rats were divided into control and 2 experimental groups. Additionally, the control and experimental groups were separated into 3 subgroups corresponding to 4, 7, and 14 days of study. In the first experimental group, aloe vera was used twice on the wound. The second experimental group received aloe vera overtreatment once on the wound. The positive control group received daily application of 1% phenytoein cream following surgical wound creation. The control group did not receive any treatment. This tissue was examined using histological staining (H&E) and Masson's Trichrome. Wound surface and wound healing were evaluated separately. TGF-β gene expression was analyzed by RT-PCR. Results showed that fibroblasts in both experimental groups were significantly increased, thereby acceleration wound healing. Application of aloe vera gel will increase TGF-β gene expression, ultimately accelerating the wound healing process.

  8. Histone Deacetylase 3 Coordinates Deacetylase-independent Epigenetic Silencing of Transforming Growth Factor-β1 (TGF-β1) to Orchestrate Second Heart Field Development*

    Science.gov (United States)

    Lewandowski, Sara L.; Janardhan, Harish P.; Trivedi, Chinmay M.

    2015-01-01

    About two-thirds of human congenital heart disease involves second heart field-derived structures. Histone-modifying enzymes, histone deacetylases (HDACs), regulate the epigenome; however, their functions within the second heart field remain elusive. Here we demonstrate that histone deacetylase 3 (HDAC3) orchestrates epigenetic silencing of Tgf-β1, a causative factor in congenital heart disease pathogenesis, in a deacetylase-independent manner to regulate development of second heart field-derived structures. In murine embryos lacking HDAC3 in the second heart field, increased TGF-β1 bioavailability is associated with ascending aortic dilatation, outflow tract malrotation, overriding aorta, double outlet right ventricle, aberrant semilunar valve development, bicuspid aortic valve, ventricular septal defects, and embryonic lethality. Activation of TGF-β signaling causes aberrant endothelial-to-mesenchymal transition and altered extracellular matrix homeostasis in HDAC3-null outflow tracts and semilunar valves, and pharmacological inhibition of TGF-β rescues these defects. HDAC3 recruits components of the PRC2 complex, methyltransferase EZH2, EED, and SUZ12, to the NCOR complex to enrich trimethylation of Lys-27 on histone H3 at the Tgf-β1 regulatory region and thereby maintains epigenetic silencing of Tgf-β1 specifically within the second heart field-derived mesenchyme. Wild-type HDAC3 or catalytically inactive HDAC3 expression rescues aberrant endothelial-to-mesenchymal transition and epigenetic silencing of Tgf-β1 in HDAC3-null outflow tracts and semilunar valves. These findings reveal that epigenetic dysregulation within the second heart field is a predisposing factor for congenital heart disease. PMID:26420484

  9. Transforming growth factor-beta1 (TGF-beta1) and acetylcholine (ACh) alter nitric oxide (NO) and interleukin-1beta (IL-1beta) secretion in human colon adenocarcinoma cells.

    Science.gov (United States)

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2009-10-01

    Colon adenocarcinoma is one of the most common fatal malignancies in Western countries. Progression of this cancer is dependent on tumor microenvironmental signaling molecules such as transforming growth factor-beta (TGF-beta) or acetylcholine (ACh). The present study was conducted to assess the influence of recombinant human transforming growth factor (rhTGF)-beta1 or ACh on nitric oxide (NO) and interleukin-1beta (IL-1beta) secretion by three human colon adenocarcinoma cell lines: HT29, LS180, and SW948, derived from different grade tumors (Duke's stage). The cells were cultured in 2D and 3D (spheroids) conditions. Colon carcinoma cells exhibited different sensitivities to rhTGF-beta1 or ACh dependent on the tumor grade and the culture model. ACh exhibited significant inhibitory effects towards NO, endothelial nitric oxide synthase (eNOS), and IL-1beta secretion especially by tumor cells derived form Duke's C stage of colon carcinoma. rhTGF-beta1 also decreased NO, IL-1beta, and eNOS expression, but its effect was lower than that observed after the administration of ACh. The inhibition of NO and IL-1beta production was more striking in 3D tumor spheroids than in 2D culture monolayers. Taken together, the TGF-beta1-ACh axis may regulate colon carcinoma progression and metastasis by altering NO secretion and influence inflammatory responses by modulating IL-1beta production.

  10. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y

    1989-08-01

    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  11. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-β- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    International Nuclear Information System (INIS)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R.

    2005-01-01

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-β superfamily members myostatin and TGF-β 1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-β 1 or myostatin significantly (P 1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P 1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-β 1 or myostatin treatment (P 1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-β and myostatin to suppress proliferation of PEMC

  12. Impact of Auditory Integrative Training (AIT) on Transforming Growth Factor Beta 1 (TGF-β1) and Its Effect on Behavioural and Social Emotions in Children with Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Al-Ayadhi, Laila; Alhowikan, Abdulrahman; Halepoto, Dost

    2018-01-03

    To explore the impact of auditory integrative training (AIT) on inflammatory biomarker transforming growth factor-β1 (TGF-β1) and to assess its effect on social behaviours in children with autism spectrum disorder (ASD). In this cross-sectional study 15 subjects (14 males, I female) with ASD aged 3-12 years were recruited. All subjects were screened for autism by Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Plasma levels of TGF-β1 in all subjects were measured using sandwich enzyme immunoassay (ELISA) immediately after the AIT sessions and after 1 and 3 months. Pre-AIT and post-AIT behavioural scores were also calculated for each child using the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and the Short Sensory Profile (SSP). Data was analysed using the Statistical Package for the Social Sciences (SPSS) computer program (SPSS 21.0 for Windows, Chicago, Illinois, USA). Plasma levels of TGF-β1 significantly increased to 85% immediately (20.13±12, p communication in children with ASD. Furthermore TGF-β1was associated with the severity of all tested scores (CARS, SRS and SSP); if confirmed in studies on larger sample sizes, TGF-β1 may be considered as a marker of severity of ASD and to assess efficacy of therapeutic interventions. ©2018The Author(s). Published by S. Karger AG, Basel.

  13. Color-coded intravital imaging demonstrates a transforming growth factor-β (TGF-β) antagonist selectively targets stromal cells in a human pancreatic-cancer orthotopic mouse model.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Miyake, Kentaro; Hwang, Ho Kyoung; Kiyuna, Tasuku; DeLong, Jonathan C; Lwin, Thinzar M; Matsuyama, Ryusei; Mori, Ryutaro; Kumamoto, Takafumi; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2017-05-19

    Pancreatic cancer is a recalcitrant malignancy, partly due to desmoplastic stroma which stimulates tumor growth, invasion, and metastasis, and inhibits chemotherapeutic drug delivery. Transforming growth factor-β (TGF-β) has an important role in the formation of stromal desmoplasia. The present study describes the ability of color-coded intravital imaging to demonstrate the efficacy of a TGF-β inhibitor to target stroma in an orthotopic mouse model of pancreatic cancer. The BxPC-3 human pancreatic adenocarcinoma cell line expressing green fluorescent protein (GFP), which also has a high TGF-β expression level, was used in an orthotopic model in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP). Fourteen mice were randomized into a control group (n = 7, vehicle, i.p., weekly, for 3 weeks) and a treated group (n = 7, SB431542 [TGF-β receptor type I inhibitor] 0.3 mg, i.p., weekly, for 3 weeks). Stromal cells expressing RFP and cancer cells expressing GFP were observed weekly for 3 weeks by real-time color-coded intravital imaging. The RFP fluorescence area from the stromal cells, relative to the GFP fluorescence area of the cancer cells, was significantly decreased in the TGF-β-inhibitor-treatment group compared to the control group. The present study demonstrated color-coded imaging in an orthotopic pancreatic-cancer cell-line mouse model can readily detect the selective anti-stromal-cell targeting of a TGF-β inhibitor.

  14. TGF-β1 factor in the cerebrovascular diseases of Alzheimer's disease.

    Science.gov (United States)

    Zhang, X; Huang, W-J; Chen, W-W

    2016-12-01

    Transforming growth factor betas (TGF-βs) belong to three isoforms (TGF-β1, TGF-β2 and TGF-β3) members of a large pleiotropic superfamily of around 100 distinct proteins participating in the regulation of key events of development and disease, and tissue repair. In the central nervous system (CNS), all the three isoforms are produced by both glial and neuronal cells and are involved in essential tissue functions such as cell-cycle control, regulation of early development and differentiation, neuronal survival and astrocytes differentiation. Recent findings have shown abnormally increase of the levels of TGF-β1 in the brain of patients suffering Alzheimer's disease (AD), an elderly pathology reaching individuals over 65-years-old which present well-known hallmarks, including cerebrovascular deficiency, abnormal deposition of amyloid beta (Aβ), cholinergic denervation, neuroinflammation, neurofibrillary tangles and progressive loss of memory. However, related to the pathological features of AD, the brain overexpression of TGF-β1 was associated with neuroinflammation, accumulation of extracellular matrix compounds and cerebrovascular stiffness, neuronal apoptosis along with the development of vascular hypertrophy. Consistent with these observations, transgenic mice model (TGF mice) overexpressing constitutively TGF-β1 fully mimicked AD-like cerebrovascular pathology. Taken altogether, these data suggest the involvement of TGF-β1in the pathogenesis of AD, particularly in the cerebrovascular pathology which is of interest in the present review that will discuss the contribution of TGF-β1 in the cerebrovascular physiopathology of AD.

  15. Transforming Growth Factor β-1 (TGF-β1) Is a Serum Biomarker of Radiation Induced Fibrosis in Patients Treated With Intracavitary Accelerated Partial Breast Irradiation: Preliminary Results of a Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Boothe, Dustin L. [Weill Cornell Medical College of Cornell University, New York, New York (United States); Coplowitz, Shana [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Greenwood, Eleni [Weill Cornell Medical College of Cornell University, New York, New York (United States); Barney, Christian L. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Christos, Paul J. [Division of Biostatistics and Epidemiology, Department of Public Health, Weill Cornell Medical College of Cornell University, New York, New York (United States); Parashar, Bhupesh; Nori, Dattatreyudu; Chao, K. S. Clifford [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Wernicke, A. Gabriella, E-mail: gaw9008@med.cornell.edu [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States)

    2013-12-01

    Purpose: To examine a relationship between serum transforming growth factor β -1 (TGF-β1) values and radiation-induced fibrosis (RIF). Methods and Materials: We conducted a prospective analysis of the development of RIF in 39 women with American Joint Committee on Cancer stage 0-I breast cancer treated with lumpectomy and accelerated partial breast irradiation via intracavitary brachytherapy (IBAPBI). An enzyme-linked immunoassay (Quantikine, R and D, Minneapolis, MN) was used to measure serum TGF-β1 before surgery, before IBAPBI, and during IBAPBI. Blood samples for TGF-β1 were also collected from 15 healthy, nontreated women (controls). The previously validated tissue compliance meter (TCM) was used to objectively assess RIF. Results: The median time to follow-up for 39 patients was 44 months (range, 5-59 months). RIF was graded by the TCM scale as 0, 1, 2, and 3 in 5 of 20 patients (25%), 6 of 20 patients (30%), 5 of 20 patients (25%), and 4 of 20 patients (20%), respectively. The mean serum TGF-β1 values were significantly higher in patients before surgery than in disease-free controls, as follows: all cancer patients (30,201 ± 5889 pg/mL, P=.02); patients with any type of RIF (32,273 ± 5016 pg/mL, P<.0001); and women with moderate to severe RIF (34,462 ± 4713 pg/mL, P<0.0001). Patients with moderate to severe RIF had significantly elevated TGF-β1 levels when compared with those with none to mild RIF before surgery (P=.0014) during IBAPBI (P≤0001), and the elevation persisted at 6 months (P≤.001), 12 months (P≤.001), 18 months (P≤.001), and 24 months (P=.12). A receiver operating characteristic (ROC) curve of TGF-β1 values predicting moderate to severe RIF was generated with an area under the curve (AUC){sub ROC} of 0.867 (95% confidence interval 0.700-1.000). The TGF-β1 threshold cutoff was determined to be 31,000 pg/mL, with associated sensitivity and specificity of 77.8% and 90.0%, respectively. Conclusions: TGF-β1 levels correlate with

  16. Astragalus membranaceus Inhibits Peritoneal Fibrosis via Monocyte Chemoattractant Protein (MCP-1 and the Transforming Growth Factor-β1 (TGF-β1 Pathway in Rats Submitted to Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Zhenghong Li

    2014-07-01

    Full Text Available Inflammation and transforming growth factor-β1 (TGF-β1 contribute to the development of peritoneal fibrosis (PF, which is associated with peritoneal dialysis (PD. Astragalus membranaceus (Astragalus has anti-inflammatory and anti-fibrotic effects in many diseases. The goal of this study was to determine the anti-fibrotic effects of Astragalus on the PF response to PD. A rat model of PD was induced using standard PD fluid, and PF was verified by HE and Masson’s staining, as well as through the expression of fibroblast surface protein (FSP and collagen III. The expression levels of monocyte chemoattractant protein (MCP-1, F4/80 (macrophage/monocyte marker in rat, TGF-β1 and the downstream proteins phospho-SMAD 2/3 in dialyzed peritoneal tissue treated with or without Astragalus was evaluated using immunohistochemistry analysis. Overall correlations between MCP-1 and TGF-β1 staining were analyzed using both the Spearman and Pearson methods. The results showed that Astragalus could inhibit the recruitment and activation of monocytes/macrophages, thereby reducing the production of TGF-β1 in the dialyzed peritoneal membrane. PF was also significantly decreased following treatment with Astragalus. MCP-1 expression had a strong positive correlation with TGF-β1 sensitivity, suggesting that the anti-fibrotic function of Astragalus was mediated by MCP-1 and the TGF-β1 pathway. Our results indicate that Astragalus could be a useful agent against PD-induced PF.

  17. Association of Transforming Growth Factor Beta-1 (TGF-β1) Genetic Variation with Type 2 Diabetes and End Stage Renal Disease in Two Large Population Samples from North India.

    Science.gov (United States)

    Raina, Priyanka; Sikka, Ruhi; Kaur, Ramandeep; Sokhi, Jasmine; Matharoo, Kawaljit; Singh, Virinder; Bhanwer, A J S

    2015-05-01

    Geographic and ethnic differences impart an immense influence on the genetic susceptibility to Type 2 diabetes (T2D) and diabetic nephropathy (DN). Transforming growth factor-beta1 (TGF-β1), a ubiquitously expressed pro-fibrotic cytokine plays a pivotal role in mediating the hypertrophic and fibrotic manifestations of DN. The present study is aimed to study the association of TGF-β1 g.869T>C (rs1800470) and g.-509C>T (rs1800469) polymorphism in T2D and end stage renal disease (ESRD) cases from the two geographically and ethnically different populations from North India. A total of 1313 samples comprising 776 samples from Punjab (204 with ESRD, 257 without ESRD, and 315 healthy controls) and 537 samples from Jammu and Kashmir (150 with ESRD, 187 without ESRD, and 200 controls) were genotyped for TGF-β1 (rs1800470 and rs1800469) using ARMS-PCR. The CC genotype of rs1800470 increased ESRD risk by 3.1-4.5-fold in both populations. However, for rs1800469, the TT genotype provided 5.5-fold risk towards ESRD cases from Jammu and Kashmir and no risk for the cases from Punjab. The haplotype C-T conferred nearly a 2-3-fold risk towards T2D and ESRD and diplotype CC-CT conferred a 4-fold risk towards ESRD. Our results conclude that TGF-β1 (rs1800470) may increase the risk of both ESRD and T2D in both populations, but TGF-β1 (rs1800469) provided risk for only ESRD in the population of Jammu and Kashmir. The present study is one of the large sample sized genetic association studies of T2D and ESRD from Indian population and adds to the scholarship on global health omics.

  18. Modulation role of angelica sinensis on transforming growth factor beta 1 (TGF-β1) expression induced by radiation in the lung tissue

    International Nuclear Information System (INIS)

    Xie Conghua; Zhou Yunfeng; Peng Gang; Zhou Fuxiang; Zhang Gong; Liang Chen; Liu Hui; Chen Ji; Xia Mingtong

    2005-01-01

    Objective: To investigate the ability of Angelica Sinensis to affect the radiation- induced TGF-β 1 release in the animal model, so as to find an effective method to reduce the lung toxicity after thoracic irradiation. Methods: The thoraces of C57BL/6 mice were exposed to either sham irradiation or single fraction of 12 Gy. Four study groups were defined: those that received neither irradiation nor Angelica Sinensis (NT group), those that received Angelica Sinensis but no irradiation (AS group), those that underwent irradiation without Angelica Sinensis (XRT group) and those that received both Angelica Sinensis and irradiation (AS/XRT group). Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 24, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation) . The TGF-β 1 mRNA expressions in the lung tissue were quantified by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemical Streptavidin-Peroxidase method and positive cell counting were used for objective quantification of TGF-β 1 protein expression. Results: NT and AS groups exhibited low levels of TGF-β 1 protein expression with positive cell counts between 9 and 31. And there is an significantly elevated level of TGF-β 1 positive inflammatory cells in XRT group (P 1 in XRT group was significantly higher than the nonirradiated groups (P 1 response on mRNA level, but the statistical comparison of the TNF-αmRNA expression between the XRT and AS/XRT treatment-group was not significant (P=0.054). Conclusion: This study demonstrates a significant radiation-induced increase of TGF-β 1 (on mRNA and protein level) in the lung tissue, and the predominant localisation of TGF-β 1 in areas of inflammatory cell infiltrates suggests involvement of this cytokine in the pathogenesis of radiation-induced lung injury

  19. Binding of the transcription factor Slug to the L1CAM promoter is essential for transforming growth factor-β1 (TGF-β)-induced L1CAM expression in human pancreatic ductal adenocarcinoma cells.

    Science.gov (United States)

    Geismann, Claudia; Arlt, Alexander; Bauer, Iris; Pfeifer, Marco; Schirmer, Uwe; Altevogt, Peter; Müerköster, Susanne Sebens; Schäfer, Heiner

    2011-01-01

    Members of the Slug/Snail family of transcription factors are thought to drive epithelial-mesenchymal-transition (EMT) in preneoplastic epithelial cells, thereby contributing to malignant transformation. One mediator in the EMT of pancreatic ductal adenocarcinoma (PDAC) cells and a potential target gene of Slug is the cellular adhesion molecule L1CAM. Using the human pancreatic ductal epithelial cell line H6c7 and the PDAC cell line Panc1, we could show that along with TGF-β1-induced EMT, L1CAM expression is increased in a Slug- but not Snail-dependent fashion. Two E-box recognition motifs in the L1CAM promoter upstream of the most distal transcriptional start site could be verified by gel shift and supershift assay to interact with Slug. ChIP assays detected an increased interaction of Slug with both recognition motifs of the human L1CAM promoter in TGF-β1-treated H6c7 cells, whereas binding of Snail was downregulated. Moreover, ChIP assays with Panc1 cells confirmed this interaction of Slug with the human L1CAM promoter and further detected an interaction of both recognition sites with RNA-polymerase II in a Slug-dependent fashion. Luciferase reporter gene assays using wild-type or single- and double-mutated variants of the L1CAM promoter confirmed transcriptional activation by Slug involving both recognition motifs. By demonstrating the direct transcriptional control of L1CAM expression through Slug during TGF-β1-induced EMT of PDAC cells, our findings point to a novel mechanism by which Slug contributes quite early to tumorigenesis. Moreover, our study is the first one describing the control of the human L1CAM promoter in tumor cells.

  20. TGF-β Controls miR-181/ERK Regulatory Network during Retinal Axon Specification and Growth.

    Directory of Open Access Journals (Sweden)

    Sabrina Carrella

    Full Text Available Retinal axon specification and growth are critically sensitive to the dosage of numerous signaling molecules and transcription factors. Subtle variations in the expression levels of key molecules may result in a variety of axonal growth anomalies. miR-181a and miR-181b are two eye-enriched microRNAs whose inactivation in medaka fish leads to alterations of the proper establishment of connectivity and function in the visual system. miR-181a/b are fundamental regulators of MAPK signaling and their role in retinal axon growth and specification is just beginning to be elucidated. Here we demonstrate that miR-181a/b are key nodes in the interplay between TGF-β and MAPK/ERK within the functional pathways that control retinal axon specification and growth. Using a variety of in vivo and in vitro approaches in medaka fish, we demonstrate that TGF-β signaling controls the miR-181/ERK regulatory network, which in turn strengthens the TGF-β-mediated regulation of RhoA degradation. Significantly, these data uncover the role of TGF-β signaling in vivo, for the first time, in defining the correct wiring and assembly of functional retina neural circuits and further highlight miR-181a/b as key factors in axon specification and growth.

  1. Clinical meanings of changes of blood expression of CD95 antigen (Fas), Bcl-2 and transforming growth factor-α (TGF-α) in patients with chronic renal failure on hemodialysis

    International Nuclear Information System (INIS)

    Yang Daoli; Luo Nanping; Sun Xiaoming

    2005-01-01

    Objective: To study the changes of expression of blood CD95 antigen (Fas), and anti-apoptosis factor (Bcl-2) and TGF-α after hemodialysis in patients with chronic renal failure. Methods: The percentage of CD95 and Bcl-2 positive cells in peripheral blood monocytes were examined with flow cytometry and serum TGF-α contents were measured with RIA in 40 patients with chronic renal failure both before and after hemodialysis as well as in 25 other patients with chronic renal failure but not on dialysis and 30 controls. Results: Expressions of CD95 were significantly higher and expressions of Bcl-2, TGF-α were significantly lower in all the patients with chronic renal failure than those in the controls (P 0.05). Conclusion: The up-regulation of CD95 expression and increase of serum TGF-α contents after hemodialysis might contribute to induction of apoptosis of mesangial cells, which would be beneficial to the patient. (authors)

  2. Increased sensitivity of transforming growth factor (TGF) beta 1 null cells to alkylating agents reveals a novel link between TGFbeta signaling and O(6)-methylguanine methyltransferase promoter hypermethylation.

    Science.gov (United States)

    Yamada, H; Vijayachandra, K; Penner, C; Glick, A

    2001-06-01

    Inactivation of the transforming growth factor beta (TGFbeta)-signaling pathway and gene silencing through hypermethylation of promoter CpG islands are two frequent alterations in human and experimental cancers. Here we report that nonneoplastic TGFbeta1-/- keratinocyte cell lines exhibit increased sensitivity to cell killing by alkylating agents, and this is due to lack of expression of the DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT). In TGFbeta1-/- but not TGFbeta1+/- cell lines, the CpG dinucleotides in the MGMT promoter are hypermethylated, as measured by restriction enzyme analysis and methylation specific polymerase chain reaction. In one unstable TGFbeta1+/- cell line, loss of the wild type TGFbeta1 allele correlates with the appearance of methylation in the MGMT promoter. Bisulfite sequencing shows that in the KO3 TGFbeta1-/- cell line nearly all of the 28 CpG sites in the MGMT promoter 475 base pairs upstream of the start site of transcription are methylated, whereas most are unmethylated in the H1 TGFbeta1+/- line. Treatment of the TGFbeta1-/- cell lines with 5-azacytidine causes reexpression of MGMT mRNA and demethylation of CpG islands in the promoter. Analysis of the time course of methylation using methylation-specific polymerase chain reaction shows a lack of methylation in primary TGFbeta1-/- keratinocytes and increasing methylation with passage number of immortalized clones. Subcloning of early passage clones reveals a remarkable heterogeneity and instability of the methylation state in the TGFbeta1-/- keratinocytes. Thus, the TGFbeta1-/- genotype does not directly regulate MGMT methylation but predisposes cells to immortalization-associated MGMT hypermethylation.

  3. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  4. The Relationships between Polymorphisms in Genes Encoding the Growth Factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A and the Restenosis Process in Patients with Stable Coronary Artery Disease Treated with Bare Metal Stent.

    Directory of Open Access Journals (Sweden)

    Tadeusz Osadnik

    Full Text Available Neointima forming after stent implantation consists of vascular smooth muscle cells (VSMCs in 90%. Growth factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A play an important role in VSMC proliferation and migration to the tunica intima after arterial wall injury. The aim of this paper was an analysis of functional polymorphisms in genes encoding TGF-β1, PDGFB, EGF, bFGF and VEGF-A in relation to in-stent restenosis (ISR.265 patients with a stable coronary artery disease (SCAD hospitalized in our center in the years 2007-2011 were included in the study. All patients underwent stent implantation at admission to the hospital and had another coronary angiography performed due to recurrence of the ailments or a positive result of the test assessing the coronary flow reserve. Angiographically significant ISR was defined as stenosis >50% in the stented coronary artery segment. The patients were divided into two groups-with angiographically significant ISR (n = 53 and without significant ISR (n = 212. Additionally, the assessment of late lumen loss (LLL in vessel was performed. EGF rs4444903 polymorphism was genotyped using the PCR-RFLP method whilst rs1800470 (TGFB1, rs2285094 (PDGFB rs308395 (bFGF and rs699947 (VEGF-A were determined using the TaqMan method.Angiographically significant ISR was significantly less frequently observed in the group of patients with the A/A genotype of rs1800470 polymorphism (TGFB1 versus patients with A/G and G/G genotypes. In the multivariable analysis, LLL was significantly lower in patients with the A/A genotype of rs1800470 (TGFB1 versus those with the A/G and G/G genotypes and higher in patients with the A/A genotype of the VEGF-A polymorphism versus the A/C and C/C genotypes. The C/C genotype of rs2285094 (PDGFB was associated with greater LLL compared to C/T heterozygotes and T/T homozygotes.The polymorphisms rs1800470, rs2285094 and rs6999447 of the TGFB1, PDGFB and VEGF-A genes, respectively, are associated with LLL

  5. Fibroblast Growth Factor Receptor 3 Interacts with and Activates TGF beta-Activated Kinase 1 Tyrosine Phosphorylation and NFkB Signaling in Multiple Myeloma and Bladder Cancer

    Czech Academy of Sciences Publication Activity Database

    Salazar, L.; Kashiwada, T.; Krejčí, Pavel; Meyer, A.N.; Casale, M.; Hallowell, M.; Wilcox, W. R.; Donoghue, D.J.; Thompson, L.M.

    2014-01-01

    Roč. 9, č. 1 (2014) E-ISSN 1932-6203 Institutional support: RVO:68081707 Keywords : FACTOR -KAPPA-B * URINARY-BLADDER * DOWN-REGULATION Subject RIV: BO - Biophysics Impact factor : 3.234, year: 2014

  6. [Study on TGF beta 1, TGF beta 2, TGF beta 3 expression in the chick basilar papilla following gentamicin toxicity].

    Science.gov (United States)

    Li, H; Wang, J

    1998-10-01

    The beta-type transforming growth factors (TGF beta s) are secreted proteins, which play an important role in regulation of cell proliferation and differentiation in the embryonic inner ear. In order to probe into the effect of TGF beta s on the hair cell regeneration, expression of TGF beta 1, TGF beta 2 and TGF beta 3 proteins were examined by using immunohistochemistry in the chicken basilar papilla during hair cell regeneration following gentamicin ototoxicity. Ten-day-old chickens received daily subcutaneous injection of gentamicin sulfate 50 mg/kg of ten consecutive days. The animals were allowed to survive 1,3,7,14,21 and 28 days before sacrifice and preparation for examination of the expression of TGF beta 1, TGF beta 2 and TGF beta 3 proteins. Immunostaining results demonstrated that TGF beta 2 and TGF beta 3 proteins were observed in the damaged region of basilar papilla. TGF beta 2 and TGF beta 3 proteins positive cells were limited to the lumenal nuclear layer within the damaged region. TGF beta 1 protein positive cell was not found in our study. These results indicated that TGF beta 2 and TGF beta 3 proteins might play a role in regulating proliferation of the supporting cells immigrated into the lumenal nuclear layer during hair cell regeneration.

  7. Role of Transforming Growth Factor β in Uterine Fibroid Biology.

    Science.gov (United States)

    Ciebiera, Michał; Włodarczyk, Marta; Wrzosek, Małgorzata; Męczekalski, Błażej; Nowicka, Grażyna; Łukaszuk, Krzysztof; Ciebiera, Magdalena; Słabuszewska-Jóźwiak, Aneta; Jakiel, Grzegorz

    2017-11-17

    Uterine fibroids (UFs) are benign tumors of the female genital tract made of the smooth muscle of the uterus. UF growth depends mostly on the influence of the steroid hormones and selected growth factors. Transforming growth factor β (TGF-βs) is a polypeptide that consists of three isoforms: TGF-β1, TGF-β2, and TGF-β3. At present, TGF-β is considered to be one of the key factors in the pathophysiology of UFs. It plays a major role in cellular migration within the tumor, stimulates tumor growth, and enhances tumor metabolism. As a consequence of various dependencies, the synthesis and release of TGF-β in a UF tumor is increased, which results in excessive extracellular matrix production and storage. High concentrations or overexpression of TGF-β mediators may be responsible for clinically symptomatic UFs. The aim of this review was to check the available evidence for the influence of the TGF-β family on UF biology. We conducted their search in PubMed of the National Library of Medicine with the use of the following selected keywords: "uterine fibroid", "leiomyoma", and "transforming growth factor β". After reviewing the titles and abstracts, more than 115 full articles were evaluated. We focused on the TGF-β-related molecular aspects and their influence on the most common symptoms that are associated with UFs. Also, we described how the available data might implicate the current medical management of UFs.

  8. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF recep...

  9. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  10. Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor β1-3 (TGF-β1-3).

    Science.gov (United States)

    Yue, Michael M; Lv, Kaosheng; Meredith, Stephen C; Martindale, Jennifer L; Gorospe, Myriam; Schuger, Lucia

    2014-12-05

    P311, a conserved 8-kDa intracellular protein expressed in brain, smooth muscle, regenerating tissues, and malignant glioblastomas, represents the first documented stimulator of TGF-β1-3 translation in vitro and in vivo. Here we initiated efforts to define the mechanism underlying P311 function. PONDR® (Predictor Of Naturally Disordered Regions) analysis suggested and CD confirmed that P311 is an intrinsically disordered protein, therefore requiring an interacting partner to acquire tertiary structure and function. Immunoprecipitation coupled with mass spectroscopy identified eIF3 subunit b (eIF3b) as a novel P311 binding partner. Immunohistochemical colocalization, GST pulldown, and surface plasmon resonance studies revealed that P311-eIF3b interaction is direct and has a Kd of 1.26 μm. Binding sites were mapped to the non-canonical RNA recognition motif of eIF3b and a central 11-amino acid-long region of P311, here referred to as eIF3b binding motif. Disruption of P311-eIF3b binding inhibited translation of TGF-β1, 2, and 3, as indicated by luciferase reporter assays, polysome fractionation studies, and Western blot analysis. RNA precipitation assays after UV cross-linking and RNA-protein EMSA demonstrated that P311 binds directly to TGF-β 5'UTRs mRNAs through a previously unidentified RNA recognition motif-like motif. Our results demonstrate that P311 is a novel RNA-binding protein that, by interacting with TGF-βs 5'UTRs and eIF3b, stimulates the translation of TGF-β1, 2, and 3. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing [Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang (China); Liu, Su-zhi [Department of Neurology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang (China); Lin, Yan; Cao, Xiao-pan [Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang (China); Liu, Jia-ming, E-mail: wzljm@126.com [School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou 325035, Zhejiang (China)

    2014-01-17

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.

  12. Maternal breast milk transforming growth factor beta and feeding intolerance in preterm infants

    Science.gov (United States)

    Frost, Brandy L.; Jilling, Tamas; Lapin, Brittany; Maheshwari, Akhil; Caplan, Michael S.

    2015-01-01

    Background Feeding intolerance occurs commonly in the NICU. Breast milk contains a large pool of transforming growth factor-beta (TGF-beta). Few studies describe TGF-beta levels in preterm milk, and the relationship to feeding intolerance (FI) remains unexplored. We measured TGF-beta levels in preterm breast milk to investigate a correlation with FI in preterm infants. Methods Prospective observational trial of 100 mother-infant pairs, enrolling infants born below 32 weeks gestation and less than 1500 grams, and mothers who planned to provide breast milk. TGF-beta levels were measured using ELISA. Infant charts were reviewed for outcomes. Results TGF-beta declined postnatally, most elevated in colostrum (p<0.01). TGF-beta 2 levels were higher than TGF-beta 1 at all time points (p<0.01). Colostrum TGF-beta levels correlated inversely with birth weight (p<0.01) and gestational age (p<0.05). One week TGF-beta 2 levels were reduced in growth-restricted infants with FI (p<0.01). Of infants with NEC, TGF-beta 2 levels appeared low, but small sample size precluded meaningful statistical comparisons. Conclusions TGF-beta levels decline temporally in preterm milk. TGF-beta 1 colostrum levels correlate inversely with birth weight and gestational age. TGF-beta 2 may play a role in FI in growth-restricted infants. The relationship of TGF-beta 2 and NEC merits future investigation. PMID:24995914

  13. JunD Is Required for Proliferation of Prostate Cancer Cells and Plays a Role in Transforming Growth Factor-β (TGF-β)-induced Inhibition of Cell Proliferation*

    Science.gov (United States)

    Millena, Ana Cecilia; Vo, BaoHan T.; Khan, Shafiq A.

    2016-01-01

    TGF-β inhibits proliferation of prostate epithelial cells. However, prostate cancer cells in advanced stages become resistant to inhibitory effects of TGF-β. The intracellular signaling mechanisms involved in differential effects of TGF-β during different stages are largely unknown. Using cell line models, we have shown that TGF-β inhibits proliferation in normal (RWPE-1) and prostate cancer (DU145) cells but does not have any effect on proliferation of prostate cancer (PC3) cells. We have investigated the role of Jun family proteins (c-Jun, JunB, and JunD) in TGF-β effects on cell proliferation. Jun family members were expressed at different levels and responded differentially to TGF-β treatment. TGF-β effects on JunD protein levels, but not mRNA levels, correlated with its effects on cell proliferation. TGF-β induced significant reduction in JunD protein in RWPE-1 and DU145 cells but not in PC3 cells. Selective knockdown of JunD expression using siRNA in DU145 and PC3 cells resulted in significant reduction in cell proliferation, and forced overexpression of JunD increased the proliferation rate. On the other hand, knockdown of c-Jun or JunB had little, if any, effect on cell proliferation; overexpression of c-Jun and JunB decreased the proliferation rate in DU145 cells. Further studies showed that down-regulation of JunD in response to TGF-β treatment is mediated via the proteasomal degradation pathway. In conclusion, we show that specific Jun family members exert differential effects on proliferation in prostate cancer cells in response to TGF-β, and inhibition of cell proliferation by TGF-β requires degradation of JunD protein. PMID:27358408

  14. JunD Is Required for Proliferation of Prostate Cancer Cells and Plays a Role in Transforming Growth Factor-β (TGF-β)-induced Inhibition of Cell Proliferation.

    Science.gov (United States)

    Millena, Ana Cecilia; Vo, BaoHan T; Khan, Shafiq A

    2016-08-19

    TGF-β inhibits proliferation of prostate epithelial cells. However, prostate cancer cells in advanced stages become resistant to inhibitory effects of TGF-β. The intracellular signaling mechanisms involved in differential effects of TGF-β during different stages are largely unknown. Using cell line models, we have shown that TGF-β inhibits proliferation in normal (RWPE-1) and prostate cancer (DU145) cells but does not have any effect on proliferation of prostate cancer (PC3) cells. We have investigated the role of Jun family proteins (c-Jun, JunB, and JunD) in TGF-β effects on cell proliferation. Jun family members were expressed at different levels and responded differentially to TGF-β treatment. TGF-β effects on JunD protein levels, but not mRNA levels, correlated with its effects on cell proliferation. TGF-β induced significant reduction in JunD protein in RWPE-1 and DU145 cells but not in PC3 cells. Selective knockdown of JunD expression using siRNA in DU145 and PC3 cells resulted in significant reduction in cell proliferation, and forced overexpression of JunD increased the proliferation rate. On the other hand, knockdown of c-Jun or JunB had little, if any, effect on cell proliferation; overexpression of c-Jun and JunB decreased the proliferation rate in DU145 cells. Further studies showed that down-regulation of JunD in response to TGF-β treatment is mediated via the proteasomal degradation pathway. In conclusion, we show that specific Jun family members exert differential effects on proliferation in prostate cancer cells in response to TGF-β, and inhibition of cell proliferation by TGF-β requires degradation of JunD protein. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Growth regulation of simian and human AIDS-related non-Hodgkin's lymphoma cell lines by TGF-β1 and IL-6

    Directory of Open Access Journals (Sweden)

    Levy Laura S

    2007-02-01

    Full Text Available Abstract Background AIDS-related non-Hodgkin's lymphoma (AIDS-NHL is the second most frequent cancer associated with AIDS, and is a frequent cause of death in HIV-infected individuals. Experimental analysis of AIDS-NHL has been facilitated by the availability of an excellent animal model, i.e., simian Acquired Immunodeficiency Syndrome (SAIDS in the rhesus macaque consequent to infection with simian immunodeficiency virus. A recent study of SAIDS-NHL demonstrated a lymphoma-derived cell line to be sensitive to the growth inhibitory effects of the ubiquitous cytokine, transforming growth factor-beta (TGF-beta. The authors concluded that TGF-beta acts as a negative growth regulator of the lymphoma-derived cell line and, potentially, as an inhibitory factor in the regulatory network of AIDS-related lymphomagenesis. The present study was conducted to assess whether other SAIDS-NHL and AIDS-NHL cell lines are similarly sensitive to the growth inhibitory effects of TGF-beta, and to test the hypothesis that interleukin-6 (IL-6 may represent a counteracting positive influence in their growth regulation. Methods Growth stimulation or inhibition in response to cytokine treatment was quantified using trypan blue exclusion or colorimetric MTT assay. Intracellular flow cytometry was used to analyze the activation of signaling pathways and to examine the expression of anti-apoptotic proteins and distinguishing hallmarks of AIDS-NHL subclass. Apoptosis was quantified by flow cytometric analysis of cell populations with sub-G1 DNA content and by measuring activated caspase-3. Results Results confirmed the sensitivity of LCL8664, an immunoblastic SAIDS-NHL cell line, to TGF-beta1-mediated growth inhibition, and further demonstrated the partial rescue by simultaneous treatment with IL-6. IL-6 was shown to activate STAT3, even in the presence of TGF-beta1, and thereby to activate proliferative and anti-apoptotic pathways. By comparison, human AIDS-NHL cell lines

  16. Regulation of TGF-β Signal Transduction.

    Science.gov (United States)

    Zhao, Bing; Chen, Ye-Guang

    2014-01-01

    Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.

  17. serum transforming growth factor b1 and prostate

    African Journals Online (AJOL)

    rum marker for prostate cancer, its low speci- ficity for the detection of prostate cancer, es- pecially in the grey zone of PSA, is a problem1. Therefore, more effective tumor markers for prostate cancer are being sought. A potential candidate marker is the transforming growth factor beta (TGF-B). TGF-l31 has gained con-.

  18. Transforming growth factor-beta: possible roles in Dupuytren's contracture

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1995-01-01

    Transforming growth factor-beta (TGF-beta) is a multifunctional polypeptide that stimulates extracellular matrix deposition and fibroblast proliferation. Because both these features characterize Dupuytren's contracture, we investigated a possible role for TGF-beta in the etiology of this disorder.

  19. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    , the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus......Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases....

  20. Dietary fiber enhances TGF-β signaling and growth inhibition in the gut.

    Science.gov (United States)

    Cao, Yanna; Gao, Xuxia; Zhang, Weili; Zhang, Guohua; Nguyen, Anthony K; Liu, Xianghua; Jimenez, Fernando; Cox, Charles S; Townsend, Courtney M; Ko, Tien C

    2011-07-01

    Dietary fiber intake links to decreased risk of colorectal cancers. The underlying mechanisms remain unclear. Recently, we found that butyrate, a short-chain fatty acid produced in gut by bacterial fermentation of dietary fiber, enhances TGF-β signaling in rat intestinal epithelial cells (RIE-1). Furthermore, TGF-β represses inhibitors of differentiation (Ids), leading to apoptosis. We hypothesized that dietary fiber enhances TGF-β's growth inhibitory effects on gut epithelium via inhibition of Id2. In this study, Balb/c and DBA/2N mice were fed with a regular rodent chow or supplemented with a dietary fiber (20% pectin) and Smad3 level in gut epithelium was measured. In vitro, RIE-1 cells were treated with butyrate and TGF-β(1), and cell functions were evaluated. Furthermore, the role of Ids in butyrate- and TGF-β-induced growth inhibition was investigated. We found that pectin feeding increased Smad3 protein levels in the jejunum (1.47 ± 0.26-fold, P = 0.045, in Balb/c mice; 1.49 ± 0.19-fold, P = 0.016, in DBA/2N mice), and phospho-Smad3 levels (1.92 ± 0.27-fold, P = 0.009, in Balb/c mice; 1.83 ± 0.28-fold, P = 0.022, in DBA/2N mice). Butyrate or TGF-β alone inhibited cell growth and induced cell cycle arrest. The combined treatment of butyrate and TGF-β synergistically induced cell cycle arrest and apoptosis in RIE-1 cells and repressed Id2 and Id3 levels. Furthermore, knockdown of Id2 gene expression by use of small interfering RNA caused cell cycle arrest and apoptosis. We conclude that dietary fiber pectin enhanced Smad3 expression and activation in the gut. Butyrate and TGF-β induced cell cycle arrest and apoptosis, which may be mediated by repression of Id2. Our results implicate a novel mechanism of dietary fiber in reducing the risk of colorectal cancer development.

  1. Clinical significance of changes of serum gastrin (gas) transforming growth factor-alpha (TGF-α) and interleukin-8 (IL-8) levels after treatment in patients with peptic ulcer

    International Nuclear Information System (INIS)

    Zhou Yuyang

    2007-01-01

    Objective: To explore the clinical significance of changes of serum Gas, TGF-α and IL-8 levels in patients with peptic ulcer. Methods: Serum Gas, TGF-α (with RIA), IL-8 (with ELISA) levels were determined in 56 patients with peptic ulcer both before and after treatment as well as in 35 controls. Results: Before treatment the serum Gas and IL-8 levels were significantly higher than those in controls (P 0.05). Conclusion: Serum Gas, TGF-α and IL-8 levels were closely related to the diseases process of peptic ulcer and were of prognostic values. (authors)

  2. Chronic administration of epidermal growth factor to pigs induces growth, especially of the urinary tract with accumulation of epithelial glycoconjugates

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) receptor hyperstimulation induced by systemically administered EGF or by the development of transgenic mice overexpressing transforming growth factor alpha (TGF alpha) or other EGF-related ligands is known to induce various effects, such as acceleration...

  3. Transforming growth factor-beta. En potent multifunktionel voekstfaktor for normale og maligne celler

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Spang-Thomsen, M

    1992-01-01

    The polypeptide growth factor transforming growth factor-beta (TGF-beta) is a multifunctional regulator of basic cellular functions: proliferation, differentiation, cell adhesion and interactions with the extracellular matrix. TGF-beta is part of a regulatory network of which our knowledge is still...... incomplete, together with other substances such as steroid hormones, oncogene products and integrins. Five isoforms for TGF-beta and five different TGF-beta receptors have been described. TGF-beta exhibits an antiproliferative effect in vitro and in vivo on many cells of epthelial, myeloid, lymphoid...... and mesenchymal origin together with a growth-stimulating effect on various cells like endothelial cells and epidermal keratinocytes. Production of TGF-beta and receptors for TGF-beta has been found in many cell types, both normal and malignant. Nevertheless the amount of in vivo data is too limited to identify...

  4. Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling

    NARCIS (Netherlands)

    I. van der Pluijm (Ingrid); N. van Vliet (Nicole); J. von der Thusen (Jan); J.L. Robertus; Y. Ridwan (Yanto); P.M. van Heijningen (Paula ); B.S. van Thiel (Bibi); M. Vermeij (Marcel); S.E. Hoeks (Sanne); R.M. Buijs-Offerman (Ruvalic); H.J.M. Verhagen (Hence); R. Kanaar (Roland); A.M. Bertoli Avella (Aida); J. Essers (Jeroen)

    2016-01-01

    textabstractAneurysm-osteoarthritis syndrome characterized by unpredictable aortic aneurysm formation, is caused by SMAD3 mutations. SMAD3 is part of the SMAD2/3/4 transcription factor, essential for TGF-β-activated transcription. Although TGF-β-related gene mutations result in aneurysms, the

  5. TGF-β1 induction of the adenine nucleotide translocator 1 in astrocytes occurs through Smads and Sp1 transcription factors

    Directory of Open Access Journals (Sweden)

    Wallace Douglas C

    2004-01-01

    Full Text Available Abstract Background The adenine nucleotide translocator 1 (Ant1 is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-β in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-β1 regulates Ant1 gene expression in cultured primary rodent astrocytes. Results Transcription reporter analysis verified that TGF-β1 regulates transcription of the mouse Ant1 gene, but not the gene encoding the closely related Ant2 isoform. A 69 basepair TGF-β1 responsive element of the Ant1 promoter was also identified. Electrophoretic mobility shift assays demonstrated that astrocyte nuclear proteins bind to this response element and TGF-β1 treatment recruits additional nuclear protein binding to this element. Antibody supershift and promoter deletion analyses demonstrated that Sp1 consensus binding sites in the RE are important for TGF-β1 regulation of Ant1 in astrocytes. Additionally, we demonstrate that Smad 2, 3 and 4 transcription factors are expressed in injured cerebral cortex and in primary astrocyte cultures. TGF-β1 activated Smad transcription factors also contribute to Ant1 regulation since transcription reporter assays in the presence of dominant negative (DN-Smads 3 and 4 significantly reduced induction of Ant1 by TGF-β1. Conclusion The specific regulation of Ant1 by TGF-β1 in astrocytes involves a cooperative interaction of both Smad and Sp1 binding elements located immediately upstream of the transcriptional start site. The first report of expression of Smads 2, 3 and 4 in astrocytes provided here is consistent with a regulation of Ant1 gene expression by these transcription factors in reactive astrocytes. Given the similarity in TGF-β1 regulation of Ant1 with other genes that are thought to promote neuronal survival, this interaction may

  6. Peritoneal transforming growth factor beta-1 expression during laparoscopic surgery: a clinical trial

    NARCIS (Netherlands)

    Brokelman, Walter J. A.; Holmdahl, Lena; Bergström, Maria; Falk, Peter; Klinkenbijl, Jean H. G.; Klinkonbijl, Jean H. G.; Reijnen, Michel M. P. J.; Reijnen, Michael M. P. J.

    2007-01-01

    Transforming growth factor-beta 1 (TGF-beta1) is a growth factor involved in various biologic processes, including peritoneal wound healing and dissemination of malignancies. Laparoscopic surgery is evolving rapidly, and indications are increasing. The peritoneal TGF-beta1 expression during

  7. Molecular Mechanism of MicroRNA-200c Regulating Transforming Growth Factor-β (TGF-β)/SMAD Family Member 3 (SMAD3) Pathway by Targeting Zinc Finger E-Box Binding Homeobox 1 (ZEB1) in Hypospadias in Rats.

    Science.gov (United States)

    Qian, Chong; Dang, Xiangyang; Wang, Xianglin; Xu, Wei; Pang, Guijian; Chen, Yifeng; Liu, Chengbei

    2016-10-29

    BACKGROUND The aim of this study was to explore effects of microRNA-200c regulating TGF-β/Smad3 pathway by targeting Zeb1 on the occurrence and development of hypospadias and to evaluate the relationship between microRNA-200c and occurrence of hypospadias. MATERIAL AND METHODS Pregnant rats with a gestational age of 12 days were allocated into 2 groups; one received gavage of DEHP-contained soybean oil (1 ml/day, 8 days; Group A) and the other had gavage of normal soybean oil (1 ml/day, 8 days; Group B). Baby rats with hypospadias from Group A were assigned to the model group (n=20) and healthy baby rats from Group B were assigned to the control group (n=20). Real-time quantitative polymerase chain reaction (qRT-PCR), immunohistochemistry and Western blot analysis were performed to detect microRNA-200c, Zeb1, TGF-β, and Smad3 mRNA and protein expressions in the model group (n=20) and the control group (n=20). The relationship between microRNA-200c and Zeb1 was detected using a dual-luciferase reporter gene experiment. After the in vitro intervention experiment in fetal rat penises, Western blot was used to detect the expression of Zeb1, TGF-β, and Smad3. RESULTS In the model group, microRNA-200c was expressed at a low level, and microRNA-200c expression in control group was 2.1 times higher than in the model group (Phypospadias occurrence by suppressing the expression of Zeb1, TGF-β, and Smad3. CONCLUSIONS MicroRNA-200c was expressed in hypospadias penis tissues at low levels and was negatively correlated with Zeb1 expression. MicroRNA-200c up-regulated Zeb1 expression to regulate the TGF-β/Smad3 pathway, which led to the occurrence of hypospadias.

  8. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  9. Expression of transforming growth factor beta(1), beta(3), and basic fibroblast growth factor in full-thickness skin wounds of equine limbs and thorax.

    Science.gov (United States)

    Theoret, C L; Barber, S M; Moyana, T N; Gordon, J R

    2001-01-01

    To map the expression of transforming growth factor (TGF)-beta(1), TGF-beta(3), and basic fibroblast growth factor (bFGF) in full-thickness skin wounds of the horse. To determine whether their expression differs between limbs and thorax, to understand the pathogenesis of exuberant granulation tissue. Six wounds were created on one lateral metacarpal area and one midthoracic area of each horse. Sequential wound biopsies allowed comparison of the temporal expression of growth factors between limb and thoracic wounds. Four 2- to 4-year-old horses. Wounds were assessed grossly and histologically at 12 and 24 hours, and 2, 5, 10, and 14 days postoperatively. ELISAs were used to measure the growth factor concentrations of homogenates of wound biopsies taken at the same timepoints. TGF-beta(1) peaked at 24 hours in both locations and returned to baseline in thoracic wounds by 14 days but remained elevated in limb wounds for the duration of the study. Expression kinetics of TGF-beta(3) differed from those of TGF-beta(1). TGF-beta(3) concentrations gradually increased over time, showing a trend toward an earlier and higher peak in thoracic compared with limb wounds. bFGF expression kinetics resembled those of TGF-beta(1), but no statistically significant differences existed between limb and thoracic wounds. Growth factor expression is up-regulated during normal equine wound repair. TGF-beta(1) and TGF-beta(3) show a reciprocal temporal regulation. Statistically significant differences exist between limb and thoracic wounds with respect to TGF-beta(1) expression. The persistence of TGF-beta(1) expression in leg wounds may be related to the development of exuberant granulation tissue in this location, because TGF-beta(1) is profibrotic. Copyright 2001 by The American College of Veterinary Surgeons

  10. The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor

    DEFF Research Database (Denmark)

    Atfi, Azeddine; Dumont, Emmanuelle; Colland, Frédéric

    2007-01-01

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological processes through two types of Ser/Thr transmembrane receptors: the TGF-beta type I receptor and the TGF-beta type II receptor (TbetaRII). Upon ligand binding, TGF-beta type I receptor activated by TbetaRII propagat...

  11. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  12. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  13. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas

    2012-07-01

    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  14. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Science.gov (United States)

    Dobolyi, Arpád; Vincze, Csilla; Pál, Gabriella; Lovas, Gábor

    2012-01-01

    Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed. PMID:22942700

  15. Cardiac lineage protein-1 (CLP-1) regulates cardiac remodeling via transcriptional modulation of diverse hypertrophic and fibrotic responses and angiotensin II-transforming growth factor β (TGF-β1) signaling axis.

    Science.gov (United States)

    Mascareno, Eduardo; Galatioto, Josephine; Rozenberg, Inna; Salciccioli, Louis; Kamran, Haroon; Lazar, Jason M; Liu, Fang; Pedrazzini, Thierry; Siddiqui, M A Q

    2012-04-13

    It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

  16. Cardiac Lineage Protein-1 (CLP-1) Regulates Cardiac Remodeling via Transcriptional Modulation of Diverse Hypertrophic and Fibrotic Responses and Angiotensin II-transforming Growth Factor β (TGF-β1) Signaling Axis*

    Science.gov (United States)

    Mascareno, Eduardo; Galatioto, Josephine; Rozenberg, Inna; Salciccioli, Louis; Kamran, Haroon; Lazar, Jason M.; Liu, Fang; Pedrazzini, Thierry; Siddiqui, M. A. Q.

    2012-01-01

    It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis. PMID:22308025

  17. Transforming Growth Factor Beta Family: Insight into the Role of Growth Factors in Regulation of Fracture Healing Biology and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Łukasz A. Poniatowski

    2015-01-01

    Full Text Available The transforming growth factor beta (TGF-β family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors’ involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process.

  18. Abnormal Expressions of Age, RAGE, TGF- b1 and TGF- b1 Receptor in Colonic Wall Contributed to STZ-Induced Diabetic Colon Remodeling

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2016-01-01

    glycation end product (AGE) and AGE receptor (RAGE) were up-regulated in the diabetic colon wall (2). However, it lacks data in relation to the association between AGE, RAGE, transforming growth factor- b1 (TGF-b1) and TGFb1 receptor expressions with colon morphological and biomechanical remodeling...... glucose level was measured. The parameters of morphometric and biomechanical properties of colonic segments were obtained from diabetic (DM) and normal (Con) rats. The expressions of AGE, RAGE, TGF- b1 and TGF- b1 receptor were detected in different layers of the colon by immunohistochemistry. In order...... to determine the expressions of AGE, RAGE, TGF- b1 and TGF- b1 receptor in association with other parameters, and to see interrelation among AGE, RAGE, TGF- b1 and TGF- b1 receptor expressions, the multiple linear regression analysis was done. Results: The expressions of AGE, RAGE, TGF-b1 and TGF- b1 receptor...

  19. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans

    OpenAIRE

    Namachivayam, Kopperuncholan; Coffing, Hayley P.; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L.; Blanco, Cynthia L.; Patel, Aloka L.; Meier, Paula P.; Garzon, Steven A.; Desai, Umesh R.; Maheshwari, Akhil

    2015-01-01

    Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant ...

  20. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Elias G. Elias

    2010-05-01

    Full Text Available Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  1. Molecular characterization of TGF-β type I receptor gene (Tgfbr1 in Chlamys farreri, and the association of allelic variants with growth traits.

    Directory of Open Access Journals (Sweden)

    Huihui Guo

    Full Text Available BACKGROUND: Scallops are an economically important aquaculture species in Asian countries, and growth-rate improvement is one of the main focuses of scallop breeding. Investigating the genetic regulation of scallop growth could benefit scallop breeding, as such research is currently limited. The transforming growth factor beta (TGF-β signaling through type I and type II receptors, plays critical roles in regulating cell proliferation and growth, and is thus a plausible candidate growth regulator in scallops. RESULTS: We cloned and characterized the TGF-β type I receptor (Tgfbr1 gene from Zhikong scallops (Chlamys farreri. The deduced amino acid sequence contains characteristic residues and exhibits the conserved structure of Tgfbr1 proteins. A high expression level of scallop Tgfbr1 was detected during early embryonic stages, whereas Tgfbr1 expression was enriched in the gonad and striated muscle in adults. A single nucleotide polymorphism (SNP, c. 1815C>T in the 3' UTR was identified. Scallops with genotype TT had higher growth traits values than those with genotype CC or CT in a full-sib family, and significant differences were found between genotypes CC and TT for shell length, shell height, and striated muscle weight. An expression analysis detected significantly more Tgfbr1 transcripts in the striated muscle of scallops with genotype CC compared to those with genotype TT or CT. Further evaluation in a population also revealed higher striated muscle weight in scallops with genotype TT than those with the other two genotypes. The inverse correlation between striated muscle mass and Tgfbr1 expression is consistent with TGF-β signaling having a negative effect on cell growth. CONCLUSION: The scallop Tgfbr1 gene was cloned and characterized, and an SNP potentially associated with both scallop growth and Tgfbr1 expression was identified. Our results suggest the negative regulation of Tgfbr1 in scallop growth and provide a candidate marker for

  2. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures.

    Science.gov (United States)

    Majack, R A

    1987-07-01

    In culture, vascular smooth muscle cells (SMC) grow in a "hill-and-valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet-derived growth factor-mediated proliferation of these cells in two-dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury.

  3. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  4. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression

    NARCIS (Netherlands)

    Lutgens, E; Gijbels, M; Smook, M; Heeringa, P; Gotwals, P; Koteliansky, VE; Daemen, MJAP

    The transition from stable to rupture-prone and ruptured atherosclerotic plaques involves many processes, including an altered balance between inflammation and fibrosis. An important mediator of both is transforming growth factor (TGF)-beta, and a pivotal role for TGF-beta in atherogenesis has been

  5. Dynamic observation of transforming growth factor-alpha content in plasma of pediatric patients with peptic ulcer disease

    International Nuclear Information System (INIS)

    Zhou Mingxiong; Zhang Xinlu

    2001-01-01

    Objective: To elicit the relationship between transforming growth factor alpha (TGF-α) and the pathogenesis as well as healing process of peptic ulcer disease (PUD) in pediatric patients. Methods: The levels of TGF-α in plasma were measured by radioimmunoassay in 57 Children with PUD. Results: TGF-α levels of plasma at active stage of peptic ulcer were significantly lower than those at healing stage as well as in controls (P 0.05). Conclusion: There is an abnormal secretion of TGF-α in PUD patients. Changes of TGF-α release might play a role in the pathogenesis of PUD

  6. Differential expression of the epithelial mesenchymal transition factors Snail, Slug, Twist, TGF-β, and E-cadherin in ameloblastoma.

    Science.gov (United States)

    Kurioka, Kagami; Wato, Masahiro; Iseki, Tomio; Tanaka, Akio; Morita, Shosuke

    2017-06-01

    Epithelial mesenchymal transition (EMT), the transition of epithelial cells into motile mesenchymal cells, plays an important role in embryogenesis, cancer invasion, and metastasis. Ameloblastomas are common epithelial odontogenic tumors, occurring exclusively in the mandible with locally invasive growth. Thirty-seven ameloblastoma cases were evaluated for the involvement of EMT by immunohistochemical staining and western blotting using antibodies against Slug, Snail, Twist, TGF-β, and E-cadherin. Double immunostaining was also performed. Slug and TGF-β were expressed in the nuclei of peripheral and stellate reticulum cells of ameloblastoma nests. Twenty cases of Snail, 36 of Slug, 8 of Twist, and 19 of TGF-β showed strong expression in tumor cells in follicular and plexiform patterns. Expression of Slug and TGF-β increased in regions where the expression of E-cadherin was reduced. EMT was found to be associated with the local invasive growth of ameloblastoma. These data suggest that reduced expression of E-cadherin and over-expression of Slug, Snail, and TGF-β induce EMT. Given that ameloblastomas are characterized by local invasiveness, EMT might be related to their development. Thus, strong expression of Slug and TGF-β and reduced expression of E-cadherin might be related to the local invasiveness of ameloblastoma.

  7. TGF-Beta and Breast Cancer Induction

    National Research Council Canada - National Science Library

    Dabovic, Branka

    2001-01-01

    .... We study the molecule TGF-beta, which blocks cell growth. TGF-beta is produced as latent complex consisting of the TGF-beta homodimer, the TGF-beta propeptide dimmer, and a second gene product, the latent TGF-beta binding protein (LTBP...

  8. Glucose Stimulation of Transforming Growth Factor-β Bioactivity in Mesangial Cells Is Mediated by Thrombospondin-1

    Science.gov (United States)

    Poczatek, Maria H.; Hugo, Christian; Darley-Usmar, Victor; Murphy-Ullrich, Joanne E.

    2000-01-01

    Glucose is a key factor in the development of diabetic complications, including diabetic nephropathy. The development of diabetic glomerulosclerosis is dependent on the fibrogenic growth factor, transforming growth factor-β (TGF-β). Previously we showed that thrombospondin-1 (TSP-1) activates latent TGF-β both in vitro and in vivo. Activation occurs as the result of specific interactions of latent TGF-β with TSP-1, which potentially alter the conformation of latent TGF-β. As glucose also up-regulates TSP-1 expression, we hypothesized that the increased TGF-β bioactivity observed in rat and human mesangial cells cultured with high glucose concentrations is the result of latent TGF-β activation by autocrine TSP-1. Glucose-induced bioactivity of TGF-β in mesangial cell cultures was reduced to basal levels by peptides from two different sequences that antagonize activation of latent TGF-β by TSP, but not by the plasmin inhibitor, aprotinin. Furthermore, glucose-dependent stimulation of matrix protein synthesis was inhibited by these antagonist peptides. These studies demonstrate that glucose stimulation of TGF-β activity and the resultant matrix protein synthesis are dependent on the action of autocrine TSP-1 to convert latent TGF-β to its biologically active form. These data suggest that antagonists of TSP-dependent TGF-β activation may be the basis of novel therapeutic approaches for ameliorating diabetic renal fibrosis. PMID:11021838

  9. Intragraft platelet-derived growth factor-alpha and transforming growth factor-beta1 during the development of accelerated graft vascular disease after clinical heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Mol, W M; Niesters, H G; Maat, A P; Balk, A H; Weimar, W

    1999-01-01

    This study was to determine whether the growth factors platelet-derived growth factor-alpha (PDGF-alpha) and transforming growth factor-beta1 (TGF-beta1) contribute to the development of graft vascular disease (GVD) after clinical heart transplantation. We analysed intragraft PDGF-alpha and

  10. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  11. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  12. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions.

    Science.gov (United States)

    Böttner, M; Krieglstein, K; Unsicker, K

    2000-12-01

    Transforming growth factor-betas (TGF-betas) are among the most widespread and versatile cytokines. Here, we first provide a brief overview of their molecular biology, biochemistry, and signaling. We then review distribution and functions of the three mammalian TGF-beta isoforms, beta1, beta2, and beta3, and their receptors in the developing and adult nervous system. Roles of TGF-betas in the regulation of radial glia, astroglia, oligodendroglia, and microglia are addressed. Finally, we review the current state of knowledge concerning the roles of TGF-betas in controlling neuronal performances, including the regulation of proliferation of neuronal precursors, survival/death decisions, and neuronal differentiation.

  13. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    Energy Technology Data Exchange (ETDEWEB)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  14. Type β transforming growth factor reversibly inhibits the early proliferative responsive to partial hepatectomy in the rat

    International Nuclear Information System (INIS)

    Russell, W.E.; Coffey, R.J. Jr.; Ouellette, A.J.; Moses, H.L.

    1988-01-01

    Type β transforming growth factor (TGF-β), a factor produced by many cell types, is a potent inhibitor of hepatocyte DNA synthesis in vitro. To determine whether TGF-β can influence hepatocyte proliferation in vivo, its effects were examined on the regenerative response of liver to partial hepatectomy (PH) in the rat. Porcine platelet-derived TGF-β1, administered intravenously at the time of PH and 11 hr later, reduced the fraction of hepatocytes engaged in DNA synthesis 22 hr after PH by 67% and inhibited the rate of hepatic [ 3 H]thymidine incorporation by 50%. TGF-β2 produced a similar effect. Although sensitive to TGF-β administered 11 hr after PH, late in the G 1 phase of the cell cycle, a single does of 0.5 μg given at the time of PH did not significantly influence DNA synthesis 22 hr after PH. The inhibitory effects of TGF-β were transient. The nuclear labeling index of the TGF-β-treated animals was significantly higher than that of the controls. There was no evidence of cytotoxicity from TGF-β, as determined by liver histology and plasma concentrations of glucose, insulin-like growth factor I, and two hepatic enzymes. Thus, TGF-β1 and TGF-β2 reversibly inhibit the proliferative response of liver to PH and may be important in the modulation of normal liver growth and repair

  15. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication.

    Science.gov (United States)

    Tapella, Laura; Cerruti, Matteo; Biocotino, Isabella; Stevano, Alessio; Rocchio, Francesca; Canonico, Pier Luigi; Grilli, Mariagrazia; Genazzani, Armando A; Lim, Dmitry

    2018-02-01

    Astrocytes participate in the development and resolution of neuroinflammation in numerous ways, including the release of cytokines and growth factors. Among many, astrocytes release transforming growth factors beta (TGF-β) TGF-β1, TGF-β2 and TGF-β3. TGF-β1 is the most studied isoform, while production and release of TGF-β2 and TGF-β3 by astrocytes have been poorly characterized. Here, we report that purified cultures of hippocampal astrocytes produce mainly TGF-β3 followed by TGF-β2 and TGF-β1. Furthermore, astrocytes release principally the active form of TGF-β3 over the other two. Changes in release of TGF-β were sensitive to the calcineurin (CaN) inhibitor FK506. Starvation had no effect on TGF-β1 and TGF-β3 while TGF-β2 mRNA was significantly up-regulated in a CaN-dependent manner. We further investigated production and release of astroglial TGF-β in Alzheimer's disease-related conditions. Oligomeric β-amyloid (Aβ) down-regulated TGF-β1, while up-regulating TGF-β2 and TGF-β3, in a CaN-dependent manner. In cultured hippocampal astrocytes from 3xTg-AD mice, TGF-β2 and TGF-β3, but not TGF-β1, were up-regulated, and this was CaN-independent. In hippocampal tissues from symptomatic 3xTg-AD mice, TGF-β2 was up-regulated with respect to control mice. Finally, treatment with recombinant TGF-βs showed that TGF-β2 and TGF-β3 significantly reduced PSD95 protein in cultured hippocampal neurons, and this effect was paralleled by conditioned media from Aβ-treated astrocytes or from astrocytes from 3xTg-AD mice. Taken together, our data suggest that TGF-β2 and TGF-β3 are produced by astrocytes in a CaN-dependent manner and should be investigated further in the context of astrocyte-mediated neurodegeneration. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. The dynamics of TGF-β in dental pulp, odontoblasts and dentin.

    Science.gov (United States)

    Niwa, Takahiko; Yamakoshi, Yasuo; Yamazaki, Hajime; Karakida, Takeo; Chiba, Risako; Hu, Jan C-C; Nagano, Takatoshi; Yamamoto, Ryuji; Simmer, James P; Margolis, Henry C; Gomi, Kazuhiro

    2018-03-13

    Transforming growth factor-beta (TGF-β) is critical for cell proliferation and differentiation in dental pulp. Here, we show the dynamic mechanisms of TGF-β in porcine dental pulp, odontoblasts and dentin. The mRNA of latent TGF-β1 and TGF-β3 is predominantly expressed in odontoblasts, whereas the mRNA expression level of latent TGF-β2 is high in dental pulp. TGF-β1 is a major isoform of TGF-β, and latent TGF-β1, synthesized in dental pulp, is primarily activated by matrix metalloproteinase 11 (MMP11). Activated TGF-β1 enhances the mRNA expression levels of MMP20 and full-length dentin sialophosphoprotein (DSPP) in dental pulp cells, coinciding with the induction of odontoblast differentiation. Latent TGF-β1 synthesized in odontoblasts is primarily activated by MMP2 and MMP20 in both odontoblasts and dentin. The activity level of TGF-β1 was reduced in the dentin of MMP20 null mice, although the amount of latent TGF-β1 expression did not change between wild-type and MMP20 null mice. TGF-β1 activity was reduced with the degradation of DSPP-derived proteins that occurs with ageing. We propose that to exert its multiple biological functions, TGF-β1 is involved in a complicated dynamic interaction with matrix metalloproteinases (MMPs) and/or DSPP-derived proteins present in dental pulp, odontoblasts and dentin.

  17. TGF-alpha genotypes, oral clefts, and environmental risk factors: A population-based California study

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G.M.; Wasserman, C.R. [CA Birth Defects Monitoring Program, Emeryville, CA (United States); Lammer, E.J. [Stanford Univ., Palo Alto, CA (United States)] [and others

    1994-09-01

    Several studies have shown a relation between genetic variation at the TGF-alpha locus and oral clefts. These studies had limited sample sizes and also lacked data on additional factors potentially related to clefting. We investigated the influence on clefting from risk factors, such as maternal smoking, dependent on TFG-alpha genotype. This was accomplished using a large population-bases case-control study of fetuses and liveborn infants with oral clefts among a 1987-89 cohort of California births (N=548,844). To obtain data on potential risk factors, telephone interviews were conducted with mothers of 731 (84.5% of eligible) cleft cases, and 734 (78.2%) nonmalformed controls. DNA was obtained from newborn screening bloodspots and genotyped by using SSCP designed to detect the Taq1 RFLP. Among mothers who completed an interview, genotyping results were available for 571 (78.1%) cases and 640 (87.2%) controls. Compared to controls, the risk estimate for TGF-alpha polymorphism as measured by the odds ratio was: 0.99 (95% confidence interval 0.64, 1.5) for isolated cleft lip {plus_minus}palate; 0.88 (0.33, 2.2) for nonisolated cleft lip {plus_minus}palate; 1.6 (0.94, 2.8) for isolated cleft palate; 1.9 (0.82, 4.3) for nonisolated cleft palate; and 2.2 (0.99, 5.0) for clefts with known etiology. This dataset also revealed 1.4 to 2-fold increased risks for maternal cigarette smoking > 19 cigs/day in early pregnancy. Among these heavy smokers, risk of clefting was even more increased for infants with the TGF-alpha polymorphism. Our data suggest an association between the TGF-alpha uncommon allele and some phenotypic subgroups as well as provide evidence for a genetic-environment interaction between maternal smoking and the variant in the etiology of clefting. The fraction of cases possibly attributed to this interaction, however, was small.

  18. Transforming growth factor beta stimulation of biglycan gene expression is potentially mediated by sp1 binding factors

    DEFF Research Database (Denmark)

    Heegaard, Anne-Marie; Xie, Zhongjian; Young, Marian Frances

    2004-01-01

    Biglycan is a small leucine-rich proteoglycan which is localized in the extracellular matrix of bone and other specialized connective tissues. Both biglycan mRNA and protein are up-regulated by transforming growth factor-beta(1) (TGF-beta(1)) and biglycan appears to influence TGF-beta(1) activity...... promoter upstream from the transcriptional start site, which contained several binding sites for the transcription factor Sp1. Electrophoretic mobility shift assays with nuclear extracts from MG-63 cells showed binding of both Sp1 and Sp3 to a site at -216 to -208. When the biglycan promoter construct....... In this study, we have investigated the mechanism by which TGF-beta(1), TGF-beta(2) and TGF-beta(3) stimulate biglycan mRNA expression in the osteoblastic cell line MG-63. The cells were transfected with a series of deletional human biglycan promoter constructs and a region in the biglycan 5' DNA was found...

  19. Growth factor transgenes interactively regulate articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  20. Expression of the epidermal growth factor system in endometrioid endometrial cancer

    DEFF Research Database (Denmark)

    Ejskjaer, Kirsten; Sørensen, Boe Sandahl; Poulsen, Steen Seier

    2007-01-01

    The Epidermal Growth Factor (EGF) system is expressed in healthy premenopausal endometrium. We describe the expression of the four receptors, HER1, HER2, HER3, HER4 and the six ligands amphiregulin, transforming growth factor alpha (TGF-alpha), heparin binding EGF like growth factor (HB-EGF), bet......-EGF), betacellulin, epiregulin and EGF in endometrioid endometrial cancer....

  1. Plasma transforming growth factor beta levels in breast cancer patients

    NARCIS (Netherlands)

    Sminia, P; Barten, AD; Van Waarde, MAWH; Vujaskovic, Z; Van Tienhoven, G

    1998-01-01

    We investigated whether the concentration of circulating transforming growth factor beta (TGF beta) yields diagnostic value in breast cancer. Blood was collected from twenty stage I and II breast cancer patients both prior to treatment and after surgical excision of the tumour. Both latent and

  2. Expression and Function of Transforming Growth Factor beta in Melioidosis

    NARCIS (Netherlands)

    Weehuizen, Tassili A. F.; Wieland, Catharina W.; van der Windt, Gerritje J. W.; Duitman, Jan-Willem; Boon, Louis; Day, Nicholas P. J.; Peacock, Sharon J.; van der Poll, Tom; Wiersinga, W. Joost

    2012-01-01

    Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast Asia and northern Australia. An important controller of the immune system is the pleiotropic cytokine transforming growth factor beta (TGF-beta), of which

  3. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-β1 in C57BL/6 mice in vivo.

    Science.gov (United States)

    Li, Jingjie; Yang, Zhihong; Li, Zheng; Gu, Lijuan; Wang, Yunbo; Sung, Changkeun

    2014-01-01

    Insulin-like growth factor 1 (IGF-1) increases the growth of cultured hair follicles and plays a role in regulating hair migration during the development of hair follicles in transgenic mice. However, the exogenous effect of IGF-1 on hair growth in wild-type mice has not been reported. In the present study, we examined whether IGF-1 was an important regulator of hair follicle growth in wide-type mice in vivo. C57BL/6 mice were injected with different concentrations of IGF-1 on dorsal skin. The treated tissues were analyzed by immunoassay methods for TGF-β1 and BrdU. Local injection of IGF-1 increased hair follicle number and prolonged the growing phase during the transition from anagen to telogen. Meanwhile, immunology analyses revealed that IGF-1 also stimulated the proliferation of follicle cells in anagen of the matrix and down regulated TGF-β1 expression in hair follicles. These observations suggest that IGF-1 is an effective stimulator of hair follicle development in wide-type mice in vivo and may be a promising drug candidate for baldness therapy. Copyright © 2014. Published by Elsevier Ltd.

  4. Active TGF-β1 correlates with myofibroblasts and malignancy in the colorectal adenoma-carcinoma sequence

    NARCIS (Netherlands)

    Hawinkels, L.J.A.C.; Verspaget, H.W.; Reijden, J.J. van der; Zon, J.M. van der; Verheijen, J.H.; Hommes, D.W.; Lamers, C.B.H.W.; Sier, C.F.M.

    2009-01-01

    Transforming growth factor-β1 (TGF-β1), a cytokine involved in various stages of cancer, is produced as a latent complex and requires processing to become active. We have determined total and active TGF-β1 levels in homogenates of colorectal neoplasia. In contrast to total TGF-β levels, showing a

  5. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    Science.gov (United States)

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  6. Epidermal growth factor, transforming growth factor-alpha, and epidermal growth factor receptor expression and localization in the canine endometrium during the estrous cycle and in bitches with pyometra.

    Science.gov (United States)

    Kida, K; Maezono, Y; Kawate, N; Inaba, T; Hatoya, S; Tamada, H

    2010-01-01

    Gene expression and immunohistochemical localization of epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), and epidermal growth factor receptor (EGF-R) were compared between the endometrium of bitches (Canis familiaris) with pyometra accompanied by cystic endometrial hyperplasia (CEH) and that of healthy bitches at similar stages of the estrous cycle. In normal bitches, endometrial TGF-alpha mRNA levels were highest at proestrus and gradually decreased as the cycle progressed to anestrus. Epidermal growth factor receptor mRNA levels were not significantly affected by the stage of the estrous cycle. Epidermal growth factor mRNA levels were higher at Day 35 of diestrus than at other stages of the estrous cycle (Ppyometra, endometrial TGF-alpha and EGF-R mRNA levels did not differ significantly from those at diestrus in normal bitches, but EGF mRNA levels were lower than those at Day 35 of diestrus in normal bitches (Ppyometra, immunoreactivity for EGF was clearly present in endometrial stromal cells. Inflammatory cells that had infiltrated the endometrial stroma stained strongly for TGF-alpha and EGF-R. Luminal and glandular epithelial cells also stained positive for EGF-R. In conclusion, expression of TGF-alpha by inflammatory cells and a low level of expression and differential localization of EGF may be involved in aberrant growth of endometrial glands and development of CEH.

  7. Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms.

    Science.gov (United States)

    Mecha, M; Rabadán, M A; Peña-Melián, A; Valencia, M; Mondéjar, T; Blanco, M J

    2008-06-01

    Transforming growth factor-beta (TGF-beta) is a family of growth factors with essential and multiple roles during embryonic development. In mammals, three isoforms (TGF-beta1, TGF-beta2, TGF-beta3) have been described. In the nervous system, the presence of TGF-beta1 has remained undetectable in other structures than meninges and choroids plexus, while TGF-beta2 and TGF-beta3 were considered as the neural members of the family. In the present study, we have analysed the expression pattern of the three isoforms in the neural tube, brain, and spinal cord during development in both mouse and chicken. The data reveal specific patterns for each isoform. This work also shows that both TGF-beta1 and TGF-beta3 are expressed in neural crest cells. In addition, we demonstrate the existence of interbalance between TGF-beta1 and TGF-beta3 with possible functional implications, which, together with the expression of TGF-beta1 in the CNS, represents one of the most important contributions of this work.

  8. Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Schmal, H; Kaiser, S

    2006-01-01

    of any chondrogenic growth factor or in the presence of osteogenic signals. MSCs encapsulated in alginate beads were treated with transforming growth factor (TGF)-beta 3 for 3, 6, or 14 days and then cultured in absence of TGF-beta for the remainder of the 2-week culture period. Additionally, cells were...... cultured in osteogenic medium after TGF-beta-mediated chondroinduction. Gene expression of col2a1, aggrecan, COMP, alkaline phosphatase (AP), and correlating protein synthesis was analyzed. After short-term stimulation with TGF-beta, MSCs maintained a chondrogenic phenotype. Chondrogenic gene expression...... and protein synthesis directly correlated with the extent of stimulation time and the concentration of TGF-beta. Pretreatment with TGF-beta could prevent AP mRNA expression of encapsulated MSCs. TGF- beta stimulation within the first 3 days of culture seems to be crucial for the expression of a chondrogenic...

  9. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insuli...

  10. Transforming Growth Factor Beta Signaling in Cutaneous Wound Healing: Lessons Learned from Animal Studies.

    Science.gov (United States)

    Finnson, Kenneth W; Arany, Praveen R; Philip, Anie

    2013-06-01

    Wound healing is a complex physiological process involving a multitude of growth factors, among which transforming growth factor beta (TGF-β) has the broadest spectrum of effects. Animal studies have provided key information on the mechanisms of TGF-β action in wound healing and have guided the development of therapeutic strategies targeting the TGF-β pathway to improve wound healing and scarring outcome. Development of tissue-specific expression systems for overexpression or knockout of TGF-β signaling pathway components has led to novel insight into the role of TGF-β signaling in wound healing. This work has also identified molecules that might serve as molecular targets for the treatment of pathological skin conditions such as chronic wounds and excessive scarring (fibrosis). Many of the mouse models with genetic alterations in the TGF-β signaling pathway develop an underlying skin abnormality, which may pose some limitations on the interpretation of wound-healing results obtained in these animals. Also, TGF-β's pleiotropic effects on many cell types throughout all phases of wound healing present a challenge in designing specific strategies for targeting the TGF-β signaling pathway to promote wound healing or reduce scarring. Further characterization of TGF-β signaling pathway components using inducible tissue-specific overexpression or knockout technology will be needed to corroborate results obtained in mouse models that display a skin phenotype, and to better understand the role of TGF-β signaling during distinct phases of the wound-healing process. Such studies will also provide a better understanding of how TGF-β mediates its autocrine, paracrine, and double paracrine effects on cellular responses in vivo during wound healing.

  11. Chronic administration of epidermal growth factor to pigs induces growth, especially of the urinary tract with accumulation of epithelial glycoconjugates

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) receptor hyperstimulation induced by systemically administered EGF or by the development of transgenic mice overexpressing transforming growth factor alpha (TGF alpha) or other EGF-related ligands is known to induce various effects, such as acceleration of developmen...

  12. Preterm human milk contains a large pool of latent TGF-β, which can be activated by exogenous neuraminidase

    Science.gov (United States)

    Namachivayam, Kopperuncholan; Blanco, Cynthia L.; Frost, Brandy L.; Reeves, Aaron A.; Jagadeeswaran, Ramasamy; MohanKumar, Krishnan; Safarulla, Azif; Mandal, Partha; Garzon, Steven A.; Raj, J. Usha

    2013-01-01

    Human milk contains substantial amounts of transforming growth factor (TGF)-β, particularly the isoform TGF-β2. We previously showed in preclinical models that enterally administered TGF-β2 can protect against necrotizing enterocolitis (NEC), an inflammatory bowel necrosis of premature infants. In this study we hypothesized that premature infants remain at higher risk of NEC than full-term infants, even when they receive their own mother's milk, because preterm human milk contains less bioactive TGF-β than full-term milk. Our objective was to compare TGF-β bioactivity in preterm vs. full-term milk and identify factors that activate milk-borne TGF-β. Mothers who delivered between 23 0/7 and 31 6/7 wk or at ≥37 wk of gestation provided milk samples at serial time points. TGF-β bioactivity and NF-κB signaling were measured using specific reporter cells and in murine intestinal tissue explants. TGF-β1, TGF-β2, TGF-β3, and various TGF-β activators were measured by real-time PCR, enzyme immunoassays, or established enzymatic activity assays. Preterm human milk showed minimal TGF-β bioactivity in the native state but contained a large pool of latent TGF-β. TGF-β2 was the predominant isoform of TGF-β in preterm milk. Using a combination of several in vitro and ex vivo models, we show that neuraminidase is a key regulator of TGF-β bioactivity in human milk. Finally, we show that addition of bacterial neuraminidase to preterm human milk increased TGF-β bioactivity. Preterm milk contains large quantities of TGF-β, but most of it is in an inactive state. Addition of neuraminidase can increase TGF-β bioactivity in preterm milk and enhance its anti-inflammatory effects. PMID:23558011

  13. New thrombopoietic growth factors

    OpenAIRE

    Kuter, David J.

    2007-01-01

    Although development of first-generation thrombopoietic growth factors (recombinant human thrombopoietin [TPO] and pegylated recombinant human megakaryocyte growth and development factor [PEG-rHuMGDF]) was stopped due to development of antibodies to PEG-rHuMGDF, nonimmunogenic second-generation thrombopoietic growth factors with unique pharmacologic properties have been developed. TPO peptide mimetics contain TPO receptor-activating peptides inserted into complementarity-determining regions o...

  14. Transforming growth factor-β2 and endotoxin interact to regulate homeostasis via interleukin-8 levels in the immature intestine

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Sangild, Per Torp; Østergaard, Mette Viberg

    2014-01-01

    plays an important role and hypothesize that transforming growth factor β2 (TGF-β2) acts in synergy with bacterial LPS to control IL-8 levels, thereby supporting intestinal homeostasis. Preterm pigs were fed colostrum (containing TGF-β2) or infant formula with or without antibiotics (COLOS, n = 27; ANTI...

  15. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO: evidence for a regulatory role of autocrine activin and TGF-β.

    Directory of Open Access Journals (Sweden)

    Hendrik Ungefroren

    Full Text Available Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s and TGF-β(s, are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the

  16. Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma.

    Science.gov (United States)

    Abou-Shady, M; Baer, H U; Friess, H; Berberat, P; Zimmermann, A; Graber, H; Gold, L I; Korc, M; Büchler, M W

    1999-03-01

    Transforming growth factor betas (TGF-betas) are multifunctional polypeptides that have been suggested to influence tumor growth. They mediate their functions via specific cell surface receptors (type I ALK5 and type II TGF-beta receptors). The aim of this study was to analyze the roles of the three TGF-betas and their signaling receptors in human hepatocellular carcinoma (HCC). HCC tissue samples were obtained from 18 patients undergoing partial liver resection. Normal liver tissues from 7 females and 3 males served as controls. The tissues for histological analysis were fixed in Bouin's solution and paraffin embedded. For RNA analysis, freshly obtained tissue samples were snap frozen in liquid nitrogen and stored at -80 degrees C until used. Northern blot analysis was used in normal liver and HCC to examine the expression of TGF-beta1, -beta2, -beta3 and their receptors: type I ALK5 (TbetaR-I ALK5), type II (TbetaR-II), and type III (TbetaR-III). Immunohistochemistry was performed to localize the corresponding proteins. All three TGF-betas demonstrated a marked mRNA overexpression in HCC in comparison with normal controls, whereas the levels of all three TGF-beta receptors showed no significant changes. Intense TGF-beta1, TGF-beta2, and TGF-beta3 immunostaining was found in hepatocellular carcinoma cells and in the perineoplastic stroma with immunohistochemistry, whereas no or mild immunostaining was present in the normal liver. For TbetaR-I ALK5 and TbetaR-II, the immunostaining in both HCC and normal liver was mild to moderate, with a slightly higher intensity in the normal tissues. The upregulation of TGF-betas in HCC suggests an important role for these isoforms in hepatic carcinogenesis and tumor progression. Moreover, the localization of the immunoreactivity in both malignant hepatocytes and stromal cells suggests that TGF-betas act via autocrine and paracrine pathways in this neoplasm.

  17. Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Li, Xianfeng; Miyajima, Masakazu; Jiang, Chuanlu; Arai, Hajime

    2007-02-14

    We investigated cerebrospinal fluid (CSF) samples from 21 patients with idiopathic normal pressure hydrocephalus (INPH) and 14 controls without neurological disease. The concentrations of leucine-rich alpha-2-glycoprotein (LRG), transforming growth factor (TGF)-beta1, 2, 3 and TGF-beta type II receptor (TbetaR-II) in CSF were measured using ELISA. TGF-beta1, TbetaR-II and LRG CSF levels of patients with INPH were significantly higher than controls, whereas no significant differences in TGF-beta2 levels were found between INPH patients and controls. The present study suggests that TGF-betas expressions may be modulated differently in patients with INPH. These results also indicate that the CSF level assay of TGF-beta1, TbetaR-II and LRG is useful for the diagnosis of patients with INPH, and TGF-beta1, TbetaR-II and LRG may be involved in the pathogenesis of the disease.

  18. Modulation of phenotype of human prostatic stromal cells by transforming growth factor-betas.

    Science.gov (United States)

    Hisataki, Toshihiro; Itoh, Naoki; Suzuki, Kazuhiro; Takahashi, Atsushi; Masumori, Naoya; Tohse, Noritsugu; Ohmori, Yuki; Yamada, Shizuo; Tsukamoto, Taiji

    2004-02-01

    We investigated the effects of transforming growth factor (TGF)-betas on morphological and receptor phenotypes, as well as proliferation of four currently established human prostatic myofibroblast cell lines and one commercially available prostatic stromal cell line. The effects of TGF-betas on morphological changes and proliferation of the cells were studied by immunohistochemistry and bromodeoxyuridine assay, respectively. The expression of alpha 1-receptor subtypes was measured by real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and the radioligand binding assay for the receptors was also performed. TGF-betas 1, 2, and 3 induced expression of desmin and myosin of cells of the established cell lines, and significantly inhibited their growth. The alpha 1a-receptor was expressed only in the commercially available cell line and alpha 1b and 1d, in all cell lines. TGF-beta 1 suppressed the expression of all three subtypes of the alpha 1-receptor. The binding sites of cells of all the cell lines were reduced by treatment with this growth factor. TGF-betas may induce human prostatic stromal cells to express the smooth muscle phenotype and inhibited their growth. However, the growth factor reduced the binding sites of the receptor and suppressed mRNA expression of its subtypes, suggesting that morphological and receptor phenotypes may be regulated via more than one pathway by TGF-beta(s). Copyright 2003 Wiley-Liss, Inc.

  19. Isolation and characterization of mink lung epithelial cell mutants resistant to transforming growth factor β

    International Nuclear Information System (INIS)

    Chinkers, M.

    1987-01-01

    Mink lung epithelial cells resistant to growth inhibition by transforming growth factor β (TGF-β) have been isolated by chemical mutagenesis and growth in the presence of platelet extracts enriched in TGF-β. Several resistant clones were isolated, at least one of which stably retained its resistance to TGF-β when grown in the absence of the factor. The cells of this clone were similar to the parent cells in morphology and growth properties. However, unlike the parent cells, the resistant cells did not show any of the following responses to 125 I TGF-β: (1) inhibition of DNA synthesis and proliferation; (2) morphological changes involving increased cell spreading; or (3) stimulation of synthesis of a 48-kilodalton secreted 35 S-protein. The resistant cells do, however, retain a functional TGF-β receptor. The TGF-β resistant cell lines may be useful in genetic studies designed to identify the biochemical events required for inhibition of epithelial cell growth by this factor

  20. Transforming growth factor-betas and CD105 expression in calcification and bone formation in human atherosclerotic lesions.

    Science.gov (United States)

    Jeziorska, M

    2001-01-01

    To investigate the expression and localisation of transforming growth factor betas (TGF beta s) and their receptor CD105 (endoglin) in relation to calcification and bone formation in atherosclerotic lesions of human carotid arteries. The TGF beta family regulates cellular growth, differentiation and angiogenesis and plays a key role in enchondral bone formation. CD105 is part of the TGF beta receptor complex preferentially expressed on endothelial cells (EC). Immunohistochemical methods were used to determine the localisation of TGF beta isoforms 1, 2 and 3 and their spatial expression patterns in relation to calcification and bone formation in atherosclerotic lesions. Cellular sources of TGF beta s and CD105 were assessed using cell-type specific antibodies. There was marked variability in TGF beta expression in different cell types associated with calcification. Smooth muscle cells (SMC) in the atheroma cap showed higher levels of TGF beta 3 and 2 than 1, but in the deep musculoelastic intima there were higher levels of TGF beta 1 and alpha-actin. All three TGF beta isoforms were expressed in monocyte-macro-phages. Giant cells associated with calcifications showed intense staining for TGF beta 2. TGF beta 1 was most strongly expressed on matrix and cells associated with bone formation. CD105 expression on SMCs and monocyte-macrophages was lower on cells in close association with calcification. SMCs associated with bone formation expressed high levels of CD105. The different TGF beta isoforms exhibit distinct but overlapping patterns of expression, and support the hypothesis that they are involved in the process of calcification and bone formation in human atherosclerotic lesions. Lower expression of CD105 on cells associated with calcification may represent their state of lower responsiveness to TGF beta s.

  1. Preliminary observations on expression of transforming growth factors beta1 and beta3 in equine full-thickness skin wounds healing normally or with exuberant granulation tissue.

    Science.gov (United States)

    Theoret, Christine L; Barber, Spencer M; Moyana, Terence N; Gordon, John R

    2002-01-01

    To determine whether transforming growth factor (TGF)-beta1 and -beta3 expression differs between equine limb wounds healing normally and those healing with experimentally induced exuberant granulation tissue (EGT). Six wounds were created on the lateral aspect of both metacarpi of each horse; one forelimb was untreated, and the other was bandaged to stimulate the development of EGT. Sequential wound biopsies allowed comparison of growth factor expression between the two types of wound. Four horses (2 to 4 years of age; 350 to 420 kg). Wounds were assessed grossly, histologically, and by enzyme-linked immunosorbent assay (ELISA) for TGF-beta1 and -beta3 expression at 12 and 24 hours and 2, 5, 10, and 14 days postoperatively. Bandaged wounds developed EGT. In all wounds, TGF-beta1 peaked early and remained elevated at 14 days. Peak TGF-beta1 concentration was higher in wounds with EGT, but not significantly so. Expression of TGF-beta3 differed from TGF-beta1, with peak TGF-beta3 concentrations being delayed. Concentrations of TGF-beta3 were higher in wounds healing normally, but this difference was not significant. During both normal and exuberant wound repair, the expression of TGF-beta1 occurred earlier than TGF-beta3 expression. Wounds healing with EGT tended to have higher concentrations of fibrogenic TGF-beta1 and lower concentrations of antifibrotic TGF-beta3 than wounds healing normally, although these differences were not statistically significant. This study suggests that the production of EGT in bandaged wounds may be related to increased expression of fibrogenic TGF-beta1 and decreased expression of antifibrotic TGF-beta3. Further investigation of the roles of TGF-beta1 and -beta3 may be important in understanding the molecular control of EGT in horses. Copyright 2002 by The American College of Veterinary Surgeons

  2. Effects of transforming growth factor-β1 treatment on muscle regeneration and adipogenesis in glycerol-injured muscle.

    Science.gov (United States)

    Mahdy, Mohamed A A; Warita, Katsuhiko; Hosaka, Yoshinao Z

    2017-11-01

    Transforming growth factor (TGF)-β1 is associated with fibrosis in many organs. Recent studies demonstrated that delivery of TGF-β1 into chemically injured muscle enhances fibrosis. In this study, we investigated the effects of exogenous TGF-β1 on muscle regeneration and adipogenesis in glycerol-injured muscle of normal mice. Tibialis anterior (TA) muscles were injured by glycerol injection. TGF-β1 was either co-injected with glycerol, as an 'early treatment' group, or injected at day 4 after glycerol, as a 'late treatment' group and the TA muscles were collected at day 7 after initial injury. Myotube density was significantly lower in the early treatment group than in the glycerol-injured group (without TGF-β1 treatment). Moreover, the Oil red O-positive area was significantly smaller in the early treatment group than in the late treatment group and glycerol-injured group. Furthermore, TGF-β1 treatment increased endomysial fibrosis and induced immunostaining of α-smooth muscle actin. The greater inhibitory effects of early TGF-β1 treatment than that of late TGF-β1 treatment during regeneration in glycerol-injured muscle suggest a more potent effect of TGF-β1 on the initial stage of muscle regeneration and adipogenesis. Combination of TGF-β1 with glycerol might be an alternative to enhance muscle fibrosis for future studies. © 2017 Japanese Society of Animal Science.

  3. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  4. The level’s changing of transforming growth factor β2 during canine retraction in non-growing age patient

    Directory of Open Access Journals (Sweden)

    Adianti Adianti

    2015-06-01

    Full Text Available Background: Orthodontic tooth movement occurred as a result of alveolar bone remodeling and collagen due to mechanical load. This mechanical load applied to the tooth will exert a number of cytokine and growth factors. One of the growth factors that are often associated with orthodontic tooth movement is transforming growth factor-β(TGF-β. It has 3 isoforms, TGF-β1, TGF-β2, and TGF-β3. It has been known that in adult patient, tooth movement rate was slower. Purpose: The aim of this study was to investigate the changing level of TGF-β2 in non-growing patient due to mechanical load in canine retraction. Method: Gingival crevicular fluid from 6 subjects who undergo canine retraction was taken to investigate changing level of TGF-β2. Distal site of each upper canine served as an experimental tooth. The gingival crevicular fluid from experimental tooth was taken just prior to mechanical load, at 24h and 72h after mechanical load. Result: ELISA reader showed that level of TGF-β2 was decreasing during experiment time. Conclusion: It can be concluded that in non-growing patient, TGF-β2 has less role in alveolar bone resorption in orthodontic tooth movement.

  5. TGF-beta regulation of nuclear proto-oncogenes and TGF-beta gene expression in normal human osteoblast-like cells.

    Science.gov (United States)

    Subramaniam, M; Oursler, M J; Rasmussen, K; Riggs, B L; Spelsberg, T C

    1995-01-01

    Transforming growth factor-beta (TGF-beta) is present in high levels in bone and plays an important role in osteoblast growth and differentiation. In order to dissect the molecular mechanisms of action of TGF-beta on osteoblasts, the effects of TGF-beta on the steady state mRNA levels of c-fos, c-jun, and jun-B proto-oncogenes on normal human osteoblast-like cells (hOB) and a transformed human osteoblast cell line (MG-63) were measured. Treatment of hOBs with 2 ng/ml of TGF-beta 1 resulted in a rapid increase in c-fos mRNA levels as early as 15 min post-treatment. A maximum (10-fold) increase was observed at 30 min after TGF-beta treatment followed by a decrease to control values. Similar responses were measured whether the cells were rapidly proliferating or quiescent. TGF-beta 1 induced jun-B mRNA levels more gradually with steady increase initially observed at 30 min and a maximum induction measured at 2 h post-TGF-beta treatment. In contrast, TGF-beta treatment caused a time dependent decrease in the c-jun mRNA levels, an opposite pattern to that of jun-B mRNA. Treatment of hOBs with TGF-beta 1 in the presence of actinomycin-D abolished TGF-beta 1 induction of c-fos mRNA, suggesting that TGF-beta action is mediated via transcription. In the presence of cycloheximide, TGF-beta causes super-induction of c-fos mRNA at 30 min, indicating that the c-fos expression by TGF-beta is independent of new protein synthesis. Further, transfection of 3 kb upstream region of jun-B promoter linked to a CAT reporter gene into ROS 17/2.8 cells was sufficient to be regulated by TGF-beta 1. Interestingly, TGF-beta treatment also increased the mRNA levels of TGF-beta 1 itself at 4 h post TGF-beta treatment, with a maximum increase observed at 14 h of treatment. TGF-beta 1 treatment for 30 min were sufficient to cause a delayed increase in TGF-beta protein secretion within 24 h. These data support that TGF-beta has major effects on hOB cell proto-oncogene expression and that the

  6. Association of interleukin 10 and transforming growth factor β gene polymorphisms with chronic idiopathic urticaria.

    Science.gov (United States)

    Tavakol, Marzieh; Movahedi, Masoud; Amirzargar, Ali Akbar; Aryan, Zahra; Bidoki, Alireza Zare; Heidari, Kimia; Soltani, Samaneh; Gharagozlou, Mohammad; Aghamohammadi, Asghar; Nabavi, Mohammad; Nasiri, Rasoul; Ahmadvand, Alireza; Rezaei, Nima

    2014-01-01

    Transforming growth factor β (TGF-β) and interleukin 10 (IL-10) are two anti-inflammatory cytokines that are implicated in the pathogenesis of urticaria. The goal of this study was to examine the possible association of polymorphisms of TGF-β and IL-10 genes with susceptibility to chronic idiopathic urticaria (CIU). This study was conducted on 90 patients with CIU. Polymerase chain reaction (PCR) was done to determine the genotype at 5 polymorphic sites; TGF-β (codon10C/T and codon25G/C) and IL-10 (-1082G/A, -819C/T, and -592C/A). The C allele at codon 25 of TGF-β was more prevalent in CIU patients compared to controls (OR = 9.5, 95% CI = 5.4-16.8, P<0.001). Genotypes of CT and CG at 10 and 25 codons of TGF-β gene, respectively, and AG, CT, and CA for loci of -1082, -819, and -592 of IL-10 gene were significantly higher in CIU patients (P<0.001). In haplotype analysis, frequency of TGF-β haplotypes differed between patients with CIU and controls; CC haplotype was overrepresented, while CG and TG haplotypes were underrepresented (P<0.001). These results suggest that TGF-β and IL-10 genetic variability could contribute to susceptibility to CIU. Additionally, patients with CIU seem to have genotypes leading to high production of TGF-β and IL-10.

  7. Growth/differentiation factor-15: prostate cancer suppressor or promoter?

    Czech Academy of Sciences Publication Activity Database

    Vaňhara, P.; Hampl, A.; Kozubík, Alois; Souček, Karel

    2012-01-01

    Roč. 15, č. 4 (2012), s. 320-328 ISSN 1365-7852 R&D Projects: GA MZd NS9600; GA MZd NS9956 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : MACROPHAGE-INHIBITORY CYTOKINE-1 * GROWTH-DIFFERENTIATION FACTOR-15 * TGF-BETA SUPERFAMILY Subject RIV: BO - Biophysics Impact factor: 2.811, year: 2012

  8. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  9. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  10. Temporal and Spatial Expression of Transforming Growth Factor-β after Airway Remodeling to Tobacco Smoke in Rats

    Science.gov (United States)

    Hoang, Laura L.; Nguyen, Yen P.; Aspeé, Rayza; Bolton, Sarah J.; Shen, Yi-hsin; Wang, Lei; Kenyon, Nicholas J.; Smiley-Jewell, Suzette

    2016-01-01

    Airway remodeling is strongly correlated with the progression of chronic obstructive pulmonary disease (COPD). In this study, our goal was to characterize progressive structural changes in site-specific airways, along with the temporal and spatial expression of transforming growth factor (TGF)-β in the lungs of male spontaneously hypertensive rats exposed to tobacco smoke (TS). Our studies demonstrated that TS-induced changes of the airways is dependent on airway generation and exposure duration for proximal, midlevel, and distal airways. Stratified squamous epithelial cell metaplasia was evident in the most proximal airways after 4 and 12 weeks but with minimal levels of TGF-β–positive epithelial cells after only 4 weeks of exposure. In contrast, epithelial cells in midlevel and distal airways were strongly TGF-β positive at both 4 and 12 weeks of TS exposure. Airway smooth muscle volume increased significantly at 4 and 12 weeks in midlevel airways. Immunohistochemistry of TGF-β was also found to be significantly increased at 4 and 12 weeks in lymphoid tissues and alveolar macrophages. ELISA of whole-lung homogenate demonstrated that TGF-β2 was increased after 4 and 12 weeks of TS exposure, whereas TGF-β1 was decreased at 12 weeks of TS exposure. Airway levels of messenger RNA for TGF-β2, as well as platelet-derived growth factor-A, granulocyte-macrophage colony–stimulating factor, and vascular endothelial growth factor-α, growth factors regulated by TGF-β, were significantly decreased in animals after 12 weeks of TS exposure. Our data indicate that TS increases TGF-β in epithelial and inflammatory cells in connection with airway remodeling, although the specific role of each TGF-β isoform remains to be defined in TS-induced airway injury and disease. PMID:26637070

  11. The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells.

    Science.gov (United States)

    McLennan, Ian S; Koishi, Kyoko

    2002-01-01

    This review discusses the roles of the transforming growth factor-betas (TGF-betas) as part of a complex network that regulates the development and maintenance of the neuromuscular system. The actions of the TGF-betas often vary depending on which other growth factors are present, making it difficult to extrapolate results from in vitro experiments to the in vivo situation. A new approach has therefore been needed to understand the physiological functions of the TGF-betas. The behaviours (proliferation, fusion, apoptosis) of many of the cells in the neuromuscular system have a complex pattern which varies in space and time. The actions of growth factors in this system can thus be deduced based on how well their pattern of expression correlates with known cellular behaviours. Hypotheses based on this molecular anatomical evidence can then be further tested with genetically modified mice. From this type of evidence, we suggest that: (1) TGF-beta1 is an autocrine regulator of Schwann cells; (2) maternally-derived TGF-beta1 helps to suppress self and maternal immune attack; (3) TGF-beta2 regulates when and where myoblasts fuse to myotubes; (4) motoneuron survival is regulated by multiple sources of TGF-betas, with TGF-beta2 being the more important isoform. The concept of TGF-beta1 as a regulator of secondary myotube formation is not supported by either the location of the TGF-beta1 in developing muscles or by the phenotype of TGF-beta1-/- mice. The review concludes with a discussion of whether all of these of postulated functions can occur independently of each other, within the confines of the neuromuscular system.

  12. Correlation of transforming growth factor-β1 and tumour necrosis factor levels with left ventricular function in Chagas disease

    Science.gov (United States)

    Curvo, Eduardo OV; Ferreira, Roberto R; Madeira, Fabiana S; Alves, Gabriel F; Chambela, Mayara C; Mendes, Veronica G; Sangenis, Luiz Henrique C; Waghabi, Mariana C; Saraiva, Roberto M

    2018-01-01

    BACKGROUND Transforming growth factor β1 (TGF-β1) and tumour necrosis factor (TNF) have been implicated in Chagas disease pathophysiology and may correlate with left ventricular (LV) function. OBJECTIVES We determined whether TGF-β1 and TNF serum levels correlate with LV systolic and diastolic functions and brain natriuretic peptide (BNP) serum levels in chronic Chagas disease. METHODS This cross-sectional study included 152 patients with Chagas disease (43% men; 57 ± 12 years old), classified as 53 patients with indeterminate form and 99 patients with cardiac form (stage A: 24, stage B: 25, stage C: 44, stage D: 6). TGF-β1, TNF, and BNP were determined by enzyme-linked immunosorbent assay ELISA. Echocardiogram was used to determine left atrial and LV diameters, as well as LV ejection fraction and diastolic function. FINDINGS TGF-b1 serum levels were lower in stages B, C, and D, while TNF serum levels were higher in stages C and D of the cardiac form. TGF-β1 presented a weak correlation with LV diastolic function and LV ejection fraction. TNF presented a weak correlation with left atrial and LV diameters and LV ejection fraction. CONCLUSIONS TNF is increased, while TGF-β1 is decreased in the cardiac form of chronic Chagas disease. TNF and TGF-β1 serum levels present a weak correlation with LV systolic and diastolic function in Chagas disease patients. PMID:29513876

  13. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish

    Directory of Open Access Journals (Sweden)

    Clelland Eric

    2005-09-01

    Full Text Available Abstract Background TGF-beta is a multifunctional growth factor involved in regulating a variety of cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin- and 17alpha, 20beta-dihydroxyprogesterone (DHP-induced maturation in zebrafish. The aim of the present study was to investigate the mechanisms underlying this action. Method To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1 on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h. Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml for 18 h. Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD which is involved in DHP production, follicle stimulating hormone receptor (FSHR, luteinizing hormone receptor (LHR, the two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH (control, were performed. Results Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in

  14. FGF growth factor analogs

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  15. TGF-β signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-β.

    Science.gov (United States)

    Ikushima, Hiroaki; Miyazono, Kohei

    2012-01-01

    Transforming growth factor (TGF)-β signaling is involved in almost all major cell behaviors under physiological and pathological conditions, and its regulatory system has therefore been vigorously investigated. The fundamental elements in TGF-β signaling are TGF-β ligands, their receptors, and intracellular Smad effectors. The TGF-β ligand induces the receptors directly to phosphorylate and activate Smad proteins, which then form transcriptional complexes to control target genes. One of the classical questions in the field of research on TGF-β signaling is how this cytokine induces multiple cell responses depending on cell type and cellular context. Possible answers to this question include cross-interaction with other signaling pathways, different repertoires of Smad-binding transcription factors, and genetic alterations, especially in cancer cells. In addition to these genetic paradigms, recent work has extended TGF-β research into new fields, including epigenetic regulation and non-coding RNAs. In this review, we first describe the basic machinery of TGF-β signaling and discuss several factors that comprise TGF-β signaling networks. We then address mechanisms by which TGF-β induces several responses in a cell-context-dependent fashion. In addition to classical frames, the interaction of TGF-β signaling with epigenetics and microRNA is discussed.

  16. Effects of TGF-betas and a specific antagonist on apoptosis of immature rat male germ cells in vitro.

    Science.gov (United States)

    Konrad, L; Keilani, M M; Laible, L; Nottelmann, U; Hofmann, R

    2006-05-01

    Massive apoptosis of pubertal male germ cells is important for the development of functional spermatogenesis in the adult testis. Although the trigger(s) for male germ cell loss at puberty remain undefined, we have hypothesized that transforming growth factor-betas (TGF-betas) play an active role. Here we demonstrate that the three mammalian TGF-beta isoforms, TGF-beta1, TGF-beta2 and TGF-beta3, induce distinct apoptosis of pubertal spermatogonia and spermatocytes in a dose-dependent manner. Induction of male germ cell death by activation of caspase-3 was most pronounced with TGF-beta2 compared to TGF-beta1 and TGF-beta3. Furthermore, we found colocalization of activated caspase-3 with apoptotic protease-activating factor-1 (Apaf-1) in apoptotic germ cells, thus indicating the importance of the intrinsic mitochondrial pathway in TGF-beta-induced apoptosis. The specificity of the TGF-beta effects was proven by addition of recombinant latency-associated peptide against TGF-beta1 (rLAP-TGF-beta1) which completely abolished TGF-beta1-induced and TGF-beta3-induced germ cell apoptosis. Although TGF-beta2-triggered germ cell death also was significantly reduced by rLAP-TGF-beta1, inhibition was not maximal. Our results suggest that the three TGF-beta isoforms induce apoptosis of pubertal male germ cells via the mitochondrial pathway in vitro and are thus likely candidates involved in the excessive first wave of apoptosis of male germ cells during puberty.

  17. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    Science.gov (United States)

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic

  18. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo.

    OpenAIRE

    Dennler, Sylviane; André, Jocelyne; Alexaki, Ismini; Li, Allen; Magnaldo, Thierry; Ten Dijke, Peter; Wang, Xiao-Jing; Verrecchia, Franck; Mauviel, Alain

    2007-01-01

    International audience; Hedgehog (Hh) and transforming growth factor-beta (TGF-beta) family members are involved in numerous overlapping processes during embryonic development, hair cycle, and cancer. Herein, we show that TGF-beta induces the expression of the Hh signaling molecules Gli1 and Gli2 in various human cell types, including normal fibroblasts and keratinocytes, as well as various cancer cell lines. Gli2 induction by TGF-beta is rapid, independent from Hh receptor signaling, and req...

  19. Direct regulation of transforming growth factor ??induced epithelial?mesenchymal transition by the protein phosphatase activity of unphosphorylated PTEN in lung cancer cells

    OpenAIRE

    Kusunose, Masaaki; Hashimoto, Naozumi; Kimura, Motohiro; Ogata, Ryo; Aoyama, Daisuke; Sakamoto, Koji; Miyazaki, Shinichi; Ando, Akira; Omote, Norihito; Imaizumi, Kazuyoshi; Kawabe, Tsutomu; Hasegawa, Yoshinori

    2015-01-01

    Transforming growth factor ? (TGF?) causes the acquisition of epithelial?mesenchymal transition (EMT). Although the tumor suppressor gene PTEN (phosphatase and tensin homologue deleted from chromosome 10) can negatively regulate many signaling pathways activated by TGF?, hyperactivation of these signaling pathways is observed in lung cancer cells. We recently showed that PTEN might be subject to TGF??induced phosphorylation of its C?terminus, resulting in a loss of its enzyme activities; PTEN...

  20. Signaling by TGF-betas in tubule cultures of adult rat testis.

    Science.gov (United States)

    Chan, Kai-Hui; Galuska, Sebastian P; Kudipudi, Pradeep Kumar; Riaz, Mohammad Assad; Loveland, Kate L; Konrad, Lutz

    2017-01-01

    Although signal transduction of transforming growth factor-betas (TGF-βs) is well characterized in individual cell types, data about TGF-β signaling in a cellular context is still scarce. In this study, we used ex vivo tubule cultures from adult rat testis to investigate TGF-β signaling. We show for the first time in testicular tubules, that TGF-βs also signal via the BMP type I receptors, with ALK2 used by TGF-β1 and ALK3 and ALK6 by TGF-β2. This signal transduction is mediated via Smad3 as well as via Smad1. In contrast, BMPs (BMP2 and BMP7) do not signal via the high-affinity type I and type II TGFβ receptors, TBR1 or TBR2. Furthermore, treatment of tubule cultures with either TGF-β1 or TGF-β2 had profound significant stimulatory effects on secretion of plasminogen activator-1 (PAI-1) through utilization of TGF-β and BMP receptors. Specific inhibitors for either TBR1 or BMP receptors yielded nearly complete inhibition of TGF-β signaling. The TBR1-TBR2 signalosome was detected with Duolink upon stimulation with either TGF-β1 or TGF-β2, predominantly in spermatogenic cells of the adult rat testis, particularly in elongated spermatids. In summary, this examination of intact rat testicular tubules demonstrated for the first time that TGF-βs signal mainly through TBR1 and TBR2 but also use BMP receptors, including for secretion of PAI-1. Whereas ALK2 participates in the TGF-β1-induced TBR1-TBR2 signalosome, ALK3 and ALK6 are involved in signaling of TGF-β2. Detection of the TBR1-TBR2 signalosome in late spermiogenic cells indicates a post-meiotic activity.

  1. Serum Transforming Growth Factor Beta-1 as an Index of Chemical Hepato carcinogenesis in Rats

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.; Fekry, A.E.; Edrees, G.; Ali, M.A.; Ghareeb, N.A.

    2008-01-01

    Transforming growth factor beta-1 (TGF β1) is an important mediator which controls liver cell proliferation and replication. The relation between TGF β1, Alpha-fetoprotein (AFP) and clinically thought hepatocellular carcinoma (HCC) in rats were investigated to clarify the clinical value of measuring peripheral serum TGF β1 and AFP in evaluation of HCC. Peripheral serum TGF β1 and AFP were measured during chemically induced hepato carcinogenesis. Male rats were given a genotoxic compound diethylnitrosamine (DEN) in drinking water for 149 days with control receiving drinking water only. Animals were killed at different times intervals 54, 86 and 149 days, serum TGF β1 levels were measured by, Enzyme Linked Immunosorbent Assay (ELISA) and AFP levels were assayed by immunoradiometric assay (IRMA). In DEN treated rats 54 days, there was mild portal tract inflammatory cellular infiltrate, serum TGF β1 and AFP levels were both significantly elevated above control (P>0.05 and P<0.001). At 86 days there were moderate inflammation (portal and peri portal), serum TGF β1 and AFP levels were significantly increased, (P<0.001). At 149 days typical HCC were present in ten of ten rats and serum TGF β1 and AFP were both significantly elevated compared with controls, (P<0.001). It can be concluded that serum TGF β1 and AFP levels are elevated during chemically induced HCC and have roles during the stages of process (initiation, promotion and progression); both serum TGF β1 and AFP levels can be used in parallel as a non invasive tumor markers for early diagnosis and prognosis of HCC

  2. Transforming growth factor beta 1, a cytokine with regenerative functions

    Directory of Open Access Journals (Sweden)

    Wale Sulaiman

    2016-01-01

    Full Text Available We review the biology and role of transforming growth factor beta 1 (TGF-β1 in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus, which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accurately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treatment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronically denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration.

  3. Cholest-4-en-3-one attenuates TGF-β responsiveness by inducing TGF-β receptors degradation in Mv1Lu cells and colorectal adenocarcinoma cells.

    Science.gov (United States)

    Chen, Chun-Lin; Wu, Deng-Chyang; Liu, Min-Yun; Lin, Ming-Wei; Huang, Hung-Tu; Huang, Yaw-Bin; Chen, Li-Chai; Chen, Yu-Yu; Chen, Jih-Jung; Yang, Pei-Hua; Kao, Yu-Chen; Chen, Pei-Yu

    2017-04-01

    The transforming growth factor-beta (TGF-β) pathway is an important in the initiation and progression of cancer. Due to a strong association between an elevated colorectal cancer risk and increase fecal excretion of cholest-4-en-3-one, we aim to determine the effects of cholest-4-en-3-one on TGF-β signaling in the mink lung epithelial cells (Mv1Lu) and colorectal cancer cells (HT29) in vitro. The inhibitory effects of cholest-4-en-3-one on TGF-β-induced Smad signaling, cell growth inhibition, and the subcellular localization of TGF-β receptors were investigated in epithelial cells using a Western blot analysis, luciferase reporter assays, DNA synthesis assay, confocal microscopy, and subcellular fractionation. Cholest-4-en-3-one attenuated TGF-β signaling in Mv1Lu cells and HT29 cells, as judged by a TGF-β-specific reporter gene assay of plasminogen activator inhibitor-1 (PAI-1), Smad2/3 phosphorylation and nuclear translocation. We also discovered that cholest-4-en-3-one suppresses TGF-β responsiveness by increasing lipid raft and/or caveolae accumulation of TGF-β receptors and facilitating rapid degradation of TGF-β and thus suppressing TGF-β-induced signaling. Our results suggest that cholest-4-en-3-one inhibits TGF-β signaling may be due, in part to the translocation of TGF-β receptor from non-lipid raft to lipid raft microdomain in plasma membranes. Our findings also implicate that cholest-4-en-3-one may be further explored for its potential role in colorectal cancer correlate to TGF-β deficiency.

  4. A Mathematical Model Quantifies Proliferation and Motility Effects of TGF-β on Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shizhen Emily Wang

    2009-01-01

    Full Text Available Transforming growth factor (TGF-β is known to have properties of both a tumour suppressor and a tumour promoter. While it inhibits cell proliferation, it also increases cell motility and decreases cell–cell adhesion. Coupling mathematical modelling and experiments, we investigate the growth and motility of oncogene-expressing human mammary epithelial cells under exposure to TGF-β. We use a version of the well-known Fisher–Kolmogorov equation, and prescribe a procedure for its parametrisation. We quantify the simultaneous effects of TGF-β to increase the tendency of individual cells and cell clusters to move randomly and to decrease overall population growth. We demonstrate that in experiments with TGF-β treated cells in vitro, TGF-β increases cell motility by a factor of 2 and decreases cell proliferation by a factor of 1/2 in comparison with untreated cells.

  5. Ultrasound Effect on Gene Expression of Sex Determining Region Y-box 9 (SOX9 and Transforming Growth Factor β Isoforms in Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Hajar Shafaei

    2016-04-01

    Full Text Available Background Cartilage tissue engineering is a promising method for repair of cartilage defects. Induction of chondrogenesis in mesenchymal stem cells (MSC is currently used in cartilage tissue engineering. Among growth factors, transforming growth factor β (TGF-β is common chondrogenic inducer but toward hypertrophic chondrocyte. However, mechanical factors such as ultrasound could stimulate chondrogenesis. Objectives We aimed to investigate stimulation of endogenous TGF-β genes expression by low intensity pulsed ultrasound (LIPUS in MSC. Materials and Methods In this experimental study, adipose tissue stem cells (ASC cultures were treated with or without LIPUS (30 mW/cm2, 20 min/day and with or without TGF-β3 (10 ng/mL for 4 or 14 days. Chondrogenic gene expression of SOX9 and members of TGF-β family (β1, β2 and β3 was assessed in ASC cultures at day 4 and 14 by real time PCR. Results The gene expression of SOX9 significantly increased by LIPUS and TGF-β treatment versus control cultures. Exogenous TGF-β3 treatment stimulated endogenous TGF-β1 and β2 gene expressions more than LIPUS treated cultures at day 4. LIPUS, TGF-β and LIPUS plus TGF-β treated cultures expressed same TGF-β3 gene expression at day 4. The expression of TGF-β1 and β2 decreased by LIPUS in comparison to TGF-β treated cultures at day 14. Conclusions Our results suggest that LIPUS might initiate differentiation of ASC without enhancing endogenous TGF-β genes in in-vitro.

  6. Staphylococcus aureus induces TGF-β1and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary epithelial cells.

    Science.gov (United States)

    Wu, Jianmei; Ding, Yulin; Wang, Jinling; Wang, Fenglong

    2018-02-13

    Staphylococcus aureus is a common Gram-positive pathogen that causes bovine mastitis, a persistent infection of the bovine mammary gland. Bovine mammary epithelial cells (BMEC) are important parenchymal cells of the bovine mammary gland. To better understand the importance of BMEC and the roles of the TLR-NF-κBand TLR-AP-1 signaling pathways in the regulation of S. aureus-associated mastitis and mammary fibrosis, BMEC cultured in vitro were stimulated with different concentrations of heat-inactivated S. aureus to analyze the gene and protein expression and production of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) as well as the protein expression of nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) by means of quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Specific NF-κB and AP-1 inhibitors were also used to investigate their effects on the regulation of TGF-β 1 and bFGF expression. The results indicated that, in addition to increasing mRNA expression and secretion of TLR2 and TLR4, S. aureus could also upregulate TGF-β 1 and bFGF mRNA expression and secretion through the activation of NF-κB and AP-1. The increase in TGF-β 1 and bFGF expression was shown to be inhibited by AP-1- and NF-κB-specific inhibitors. Taken together, S. aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB in BMECs. This information offers new potential targets for the treatment of bovine mammary fibrosis. Copyright © 2018. Published by Elsevier Ltd.

  7. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors

    Science.gov (United States)

    Budi, Erine H.; Muthusamy, Baby Periyanayaki; Derynck, Rik

    2015-01-01

    Increased activity of transforming growth factor β (TGF-β), which binds to and stimulates cell surface receptors, contributes to cancer progression and fibrosis by driving epithelial cells toward a migratory mesenchymal phenotype and increasing the abundance of extracellular matrix proteins. The abundance of TGF-β receptors at the cell surface determines cellular responsiveness to TGF-β, which is often produced by the same cells that have the receptors, and thus serves as an autocrine signal. We found that Akt-mediated phosphorylation of AS160, a RabGAP [guanosine triphosphatase (GTPase)-activating protein] promoted the translocation of TGF-β receptors from intracellular stores to the plasma membrane of mouse embryonic fibroblasts (MEFs) and NMuMG epithelial cells. Consequently, insulin, which is commonly used to treat hyperglycemia and activates Akt signaling, increased the amount of TGF-β receptors at the cell surface, thereby enhancing TGF-β responsiveness. This insulin-induced increase in autocrine TGF-β signaling contributed to insulin-induced gene expression responses, attenuated the epithelial phenotype, and promoted the migration of NMuMG cells. Furthermore, the enhanced delivery of TGF-β receptors at the cell surface enabled insulin to increase TGF-β-induced gene responses. The enhancement of TGF-β responsiveness in response to Akt activation may help to explain the biological effects of insulin, the progression of cancers in which Akt is activated, and the increased incidence of fibroses in diabetes. PMID:26420907

  8. Aortopathy in a Mouse Model of Marfan Syndrome Is Not Mediated by Altered Transforming Growth Factor β Signaling.

    Science.gov (United States)

    Wei, Hao; Hu, Jie Hong; Angelov, Stoyan N; Fox, Kate; Yan, James; Enstrom, Rachel; Smith, Alexandra; Dichek, David A

    2017-01-24

    Marfan syndrome (MFS) is caused by mutations in the gene encoding fibrillin-1 (FBN1); however, the mechanisms through which fibrillin-1 deficiency causes MFS-associated aortopathy are uncertain. Recently, attention was focused on the hypothesis that MFS-associated aortopathy is caused by increased transforming growth factor-β (TGF-β) signaling in aortic medial smooth muscle cells (SMC). However, there are many reasons to doubt that TGF-β signaling drives MFS-associated aortopathy. We used a mouse model to test whether SMC TGF-β signaling is perturbed by a fibrillin-1 variant that causes MFS and whether blockade of SMC TGF-β signaling prevents MFS-associated aortopathy. MFS mice (Fbn1 C1039G/+ genotype) were genetically modified to allow postnatal SMC-specific deletion of the type II TGF-β receptor (TBRII; essential for physiologic TGF-β signaling). In young MFS mice with and without superimposed deletion of SMC-TBRII, we measured aortic dimensions, histopathology, activation of aortic SMC TGF-β signaling pathways, and changes in aortic SMC gene expression. Young Fbn1 C1039G/+ mice had ascending aortic dilation and significant disruption of aortic medial architecture. Both aortic dilation and disrupted medial architecture were exacerbated by superimposed deletion of TBRII. TGF-β signaling was unaltered in aortic SMC of young MFS mice; however, SMC-specific deletion of TBRII in Fbn1 C1039G/+ mice significantly decreased activation of SMC TGF-β signaling pathways. In young Fbn1 C1039G/+ mice, aortopathy develops in the absence of detectable alterations in SMC TGF-β signaling. Loss of physiologic SMC TGF-β signaling exacerbates MFS-associated aortopathy. Our data support a protective role for SMC TGF-β signaling during early development of MFS-associated aortopathy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Transforming growth factor-beta1 induces tumor stroma and reduces tumor infiltrate in cervical cancer

    NARCIS (Netherlands)

    Hazelbag, Suzanne; Gorter, Arko; Kenter, Gemma G.; van den Broek, Lambert; Fleuren, Gertjan

    2002-01-01

    Cervical carcinomas consist of tumor cell nests surrounded by varying amounts of intratumoral stroma containing different quantities and types of immune cells. Besides controlling (epithelial) cell growth, the multifunctional cytokine transforming growth factor-beta(1) (TGF-beta(1)) is involved in

  10. Maintaining the immunological balance in parasitic infections: a role for TGF-ß?

    DEFF Research Database (Denmark)

    Omer, F M; Kurtzhals, J A; Riley, E M

    2000-01-01

    Transforming growth factor beta (TGF-beta) is an important regulator of inflammation, being proinflammatory at low concentrations and anti-inflammatory at high concentrations. As such, TGF-beta might be important in maintaining the balance between control and clearance of infectious organisms...

  11. Deficiency of thioredoxin binding protein-2 (TBP-2 enhances TGF-β signaling and promotes epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    So Masaki

    Full Text Available Transforming growth factor beta (TGF-β has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1 is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer.In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells.Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.

  12. Deferoxamine synergizes with transforming growth factor-β signaling in chondrogenesis

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2017-08-01

    Full Text Available Abstract Osteoarthritis, also known as degenerative arthritis or degenerative joint disease, is an epidemic disease that affects millions of people worldwide. Despite extensive recent work on the cellular biology of osteoarthritis, the precise mechanisms involved are still poorly understood and there is no effective treatment for this disease. The role of transforming growth factor-beta (TGF-β in promoting chondrogenesis and inducing the expression of cartilage-specific extracellular matrix molecules to form cartilage is well-established. Historically, TGF-β has been considered to prevent osteoarthritis, but recent work suggests that TGF-β overexpression accelerates the progression of osteoarthritis in vivo. Clinically, it is therefore important to limit TGF-β expression while still providing effective treatment of osteoarthritis. One possible approach to achieve this effect would be to use a combination of TGF-β with other small molecular chemical compounds. Hypoxia promotes chondrogenesis and the usefulness of deferoxamine, a chelating agent that mimics hypoxia, in stimulating chondrogenesis has been investigated in clinical trials. In this study, we investigated the role of deferoxamine in TGF-β-induced chondrogenesis in pre-chondrogenic cells and examined whether deferoxamine synergizes with the TGF-β signaling pathway to promote chondrocyte differentiation.

  13. Interleukin-1 beta Attenuates Myofibroblast Formation and Extracellular Matrix Production in Dermal and Lung Fibroblasts Exposed to Transforming Growth Factor-beta 1

    NARCIS (Netherlands)

    Mia, Masum M.; Boersema, Miriam; Bank, Ruud A.

    2014-01-01

    One of the most potent pro-fibrotic cytokines is transforming growth factor (TGF beta). TGF beta is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1 beta (IL1 beta) can influence the

  14. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  15. Transforming growth factor-β1 suppresses hepatitis B virus replication by the reduction of hepatocyte nuclear factor-4α expression.

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Hong

    Full Text Available Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1 could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA, core protein (HBc, nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α binding element(s within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene.

  16. Eukaryotic Translation Initiation Factor 4E Is a Feed-Forward Translational Coactivator of Transforming Growth Factor β Early Protransforming Events in Breast Epithelial Cells.

    Science.gov (United States)

    Decarlo, Lindsey; Mestel, Celine; Barcellos-Hoff, Mary-Helen; Schneider, Robert J

    2015-08-01

    Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed early in breast cancers in association with disease progression and reduced survival. Much remains to be understood regarding the role of eIF4E in human cancer. We determined, using immortalized human breast epithelial cells, that elevated expression of eIF4E translationally activates the transforming growth factor β (TGF-β) pathway, promoting cell invasion, a loss of cell polarity, increased cell survival, and other hallmarks of early neoplasia. Overexpression of eIF4E is shown to facilitate the selective translation of integrin β1 mRNA, which drives the translationally controlled assembly of a TGF-β receptor signaling complex containing α3β1 integrins, β-catenin, TGF-β receptor I, E-cadherin, and phosphorylated Smad2/3. This receptor complex acutely sensitizes nonmalignant breast epithelial cells to activation by typically substimulatory levels of activated TGF-β. TGF-β can promote cellular differentiation or invasion and transformation. As a translational coactivator of TGF-β, eIF4E confers selective mRNA translation, reprogramming nonmalignant cells to an invasive phenotype by reducing the set point for stimulation by activated TGF-β. Overexpression of eIF4E may be a proinvasive facilitator of TGF-β activity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Growth factors and kinases in glioblastoma growth

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Peña-Ortiz

    2016-10-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive type of brain cancer, having the highest invasion, migration, proliferation, and angiogenesis rates. Several signaling pathways are involved in the regulation of these processes including growth factors and their tyrosine kinase receptors, such as vascular endothelial growth factor (VEGF, transforming growth factor beta (TGFβ, fibroblast growth factor (FGF, platelet-derived growth factor (PDGF, and insulin-like growth factor–I (IGF–I. Different kinases and regulators also participate in signaling pathways initiated by growth factors, such as mitogen-activated kinases (MAPK, protein kinases C (PKC, phosphatidylinositol-3 kinases (PI3K, protein kinase B (PKB or Akt, glycogen synthase kinase 3β (GSK3β, the mTOR complex, and Bcl-2. In this review, we will focus on the role of these proteins as possible therapeutic targets in GBM.

  18. Promoter polymorphism of transforming growth factor-beta1 gene and ulcerative colitis.

    Science.gov (United States)

    Tamizifar, B; Lankarani, K B; Naeimi, S; Rismankar Zadeh, M; Taghavi, A; Ghaderi, A

    2008-01-14

    To elucidate the possible difference in two promoter polymorphisms of the transforming growth factor-beta1 (TGF-beta1) gene (-800G > A, -509C > T) between ulcerative colitis (UC) patients and normal subjects. A total of 155 patients with established ulcerative colitis and 139 normal subjects were selected as controls. Two single nucleotide polymorphisms within the promoter region of TGF-beta1 gene (-509C > T and -800G > A) were genotyped using PCR-RFLP. There was a statistically significant difference in genotype and allele frequency distributions between UC patients and controls for the -800G > A polymorphism of the TGF-beta1 gene (P A of TGF-beta1 gene promoter between Iranian patients with UC and normal subjects.

  19. Serum Concentration of Growth Factors in Dogs under Different Conditions of Distraction Osteogenesis.

    Science.gov (United States)

    Stogov, M V; Tushina, N V; Emanov, A A

    2015-12-01

    Concentrations of insulin-like growth factors 1 and 2 (IGF-1 and IGF-2), stem cell factor (SCF), vascular endothelial growth factor (VEGF), and transforming growth factor β1 (TGF-β1) were measured in the blood serum of dogs subjected to experimental lengthening of shin bones. In animals subjected to shin bone lengthening at a rate of 1 mm/day in 4 steps, the concentrations of SCF and TGF-β1 significantly increased in the middle of distraction and IGF-1 concentration increased by the end of distraction. In animals subjected to lengthening at a rate of 1.5 mm/day in 6 steps, the levels of IGF-1 and TGF-β1 significantly increased in the middle of distraction and the concentration of IGF-2 at the end of distraction. In animals subjected to lengthening at a rate of 3 mm/day in 120 steps, the concentrations of IGF-1 and TGF-β1 significantly decreased in the middle of distraction and concentrations of IGF-1, VEGF, and TGF-β1 increased by the end of distraction.

  20. Influence of root canal disinfectants on growth factor release from dentin.

    Science.gov (United States)

    Galler, Kerstin M; Buchalla, Wolfgang; Hiller, Karl-Anton; Federlin, Marianne; Eidt, Andreas; Schiefersteiner, Mona; Schmalz, Gottfried

    2015-03-01

    During dentinogenesis, growth factors become entrapped in the dentin matrix that can later be released by demineralization. Their effect on pulpal stem cell migration, proliferation, and differentiation could be beneficial for regenerative endodontic therapies. However, precondition for success, as for conventional root canal treatment, will be sufficient disinfection of the root canal system. Various irrigation solutions and intracanal dressings are available for clinical use. The aim of this study was 2-fold: to identify a demineralizing solution suitable for growth factor release directly from dentin and to evaluate whether commonly used disinfectants for endodontic treatment will compromise this effect. Dentin disks were prepared from extracted human teeth and treated with EDTA or citric acid at different concentrations or pH for different exposure periods. The amount of transforming growth factor-β1 (TGF-β1), fibroblast growth factor 2, and vascular endothelial growth factor were quantified via enzyme-linked immunosorbent assay and visualized by gold labeling. Subsequently, different irrigation solutions (5.25% sodium hypochloride, 0.12% chlorhexidine digluconate) and intracanal dressings (corticoid-antibiotic paste, calcium hydroxide: water-based and oil-based, triple antibiotic paste, chlorhexidine gel) were tested, and the release of TGF-β1 was measured after a subsequent conditioning step with EDTA. Conditioning with 10% EDTA at pH 7 rendered the highest amounts of TGF-β1 among all test solutions. Fibroblast growth factor 2 and vascular endothelial growth factor were detected after EDTA conditioning at minute concentrations. Irrigation with chlorhexidine before EDTA conditioning increased TGF-β1 release; sodium hypochloride had the opposite effect. All tested intracanal dressings interfered with TGF-β1 release except water-based calcium hydroxide. Growth factors can be released directly from dentin via EDTA conditioning. The use of disinfecting

  1. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing.

    Science.gov (United States)

    Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz

    2013-06-01

    This review highlights the critical role of transforming growth factor beta (TGF-β)1-3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1-controlling factors involved in slowing down the healing process upon wound epithelialization. TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision.

  2. The effect of transforming growth factor beta on human neuroendocrine tumor BON cell proliferation and differentiation is mediated through somatostatin signaling.

    Science.gov (United States)

    Leu, Frank P; Nandi, Minesh; Niu, Congrong

    2008-06-01

    The dual effect of the ubiquitous inflammatory cytokine transforming growth factor beta1 (TGF beta) on cellular proliferation and tumor metastasis is intriguing but complex. In epithelial cell- and neural cell-derived tumors, TGF beta serves as a growth inhibitor at the beginning of tumor development but later becomes a growth accelerator for transformed tumors. The somatostatin (SST) signaling pathway is a well-established antiproliferation signal, and in this report, we explore the interplay between the SST and TGF beta signaling pathways in the human neuroendocrine tumor cell line BON. We defined the SST signaling pathway as a determinant for neuroendocrine tumor BON cells in responding to TGF beta as a growth inhibitor. We also determined that TGF beta induces the production of SST and potentially activates the negative growth autocrine loop of SST, which leads to the downstream induction of multiple growth inhibitory effectors: protein tyrosine phosphatases (i.e., SHPTP1 and SHPTP2), p21(Waf1/Cip1), and p27(Kip1). Concurrently, TGF beta down-regulates the growth accelerator c-Myc protein and, collectively, they establish a firm antiproliferation effect on BON cells. Additionally, any disruption in the activation of either the TGF beta or SST signaling pathway in BON leads to "reversible" neuroendocrine-mesenchymal transition, which is characterized by the loss of neuroendocrine markers (i.e., chromogranin A and PGP 9.5), as well as the altered expression of mesenchymal proteins (i.e., elevated vimentin and Twist and decreased E-cadherin), which has previously been associated with elevated metastatic potential. In summary, TGF beta-dependent growth inhibition and differentiation is mediated by the SST signaling pathway. Therefore, any disruption of this TGF beta-SST connection allows BON cells to respond to TGF beta as a growth accelerator instead of a growth suppressor. This model can potentially apply to other cell types that exhibit a similar interaction of

  3. Protective effects of transforming growth factor β2 in intestinal epithelial cells by regulation of proteins associated with stress and endotoxin responses

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Jiang, Pingping; Jacobsen, Susanne

    2015-01-01

    Transforming growth factor (TGF)-β2 is an important anti-inflammatory protein in milk and colostrum. TGF-β2 supplementation appears to reduce gut inflammatory diseases in early life, such as necrotizing enterocolitis (NEC) in young mice. However, the molecular mechanisms by which TGF-β2 protects ......-β2 in IECs. We conclude that TGF-β2 of dietary or endogenous origin may regulate the IEC responses against LPS stimuli, thereby supporting cellular homeostasis and innate immunity in response to bacterial colonization, and the first enteral feeding in early life....

  4. Virulence factors of Helicobacter pylori vacA increase markedly gastric mucosal TGF-β1 mRNA expression in gastritis patients.

    Science.gov (United States)

    Rahimian, Ghorbanali; Sanei, Mohammad Hosein; Shirzad, Hedayatollah; Azadegan-Dehkordi, Fatemeh; Taghikhani, Afshin; Salimzadeh, Loghman; Hashemzadeh-Chaleshtori, Morteza; Rafieian-Kopaei, Mahmoud; Bagheri, Nader

    2014-01-01

    Helicobacter pylori (H. pylori) infection is the main cause of gastric inflammation. Regulatory T cells (Treg cells) suppress the activation and proliferation of antigen-specific T cells and mediate immunologic tolerance. TGF-β1 was shown to be secreted in a subset of Treg cells known as 'Th3 cells'. These cells have not been sufficiently studied in context to H. pylori-induced inflammation in human gastric mucosa. In this study we therefore, aimed to investigate the expression of TGF-β1 in the context of H. pylori colonization in chronic gastritis, to examine the relationship between it and histopathologic findings and to compare it with virulence factors. Total RNA was extracted from gastric biopsies of 48 H. pylori-infected patients and 38 H. pylori-negative patients with gastritis. Mucosal TGF-β1 mRNA expression in H. pylori-infected and uninfected gastric biopsies was determined by real-time PCR. Presence of vacA, cagA, iceA, babA2 and oipA virulence factors was evaluated using PCR. TGF-β1 mRNA expression was significantly increased in biopsies of H. pylori-infected patients compared to H. pylori-uninfected patients. There was association between virulence factors and TGF-β1 mRNA expression. TGF-β1 mRNA expression in mucosa was significantly higher in patients with vacA s1 and s1m1. TGF-β1 may play an important role in the inflammatory response and promote the chronic and persistent inflammatory changes in the gastric. This may ultimately influence the outcome of H. pylori-associated diseases that arise within the context of gastritis and vacA may suffice to induce expression of TGF-β1 mRNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle

    2005-12-01

    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  6. RLIM interacts with Smurf2 and promotes TGF-β induced U2OS cell migration

    International Nuclear Information System (INIS)

    Huang, Yongsheng; Yang, Yang; Gao, Rui; Yang, Xianmei; Yan, Xiaohua; Wang, Chenji; Jiang, Sirui; Yu, Long

    2011-01-01

    Highlights: → RLIM directly binds to Smurf2. → RLIM enhances TGF-β responsiveness in U2OS cells. → RLIM promotes TGF-β driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-β (transforming growth factor-β), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-β responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-β-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-β signaling pathway and cell migration.

  7. The Peritoneum Is Both a Source and Target of TGF-β in Women with Endometriosis

    Science.gov (United States)

    Young, Vicky J.; Brown, Jeremy K.; Saunders, Philippa T. K.; Duncan, W. Colin; Horne, Andrew W.

    2014-01-01

    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (Pendometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (Pendometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation. PMID:25207642

  8. Biological significance of local TGF-β activation in liver diseases

    Directory of Open Access Journals (Sweden)

    Hiromitsu eHayashi

    2012-02-01

    Full Text Available The cytokine transforming growth factor-β (TGF-β plays a pivotal role in a diverse range of cellular responses, including cell proliferation, apoptosis, differentiation, migration, adhesion, angiogenesis, stimulation of extracellular matrix (ECM synthesis, and downregulation of ECM degradation. TGF-β and its receptors are ubiquitously expressed by most cell types and tissues in vivo. In intact adult tissues and organs, TGF-β is secreted in a biologically inactive (latent form associated in a noncovalent complex with the ECM. In response to injury, local latent TGF-β complexes are converted into active TGF-β according to a tissue- and injury type-specific activation mechanism. Such a well and tightly orchestrated regulation in TGF-β activity enables an immediate, highly localized response to type-specific tissue injury. In the pathological process of liver fibrosis, TGF-β plays as a master pro-fibrogenic cytokine in promoting activation and myofibroblastic differentiation of hepatic stellate cells, a central event in liver fibrogenesis. Continuous and/or persistent TGF-β signaling induces sustained production of ECM components and of metalloproteinase synthesis. Therefore, the regulation of locally activated TGF-β levels is increasingly recognized as a therapeutic target for liver fibrogenesis. This review summarizes our present knowledge of the activation mechanisms and bioavailability of latent TGF-β in biological and pathological processes in the liver.

  9. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin.

    Science.gov (United States)

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2018-01-01

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. © 2017 Wiley Periodicals, Inc.

  10. Aqueous transforming growth factor-beta-I levels in rabbit eyes after excimer laser photoablation.

    Science.gov (United States)

    Bilgihan, K; Gürelik, G; Okur, H; Bilgihan, A; Hasanreisoglu, B; Imir, T

    1997-01-01

    Transforming growth factor beta (TGF-beta) plays an important role in anterior segment wound healing, by controlling the cell proliferation and differentiation, angiogenesis, extracellular matrix composition and mediating the immunosuppressive properties of the aqueous humor. The present study was undertaken to clarify the possible changes of aqueous humor TGF-betaI levels after excimer laser photoablation. Twenty-eight New Zealand rabbits were divided into four groups of 7 rabbits each. Group 1 served as control, the central 7 mm of corneal epithelium was removed in groups 2, 3 and 4. We performed 50-microm corneal photoablation in group 3, and 100-microm ablation in group 4. After 48 h we measured the TGF-betaI levels of the aqueous humor by ELISA method. The mean TGF-betaI value of the aqueous humor was found to be 162.94+/-13.73 pg/ml in the control group. Mechanical deepithelialization did not change the TGF-betaI levels of the aqueous humor (p > 0.05). There was no significant difference between the 50-microm photoablated group and the controls (p > 0.05), but the TGF-betaI levels of the 100-microm photoablated group were found to be significantly higher than those of both the control group and 50-microm photoablated group (p < 0.05). Many factors and cytokines may induce corneal haze and myopic regression after excimer laser photoablation; our study demonstrated that TGF-betaI is one of these factors and there is a positive correlation between the depth of corneal photoablation and aqueous TGF-betaI concentrations.

  11. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation.

    Science.gov (United States)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Riquelme, Cecilia; Brandan, Enrique

    2006-08-01

    The onset and progression of skeletal muscle regeneration are controlled by a complex set of interactions between muscle precursor cells and their environment. Satellite cells constitute the main source of muscle precursor cells for growth and repair. After skeletal muscle injury, cell-derived signals induce their re-entry into the cell cycle and their migration into the damaged zone, where they proliferate and differentiate into mature myofibers. The surrounding extracellular matrix (ECM) together with inhibitory growth factors, such as transforming growth factor-beta (TGF-beta), also likely play an important role in growth control and muscle differentiation. Decorin, biglycan and betaglycan are proteoglycans that bind TGF-beta during skeletal muscle differentiation. In this paper, we show that the binding of TGF-beta to the receptors TGF-betaRI and-betaRII diminished in a satellite cell-derived cell line during differentiation, in spite of an increase expression of both receptors. In contrast, during the differentiation of decorin-null myoblasts (Dcn null), which lack decorin expression, the binding of TGF-beta to TGF-betaRI and -betaRII increased concomitantly with receptors levels. Both the addition and re-expression of decorin, in these myoblasts, diminished the binding of TGF-beta to its transducing receptors. Similar results were obtained when biglycan was added or over-expressed in Dcn null myoblasts. The binding of TGF-beta to TGF-betaRIII, alternatively known as betaglycan, was also augmented in Dcn null myoblasts and diminished by decorin, biglycan and betaglycan. These results suggest that decorin, biglycan and betaglycan compete for the binding of TGF-beta to its transducing receptors. Transfection studies with the TGF-beta-dependent promoter of the plasminogen activator inhibitor-1, coupled with luciferase, revealed that the addition of each proteoglycan diminished TGF-beta-dependent activity, for both TGF-beta1 and -beta2. The modulation of TGF

  12. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling

    DEFF Research Database (Denmark)

    Lin, M.; Overgaard, S; Glerup, H

    2001-01-01

    Increasing experimental interest has emerged for the use of growth factors to stimulate bone healing and bone formation in various clinical situations. We and others have demonstrated that recombinant human transforming growth factor-beta1 (rhTGF-beta1) adsorbed onto tricalcium phosphate (TCP......)-coated implants can improve mechanical fixation and bone ongrowth. The present study evaluated bone remodeling in newly formed bone and adjacent trabecular bone around TCP-coated implants with and without rhTGF-beta1 adsorption. Unloaded cylindrical grit-blasted titanium alloy implants coated with TCP were.......6% in the control group to 5.9% in the rhTGF-beta1 group (p = 0.02). In the surrounding trabecular bone no significant changes in bone remodeling parameters was demonstrated. This study suggests that rhTGF-beta1 adsorbed onto TCP-ceramic coated implants accelerates repair activity in the newly formed bone close...

  13. Identification and subcellular localization of a 21-kilodalton molecule using affinity-purified antibodies against α-transforming growth factor

    International Nuclear Information System (INIS)

    Hazarika, P.; Pardue, R.L.; Earls, R.; Dedman, J.R.

    1987-01-01

    Monospecific antibodies were generated against each of six different peptide sequences derived from rat and human α-transforming growth factor (α-TGF). The affinity-purified antibody to the 17 amino acid carboxyl-terminal portion of the molecule proved most useful in detecting α-TGF. When used in a peptide-based radioimmunoassay, it was possible to measure nanogram quantities of native α-TGF in conditioned cell culture media. When used to analyze cell lysate, these antibodies specifically recognized a 21-kilodalton protein species. Indirect immunofluorescence localization procedures revealed a high concentration of α-TCF in a perinuclear ring with a diffuse cytoplasmic distribution. These results suggest that a precursor form of α-TGF has a cellular role beyond that of an autocrine growth factor

  14. Identification and subcellular localization of a 21-kilodalton molecule using affinity-purified antibodies against. cap alpha. -transforming growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, P.; Pardue, R.L.; Earls, R.; Dedman, J.R.

    1987-04-07

    Monospecific antibodies were generated against each of six different peptide sequences derived from rat and human ..cap alpha..-transforming growth factor (..cap alpha..-TGF). The affinity-purified antibody to the 17 amino acid carboxyl-terminal portion of the molecule proved most useful in detecting ..cap alpha..-TGF. When used in a peptide-based radioimmunoassay, it was possible to measure nanogram quantities of native ..cap alpha..-TGF in conditioned cell culture media. When used to analyze cell lysate, these antibodies specifically recognized a 21-kilodalton protein species. Indirect immunofluorescence localization procedures revealed a high concentration of ..cap alpha..-TCF in a perinuclear ring with a diffuse cytoplasmic distribution. These results suggest that a precursor form of ..cap alpha..-TGF has a cellular role beyond that of an autocrine growth factor.

  15. Regulation of tumor immune surveillance and tumor immune subversion by tgf-Beta.

    Science.gov (United States)

    Park, Hae-Young; Wakefield, Lalage M; Mamura, Mizuko

    2009-08-01

    Transforming growth factor-beta (TGF-beta) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-beta facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-beta antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-beta antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic CD8(+) T cells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-beta on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.

  16. B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation.

    Science.gov (United States)

    Bjarnadóttir, Kristbjörg; Benkhoucha, Mahdia; Merkler, Doron; Weber, Martin S; Payne, Natalie L; Bernard, Claude C A; Molnarfi, Nicolas; Lalive, Patrice H

    2016-10-06

    Studies in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), have shown that regulatory B cells modulate the course of the disease via the production of suppressive cytokines. While data indicate a role for transforming growth factor (TGF)-β1 expression in regulatory B cell functions, this mechanism has not yet been tested in autoimmune neuroinflammation. Transgenic mice deficient for TGF-β1 expression in B cells (B-TGF-β1 -/- ) were tested in EAE induced by recombinant mouse myelin oligodendrocyte glycoprotein (rmMOG). In this model, B-TGF-β1 -/- mice showed an earlier onset of neurologic impairment compared to their littermate controls. Exacerbated EAE susceptibility in B-TGF-β1 -/- mice was associated with augmented CNS T helper (Th)1/17 responses. Moreover, selective B cell TGF-β1-deficiency increased the frequencies and activation of myeloid dendritic cells, potent professional antigen-presenting cells (APCs), suggesting that B cell-derived TGF-β1 can constrain Th1/17 responses through inhibition of APC activity. Collectively our data suggest that B cells can down-regulate the function of APCs, and in turn encephalitogenic Th1/17 responses, via TGF-β1, findings that may be relevant to B cell-targeted therapies.

  17. Comparison of colostrum TGF-β2 levels between lactating women in Japan and Nepal.

    Science.gov (United States)

    Aihara, Yoko; Oh-oka, Kyoko; Kondo, Naoki; Sharma, Jyoti; Ishimaru, Kayoko; Hara, Mutsuko; Yamagata, Zentaro; Nakao, Atsuhito

    2014-06-01

    Maternal milk-borne transforming growth factor (TGF-β plays a potential role in the development of the mucosal immune system in infants. However, it remains unclear what factors determine TGF-β levels in breast milk. We hypothesized that microbial pressures during pregnancy might affect the expression levels of TGF-β in colostrum. This study compared TGF-β2 levels in colostrum of lactating women living in Japan and Nepal with contrasting hygiene statuses. Additionally, we identified environmental and intrinsic factors influencing TGF-β levels in colostrum. Breast milk samples and structured questionnaires were collected from 80 women living in Japan and 208 women living in Nepal. A robust regression model was used to identify factors associated with colostral TGF-β levels. Analysis using the Mann-Whitney U test showed that TGF-β levels were significantly higher in Japanese women than in Nepalese women. Japanese women who consumed animal milk daily during pregnancy and had atopic dermatitis expressed lower levels of TGF-β in colostrum, as compared to Japanese women who did not. Among Nepalese women, large family size and higher birth order were associated with lower TGF-β levels and women who gave birth to infants with low birth weight had higher expression of TGF-β levels in milk than women who gave birth to infants with normal birth weight. The results suggest that induction of TGF-β levels in colostrum depends on differences in the ethnicity of lactating women. Consumption of animal protein and parturition characteristics may affect TGF-β levels in breast milk, and may explain differences in these levels in breast milk between countries.

  18. TGF-β1 serum concentrations and receptor expressions in the lens capsular of dogs with diabetes mellitus

    OpenAIRE

    Stephan Neumann; Jens Linek; Gerhard Loesenbeck; Julia Schüttler; Sonja Gaedke

    2017-01-01

    Tissue fibrosis as complication of diabetes mellitus is known in humans. Because TGF-?1induces fibrosis and is elevated in humans suffering from diabetes mellitus we measured this growth factor in serum of dogs with diabetes mellitus and compared it with healthy dogs and those with fibrotic diseases. Further we measured the expression of TGF-?1receptor on lens capsule to investigate possible association between diabetes mellitus and cataract associated alterations. TGF-?1 was measured in seru...

  19. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...... localized adjacent to the nucleus, usually on the luminal aspect, corresponding to the localization of the Golgi complex. The latter staining pattern was seen predominantly in secretory epithelial cells. The present study thus confirms previous studies and elaborates new localizations of TGF-alpha in normal...

  20. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling

    DEFF Research Database (Denmark)

    Lin, M.; Overgaard, S; Glerup, H

    2001-01-01

    Increasing experimental interest has emerged for the use of growth factors to stimulate bone healing and bone formation in various clinical situations. We and others have demonstrated that recombinant human transforming growth factor-beta1 (rhTGF-beta1) adsorbed onto tricalcium phosphate (TCP)-co...

  1. The role of TGF-β in polycystic ovary syndrome.

    Science.gov (United States)

    Raja-Khan, Nazia; Urbanek, Margrit; Rodgers, Raymond J; Legro, Richard S

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic oligoanovulation and hyperandrogenism and associated with insulin resistance, type 2 diabetes, and cardiovascular risk. In recent years, genetic studies have linked PCOS to a dinucleotide marker D19S884 in the fibrillin 3 gene. Fibrillins make up the major component of microfibrils in the extracellular matrix (ECM) and interact with molecules in the ECM to regulate transforming growth factor β (TGF-β) signaling. Therefore, variations in fibrillin 3 and subsequent dysregulation of TGF-β may contribute to the pathogenesis of PCOS. Here, we review the evidence from genetic studies supporting the role of TGF-β in PCOS and describe how TGF-β dysregulation may contribute to (1) the fetal origins of PCOS, (2) reproductive abnormalities in PCOS, and (3) cardiovascular and metabolic abnormalities in PCOS.

  2. Inhibition of the αvβ6 integrin leads to limited alteration of TGF-α-induced pulmonary fibrosis

    Science.gov (United States)

    Madala, Satish K.; Korfhagen, Thomas R.; Schmidt, Stephanie; Davidson, Cynthia; Edukulla, Ramakrishna; Ikegami, Machiko; Violette, Shelia M.; Weinreb, Paul H.; Sheppard, Dean

    2014-01-01

    A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-β (TGF-β) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-β induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-β pathway in the lung is unknown. The αvβ6 integrin is an important in vivo activator of TGF-β activation in the lung. Immunohistochemical analysis of αvβ6 protein expression and bronchoalveolar analysis of TGF-β pathway signaling indicates activation of the αvβ6/TGF-β pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvβ6/TGF-β pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvβ6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvβ6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the β6 integrin, TGF-α transgenic mice were mated with β6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of

  3. Deficiency of transforming growth factor-β signaling disrupts memory processes in rats.

    Science.gov (United States)

    Arkhipov, Vladimir I; Pershina, Ekaterina V; Levin, Sergey G

    2018-03-21

    Cytokines, in addition to their participation in immune and inflammatory processes, play an important role in synaptic plasticity, neoneurogenesis, and cognitive functions. In our work, we aimed to clarify the role of the transforming growth factor-β (TGF-β), which is recognized as a multifunctional cytokine, in memory processes. Behavioral experiments were carried out in rats using step-through passive avoidance test. The results obtained showed that the learning of animals after treatment with SB431542, a selective inhibitor of TGF-β receptors, was impaired, which indicated a significant memory deterioration. Nevertheless, the memory of rats remained at the control level when TGF-β and SB431542 were coadministered. Thus, the role of TGF-β in memory retrieval after the passive avoidance test was revealed: memory in rats was weakened if the TGF-β signaling pathway was inhibited during learning. Evidently, successful consolidation of at least some types of memory requires a normal level of TGF-β, indicating the modulation of cognitive functions by cytokines under normal physiological conditions.

  4. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  5. Prognostic value of plasma transforming growth factor-beta in patients with glioblastoma multiforme

    NARCIS (Netherlands)

    Hulshof, M. C.; Sminia, P.; Barten-van Rijbroek, A. D.; Gonzalez Gonzalez, D.

    2001-01-01

    We investigated whether the postoperative concentration of circulating transforming growth factor beta (TGF-beta) yields prognostic value in patients with glioblastoma multiforme (gbm). Blood was collected from 20 healthy volunteers and in 28 patients with mainly glioblastoma multiforme (gbm), both

  6. Transforming growth factor-beta3-loaded microtextured membranes for skin regeneration in dermal wounds.

    NARCIS (Netherlands)

    Vooijs, D.P.P.; Walboomers, X.F.; Parker, J.A.T.C.; Hoff, J.W. Von den; Jansen, J.A.

    2004-01-01

    Adverse effects of wound healing, such as excessive scar tissue formation, wound contraction, or nonhealing wounds represent a major clinical issue in today's healthcare. Transforming growth factor (TGF)-beta3 has specifically been implicated in wound healing. Our hypothesis was that local

  7. Growth Factor Supplementation Improves Native and Engineered Meniscus Repair in Vitro

    Science.gov (United States)

    Ionescu, Lara C.; Lee, Gregory C.; Huang, Kevin L.; Mauck, Robert L.

    2012-01-01

    Few therapeutic options exist for meniscus repair after injury. Local delivery of growth factors may stimulate repair and create a favorable environment for engineered replacement materials. In this study, we assessed the effect of basic fibroblast growth factor (bFGF) (a pro-mitotic agent) and transforming growth factor beta 3 (TGF-β3) (a pro-matrix formation agent) on meniscus repair and the integration/maturation of electrospun poly(ε-caprolactone) (PCL) scaffolds for meniscus tissue engineering. Circular meniscus repair constructs were formed and refilled with either native tissue or scaffolds. Repair constructs were cultured in serum-containing media for 4 and 8 weeks with various growth factor formulations, and assessed for mechanical strength, biochemical content, and histological appearance. Results showed that either short-term delivery of bFGF or sustained delivery of TGF-β3 increased integration strength for both juvenile and adult bovine tissue, with similar findings for engineered materials. While TGF-β3 increased proteoglycan content in the explants, bFGF did not increase DNA content after 8 weeks. This work suggests that in vivo delivery of bFGF or TGF-β3 may stimulate meniscus repair, but that the time course of delivery will strongly influence success. Further, this study demonstrates that electrospun scaffolds are a promising material for meniscus tissue engineering, achieving comparable or superior integration compared to native tissue. PMID:22698946

  8. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression. -- Highlights: •TGF-β1 pretreatment accelerates γ-radiation-induced DNA damage response. •TGF-β1-accelerated DNA damage response is dependent on Smad signaling and DNA Ligase IV. •TGF-β1 pretreatment protects epithelial cells from γ-radiation in vivo.

  9. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaschte, K

    2007-01-01

    OBJECTIVES: This article addresses the interaction of transforming growth factor beta1 (TGF-beta1) and bone morphogenic protein 2 (BMP-2) during osteo-chondrogenic differentiation of adipose-derived adult stem cells (ASC). TGF-beta1 was expected to modulate the BMP-2-induced effects through...

  10. Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair.

    Science.gov (United States)

    Gold, L I; Sung, J J; Siebert, J W; Longaker, M T

    1997-01-01

    Transforming growth factor (TGF)-beta isoforms (TGF-beta 1, -beta 2, and -beta 3) regulate cell growth and differentiation and have critical regulatory roles in the process of tissue repair and remodeling. Signal transduction for TGF-beta function is transmitted by a heteromeric complex of receptors consisting of two serine/threonine kinase transmembrane proteins (RI and RII). We have previously shown that each TGF-beta isoform is widely expressed in a distinct spatial and temporal pattern throughout the processes of excisional and incisional wound repair. As the presence of TGF-beta receptors determines cellular responsiveness, we have currently examined, by immunohistochemistry, the localization of RI (ALK-1, ALK-5) and RII throughout repair of full-thickness excisional wounds up to 21 days after wounding. The expression of RI (ALK-5) and RII co-localized in both the unwounded and wounded skin and was present in the same cell types as TGF-beta ligands. However, immunoreactivity for TGF-beta receptors, throughout repair, occurred 1 to 5 days later than TGF-beta isoform immunostaining. This implies that the presence of TGF-beta ligands may up-regulate TGF-beta receptors for function and/or may reflect a lag due to local processing of latent TGF-beta. As observed for the immunohistochemical localization of TGF-beta isoforms in unwounded skin, RI and RII were expressed throughout the four layers of the epidermis, showing a wavy pattern of slight to moderate immunostaining, and hair follicles, sweat glands, and sebaceous glands were moderately immunoreactive. The extracellular matrix, fibroblasts, and blood vessels in the dermis were not immunoreactive. After injury, as observed for TGF-beta ligands, RI and RII expression was increased in the epidermis adjacent to the wound and the epithelium migrating over the wound was completely devoid of TGF-beta receptor immunoreactivity until re-epithelialization was completed by day 7 after wounding. The dermis was only

  11. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brandan, Enrique, E-mail: ebrandan@bio.puc.cl [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  12. Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism

    International Nuclear Information System (INIS)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-01-01

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury. - Highlights: → We investigated the anti-apoptotic effect of melittin on TGF-β1-induced hepatocyte. → TGF-β1 induces hepatocyte apoptosis. → TGF-β1-treated hepatocytes were exposed to low doses and high dose of melittin. → Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  13. El factor de crecimiento transformante beta como blanco terapéutico Transforming growth factor-beta as a therapeutic target

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gálvez-Gastélum

    2004-08-01

    Full Text Available El factor de crecimiento transformante beta (TGF-beta es una familia de proteínas que incluye al TGF-beta, activinas y a la proteína morfogénica de hueso (BMP, por sus siglas en inglés, citocinas que son secretadas y se relacionan estructuralmente en diferentes especies de metazoarios. Los miembros de la familia del TGF-beta regulan diferentes funciones celulares como proliferación, apoptosis, diferenciación, migración, y tienen un papel clave en el desarrollo del organismo. El TGF-beta está implicado en varias patologías humanas, incluyendo desórdenes autoinmunes y vasculares, así como enfermedades fibróticas y cáncer. La activación del receptor del TGF-beta propicia su fosforilación en residuos de serina/treonina y dispara la fosforilación de proteínas efectoras intracelulares (smad, que una vez activas se translocan al núcleo para inducir la transcripción de genes blanco, y así regular procesos y funciones celulares. Se están desarrollando novedosas estrategias terapéuticas encaminadas a corregir las alteraciones presentes en patologías que involucran al TGF-beta como actor principal.Transforming growth factor-beta (TGF-beta family members include TGF-beta, activins, and bone morphogenetic proteins (BMP. These proteins are structurally related cytokines secreted in diverse Metazoans. TGF-beta family members regulate cellular functions such as proliferation, apoptosis, differentiation, and migration, and play an important role in organism development. Deregulated TGF-beta family signaling participates in various human pathologies including auto-immune diseases, vascular disorders, fibrotic disease, and cancer. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity, triggers phosphorylation of the intracellular effectors of TGF-beta signaling, the Smads proteins. Once these proteins are activated they translocate into the nucleus, where they induce transcription of target

  14. Differing patterns of transforming growth factor-beta expression in normal intestinal mucosa and in active celiac disease.

    Science.gov (United States)

    Lionetti, P; Pazzaglia, A; Moriondo, M; Azzari, C; Resti, M; Amorosi, A; Vierucci, A

    1999-09-01

    Growth-inhibitory autocrine polypeptides such as transforming growth factor (TGF)-beta may play a role in the control of normal epithelial cell proliferation and differentiation. In addition, TGF-beta has a central role in extracellular matrix homeostasis and regulates the immune response at the local level. In this study immunohistochemistry was used to examine the pattern of TGF-beta protein distribution and quantitative reverse transcription-polymerase chain reaction (RT-PCR) to determine levels of TGF-beta messenger RNA expression in normal intestinal mucosa and in the flat mucosa of children with celiac disease. Small intestinal biopsies were performed in children with active celiac disease and in histologically normal control subjects. Frozen sections were single stained using an anti-TGF-beta monoclonal antibody and were double stained for TGF-beta and T cell, macrophages, and the activation marker CD25. Total RNA was extracted from frozen specimens and competitive quantitative RT-PCR performed for TGF-beta mRNA using internal synthetic standard RNA. In normal intestinal mucosa, by immunohistochemistry, TGF-beta expression was most prominent in the villous tip epithelium, whereas in the lamina propria, weak immunoreactivity was present. The celiac mucosa showed weak and patchy epithelial TGF-beta immunoreactivity. In contrast, an intense staining positivity was present in the lamina propria localized mostly in the subepithelial region where T cells, macrophages, and CD25+ cells were detected by double staining. By quantitative RT-PCR, levels of TGF-beta mRNA transcripts appeared to be increased in celiac intestinal mucosa compared with that in control subjects, although the difference did not reach statistical significance. These observations suggest that TGF-beta expression is associated with differentiated enterocyte function. In celiac disease the lower TGF-beta epithelial cell expression could be a consequence of the preponderance of a less

  15. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  16. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  17. The peritoneum is both a source and target of TGF-β in women with endometriosis.

    Directory of Open Access Journals (Sweden)

    Vicky J Young

    Full Text Available Transforming growth factor-β (TGF-β is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas from women without disease (n = 16 and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15 and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05 and peritoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05. The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05 in expression of genes associated with tumorigenesis (MAPK8, CDC6, epithelial-mesenchymal transition (NOTCH1, angiogenesis (ID1, ID3 and neurogenesis (CREB1 in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.

  18. Effect of Growth factors, estradiol 17-ß, and short chain fatty acids on the intestinal HT29-MTX cells

    DEFF Research Database (Denmark)

    Giromini, Carlotta; Baldi, Antonella; Fusi, Eleonora

    2015-01-01

    Peptides growth factors, hormones, and short chain fatty acids (SCFAs) are constantly in contact with the human bowel when secreted by gland or ingested by food, as milk and colostrum, or, as in the case of SCFAs, produced by fermentation processes. This study considers the effect of growth factors...... studies. The effect of insulin-like growth factors (IGF)-I, epidermal growth factors (EGF), transforming growth factor alpha (TGF-α), transforming growth factor beta (TGF-β), estradiol 17-β and butyrate, propionate, and acetate was assessed on metabolic activity and proliferation of E12 cells using Alamar...... of the cells. Further, a dose-dependent inhibition of cell metabolic activity was detected in the presence of all SCFAs tested. Butyrate showed to be the most active in the inhibition of E12 metabolic activity and its effect was enhanced by the presence of propionate and acetate. E12 cells, in undifferentiated...

  19. Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor-β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Keitaro Omori

    Full Text Available Transforming growth factor-β (TGF-β is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1 also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis.

  20. Epidermal growth factor and transforming growth factor-α in human milk of different lactation stages and different regions and their relationship with maternal diet.

    Science.gov (United States)

    Lu, Mengqing; Jiang, Jiajing; Wu, Kejian; Li, Duo

    2018-02-21

    Epidermal growth factor (EGF) and transforming growth factor-α (TGF-α) are important growth-promoting factors in human milk and play an important role in a newborn's gastrointestinal function. The aim of the present study was to compare EGF and TGF-α contents in breast milk from different lactation periods and different regions and further analyze the effect of maternal diet on the concentration of EGF and TGF-α in breast milk. Breast milk samples and 24-hour food records were obtained from lactating mothers on day 1 (colostrum), day 14 (transitional milk) and day 42 (mature milk) from Hangzhou (n = 76), Lanzhou (n = 76) and Beijing (n = 76), China. EGF and TGF-α levels were determined by enzyme-linked immunosorbent assay (ELISA). The concentration of EGF in breast milk decreased over lactation periods (p milk increased over lactation periods (p milk from Lanzhou participants was significantly higher than Beijing and Hangzhou participants (p milk from Beijing was significantly higher than that from Lanzhou and Hangzhou (p milk decreased with the increasing intake of proteins (p = 0.042), total energy (p = 0.031), vegetables (p = 0.002), fruits (p products (p = 0.001) and dairy foods (p milk increased with the increasing intake of carbohydrates (p = 0.023) and dairy products (p = 0.011) and decreased with the increasing intake of proteins (p = 0.008) and meat (p = 0.016). The EGF and TGF-α contents in breast milk were greatly influenced by regions and lactation periods and there was also a strong relationship with maternal diet.

  1. [Effects of hirudin on the expression of basic fibroblast growth factor and transforming growth factor-β1 in human gingival fibroblasts].

    Science.gov (United States)

    Yi, Zheng; Kun, Xuan; Lan, Nan; Shuixue, Mo

    2015-02-01

    This study aimed to investigate the effects of hirudin on the expression of transforming growth factor (TGF-β1) and basic fibroblast growth factor (bFGF) in human gingival fibroblasts (HGFs) in vitro, as well to explore its func- tion in the mechanism of gingival remodeling. After culturing was performed with classic tissue-explant method, HGFs were derived from normal gingival and gingival hyperplasia tissues followed by orthodontic treatments with different concentrations of hirudin. The mRNA and protein expression levels of TGF-β1 and bFGF were respectively detected by real time quantity polymerase chain reaction and immunocytochemistry. Compared with normal HGFs, TGF-β1 expression promoted collagen synthesis of fibroblasts, whereas bFGF collagen synthesis was decreased in hyperplasia HGFs without hirudin (P < 0.05). Hirudin significantly upregulated the expression levels of bFGF but downregulated TGF-β1 in hyperplasia HGFs (P < 0.05). Orthodontic force may influence the balance of collagen synthesis and degradation in HGFs. Hirudin may modulate the balance of HGF collagen metabolism, thereby promoting gingival remodeling.

  2. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  3. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration.

    Science.gov (United States)

    Arany, Praveen R; Cho, Andrew; Hunt, Tristan D; Sidhu, Gursimran; Shin, Kyungsup; Hahm, Eason; Huang, George X; Weaver, James; Chen, Aaron Chih-Hao; Padwa, Bonnie L; Hamblin, Michael R; Barcellos-Hoff, Mary Helen; Kulkarni, Ashok B; J Mooney, David

    2014-05-28

    Rapid advancements in the field of stem cell biology have led to many current efforts to exploit stem cells as therapeutic agents in regenerative medicine. However, current ex vivo cell manipulations common to most regenerative approaches create a variety of technical and regulatory hurdles to their clinical translation, and even simpler approaches that use exogenous factors to differentiate tissue-resident stem cells carry significant off-target side effects. We show that non-ionizing, low-power laser (LPL) treatment can instead be used as a minimally invasive tool to activate an endogenous latent growth factor complex, transforming growth factor-β1 (TGF-β1), that subsequently differentiates host stem cells to promote tissue regeneration. LPL treatment induced reactive oxygen species (ROS) in a dose-dependent manner, which, in turn, activated latent TGF-β1 (LTGF-β1) via a specific methionine residue (at position 253 on LAP). Laser-activated TGF-β1 was capable of differentiating human dental stem cells in vitro. Further, an in vivo pulp capping model in rat teeth demonstrated significant increase in dentin regeneration after LPL treatment. These in vivo effects were abrogated in TGF-β receptor II (TGF-βRII) conditional knockout (DSPP(Cre)TGF-βRII(fl/fl)) mice or when wild-type mice were given a TGF-βRI inhibitor. These findings indicate a pivotal role for TGF-β in mediating LPL-induced dental tissue regeneration. More broadly, this work outlines a mechanistic basis for harnessing resident stem cells with a light-activated endogenous cue for clinical regenerative applications. Copyright © 2014, American Association for the Advancement of Science.

  4. Transforming growth factor β1 inhibition protects from noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Silvia eMurillo-Cuesta

    2015-03-01

    Full Text Available Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor ß (TGF-ß is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-ß as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss, we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-ß1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-ß1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-ß1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.

  5. The growth inhibition of human breast cancer cells by a novel synthetic progestin involves the induction of transforming growth factor beta.

    Science.gov (United States)

    Colletta, A A; Wakefield, L M; Howell, F V; Danielpour, D; Baum, M; Sporn, M B

    1991-01-01

    Recent experimental work has identified a novel intracellular binding site for the synthetic progestin, Gestodene, that appears to be uniquely expressed in human breast cancer cells. Gestodene is shown here to inhibit the growth of human breast cancer cells in a dose-dependent fashion, but has no effect on endocrine-responsive human endometrial cancer cells. Gestodene induced a 90-fold increase in the secretion of transforming growth factor-beta (TGF-beta) by T47D human breast cancer cells. Other synthetic progestins had no effect, indicating that this induction is mediated by the novel Gestodene binding site and not by the conventional progesterone receptor. Furthermore, in four breast cancer cell lines, the extent of induction of TGF-beta correlated with intracellular levels of Gestodene binding site. No induction of TGF-beta was observed with the endometrial cancer line, HECl-B, which lacks the Gestodene binding site, but which expresses high levels of progesterone receptor. The inhibition of growth of T47D cells by Gestodene is partly reversible by a polyclonal antiserum to TGF-beta. These data indicate that the growth-inhibitory action of Gestodene may be mediated in part by an autocrine induction of TGF-beta. Images PMID:1985102

  6. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro.

    Science.gov (United States)

    Fan, J M; Ng, Y Y; Hill, P A; Nikolic-Paterson, D J; Mu, W; Atkins, R C; Lan, H Y

    1999-10-01

    We recently found evidence of tubular epithelial-myofibroblast transdifferentiation (TEMT) during the development of tubulointerstitial fibrosis in the rat remnant kidney. This study investigated the mechanisms that induce TEMT in vitro. The normal rat kidney tubular epithelial cell line (NRK52E) was cultured for six days on plastic or collagen type I-coated plates in the presence or absence of recombinant transforming growth factor-beta1 (TGF-beta1). Transdifferentiation of tubular cells into myofibroblasts was assessed by electron microscopy and by expression of alpha-smooth muscle actin (alpha-SMA) and E-cadherin. NRK52E cells cultured on plastic or collagen-coated plates showed a classic cobblestone morphology. Culture in 1 ng/ml TGF-beta caused only very minor changes in morphology, but culture in 10 or 50 ng/ml TGF-beta1 caused profound changes. This involved hypertrophy, a loss of apical-basal polarity and microvilli, with cells becoming elongated and invasive, the formation of a new front-end back-end polarity, and the appearance of actin microfilaments and dense bodies. These morphological changes were accompanied by phenotypic changes. Double immunohistochemistry staining showed that the addition of TGF-beta1 to confluent cell cultures caused a loss of the epithelial marker E-cadherin and de novo expression of alpha-SMA. An intermediate stage in transdifferentiation could be seen with hypertrophic cells expressing both E-cadherin and alpha-SMA. De novo alpha-SMA expression was confirmed by Northern blotting, Western blotting, and flow cytometry. In particular, cells with a transformed morphology showed strong alpha-SMA immunostaining of characteristic microfilament structures along the cell axis. There was a dose-dependent increase in the percentage of cells expressing alpha-SMA with increasing concentrations of TGF-beta1, which was completely inhibited by the addition of a neutralizing anti-TGF-beta1 antibody. Compared with growth on plastic, cell

  7. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain.

    Directory of Open Access Journals (Sweden)

    Laura De Laporte

    Full Text Available Tenascin C (TNC is an extracellular matrix protein that is upregulated during development as well as tissue remodeling. TNC is comprised of multiple independent folding domains, including 15 fibronectin type III-like (TNCIII domains. The fifth TNCIII domain (TNCIII5 has previously been shown to bind heparin. Our group has shown that the heparin-binding fibronectin type III domains of fibronectin (FNIII, specifically FNIII12-14, possess affinity towards a large number of growth factors. Here, we show that TNCIII5 binds growth factors promiscuously and with high affinity. We produced recombinant fragments of TNC representing the first five TNCIII repeats (TNCIII1-5, as well as subdomains, including TNCIII5, to study interactions with various growth factors. Multiple growth factors of the platelet-derived growth factor (PDGF family, the fibroblast growth factor (FGF family, the transforming growth factor beta (TGF-β superfamily, the insulin-like growth factor binding proteins (IGF-BPs, and neurotrophins were found to bind with high affinity to this region of TNC, specifically to TNCIII5. Surface plasmon resonance was performed to analyze the kinetics of binding of TNCIII1-5 with TGF-β1, PDGF-BB, NT-3, and FGF-2. The promiscuous yet high affinity of TNC for a wide array of growth factors, mediated mainly by TNCIII5, may play a role in multiple physiological and pathological processes involving TNC.

  8. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  9. Pulp tissue inflammation and angiogenesis after pulp capping with transforming growth factor β1

    Directory of Open Access Journals (Sweden)

    Sri Kunarti

    2008-06-01

    Full Text Available In Restorative dentistry the opportunity to develop biomemitic approaches has been signalled by the possible use of various biological macromolecules in direct pulp capping reparation. The presence of growth factors in dentin matrix and the putative role indicating odontoblast differentiation during embryogenesis has led to the examination on the effect of endogenous TGF-β1. TGF-β1 is one of the Growth Factors that plays an important role in pulp healing. The application of exogenous TGF-β1 in direct pulp capping treatment should be experimented in fibroblast tissue in-vivo to see the responses of inflammatory cells and development of new blood vessels. The increase in food supplies always occurs in the process of inflammation therefore the development of angiogenesis is required to fulfil the requirement. This in-vivo study done on orthodontic patients indicated for premolar extraction between 10–15 years of age. A class V cavity preparation was created in the buccal aspect 1 mm above gingival margin to pulp exposure. The cavity was slowly irrigated with saline solution and dried using a sterile small cotton pellet. The sterile absorbable collagen membrane was applied and soaked in 5 ml TGF-β1. It was covered by a Teflon pledge to separate from Glass Ionomer Cement restoration. Evaluation was performed on day 7; 14; and 21. All samples were histopathologycally examined and data was statistically analysed using one way ANOVA and Dunnet T3.There were no inflammatory symptoms in clinical examination on both Ca(OH2 and TGF-β1, but they increased the infiltration of inflammatory cells on histopathological examination. There were no significant differences (p > 0.05 between Ca(OH2 and TGF-β1 in inflammation cell and significant differences (p < 0.05 in angiogenesis on day 7 and 14. There were no significant differences (p > 0.05 in inflammation cell with in TGF-β1 groups and significant differences (p < 0.05 with in Ca(OH2 groups on day 7

  10. Growth factor combination for chondrogenic induction from human mesenchymal stem cell

    International Nuclear Information System (INIS)

    Indrawattana, Nitaya; Chen Guoping; Tadokoro, Mika; Shann, Linzi H.; Ohgushi, Hajime; Tateishi, Tetsuya; Tanaka, Junzo; Bunyaratvej, Ahnond

    2004-01-01

    During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-β3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-β3 and BMP-6 or TGF-β3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction

  11. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Chen, Wanjun; Konkel, Joanne E

    2010-02-01

    In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.

  12. Evaluation of transforming growth factor-β1 suppress Pokemon/epithelial-mesenchymal transition expression in human bladder cancer cells.

    Science.gov (United States)

    Li, Wei; Kidiyoor, Amritha; Hu, Yangyang; Guo, Changcheng; Liu, Min; Yao, Xudong; Zhang, Yuanyuan; Peng, Bo; Zheng, Junhua

    2015-02-01

    Transforming growth factor-β1 (TGF-β1) plays a dual role in apoptosis and in proapoptotic responses in the support of survival in a variety of cells. The aim of this study was to determine the function of TGF-β1 in bladder cancer cells and the relationship with POK erythroid myeloid ontogenic factor (Pokemon). TGF-β1 and its receptors mediate several tumorigenic cascades that regulate cell proliferation, migration, and survival of bladder cancer cells. Bladder cancer cells T24 were treated with different levels of TGF-β1. Levels of Pokemon, E-cadherin, Snail, MMP2, MMP9, Twist, VEGF, and β-catenin messenger RNA (mRNA) and protein were examined by real-time quantitative fluorescent PCR and Western blot analysis, respectively. The effects of TGF-β1 on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay, proliferation of T24 was evaluated with reference to growth curves with MTT assay, and cell invasive ability was investigated by Transwell assay. Data show that Pokemon was inhibited by TGF-β1 treatment; the gene and protein of E-cadherin and β-catenin expression level showed decreased markedly after TGF-β1 treatment (P Pokemon, β-catenin, and E-cadherin. The high expression of TGF-β1 leads to an increase in the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Related mechanism is worthy of further investigation.

  13. Transforming growth factor-betas and their signaling receptors are coexpressed in Crohn's disease.

    Science.gov (United States)

    di Mola, F F; Friess, H; Scheuren, A; Di Sebastiano, P; Graber, H; Egger, B; Zimmermann, A; Korc, M; Büchler, M W

    1999-01-01

    To evaluate mechanisms that contribute to tissue repair and tissue remodeling in Crohn's disease (CD). Transforming growth factor-betas (TGF-betas) are involved in different chronic inflammatory disorders. They function by binding to two receptors, type I (TbetaR-I) subtype ALK5 and type II (TbetaR-II), which are concomitantly required for signal transduction. Tissues were obtained from 18 patients with CD (10 female patients, 8 male patients, median age 38.7 years [range 16 to 58 years]) undergoing surgery because of CD-related complications. Tissue samples of 18 healthy organ donors (10 female subjects, 8 male subjects, median age 50.3 years [range 15 to 65 years]) served as controls. The expression and localization of TGF-beta1, TGF-beta2, TGF-beta3, TbetaR-IALK5, TbetaR-II, and TbetaR-III were studied by Northern blot analysis, in situ hybridization, and immunohistochemistry. On Northern blot analysis, 94% of the CD samples exhibited enhanced TGF-beta1, TGF-beta3, and TbetaR-II mRNA expression compared with controls. TGF-beta2 was increased in 72%, TbetaR-IALK5 in 72%, and TbetaR-III in 82% of the patients with CD. On in situ hybridization and immunohistochemical analysis, TGF-beta1, TbetaR-IALK5, and TbetaR-II were seen to be colocalized in the lamina propria cells and in the lymphocytes closest to the luminal surface, but also in the remaining epithelial cells, and in fibroblasts of CD tissue samples. The concomitant overexpression of TGF-betas and their signaling receptors in CD points to a potential role of these regulatory molecules in the pathophysiology of CD. Activation of TGF-beta-mediated pathways might promote the repair of mucosal injury by enhancing the process of reepithelization, but might also contribute to extracellular matrix generation and subsequently to intramural fibrosis and intestinal obstruction.

  14. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus.

    Science.gov (United States)

    Cherian, S; Thoresen, M; Silver, I A; Whitelaw, A; Love, S

    2004-12-01

    Posthaemorrhagic ventricular dilatation (PHVD) is a common complication of intraventricular haemorrhage in premature infants. The aim of this study was to investigate the role of transforming growth factor-betas (TGF-betas), a family of polypeptides with potent desmoplastic properties, in the aetiology of PHVD in a newly developed neonatal rat model of this disorder. Pups were injected with citrated rat blood or artificial cerebrospinal fluid (ACSF) into alternate lateral ventricles on postnatal days 7 and 8. The brains were perfusion-fixed 14 days later and immunohistochemistry was performed for TGF-beta1, -beta2 and -beta3, p44/42 mitogen-activated protein (MAP) kinases, and the extracellular matrix proteins laminin, vitronectin and fibronectin. Ventricular dilatation occurred in 58.3% of animals injected with blood and 36.7% of those injected with ACSF. Periventricular immunoreactivity for TGF-beta1 and -beta2 increased in injected animals irrespective of the presence or absence of ventricular dilatation, although the levels of both isoforms tended to be higher in animals with hydrocephalus. TGF-beta3 immunoreactivity was elevated in hydrocephalic rats only. The immunolabelling for phosphorylated p44/42 MAP kinases rose in a pattern similar to that for TGF-beta1 and -beta2. Expression of TGF-betas was accompanied by deposition of the extracellular matrix proteins fibronectin, laminin and vitronectin. The changes caused by injection of ACSF were the same as those caused by injection of blood. Our results raise the possibility that expression of TGF-betas, together with extracellular matrix protein deposition, may be involved in the development and/or maintenance of hydrocephalus after ventricular distension due to haemorrhage in the neonate.

  15. Redox-mediated activation of latent transforming growth factor-beta 1

    Science.gov (United States)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  16. Transforming growth factor-beta 3 alters intestinal smooth muscle function: implications for gastroschisis-related intestinal dysfunction.

    Science.gov (United States)

    Moore-Olufemi, S D; Olsen, A B; Hook-Dufresne, D M; Bandla, V; Cox, C S

    2015-05-01

    Gastroschisis (GS) is a congenital abdominal wall defect that results in the development of GS-related intestinal dysfunction (GRID). Transforming growth factor-β, a pro-inflammatory cytokine, has been shown to cause organ dysfunction through alterations in vascular and airway smooth muscle. The purpose of this study was to evaluate the effects of TGF-β3 on intestinal smooth muscle function and contractile gene expression. Archived human intestinal tissue was analyzed using immunohistochemistry and RT-PCR for TGF-β isoforms and markers of smooth muscle gene and micro-RNA contractile phenotype. Intestinal motility was measured in neonatal rats ± TGF-β3 (0.2 and 1 mg/kg). Human intestinal smooth muscle cells (hiSMCs) were incubated with fetal bovine serum ± 100 ng/ml of TGF-β 3 isoforms for 6, 24 and 72 h. The effects of TGF-β3 on motility, hiSMC contractility and hiSMC contractile phenotype gene and micro-RNA expression were measured using transit, collagen gel contraction assay and RT-PCR analysis. Data are expressed as mean ± SEM, ANOVA (n = 6-7/group). GS infants had increased immunostaining of TGF-β3 and elevated levels of micro-RNA 143 & 145 in the intestinal smooth muscle. Rats had significantly decreased intestinal transit when exposed to TGF-β3 in a dose-dependent manner compared with Sham animals. TGF-β3 significantly increased hiSMC gel contraction and contractile protein gene and micro-RNA expression. TGF-β3 contributed to intestinal dysfunction at the organ level, increased contraction at the cellular level and elevated contractile gene expression at the molecular level. A hyper-contractile response may play a role in the persistent intestinal dysfunction seen in GRID.

  17. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  18. Temporal localization of immunoreactive transforming growth factor beta1 in normal equine skin and in full-thickness dermal wounds.

    Science.gov (United States)

    Theoret, Christine L; Barber, Spencer M; Gordon, John R

    2002-01-01

    To describe the localization of immunoreactive transforming growth factor (TGF)-beta1 in both normal skin and full-thickness dermal wounds of the limb and the thorax of the horse. Six full-thickness excisional wounds were created on the lateral aspect of one metacarpal region and on the midthoracic area of each horse. Sequentially collected tissue specimens from wound margins were assessed for TGF-beta1 expression by immunohistochemistry. Four horses (2 to 4 years of age). A neutralizing monoclonal anti-human TGF-beta1 antibody was used to detect the spatial expression of TGF-beta1 protein by immunohistochemical localization in biopsies obtained before wounding and at 12 and 24 hours, and 5, 10, and 14 days. No differences in localization of immunoreactive TGF-beta1 were detected between limb and thorax, for either intact skin or wounds. Unwounded epidermis stained moderately for TGF-beta1 protein throughout all layers, whereas the dermis was relatively devoid of immunoreactivity. During the acute stage of repair, migrating epithelium lost its stain, whereas cells of epidermal appendages remained strongly immunoreactive. The epithelium recovered its TGF-beta1 immunoreactivity during wound remodeling, although cells of the stratum corneum remained negative. Macrophages of the inflammatory exudate had positive cytoplasmic staining that diminished with time. Immunoreactivity of granulation tissue fibroblasts was evident early on and increased throughout the repair process. TGF-beta1 is constitutively expressed in normal, unwounded equine epithelium. Its expression is upregulated within the skin on injury and is associated with the cells involved in wound repair. A more precise understanding of the temporal and spatial expression of TGF-beta1 during wound repair in horses should provide the groundwork for possible future manipulations of both normal and aberrant tissue repair. Copyright 2002 by The American College of Veterinary Surgeons

  19. Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    I. van der Pluijm, PhD

    2016-10-01

    Smad3 deficiency leads to imbalanced activation of downstream genes, no activation of MMPs in VSMCs, and immune responses resulting in rapid aortic wall dilatation and rupture. Our findings uncover new possibilities for treatment of SMAD3 patients; instead of targeting TGF-β signaling, immune suppression may be more beneficial.

  20. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Evy Sulistyoningrum

    2013-08-01

    Full Text Available Background Diabetic nephropathy (DN is the most serious complication of diabetes, causing end-stage renal disease throughout the world. Recent studies have reported a direct role of vascular endothelial growth factor (VEGF and transforming growth factor-â (TGF-â in DN pathogenesis. VEGF and TGF-â are expressed early in glomeruli in response to hyperglycemia. Active substances of Phaleria macrocarpa (PM pericarp are known to have nephroprotective effects. This study aimed to evaluate the effects of Phaleria macrocarpa (Scheff. Boerl pericarp extract on VEGF and TGF-â expression in alloxan-induced diabetic rats. Methods An experimental study was conducted on twenty five male albino (Sprague Dawley rats divided into five groups (of five each: normal control; diabetic; diabetic + metformin 100 mg/kgBW; diabetic + methanolic PM extract 250 mg/kgBW; and diabetic + aqueous PM extract 250 mg/kgBW. Diabetes was induced by alloxan monohydrate 150 mg/BW intraperitoneally. Treatment was given for 3 weeks. VEGF and TGF-â expression analysis was performed by means of immunohistochemical technique. Differences between groups were assessed by one-way ANOVA. Results VEGF expression in the PM extract group was significantly lower than that in the diabetic group and even metformin group (p<0.01. TGF-â expression in methanolic PM extract group was significantly lower than in diabetic and metformin group (p<0.01, but aqueous PM extract group only showed significancy when compared with diabetic group (p< 0.01. Conclusions Phaleria macrocarpa pericarp extract reduces glomerular expression of TGF-â and VEGF in alloxan-induced diabetic rats.

  1. Plasma levels of Transforming Growth Factor Beta in HIV-1 patients with oral candidiasis

    Science.gov (United States)

    Izadi, A; Asadikaram, G; Nakhaee, N; Hadizadeh, S; Ayatollahi Mousavi, A

    2015-01-01

    Background and Purpose: TGF-β is a potent regulator and suppressor of the immune system and overproduction of this cytokine may contribute to immunosuppression in HIV-infected patients. Increasing population of immunosuppressed patients has resulted in increasingly frequent of fungal infections, including oral candidiasis. The aim of this study was to evaluate the plasma levels of TGF-β under in vivo conditions. Materials and Methods: Seventy- two samples were obtained from the oral cavities of HIV-positive Iranian patients and cultured on Sabouraud’s dextrose agar and CHROMagar. Also blood samples were obtained to assess TGF-β levels using ELISA technique. Results: Thirty-three out of 72 oral samples yielded candida isolates, Candida albicans in 14 and non-albicans candida in 19.Fungal infection decreased significantly more TGF-β level than non-fungal infection also HIV negative were significantly more TGF-β than HIV positive. Conclusion: Our findings suggest a significant interaction between fungal infection and HIV on expression of Transforming Growth Factor Beta. PMID:28680977

  2. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Directory of Open Access Journals (Sweden)

    Rickmann Michael

    2008-10-01

    Full Text Available Abstract Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.

  3. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  4. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function

    International Nuclear Information System (INIS)

    Hattersley, G.; Chambers, T.J.

    1991-01-01

    Transforming growth factor (TGF) beta 1 is a multifunctional cytokine with powerful effects on osteoblastic cells. Its role in the regulation of osteoclast generation and function, however, is unclear. It has been reported both to stimulate and to inhibit resorption in organ culture and to inhibit multinuclear cell formation in bone marrow cultures. We tested the effects of TGF-beta 1 on bone resorption by osteoclasts isolated from neonatal rat long bones. We found potent stimulation of osteoclastic bone resorption, mediated by osteoblastic cells, with an EC50 of 10 pg/ml, considerably lower than that of well-documented osteotropic hormones. Stimulation was not mediated by Swiss mouse 3T3 cells, a nonosteoblastic cell line. TGF-beta 1 strongly inhibited the generation of calcitonin receptor (CTR)-positive cells in mouse bone marrow cultures, but as for isolated osteoclasts, bone resorption per CTR-positive cell was increased. The inhibition of CTR-positive cell formation was associated with suppression of maturation of other bone marrow derivatives and may be related more to the known ability of TGF-beta 1 to suppress the proliferation of primitive hematopoietic cells than to a specific role of TGF-beta 1 in osteoclast generation

  5. The peritoneum is both a source and target of TGF-β in women with endometriosis.

    Science.gov (United States)

    Young, Vicky J; Brown, Jeremy K; Saunders, Philippa T K; Duncan, W Colin; Horne, Andrew W

    2014-01-01

    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (Pperitoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (Pendometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.

  6. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine.

    Science.gov (United States)

    Maheshwari, Akhil; Kelly, David R; Nicola, Teodora; Ambalavanan, Namasivayam; Jain, Sunil K; Murphy-Ullrich, Joanne; Athar, Mohammad; Shimamura, Masako; Bhandari, Vineet; Aprahamian, Charles; Dimmitt, Reed A; Serra, Rosa; Ohls, Robin K

    2011-01-01

    Premature neonates are predisposed to necrotizing enterocolitis (NEC), an idiopathic, inflammatory bowel necrosis. We investigated whether NEC occurs in the preterm intestine due to incomplete noninflammatory differentiation of intestinal macrophages, which increases the risk of a severe mucosal inflammatory response to bacterial products. We compared inflammatory properties of human/murine fetal, neonatal, and adult intestinal macrophages. To investigate gut-specific macrophage differentiation, we next treated monocyte-derived macrophages with conditioned media from explanted human fetal and adult intestinal tissues. Transforming growth factor-β (TGF-β) expression and bioactivity were measured in fetal/adult intestine and in NEC. Finally, we used wild-type and transgenic mice to investigate the effects of deficient TGF-β signaling on NEC-like inflammatory mucosal injury. Intestinal macrophages in the human preterm intestine (fetus/premature neonate), but not in full-term neonates and adults, expressed inflammatory cytokines. Macrophage cytokine production was suppressed in the developing intestine by TGF-β, particularly the TGF-β(2) isoform. NEC was associated with decreased tissue expression of TGF-β(2) and decreased TGF-β bioactivity. In mice, disruption of TGF-β signaling worsened NEC-like inflammatory mucosal injury, whereas enteral supplementation with recombinant TGF-β(2) was protective. Intestinal macrophages progressively acquire a noninflammatory profile during gestational development. TGF-β, particularly the TGF-β(2) isoform, suppresses macrophage inflammatory responses in the developing intestine and protects against inflammatory mucosal injury. Enterally administered TGF-β(2) protected mice from experimental NEC-like injury. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  8. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  9. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ryosuke [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Kayamori, Kou [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Oue, Erika [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Sakamoto, Kei [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Harada, Kiyoshi [Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan)

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC

  10. Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain.

    Science.gov (United States)

    Pál, Gabriella; Vincze, Csilla; Renner, Éva; Wappler, Edina A; Nagy, Zoltán; Lovas, Gábor; Dobolyi, Arpád

    2012-01-01

    Transforming growth factor-βs (TGF-β1-3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1-3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.

  11. Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain.

    Directory of Open Access Journals (Sweden)

    Gabriella Pál

    Full Text Available Transforming growth factor-βs (TGF-β1-3 are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1-3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h or permanent (24 h middle cerebral artery occlusion (MCAO using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.

  12. Protective effects of transforming growth factor β2 in intestinal epithelial cells by regulation of proteins associated with stress and endotoxin responses.

    Directory of Open Access Journals (Sweden)

    Duc Ninh Nguyen

    Full Text Available Transforming growth factor (TGF-β2 is an important anti-inflammatory protein in milk and colostrum. TGF-β2 supplementation appears to reduce gut inflammatory diseases in early life, such as necrotizing enterocolitis (NEC in young mice. However, the molecular mechanisms by which TGF-β2 protects immature intestinal epithelial cells (IECs remain to be more clearly elucidated before interventions in infants can be considered. Porcine IECs PsIc1 were treated with TGF-β2 and/or lipopolysaccharide (LPS, and changes in the cellular proteome were subsequently analyzed using two-dimensional gel electrophoresis-MS and LC-MS-based proteomics. TGF-β2 alone induced the differential expression of 13 proteins and the majority of the identified proteins were associated with stress responses, TGF-β and Toll-like receptor 4 signaling cascades. In particular, a series of heat shock proteins had similar differential trends as previously shown in the intestine of NEC-resistant preterm pigs and young mice. Furthermore, LC-MS-based proteomics and Western blot analyses revealed 20 differentially expressed proteins following treatment with TGF-β2 in LPS-challenged IECs. Thirteen of these proteins were associated with stress response pathways, among which five proteins were altered by LPS and restored by TGF-β2, whereas six were differentially expressed only by TGF-β2 in LPS-challenged IECs. Based on previously reported biological functions, these patterns indicate the anti-stress and anti-inflammatory effects of TGF-β2 in IECs. We conclude that TGF-β2 of dietary or endogenous origin may regulate the IEC responses against LPS stimuli, thereby supporting cellular homeostasis and innate immunity in response to bacterial colonization, and the first enteral feeding in early life.

  13. In silico investigation of ADAM12 effect on TGF-β receptors trafficking

    Directory of Open Access Journals (Sweden)

    LeMeur Nolwenn

    2009-09-01

    Full Text Available Abstract Background The transforming growth factor beta is known to have pleiotropic effects, including differentiation, proliferation and apoptosis. However the underlying mechanisms remain poorly understood. The regulation and effect of TGF-β signaling is complex and highly depends on specific protein context. In liver, we have recently showed that the disintegrin and metalloproteinase ADAM12 interacts with TGF-β receptors and modulates their trafficking among membranes, a crucial point in TGF-β signaling and development of fibrosis. The present study aims to better understand how ADAM12 impacts on TGF-β receptors trafficking and TGF-β signaling. Findings We extracted qualitative biological observations from experimental data and defined a family of models producing a behavior compatible with the presence of ADAM12. We computationally explored the properties of this family of models which allowed us to make novel predictions. We predict that ADAM12 increases TGF-β receptors internalization rate between the cell surface and the endosomal membrane. It also appears that ADAM12 modifies TGF-β signaling shape favoring a permanent response by removing the transient component observed under physiological conditions. Conclusion In this work, confronting differential models with qualitative biological observations, we obtained predictions giving new insights into the role of ADAM12 in TGF-β signaling and hepatic fibrosis process.

  14. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells.

    Science.gov (United States)

    Lai, Chung-Fang; Cheng, Su-Li

    2002-05-03

    Transforming growth factor beta (TGF-beta) activates Ras/MAPK signaling in many cell types. Because TGF-beta and BMP-2 exert similar effects, we examined if this signaling is stimulated by both factors and analyzed the relationship between this signaling and the Smads in osteoblasts. BMP-2 and TGF-beta stimulated Ras, MAPK, and AP-1 activities. The DNA binding activities of c-Fos, FosB/Delta FosB, Fra-1, Fra-2, and JunB were up-regulated whereas JunD activity was decreased. c-Fos, FosB/Delta FosB, and JunB were associated with Smad4. The stimulation of AP-1 by BMP-2 and TGF-beta was dependent on Smad signaling, and anti-Smad4 antibody interfered with AP-1 activity. Thus, BMP-2 and TGF-beta activate both Ras/MAPK/AP-1 and Smad signaling in osteoblasts with Smads modulating AP-1 activity. To determine the roles of MAPK in BMP-2 and TGF-beta function, we analyzed the effect of ERK and p38 inhibitors on the regulation of bone matrix protein expression and JunB and JunD levels by these two factors. ERK and p38 mediated TGF-beta suppression of osteocalcin and JunD as well as stimulation of JunB. p38 was essential in BMP-2 up-regulation of type I collagen, fibronectin, osteopontin, osteocalcin, and alkaline phosphatase activity whereas ERK mediated BMP-2 stimulation of fibronectin and osteopontin. Thus, ERK and p38 differentially mediate TGF-beta and BMP-2 function in osteoblasts.

  15. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    Science.gov (United States)

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, pplatelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  16. Meeting report - TGF-β superfamily: signaling in development and disease.

    Science.gov (United States)

    Zhang, Ying E; Newfeld, Stuart J

    2013-11-01

    The latest advances on the transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways were reported at the July 2013 FASEB Summer Research Conference 'The TGF-β Superfamily: Development and Disease'. The meeting was held in Steamboat Springs, Colorado, USA at 6700 feet above sea level in the Rocky Mountains. This was the seventh biannual meeting in the series. In attendance were investigators from a broad range of disciplines with a common interest in the mechanics of TGF-β and BMP signaling pathways, their normal developmental and homeostatic functions, and the diseases associated with pathway misregulation.

  17. TGF-?1 Regulation of Estrogen Production in Mature Rat Leydig Cells

    OpenAIRE

    Liu, Man-Li; Wang, Huan; Wang, Zong-Ren; Zhang, Yu-Fen; Chen, Yan-Qiu; Zhu, Fang-Hong; Zhang, Yuan-Qiang; Ma, Jing; Li, Zhen

    2013-01-01

    BACKGROUND: Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells. METH...

  18. Isolation and characterization of transforming growth factors from human malignant gliomas: possible role of transforming growth factors in the pathogenesis of the gliosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Rutka, J.T.

    1987-01-01

    This study provides the first direct experimental evidence that human malignant gliomas secrete soluble polypeptides with TGF-like activity. The conditioned medium from three well-characterized malignant glioma cell lines promote the growth of NRK indicator cells in soft agar. Following acid extraction and gel filtration, TGF-like activity was recovered from all three cell lines. Active fractions from gel filtration in two of the glioma cell lines (U-343 MG-A and SF-210) were further purified by reverse-phase HPLC. The TGF isolated from U-343 MG-A by HPLC is an acid- and heat-stable protein complex whose activity is destroyed by reducing agents and incubation with monospecific anti-TGF-alpha monoclonal antibodies. The NRK colony stimulating activity of this TGF is potentiated by the addition of TGF-beta. The partially purified U-343 MG-A TGF competes with radiolabeled (/sup 125/I)-ECF for the EGF-receptor on A431 epidermoid carcinoma cells. Finally, a total RNA preparation from U-343- MG-A contains a 4.8 kilobase mRNA for TGF-alpha. Therefore, U-343 MG-A secretes a soluble polypeptide with TGF-alpha-like activity. In contrast, the purified SF-210 malignant glioma cell line secretes an acid- and heat-stable TGF with neither TGF-alpha- nor TGF-beta-like activity.

  19. TGF-α/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Mei Teh, Bing, E-mail: bing.teh@earscience.org.au [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Redmond, Sharon L. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Shen, Yi [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head and Neck, Ningbo Lihuili Hospital (Ningbo Medical Centre), Ningbo, Zhejiang (China); Atlas, Marcus D. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Marano, Robert J.; Dilley, Rodney J. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia)

    2013-04-01

    Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-α, IL-24 and their combinations on migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-α, TGF-α/HA and TGF-α/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-α and/or HA treated cells showed comparable cell–cell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-α/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ► TGF-α, TGF-α/HA and TGF-α/IL-24 improved hTM keratinocyte migration and proliferation. ► TGF-α and/or HA maintained epithelial cell phenotype. ► TGF-α/HA-mediated migration and proliferation requires activation of ErbB1 receptor.

  20. Effects of Nonsteroidal Anti-Inflammatory Drugs on Transforming Growth Factor-β Expression and Bioactivity in Rat Osteoblast-Enriched Cultures

    Directory of Open Access Journals (Sweden)

    Je-Ken Chang

    2003-06-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs have been reported to suppress bone remodeling in normal and repaired bones. Our previous results indicated that ketorolac and indomethacin suppressed proliferation, stimulated early differentiation, and induced apoptosis in cultured osteoblasts. Transforming growth factor-b (TGF-b has been reported to enhance proliferation, suppress differentiation, and prevent apoptosis in osteoblasts. We proposed that one pathway of NSAID effects on osteoblast function might be through inhibition of the expression and/or bioactivity of TGF-b in osteoblasts. We tested the effects of ketorolac and indomethacin on the expression of TGF-b1 mRNA and protein and the bioactivity of TGF-b in osteoblast-enriched cultures derived from fetal calvaria. The effects of prostaglandin E1 (PGE1 and PGE2 on TGF-b expression and bioactivity were also examined in order to understand more about the role of prostaglandins in osteoblast function. Simultaneously, we estimated whether these NSAID effects on osteoblasts were prostaglandin-related. The results showed that 24-hour treatments with both PGEs and theoretic therapeutic concentrations of ketorolac and indomethacin had no significant effects on the levels of either transcription or translation of TGF-b or the post-translational function of TGF-b in osteoblasts. These results suggest that NSAIDs do not affect osteoblast function through changes in TGF-b action in osteoblasts.

  1. Growth factors and new periodontology

    Directory of Open Access Journals (Sweden)

    Paknejad M

    1999-06-01

    Full Text Available Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and"ndifferentiation by acting on specific receptors on the surface of cells and regulating events in wound"nhealing.They can be considered hormones that are not released in to the blood stream but have one a"nlocal action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion"ncycle and even may stimulate synthesis of DNA in suitable cells, Growth substances, primarily secreted"nby fibroblasts, endothelia! cells, macrophages and platelet, include platelet derived growth factor"n(PDGF, insulin like growth factor (IGF transforming growth factor (TGFa and (3 and bone"nmorphogenetic proteins BMPs that approximately are the most important of them. (BMPs could be"nused to control events during periodontal, craniofacial and implant wound healing through favoring bone"nformation"nAccording toLynch, combination of PGDF and IGF1 would be effective in promoting growth of all the"ncomponents of the periodontium."nThe aim of this study was to characterize growth factor and review the literature to determine the"nmechanism of their function, classification and application in implant and periodontal treatment.

  2. TGF-β signaling is dynamically regulated during the alveolarization of rodent and human lungs

    NARCIS (Netherlands)

    M.A. Alejandre-Alcázar (Miguel); M. Michiels-Corsten (Matthias); A.G. Vicencio (Alfin); I.K.M. Reiss (Irwin); J. Ryu (Julie); R.R. de Krijger (Ronald); G.G. Haddad (Gabriel); D. Tibboel (Dick); W. Seeger (Werner); O. Eickelberg (Oliver); R.E. Morty

    2008-01-01

    textabstractAlthough transforming growth factor-beta (TGF-β) signaling negatively regulates branching morphogenesis in early lung development, few studies to date have addressed the role of this family of growth factors during late lung development. We describe here that the expression, tissue

  3. The transforming growth factor beta-1 in the oncogenesis of human lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    V. E. Shevchenko

    2017-01-01

    Full Text Available Background. The transforming growth factor beta 1 (TGF-β1 is one of the most important tissue factors secreted by the development of epithelial tumors. Increased expression of TGF-β1 in lung tumors promotes cancer cells survival enhancing their growth, migration, invasion, angiogenesis, immune system suppression.Objective: to study molecular mechanisms of TGF-β1 action on A549 human lung adenocarcinoma cells by means of proteomic high-resolution mass spectrometry. Results. Intracellular signaling pathways responsible for the involvement of TGF-β1 in the oncogenesis of non-small cell lung cancer have been found, which include the differential expressed proteins of the families of cullin, ETS oncogenes, histone diacelases, cyclin-dependent kinases, and the signaling pathway phosphatidylinositol 3-kinase (PI3K.Conclusions. Important patterns are determined that could be used for the development of new approaches for detection of lung cancer metastasis candidate markers and potential therapy targets of this decease.

  4. Changes in Maternal Serum Transforming Growth Factor Beta-1 during Pregnancy: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Mandeep Singh

    2013-01-01

    Full Text Available Changes in circulating levels of maternal serum transforming growth factor beta-1 (TGF-β1, collected from 98 women (AGA at different gestational ages (10–38 weeks were measured and comparisons were made between levels in pregnant and nonpregnant controls and also between 10 women with small-for-gestational age (SGA and 7 with appropriate-for-gestational age (AGA fetuses. Maternal serum TGF-β1 levels at all stages of pregnancy were higher than those in normal healthy nonpregnant adults. The mean TGF-β1 levels in SGA pregnancies at 34-week gestation (32.5 + 3.2 ng/mL were significantly less than those in AGA pregnancies (39.2 + 9.8 ng/mL while at 38-week gestation, the levels were similar in the two groups (36.04 + 4.3 versus 36.7 + 7.0 ng/mL. This differential change in TGF-β1 levels is probably an important modulating factor in the aetiopathogenesis of abnormal intrauterine fetal growth.

  5. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    Science.gov (United States)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  6. SNAIL Mediates TGF-β1-Induced Downregulation of Pentraxin 3 Expression in Human Granulosa Cells.

    Science.gov (United States)

    Li, Hui; Chang, Hsun-Ming; Shi, Zhendan; Leung, Peter C K

    2018-04-01

    Transforming growth factor-β (TGF-β) 1 plays a critical role in regulating follicular development, and its dysregulation has been shown to be involved in the pathogenesis of ovulation dysfunction. SNAIL is a well-known transcriptional repressor that mediates TGF-β1-induced cellular functions. Pentraxin 3 (PTX3) is a key enzyme for the assembly and stabilization of the cumulus oophorus extracellular matrix, which is essential for cumulus expansion during the periovulatory stage. The purpose of the present study was to investigate the roles of TGF-β1 and SNAIL in the regulation of PTX3 expression and to examine the underlying mechanism. An established immortalized human granulosa cell (GC) line (SVOG), a GC tumor cell line (KGN), and primary human granulosa-lutein cells were used as study models. We demonstrated that TGF-β1 treatment substantially decreased the messenger RNA and protein levels of PTX3. This suppressive effect was abolished by cotreatment with the soluble TGF-β type II receptor (TβRII) or the ALK4/5/7 inhibitor SB431542. Knockdown of ALK5, SMAD2/3, or SMAD4 reversed the effects of TGF-β1-induced SNAIL upregulation and PTX3 suppression. These results indicate that TGF-β1 upregulates SNAIL and downregulates PTX3 expression via a TβRII-ALK5-mediated SMAD-dependent signaling pathway in human GCs. Additionally, TGF-β1-induced PTX3 suppression was mediated by upregulation of the SNAIL transcription factor, as knockdown of SNAIL completely reversed the suppression of PTX3 in response to TGF-β1. These findings could inform the roles of TGF-β1 and SNAIL in the regulation of follicular function and might provide therapeutic targets for the treatment of ovulation dysfunction.

  7. Downregulation of TGF-β Receptor-2 Expression and Signaling through Inhibition of Na/K-ATPase.

    Directory of Open Access Journals (Sweden)

    Jennifer La

    Full Text Available Transforming growth factor-beta (TGF-β is a multi-functional cytokine implicated in the control of cell growth and differentiation. TGF-β signals through a complex of TGF-β receptors 1 and 2 (TGFβR1 and TGFβR2 that phosphorylate and activate Smad2/3 transcription factors driving transcription of the Smad-target genes. The Na+/K+-ATPase is an integral plasma membrane protein critical for maintaining the electro-chemical gradient of Na+ and K+ in the cell. We found that inhibition of the Na+/K+ ATPase by ouabain results in a dramatic decrease in the expression of TGFβR2 in human lung fibrobalsts (HLF at the mRNA and protein levels. This was accompanied by inhibition of TGF-β-induced Smad phosphorylation and the expression of TGF-β target genes, such as fibronectin and smooth muscle alpha-actin. Inhibition of Na+/K+ ATPase by an alternative approach (removal of extracellular potassium had a similar effect in HLF. Finally, treatment of lung alveolar epithelial cells (A549 with ouabain also resulted in the downregulation of TGFβR2, the inhibition of TGF-β-induced Smad phosphorylation and of the expression of mesenchymal markers, vimentin and fibronectin. Together, these data demonstrate a critical role of Na+/K+-ATPase in the control of TGFβR2 expression, TGF-β signaling and cell responses to TGF-β.

  8. Role of transforming growth factor-β in muscle damage and regeneration: focused on eccentric muscle contraction.

    Science.gov (United States)

    Kim, Jooyoung; Lee, Joohyung

    2017-12-01

    High-intensity eccentric muscle contraction induces muscle damage. Damaged muscles recover through different processes, including degeneration, inflammation, regeneration, and fibrosis; some of these processes are mediated through the actions of cytokines. The transforming growth factor-beta (TGF-β) is one such cytokine involved in muscle recovery and repair. In this regard, TGF-β regulates the skeletal muscle inflammatory response, inhibits muscle regeneration, regulates extracellular matrix remodeling, and promotes fibrosis. Although some studies have suggested that inhibition of TGF-β after muscle damage promotes muscle regeneration and recovery, other studies have noted that TGF-β inhibition actually reduces muscle strength because it leads to incomplete muscle regeneration. Despite the importance of TGF-β in the repair of damaged muscles, most studies have focused on examining its role in muscle diseases such as chronic inflammatory diseases or Duchenne's muscular dystrophy. Here, we have reviewed the existing literature for examining the role of TGF-β in muscle damage and regeneration after eccentric muscle contraction.

  9. Developmental regulation of the serotonergic transmitter phenotype in rostral and caudal raphe neurons by transforming growth factor-betas.

    Science.gov (United States)

    Galter, D; Böttner, M; Unsicker, K

    1999-06-01

    Serotonergic (5-HT) neurons of the CNS develop as two separate clusters, a rostral and a caudal group, within the brain stem raphe. We show here that the transforming growth factors -beta2 and -beta3 (TGF-beta) and the TGF-beta type II receptor are expressed in the embryonic rat raphe, when 5-HT neurons develop and differentiate. To investigate putative roles of TGF-betas in the regulation of 5-HT neuron development we have generated serum-free cultures isolated either from the rostral or the caudal embryonic rat raphe, respectively. In cultures from the caudal E14 raphe saturating concentrations (5 ng/ml) of TGF-beta2 and -beta3 augmented numbers of tryptophan hydroxylase (TpOH) -immunoreactive neurons and cells specifically taking up 5,7-dihydroxytryptamine (5,7-DHT) by about 1.7-fold over a period of 4 days. Treatment with TGF-betas also increased uptake of 3H-5HT uptake about 1.7-fold. Alterations in 5-HT neuron numbers were due to the induction of serotonergic markers rather than increased survival, as shown by the efficacy of delayed short-term treatments. Comparing rostral and caudal raphe cultures from different embryonic ages suggests that distinct effects of TGF-betas reflect the responsiveness of 5-HT neurons at different ages rather than of different origins.

  10. TGF-β1 exerts opposing effects on grass carp leukocytes: implication in teleost immunity, receptor signaling and potential self-regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mu Yang

    Full Text Available In fish immunity, the regulatory role of transforming growth factor-β1 (TGF-β1 has not been fully characterized. Here we examined the immunoregulatory effects of TGF-β1 in grass carp peripheral blood leukocytes (PBL and head kidney leukocytes (HKL. It is interesting that TGF-β1 consistently stimulated the cell viability and the mRNA levels of pro-inflammatory cytokines (Tnfα and Ifnγ and T/B cell markers [Cd4-like (Cd4l, Cd8α, Cd8β and Igμ] in PBL, which contrasted with its inhibitory tone in HKL. Further studies showed that grass carp TGF-β1 type I receptor, activin receptor-like kinase 5 (ALK5, was indispensable for the immunoregulatory effects of TGF-β1 in PBL and HKL. Notably, TGF-β1 persistently attenuated ALK5 expression, whereas immunoneutralization of endogenous grass carp TGF-β1 could increase ALK5 mRNA and protein levels. It is consistent with the observation that TGF-β1 decreased the number of ALK5(+ leukocytes in PBL and HKL, revealing a negative regulation of TGF-β1 signaling at the receptor level. Moreover, transient treatment with TGF-β1 for 24 h was sufficient to induce similar cellular responses compared with the continuous treatment. This indicated a possible mechanism by which TGF-β1 triggered the down-regulation of ALK5 mRNA and protein, leading to the desensitization of grass carp leukocytes toward TGF-β1. Accordingly, our data revealed a dual role of TGF-β1 in teleost immunity in which it can serve as a positive or negative control device and provided additional mechanistic insights as to how TGF-β1 controls its signaling in vertebrate leukocytes.

  11. Effect of Photobiomodulation on Transforming Growth Factor-β1, Platelet-Derived Growth Factor-BB, and Interleukin-8 Release in Palatal Wounds After Free Gingival Graft Harvesting: A Randomized Clinical Study.

    Science.gov (United States)

    Keskiner, Ilker; Lutfioğlu, Muge; Aydogdu, Ahmet; Saygun, N Isil; Serdar, Muhittin A

    2016-06-01

    This study evaluated the impact of photobiomodulation (PBM) on the healing of the donor palatal area following free gingival graft (FGG) harvesting by examining changes in transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-BB, and interleukin (IL)-8 levels in palatal wound fluid (PWF). Thirty patients were selected and randomly assigned to receive PBM (laser group) or PBM sham (sham group) in the palatine area after FGG harvesting. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm) was applied to the test sites immediately after surgery and every 24 h thereafter for 4 days. PWF was collected on Days 7 and 12, and PWF TGF-β1, PDGF-BB, and IL-8 levels were analyzed by enzyme-linked immunosorbent assays (ELISA). PWF TGF-β1, PDGF-BB, and IL-8 levels were significantly lower on Day 12 than on Day 7 for both groups. PWF TGF-β1, PDGF-BB, and IL-8 levels of the laser group were significantly higher than those of sham group on Day 7 (p BB and IL-8 levels between groups on Day 12 were statistically nonsignificant. Observed increases in PWF TGF-β1, PDGF-BB, and IL-8 levels suggest that PBM may accelerate wound healing by stimulating production of selected mediators.

  12. Phase I study of transforming growth factor-beta 3 mouthwashes for prevention of chemotherapy-induced mucositis

    NARCIS (Netherlands)

    Wymenga, ANM; van der Graaf, WTA; Hofstra, LS; Spijkervet, FKL; Timens, W; Timmer-Bosscha, H; Sluiter, WJ; van Buuren, AHJAW; Mulder, NH; de Vries, EGE

    The purpose of this study was to establish the safety and tolerability of recombinant transforming growth factor-beta 3 (TGF-beta 3; CGP 46614) mouthwashes intended for prevention of chemotherapy-induced mucositis. Local effects were especially analyzed by objective and subjective measurements of

  13. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor - B1

    Science.gov (United States)

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in people with significant morbidity and mortality. There is a strong association between atrial fibrosis and AF. Transforming growth factor B1 (TGF-B1) is an essential mediator of atrial fibrosis in animal models and human pat...

  14. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta.

    Science.gov (United States)

    Donnet-Hughes, A; Duc, N; Serrant, P; Vidal, K; Schiffrin, E J

    2000-02-01

    Human breast milk is rich in nutrients, hormones, growth factors and immunoactive molecules, which influence the growth, development and immune status of the newborn infant. Although several of these factors are also present in bovine milk, the greater susceptibility of the formula-fed infant to infection and disease and the development of allergy is often attributed to the reduced level of protective factors in milk formulas. Nevertheless, modifying manufacturing processes may preserve the biological activity of some bioactive molecules in end products. Transforming growth factor (TGF)-beta is one such molecule. TGF-beta is a polypeptide, which has been described in both human and bovine milk. It is implicated in many processes, including epithelial cell growth and differentiation, development, carcinogenesis and immune regulation. The present article discusses the biological activity of TGF-beta2 that has been preserved and activated in a cow's milk-based product. More specifically, it addresses possible mechanisms of action in the intestinal lumen and speculates on how milk products containing naturally occurring TGF-beta2 could be exploited in functional foods for the infant or as therapies for specific intestinal diseases.

  15. Significance of plasma transforming growth factor-beta levels in radiotherapy for non-small-cell lung cancer

    NARCIS (Netherlands)

    De Jaeger, K; Seppenwoolde, Y; Kampinga, HH; Belderbos, JSA; Lebesque, JV

    2004-01-01

    Purpose: In dose-escalation studies of radiotherapy (RT) for non-small-cell lung cancer (NSCLC), radiation pneumonitis (RP) is the most important dose-limiting complication. Transforming growth factor-beta1 (TGF-beta1) has been reported to be associated with the incidence of RP. It has been proposed

  16. Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

    NARCIS (Netherlands)

    Krause, Carola; Kloen, Peter; ten Dijke, Peter

    2011-01-01

    ABSTRACT: Dupuytren's disease is a fibroproliferative disorder of the palmar fascia. The treatment used to date has mostly been surgery, but there is a high recurrence rate. Transforming growth factor β (TGF-β) has been implicated as a key stimulator of myofibroblast activity and fascial contraction

  17. Effect of early luteal phase administration of a single dose mifepristone on immunohistochemical distribution of interleukin 1 alpha (IL-1 alpha) and transforming growth factor beta 1 (TGF-beta 1) in mid-luteal phase ovary of the rhesus monkey.

    Science.gov (United States)

    Sengupta, Shaon; Ghosh, D

    2003-04-01

    A single low dose administration of a high affinity anti-progestin agent like mifepristone during the early luteal phase inhibits blastocyst implantation in human and non-human primates. Though it has been observed that luteal phase serum concentrations of estradiol and progesterone were not affected by the application of anti-nidatory dose of early luteal phase mifepristone suggesting that ovarian steroidogenic function is not compromised, it is nevertheless possible that ovarian physiology at the local tissue level is affected in this treatment schedule. In the present study, healthy, mature, proven fertile female rhesus monkeys were divided into two groups. Group 2 animals were treated with a single dose of mifepristone (2 mg/kg body weight), while group 1 animals were injected with vehicle (1:4 benzoyl benzoate: olive oil, v/v, s.c.) on day 2 post-ovulation. The morphological examination including that of vascularity, as well as, histometric determination of profiles of immunopositivity for IL-1alpha and TGF-beta1 in stromal, follicular and luteal compartments of mid-luteal phase ovaries from animals with or without a single, anti-nidatory dose of mifepristone applied on day 2 after ovulation failed to reveal any significant change between the two groups. Thus, it appears that early luteal phase administration of a single antinidatory dose of mifepristone does not affect the ovarian physiology in the treatment cycle.

  18. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina M Carlson

    2010-10-01

    Full Text Available Transforming growth factor-beta (TGF-β, a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β. We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3 except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus-infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.

  19. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  20. Human Aqueous Humor Levels of TGF-β2: Relationship with Axial Length

    Directory of Open Access Journals (Sweden)

    Yan Jia

    2014-01-01

    Full Text Available Purpose. To analyze the relationship between transforming growth factor-beta 2 (TGF-β2 levels in the anterior chamber aqueous humor and axial length of patients with myopia. Methods. TGF-β2 was measured with the Luminex xMAP Technology by using commercially available Milliplex xMAP Kits. Sixty-five aqueous humor samples were collected during cataract or clear lens extraction surgery and TGF-β2 levels in these specimens were analyzed. According to the axial length, the samples were divided into three groups: A (AL ≤24 mm, B (24~29 mm, and C (AL ≥ 29 mm. Results. Aqueous humor samples were analyzed from subjects with an average age of 67.0 ± 11.7 years. Mean TGF-β2 concentration of all aqueous samples was 422.2 ± 258.8 pg/mL. TGF-β2 concentration in group C (543 ± 317 pg/mL was significantly greater than that in group A (390 ± 212 pg/mL and group B (337 ± 217 pg/mL. The concentration of TGF-β2 was positively correlated with axial length (r = 0.308, P = 0.013. Conclusions. TGF-β2 is likely to be acting as a critical factor in axial elongation and development of myopia.

  1. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    Science.gov (United States)

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  3. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  4. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo.

    Science.gov (United States)

    Dennler, Sylviane; André, Jocelyne; Alexaki, Ismini; Li, Allen; Magnaldo, Thierry; ten Dijke, Peter; Wang, Xiao-Jing; Verrecchia, Franck; Mauviel, Alain

    2007-07-15

    Hedgehog (Hh) and transforming growth factor-beta (TGF-beta) family members are involved in numerous overlapping processes during embryonic development, hair cycle, and cancer. Herein, we show that TGF-beta induces the expression of the Hh signaling molecules Gli1 and Gli2 in various human cell types, including normal fibroblasts and keratinocytes, as well as various cancer cell lines. Gli2 induction by TGF-beta is rapid, independent from Hh receptor signaling, and requires a functional Smad pathway. Gli1 expression is subsequently activated in a Gli2-dependent manner. In transgenic mice overexpressing TGF-beta1 in the skin, Gli1 and Gli2 expression is also elevated and depends on Smad3. In pancreatic adenocarcinoma cell lines resistant to Hh inhibition, pharmacologic blockade of TGF-beta signaling leads to repression of cell proliferation accompanied with a reduction in Gli2 expression. We thus identify TGF-beta as a potent transcriptional inducer of Gli transcription factors. Targeting the cooperation of Hh and TGF-beta signaling may provide new therapeutic opportunities for cancer treatment.

  5. Transforming growth factor-betas block cytokine induction of catalase and xanthine oxidase mRNA levels in cultured rat cardiac cells.

    Science.gov (United States)

    Flanders, K C; Bhandiwad, A R; Winokur, T S

    1997-01-01

    We examined the effects of transforming growth factor-beta (TGF-beta) on the mRNA expression of the antioxidative enzymes, catalase, manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD), as well as the oxidative enzyme, xanthine oxidase (XO), in cultures of cardiomyocytes, cardiac non-myocytes, and fetal bovine heart endothelial cells. TGF-betas alone had little effect on expression of these enzymes, but treatment with a combination of interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha increased expression of MnSOD, catalase, and XO in some cell types with little effect on CuZnSOD expression. When TGF-betas were added along with these inflammatory cytokines there was a return to control levels of catalase expression, as well as a dramatic reduction in XO expression. In fetal bovine heart endothelial cells, treatment with inflammatory cytokines increased XO mRNA expression 11.5-fold and inclusion of TGF-betas reduced this 4-5-fold: effects on XO enzyme activity paralleled those seen on mRNA expression. Similar changes in XO expression were seen in cardiomyocytes. In contrast, TGF-betas did not change cytokine-induced MnSOD expression. All three mammalian isoforms of TGF-beta showed similar effects. In summary, TGF-betas may be able to decrease superoxide anion production and subsequent tissue damage by decreasing levels of XO.

  6. TGF-betas and their roles in the regulation of neuron survival.

    Science.gov (United States)

    Unsicker, Klaus; Krieglstein, Kerstin

    2002-01-01

    Transforming growth factor-betas (TGF-betas) are a still growing superfamily of cytokines with widespread distribution and diverse biological functions. They fall into several subfamilies including the TGF-betas 1, 2, and 3, the bone morphogenetic proteins (BMPs), the growth/differentiation factors (GDFs), activins and inhibins, and the members of the glial cell line-derived neurotrophic factor family. Following a brief description of their general roles and signaling in development, maintenance of homeostasis, and disease, we shall focus on their distribution in the CNS and their involvement in regulating neuron survival and death.

  7. Peran Transforming Growth Factor? terhadap Tingkat Kematangan dan Kejadian Apoptosis Oosit Sapi pada kultur In Vitro

    Directory of Open Access Journals (Sweden)

    Widjiati -

    2010-06-01

    Full Text Available Low productivity of in vitro embryo production at blastosis level appears to be as a result of imperfectoocyte maturation which causes imperfect oocyte growth, and in turn will affect the embryo growth. Inaddition to hormonal factor, growth factor plays significant role in maturation process of oocytes. Asgrowth factor might has a significant role during maturation process, a study was conducted to determinewhether transforming growth factor ? (TGF ? isolated from oocytes of cumulus complex is required for coculture and in vitro embryo production.. Oocytes were collected from follicles with the diameter of 3-5 mmand > 5 mm. Then the oocytes were cultured for 22 hours at 38.5o with 5% CO2 atmosphere in tissueculture medium (TCM 199 supplemented with 5 ?g/mg luteonizing hormone (LH, 3% bovine serumalbumin (BSA 50 ?g/ml gentamycin sulfat and three different levels of TGF ? (12,85 pg/ml, 25,7 pg/mland 38,55 pg/ml. The oocyte maturation and number of apoptosis cells were examined. The result showedthat oocyte maturation in medium supplemented TGF ? at the dose of 38,55 pg/ml was better than in thatat dose of 12,85pg/ml or 25,7 pg/ml. The best maturation was observed at metaphase II stage of oocytedevelopment. No apoptosis was observed during maturation of oocytes. Supplementation of TGF ? at thedose of 38,55 pg/ml in culture medium increased the oocyte maturation without causing a significantapoptosis in vitro.

  8. Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor

    Directory of Open Access Journals (Sweden)

    Dwi U Kemaladewi

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5. Antisense oligonucleotides (AONs were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.

  9. TGF-β2, a Protective Intestinal Cytokine, Is Abundant in Maternal Human Milk and Human-Derived Fortifiers but Not in Donor Human Milk

    OpenAIRE

    Reeves, Aaron A.; Johnson, Marney C.; Vasquez, Margarita M.; Maheshwari, Akhil; Blanco, Cynthia L.

    2013-01-01

    Objective: This study compared cytokines (in particular transforming growth factor [TGF]-β2) and lactoferrin in maternal human milk (MHM), human-derived milk fortifier (HDMF), and donor human milk (DHM).

  10. Transforming growth factor-beta. En potent multifunktionel voekstfaktor for normale og maligne celler

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Spang-Thomsen, M

    1992-01-01

    incomplete, together with other substances such as steroid hormones, oncogene products and integrins. Five isoforms for TGF-beta and five different TGF-beta receptors have been described. TGF-beta exhibits an antiproliferative effect in vitro and in vivo on many cells of epthelial, myeloid, lymphoid...... and mesenchymal origin together with a growth-stimulating effect on various cells like endothelial cells and epidermal keratinocytes. Production of TGF-beta and receptors for TGF-beta has been found in many cell types, both normal and malignant. Nevertheless the amount of in vivo data is too limited to identify...

  11. The mechanism of epithelial-mesenchymal transition induced by TGF-β1 in neuroblastoma cells.

    Science.gov (United States)

    Shao, Jing-Bo; Gao, Zhi-Mei; Huang, Wen-Yan; Lu, Zhi-Bao

    2017-05-01

    Neuroblastoma is the second most common extracranial malignant solid tumor that occurs in childhood, and metastasis is one of the major causes of death in neuroblastoma patients. The epithelial-mesenchymal transition (EMT) is an important mechanism for both the initiation of tumor invasion and subsequent metastasis. Therefore, this study investigated the mechanism by which transforming growth factor (TGF)-β1 induces EMT in human neuroblastoma cells. Using quantitative RT-qPCR and western blot analyses, we found that the mRNA and protein expression levels of E-cadherin were significantly decreased, whereas that of α-SMA was significantly increased after neuroblastoma cells were treated with different concentrations of TGF-β1. A scratch test and Transwell migration assay revealed that cell migration significantly and directly correlated with the concentration of TGF-β1 indicating that TGF-β1 induced EMT in neuroblastoma cells and led to their migration. Inhibiting Smad2/3 expression did not affect the expression of the key molecules involved in EMT. Further investigation found that the expression of the glioblastoma transcription factor (Gli) significantly increased in TGF-β1-stimulated neuroblastoma cells undergoing EMT, accordingly, interfering with Gli1/2 expression inhibited TGF-β1-induced EMT in neuroblastoma cells. GANT61, which is a targeted inhibitor of Gli1 and Gli2, decreased cell viability and promoted cell apoptosis. Thus, TGF-β1 induced EMT in neuroblastoma cells to increase their migration. Specifically, EMT induced by TGF-β1 in neuroblastoma cells did not depend on the Smad signaling pathway, and the transcription factor Gli participated in TGF-β1-induced EMT independent of Smad signaling.

  12. Collagen barrier membranes adsorb growth factors liberated from autogenous bone chips.

    Science.gov (United States)

    Caballé-Serrano, Jordi; Sawada, Kosaku; Miron, Richard J; Bosshardt, Dieter D; Buser, Daniel; Gruber, Reinhard

    2017-02-01

    Collagen membranes serve as barriers to separate bone grafts from soft tissues. Bone grafts harvested with a bone scraper release growth factors activating transforming growth factor-β (TGF-β) signaling in mesenchymal cells. The aim of the present pilot study was to determine whether collagen membranes adsorb molecules from bone-conditioned medium (BCM) with the capacity to provoke the expression of TGF-β target genes in vitro. Collagen membranes were soaked in aqueous extracts from fresh and demineralized bone chips placed in cell culture medium. Recombinant human TGF-β1 served as control. Gingival fibroblasts were seeded onto the washed collagen membranes and evaluated for the expression of adrenomedullin, pentraxin 3, interleukin 11, and proteoglycan 4. Cell viability and morphology with phalloidin staining were also determined. Incubation of collagen membranes with BCM for at least one minute caused fibroblasts to decrease the expression of adrenomedullin and pentraxin 3, and to increase the expression of interleukin 11 and proteoglycan 4. Four different membrane treatments - incubated with recombinant TGF-β1, pre-wetted with saline solution, exposed to UV light, and dry out and stored one week at room temperature - also provoked significant changes in gene expression. Likewise, conditioned medium from demineralized bone chips caused gene expression changes. BCM did not alter the viability or morphology of gingival fibroblasts. These findings demonstrate that collagen membranes rapidly adsorb the TGF-β activity released from bone chips, a molecular process that might contribute to guided bone regeneration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. TGF-β Suppresses COX-2 Expression by Tristetraprolin-Mediated RNA Destabilization in A549 Human Lung Cancer Cells

    Science.gov (United States)

    Kang, Soyeong; Min, Ahrum; Im, Seock-Ah; Song, Sang-Hyun; Kim, Sang Gyun; Kim, Hyun-Ah; Kim, Hee-Jun; Oh, Do-Youn; Jong, Hyun-Soon; Kim, Tae-You; Bang, Yung-Jue

    2015-01-01

    Purpose Overexpression of cyclooxygenase 2 (COX-2) is thought to promote survival of transformed cells. Transforming growth factor β (TGF-β) exerts anti-proliferative effects on a broad range of epithelial cells. In the current study, we investigated whether TGF-β can regulate COX-2 expression in A549 human lung adenocarcinoma cells, which are TGF-β-responsive and overexpress COX-2. Materials and Methods Western blotting, Northern blotting, and mRNA stability assays were performed to demonstrate that COX-2 protein and mRNA expression were suppressed by TGF-β. We also evaluated the effects of tristetraprolin (TTP) on COX-2 mRNA using RNA interference. Results We demonstrated that COX-2 mRNA and protein expression were both significantly suppressed by TGF-β. An actinomycin D chase experiment demonstrated that COX-2 mRNA was more rapidly degraded in the presence of TGF-β, suggesting that TGF-β–induced inhibition of COX-2 expression is achieved via decreased mRNA stability. We also found that TGF-β rapidly and transiently induced the expression of TTP, a well-known mRNA destabilizing factor, before suppression of COX-2 mRNA expression was observed. Using RNA interference, we confirmed that increased TTP levels play a pivotal role in the destabilization of COX-2 mRNA by TGF-β. Furthermore, we showed that Smad3 is essential to TTP-dependent down-regulation of COX-2 expression in response to TGF-β. Conclusion The results of this study show that TGF-β down-regulated COX-2 expression via mRNA destabilization mediated by Smad3/TTP in A549 cells. PMID:25544576

  14. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

    Science.gov (United States)

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara

    2017-07-12

    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  15. TGF-β1 up-regulates cadherin-11 expression through Snail: A potential mechanism for human trophoblast cell differentiation.

    Science.gov (United States)

    Cheng, Jung-Chien; Yi, Yuyin; Chang, Hsun-Ming; Leung, Peter C K

    2018-03-01

    Cadherins are transmembrane proteins that mediate cell-cell adhesion by promoting the formation of adherens junctions. The regulated expression of cadherins is thought to play important roles in both normal and diseased placental development. Cadherin-11, also known as OB-cadherin, is expressed in human placenta and has been shown to be involved in regulation of trophoblast cell differentiation. We have demonstrated that transforming growth factor-beta1 (TGF-β1) promotes human trophoblast cell differentiation. In addition, cadherin-11 can be up-regulated by TGF-β1 treatment. However, the underlying molecular mechanisms that mediate TGF-β1-induced cadherin-11 expression remain unknown. In this study, we demonstrate that TGF-β1 up-regulates cadherin-11 expression in human trophoblast cells. TGF-β1 treatment activates SMAD2/3 signaling pathways. Knockdown of SMAD2 or SMAD3 attenuates the stimulatory effect of TGF-β1 on cadherin-11 expression. In addition, the transcription factors, Snail and Slug, are up-regulated by the TGF-β1 treatment. Interestingly, only knockdown of Snail abolishes the TGF-β1-induced up-regulation of cadherin-11 expression. Our results suggest that TGFβ1-SMAD2/3-Snail signaling could contribute to the human trophoblast cell differentiation by up-regulating cadherin-11 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region.

    Science.gov (United States)

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-06-18

    Binding of transforming growth factor α (TGF-α) to the epidermal growth factor receptor (EGFR) extracellular domain is encoded through the formation of a unique antiparallel coiled coil within the juxtamembrane segment. This new coiled coil is an "inside-out" version of the coiled coil formed in the presence of epidermal growth factor (EGF). A third, intermediary coiled-coil interface is formed in the juxtamembrane region when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane region correlates with cell state. The observation that coiled-coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled-coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Autocrine production of TGF-β confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: Role of EGF receptor ligands

    International Nuclear Information System (INIS)

    Castillo, Gaelle del; Murillo, Miguel M.; Alvarez-Barrientos, Alberto; Bertran, Esther; Fernandez, Margarita; Sanchez, Aranzazu; Fabregat, Isabel

    2006-01-01

    Transforming growth factor-beta (TGF-β) induces apoptosis in fetal rat hepatocytes. However, a subpopulation of these cells survives, concomitant with changes in phenotype, reminiscent of an epithelial-mesenchymal transition (EMT). We have previously suggested that EMT might confer cell resistance to apoptosis (Valdes et al., Mol. Cancer Res., 1: 68-78, 2002). However, the molecular mechanisms responsible for this resistance are not explored yet. In this work, we have isolated and subcultured the population of hepatocytes that suffered the EMT process and are resistant to apoptosis (TGF-β-treated fetal hepatocytes: TβT-FH). We prove that they secrete mitogenic and survival factors, as analyzed by the proliferative and survival capacity of conditioned medium. Inhibition of the epidermal growth factor receptor (EGFR) sensitizes TβT-FH to die after serum withdrawal. TβT-FH expresses high levels of transforming growth factor-alpha (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) and shows constitutive activation of the EGFR pathway. A blocking anti-TGF-α antibody restores the capacity of cells to die. TGF-β, which is expressed by TβT-FH, mediates up-regulation of TGF-α and HB-EGF expression in those cells. In summary, results suggest that an autocrine loop of TGF-β confers resistance to apoptosis after an EMT process in hepatocytes, through the increase in the expression of EGFR ligands

  18. Aluminum trichloride inhibits osteoblast mineralization via TGF-β1/Smad signaling pathway.

    Science.gov (United States)

    Sun, Xudong; Cao, Zheng; Zhang, Qiuyue; Li, Miao; Han, Lulu; Li, Yanfei

    2016-01-25

    Osteoporosis is a major global public health problem. Aluminum (Al) exposure inhibits osteoblast mineralization and induces osteoporosis. However, the exact mechanism is not fully understood. The transforming growth factor β1 (TGF-β1)/Smad pathway is a major signaling cascade in regulating osteoblast mineralization. To investigate whether TGF-β1/Smad signaling pathway was involved in the Al-induced inhibition of osteoblast mineralization, osteoblasts were cultured and exposed to different concentrations of aluminum trichloride (AlCl3) (containing 0, 0.01, 0.02 and 0.04 mg/mL Al(3+)) for 24 h. We found that mineralized matrix nodules, mRNA expressions of alkaline phosphatase (ALP), type I collagen (Col I), TGF-β1, TGF-β type I receptor, TGF-β type II receptor and Smad4, protein expressions of TGF-β1 and p-Smad2/3, Smad2/3/4 trimeric complex were all decreased, whereas the mRNA expressions of Smad7 were increased in the AlCl3-treated groups compared with those in control. In conclusion, these results indicated that AlCl3 inhibited osteoblast mineralization via TGF-β1/Smad signaling pathway in rat osteoblasts. Our findings could provide novel insights into the mechanisms of action of AlCl3 in osteoporosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Ski diminishes TGF-β1-induced myofibroblast phenotype via up-regulating Meox2 expression.

    Science.gov (United States)

    Chen, Zhaowei; Li, Wenjing; Ning, Yan; Liu, Tong; Shao, Jingxiang; Wang, Yaojun

    2014-12-01

    The aim of the present work was to investigate the mechanism of transforming growth factor (TGF)-β1 and Sloan-Kettering Institute (Ski) in the pathogenesis of hypertrophic scars (HS). Wound healing is an inherent process, but the aberrant wound healing of skin injury may lead to HS. There has been growing evidence suggesting a role for TGF-β1 and Ski in the pathogenesis of fibrosis. The MTT assay was used to detect the cell proliferation induced by TGF-β1. The Ski gene was transduced into cells with an adenovirus, and then the function of Ski in cell proliferation and differentiation was observed. Ski mRNA levels were measured by RT-PCR. Western blotting was used to detect the protein expression of α-SMA, E-cadherin, Meox1, Meox2, Zeb1 and Zeb2. TGF-β1 can promote human skin fibroblast (HSF) cell proliferation in a time-dependent manner, but the promoting effect could be suppressed by Ski. TGF-β1 also induces the formation of the myofibroblast phenotype and the effect of TGF-β1 could be diminished by Ski. Also, Ski modulates the cardiac myofibroblast phenotype and function through suppression of Zeb2 by up-regulating the expression of Meox2. Ski diminishes the myofibroblast phenotype induced by TGF-β1 through the suppression of Zeb2 by up-regulating the expression of Meox2. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis.

    Science.gov (United States)

    Zhen, Gehua; Wen, Chunyi; Jia, Xiaofeng; Li, Yu; Crane, Janet L; Mears, Simon C; Askin, Frederic B; Frassica, Frank J; Chang, Weizhong; Yao, Jie; Carrino, John A; Cosgarea, Andrew; Artemov, Dmitri; Chen, Qianming; Zhao, Zhihe; Zhou, Xuedong; Riley, Lee; Sponseller, Paul; Wan, Mei; Lu, William Weijia; Cao, Xu

    2013-06-01

    Osteoarthritis is a highly prevalent and debilitating joint disorder. There is no effective medical therapy for the condition because of limited understanding of its pathogenesis. We show that transforming growth factor β1 (TGF-β1) is activated in subchondral bone in response to altered mechanical loading in an anterior cruciate ligament transection (ACLT) mouse model of osteoarthritis. TGF-β1 concentrations are also high in subchondral bone from humans with osteoarthritis. High concentrations of TGF-β1 induced formation of nestin-positive mesenchymal stem cell (MSC) clusters, leading to formation of marrow osteoid islets accompanied by high levels of angiogenesis. We found that transgenic expression of active TGF-β1 in osteoblastic cells induced osteoarthritis, whereas inhibition of TGF-β activity in subchondral bone attenuated the degeneration of articular cartilage. In particular, knockout of the TGF-β type II receptor (TβRII) in nestin-positive MSCs led to less development of osteoarthritis relative to wild-type mice after ACLT. Thus, high concentrations of active TGF-β1 in subchondral bone seem to initiate the pathological changes of osteoarthritis, and inhibition of this process could be a potential therapeutic approach to treating this disease.

  1. Role of TGF-betas in normal human endometrium and endometriosis.

    Science.gov (United States)

    Omwandho, Charles O A; Konrad, Lutz; Halis, Gülden; Oehmke, Frank; Tinneberg, Hans-Rudolf

    2010-01-01

    Endometriosis is characterized by presence of endometrial tissue outside the uterus. Prevalence is estimated at 6-10% in the general female population and many patients experience pain and/or infertility. Diagnosis is achieved by laparoscopic intervention followed by histological confirmation of viable endometriotic tissue. Mild cases are managed medically with contraceptive steroids and non-steroidal anti-inflammatory agents. Surgery provides relief to women in pain but symptoms recur in 75% of cases within 2 years. Starting with menstruation, we have categorized endometriosis into six stages, namely (1) shedding of cells, (2) cell survival, (3) escape from immune surveillance, (4) adhesion to peritoneum, (5) angiogenesis and (6) bleeding. In most of these biological processes, which resemble metastasis, transforming growth factor-beta (TGF-betas) and their high-affinity receptors are involved directly or indirectly. TGF-betas are abundantly and differentially expressed in the endometrium under hormonal control. Although they are preferentially synthesized in the stroma, glands and macrophages also secrete TGF-betas into the uterine fluid, where interaction with preimplantation embryos is suspected. Because mRNA and protein expression of all three TGF-betas is increased around menstruation, we suggest that TGF-betas might be involved in initiation of menstruation. Furthermore, because of high postmenstrual TGF-beta3 levels, we suppose that it might participate in scarless postmenstrual regeneration of endometrium. Our suggestions pave the way to novel routes of investigation into the roles of TGF-betas during menstruation and endometriosis.

  2. TGF-β1 Protection against Aβ1–42-Induced Neuroinflammation and Neurodegeneration in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Xing Shen

    2014-12-01

    Full Text Available Transforming growth factor (TGF-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD, the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the hallmarks, amyloid-β (Aβ plaques and neurofibrillary tangles. Recently, we have shown that T-helper (Th 17 cells, a subpopulation of CD4+ T-cells with high proinflammation, also participate in the brain inflammatory process of AD. However, it is poorly known whether TGF-β1 ameliorates the lymphocyte-mediated neuroinflammation and, thereby, alleviates neurodegeneration in AD. Herein, we administered TGF-β1 via the intracerebroventricle (ICV in AD model rats, by Aβ1–42 injection in both sides of the hippocampus, to show the neuroprotection of TGF-β1. The TGF-β1 administration after the Aβ1–42 injection ameliorated cognitive deficit and neuronal loss and apoptosis, reduced amyloid precursor protein (APP expression, elevated protein phosphatase (PP2A expression, attenuated glial activation and alleviated the imbalance of the pro-inflammatory/anti-inflammatory responses of T-lymphocytes, compared to the Aβ1–42 injection alone. These findings demonstrate that TGF-β1 provides protection against AD neurodegeneration and suggest that the TGF-β1 neuroprotection is implemented by the alleviation of glial and T-cell-mediated neuroinflammation.

  3. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure

    DEFF Research Database (Denmark)

    Nielsen, R H; Clausen, N M; Schjerling, P

    2014-01-01

    RNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR......The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant......-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon...

  4. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.

    Science.gov (United States)

    Moon, Hyuk; Ju, Hye-Lim; Chung, Sook In; Cho, Kyung Joo; Eun, Jung Woo; Nam, Suk Woo; Han, Kwang-Hyub; Calvisi, Diego F; Ro, Simon Weonsang

    2017-11-01

    Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice. C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRAS G12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRAS G12V and MYC, or those encoding HRAS G12V and TAZ S89A , to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. TGF-β inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-β signaling activated transcription of the Snail gene in liver tumors induced by HRAS G12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-β signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-β activation. Ectopic

  5. Role of TGF-β on cardiac structural and electrical remodeling

    Directory of Open Access Journals (Sweden)

    Roberto Ramos-Mondragón

    2008-12-01

    Full Text Available Roberto Ramos-Mondragón, Carlos A Galindo, Guillermo AvilaDepartamento de Bioquímica, Cinvestav-IPN, MéxicoAbstract: The type β transforming growth factors (TGF-βs are involved in a number of human diseases, including heart failure and myocardial arrhythmias. In fact, during the last 20 years numerous studies have demonstrated that TGF-β affects the architecture of the heart under both normal and pathological conditions. Moreover, TGF-β signaling is currently under investigation, with the aim of discovering potential therapeutic roles in human disease. In contrast, only few studies have investigated whether TGF-β affects electrophysiological properties of the heart. This fact is surprising since electrical remodeling represents an important substrate for cardiac disease. This review discusses the potential role of TGF-β on cardiac excitation-contraction (EC coupling, action potentials, and ion channels. We also discuss the effects of TGF-β on cardiac development and disease from structural and electrophysiological points of view.Keywords: transforming growth factor, ion channel, cardiac electrophysiology

  6. TGF-betas synthesized by RPE cells have autocrine activity on mesenchymal transformation and cell proliferation.

    Science.gov (United States)

    Lee, S C; Kim, S H; Koh, H J; Kwon, O W

    2001-06-01

    The present study investigated the effects of transforming growth factor (TGF)-beta on retinal pigment epithelial (RPE) transformation in a simplified model and also whether or not TGF-beta exhibits similar proliferation effects on transformed RPE cells that it has on primary RPE cells. Furthermore, we examined the cell proliferation effects of RPE-conditioned medium (CM). A vertical wound measuring 2 mm in diameter was made on primary RPE monolayers. The expression of alpha-smooth muscle actin (SMA) by the cells located at the wound edges was observed using a confocal microscope under immunofluorescent staining. Cell proliferation was measured by incorporating 3H-thymidine into DNA. The presence of alpha-SMA was observed in the cells within the wound after treatment with TGF-beta2, while negative expression was observed in control cells. TGF-betas inhibited the proliferation of the primary cultures of RPE cells in a dose-dependent manner, but the spindle-shaped late-passaged RPE cells were not inhibited by these growth factors. The medium conditioned by RPE cells stimulated the proliferation of subconjunctival fibroblasts and inhibited the proliferation of primary RPE cells, in a manner similar to TGF-beta. These findings demonstrate that TGF-beta-stimulated RPE cells may evoke proliferative vitreoretinopathy through mesenchymal transformation and cell proliferation.

  7. Comparison between tocotrienol and omeprazole on gastric growth factors in stress-exposed rats.

    Science.gov (United States)

    Nur Azlina, Mohd Fahami; Qodriyah, Hj Mohd Saad; Chua, Kien Hui; Kamisah, Yusof

    2017-08-28

    To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS). Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression. Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased ( P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF ( P < 0.001), bFGF ( P < 0.001) and TGF-α ( P < 0.001) mRNA levels and caused an increase in EGF mRNA ( P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF ( P = 0.008), bFGF ( P = 0.001) and TGF-α ( P = 0.002) mRNA. Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries.

  8. Suppressed Gastric Mucosal TGF-β1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin

    2010-01-01

    Background/Aims Loss of transforming growth factor β1 (TGF-β1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-β1 levels could be used to determine the outcome after H. pylori infection. Methods Northern blot for the TGF-β1 transcript, staining of TGF-β1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-β1 levels were performed at different times after H. pylori infection. Results The TGF-β1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-β1 levels. SNU-16 cells showing intact TGF-β signaling exhibited a marked decrease in TGF-β1 expression, whereas SNU-638 cells defective in TGF-β signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-β1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-β1 is a host defense mechanism to avoid attachment of H. pylori. Conclusions H. pylori infection was associated with depressed gastric mucosal TGF-β1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation. PMID:20479912

  9. Suppressed Gastric Mucosal TGF-beta1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response.

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin; Hahm, Ki-Baik

    2010-03-01

    Loss of transforming growth factor beta1 (TGF-beta1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-beta1 levels could be used to determine the outcome after H. pylori infection. Northern blot for the TGF-beta1 transcript, staining of TGF-beta1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-beta1 levels were performed at different times after H. pylori infection. The TGF-beta1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-beta1 levels. SNU-16 cells showing intact TGF-beta signaling exhibited a marked decrease in TGF-beta1 expression, whereas SNU-638 cells defective in TGF-beta signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-beta1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-beta1 is a host defense mechanism to avoid attachment of H. pylori. H. pylori infection was associated with depressed gastric mucosal TGF-beta1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation.

  10. TGF-β1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-β1.

    Directory of Open Access Journals (Sweden)

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF-β1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  11. Growth factors in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Negar Khalighi

    2016-01-01

    Full Text Available Introduction: Cystic fibrosis is one of the most common autosomal recessive diseases that affects sweat glands and mucosa. CF is a hereditary disease with annual incidence of about 2500 new cases in United Kingdom. Insulin-like growth factor-1 (IGF-1 and insulin-like growth factor binding protein-3 levels decrease in CF. The aim of this study was to assess the role of growth peptides in patients with CF. Method: We searched PubMed, Google scholar, IranMedex, and Scientific Information Database (SID in September 2012 to April 2014. We included clinical studies with available abstracts and full texts that were in English or Persian languages. Manual searching was conducted within the reference lists of articles. Two reviewers independently applied eligibility criteria, assessed quality, and extracted data.Result: The earliest study was published in 1997 and the most recent one was in 2014. Study participants were adults in 3 studies (20% and 12 studies (80% were conducted in children. Patients with CF have lower levels of IGF-1 and there is a significant correlation between IGF-1 levels and growth index in patients with CF.Conclusions: IGF-1 decreases in children with CF and might be the cause of poor growth and low body mass index in these children.

  12. Extracellular matrix is modulated in advanced glycation end products milieu via a RAGE receptor dependent pathway boosted by transforming growth factor-β1 RAGE.

    Science.gov (United States)

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Costache, Marieta; Dinischiotu, Anca

    2015-01-01

    Interstitial fibrosis is induced by imbalances in extracellular matrix homeostasis. Advanced glycation end products (AGEs) can bind and activate the receptor for AGEs (RAGE), which is involved in diabetic nephropathy. We set out to identify the role of AGEs in producing alterations leading to matrix hypertrophy and the pathway through which aminoguanidine, as well as anti-RAGE and anti-transforming growth factor (TGF)-β1 antibody treatments could prevent these modifications. Human embryonic kidney (HEK-293) cells were exposed to glycated bovine serum albumin (AGE-BSA) and co-treated with neutralizing antibodies or aminoguanidine. The effects on the transcriptional and translational levels of RAGE, TGF-β1 and collagen IV were evaluated, while metalloproteinase activity was assessed by gelatin zymography. AGE-BSA (200 μg/mL) upregulated RAGE's expression, while TGF-β1 synthesis and the formation of its bioactive form were increased in a dose-dependent manner by AGEs. AGE-BSA exposure increased both matrix metalloproteinase (MMP) activity and collagen IV synthesis, boosted by TGF-β1 upregulation. Aminoguanidine's effects revealed that small concentrations (10 μmol/L) enhance AGE-BSA effects, by increasing the expression of RAGE and TGF-β1, while higher concentrations (100 μmol/L) contribute to their downregulation. Although AGEs regulate RAGE and TGF-β1 by distinct pathways, RAGE activation leads to a further increase of TGF-β1 levels. MMP-2 activity seems to rely on TGF-β1, while MMP-9 was dependent on RAGE. These factors converge to control collagen IV turnover. Furthermore, although the antibody treatments might appear more efficient than AG in decreasing collagen IV levels, the cells compensate the RAGE and TGF-β1 blockade by increasing the mRNA expression of these proteins. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  13. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling.

    Science.gov (United States)

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y

    2015-01-20

    Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor β signal transduction in human glioblastoma cells

    International Nuclear Information System (INIS)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena

    2007-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-β by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-β1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-β receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-β1-induced signalling

  15. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels

    Energy Technology Data Exchange (ETDEWEB)

    Preidl, Raimund H.M.; Moebius, Patrick; Weber, Manuel; Neukam, Friedrich W.; Schlegel, Andreas; Wehrhan, Falk [University of Erlangen- Nuernberg, Department of Oral and Maxillofacial Surgery, Erlangen (Germany); University of Erlangen- Nuernberg, Erlangen (Germany); Amann, Kerstin [University of Erlangen- Nuernberg, Erlangen (Germany)

    2014-12-09

    Microvascular free tissue transfer is a standard method in head and neck reconstructive surgery. However, previous radiotherapy of the operative region is associated with an increased incidence in postoperative flap-related complications and complete flap loss. As transforming growth factor beta (TGF-β) 1 and galectin-3 are well known markers in the context of fibrosis and lectin-like oxidized low-density lipoprotein 1 (LOX-1) supports vascular atherosclerosis, the aim of this study was to evaluate the expression of TGF-β1 and related markers as well as LOX-1 in irradiated vessels. To evaluate the expression of galectin-3, Smad 2/3, TGF-β1, and LOX-1, 20 irradiated and 20 nonirradiated arterial vessels were used for immunohistochemical staining. We semiquantitatively assessed the ratio of stained cells/total number of cells (labeling index). Expression of galectin-3, Smad 2/3, and TGF-β1 was significantly increased in previously irradiated vessels compared with nonirradiated controls. Furthermore, LOX-1 was expressed significantly higher in irradiated compared with nonirradiated vessels. Fibrosis-related proteins like galectin-3, Smad 2/3, and TGF-β1 are upregulated after radiotherapy and support histopathological changes leading to vasculopathy of the irradiated vessels. Furthermore, postoperative complications in irradiated patients can be explained by increased endothelial dysfunction caused by LOX-1 in previously irradiated patients. Consequently, not only TGF-β1 but also galectin-3inhibitors may decrease complications after microsurgical tissue transfer. (orig.) [German] Der freie mikrovaskulaere Gewebetransfer gilt heute als fester Standard in der rekonstruktiven Kopf-Hals-Chirurgie. Es zeigte sich jedoch, dass im Falle einer stattgehabten Bestrahlung im Operationsgebiet mit einer erhoehten Rate an transplantatbezogenen Komplikationen gerechnet werden muss. Sowohl TGF-β1 als auch Galektin-3 sind bekannte Mediatoren in Bezug auf die Fibroseentstehung

  16. Epitope mapping of alpha-transforming growth factor: evidence of an immunodominant region

    International Nuclear Information System (INIS)

    Hazarika, P.; Dedman, J.R.

    1988-01-01

    Antisera were produced in rabbits and sheep against both full-length synthetic rat alpha-transforming growth factor and peptides corresponding to the carboxy-terminal 17 amino acids. These antisera were used to develop a peptide based radioimmunoassay of alpha-TGF. All antisera reacted only with a restricted region of the alpha-TGF corresponding to the 8 residues (43-50) at the carboxy-terminus: Cyslt. slash43, Glult. slash44, Hislt. slash45, Alalt. slash46, Asplt. slash47, Leult. slash48, Leult. slash49, Alalt. slash50. A series of synthetic peptides presenting deletions or substitutions of amino acids in this carboxy-terminal region were tested for competition with 125 I-alpha-TGF. All changes in the above peptide sequence resulted in a marked reduction in competition. All of the polyclonal antisera demonstrated similar specificity whether they were produced against the 50 amino acid, full-length alpha-TGF, against shorter 17 amino acid and 8 amino acid carboxy-terminal sequences

  17. Epitope mapping of alpha-transforming growth factor: evidence of an immunodominant region

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, P.; Dedman, J.R.

    1988-01-01

    Antisera were produced in rabbits and sheep against both full-length synthetic rat alpha-transforming growth factor and peptides corresponding to the carboxy-terminal 17 amino acids. These antisera were used to develop a peptide based radioimmunoassay of alpha-TGF. All antisera reacted only with a restricted region of the alpha-TGF corresponding to the 8 residues (43-50) at the carboxy-terminus: Cyslt. slash43, Glult. slash44, Hislt. slash45, Alalt. slash46, Asplt. slash47, Leult. slash48, Leult. slash49, Alalt. slash50. A series of synthetic peptides presenting deletions or substitutions of amino acids in this carboxy-terminal region were tested for competition with /sup 125/I-alpha-TGF. All changes in the above peptide sequence resulted in a marked reduction in competition. All of the polyclonal antisera demonstrated similar specificity whether they were produced against the 50 amino acid, full-length alpha-TGF, against shorter 17 amino acid and 8 amino acid carboxy-terminal sequences.

  18. TGF-β induces HLA-G expression through inhibiting miR-152 in gastric cancer cells.

    Science.gov (United States)

    Guan, Zhongzheng; Song, Bingtan; Liu, Fengjun; Sun, Dong; Wang, Kexin; Qu, Hui

    2015-12-02

    Mounting evidences have showed the important role of transforming growth factor-β (TGF-β) in immunological surveillance of tumors. Some studies have also indicated human leukocyte antigen (HLA)-G-associated immune escape involving TGF-β management in gastric cancer (GC). However, the mechanism underlying it is unclear. This study aims to verify the correlations between HLA-G and TGF-β, involving the potential targeting of miR-152 on HLA-G. TGF-β and HLA-G levels were analyzed in blood samples from twenty GC patients with ELISA assays, while TGF-β showed directly proportional to HLA-G levels in GC patients, and TGF-β induced HLA-G up-regulation was also confirmed in GC cell lines. Furthermore, miR-152 expression could be inhibited by TGF-β, and the negative post-transcriptionally regulation of miR-152 on HLA-G was also demonstrated through gain- and loss-of-function studies. Besides, miR-152 overexpression repressed HLA-G up-regulation induced by TGF-β. And, miR-152 expression levels showed inversely proportional to both HLA-G and also TGF-β levels in GC patients. TGF-β could induce HLA-G expression in GC by inhibiting miR-152, involving its negative regulation on HLA-G. Since TGF-β induced HLA-G up-regulation plays important role in immune escape, a potential application of miR-152 was suggested in GC treatment, or miR-152 might be one potential biomarker for GC.

  19. The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBing; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, ChangLong

    2009-05-29

    Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. The current study aimed to investigate the effects of transforming growth factor (TGF)-beta1 on the collagen content and cross-linking of Achilles tendons, and on the histological and biomechanical changes occurring during Achilles tendon healing in rabbits. Bone marrow-derived mesenchymal stem cells (BMSCs) transfected with the TGF-beta1 gene were surgically implanted into experimentally injured Achilles tendons. Collagen proteins were identified by immunohistochemical staining and fiber bundle accumulation was revealed by Sirius red staining. Achilles tendons treated with TGF-beta1-transfected BMSCs showed higher concentrations of collagen I protein, more rapid matrix remodeling, and larger fiber bundles. Thus TGF-beta1 can promote mechanical strength in healing Achilles tendons by regulating collagen synthesis, cross-link formation, and matrix remodeling.

  20. Regulation of TGF-β Superfamily Signaling by SMAD Mono-Ubiquitination

    Science.gov (United States)

    Xie, Feng; Zhang, Zhengkui; van Dam, Hans; Zhang, Long; Zhou, Fangfang

    2014-01-01

    TGF-β(transforming growth factor-β) superfamily signaling mediators are important regulators of diverse physiological and pathological events. TGF-β signals are transduced by transmembrane type I and type II serine/threonine kinase receptors and their downstream effectors, the SMAD (drosophila mothers against decapentaplegic protein) proteins. Numerous studies have already demonstrated crucial regulatory roles for modification of TGF-β pathway components by poly-ubiquitination. Recently, several studies also uncovered mono-ubiquitination of SMADs as a mechanism for SMAD activation or inactivation. Mono-ubiquitination and subsequent deubiquitination of SMAD proteins accordingly play important roles in the control of TGF-β superfamily signaling. This review highlights the major pathways regulated by SMAD mono-ubiquitination. PMID:25317929

  1. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells.

    Science.gov (United States)

    Kim, Eun-Sook; Kim, Mi-Sung; Moon, Aree

    2004-11-01

    Transforming growth factor (TGF)-beta has been reported to exert growth inhibitory activity in normal epithelial cells whereas it induces cell proliferation and invasive phenotypes in advanced carcinomas. Our previous study showed that MCF10A, a spontaneously immortalized "normal" breast epithelial cell line, is resistant to TGF-beta-induced growth inhibition, suggesting that conversion of TGF-beta growth inhibitory signaling into an oncogenic pathway may occur at the early stage of tumor development/progression. To address this issue, we investigated the TGF-beta signaling pathway and its role in phenotypic transformation of MCF10A cells. TGF-beta treatment induced changes in the MCF10A cell morphology from cuboidal to an elongated spindle-like shape, accompanied with down-regulation of epithelial cell marker E-cadherin. TGF-beta treatment was sufficient to induce migrative and invasive phenotypes in these cells, an important phenotypic conversion during tumor progression. We also showed that TGF-beta treatment rapidly activated ERK-1/2 and p38 MAPK leading to upregulation of matrix metalloproteinase (MMP)-2 and MMP-9. Using chemical inhibitors and dominant negative mutants of MAPKs, we provide evidence that while both p38 MAPK and ERKs are required for TGF-beta-induced MCF10A cell migration and invasion, TGF-beta-induced MMP-2 and MMP-9 expression depends on p38 MAPK signaling, but is independent of ERK activity. This study demonstrates the roles of TGF-beta signaling pathways for induction of oncogenic signaling in preneoplastic human breast epithelial cells and will deepen our understanding of TGF-beta signaling in the progress of breast cancer.

  2. Elucidating the Mechanism of Regulation of Transforming Growth Factor β Type II Receptor Expression in Human Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Sunil K. Halder

    2011-10-01

    Full Text Available Lung carcinogenesis in humans involves an accumulation of genetic and epigenetic changes that lead to alterations in normal lung epithelium, to in situ carcinoma, and finally to invasive and metastatic cancers. The loss of transforming growth factor β (TGF-β-induced tumor suppressor function in tumors plays a pivotal role in this process, and our previous studies have shown that resistance to TGF-β in lung cancers occurs mostly through the loss of TGF-β type II receptor expression (TβRII. However, little is known about the mechanism of down-regulation of TβRII and how histone deacetylase (HDAC inhibitors (HDIs can restore TGF-β-induced tumor suppressor function. Here we show that HDIs restore TβRII expression and that DNA hypermethylation has no effect on TβRII promoter activity in lung cancer cell lines. TGF-β-induced tumor suppressor function is restored by HDIs in lung cancer cell lines that lack TβRII expression. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by either activated Ras or epidermal growth factor signaling is involved in the down-regulation of TβRII through histone deacetylation. We have immunoprecipitated the protein complexes by biotinylated oligonucleotides corresponding to the HDI-responsive element in the TβRII promoter (−127/(−75 and identified the proteins/factors using proteomics studies. The transcriptional repressor Meis1/2 is involved in repressing the TβRII promoter activity, possibly through its recruitment by Sp1 and NF-YA to the promoter. These results suggest a mechanism for the downregulation of TβRII in lung cancer and that TGF-β tumor suppressor functions may be restored by HDIs in lung cancer patients with the loss of TβRII expression.

  3. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Jang, Ho Hee, E-mail: hhjang@gachon.ac.kr [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon (Korea, Republic of)

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.

  4. Is telomerase reactivation associated with the down-regulation of TGF β receptor-II expression in human breast cancer?

    Directory of Open Access Journals (Sweden)

    Thomas Valene

    2003-07-01

    Full Text Available Abstract Background Telomerase is a ribonucleoprotein that synthesizes telomeres and plays an important role in chromosomal stability and cellular immortalisation. Telomerase activity is detectable in most human cancers but not in normal somatic cells. TGF beta (transforming growth factor beta is a member of a family of cytokines that are essential for cell survival and seems to be down-regulated in human cancer. Recent in vitro work using human breast cancer cell lines has suggested that TGF beta down-regulates the expression of hTERT (human telomerase reverse transcriptase : the catalytic subunit of telomerase. We have therefore hypothesised that telomerase reactivation is associated with reduced immunohisto-chemical expression of TGF beta type II receptor (RII in human breast cancer. Methods TGF beta RII immunohistochemical expression was determined in 24 infiltrating breast carcinomas with known telomerase activity (17 telomerase-positive and 7 telomerase-negative. Immunohistochemical expression of TGF beta RII was determined by a breast pathologist who was blinded to telomerase data. Results TGF beta RII was detected in all lesions. The percentage of stained cells ranged from 1–100%. The difference in TGF beta RII expression between telomerase positive and negative tumours was not statistically significant (p = 1.0. Conclusion The results of this pilot study suggest that there is no significant association between telomerase reactivation and TGF-beta RII down-regulation in human breast cancer.

  5. Glucocorticoids modify effects of TGF-β1 on multidrug resistance in the fetal blood-brain barrier.

    Science.gov (United States)

    Baello, Stephanie; Iqbal, Majid; Kearney, Samantha; Kuthiala, Shikah; Bloise, Enrrico; Gibb, William; Matthews, Stephen G

    2016-02-01

    Transforming growth factor-β1 (TGF-β1) increases P-glycoprotein (P-gp; encoded by Abcb1) activity in fetal brain endothelial cells (BECs). P-gp is important for fetal brain protection against xenobiotics including synthetic glucocorticoids (sGC). We hypothesized that antenatal sGC would modify P-gp responsiveness to TGF-β1 in fetal BECs. Pregnant guinea pigs were treated with dexamethasone or vehicle (N = 5/group) on gestational day (GD) 48-49 and BECs derived on GD50. In BECs from control fetuses, TGF-β1 increased Abcb1 mRNA and P-gp function, by approximately 5-fold and 55% respectively, as well as tight junction function. In contrast, TGF-β1 had no effect on these parameters in BECs from sGC-exposed fetuses. Moreover, levels of TGF-β1 responsive gene, Smad7, were increased 3-fold in BECs from control fetuses after TGF-β1 but not in sGC-exposed fetuses. In conclusion, antenatal sGC alters responsiveness to TGF-β1 in fetal BECs. This study has identified novel mechanisms by which TGF-β1 and sGC modulate fetal brain protection against xenobiotics and other P-gp substrates.

  6. Gender-based reciprocal expression of transforming growth factor-β1 and the inducible nitric oxide synthase in a rat model of cyclophosphamide-induced cystitis

    Directory of Open Access Journals (Sweden)

    Loughran Patricia A

    2009-08-01

    Full Text Available Abstract Background The pluripotent cytokine transforming growth factor-β1 (TGF-β1 is the central regulator of inducible Nitric Oxide Synthase (iNOS that is responsible for nitric oxide (NO production in inflammatory settings. Previous studies have implicated a role for NO, presumably derived from iNOS, in cyclophosphamide (CYP-induced cystitis in the bladder. TGF-β1 is produced in latent form and requires dissociation from the latency-associated peptide (LAP to act as primary anti-inflammatory and pro-healing modulator following tissue injury in the upper urinary tract. Since the role of TGF-β1 in lower urinary tract inflammation is currently unknown, and since gender-based differences exist in the setting of interstitial cystitis (IC, the present study examined the relationship between TGF-β1 and iNOS/NO in the pathogenesis of CYP-induced cystitis in both male and female rats. Methods Sprague-Dawley rats, 4 months of age, of either gender were given 150 mg/kg CYP intraperitoneally. Urinary and bladder tissue TGF-β1 and NO reaction products (NO2-/NO3- were quantified as a function of time following CYP. Expression of active and latent TGF-β1 as well as iNOS in harvested bladder tissue was assessed by immunohistochemistry. Results Female rats had significantly higher levels of NO2-/NO3- in urine even at baseline as compared to male rats (p 2-/NO3- and TGF-β1. Male rats responded to CYP with significantly lower levels of NO2-/NO3- and significantly higher levels of TGF-β1 in urine (p 2-/NO3- after CYP were inversely correlated to latent and active TGF-β1 (Pearson coefficient of -0.72 and -0.69 in females and -0.89 and -0.76 in males, respectively; p Conclusion The results of this study suggest that there exists an inverse relationship between the expression of TGF-β1 and iNOS/NO2-/NO3- in CYP-inflamed bladder. The gender of the animal appears to magnify the differences in urine levels of TGF-β1 and NO2-/NO3- in this inflammatory

  7. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  8. Increased cAMP levels modulate transforming growth factor-beta/Smad-induced expression of extracellular matrix components and other key fibroblast effector functions.

    Science.gov (United States)

    Schiller, Meinhard; Dennler, Sylviane; Anderegg, Ulf; Kokot, Agatha; Simon, Jan C; Luger, Thomas A; Mauviel, Alain; Böhm, Markus

    2010-01-01

    cAMP is a key messenger of many hormones and neuropeptides, some of which modulate the composition of extracellular matrix. Treatment of human dermal fibroblasts with dibutyryl cyclic AMP and forskolin antagonized the inductive effects of transforming growth factor-beta (TGF-beta) on the expression of collagen, connective tissue growth factor, tissue inhibitor of matrix metalloproteinase-1, and plasminogen activator inhibitor type I, four prototypical TGF-beta-responsive genes. Increased intracellular cAMP prevented TGF-beta-induced Smad-specific gene transactivation, although TGF-beta-mediated Smad phosphorylation and nuclear translocation remained unaffected. However, increased cAMP levels abolished TGF-beta-induced interaction of Smad3 with its transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP)/p300. Overexpression of the transcriptional co-activator CBP/p300 rescued Smad-specific gene transcription in the presence of cAMP suggesting that sequestration of limited amounts of CBP/p300 by the activated cAMP/CREB pathway is the molecular basis of this inhibitory effect. These findings were extended by two functional assays. Increased intracellular cAMP levels suppressed the inductive activity of TGF-beta to contract mechanically unloaded collagen lattices and resulted in an attenuation of fibroblast migration of mechanically induced cell layer wounds. Of note, cAMP and TGF-beta synergistically induced hyaluronan synthase 2 (HAS2) expression and hyaluronan secretion, presumably via putative CREB-binding sites adjacent to Smad-binding sites within the HAS2 promoter. Our findings identify the cAMP pathway as a potent but differential and promoter-specific regulator of TGF-beta-mediated effects involved in extracellular matrix homeostasis.

  9. TGF-β/Smad signaling in renal fibrosis

    Directory of Open Access Journals (Sweden)

    Xiao-Ming eMeng

    2015-03-01

    Full Text Available TGF-β (transforming growth factor-β is well identified as a central mediator in renal fibrosis. TGF-β initiates canonical and non-canonical pathways to exert multiple biological effects. Among them, Smad signaling is recognized as a major pathway of TGF- signaling in progressive renal fibrosis. During fibrogenesis, Smad3 is highly activated, which is associated with the down-regulation of an inhibitory Smad7 via an ubiquitin E3-ligases-dependent degradation mechanism. The equilibrium shift between Smad3 and Smad7 leads to accumulation and activation of myofibroblasts, overproduction of ECM (extracellular matrix, and reduction in ECM degradation in the diseased kidney. Therefore, overexpression of Smad7 has been shown to be a therapeutic agent for renal fibrosis in various models of kidney diseases. In contrast, another downstream effecter of TGF-β/Smad signaling pathway, Smad2, exerts its renal protective role by counter-regulating the Smad3. Furthermore, recent studies demonstrated that Smad3 mediates renal fibrosis by down-regulating miR-29 and miR-200 but up-regulating miR-21 and miR-192. Thus, overexpression of miR-29 and miR-200 or down-regulation of miR-21 and miR-192 is capable of attenuating Smad3-mediated renal fibrosis in various mouse models of chronic kidney diseases. Taken together, TGF-/Smad signaling plays an important role in renal fibrosis. Targeting TGF-β/Smad3 signaling may represent a specific and effective therapy for chronic kidney diseases associated with renal fibrosis.

  10. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor β

    International Nuclear Information System (INIS)

    Andarawewa, Kumari L.; Costes, Sylvain V.; Fernandez-Garcia, Ignacio; Chou, William S.; Ravani, Shraddha A.; Park, Howard; Barcellos-Hoff, Mary Helen

    2011-01-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor β (TGF-β)-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-β-mediated EMT. Methods and Materials: HMECs were cultured on tissue culture plastic or in Matrigel (BD Biosciences, San Jose, CA) and exposed to low or high linear energy transfer (LET) and TGF-β (400 pg/mL). Image analysis was used to measure membrane-associated E-cadherin, a marker of functional epithelia, or fibronectin, a product of mesenchymal cells, as a function of radiation dose and quality. Results: E-cadherin was reduced in TGF-β-treated cells irradiated with low-LET radiation doses between 0.03 and 2 Gy compared with untreated, unirradiated cells or TGF-β treatment alone. The radiation quality dependence of TGF-β-mediated EMT was determined by use of 1 GeV/amu (gigaelectron volt / atomic mass unit) 56 Fe ion particles at the National Aeronautics and Space Administration's Space Radiation Laboratory. On the basis of the relative biological effectiveness of 2 for 56 Fe ion particles' clonogenic survival, TGF-β-treated HMECs were irradiated with equitoxic 1-Gy 56 Fe ion or 2-Gy 137 Cs radiation in monolayer. Furthermore, TGF-β-treated HMECs irradiated with either high- or low-LET radiation exhibited similar loss of E-cadherin and gain of fibronectin and resulted in similar large, poorly organized colonies when embedded in Matrigel. Moreover, the progeny of HMECs exposed to different fluences of 56 Fe ion underwent TGF-β-mediated EMT even when only one-third of the cells were directly traversed by the particle. Conclusions: Thus TGF-β-mediated EMT, like other non-targeted radiation effects, is neither radiation dose nor quality dependent at the doses examined.

  11. Transforming Growth Factor β/Activin Signaling Functions as a Sugar-Sensing Feedback Loop to Regulate Digestive Enzyme Expression

    Directory of Open Access Journals (Sweden)

    Wen-bin Alfred Chng

    2014-10-01

    Full Text Available Summary: Organisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor β (TGF-β ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-β/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-β/Activin signaling in sugar metabolism. : Organisms modulate their digestive processes to reflect their nutritional state. In this study, Chng et al. demonstrate that the TGF-β/Activin pathway functions as a carbohydrate-sensing mechanism in the adult Drosophila midgut to regulate digestive enzyme expression. They show that the TGF-β ligand, Dawdle, and the canonical TGF-β/Activin signaling are essential to couple carbohydrate sensing with digestive enzyme expression. Thus, their study highlights an unexpected function of TGF-β/Activin signaling that is beyond their established roles in development and immunity.

  12. TGF-βRI kinase activity mediates Emdogain-stimulated in vitro osteoclastogenesis.

    Science.gov (United States)

    Gruber, Reinhard; Roos, Gilles; Caballé-Serrano, Jordi; Miron, Rick; Bosshardt, Dieter D; Sculean, Anton

    2014-07-01

    Emdogain, containing an extract of fetal porcine enamel matrix proteins, is a potent stimulator of in vitro osteoclastogenesis. The underlying molecular mechanisms are, however, unclear. Here, we have addressed the role of transforming growth factor-beta receptor type 1 (TGF-βRI) kinase activity on osteoclastogenesis in murine bone marrow cultures. Inhibition of TGF-βRI kinase activity with SB431542 abolished the effect of Emdogain on osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand or tumor necrosis factor-alpha. SB431542 also suppressed the Emdogain-mediated increase of OSCAR, a co-stimulatory protein, and dendritic cell-specific transmembrane protein and Atp6v0d2, the latter two being involved in cell fusion. Similar to transforming growth factor-beta1 (TGF-β), Emdogain could not compensate for the inhibition of IL-4 and IFNγ on osteoclast formation. When using the murine macrophage cell line RAW246.7, SB431542 and the smad-3 inhibitor SIS3 blocked Emdogain-stimulated expression of the transcription factor NFATc1. Taken together, the data suggest that TGF-βRI kinase activity is necessary to mediate in vitro effects of Emdogain on osteoclastogenesis. Based on these in vitro data, we can speculate that at least part of the clinical effects of Emdogain on osteoclastogenesis is mediated via TGF-β signaling.

  13. Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-β3 fusion protein in peptide scaffolds.

    Science.gov (United States)

    Zheng, Dong; Dan, Yang; Yang, Shu-hua; Liu, Guo-hui; Shao, Zeng-wu; Yang, Cao; Xiao, Bao-jun; Liu, Xiangmei; Wu, Shuilin; Zhang, Tainjin; Chu, Paul K

    2015-01-01

    Adipose-derived stem cells (ADSCs) are promising for cartilage repair due to their easy accessibility and chondrogenic potential. Although chondrogenesis of transforming growth factor-β (TGF-β) mediated mesenchymal stem cells (MSCs) is well established in vitro, clinical tissue engineering requires effective and controlled delivery of TGF-β in vivo. In this work, a self-assembled peptide scaffold was employed to construct cartilages in vivo through the chondrogenesis from ADSCs controlled by recombinant fusion protein LAP-MMP-mTGF-β3 that was transfected by lentiviral vectors. During this course, the addition of matrix metalloproteinases (MMPs) can trigger the release of mTGF-β3 from the recombinant fusion protein of LAP-MMP-mTGF-β3 in the combined scaffolds, thus stimulating the differentiation of ADSCs into chondrogenesis. The specific expression of cartilage genes was analyzed by real-time polymerase chain reaction and Western blot. The expression of chondrocytic markers was obviously upregulated to a higher level compared to the one by commonly used TGF-β3 alone. After 3 weeks of in vitro culturing, the hybrids with differentiated chondrogenesis were then injected subcutaneously into nude mice and retrieved after 4 weeks of culturing in vivo. Histological analysis also confirmed that the recombinant fusion protein was more effective for the formation of cartilage matrix than the cases either with TGF-β3 alone or without LAP-MMP-mTGF-β3 (P<0.05). This study demonstrates that controlled local delivery of the LAP-MMP-mTGF-β3 constructs can accelerate differentiation of ADSCs into the cartilage in vivo, which indicates the great potential of this hybrid in rapid therapy of osteoarthritis. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Poly(ADP-ribose polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

    Directory of Open Access Journals (Sweden)

    Dan Huang

    Full Text Available BACKGROUND: Transforming growth factor type-β (TGF-β/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose polymerase 1 (PARP1, a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs. METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB or N-(6-oxo-5,6-dihydrophenanthridin-2-yl-2-(N,N-dimethylaminoacetami (PJ34, or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosylation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosylation enhanced Smad-Smad binding element (SBE complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.

  15. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  16. Epidermal growth factor and growth in vivo

    International Nuclear Information System (INIS)

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of 3 H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of 3 H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated

  17. Extracorporeal Shockwave Therapy Increases Growth Factor Release from Equine Platelet-Rich Plasma In Vitro

    Directory of Open Access Journals (Sweden)

    Kathryn A. Seabaugh

    2017-12-01

    Full Text Available IntroductionExtracorporeal shockwave therapy (ESWT and platelet-rich plasma (PRP are common treatments for soft tissue injuries in horses. Shockwave triggers cell specific responses to promote healing. Growth factors released from PRP also promote healing. It has been hypothesized that greater growth factor release would amplify the healing process. The combination of ESWT and PRP could promote healing in injured tendons and ligaments in the horse. The objective of this study was to determine if application of shockwaves to PRP samples increases the concentration of transforming growth factor-β1 (TGF-β1 and platelet-derived growth factor ββ (PDGF-ββ released from the platelets in vitro.Materials and methodsPRP was produced from blood drawn from six horses. The PRP from each horse was exposed to the following treatments: (1 positive control (freeze-thaw cycle, (2 untreated negative control, or shockwaves with either (3 a “standard probe” (ESWT-S with a 2 cm focal width and medium energy density or (4 a “power probe” (ESWT-P with a 1 cm focal width and high energy density. After each treatment, the samples were centrifuged, and the supernatant was harvested. The supernatant was then used for growth factor quantification via commercially available ELISA kits for TGF-β1 and PDGF-ββ.ResultsConcentrations of TGF-β1 and PDGF-ββ in PRP that underwent a freeze-thaw cycle were significantly increased compared with all other treatments. Both ESWT-S and ESWT-P resulted in significantly increased TGF-β1 concentrations, 46 and 33%, respectively, when compared with the negative control. Both ESWT-S and ESWT-P resulted in significantly increased PDGF-ββ concentrations, 219 and 190%, respectively, when compared with the negative control.DiscussionThese data indicate that the application of ESWT to PRP increases the expression of growth factors in vitro. This suggests that the combination therapy of local PRP injection followed by ESWT

  18. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    International Nuclear Information System (INIS)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-01-01

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs

  19. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of); Ko, Kinarm [Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701 (Korea, Republic of); Koh, Yong-Gon, E-mail: yonseranglab@daum.net [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of)

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  20. Increased serum levels of interleukin-17 and transforming growth factor-β in patients with Graves’ disease

    Science.gov (United States)

    Elvira, D.; Nasrul, E.; Sofyan, Y.; Decroli, E.; Darwin, E.

    2018-03-01

    Graves’ disease (GD) is an organ-specific autoimmune disease, characterized by excessive autoantibody levels due to tolerance breakdown of thyroid-specific autoantigens. To determine the role of interleukin-17 (IL-17) and transforming growth factor-ß (TGF-β) in GD, we assessed their serum levels in patients with GD and healthy controls. Thirty patients with hyperthyroidism, goiter, and positive thyroid-stimulating hormone receptor antibody diagnosed as GD, according to the clinical diagnostic criteria for autoimmune thyroid disease. Blood samples were also from 30 healthy individuals matched for age and sex as a control. Serum levels of IL-17 and TGF-ß were by using ELISA. IL-17 and TGF-ß levels (14.43 ± 2.15 pg/mL and 10.44 ± 3.19 pg/mL, respectively) were significantly higher in patients with GD than in controls (7.07 ± 1.45 pg/mL and 4.95 ± 1.35 pg/mL, respectively). However, no correlation between IL-17 and TGF-β level in patients with GD. The elevated serum level of IL-17 and TGF-β in patients with GD reflects Th-2 predominance, which causes increasing of these pro-inflammatory cytokines.

  1. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    Science.gov (United States)

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2014-01-01

    Full Text Available Transforming growth factor-beta (TGF-β is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents’ stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed.

  3. Insulin-like synergistic stimulation of DNA synthesis in Swiss 3T3 cells by the BSC-1 cell-derived growth inhibitor related to transforming growth factor type β

    International Nuclear Information System (INIS)

    Brown, K.D.; Holley, R.W.

    1987-01-01

    A cell growth inhibitor (GI), purified from BSC-1 cell-conditioned medium, has little if any effect on DNA synthesis when added alone to monolayer cultures of quiescent Swiss mouse 3T3 cells in serum-free medium. However, the inhibitor, which is closely related to transforming growth factor type β (TGF-β), exhibits a pronounced synergistic stimulation of DNA synthesis in combination with certain peptide (bombesin, vasopressin) or polypeptide (platelet-derived growth factor) mitogens. 125 I-EGF binding was measured and the efflux of 45 Ca 2+ was measured in response to mitogen stimulation. A similar synergistic response has been demonstrated for TGF-β purified from human platelets. In the presence of 3 nM bombesin, a half-maximal stimulation of DNA synthesis was obtained at a GI concentration of approximately 60 pg/ml, with a maximal response at approximately 600 pg/ml. The synergistic interactions demonstrated by GI or TGF-β in stimulating Swiss 3T3 cells closely resemble those previously shown for insulin, and the authors have observed that GI does not synergize with insulin to stimulate DNA synthesis in these cells. Like insulin, and in contrast to bombesin, vasopressin, and platelet-derived growth factor, GI does not activate cellular inositolphospholipid hydrolysis, calcium mobilization, or cross-regulation of epidermal growth factor receptor affinity. These results raise the possibility that the biochemical pathways activated by GI/TGF-β and insulin converge at a post-receptor stage

  4. Detection of growth factor binding to gelatin and heparin using a photonic crystal optical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Abby W. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Chemical Engineering and Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Chan, Leo L., E-mail: lylchan@hotmail.com [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Nexcelom Bioscience, Lawrence, MA 01843 (United States); Sendemir-Urkmez, Aylin [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Jamison, Russell D. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); School of Engineering, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2010-06-15

    Drug-carrier interactions are important to protein controlled release systems to protect the protein from denaturation and ensure properly timed release. A novel photonic crystal biosensor was used to investigate a gelatin-protein controlled release system to determine the amount of protein bound to the carrier at physiological conditions. The Biomolecular Interaction Detection (BIND) system reflects a narrow band of wavelengths when white light is shone incident to the grating. As mass is deposited onto the surface, the peak wavelength value is shifted due to changes in the optical density of the biosensor. The BIND system was used to detect the binding of growth factors onto acidic gelatin, basic gelatin, and heparin on the sensor surface. Through a series of experiments, including functionalizing the sensor, adjusting the ionic strength of the solution, adjusting the substrate concentration, and minimizing non-specific signal, the adsorption of the gelatins and heparin on the sensor was enhanced. The binding interaction of recombinant human transforming growth factor (rhTGF)-{beta}1 and bone morphogenetic protein (rhBMP)-2 with the two types of gelatin and heparin were investigated. The strength of the interaction between rhTGF-{beta}1 and the substrates is in the following order: heparin > acidic gelatin > basic gelatin. RhBMP-2 bound to the substrates but with less intensity than TGF-{beta}1: heparin > basic gelatin > acidic gelatin. This work provides support for the controlled release mechanism through degradation of the gelatin carrier.

  5. Is podoplanin expression associated with transforming growth factor-β signaling in odontogenic cysts and tumors?

    Science.gov (United States)

    Etemad-Moghadam, Shahroo; Alaeddini, Mojgan

    2018-03-26

    Induction of podoplanin by transforming growth factor-β (TGF-β) has been shown in a number of lesions but not in odontogenic tumors (OTs). We evaluated the association between these markers in OTs for the first time and compared their expression among the different neoplasms. Immunohistochemistry using monoclonal antibody against podoplanin and TGF-β was performed on 76 odontogenic cysts and tumors. Spearman's correlation coefficient, Kruskal-Wallis, and Mann-Whitney U tests followed by adjustment with Bonferroni were used for statistical analysis (P < .05). A significant difference in podoplanin expression was found among the lesions consisting of solid ameloblastomas, adenomatoid odontogenic tumors, ameloblastic fibromas, odontogenic myxomas (OMs), odontogenic keratocysts, and calcifying odontogenic cysts. Significant differences were observed only between OMs and each of the other neoplasms. Podoplanin immunostaining in the connective tissue was absent in most lesions. TGF-β was significantly different among the study sample but not between the lesions in paired comparisons. None of the studied OTs showed significant correlations between podoplanin-TGF-β, in either the epithelium or the stroma. These markers were also descriptively reported in calcifying epithelial odontogenic tumors. The inductive effect of TGF-β on podoplanin seems to be limited, if any, in odontogenic lesions. Podoplanin appears to play a role in some aspects of OTs with epithelial or mixed origins. Despite the possible participation of podoplanin in tumorigenesis, it may not necessarily be involved in the aggressive behavior of OTs. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression.

    Science.gov (United States)

    Hussan, F; Teoh, S Lin; Muhamad, N; Mazlan, M; Latiff, A A

    2014-08-01

    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract. Fifty-six male Sprague-Dawley rats were divided into a normal control group and five diabetic groups of ten rats each. Intravenous streptozotocin (50mg/kg) was given to induce diabetes in the diabetic groups. Full thickness excision wounds were created on the thoracodorsal region of the animals, and these wounds were then treated with vehicle, MC powder, MC ointment and povidone ointment or ointment base for ten days. Wound healing was determined by the rate of wound closure, total protein content and TGF-β expression in the wounds, and histological observation. Diabetic groups showed delayed wound closure rates compared to the control group. The wound closure rate in the MC ointment group was significantly faster than that of the untreated diabetic group (p<0.05). The MC ointment group also showed intense TGF-β expression and a high level of total protein content. MC ointment has a promising potential for use as an alternative topical medication for diabetic wounds. This work has shown that it accelerates wound healing in diabetic rats, and it is suggested here that this occurs by enhancing TGF-β expression. Further work is recommended to explore this effect.

  7. The Roles of TGF-Beta and TGF-Beta Signaling Receptors in Breast Carcinogenesis.

    Science.gov (United States)

    1995-07-11

    cell lines ( Kimchi et al., 1988;matrix formation (Massagud, 1990; Moses et al., 1990; Roberts Arteaga et al., 1988) have been shown to have low or...et TGF3V. Since sensitivity to growth factors is dependent on the al., 1986; Shipley et al., 1986), retinoblastoma cells ( Kimchi et capacity of the...J. (1989) J. Natl. Cancer Inst. 81, 1182-1185 Kimchi , A., Wang, X-F., Weinberg, R. A., Cheifetz, S., and Massagu6, J. (1988) Wang, X. F., Lin, H. Y

  8. Hydroxysafflor Yellow A Suppresses MRC-5 Cell Activation Induced by TGF-β1 by Blocking TGF-β1 Binding to TβRII.

    Science.gov (United States)

    Pan, Ruiyan; Zhang, Yadan; Zheng, Meng; Zang, Baoxia; Jin, Ming

    2017-01-01

    Hydroxysafflor yellow A (HSYA) is an active ingredient of Carthamus tinctorius L.. This study aimed to evaluate the effects of HSYA on transforming growth factor-β1 (TGF-β1)-induced changes in proliferation, migration, differentiation, and extracellular matrix accumulation and degradation in human fetal lung fibroblasts (MRC-5), to explore the mechanisms whereby HSYA may alleviate pulmonary fibrosis. MRC-5 cells were incubated with various doses of HSYA and/or the TGF-β receptor type I kinase inhibitor SB431542 and then stimulated with TGF-β1. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium inner salt assay. Cell migration was detected by wound-healing assay. Protein levels of α-smooth muscle actin (α-SMA), collagen I α 1 (COL1A1), and fibronectin (FN) were measured by immunofluorescence. Protein levels of matrix metalloproteinase-2, tissue inhibitor of matrix metalloproteinase-1, tissue inhibitor of matrix metalloproteinase-2, TGF-β type II receptor (TβRII), and TGF-β type I receptor were detected by western blotting. TβRII knockdown with siRNA interfered with the inhibitory effect of HSYA on α-SMA, COL1A1, and FN expression, and TGF-β1-induced Sma and Mad protein (Smad), and extracellular signal-regulated kinase/mitogen-activated protein kinase signaling pathway activation. The antagonistic effect of HSYA on the binding of fluorescein isothiocyanate-TGF-β1 to MRC-5 cell cytoplasmic receptors was measured by flow cytometry. HSYA significantly suppressed TGF-β1-induced cell proliferation and migration. HSYA could antagonize the binding of FITC-TGF-β1 to MRC-5 cell cytoplasmic receptors. Also HSYA inhibited TGF-β1-activated cell expression of α-SMA, COL1A1, and FN and phosphorylation level of Smad2, Smad3, and ERK by targeting TβRII in MRC-5 cells. These findings suggest that TβRII might be the target responsible for the inhibitory effects of HSYA on TGF-β1-induced

  9. Heat Shock Protein 70 Negatively Regulates TGF-β-Stimulated VEGF Synthesis via p38 MAP Kinase in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Go Sakai

    2017-11-01

    Full Text Available Background/Aims: We previously demonstrated that transforming growth factor-β (TGF-β stimulates the synthesis of vascular endothelial growth factor (VEGF through the activation of p38 mitogen-activated protein (MAP kinase in osteoblast-like MC3T3-E1 cells. Heat shock protein70 (HSP70 is a ubiquitously expressed molecular chaperone. In the present study, we investigated the involvement of HSP70 in the TGF-β-stimulated VEGF synthesis and the underlying mechanism in these cells. Methods: Culture MC3T3-E1 cells were stimulated by TGF-β. Released VEGF was measured using an ELISA assay. VEGF mRNA level was quantified by RT-PCR. Phosphorylation of each protein kinase was analyzed by Western blotting. Results: VER-155008 and YM-08, both of HSP70 inhibitors, significantly amplified the TGF-β-stimulated VEGF release. In addition, the expression level of VEGF mRNA induced by TGF-β was enhanced by VER-155008. These inhibitors markedly strengthened the TGF-β-induced phosphorylation of p38 MAP kinase. The TGF-β-induced phosphorylation of p38 MAP kinase was amplified in HSP70-knockdown cells. SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by these inhibitors of the TGF-β-induced VEGF release. Conclusion: These results strongly suggest that HSP70 acts as a negative regulator in the TGF-β-stimulated VEGF synthesis in osteoblasts, and that the inhibitory effect of HSP70 is exerted at a point upstream of p38 MAP kinase.

  10. XIAP gene expression and function is regulated by autocrine and paracrine TGF-β signaling

    Directory of Open Access Journals (Sweden)

    Van Themsche Céline

    2010-08-01

    Full Text Available Abstract Background X-linked inhibitor of apoptosis protein (XIAP is often overexpressed in cancer cells, where it plays a key role in survival and also promotes invasiveness. To date however, the extracellular signals and intracellular pathways regulating its expression and activity remain incompletely understood. We have previously showed that exposure to each of the three TGF-β (transforming growth factor beta isoforms upregulates XIAP protein content in endometrial carcinoma cells in vitro. In the present study, we have investigated the clinical relevance of TGF-β isoforms in endometrial tumours and the mechanisms through which TGF-β isoforms regulate XIAP content in uterine cancer cells. Methods TGF-β isoforms immunoreactivity in clinical samples from endometrial tumours was assessed using immunofluorescence. Two model cancer cell lines (KLE endometrial carcinoma cells and HeLa cervical cancer cells and pharmacological inhibitors were used to investigate the signalling pathways regulating XIAP expression and activity in response to autocrine and paracrine TGF-β in cancer cell. Results We have found immunoreactivity for each TGF-β isoform in clinical samples from endometrial tumours, localizing to both stromal and epithelial/cancer cells. Blockade of autocrine TGF-β signaling in KLE endometrial carcinoma cells and HeLa cervical cancer cells reduced endogenous XIAP mRNA and protein levels. In addition, each TGF-β isoform upregulated XIAP gene expression when given exogenously, in a Smad/NF-κB dependent manner. This resulted in increased polyubiquitination of PTEN (phosphatase and tensin homolog on chromosome ten, a newly identified substrate for XIAP E3 ligase activity, and in a XIAP-dependent decrease of PTEN protein levels. Although each TGF-β isoform decreased PTEN content in a XIAP- and a Smad-dependent manner, decrease of PTEN levels in response to only one isoform, TGF-β3, was blocked by PI3-K inhibitor LY294002. Conclusions

  11. Pathogenesis of cleft palate in TGF-beta3 knockout mice.

    Science.gov (United States)

    Taya, Y; O'Kane, S; Ferguson, M W

    1999-09-01

    We previously reported that mutation of the transforming growth factor-beta3 (TGF-beta3) gene caused cleft palate in homozygous null (-/-) mice. TGF-beta3 is normally expressed in the medial edge epithelial (MEE) cells of the palatal shelf. In the present study, we investigated the mechanisms by which TGF-beta3 deletions caused cleft palate in 129 x CF-1 mice. For organ culture, palatal shelves were dissected from embryonic day 13.5 (E13.5) mouse embryos. Palatal shelves were placed singly or in pairs on Millipore filters and cultured in DMEM/F12 medium. Shelves were placed in homologous (+/+ vs +/+, -/- vs -/-, +/- vs +/-) or heterologous (+/+ vs -/-, +/- vs -/-, +/+ vs +/-) paired combinations and examined by macroscopy and histology. Pairs of -/- and -/- shelves failed to fuse over 72 hours of culture whereas pairs of +/+ (wild-type) and +/+ or +/- (heterozygote) and +/-, as well as +/+ and -/- shelves, fused within the first 48 hour period. Histological examination of the fused +/+ and +/+ shelves showed complete disappearance of the midline epithelial seam whereas -/- and +/+ shelves still had some seam remnants. In order to investigate the ability of TGF-beta family members to rescue the fusion between -/- and -/- palatal shelves in vitro, either recombinant human (rh) TGF-beta1, porcine (p) TGF-beta2, rh TGF-beta3, rh activin, or p inhibin was added to the medium in different concentrations at specific times and for various periods during the culture. In untreated organ culture -/- palate pairs completely failed to fuse, treatment with TGF-beta3 induced complete palatal fusion, TGF-beta1 or TGF-beta2 near normal fusion, but activin and inhibin had no effect. We investigated ultrastructural features of the surface of the MEE cells using SEM to compare TGF-beta3-null embryos (E 12. 5-E 16.5) with +/+ and +/- embryos in vivo and in vitro. Up to E13.5 and after E15.5, structures resembling short rods were observed in both +/+ and -/- embryos. Just before fusion

  12. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  13. Vasohibin-2 is required for epithelial-mesenchymal transition of ovarian cancer cells by modulating transforming growth factor-β signaling.

    Science.gov (United States)

    Norita, Rie; Suzuki, Yasuhiro; Furutani, Yutaka; Takahashi, Kazuki; Yoshimatsu, Yasuhiro; Podyma-Inoue, Katarzyna A; Watabe, Tetsuro; Sato, Yasufumi

    2017-03-01

    Vasohibin-2 (VASH2) is a homolog of VASH1, an endothelium-derived angiogenesis inhibitor. Vasohibin-2 is mainly expressed in cancer cells, and has been implicated in the progression of cancer by inducing angiogenesis and tumor growth. Although VASH2 has been recently reported to be involved in epithelial-mesenchymal transition (EMT), its precise roles are obscure. The aim of the present study was to clarify the role of VASH2 in the EMT of cancer cells in relation to transforming growth factor-β (TGF-β) signaling, which is a major stimulator of EMT. Decreased expression of VASH2 in ovarian cancer cells significantly repressed the expression of TGF-β type I receptor, namely activin receptor-like kinase 5. Transforming growth factor-β1-induced phosphorylation of Smad2 and Smad3 was markedly decreased in VASH2 knockdown cells while the expression of Smad2 and Smad3 was unchanged. Accordingly, the responses to TGF-β1 shown by promoter assay and plasminogen activator inhibitor type 1 expression were significantly attenuated in VASH2 knockdown cells. Furthermore, knockdown of VASH2 in cancer cells abrogated the TGF-β1-induced reduced expression of epithelial markers including E-cadherin, and the elevated expression of mesenchymal markers including fibronectin, ZEB2, and Snail2, suggesting that endogenous VASH2 is required for TGF-β1-induced EMT. In accordance with these results, the effects of TGF-β1 on cell morphology, migration, invasion, and MMP2 expression were also abrogated when VASH2 was knocked down. These results indicate that VASH2 played a significant role in the EMT by modulating the TGF-β signaling. We propose that VASH2 would be a novel molecular target for the prevention of EMT in cancers. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    Science.gov (United States)

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of

  15. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  16. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells

    Energy Technology Data Exchange (ETDEWEB)

    Ikezaki, Midori; Higashimoto, Natsuki; Matsumura, Ko; Ihara, Yoshito, E-mail: y-ihara@wakayama-med.ac.jp

    2016-08-26

    Heat-shock cognate protein 70 (Hsc70), a molecular chaperone constitutively expressed in the cell, is involved in the regulation of several cellular signaling pathways. In this study, we found that TGF-β-induced phosphorylation and nuclear translocation of Smad2/3 were suppressed in fibroblastic NRK-49F cells treated with small interfering RNA (siRNA) for Hsc70. In the cells underexpressing Hsc70, transcriptional induction of connective tissue growth factor (CTGF), a target gene of the TGF-β signaling, was also suppressed in the early phase of TGF-β stimulation. Upon stimulation with TGF-β, Hsc70 interacted with Smad2/3, suggesting functional interactions of Hsc70 and Smad2/3 for the activation of TGF-β-induced Smad signaling. Although the expression of heat-shock protein 70 (Hsp70) was upregulated in the cells treated with Hsc70 siRNA, TGF-β-induced Smad activation was not affected in the cells overexpressing Hsp70. Collectively, these results indicate that Hsc70, but not Hsp70, supportively regulates TGF-β-induced Smad signaling in NRK-49F cells. - Highlights: • Hsc70 siRNA treatment suppressed the expression of Hsc70 but induced the expression of Hsp70 in NRK-49F cells. • Hsc70 siRNA treatment suppressed the activation of Smad2/3 in the cells treated with TGF-β. • Hsc70 interacted with Smad2/3 on stimulation with TGF-β in the cells. • Hsp70 did not influence the TGF-β-induced activation of Smad2/3 in the cells overexpressing Hsp70.

  17. Enhanced Dupuytren's disease fibroblast populated collagen lattice contraction is independent of endogenous active TGF-β2

    Directory of Open Access Journals (Sweden)

    Howard Jeffrey

    2004-11-01

    Full Text Available Abstract Background Dupuytren's disease (DD is a debilitating fibro-proliferative disorder of the hand characterized by the appearance of fibrotic lesions (nodules and cords leading to flexion contractures of the fingers and loss of hand function. Although the molecular mechanism of DD is unknown, it has been suggested that transforming growth factor-β2 (TGF-β2 may play an important role in the underlying patho-physiology of the disease. The purpose of this study was to further explore this hypothesis by examining the effects of TGF-β2 on primary cell cultures derived from patient-matched disease and normal palmar fascia tissue using a three-dimensional collagen contraction assay. Methods Fibroblast-populated collagen lattice (FPCL contraction assays using primary cell cultures derived from diseased and control fascia of the same DD patients were studied in response to exogenous TGF-β2 and neutralizing anti-TGF-β2 antibodies. Results Contraction of the FPCLs occurred significantly faster and to a greater extent in disease cells compared to control cells. The addition of TGF-β2 enhanced the rate and degree of collagen contraction in a dose-dependent fashion for both control and diseased cells. Neutralizing anti-TGF-β2 antibodies abolished exogenous TGF-β2 stimulated collagen contraction, but did not inhibit the enhanced basal collagen contraction activity of disease FPCL cultures. Conclusions Although exogenous TGF-β2 stimulated both disease and control FPCL contraction, neutralizing anti-TGF-β2 antibodies did not affect the elevated basal collagen contraction activity of disease FPCLs, suggesting that the differences in the collagen contraction activity of control and disease FPCL cultures are not due to differences in the levels of endogenous TGF-β2 activity.

  18. Growth factors, nutrient signaling, and cardiovascular aging.

    Science.gov (United States)

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D

    2012-04-13

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.

  19. Negative regulation of TGF-β1-induced MKK6-p38 and MEK-ERK signalling and epithelial-mesenchymal transition by Rac1b.

    Science.gov (United States)

    Witte, David; Otterbein, Hannah; Förster, Maria; Giehl, Klaudia; Zeiser, Robert; Lehnert, Hendrik; Ungefroren, Hendrik

    2017-12-11

    Prompted by earlier findings that the Rac1-related isoform Rac1b inhibits transforming growth factor (TGF)-β1-induced canonical Smad signalling, we studied here whether Rac1b also impacts TGF-β1-dependent non-Smad signalling such as the MKK6-p38 and MEK-ERK mitogen-activated protein kinase (MAPK) pathways and epithelial-mesenchymal transition (EMT). Transient depletion of Rac1b protein in pancreatic cancer cells by RNA interference increased the extent and duration of TGF-β1-induced phosphorylation of p38 MAPK in a Smad4-independent manner. Rac1b depletion also strongly increased basal ERK activation - independent of the kinase function of the TGF-β type I receptor ALK5 - and sensitised cells towards further upregulation of phospho-ERK levels by TGF-β1, while ectopic overexpression of Rac1b had the reverse effect. Rac1b depletion increased an EMT phenotype as evidenced by cell morphology, gene expression of EMT markers, cell migration and growth inhibition. Inhibition of MKK6-p38 or MEK-ERK signalling partially relieved the Rac1b depletion-dependent increase in TGF-β1-induced gene expression and cell migration. Rac1b depletion also enhanced TGF-β1 autoinduction of crucial TGF-β pathway components and decreased that of TGF-β pathway inhibitors. Our results show that Rac1b antagonises TGF-β1-dependent EMT by inhibiting MKK6-p38 and MEK-ERK signalling and by controlling gene expression in a way that favors attenuation of TGF-β signalling.

  20. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2007-01-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF......-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7......), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were...

  1. Preoperative oral polymeric diet enriched with transforming growth factor-beta 2 (Modulen) could decrease postoperative morbidity after surgery for complicated ileocolonic Crohn's disease.

    Science.gov (United States)

    Beaupel, Nathan; Brouquet, Antoine; Abdalla, Solafah; Carbonnel, Franck; Penna, Christophe; Benoist, Stéphane

    2017-01-01

    Exclusive polymeric diet enriched with transforming growth factor-beta 2 (ANS-TGF-β2) has been used for remission induction and maintenance in pediatric Crohn's disease (CD). Its use in the preoperative setting has never been evaluated. The aim of this study was to evaluate preoperative ANS-TGF-β2 to decrease postoperative complications after surgery for complicated ileocolonic CD. From 2011 to 2015, data of all consecutive patients who underwent elective surgery for ileocolonic CD were collected prospectively. Preoperative, exclusive ANS-TGF-β2 was administered in high-risk patients with complicated CD. Complicated CD was defined by the presence of obstructive symptoms, and/or steroid treatment, and/or preoperative weight loss >10% and/or perforating CD. Outcomes of high-risk patients receiving preoperative ANS-TGF-β2 were compared to those of low-risk patients with no complicated CD who underwent upfront surgery. Fifty-six patients underwent surgery for ileocolonic CD. Among them, 35 high-risk patients received preoperative ANS-TGF-β2 and 21 low-risk patients underwent upfront surgery. Preoperative full-dose ANS-TGF-β2 was feasible in 34/35 high-risk patients. Discontinuation of steroids during preoperative ANS-TGF-β2 could be achieved in 10/16 patients (62.5%). Postoperative complications rates were 8/35 (23.8%) and 5/21 (22.9%) in high-risk and low-risk patients, respectively (p = 1). Temporary ileocolostomy rates in high-risk patients and in low-risk patients were 4/35 (11%) and 0/21, respectively (p = 0.286) Conclusion: Preoperative ANS-TGF-β2 is feasible in most high-risk patients with complicated ileocolonic CD and could limit the deleterious effects of risk factors of postoperative morbidity. These results need to be confirmed in a large randomized controlled trial.

  2. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Serena Battaglia

    Full Text Available BACKGROUND: Chronic hepatitis C virus (HCV infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC development. TGF-beta is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-beta signaling. PRINCIPAL FINDINGS: We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-beta responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-beta was still able to induce an epithelial to mesenchymal transition (EMT, a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-beta responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-beta growth inhibitory effects to tumor promoting responses. CONCLUSION/SIGNIFICANCE: Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-beta, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-beta responses from cytostatic effects to EMT development.

  3. Research of TGF-beta1 Inducing Lung Adencarcinoma PC9 Cells to Mesenchymal Cells Transition

    Directory of Open Access Journals (Sweden)

    Xiaofeng CHEN

    2010-01-01

    Full Text Available Background and objective It has been proven that epithelial-mesenchymal transition (EMT not only correlated with embryonic development but also could promote tumor invasion and metastasis. Transforming growth factor beta-1 (TGF-β1 has been identified as the main inducer of tumor EMT. The aim of this study was to investigate the effects of TGF-β1 on EMT and PI3K/AKT signaling pathway in lung adencarcinoma PC9 cells. Methods Cultured PC9 cells were treated with different concentrations of TGF-β1 for 48 h. The morphological changes were observed under phase-contrast microscopy; EMT relative marker protein changes were assessed by Western blot and immunoflurescence staining. In addition, the expression of AKT and P-AKT were also measured by Western blot. Results The data showed that TGF-β1 could induce PC9 morphological alteration from epithelial to mesenchymal and upregulate the expression of mesenchymal maker protein Fibronectin. Obviously, the expression of P-AKT was downregulated by TGF-β1 treatment for 48 h. Conclusion TGF-β1 might induce EMT of PC9 cells , accompanied by the changes of PI3K/AKT signaling pathway.

  4. Atypical interactions of integrin αVβ8with pro-TGF-β1.

    Science.gov (United States)

    Wang, Jianchuan; Dong, Xianchi; Zhao, Bo; Li, Jing; Lu, Chafen; Springer, Timothy A

    2017-05-23

    Integrins α V β 6 and α V β 8 are specialized for recognizing pro-TGF-β and activating its growth factor by releasing it from the latency imposed by its surrounding prodomain. The integrin α V β 8 is atypical among integrins in lacking sites in its cytoplasmic domain for binding to actin cytoskeleton adaptors. Here, we examine α V β 8 for atypical binding to pro-TGF-β1. In contrast to α V β 6 , α V β 8 has a constitutive extended-closed conformation, and binding to pro-TGF-β1 does not stabilize the open conformation of its headpiece. Although Mn 2+ potently activates other integrins and increases affinity of α V β 6 for pro-TGF-β1 25- to 55-fold, it increases α V β 8 affinity only 2- to 3-fold. This minimal effect correlates with the inability of Mn 2+ and pro-TGF-β1 to stabilize the open conformation of the α V β 8 headpiece. Moreover, α V β 8 was inhibited by high concentrations of Mn 2+ and was stimulated and inhibited at markedly different Ca 2+ concentrations than α V β 6 These unusual characteristics are likely to be important in the still incompletely understood physiologic mechanisms that regulate α V β 8 binding to and activation of pro-TGF-β.

  5. Transforming growth factor β1, matrix metalloproteinase-2 and its tissue inhibitor in patients with pseudoexfoliation glaucoma/syndrome

    Directory of Open Access Journals (Sweden)

    Đorđević-Jocić Jasmina

    2012-01-01

    Full Text Available Background/Aim. Transforming growth factor-b1 (TGF-b1, oxidative stress and imbalance between matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs may play an important role in pathogenesis of pseudoexfoliation syndrome/glaucoma (PEX Sy/Gl. The aim of the study was to measure concentrations of TGF- b1, MMP-2, TIMP-2 in the aqueous humor in the examined group, as well as to compare the biochemical findings with the following clinical parameters: degree of chamber angle pigmantation, presence of pseudoexfoliation and the value of intraocular pressure (IOP. Methods. Aqueous samples from 30 patients with cataract, 30 patients with PEX Sy, 36 patients with PEX Gl, and 42 patients with primary open-angle glaucoma (POAG were collected during phacoemulsification cataract surgery. TGF b1, MMP-2, TIMP-2 Fluotokine Multi Analyze Profiling kits and Luminex technology were used to simultaneously measure TGF b1, MMP-2 and TIMP-2. Results. TGF- β1, MMP-2, TIMP-2 were detected in human aqueous from all the groups with the highest level in the group with PEX Gl. Statistically, a significant correlation between the levels of TGF b1, MMP-2, TIMP-2 in the aqueous humor of the patients with PEX Gl and the IOP value was confirmed (p < 0.05. In this group, the positive correlations between the TGF b1 concentration in the aqueous humor and the presence of pseudoexfoliation (p < 0.01, on the one hand, and between the TIMP-2 level and the presence of pseudoexfoliation (p < 0.05, on the other, were reported. A statistically significant positive correlation of TGF-b1 and MMP-2, and the degree of chamber angle pigmentation in the PEX Gl group was confirmed (p < 0.05. In the POAG group, TIMP-2 values were in a negative correlation with the degree of pigmentation (p < 0.05, and the IOP value (p < 0.05. Conclusion. TGF b1 and MMP-2 affect the degree of chamber angle pigmentation and the degree of pseudoexfoliation in patients with pseudoexfoliative glaucoma.

  6. Redundancy and molecular evolution: the rapid Induction of bone formation by the mammalian transforming growth factor-β3 isoform

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2016-09-01

    Full Text Available The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin, a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins’ genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in Papio ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of Bone

  7. TGF-β and Physiological Root Resorption of Deciduous Teeth

    Directory of Open Access Journals (Sweden)

    Emi Shimazaki

    2016-12-01

    Full Text Available The present study was performed to examine how transforming growth factor β (TGF-β in root-surrounding tissues on deciduous teeth regulates the differentiation induction into odontoclasts during physiological root resorption. We prepared root-surrounding tissues with (R or without (N physiological root resorption scraped off at three regions (R1–R3 or N1–N3 from the cervical area to the apical area of the tooth and measured both TGF-β and the tartrate-resistant acid phosphatase (TRAP activities. The TGF-β activity level was increased in N1–N3, whereas the TRAP activity was increased in R2 and R3. In vitro experiments for the receptor activator of nuclear factor-κB (NF-κB ligand (RANKL-mediated osteoclast differentiation revealed that proteins from N1–N3 and R1–R3 enhanced the TRAP activity in RAW264 cells. A genetic study indicated that the mRNA levels of TGF-β1 in N1 and N2 were significantly increased, and corresponded with levels of osteoprotegerin (OPG. In contrast, the expression level of RANKL was increased in R2 and R3. Our findings suggest that TGF-β is closely related to the regulation of OPG induction and RANKL-mediated odontoclast differentiation depending on the timing of RANKL and OPG mRNA expression in the root-surrounding tissues of deciduous teeth during physiological root resorption.

  8. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm

    NARCIS (Netherlands)

    Doyle, Alexander J.; Doyle, Jefferson J.; Bessling, Seneca L.; Maragh, Samantha; Lindsay, Mark E.; Schepers, Dorien; Gillis, Elisabeth; Mortier, Geert; Homfray, Tessa; Sauls, Kimberly; Norris, Russell A.; Huso, Nicholas D.; Leahy, Dan; Mohr, David W.; Caulfield, Mark J.; Scott, Alan F.; Destrée, Anne; Hennekam, Raoul C.; Arn, Pamela H.; Curry, Cynthia J.; van Laer, Lut; McCallion, Andrew S.; Loeys, Bart L.; Dietz, Harry C.

    2012-01-01

    Elevated transforming growth factor (TGF)-beta signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS)(1-4). However, the location and character of many of the causal mutations in LDS intuitively

  9. TGF-β1 serum concentrations and receptor expressions in the lens ...

    African Journals Online (AJOL)

    Tissue fibrosis as complication of diabetes mellitus is known in humans. Because TGF-β1induces fibrosis and is elevated in humans suffering from diabetes mellitus we measured this growth factor in serum of dogs with diabetes mellitus and compared it with healthy dogs and those with fibrotic diseases. Further we ...

  10. Transforming growth factor-betas and related gene products in mosquito vectors of human malaria parasites: signaling architecture for immunological crosstalk.

    Science.gov (United States)

    Lieber, Matthew J; Luckhart, Shirley

    2004-08-01

    The participation of a divergent mosquito transforming growth factor-beta (TGF-beta) and mammalian TGF-beta1 in the Anopheles stephensi response to malaria parasite development [Infect. Genet. Evol. 1 (2001) 131-141; Infect. Immun. 71 (2003) 3000-3009] suggests that a network of Anopheles TGF-beta ligands and signaling pathways figure prominently in immune defense of this important vector group. To provide a basis for identifying the roles of these proteins in Anopheles innate immunity, we identified six predicted TGF-beta ligand-encoding genes in the Anopheles gambiae genome, including two expressed, diverged copies of 60A, the first evidence of ligand gene duplication outside of chordates. In addition to five predicted type I and II receptors, we identified three Smad genes in the A. gambiae genome that would be predicted to support both TGF-beta/Activin- and bone morphogenetic protein (BMP)-like signaling. All three Smad genes are expressed in an immunocompetent A. stephensi cell line and in the A. stephensi midgut epithelium, confirming that a conserved signaling architecture is in place to support signaling by divergent exogenous and endogenous TGF-beta superfamily proteins.

  11. TGF-{beta}1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-{kappa}B/IL-6/MMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Binker, Marcelo G. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina); Binker-Cosen, Andres A. [CBRHC Research Center, Buenos Aires (Argentina); Gaisano, Herbert Y. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); Cosen, Rodica H. de [CBRHC Research Center, Buenos Aires (Argentina); Cosen-Binker, Laura I., E-mail: laura.cosen.binker@utoronto.ca [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina)

    2011-02-04

    Research highlights: {yields} Rac1 mediates TGF-{beta}1-induced SW1990 invasion through MMP-2 secretion and activation. {yields} NADPH-generated ROS act downstream of Rac1 in TGF-{beta}1-challenged SW1990 cells. {yields} TGF-{beta}1-stimulated ROS activate NF-{kappa}B in SW1990 cells. {yields} NF{kappa}B-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-{beta}1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-{beta}1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-{beta}1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-{beta}1-stimulated invasion. Our results also indicate that signaling events involved in TGF-{beta}1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  12. TGF-β1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-κB/IL-6/MMP-2

    International Nuclear Information System (INIS)

    Binker, Marcelo G.; Binker-Cosen, Andres A.; Gaisano, Herbert Y.; Cosen, Rodica H. de; Cosen-Binker, Laura I.

    2011-01-01

    Research highlights: → Rac1 mediates TGF-β1-induced SW1990 invasion through MMP-2 secretion and activation. → NADPH-generated ROS act downstream of Rac1 in TGF-β1-challenged SW1990 cells. → TGF-β1-stimulated ROS activate NF-κB in SW1990 cells. → NFκB-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-β1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-β1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-β1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-β1-stimulated invasion. Our results also indicate that signaling events involved in TGF-β1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  13. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors.

    Science.gov (United States)

    Amable, Paola Romina; Carias, Rosana Bizon Vieira; Teixeira, Marcus Vinicius Telles; da Cruz Pacheco, Italo; Corrêa do Amaral, Ronaldo José Farias; Granjeiro, José Mauro; Borojevic, Radovan

    2013-06-07

    Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 10(6) to 1.9 × 10(6) platelets/μl). Platelets were highly purified, because only platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool

  14. Association of a transforming growth factor-β1 polymorphism with acute coronary syndrome in a Chinese Han population.

    Science.gov (United States)

    Yang, Y N; Zhao, B; Li, X M; Xie, X; Liu, F; Chen, B D

    2014-04-03

    Acute coronary syndrome (ACS) is a complex multifactorial and polygenic disorder that is thought to result from the interaction between an individual's genetic makeup and various environmental factors. The aim of this study was to investigate the association of a transforming growth factor-β1 (TGF-β1) polymorphism (-509C>T) with ACS in a Chinese Han population. The TGF-β1 polymorphism was evaluated in 336 patients with ACS and 396 healthy control subjects by polymerase chain reaction-restriction fragment length polymorphism. The genotype distributions of the control and ACS groups were in Hardy-Weinberg equilibrium (X(2) = 3.54 and X(2) = 1.72, respectively, P > 0.05). The frequencies of the CC, CT, and TT genotypes were 22.61, 53.57, and 20.83% in the ACS group, respectively, whereas they were 8.33, 48.74, and 42.17% in controls. There were significant differences between controls and ACS patients in the frequencies of the CC genotype and the C allele. These results suggest that the promoter polymorphism (-509C>T) in TGF-β1 is associated with ACS in this population. The CC genotype and the C allele of TGF-β1 might be a specific risk factor of ACS in the Chinese Han population in Xinjiang.

  15. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis

    NARCIS (Netherlands)

    Mia, Masum M.; Bank, Ruud A.

    Fibrosis is a chronic disorder affecting many organs. A universal process in fibrosis is the formation of myofibroblasts and the subsequent collagen deposition by these cells. Transforming growth factor beta1 (TGF beta 1) plays a major role in the formation of myofibroblasts, e.g. by activating

  16. TGF-β1 regulation of estrogen production in mature rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Man-Li Liu

    Full Text Available BACKGROUND: Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1 is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2 synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP, respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC. CONCLUSIONS: Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.

  17. Lack of association between TGF-beta-1 genotypes and microalbuminuria in essential hypertensive men.

    Science.gov (United States)

    Dell'Omo, Giulia; Penno, Giuseppe; Pucci, Laura; Lucchesi, Daniela; Del Prato, Stefano; Pedrinelli, Roberto

    2009-06-01

    Polymorphisms within the gene for transforming growth factor (TGF)-beta-1, a pro-fibrogenic cytokine pathophysiologically involved in hypertension and hypertensive target damage, might modulate the biological activity of the encoded protein. Through that mechanism, they might contribute to microalbuminuria, a marker of subclinical renal damage and a correlate of systemic inflammation and endothelial dysfunction in hypertension, a possibility never before tested. For this reason, we assessed the association of four TGF-beta-1 polymorphic variants (C-509T, Leu(10)-->Pro, Arg(25)-->Pro, Thr(263)-->Ile) with albuminuria in uncomplicated essential hypertensive men, using (circulating active + acid-activatable latent) TGF-beta-1 levels as an indirect index of their in vivo biological activity. Because of the close pathophysiological link of TGF-beta-1 with the renin-angiotensin system, we also tested the behaviour of the angiotensin converting enzyme (ACE) deletion/insertion (D/I) polymorphism. Albuminuria (three overnight collections), office and 24-h BP, left ventricular mass index (LVMI), BMI, renal function, glucose, lipids, plasma TGF-beta-1 (n = 162, ELISA) were measured in 222 genetically unrelated, never-treated, uncomplicated Caucasian hypertensive men. ACE D/I polymorphisms were analysed by the polymerase chain reaction technique or a 5' nuclease assay with further restriction analysis when required. Urine albumin levels or microalbuminuria (albuminuria > or =15 microg/min) did not differ by TGF-beta-1 genotypes, but both parameters were more frequent in ACE D/D homozygotes. Plasma TGF-beta-1 was similar across genetic backgrounds and was unrelated to albuminuria. Cardiovascular, renal, metabolic parameters were homogeneously distributed across genotypes. In contrast to its link with the ACE D/I genotype, microalbuminuria was independent of TGF-beta-1 polymorphism in this group of never-treated, uncomplicated essential hypertensive men.

  18. Inhibitory effect of tanshinone II A on TGF II-β1-induced cardiac fibrosis.

    Science.gov (United States)

    Zhou, Daixing; Li, Zhihui; Zhang, Liwei; Zhan, Chengye

    2012-12-01

    This study examined the effect of tanshinone II A (TSN II A) on the cardiac fibrosis induced by transforming growth factor β1 (TGF-β1) and the possible mechanisms. Cardiac fibroblasts were isolated from cardiac tissues of neonatal Sprague-Dawley (SD) rats by the trypsin digestion and differential adhesion method. The cells were treated with 5 ng/mL TGF-β1 alone or pretreated with TSN II A at different concentrations (10(-5) mol/L, 10(-4) mol/L). Immunocytochemistry was used for cell identification, RT-PCR for detection of the mRNA expression of connective tissue growth factor (CTGF) and collagen type I (COL I), Western blotting for detection of the protein expression of Smad7 and Smad3, and immunohistochemistry and immunofluorescence staining for detection of the protein expression of phosphorylated Smad3 (p-Smad3), CTGF and COLI. The results showed that TGF-β1 induced the expression of CTGF, COL I, p-Smad3 and Smad7 in a time-dependent manner. The mRNA expression of CTGF and COL I was significantly increased 24 h after TGF-β1 stimulation (PTSN A resulted in a decrease in the expression of p-Smad3, CTGF and COL I (PTSN II A as compared with that at 2 h post TGF-β1 stimulation (PTSN I IA; PTSN II A). It was concluded that TSN II A may exert an inhibitory effect on cardiac fibrosis by upregulating the expression of Smad7, suppressing the TGF-β1-induced phosphorylation of Smad3 and partially blocking the TGF-β1-Smads signaling pathway.

  19. TGF-beta induces serous borderline ovarian tumor cell invasion by activating EMT but triggers apoptosis in low-grade serous ovarian carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jung-Chien Cheng

    Full Text Available Apoptosis in ovarian surface epithelial (OSE cells is induced by transforming growth factor-beta (TGF-β. However, high-grade serous ovarian carcinomas (HGC are refractory to the inhibitory functions of TGF-β; their invasiveness is up-regulated by TGF-β through epithelial-mesenchymal transition (EMT activation. Serous borderline ovarian tumors (SBOT have been recognized as distinct entities that give rise to invasive low-grade serous carcinomas (LGC, which have a relatively poor prognosis and are unrelated to HGC. While it is not fully understood how TGF-β plays disparate roles in OSE cells and its malignant derivative HGC, its role in SBOT and LGC remains unknown. Here we demonstrate the effects of TGF-β on cultured SBOT3.1 and LGC-derived MPSC1 cells, which express TGF-β type I and type II receptors. TGF-β treatment induced the invasiveness of SBOT3.1 cells but reduced the invasiveness of MPSC1 cells. The analysis of apoptosis, which was assessed by cleaved caspase-3 and trypan blue exclusion assay, revealed TGF-β-induced apoptosis in MPSC1, but not SBOT3.1 cells. The pro-apoptotic effect of TGF-β on LGC cells was confirmed in another immortalized LGC cell line ILGC. TGF-β treatment led to the activation of Smad3 but not Smad2. The specific TβRI inhibitor SB431542 and TβRI siRNA abolished the SBOT3.1 invasion induced by TGF-β, and it prevented TGF-β-induced apoptosis in MPSC1 cells. In SBOT3.1 cells, TGF-β down-regulated E-cadherin and concurrently up-regulated N-cadherin. TGF-β up-regulated the expression of the transcriptional repressors of E-cadherin, Snail, Slug, Twist and ZEB1. In contrast, co-treatment with SB431542 and TβRI depletion by siRNA abolished the effects of TGF-β on the relative cadherin expression levels and that of Snail, Slug, Twist and ZEB1 as well. This study demonstrates dual TGF-β functions: the induction of SBOT cell invasion by EMT activation and apoptosis promotion in LGC cells.

  20. Effect of anticancer drugs on production of transforming growth factor and expression of p53 AND Bcl-2 proteins by MCF-7 and T47D cell lines of human breast carcinoma.

    Science.gov (United States)

    Stoika, R S; Yakymovych, I A; Kashchak, N I; Boyko, M M; Korynevska, A V; Klyuchyvska, O Yu; Shafranska, G I; Yakymovych, M Ya; Zhylchuk, V Ye; Kudryavets, Yu Y; Vorontsova, A L

    2008-03-01

    To compare the capability of methotrexate, cisplatin, doxorubicine and vincristine to induce production of the transforming growth factor beta(1) (TGF-beta(1)) in two cell lines - MCF-7 and T47D - of human breast carcinoma, as well as to study sensitivity of these cells to TGF-beta(1) and mentioned anticancer drugs. ELISA for detection of TGF-beta content in conditioned culture media and Western-blot analysis of the proapoptotic p53 and antiapoptotic Bcl-2 proteins were applied. T47D cells showing higher resistance to growth inhibiting effect of TGF-beta(1) were also refractory to cisplatin. There was no difference between MCF-7 and T47D cells in their sensitivity to methotrexate and doxorubicine, although T47D cells were more sensitive to vincristine. It was found that methotrexate and vincristine did not affect TGF-beta(1) production, while doxorubicine used at a dose of 1-100 ug/ml, significantly induced TGF-beta(1) production in both cell lines. p53 expression in T47D cells was higher than in MCF-7 cells where only doxorubicin induced strongly p53 expression. It should be noted, that Bcl-2 was better expressed in MCF-7 cells, while it was almost undetectable in T47D cells. In cells of human mammary carcinoma of MCF-7 and T47D lines doxorubicine, unlike vincristine and methotrexate, in dose depending manner induces production of TGF-beta(1). TGF-beta(1) production in carcinoma cells was associated with doxorubicine-mediated p53 expression in MCF-7 cells or high basal level of p53 in T47D cells. The cells of MCF-7 line were more sensitive to growth inhibition by exogenous TGF-beta(1) and to cisplatine action than T47D cells, but there was no difference between these cell lines in sensitivity to other anticancer drugs.

  1. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells.

    Science.gov (United States)

    Huang, Yaqian; Shen, Zhizhou; Chen, Qinghua; Huang, Pan; Zhang, Heng; Du, Shuxu; Geng, Bin; Zhang, Chunyu; Li, Kun; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-14

    The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 knockdown induced a severe collagen deposition in TGF-β1-treated VSMCs. Furthermore, AAT1 or AAT2 overexpression suppressed procollagen I and III mRNA, upregulated matrix metalloproteinase (MMP)-13 expression, downregulated tissue inhibitors of MMP-1 level, and vice versa. Mechanistically, AAT1 or AAT2 overexpression inhibited phosphorylation of type I TGF-β receptor (TβRI) and Smad2/3 in TGF-β1-stimulated VSMCs. Whereas SB431542, an inhibitor of TGF-β1/Smad signaling pathway, attenuated excessive collagen deposition induced by AAT knockdown. Most importantly, ectopically expressing AAT or exogenous addition of 100 μM SO2 blocked AAT deficiency-aggravated collagen accumulation in TGF-β1-stimulatd VSMCs, while no inhibition was observed at 100 μM ethyl pyruvate. These findings indicated that endogenous SO2 alleviated collagen remodeling by controlling TGF-β1/TβRI/Smad2/3-mediated modulation of collagen synthesis and degradation.

  2. A systematic review of the importance of milk TGF-beta on immunological outcomes in the infant and young child.

    Science.gov (United States)

    Oddy, Wendy H; Rosales, Francisco

    2010-02-01

    Cytokines in milk like transforming growth factor-beta (TGF-beta) have been shown to induce oral tolerance in experimental animal studies. However, human studies are less consistent with these findings. The primary objective of this review was to conduct a systematic review of published studies on the association between TGF-beta identified in human milk and immunological outcomes in infancy and early childhood. Human prospective clinical studies were identified through MEDLINE, CAB Abstracts, Biological Abstracts and Scopus. Selection criteria included: well described populations of mothers and infants, time of milk sampling, immunological outcome measures and analytical methods of TGF-beta determination. We considered a wide range of immunological outcomes in infancy and early childhood, such as wheeze, atopy, eczema and the immunoglobulin switch. Twelve human studies were included in the review and 67% showed a positive association with TGF-beta1 or TGF-beta2 demonstrating protection against allergy-related outcomes in infancy and early childhood. High variability in concentrations of TGF-beta was noted between and within studies, some of it explained by maternal history of atopy or by consumption of probiotics. Human milk TGF-beta appears to be essential in developing and maintaining appropriate immune responses in infants and may provide protection against adverse immunological outcomes, corroborating findings from experimental animal studies. Further large clinical studies in diverse human populations are indicated to confirm these results. (c) 2009 Mead Johnson Nutrition Journal compilation (c) 2009 John Wiley & Sons A/S

  3. Optimization of Methods for Articular Cartilage Surface Tissue Engineering: Cell Density and Transforming Growth Factor Beta Are Critical for Self-Assembly and Lubricin Secretion.

    Science.gov (United States)

    Iwasa, Kenjiro; Reddi, A Hari

    2017-07-01

    Lubricin/superficial zone protein (SZP)/proteoglycan4 (PRG4) plays an important role in boundary lubrication in articular cartilage. Lubricin is secreted by superficial zone chondrocytes and synoviocytes of the synovium. The specific objective of this investigation is to optimize the methods for tissue engineering of articular cartilage surface. The aim of this study is to investigate the effect of cell density on the self-assembly of superficial zone chondrocytes and lubricin secretion as a functional assessment. Superficial zone chondrocytes were cultivated as a monolayer at low, medium, and high densities. Chondrocytes at the three different densities were treated with transforming growth factor beta (TGF-β)1 twice a week or daily, and the accumulated lubricin in the culture medium was analyzed by immunoblots and quantitated by enzyme-linked immunosorbent assay (ELISA). Cell numbers in low and medium densities were increased by TGF-β1; whereas cell numbers in high-density cell cultures were decreased by twice-a-week treatment of TGF-β1. On the other hand, the cell numbers were maintained by daily TGF-β treatment. Immunoblots and quantitation of lubricin by ELISA analysis indicated that TGF-β1 stimulated lubricin secretion by superficial zone chondrocytes at all densities with twice-a-week TGF-β treatment. It is noteworthy that the daily treatment of TGF-β1 increased lubricin much higher compared with twice-a-week treatment. These data demonstrate that daily treatment is optimal for the TGF-β1 response in a higher density of monolayer cultures. These findings have implications for self-assembly of surface zone chondrocytes of articular cartilage for application in tissue engineering of articular cartilage surface.

  4. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages.

    Science.gov (United States)

    Yu, Xueyang; Buttgereit, Anne; Lelios, Iva; Utz, Sebastian G; Cansever, Dilay; Becher, Burkhard; Greter, Melanie

    2017-11-21

    Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.

    2007-01-01

    ) promoter results in mammary gland hyperplasia and fibrosis, and mammary tumors. Cell lines isolated from MMTV-cyclin D1-Cdk2 (MMTV-D1K2) tumors exhibit Rb and p130 hyperphosphorylation and up-regulation of the protein products of E2F-dependent genes. These results suggest that cyclin D1/Cdk2 complexes may...... mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-DIK2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGF beta), but are relatively resistant to TGF...

  6. Prostaglandin E2 and Transforming Growth Factor-β Play a Critical Role in Suppression of Allergic Airway Inflammation by Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    Full Text Available The role of soluble factors in the suppression of allergic airway inflammation by adipose-derived stem cells (ASCs remains to be elucidated. Moreover, the major soluble factors responsible for the immunomodulatory effects of ASCs in allergic airway diseases have not been well documented. We evaluated the effects of ASCs on allergic inflammation in asthmatic mice treated with a prostaglandin E2 (PGE2 inhibitor or transforming growth factor-β (TGF-β neutralizing antibodies.Asthmatic mice were injected intraperitoneally with a PGE2 inhibitor or TGF-β neutralizing antibodies at approximately the same time as ASCs injection and were compared with non-treated controls. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in the bronchoalveolar lavage fluid (BALF, eosinophilic inflammation, goblet cell hyperplasia, and serum total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL-4, IL-5, and IL-13, and enhanced the Th1 cytokine (Interferon-γ and regulatory cytokines (IL-10 and TGF-β in the BALF and lung draining lymph nodes (LLNs. ASCs engraftment caused significant increases in the regulatory T cell (Treg and IL-10+ T cell populations in LLNs. However, blocking PGE2 or TGF-β eliminated the immunosuppressive effect of ASCs in allergic airway inflammation.ASCs are capable of secreting PGE2 and TGF-β, which may play a role in inducing Treg expansion. Furthermore, treatment with a PGE2 inhibitor or TGF-β neutralizing antibodies eliminated the beneficial effect of ASCs treatment in asthmatic mice, suggesting that PGE2 and TGF-β are the major soluble factors responsible for suppressing allergic airway inflammation.

  7. Transforming Growth Factor-β Signaling in Regulatory T Cells Controls T Helper-17 Cells and Tissue-Specific Immune Responses.

    Science.gov (United States)

    Konkel, Joanne E; Zhang, Dunfang; Zanvit, Peter; Chia, Cheryl; Zangarle-Murray, Tamsin; Jin, Wenwen; Wang, Songlin; Chen, WanJun

    2017-04-18

    Regulatory T cells (Treg cells) perform suppressive functions in disparate tissue environments and against many inflammatory insults, yet the tissue-enriched factor(s) that influence Treg cell phenotype and function remain largely unknown. We have shown a vital role for transforming growth factor-β (TGF-β) signals in safe-guarding specific Treg cell functions. TGF-β signals were dispensable for steady-state Treg cell homeostasis and for Treg cell suppression of T cell proliferation and T helper-1 (Th1) cell differentiation. However, Treg cells require TGF-β signals to appropriately dampen Th17 cells and regulate responses in the gastrointestinal tract. TGF-β signaling maintains CD103 expression, promotes expression of the colon-specific trafficking molecule GPR15, and inhibits expression of GPR174, a receptor for lysophosphatidylserine, on Treg cells, collectively supporting the accumulation and retention of Treg cells in the colon and control of colitogenic responses. Thus, we reveal an unrecognized function for TGF-β signaling as an upstream factor controlling Treg cell activity in specific tissue environments. Published by Elsevier Inc.

  8. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression

    Directory of Open Access Journals (Sweden)

    Audrey Lamora

    2016-11-01

    Full Text Available Osteosarcomas are the most prevalent malignant primary bone tumors in children. Despite intensive efforts to improve both chemotherapeutics and surgical management, 40% of all osteosarcoma patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma remains poor; less than 30% of patients who present metastases will survive five years after initial diagnosis. Treating metastatic osteosarcoma thus remains a challenge. One of the main characteristics of osteosarcomas is their ability to deregulate bone remodelling. The invasion of bone tissue by tumor cells indeed affects the balance between bone resorption and bone formation. This deregulation induces the release of cytokines or growth factors initially trapped in the bone matrix, such as transforming growth factor-β (TGF-β, which in turn promote tumor progression. Over the past years, there has been considerable interest in the TGF-β pathway within the cancer research community. This review discusses the involvement of the TGF-β signalling pathway in osteosarcoma development and in their metastatic progression.

  9. Transposon mutagenesis identifies candidate genes that cooperate with loss of Transforming Growth Factor-beta signaling in mouse intestinal neoplasms

    Science.gov (United States)

    Morris, Shelli M.; Davison, Jerry; Carter, Kelly T.; O’Leary, Rachele M.; Trobridge, Patty; Knoblaugh, Sue E.; Myeroff, Lois L.; Markowitz, Sanford D.; Brett, Benjamin T.; Scheetz, Todd E.; Dupuy, Adam J.; Starr, Timothy K.; Grady, William M.

    2017-01-01

    Colorectal cancer (CRC) results from the accumulation of gene mutations and epigenetic alterations in colon epithelial cells, which promotes CRC formation through deregulating signaling pathways. One of the most commonly deregulated signaling pathways in CRC is the transforming growth factor β (TGF-β) pathway. Importantly, the effects of TGF-β signaling inactivation in CRC are modified by concurrent mutations in the tumor cell, and these concurrent mutations determine the ultimate biological effects of impaired TGF-β signaling in the tumor. However, many of the mutations that cooperate with the deregulated TGF-β signaling pathway in CRC remain unknown. Therefore, we sought to identify candidate driver genes that promote the formation of CRC in the setting of TGF-β signaling inactivation. We performed a forward genetic screen in mice carrying conditionally inactivated alleles of the TGF-β receptor, type II (Tgfbr2) using Sleeping Beauty (SB) transposon mediated mutagenesis. We used TAPDANCE and Gene-centric statistical methods to identify common insertion sites (CIS) and, thus, candidate tumor suppressor genes and oncogenes within the tumor genome. CIS analysis of multiple neoplasms from these mice identified many candidate Tgfbr2 cooperating genes and the Wnt/β-catenin, Hippo and MAPK pathways as the most commonly affected pathways. Importantly, the majority of candidate genes were also found to be mutated in human CRC. The SB transposon system provides an unbiased method to identify Tgfbr2 cooperating genes in mouse CRC that are functionally relevant and that may provide further insight into the pathogenesis of human CRC. PMID:27790711

  10. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  11. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    Science.gov (United States)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  13. Impact of opium on the serum levels of TGF-β in diabetic, addicted and addicted-diabetic rats.

    Science.gov (United States)

    Asadikaram, Gholamreza; Asiabanha, Majid; Sayadi, Ahmadreza; Jafarzadeh, Abdollah; Hassanshahi, Gholamhossein

    2010-09-01

    Several cells of immune system such as regulatory T cells and macrophages secrete transforming growth factor-β (TGF-β) in response to different stimuli. This cytokine has inhibitory effect on immune system and diminished production of this cytokine is associated with autoimmune disorders. The aim of this study was to evaluate the influence of opium addiction on serum level of TGF-β in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium addicted, diabetic and addicted-diabetic male and female rats. Serum level of TGF-β was measured by ELISA. The results of our study indicated that the mean serum level of TGF-β in female addicted rats was significantly increased compared to control group (popium and its derivatives have differential inductive effects on the cytokine expression in male and female rats.

  14. A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing

    KAUST Repository

    Murphy, Kelly E.

    2011-03-01

    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGF β) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF β and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF β in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF β significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. © 2010 Elsevier Ltd.

  15. Genetic variation in TGF-beta 1 gene promoter and risk of gestational trophoblastic disease.

    Science.gov (United States)

    Dehaghani, Alamtaj Samsami; Zamanpour, Tarlan; Naeimi, Sirous; Sameni, Safoura; Robati, Minoo; Ghaderi, Abbas

    2010-01-01

    To examine the relationship of transforming growth factor beta 1 (TGF-beta 1) gene polymorphisms at promoter positions -509 (C/T) and -800 (G/A) with the risk of gestational trophoblastic disease (GTD) as compared to normal controls Polymerase chain reaction-restriction fragment length polymorphism was performed on peripheral blood of 102 patients with GTD and 124 normal, healthy, pregnant women as the control group. In this study, TGF-beta 1 gene polymorphisms at positions -509 (C/T) and -800 (G/A) failed to correlate with GTD. Our findings suggest that promoter gene polymorphisms of TGF-beta 1 do not play major roles in GTD and may not be risk factors for this disease.

  16. Serum TGF-beta2 and TGF-beta3 are increased and positively correlated to pain, functionality, and radiographic staging in osteoarthritis.

    Science.gov (United States)

    Kapetanakis, Stilianos; Drygiannakis, Ioannis; Kazakos, Kostantinos; Papanas, Nikolaos; Kolios, George; Kouroumalis, Elias; Verettas, Dionysios-Alexandros

    2010-08-11

    The goal of this study was to verify or reject the hypothesis that systematic differences exist in various profibrotic or antifibrotic factors between osteoarthritic patients and controls, as well as between different stages of osteoarthritis. The study group comprised 63 patients with knee osteoarthritis and 18 controls. Transforming growth factor-beta (TGF-beta)1, -2, -3; tissue inhibitor of metalloproteinase (TIMP)-1 protein levels; and gelatinolytic activity of matrix metalloproteinase (MMP)-1, -2, -3, -9 activities were measured by enzyme-linked immunosorbent assay and gelatin zymography, respectively. Visual analog scale scores, Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores, Lequesne clinical osteoarthritis scales, and Kellgren-Lawrence radiographic grading were recorded for each patient.Transforming growth factor-beta2 and -3 (in contrast to TGF-beta1 and TIMP-1) serum protein levels were significantly higher in osteoarthritic patients compared to controls (210%+/-14% [P<.001] and 232%+/-7% [P<10(-7)], respectively). Additionally, TGF-beta2 and -3 were strongly positively correlated to Kellgren-Lawrence radiographic grading of the disease (P<10(-5) and P<10(-7), respectively). Moreover, TGF-beta2 correlated positively with the WOMAC scale (P=.007). However, TIMP-1 decreased as osteoarthritis progressed clinically, but remained irrelevant to radiographic staging. Furthermore, activities of MMP-2 and -9, but not MMP-1+/-3, were lower in patients with osteoarthritis. Copyright 2010, SLACK Incorporated.

  17. Role of TGF-β signaling in inherited and acquired myopathies

    Directory of Open Access Journals (Sweden)

    Burks Tyesha N

    2011-05-01

    Full Text Available Abstract The transforming growth factor-beta (TGF-β superfamily consists of a variety of cytokines expressed in many different cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are TGF-β1, mitogen-activated protein kinases (MAPKs, and myostatin. These signaling molecules play important roles in skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress response. However, chronic elevation of TGF-β1, MAPKs, and myostatin is linked to various features of muscle pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-β in various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also discuss how the inhibition of several members of the TGF-β signaling pathway has been implicated in ameliorating disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.

  18. Effects of aluminum trichloride on the cartilage stimulatory growth factors in rats.

    Science.gov (United States)

    Zhang, Fan; Sun, Xudong; Yu, Hongyan; Yang, Xu; Song, Miao; Han, Yanfei; Li, Yanfei; Zhu, Yanzhu

    2017-02-01

    Aluminum (Al) is considered to be a potentially toxic metal and inhibits cartilage formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) are cartilage stimulatory growth factors, which play important roles in regulating the cartilage formation. To investigate the effects of aluminum trichloride (AlCl 3 ) on the regulation of cartilage formation. Eighty Wistar rats were orally exposed to 0 (control group), 0.4 g/L (low-dose group), 0.8 g/L (mid-dose group) and 1.6 g/L (high-dose group) AlCl 3 for 120 days, respectively. The rats body weight were decreased, the cartilage histological structure were disrupted, the cartilage and serum contents of Al and the serum level of C-telopeptide of type II collagen were all increased, the serum level of type II collagen (Col II) and alkaline phosphatase (ALP), and the mRNA expressions of TGF-β1, BMP-2, ALP and Col II were all decreased in the AlCl 3 -treated groups compared with those in control group. These results indicate that AlCl 3 inhibits the cartilage formation through inhibition of the cartilage stimulatory growth factors expressions.

  19. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    Science.gov (United States)

    Kwon, Hyuck Joon; Lee, Gyu Seok; Chun, Honggu

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels, thereby inducing differentiation of MSCs into hyaline chondrogenic cells without the addition of exogenous growth factors. ES also induced MSC condensation and subsequent chondrogenesis by driving Ca2+/ATP oscillations, which are known to be essential for prechondrogenic condensation. In subsequent experiments, the effects of ES on ATP oscillations and chondrogenesis were dependent on extracellular ATP signaling via P2X4 receptors, and ES induced significant increases in TGF-β1 and BMP2 expression. However, the inhibition of TGF-β signaling blocked ES-driven condensation, whereas the inhibition of BMP signaling did not, indicating that TGF-β signaling but not BMP signaling mediates ES-driven condensation. These findings may contribute to the development of electrotherapeutic strategies for cartilage repair using MSCs. PMID:28004813

  20. Transforming Growth Factor-β Drives the Transendothelial Migration of Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Petra Koudelkova

    2017-10-01

    Full Text Available The entry of malignant hepatocytes into blood vessels is a key step in the dissemination and metastasis of hepatocellular carcinoma (HCC. The identification of molecular mechanisms involved in the transmigration of malignant hepatocytes through the endothelial barrier is of high relevance for therapeutic intervention and metastasis prevention. In this study, we employed a model of hepatocellular transmigration that mimics vascular invasion using hepatic sinusoidal endothelial cells and malignant hepatocytes evincing a mesenchymal-like, invasive phenotype by transforming growth factor (TGF-β. Labelling of respective cell populations with various stable isotopes and subsequent mass spectrometry analyses allowed the “real-time” detection of molecular changes in both transmigrating hepatocytes and endothelial cells. Interestingly, the proteome profiling revealed 36 and 559 regulated proteins in hepatocytes and endothelial cells, respectively, indicating significant changes during active transmigration that mostly depends on cell–cell interaction rather than on TGF-β alone. Importantly, matching these in vitro findings with HCC patient data revealed a panel of common molecular alterations including peroxiredoxin-3, epoxide hydrolase, transgelin-2 and collectin 12 that are clinically relevant for the patient’s survival. We conclude that hepatocellular plasticity induced by TGF-β is crucially involved in blood vessel invasion of HCC cells.

  1. The role of TGF-β in the pathophysiology of peritoneal endometriosis.

    Science.gov (United States)

    Young, Vicky J; Ahmad, S F; Duncan, W Colin; Horne, Andrew W

    2017-09-01

    Endometriosis is estimated to affect 6-10% of women of reproductive age and it is associated with chronic pelvic pain, dysmenorrhoea and subfertility. It is currently managed surgically or medically but symptoms recur in up to 75% of cases and available medical treatments have undesirable side effects. Endometriosis is defined as the presence of endometrial tissue outside the uterus with lesions typically found on the peritoneum. The aetiology of endometriosis is uncertain but there is increasing evidence that transforming growth factor (TGF)-β plays a major role. A descriptive review was undertaken of the published literature on the expression pattern of TGF-β ligands and signalling molecules in women with and without endometriosis, and on the potential roles of TGF-β signalling in the development and progression of peritoneal endometriosis. The current understanding of the TGF-β signalling pathway is summarized. We searched the Pubmed database using the terms 'transforming growth factor beta' and 'endometriosis' for studies published between 1995 and 2016. The initial search identified 99 studies and these were used as the basic material for this review. We also extended our remit for important older publications. In addition, we searched the reference lists of studies used in this review for additional studies we judged as relevant. Studies which were included in the review focused on peritoneal endometriosis only as increasing evidence suggests that ovarian and deep endometriosis may have a differing pathophysiology. Thus, a final 95 studies were included in the review. TGF-β1 is reported to be increased in the peritoneal fluid, serum, ectopic endometrium and peritoneum of women with endometriosis compared to women without endometriosis, and TGF-β1-null mice have reduced endometriosis lesion growth when compared to their wild-type controls. Studies in mice and women have indicated that increasing levels of TGF-β ligands are associated with decreased

  2. TGF-β type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling

    OpenAIRE

    Qiu, Tao; Wu, Xiangwei; Zhang, Fengjie; Clemens, Thomas L.; Wan, Mei; Cao, Xu

    2010-01-01

    Parathyroid hormone (PTH) regulates calcium homeostasis and bone metabolism by activating PTH type I receptor (PTH1R). Here we show that transforming growth factor (TGF)-β type II receptor (TβRII) forms an endocytic complex with PTH1R in response to PTH and regulates signalling by PTH and TGF-β. TβRII directly phosphorylates the PTH1R cytoplasmic domain, which modulates PTH-induced endocytosis of the PTH1R–TβRII complex. Deletion of TβRII in osteoblasts increases the cell-surface expression o...

  3. TGF-β1 Gene Polymorphism at Position -800G /A and Systemic Lupus Erythematosus

    OpenAIRE

    S Naeimi

    2016-01-01

    Introduction: Systemic lupus erythematosus (SLE) is a chronic systemic inflammatory autoimmune disease characterized by a breakdown of self-tolerance. Transforming growth factor-β1 is a cytokine produced by both immune and non immune cells, and it has a wide operating range. human TGF-β1 gene is located on chromosome 19q13 . The aim of this study was investigating the TGF-β1 Gene Polymorphism at Position -800G /A and Systemic Lupus Erythematosus the possible difference in two p...

  4. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  5. The DAF-7/TGF-β signaling pathway regulates abundance of the C. elegans glutamate receptor GLR-1

    Science.gov (United States)

    McGehee, Annette M.; Moss, Benjamin J.; Juo, Peter

    2015-01-01

    Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the C. elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior. PMID:26054666

  6. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1.

    Science.gov (United States)

    McGehee, Annette M; Moss, Benjamin J; Juo, Peter

    2015-07-01

    Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the Caenorhabditis elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  8. Berberine Suppresses Cell Motility Through Downregulation of TGF-β1 in Triple Negative Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sangmin Kim

    2018-01-01

    Full Text Available Background/Aims: Transforming growth factor-beta proteins (TGF-βs are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR on tumor growth and metastasis of triple negative breast cancer (TNBC cells via suppression of TGF-β1 expression. Methods: The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. Results: In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1–induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. Conclusion: BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC.

  9. Podoplanin-mediated TGF-β-induced epithelial-mesenchymal transition and its correlation with bHLH transcription factor DEC in TE-11 cells.

    Science.gov (United States)

    Wu, Yunyan; Liu, Qiang; Yan, Xu; Kato, Yukio; Tanaka, Makiko; Inokuchi, Sadaki; Yoshizawa, Tadashi; Morohashi, Satoko; Kijima, Hiroshi

    2016-06-01

    Podoplanin is reported involved in the collective cell invasion, another tumor invasion style which is distinct from the single cell invasion, so-called epithelial-mesenchymal transition (EMT). In this study, we investigated the correlation between podoplanin and EMT-related markers in esophageal squamous cell carcinoma (ESCC), and evaluated its linkage with the basic helix-loop-helix (bHLH) transcription factor differentiated embryonic chondrocyte (DEC) 1 and DEC2. Three ESCC cell lines and human squamous cell carcinoma A431 cells were subjected to western blot analyses for podoplanin and EMT markers, as well as the expression of DEC1 and DEC2. By RT-qPCR and western blotting, we found that TGF-β increased the expression of podoplanin and mensenchymal markers (e.g., N-cadherin and vimentin), while decreased the expression of epithelial markers (e.g., Claudin-4 and E-cadherin), accompanied by Smad2 phosphorylation and slug activation. Moreover, TGF-β has different effects on the expression of DEC1 and DEC2, that is, it upregulates DEC1, but downregulates DEC2. Capability of cell proliferation, invasion and migration were further analyzed using CCK-8 assay, Matrigel-invasion assay, and the wound-healing assay, respectively. The proliferation, invasion and migration ability were significantly lost in podoplanin-knockdown cells when compared with the scrambled siRNA group. In addition to these changes, the expression of Claudin-4, but not that of Claudin-1 or E-cadherin, was induced by the siRNA against podoplanin. On the contrary, overexpression of DEC1 and DEC2 exhibits opposite effects on podoplanin, but only slight effect on Claudin-4 was detected. These data indicated that podoplanin is significantly associated with EMT of TE-11 cells, and may be directly or indirectly regulated by bHLH transcription factors DEC1 and DEC2.

  10. Association of CT perfusion imaging with plasma levels of TGF-β1 and VEGF in patients with NSCLC.

    Science.gov (United States)

    Li, Da-Wei; Wu, Bao-Zhong; Shi, Yu-Sen; Li, Zhi-Qun; Liu, Xu-Dong; Li, Xiao-Hua

    2016-02-01

    To study the association of CT perfusion imaging parameters with plasma level of transforming growth factor-β1 (TGF-β1) and vascular endothelial growth (VEGF) in patients with non small cell lung cancer (NSCLC). A total of 67 patients with NSCLC (NSCLC group) and 64 patients with benign lesion (control group) were given with CT perfusion imaging to obtain blood flow, blood volume, mean transit time, time to peal and permeability surface through CT perfusion software. The plasma levels of TGF-β1 and VEGF were tested by ELISA. The relationship between plasma levels of TGF-β1, VEGF and CT perfusion imaging parameters were analyzed. CT perfusion imaging parameters and the plasma levels of TGF-β1 and VEGF of NSCLC group were significantly higher than the control group (P CT perfusion parameters and the levels of TGF-β1 and VEGF in NSCLC group showed significant difference in different tumor node metastasis stages (P CT perfusion imaging parameters in patients with NSCLC is closely associated with plasma TGF-β1, VEGF and its biological characteristics. CT perfusion imaging is a convenient method to detect tumor blood perfusion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  11. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  12. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  13. TGF-β-Dependent Growth Arrest and Cell Migration in Benign and Malignant Breast Epithelial Cells Are Antagonistically Controlled by Rac1 and Rac1b.

    Science.gov (United States)

    Melzer, Catharina; von der Ohe, Juliane; Hass, Ralf; Ungefroren, Hendrik

    2017-07-20

    Despite improvements in diagnosis and treatment, breast cancer is still the most common cancer type among non-smoking females. TGF-β can inhibit breast cancer development by inducing cell cycle arrest in both, cancer cells and, as part of a senescence program in normal human mammary epithelial cells (HMEC). Moreover, TGF-β also drives cell migration and invasion, in part through the small GTPases Rac1 and Rac1b. Depletion of Rac1b or Rac1 and Rac1b in MDA-MB-231 or MDA-MB-435s breast cancer cells by RNA interference enhanced or suppressed, respectively, TGF-β1-induced migration/invasion. Rac1b depletion in MDA-MB-231 cells also increased TGF-β-induced p21 WAF1 expression and ERK1/2 phosphorylation. Senescent HMEC (P15/P16), when compared to their non-senescent counterparts (P11/P12), presented with dramatically increased migratory activity. These effects were paralleled by elevated expression of genes associated with TGF-β signaling and metastasis, downregulated Rac1b, and upregulated Rac1. Our data suggest that acquisition of a motile phenotype in HMEC resulted from enhanced autocrine TGF-β signaling, invasion/metastasis-associated gene expression, and a shift in the ratio of antimigratory Rac1b to promigratory Rac1. We conclude that although enhanced TGF-β signaling is considered antioncogenic in HMEC by suppressing oncogene-induced transformation, this occurs at the expense of a higher migration and invasion potential.

  14. TGF-β-Dependent Growth Arrest and Cell Migration in Benign and Malignant Breast Epithelial Cells Are Antagonistically Controlled by Rac1 and Rac1b

    Directory of Open Access Journals (Sweden)

    Catharina Melzer

    2017-07-01

    Full Text Available Despite improvements in diagnosis and treatment, breast cancer is still the most common cancer type among non-smoking females. TGF-β can inhibit breast cancer development by inducing cell cycle arrest in both, cancer cells and, as part of a senescence program in normal human mammary epithelial cells (HMEC. Moreover, TGF-β also drives cell migration and invasion, in part through the small GTPases Rac1 and Rac1b. Depletion of Rac1b or Rac1 and Rac1b in MDA-MB-231 or MDA-MB-435s breast cancer cells by RNA interference enhanced or suppressed, respectively, TGF-β1-induced migration/invasion. Rac1b depletion in MDA-MB-231 cells also increased TGF-β-induced p21WAF1 expression and ERK1/2 phosphorylation. Senescent HMEC (P15/P16, when compared to their non-senescent counterparts (P11/P12, presented with dramatically increased migratory activity. These effects were paralleled by elevated expression of genes associated with TGF-β signaling and metastasis, downregulated Rac1b, and upregulated Rac1. Our data suggest that acquisition of a motile phenotype in HMEC resulted from enhanced autocrine TGF-β signaling, invasion/metastasis-associated gene expression, and a shift in the ratio of antimigratory Rac1b to promigratory Rac1. We conclude that although enhanced TGF-β signaling is considered antioncogenic in HMEC by suppressing oncogene-induced transformation, this occurs at the expense of a higher migration and invasion potential.

  15. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...... cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract...... for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature...

  16. Paracrine up-regulation of monocyte cyclooxygenase-2 by platelets: role of transforming growth factor-beta1.

    Science.gov (United States)

    Eligini, Sonia; Barbieri, Silvia S; Arenaz, Izaskun; Tremoli, Elena; Colli, Susanna

    2007-05-01

    To examine the role of platelets and platelet-derived products on cyclooxygenase-2 (Cox-2) induction in adherent monocytes and to address the signaling pathways involved. Platelets and monocytes were obtained from peripheral blood of healthy donors. Adherent monocytes were co-cultured with autologous platelets or platelet releasates or exposed to mediators contained in platelet alpha-granules (either from platelet source or recombinant) for 4-24 h. Cox-2 protein and mRNA were determined by Western and RT-PCR analysis, respectively. Thromboxane B2 (TxB2) and prostaglandin E2 (PGE2) synthesis as index of Cox-2 activity, and levels of transforming growth factor-beta1 (TGF-beta1) in platelet releasates were measured by enzyme immunoassay (EIA). Activated platelets induce rapid and transient Cox-2 de novo synthesis in adherent monocytes. The effect is dependent upon the platelet number but not upon cell-cell contact. Platelet-induced Cox-2 was not affected by prevention of platelet TxA2 synthesis or microparticle formation but was blunted by inhibition of platelet alpha-granule secretion. TGF-beta1, either platelet-derived or recombinant (rTGF-beta1), induced Cox-2 expression and activity in adherent monocytes at concentrations within the range of those detected in releasates from activated platelets; this effect was not shared by recombinant platelet-derived growth factor (rPDGFBB). The time course of Cox-2 induction by TGF-beta1 in monocytes was identical to that observed with platelet releasates. Moreover, TGF-beta1 receptor blockade completely abolished platelet-induced Cox-2 expression. p38 MAPK activation represents a common transduction pathway through which activated platelets and rTGF-beta1 induce Cox-2 in monocytes. These findings suggest that TGF-beta1 released by activated platelets has a pivotal role in Cox-2 induction in monocytes and further supports the key role of platelets in the inflammatory and reparative responses.

  17. Snail involves in the transforming growth factor β1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available BACKGROUND: The proliferation of retinal pigment epithelium (RPE cells resulting from an epithelial-mesenchymal transition (EMT plays a key role in proliferative vitreoretinopathy (PVR, which leads to complex retinal detachment and the loss of vision. Genes of Snail family encode the zinc finger transcription factors that have been reported to be essential in EMT during embryonic development and cancer metastasis. However, the function of Snail in RPE cells undergoing EMT is largely unknown. PRINCIPAL FINDINGS: Transforming growth factor beta(TGF-β-1 resulted in EMT in human RPE cells (ARPE-19, which was characterized by the expected decrease in E-cadherin and Zona occludin-1(ZO-1 expression, and the increase in fibronectin and α-smooth muscle actin (α-SMA expression, as well as the associated increase of Snail expression at both mRNA and protein levels. Furthermore, TGF-β1 treatment caused a significant change in ARPE-19 cells morphology, with transition from a typical epithelial morphology to mesenchymal spindle-shaped. More interestingly, Snail silencing significantly attenuated TGF-β1-induced EMT in ARPE-19 cells by decreasing the mesenchymal markers fibronectin and a-SMA and increasing the epithelial marker E-cadherin and ZO-1. Snail knockdown could effectively suppress ARPE-19 cell migration. Finally, Snail was activated in epiretinal membranes from PVR patients. Taken together, Snail plays very important roles in TGF-β-1-induced EMT in human RPE cells and may contribute to the development of PVR. SIGNIFICANCE: Snail transcription factor plays a critical role in TGF-β1-induced EMT in human RPE cells, which provides deep insight into the pathogenesis of human PVR disease. The specific inhibition of Snail may provide a new approach to treat and prevent PVR.

  18. The role of transforming growth factor beta 1 in communicating and non-communicating hydrocele.

    Science.gov (United States)

    Mousavi, S A; Larijani, L V; Mousavi, S J; Kenari, S A; Darvish, A

    2016-08-01

    Repair of inguinal hernia and hydrocele are one of the most common operations performed by surgeons. However, the exact biological mechanism responsible for the closure of processus vaginalis (PV) is not completely understood. Transforming growth factor beta 1 (TGF-β1) is a potent fibrogenic agent and probably stimulate fibrosis and disappearing of PV. From September 2012 to December 2014, all boys from 1 to 5 years who were referred for surgery of hydrocele were divided into two groups of communicating (HC) or non-communicating hydrocele (HNC). During surgery, the fluid in the sac was aspirated and sent for biochemical evaluation including calcium, phosphorus, total protein, and TGF-β1. Finally, a biopsy of the sac was sent to the pathology. The results obtained were considered statistically significant (P hydrocele, including 43 patients and communicating, including 33. The patients studied were aged 1-5 years (mean 33.6 months). Biochemical tests on hydrocele fluid showed no significant difference in the levels of calcium, phosphorus, total protein, and bilirubin between two groups. However, mean TGF-β1 in NHC was found to be 53.45-114.28 pg/ml in HC group. A statistically significant difference (P = 0.04) was obtained. Furthermore, the study showed higher amounts of muscles in NHC (P < 0.001). The amount of TGF-β1 was higher in HC fluid than in non-communicating. To investigate the role of cytokine in the closure of PV, further studies will be required.

  19. Disruption of the gene encoding the latent transforming growth factor-β binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer

    Science.gov (United States)

    Sterner-Kock, Anja; Thorey, Irmgard S.; Koli, Katri; Wempe, Frank; Otte, Jürgen; Bangsow, Thorsten; Kuhlmeier, Katharina; Kirchner, Thomas; Jin, Shenchu; Keski-Oja, Jorma; von Melchner, Harald

    2002-01-01

    Transforming growth factor-βs (TGF-βs) are multifunctional growth factors that are secreted as inactive (latent) precursors in large protein complexes. These complexes include the latency-associated propeptide (LAP) and a latent transforming growth factor-β binding protein (LTBP). Four isoforms of LTBPs (LTBP-1–LTBP-4) have been cloned and are believed to be structural components of connective tissue microfibrils and local regulators of TGF-β tissue deposition and signaling. By using a gene trap strategy that selects for integrations into genes induced transiently during early mouse development, we have disrupted the mouse homolog of the human LTBP-4 gene. Mice homozygous for the disrupted allele develop severe pulmonary emphysema, cardiomyopathy, and colorectal cancer. These highly tissue-specific abnormalities are associated with profound defects in the elastic fiber structure and with a reduced deposition of TGF-β in the extracellular space. As a consequence, epithelial cells have reduced levels of phosphorylated Smad2 proteins, overexpress c-myc, and undergo uncontrolled proliferation. This phenotype supports the predicted dual role of LTBP-4 as a structural component of the extracellular matrix and as a local regulator of TGF-β tissue deposition and signaling. PMID:12208849

  20. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. (Washington Univ., St. Louis, MO (United States)); Colby, T.V. (Mayo Clinic, Rochester, MN (United States))

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  1. LEVEL OF TRANSFORMING GROWTH FACTOR BETA-1 RELATES TO CONGENITAL LIVER DISEASE SEVERITY IN CHILDREN OF EARLY AGE

    Directory of Open Access Journals (Sweden)

    R. M. Kurabekova

    2016-01-01

    Full Text Available Aim. Analysis of relationship between transforming growth factor beta-1 (TGF-β1 level in blood and liver disease severity before and after liver transplantation in early age children with congenital liver diseases. Materials and methods. The study included 135 pediatric patients aged from 2 to 73 months with end-stage liver disease. Results. The level of TGF-β1 in the blood of children with liver failure on average was lower than in healthy children of the same age. The cytokine level depended on the liver disease etiology: in patients with biliary atresia, biliary hypoplasia, Alagille syndrome, Byler disease and other diseases it was lower than that at Caroli disease when it did not differ from the level in healthy children. The level of cytokine in the blood plasma of patients was associated with the severity of hepatic fi brosis: in fi brosis of grade 1 and 4 it was lower than in fi brosis of grade 2 and 3. The liver transplantation from related living donor resulted in increase of TGF-β1 level in the blood plasma of patients regardless of the initial etiology and severity of the liver disease. Conclusion. The blood level of TGF-β1 refl ects liver disease severity in children with congenital liver diseases and may be used as a marker of liver function state before and after liver transplantation. 

  2. Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering

    International Nuclear Information System (INIS)

    Zhang Yufeng; Cheng Xiangrong; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-01-01

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-β1 (TGF-β1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-β1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-β1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-β1 as a good substrate candidate in periodontal tissue engineering

  3. The growth inhibition of human breast cancer cells by a novel synthetic progestin involves the induction of transforming growth factor beta.

    OpenAIRE

    Colletta, A A; Wakefield, L M; Howell, F V; Danielpour, D; Baum, M; Sporn, M B

    1991-01-01

    Recent experimental work has identified a novel intracellular binding site for the synthetic progestin, Gestodene, that appears to be uniquely expressed in human breast cancer cells. Gestodene is shown here to inhibit the growth of human breast cancer cells in a