WorldWideScience

Sample records for growth factor genes

  1. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  2. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to be amongst the ...

  3. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  4. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  5. Placental gene expression of the placental growth factor (PlGF) in intrauterine growth restriction.

    Science.gov (United States)

    Joó, József Gábor; Rigó, János; Börzsönyi, Balázs; Demendi, Csaba; Kornya, László

    2017-06-01

    We analyzed changes in gene expression of placental growth factor (PIGF) in human placental samples obtained postpartum from pregnancies with IUGR. During a twelve-month study period representing the calendar year of 2012 placental samples from 101 pregnancies with IUGR and from 140 normal pregnancies were obtained for analysis of a potential difference in PIGF gene expression. There was no significant difference in gene activity of the PIGF gene between the IUGR versus normal pregnancy groups (Ln2 α : 0.92; p intrauterine growth restriction PIGF expression does show a significant decrease indicating its potential role in the profound defect in angiogenesis in these cases.

  6. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design

    DEFF Research Database (Denmark)

    Fazio, Alessandro; Jewett, Michael Christopher; Daran-Lapujade, Pascale

    2008-01-01

    , such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets. Conclusion: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more......Background: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three...... factors we considered were specific growth rate, nutrient limitation, and oxygen availability. Results: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which m...

  7. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Shayesteh Rezayani

    2017-04-21

    Apr 21, 2017 ... susceptibility and environmental risk factors and their interactions. [1] and starts .... Germany) as internal control, and 30 lM of each specific primer. (Eurofins .... thank the Arya Tina Gene company for recruiting study subjects.

  8. fibroblast growth factor, MTDH/Astrocyte elevated gene-1

    African Journals Online (AJOL)

    2012-12-05

    Dec 5, 2012 ... Expression of basic FGF, MTDH/AEG-1, APC, matrix metalloproteinase 9, and COX-2 markers in prostate carcinomas many genetic and epigenetic alterations have been detected in human PC.[1]. Basic fibroblast growth factor (bFGF), also known as. FGF2 is a member of the FGF family, a group of more.

  9. Epidermal growth factor gene is a newly identified candidate gene for gout

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  10. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  11. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  12. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    Genotyping for the TGF-β3 gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and BslI restriction endonuclease showed a mutation in 294-bp fragment located on the fourth intron of chromosome 5. Polymorphism in TGF-β3 gene was significantly (P < 0.1) associated with ...

  14. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    user

    2011-03-07

    Mar 7, 2011 ... traits of interest in agricultural animal species (Rothschild and Soller, 1997). Although, traditional selection for phenotypic values of broiler chickens has made significant ..... the very low density Apolipoprotein-II gene. Poult.

  15. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  16. [Placental gene activity of significant angiogenetic factors in the background of intrauterine growth restriction].

    Science.gov (United States)

    Kovács, Péter; Rab, Attila; Szentpéteri, Imre; Joó, József Gábor; Kornya, László

    2017-04-01

    Placental vascular endothelial growth factor A (VEGF-A) gene and endoglin gene are both overexpressed in placental samples obtained from pregnancies with intrauterine growth restriction compared to normal pregnancies. In the background of these changes a mechanism can be supposed, in which the increased endoglin activity in intrauterine growth restriction (IUGR) leads to impaired placental circulation through an antioangiogenetic effect. This results in the development of placental vascular dysfunction and chronic fetal hypoxia. It is chronic hypoxia that turns on VEGF-A as a compensatory mechanism to improve fetal vascular blood supply by promoting placental blood vessel formation. Although the maternal serum placental growth factor (PlGF) level is a potential predictor for both IUGR and praeeclampsia, placental PlGF gene activity may be less of an active in the regulation of placental circulation in IUGR pregnancies during the later stages of gestation. Orv. Hetil., 2017, 158(16), 612-617.

  17. Molecular cloning of a human gene that is a member of the nerve growth factor family

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Reichardt, L.F. (Howard Hughes Medical Institute, San Francisco, CA (USA))

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  18. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α) 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  19. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  20. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    Science.gov (United States)

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic

  1. Gene therapy with growth factors for periodontal tissue engineering–A review

    Science.gov (United States)

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  2. Diversification of the insulin-like growth factor 1 gene in mammals.

    Directory of Open Access Journals (Sweden)

    Peter Rotwein

    Full Text Available Insulin-like growth factor 1 (IGF1, a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  3. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    Science.gov (United States)

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  4. Innovations in gene and growth factor delivery systems for diabetic wound healing

    Science.gov (United States)

    Laiva, Ashang Luwang; O'Brien, Fergal J.

    2017-01-01

    Abstract The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off‐the‐shelf treatment; however, the dose‐ and time‐dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds. PMID:28482114

  5. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  6. Pulmonary artery hypertension in childhood: The transforming growth factor-β superfamily-related genes

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2018-04-01

    Full Text Available Pulmonary artery hypertension (PAH is very rare in childhood, and it can be divided into heritable, idiopathic drug- and toxin-induced and other disease (connective tissue disease, human immunodeficiency virus infection, portal hypertension, congenital heart disease, or schistosomiasis-associated types. PAH could not be interpreted solely by pathophysiological theories. The impact of the transforming growth factor-β superfamily-related genes on the development of PAH in children remains to be clarified. Pertinent literature on the transforming growth factor-β superfamily-related genes in relation to PAH in children published after the year 2000 was reviewed and analyzed. Bone morphogenetic protein receptor type II gene mutation promotes cell division or prevents cell death, resulting in an overgrowth of cells in small arteries throughout the lungs. About 20% of individuals with a bone morphogenetic protein receptor type II gene mutation develop symptomatic PAH. In heritable PAH, bone morphogenetic protein receptor type II mutations may be absent; while mutations of other genes, such as type I receptor activin receptor-like kinase 1 and the type III receptor endoglin (both associated with hereditary hemorrhagic telangiectasia, caveolin-1 and KCNK3, the gene encoding potassium channel subfamily K, member 3, can be detected, instead. Gene mutations, environmental changes and acquired adjustment, etc. may explain the development of PAH. The researches on PAH rat model and familial PAH members may facilitate the elucidations of the mechanisms and further provide theories for prophylaxis and treatment of PAH. Key Words: bone morphogenetic proteins, mutation, pulmonary hypertension

  7. Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes.

    Science.gov (United States)

    Benz, Karin; Breit, Stephen; Lukoschek, Martin; Mau, Hans; Richter, Wiltrud

    2002-04-26

    This study is intended to optimise expansion and differentiation of cultured human chondrocytes by growth factor application and to identify molecular markers to monitor their differentiation state. We dissected the molecular consequences of matrix release, monolayer, and 3D-alginate culture, growth factor optimised expansion, and re-differentiation protocols by gene expression analysis. Among 19 common cartilage molecules assessed by cDNA array, six proved best to monitor differentiation. Instant down-regulation at release of cells from the matrix was strongest for COL 2A1, fibromodulin, and PRELP while LUM, CHI3L1, and CHI3L2 were expansion-related. Both gene sets reflected the physiologic effects of the most potent growth-inducing (PDGF-BB) and proteoglycan-inducing (BMP-4) factors. Only CRTAC1 expression correlated with 2D/3D switches while the molecular phenotype of native chondrocytes was not restored. The markers and optimised protocols we suggest can help to improve cell therapy of cartilage defects and chondrocyte differentiation from stem cell sources.

  8. Knockdown of the placental growth factor gene inhibits laser induced choroidal neovascularization in a murine model.

    Science.gov (United States)

    Nourinia, Ramin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Akrami, Hassan; Rezaei Kanavi, Mozhgan; Samiei, Shahram

    2013-01-01

    To evaluate the effect of placental growth factor (PlGF) gene knockdown in a murine model of laser-induced choroidal neovascularization. Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl) corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  9. Knockdown of the Placental Growth Factor Gene Inhibits Laser Induced Choroidal Neovascularization in a Murine Model

    Directory of Open Access Journals (Sweden)

    Ramin Nourinia

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of placental growth factor (PlGF gene knockdown in a murine model of laser-induced choroidal neovascularization. Methods: Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. Results: No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Conclusion: Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  10. Association between the epidermal growth factor gene and intelligence in major depression patients.

    Science.gov (United States)

    Tian, Wen-min; Zhang, Ke-ran; Zhang, Juan; Shen, Yan; Xu, Qi

    2010-06-01

    To study the association between the epidermal growth factor (EGF) gene and intelligence in patients with major depression. Intelligence measurement using Wechsler Adult Intelligence Scale (WAIS) was performed on 120 unrelated patients with major depression and 46 control subjects. Blood was collected from all subjects for extraction of genomic DNA. Four single nucleotide polymorphisms (SNPs) in the EGF gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI- TOF-MS). Mean scores of both score lang and score task, two subtests in WAIS, differed significantly between major depression patients and controls (Pintelligence in patients with major depression. Genetic variation in the EGF gene may increase the susceptibility of major depression.

  11. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  12. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    International Nuclear Information System (INIS)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Murawaki, Yoshikazu; Kawasaki, Hironaka; Shiota, Goshi

    2006-01-01

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SRα promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes

  13. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle

    2005-12-01

    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  14. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    Science.gov (United States)

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  15. Epidermal growth factor gene is a newly identified candidate gene for gout

    OpenAIRE

    Lin Han; Chunwei Cao; Zhaotong Jia; Shiguo Liu; Zhen Liu; Ruosai Xin; Can Wang; Xinde Li; Wei Ren; Xuefeng Wang; Changgui Li

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 re...

  16. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  17. Enhanced Vascular Endothelial Growth Factor Gene Expression in Ischaemic Skin of Critical Limb Ischaemia Patients

    Directory of Open Access Journals (Sweden)

    Silvia Bleda

    2012-01-01

    Full Text Available Objectives. To perform a quantitative analysis of the vascular endothelial growth factor (VEGF gene transcription in the skin of ischemic legs and provide information for VEGF in the pathogenesis in critical limb ischemia (CLI. Methods. Skin biopsies were obtained from 40 patients with CLI. Control samples came from 44 patients with chronic venous disease. VEGF gene expression was analysed using quantitative polymerase chain reaction. Results. Patients with CLI had higher skin VEGF expression than control group (RQ: 1.3 ± 0.1 versus 1, P=0.04. Conclusions. We found an association between ischemic skin and an elevated VEGF expression in legs from patients with CLI. These data support that the mechanism for VEGF upregulation in hypoxia conditions is intact and acts appropriately in the ischaemic limbs from patients with CLI.

  18. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes

    International Nuclear Information System (INIS)

    Shibata, Toru; Akiyama, Nobutake; Noda, Makoto; Sasai, Keisuke; Hiraoka, Masahiro

    1998-01-01

    Purpose: Selective gene expression in response to tumor hypoxia may provide new avenues, not only for radiotherapy and chemotherapy, but also for gene therapy. In this study, we have assessed the extent of hypoxia responsiveness of various DNA constructs by the luciferase assay to help design vectors suitable for cancer therapy. Materials and Methods: Reporter plasmids were constructed with fragments of the human vascular endothelial growth factor (VEGF) and the erythropoietin (Epo) genes encompassing the putative hypoxia-responsive elements (HRE) and the pGL3 promoter vector. Test plasmids and the control pRL-CMV plasmid were cotransfected into tumor cells by the calcium phosphate method. After 6 h hypoxic treatment, the reporter assay was performed. Results: The construct pGL3/VEGF containing the 385 bp fragment of the 5' flanking region in human VEGF gene showed significant increases in luciferase activity in response to hypoxia. The hypoxic/aerobic ratios were about 3-4, and 8-12 for murine and human tumor cells, respectively. Despite the very high degree of conservation among the HREs of mammalian VEGF genes, murine cells showed lower responsiveness than human cells. We next tested the construct pGL3/Epo containing the 150 bp fragment of the 3' flanking region in the Epo gene. Luciferase activity of pGL3/Epo was increased with hypoxia only in human cell lines. The insertion of 5 copies of the 35-bp fragments derived from the VEGF HREs and 32 bp of the E1b minimal promoter resulted in maximal enhancement of hypoxia responsiveness. Conclusions: The constructs with VEGF or Epo fragments containing HRE may be useful for inducing specific gene expression in hypoxic cells. Especially, the application of multiple copies of the HREs and an E1b minimal promoter appears to have the advantage of great improvement in hypoxia responsiveness

  19. Involvement of Fibroblast Growth Factor Receptor Genes in Benign Prostate Hyperplasia in a Korean Population

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2013-01-01

    Full Text Available Fibroblast growth factors (FGFs and their receptors (FGFRs have been implicated in prostate growth and are overexpressed in benign prostatic hyperplasia (BPH. In this study, we investigated whether single nucleotide polymorphisms (SNPs of the FGFR genes (FGFR1 and FGFR2 were associated with BPH and its clinical phenotypes in a population of Korean men. We genotyped four SNPs in the exons of FGFR1 and FGFR2 (rs13317 in FGFR1; rs755793, rs1047100, and rs3135831 in FGFR2 using direct sequencing in 218 BPH patients and 213 control subjects. No SNPs of FGFR1 or FGFR2 genes were associated with BPH. However, analysis according to clinical phenotypes showed that rs1047100 of FGFR2 was associated with prostate volume in BPH in the dominant model (GA/AA versus GG, P = 0.010. In addition, a significant association was observed between rs13317 of FGFR1 and international prostate symptom score (IPSS in the additive (TC versus CC versus TT, P = 0.0022 and dominant models (TC/CC versus TT, P = 0.005. Allele frequency analysis also showed significant association between rs13317 and IPSS (P = 0.005. These results suggested that FGFR genes could be related to progression of BPH.

  20. The experimental study of CT-guided hepatocyte growth factor gene therapy for cerebral ischemic diseases

    International Nuclear Information System (INIS)

    Zhang Xiaobo; Jin Zhengyu; Li Mingli; Wang Renzhi; Li Guilin; Kong Yanguo; Wang Jianming; Gao Shan; Guan Hongzhi; Wang Detian; Luo Yufeng

    2006-01-01

    Objectives: To investigate the feasibility of CT guided hepatocyte growth factor (HGF) gene therapy for cerebral ischemic diseases. Methods: Human HGF cDNA was ligated to pIRES 2 -EGFP vector. The recombinant plasmid was transfected into the penumbra tissue with liposome, guided by CT perfusion images. After seven days of transfer with recombinant plasmid, the cut sections of rat brain tissues of the treated and control groups were analyzed including immunohistochemistry, vessel count, cerebral blood flow and infarct volume etc. in order to investigate HGF gene expression and biological effect. Results: Enzymatic digestion and electrophoresis confirmed that HGF fragments had been correctly cloned into the space between the BamH I and Sal I sites of pIRES 2 -EGFP. After 7 days of HGF gene transfection, expression of HGF in transfected neurocytes of treated group was observed with immunohistochemistry. The number of vessels in penumbra tissues transfected with HGF vectors and the CBF measured by perfusion CT all were significantly increased than those of the controls (P 2 -EGFP-HGF complexes can transfect the penumbra tissues and definitely express HGF protein. The HGF gene products can stimulate angiogenesis, promote collateral circulation formation and reduce infarct volume in vivo and therefore is beneficial to the treatment of cerebral ischemia. (authors)

  1. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis.

    Science.gov (United States)

    Huang, Xiao X; McCaughan, Geoffrey W; Shackel, Nicholas A; Gorrell, Mark D

    2007-09-01

    Cirrhosis can lead to hepatocellular carcinoma (HCC). Non-diseased liver and hepatitis C virus (HCV)-associated cirrhosis with or without HCC were compared. Proliferation pathway genes, immune response genes and oncogenes were analysed by a quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunostaining. Real-time RT-PCR showed up-regulation of genes in HCV cirrhosis including the proliferation-associated genes bone morphogenetic protein 3 (BMP3), placental growth factor 3 (PGF3), vascular endothelial growth factor receptor 1 (VEGFR1) and soluble VEGFR1, the oncogene FYN, and the immune response-associated genes toll-like receptor 9 (TLR9) and natural killer cell transcript 4 (NK4). Expressions of TLR2 and the oncogenes B-cell CLL/lymphoma 9 (BCL9) and PIM2 were decreased in HCV cirrhosis. In addition, PIM2 and TLR2 were increased in HCV cirrhosis with HCC compared with HCV cirrhosis. The ligand/receptor pair PGF and VEGFR1 was intensely expressed by the portal tract vascular endothelium. VEGFR1 was expressed in reactive biliary epithelial structures in fibrotic septum and in some stellate cells and macrophages. PGF and VEGFR1 may have an important role in the pathogenesis of the neovascular response in cirrhosis.

  2. Are genetic variants in the platelet-derived growth factor [beta] gene associated with chronic pancreatitis?

    Science.gov (United States)

    Muddana, Venkata; Park, James; Lamb, Janette; Yadav, Dhiraj; Papachristou, Georgios I; Hawes, Robert H; Brand, Randall; Slivka, Adam; Whitcomb, David C

    2010-11-01

    Platelet-derived growth factor [beta] (PDGF-[beta]) is a major signal in proliferation and matrix synthesis through activated pancreatic stellate cells, leading to fibrosis of the pancreas. Recurrent acute pancreatitis (RAP) seems to predispose to chronic pancreatitis (CP) in some patients but not others. We tested the hypothesis that 2 known PDGF-[beta] polymorphisms are associated with progression from RAP to CP. We also tested the hypothesis that PDGF-[beta] polymorphisms in combination with environmental risk factors such as alcohol and smoking are associated with CP. Three hundred eighty-two patients with CP (n = 176) and RAP (n = 206) and 251 controls were evaluated. Platelet-derived growth factor [beta] polymorphisms +286 A/G (rs#1800818) seen in 5'-UTR and +1135 A/C (rs#1800817) in first intron were genotyped using single-nucleotide polymorphism polymerase chain reaction approach and confirmed by DNA sequencing. The genotypic frequencies for PDGF-[beta] polymorphisms in positions +286 and +1135 were found to be similar in controls and patients with RAP and CP. There was no difference in genotypic frequencies among RAP, CP, and controls in subjects in the alcohol and smoking subgroups. Known variations in the PDGF-[beta] gene do not have a significant effect on promoting or preventing fibrogenesis in pancreatitis. Further evaluation of this important pathway is warranted.

  3. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    Science.gov (United States)

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  4. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO)

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, R. (Univ. of California, Irvine, CA (United States)); Lidral, A.C.; Ardinger, H.H.; Murray, J.C.; Romitti, P.A.; Munger, R.G.; Buetow, K.H.

    1993-10-01

    Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region of the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.

  5. The Prognostic Value of Haplotypes in the Vascular Endothelial Growth Factor A Gene in Colorectal Cancer

    International Nuclear Information System (INIS)

    Hansen, Torben F.; Spindler, Karen-Lise G.; Andersen, Rikke F.; Lindebjerg, Jan; Kølvraa, Steen; Brandslund, Ivan; Jakobsen, Anders

    2010-01-01

    New prognostic markers in patients with colorectal cancer (CRC) are a prerequisite for individualized treatment. Prognostic importance of single nucleotide polymorphisms (SNPs) in the vascular endothelial growth factor A (VEGF-A) gene has been proposed. The objective of the present study was to investigate the prognostic importance of haplotypes in the VEGF-A gene in patients with CRC. The study included 486 patients surgically resected for stage II and III CRC, divided into two independent cohorts. Three SNPs in the VEGF-A gene were analyzed by polymerase chain reaction. Haplotypes were estimated using the PHASE program. The prognostic influence was evaluated using Kaplan-Meir plots and log rank tests. Cox regression method was used to analyze the independent prognostic importance of different markers. All three SNPs were significantly related to survival. A haplotype combination, responsible for this effect, was present in approximately 30% of the patients and demonstrated a significant relationship with poor survival, and it remained an independent prognostic marker after multivariate analysis, hazard ratio 2.46 (95% confidence interval 1.49–4.06), p < 0.001. Validation was provided by consistent findings in a second and independent cohort. Haplotype combinations call for further investigation

  6. Association of interleukin 10 and transforming growth factor β gene polymorphisms with chronic idiopathic urticaria.

    Science.gov (United States)

    Tavakol, Marzieh; Movahedi, Masoud; Amirzargar, Ali Akbar; Aryan, Zahra; Bidoki, Alireza Zare; Heidari, Kimia; Soltani, Samaneh; Gharagozlou, Mohammad; Aghamohammadi, Asghar; Nabavi, Mohammad; Nasiri, Rasoul; Ahmadvand, Alireza; Rezaei, Nima

    2014-01-01

    Transforming growth factor β (TGF-β) and interleukin 10 (IL-10) are two anti-inflammatory cytokines that are implicated in the pathogenesis of urticaria. The goal of this study was to examine the possible association of polymorphisms of TGF-β and IL-10 genes with susceptibility to chronic idiopathic urticaria (CIU). This study was conducted on 90 patients with CIU. Polymerase chain reaction (PCR) was done to determine the genotype at 5 polymorphic sites; TGF-β (codon10C/T and codon25G/C) and IL-10 (-1082G/A, -819C/T, and -592C/A). The C allele at codon 25 of TGF-β was more prevalent in CIU patients compared to controls (OR = 9.5, 95% CI = 5.4-16.8, P<0.001). Genotypes of CT and CG at 10 and 25 codons of TGF-β gene, respectively, and AG, CT, and CA for loci of -1082, -819, and -592 of IL-10 gene were significantly higher in CIU patients (P<0.001). In haplotype analysis, frequency of TGF-β haplotypes differed between patients with CIU and controls; CC haplotype was overrepresented, while CG and TG haplotypes were underrepresented (P<0.001). These results suggest that TGF-β and IL-10 genetic variability could contribute to susceptibility to CIU. Additionally, patients with CIU seem to have genotypes leading to high production of TGF-β and IL-10.

  7. Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mai Yamauchi

    Full Text Available PURPOSE: To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. PATIENTS AND METHODS: Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM. "Gefitinib-sensitive" genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. RESULTS: The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS with a hazard ratio (HR of 7.16 (P = 0.029 and 3.26 (P = 0.0072, respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC histology in a Japanese cohort for OS and recurrence-free survival (RFS with HRs of 8.79 (P = 0.001 and 3.72 (P = 0.0049, respectively. CONCLUSION: The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. TRIAL REGISTRATION: The Gene Expression Omnibus (GEO GSE31210.

  8. From genes to pain: nerve growth factor and hereditary sensory and autonomic neuropathy type V.

    Science.gov (United States)

    Capsoni, Simona

    2014-02-01

    Hereditary sensory and autonomic neuropathy type V (HSAN V) is an autosomal recessive disorder characterized by the loss of deep pain perception. The anomalous pain and temperature sensations are due to the absence of nociceptive sensory innervation. The neurotrophin nerve growth factor (NGF), by binding to tropomyosin receptor A (TrkA) and p75NTR receptors, is essential for the development and survival of sensory neurons, and for pain perception during adulthood. Recently a homozygous missense mutation (R100W) in the NGF gene has been identified in HSAN V patients. Interestingly, alterations in NGF signalling, due to mutations in the NGF TRKA gene, have also been involved in another congenital insensitivity to pain, HSAN IV, characterized not only by absence of reaction to painful stimuli, but also anhidrosis and mental retardation. These symptoms are absent in HSAN V patients. Unravelling the mechanisms that underlie the differences between HSAN IV and V could assist in better understanding NGF biology. This review highlights the recent key findings in the understanding of HSAN V, including insights into the molecular mechanisms of the disease, derived from genetic studies of patients with this disorder. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Vascular endothelial growth factor gene polymorphisms in age-related macular degeneration in a Turkish population

    Directory of Open Access Journals (Sweden)

    Yunus Bulgu

    2014-10-01

    Full Text Available AIM:To assess the association between age-related macular degeneration (AMD and three single nucleotide polymorphisms (SNPs related to the vascular endothelial growth factor (VEGF gene.METHODS: The patients who were diagnosed with AMD were included in this prospective study. Three SNPs (rs1413711, rs2146323, and rs3025033 of the VEGF gene were genotyped by real-time polymerase chain reaction in the genomic DNA isolated from peripheral blood samples of the 82 patients and 80 controls.RESULTS: The genotype frequencies of rs1413711 and rs2146323 were not significantly different between the study group and the control group (P=0.072 and P=0.058. However, there was a significant difference in the genotype frequencies of these SNPs between the wet type AMD and dry type AMD (P=0.005 and P=0.010, respectively. One of the SNPs (rs1413711 was also found to be associated with the severity of AMD (P=0.001 with significant genotype distribution between early, intermediate, and advanced stages of the disease. The ancestral alleles were protective for both SNPs while the polymorphic alleles increased the risk for dry AMD.CONCLUSION: VEGF SNPs rs1413711 and rs2146323 polymorphisms are significantly associated with AMD subtypes in our population.

  10. Thermal Manipulation Mid-term Broiler Chicken Embryogenesis: Effect on Muscle Growth Factors and Muscle Marker Genes

    Directory of Open Access Journals (Sweden)

    MB Al-Zghoul

    Full Text Available ABSTRACT Thermal manipulation (TM during broiler chicken embryogenesis has been shown to promote muscle development and growth. However, the molecular bases of promoting broiler muscle development and growth are not fully understood. The aim of this study was to investigate the molecular bases of muscle growth and development in broiler chickens subjected to TM. This included the investigating of the changes in mRNA expression levels of muscle marker genes, namely MyoD, myogenin, paired box transcription factor (Pax7 and proliferating cell nuclear antigen (PCNA, and muscle growth factors namely insulin-like growth factor 1 (IGF-1, myostatin and growth hormone (GH during embryogenesis and on posthatch days 10 and 28. Fertile Cobb eggs (n=1500 were divided into four groups. Eggs in the first group (control were incubated at 37.8°C and 56% RH, whereas, eggs in the second group (TM1, third group (TM2, and fourth group (TM3 were subjected to 39 ºC and 65% RH daily during embryonic days (ED 12-18 for 9, 12, and 18 hours, respectively. Body weight (BW during embryogenesis and posthatch days (1, 3, 5, 7, 14, 21, 28 and 35 was recorded. mRNA expression levels of muscle marker genes and muscle growth factor genes during ED 12, 14, 16 and 18 and on posthatch days 10 and 28 were analyzed using real-time RT-PCR. TM upregulated the mRNA expressions of muscle marker and growth factors genes. This upregulation was accompanied by improvement of body weight near and at market age.

  11. Efficacy of Selenium Supplement on Gene Expression of Inflammatory Cytokines and Vascular Endothelial Growth Factor in Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Mehri Jamilian

    2018-01-01

    Full Text Available Abstract Background: Selenium supplement has multiple important effects, including anti-inflammatory effect. The aim of this study was to assess the effects of selenium supplement on gene expression of inflammatory cytokines and vascular endothelial growth factor in gestational diabetes. Materials and Methods: This randomized double blind placebo control trial was performed on 40 patients suffering from GDM aged 18–40 years old. Participants were randomly divided into interventional group receiving 200mg/day selenium supplements (n=20 and control group receiving placebo (n=20 for 6 weeks. Primary outcome was gene expression of inflammatory cytokines and VEGF which were assessed in lymphocyte of GDM patients by RT-PCR method. Results: After 6 weeks intervention, in comparison with the control group, interventional group showed down regulation of gene expression of tumor necrosis factor alpha (TNF–α (p=0.02 and transforming growth factor beta (TGF–β (p=0.01 and up-regulation of gene expression of vascular endothelial (VEGF (p = 0.03 in lymphocytes of GDM. There was not any significant change following intervention with selenium regarding gene expression of interleukin IL-1 β and IL-8 in lymphocytes of GDM patients. Conclusion: 6 weeks supplementation with selenium in patients with GDM can cause down regulated gene expression of TNF-α and TGF–β, and up regulated gene expression of VEGF. Selenium supplement had not any effect on gene expression of IL-1 β and IL-8.

  12. Orofacial clefts, parental cigarette smoking, and transforming growth factor-alpha gene variants

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G.M.; Wasserman, C.R.; O`Malley, C.D. [California Birth Defects Monitoring Program, Emeryville, CA (United States)] [and others

    1996-03-01

    Results of studies determine whether women who smoke during early pregnancy are at increased risk of delivering infants with orofacial clefts have been mixed, and recently a gene-environment interaction between maternal smoking, transforming growth factor-alpha (TGFa), and clefting has been reported. Using a large population-based case-control study, we investigated whether parental periconceptional cigarette smoking was associated with an increased risk for having offspring with orofacial clefts. We also investigated the influence of genetic variation of the TGFa locus on the relation between smoking and clefting. Parental smoking information was obtained from telephone interviews with mothers of 731 (84.7% of eligible) orofacial cleft case infants and with mothers of 734 (78.2%) nonmalformed control infants. DNA was obtained from newborn screening blood spots and genotyped for the allelic variants of TGFa. We found that risks associated with maternal smoking were most elevated for isolated cleft lip with or without cleft palate, (odds ratio 2.1 [95% confidence interval 1.3-3.6]) and for isolated cleft palate (odds ratio 2.2 [1.1-4.5]) when mothers smoked {ge} 20 cigarrettes/d. These risks for white infants ranged from 3-fold to 11-fold across phenotypic groups. Paternal smoking was not associated with clefting among the offspring of nonsmoking mothers, and passive smoke exposures were associated with at most slightly increased risks. This study offers evidence that the risk for orofacial clefting in infants may be influenced by maternal smoke exposures alone as well as in combination (gene-environment interaction) with the presence of the uncommon TGFa allele. 56 refs., 5 tabs.

  13. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    Science.gov (United States)

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  14. Associations between genetic polymorphisms of insulin-like growth factor axis genes and risk for age-related macular degeneration

    Science.gov (United States)

    Purpose: Our objective was to investigate if insulin-like growth factor (IGF) axis genes affect the risk for age-related macular degeneration (AMD). Methods: 864 Caucasian non-diabetic participants from the Age-Related Eye Disease Study (AREDS) Genetic Repository were used in this case control st...

  15. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    Science.gov (United States)

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  16. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    International Nuclear Information System (INIS)

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  17. Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor ( Gene

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2015-10-01

    Full Text Available The AT motif-binding factor (ATBF1 not only interacts with protein inhibitor of activated signal transducer and activator of transcription 3 (STAT3 (PIAS3 to suppress STAT3 signaling regulating embryo early development and cell differentiation, but is required for early activation of the pituitary specific transcription factor 1 (Pit1 gene (also known as POU1F1 critically affecting mammalian growth and development. The goal of this study was to detect novel nucleotide variations and haplotypes structure of the ATBF1 gene, as well as to test their associations with growth-related traits in goats. Herein, a total of seven novel single nucleotide polymorphisms (SNPs (SNP 1-7 within this gene were found in two well-known Chinese native goat breeds. Haplotypes structure analysis demonstrated that there were four haplotypes in Hainan black goat while seventeen haplotypes in Xinong Saanen dairy goat, and both breeds only shared one haplotype (hap1. Association testing revealed that the SNP2, SNP5, SNP6, and SNP7 loci were also found to significantly associate with growth-related traits in goats, respectively. Moreover, one diplotype in Xinong Saanen dairy goats significantly linked to growth related traits. These preliminary findings not only would extend the spectrum of genetic variations of the goat ATBF1 gene, but also would contribute to implementing marker-assisted selection in genetics and breeding in goats.

  18. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  19. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    Science.gov (United States)

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point

  20. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    International Nuclear Information System (INIS)

    Kodama, Atsushi; Yanai, Tokuma; Sakai, Hiroki; Matsuura, Satoko; Murakami, Mami; Murai, Atsuko; Mori, Takashi; Maruo, Kouji; Kimura, Tohru; Masegi, Toshiaki

    2009-01-01

    Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets. Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors. We established 6 xenograft canine HSA

  1. Sendai viroplexes for epidermal growth factor receptor-directed delivery of interleukin-12 and salmosin genes to cancer cells.

    Science.gov (United States)

    Kim, Jung Seok; Kim, Min Woo; Jeong, Hwa Yeon; Kang, Seong Jae; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-07-01

    The effective delivery of therapeutic genes to target cells has been a fundamental goal in cancer gene therapy because of its advantages with respect to both safety and transfection efficiency. In the present, study we describe a tumor-directed gene delivery system that demonstrates remarkable efficacy in gene delivery and minimizes the off-target effects of gene transfection. The system consists of a well-verified cationic O,O'-dimyristyl-N-lysyl glutamate (DMKE), Sendai virus fusion (F) protein and hemagglutinin-neuraminidase (HN) protein, referred to as cationic Sendai F/HN virosomes. To achieve tumor-specific recognition, anti-epidermal growth factor (EGF) receptor antibody was coupled to the surface of the virosomes containing interleukin-12 (IL-12) and/or salmosin genes that have potent anti-angiogenetic functions. Among the virosomal formulations, the anti-EGF receptor (EGFR) viroplexes, prepared via complexation of plasmid DNA (pDNA) with cationic DMKE lipid, exhibited more efficient gene transfection to tumor cells over-expressing EGF receptors compared to the neutrally-charged anti-EGFR virosomes encapsulating pDNA. In addition, the anti-EGFR viroplexes with IL-12 and salmosin genes exhibited the most effective therapeutic efficacy in a mouse tumor model. Especially when combined with doxorubicin, transfection of the two genes via the anti-EGFR viroplexes exhibited an enhanced inhibitory effect on tumor growth and metastasis in lungs. The results of the present study suggest that anti-EGFR viroplexes can be utilized as an effective strategy for tumor-directed gene delivery. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Polymorphism of Insulin-like growth factor-I (IGF-I gene and their effect on growth traits in Indonesia native chicken

    Directory of Open Access Journals (Sweden)

    M.A Mu'in

    2009-12-01

    Full Text Available The research was aimed is to detect Insulin-like growth factor-I (IGF-I gene polymorphism and their effect on growth traits in Indonesia natives chicken. Seventy two Indonesian native chicken are going to be used in this research. The polymorphism of IGF-I gene was detected by PCR-RFLP/Pst-I. Four growth traits (body weight at 1, 2, 3, and 4 months were recorded for analyzing the association between IGF-I gene polymorphism and growth performance.The results showed that allele A (621 bp and allele B (364 and 257 bp were found in this research. It was found that Indonesian native chicken carried high frequencies of allele A (0.82, and frequencies of IGF-I genotypes (AA, AB, BB were 68.0, 27.8, and 4,2%, respectively. When compared to the IGF-I genotypes, the BB genotype had the highest body weight at 1, 2, 3, and 4 month (P<0.05. The results showed that the B allele was positive of associated to a higher growth rate. Therefore, these results suggest that there is a possibility of IGF-I genotypes acting as a molecular marker for growth rate of Indonesia native.

  3. Vitamin D inhibits the growth of and virulence factor gene expression by Porphyromonas gingivalis and blocks activation of the nuclear factor kappa B transcription factor in monocytes.

    Science.gov (United States)

    Grenier, D; Morin, M-P; Fournier-Larente, J; Chen, H

    2016-06-01

    Increasing evidence suggests that 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), a fat-soluble secosteroid hormone, has a positive impact on periodontal health through diverse mechanisms. The present study was aimed at investigating the effect of 1,25(OH)2 D3 on the growth of and virulence factor gene expression by the periodontopathogenic bacterium Porphyromonas gingivalis. The effect of 1,25(OH)2 D3 on P. gingivalis-mediated activation of nuclear factor kappa B (NF-κB) transcription factor in monocytes was also assessed. A broth microdilution assay was used to determine the antibacterial activity of 1,25(OH)2 D3 . The modulation of virulence factor gene expression in P. gingivalis was assessed by quantitative reverse transcription-polymerase chain reaction. NF-κB activation was assessed using a human monocytic cell line stably transfected with a luciferase reporter containing NF-κB binding sites. Minimal inhibitory concentrations of 1,25(OH)2 D3 against P. gingivalis ranged from 3.125 to 6.25 μg/mL. Moreover, a partial synergistic effect was observed when 1,25(OH)2 D3 was used in association with metronidazole. 1,25(OH)2 D3 attenuated the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including adhesins (fimA, hagA and hagB) and proteinases (rgpA, rgpB and kgp). 1,25(OH)2 D3 dose-dependently prevented P. gingivalis-induced NF-κB activation in a monocyte model. Our study suggested that 1,25(OH)2 D3 selectively inhibits the growth of and virulence factor gene expression by P. gingivalis, in addition to attenuating NF-κB activation by this periodontopathogen. This dual action on P. gingivalis and the inflammatory response of host cells may be of particular interest with a view to developing a novel and inexpensive preventive/therapeutic strategy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  5. Oral clefts, tranforming growth factor alpha gene variants, and maternal smoking

    DEFF Research Database (Denmark)

    Christensen, Kaare; Olsen, Jørn; Nørgaard-Pedersen, Bent

    1999-01-01

    Studies in the United States have indicated that maternal first trimester smoking and infant transforming growth factor alpha (TGFA) locus mutations are associated with non-syndromic cleft lip and/or palate (CLP) and that a synergistic effect of these two risk factors occurs. Based on a Danish case-control......, and no synergistic effect with smoking was observed. The "rare" TGFA allele occurred in 25% of both cases and controls compared with an average of 14% in other white control groups. Furthermore, the frequency of CLP in Scandinavia is among the highest in the world. Hence, it is possible that the previously reported...

  6. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas

    International Nuclear Information System (INIS)

    Smith, F.E.; Rosen, K.M.; Villa-Komaroff, L.; Weir, G.C.; Bonner-Weir, S.

    1991-01-01

    Insulin-like growth factor I (IGF-I) mRNA expression was studied after 90% partial pancreatectomy in the rat to determine whether IGF-I was associated with pancreatic regeneration. The level of IGF-I mRNA was maximally increased (4-fold above control value) 3 days after pancreatectomy, but thereafter gradually decreased, returning to control levels by 14 days after surgery. By in situ hybridization, IGF-I mRNA in both pancreatectomized and sham-operated rats was localized to capillary endothelial cells, indicating that this is the site of IGF-I expression in the normal rat pancreas. However, enhanced IGF-I mRNA expression was localized to focal areas of regeneration unique to pancreatectomized rats. In these areas, epithelial cells of proliferating ductules and individual connective tissue cells expressed IGF-I, suggesting that IGF-I may play an important role in the growth or differentiation of pancreatic tissue

  7. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.E.; Rosen, K.M.; Villa-Komaroff, L.; Weir, G.C.; Bonner-Weir, S. (E. P. Joslin Research Laboratory, Joslin Diabetes Center, Harvard Medical School, Boston, MA (USA))

    1991-07-15

    Insulin-like growth factor I (IGF-I) mRNA expression was studied after 90% partial pancreatectomy in the rat to determine whether IGF-I was associated with pancreatic regeneration. The level of IGF-I mRNA was maximally increased (4-fold above control value) 3 days after pancreatectomy, but thereafter gradually decreased, returning to control levels by 14 days after surgery. By in situ hybridization, IGF-I mRNA in both pancreatectomized and sham-operated rats was localized to capillary endothelial cells, indicating that this is the site of IGF-I expression in the normal rat pancreas. However, enhanced IGF-I mRNA expression was localized to focal areas of regeneration unique to pancreatectomized rats. In these areas, epithelial cells of proliferating ductules and individual connective tissue cells expressed IGF-I, suggesting that IGF-I may play an important role in the growth or differentiation of pancreatic tissue.

  8. Epigenetic Transcriptional Memory of GAL Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sood, Varun; Cajigas, Ivelisse; D'Urso, Agustina; Light, William H; Brickner, Jason H

    2017-08-01

    Previously expressed inducible genes can remain poised for faster reactivation for multiple cell divisions, a conserved phenomenon called epigenetic transcriptional memory. The GAL genes in Saccharomyces cerevisiae show faster reactivation for up to seven generations after being repressed. During memory, previously produced Gal1 protein enhances the rate of reactivation of GAL1 , GAL10 , GAL2 , and GAL7 These genes also interact with the nuclear pore complex (NPC) and localize to the nuclear periphery both when active and during memory. Peripheral localization of GAL1 during memory requires the Gal1 protein, a memory-specific cis -acting element in the promoter, and the NPC protein Nup100 However, unlike other examples of transcriptional memory, the interaction with NPC is not required for faster GAL gene reactivation. Rather, downstream of Gal1, the Tup1 transcription factor and growth in glucose promote GAL transcriptional memory. Cells only show signs of memory and only benefit from memory when growing in glucose. Tup1 promotes memory-specific chromatin changes at the GAL1 promoter: incorporation of histone variant H2A.Z and dimethylation of histone H3, lysine 4. Tup1 and H2A.Z function downstream of Gal1 to promote binding of a preinitiation form of RNA Polymerase II at the GAL1 promoter, poising the gene for faster reactivation. This mechanism allows cells to integrate a previous experience (growth in galactose, reflected by Gal1 levels) with current conditions (growth in glucose, potentially through Tup1 function) to overcome repression and to poise critical GAL genes for future reactivation. Copyright © 2017 by the Genetics Society of America.

  9. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi; Sekine, Yoshimoto [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Nakamura, Kazuhiko; Anitha, Ayyappan; Suda, Shiro [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Yamada, Kazuo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Tsujii, Masatsugu [Faculty of Sociology, Chukyo University, Toyota, Aichi (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Yoshikawa, Takeo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Miyachi, Taishi; Tsuchiya, Kenji; Sugihara, Gen-ichi; Matsuzaki, Hideo [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwata, Yasuhide; Suzuki, Katsuaki [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Mori, Norio [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University (Japan); Ouchi, Yasuomi [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); [The Positron Medical Center, Hamamatsu Medical Center, Hamamatsu (Japan); Sugiyama, Toshiro [Aichi Children' s Health and Medical Center, Obu, Aichi (Japan); Takei, Nori [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan)

    2007-09-07

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.

  10. SNP analyses of growth factor genes EGF, TGFβ-1, and HGF reveal haplotypic association of EGF with autism

    International Nuclear Information System (INIS)

    Toyoda, Takao; Nakamura, Kazuhiko; Yamada, Kazuo; Thanseem, Ismail; Anitha, Ayyappan; Suda, Shiro; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio

    2007-01-01

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-β (TGFβ) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGFβ1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGFβ1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism

  11. Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis.

    Science.gov (United States)

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Cammarata, Matteo

    2016-02-01

    Transforming growth factor (TGF-β) is a well-known component of a regulatory cytokines superfamily that has pleiotropic functions in a broad range of cell types and is involved, in vertebrates, in numerous physiological and pathological processes. In the current study, we report on Ciona intestinalis molecular characterisation and expression of a transforming growth factor β homologue (CiTGF-β). The gene organisation, phylogenetic tree and modelling supported the close relationship with the mammalian TGF suggesting that the C. intestinalis TGF-β gene shares a common ancestor in the chordate lineages. Functionally, real-time PCR analysis showed that CiTGF-β was transcriptionally upregulated in the inflammatory process induced by LPS inoculation, suggesting that is involved in the first phase and significant in the secondary phase of the inflammatory response in which cell differentiation occurs. In situ hybridisation assays revealed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by cluster of hemocytes inside the pharynx vessels. These data supported the view that CiTGF-β is a potential molecule in immune defence systems against bacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues

    International Nuclear Information System (INIS)

    Takahashi, J.A.; Mori, Hirotaka; Fukumoto, Manabu; Oda, Yoshifumi; Kikuchi, Haruhiko; Hatanaka, Masakazu; Igarashi, Koichi; Jaye, M.

    1990-01-01

    The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type β were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meningiomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type β1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis

  13. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did no...

  14. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    Directory of Open Access Journals (Sweden)

    David Judah

    2010-11-01

    Full Text Available Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1 promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  15. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    Science.gov (United States)

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  16. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    International Nuclear Information System (INIS)

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO 2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema

  17. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing.

    Science.gov (United States)

    Li, Jing; Zheng, Chun-Quan; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang

    2015-08-01

    This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer.

  18. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein

    International Nuclear Information System (INIS)

    Lutwyche, Jodi K.; Keough, Rebecca A.; Hunter, Julie; Coles, Leeanne S.; Gonda, Thomas J.

    2006-01-01

    Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor

  19. Genetic variations in insulin-like growth factor binding protein acid labile subunit gene associated with growth traits in beef cattle (Bos taurus) in China.

    Science.gov (United States)

    Liu, Yu; Duan, Xiaoyan; Liu, Xiaolin; Guo, Jiazhong; Wang, Hongliang; Li, Zhixiong; Yang, Jing

    2014-05-01

    The insulin-like growth factor binding protein acid labile subunit (IGFALS) gene encodes a serum protein that binds to IGFs and regulates growth, development, and other physiological processes. We have found that sequencing of the IGFALS gene in Chinese Qinchuan beef cattle (n=300) revealed four SNP loci in exon two of the gene (g1219: T>C, g1893: T>C, g2612: G>A, and g2696: A>G). The SNP g2696: A>G resulted in a change from asparagine to aspartic acid (p. N574D) in the leucine-rich repeat region in the carboxyl-terminal domain of IGFALS. Four SNPs were in low linkage disequilibrium, and 12 different haplotypes were identified in the population. Association analysis suggested that SNP g1219: T>C had a significant association with hip width (PG displayed a significant association with stature (Pgrowth traits of bovine, and may serve as a genetic marker for selection of beef cattle for growth traits, including stature. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas

    Directory of Open Access Journals (Sweden)

    Bracamonte Maria I

    2008-01-01

    Full Text Available Abstract Background The implementation of gene therapy for the treatment of pituitary tumors emerges as a promising complement to surgery and may have distinct advantages over radiotherapy for this type of tumors. Up to now, suicide gene therapy has been the main experimental approach explored to treat experimental pituitary tumors. In the present study we assessed the effectiveness of insulin-like growth factor I (IGF-I gene therapy for the treatment of estrogen-induced prolactinomas in rats. Results Female Sprague Dawley rats were subcutaneously implanted with silastic capsules filled with 17-β estradiol (E2 in order to induce pituitary prolactinomas. Blood samples were taken at regular intervals in order to measure serum prolactin (PRL. As expected, serum PRL increased progressively and 23 days after implanting the E2 capsules (Experimental day 0, circulating PRL had undergone a 3–4 fold increase. On Experimental day 0 part of the E2-implanted animals received a bilateral intrapituitary injection of either an adenoviral vector expressing the gene for rat IGF-I (RAd-IGFI, or a vector (RAd-GFP expressing the gene for green fluorescent protein (GFP. Seven days post vector injection all animals were sacrificed and their pituitaries morphometrically analyzed to evaluate changes in the lactotroph population. RAd-IGFI but not RAd-GFP, induced a significant fall in serum PRL. Furthermore, RAd-IGFI but not RAd-GFP significantly reversed the increase in lactotroph size (CS and volume density (VD induced by E2 treatment. Conclusion We conclude that IGF-I gene therapy constitutes a potentially useful intervention for the treatment of prolactinomas and that bioactive peptide gene delivery may open novel therapeutic avenues for the treatment of pituitary tumors.

  1. Radioprotective effect of hematopoietic growth factor gene therapy regulated by Egr-1 promoter on radiation injury of SCID mice

    International Nuclear Information System (INIS)

    Du Nan; Pei Xuetao; Luo Chengji; Su Yongping; Cheng Tianmin

    2002-01-01

    Objective: To explore the radioprotective effect of the expression of hematopoietic growth factors regulated by radio-inducible promoter on radiation injury. Methods: The human FL cDNA and EGFP cDNA were linked together with an internal ribosome entry site (IRES) and then inserted into the eukaryotic expression vector pCI-neo with the Egr-1 promoter (Egr-EF), and further transduced into bone marrow stromal cell lines HFCL (HFCL/EF). The HFCL/EF and CD34 + cells from human umbilical cord blood were transplanted i.v. one after the other into sublethally irradiated severe combined immunodeficient (SCID) mice. The number of peripheral blood WBC and human cells engrafted in recipient mice were detected by flow cytometry and CFU-GM assay. Results: In contrast to two control groups (HFCL and HFCL/F), HFCL/EF (the Egr-1 regulatory element-driven expression of FL gene therapy) resulted in a proportionally obvious increase in the number of the WBC at early stage after irradiation. Significant differences were found for CD45 + , CD34 + , CFU-GM, and nucleated cells in the bone marrow. Conclusion: Hematopoietic growth factor gene therapy regulated by radio-inducible promoter has radioprotective effect on radiation hematopoietic injury

  2. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    Science.gov (United States)

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of epidermal growth factor receptor gene polymorphisms on prognosis in glioma patients

    Science.gov (United States)

    Li, Jingjie; Yan, Mengdan; Xie, Zhilan; Zhu, Yuanyuan; Chen, Chao; Jin, Tianbo

    2016-01-01

    Previous studies suggested that single nucleotide polymorphisms (SNPs) in epidermal growth factor receptor (EGFR) are associated with risk of glioma. However, the associations between these SNPs and glioma patient prognosis have not yet been fully investigated. Therefore, the present study was aimed to evaluate the effects of EGFR polymorphisms on the glioma patient prognosis. We retrospectively evaluated 269 glioma patients and investigated associations between EGFR SNPs and patient prognosis using Cox proportional hazard models and Kaplan-Meier curves. Univariate analysis revealed that age, gross-total resection and chemotherapy were associated with the prognosis of glioma patients (p < 0.05). In addition, four EGFR SNPs (rs11506105, rs3752651, rs1468727 and rs845552) correlated with overall survival (OS) (Log-rank p = 0.011, 0.020, 0.008, and 0.009, respectively) and progression-free survival PFS (Log-rank p = 0.026, 0.024, 0.019 and 0.009, respectively). Multivariate analysis indicated that the rs11506105 G/G genotype, the rs3752651 and rs1468727 C/C genotype and the rs845552 A/A genotype correlated inversely with OS and PFS. In addition, OS among patients with the rs730437 C/C genotype (p = 0.030) was significantly lower OS than among patients with A/A genotype. These data suggest that five EGFR SNPs (rs11506105, rs3752651, rs1468727, rs845552 and rs730437) correlated with glioma patient prognosis, and should be furthered validated in studies of ethnically diverse patients. PMID:27437777

  4. Stimulation of chondrocytes in vitro by gene transfer with plasmids coding for epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF)

    DEFF Research Database (Denmark)

    Schmal, H; Mehlhorn, A T; Zwingmann, J

    2005-01-01

    Human epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF) influence critical characteristics of chondrocytes. The effects on metabolism and differentiation were evaluated following transfection using specific plasmids coding for both cytokines. Chondrocytes were isolated from...... of recombinant hEGF and bFGF resulted in a significant increase in cell proliferation and glucosaminoglycan production. Chondrocytes were transfected with vectors coding for either hEGF or bFGF and the production of these proteins was measured in supernatants by ELISA. Expression kinetics showed different...... patterns: hEGF was detectable 2.5 days following transfection and peaked at day 5.5, whereas bFGF-production reached its maximum 1.5 days after transfection, declining thereafter. Chondrocytes endogenously produced significant amounts of bFGF within 5 days following isolation. Proliferation of h...

  5. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    Science.gov (United States)

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  6. R497K polymorphism in epidermal growth factor receptor gene is associated with the risk of acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Pan Xin-Min

    2008-07-01

    Full Text Available Abstract Background Previous studies suggested that genetic polymorphisms in the epidermal growth factor receptor (EGFR gene had been implicated in the susceptibility to some tumors and inflammatory diseases. EGFR has been recently implicated in vascular pathophysiological processes associated with excessive remodeling and atherosclerosis. Acute coronary syndrome (ACS is a clinical manifestation of preceding atherosclerosis. Our purpose was to investigate the association of the EGFR polymorphism with the risk of ACS. In this context, we analyzed the HER-1 R497K and EGFR intron 1 (CAn repeat polymorphisms in 191 patients with ACS and 210 age- and sex-matched controls in a Chinese population, using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP strategy and direct sequencing. Results There were significant differences in the genotype and allele distribution of R497K polymorphism of the EGFR gene between cases and controls. The Lys allele had a significantly increased risk of ACS compared with the Arg allele (adjusted OR = 1.49, 95% CI: 1.12–1.98, adjusted P = 0.006. However, no significant relationship between the number of (CAn repeats of EGFR intron 1 (both alleles P = 0.911. Considering these two polymorphisms together, there was no statistically significant difference between the two groups. Conclusion R497K polymorphism of the EGFR gene is significantly associated with the risk of ACS. Our data suggests that R497K polymorphism may be used as a genetic susceptibility marker of the ACS.

  7. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells.

    Science.gov (United States)

    Chang, Cheng-Chi; Hsu, Wen-Hao; Wang, Chen-Chien; Chou, Chun-Hung; Kuo, Mark Yen-Ping; Lin, Been-Ren; Chen, Szu-Ta; Tai, Shyh-Kuan; Kuo, Min-Liang; Yang, Muh-Hwa

    2013-07-01

    The epithelial-mesenchymal transition (EMT) is a key mechanism in both embryonic development and cancer metastasis. The EMT introduces stem-like properties to cancer cells. However, during somatic cell reprogramming, mesenchymal-epithelial transition (MET), the reverse process of EMT, is a crucial step toward pluripotency. Connective tissue growth factor (CTGF) is a multifunctional secreted protein that acts as either an oncoprotein or a tumor suppressor among different cancers. Here, we show that in head and neck squamous cell carcinoma (HNSCC), CTGF promotes the MET and reduces invasiveness. Moreover, we found that CTGF enhances the stem-like properties of HNSCC cells and increases the expression of multiple pluripotency genes. Mechanistic studies showed that CTGF induces c-Jun expression through αvβ3 integrin and that c-Jun directly activates the transcription of the pluripotency genes NANOG, SOX2, and POU5F1. Knockdown of CTGF in TW2.6 cells was shown to reduce tumor formation and attenuate E-cadherin expression in xenotransplanted tumors. In HNSCC patient samples, CTGF expression was positively correlated with the levels of CDH1, NANOG, SOX2, and POU5F1. Coexpression of CTGF and the pluripotency genes was found to be associated with a worse prognosis. These findings are valuable in elucidating the interplay between epithelial plasticity and stem-like properties during cancer progression and provide useful information for developing a novel classification system and therapeutic strategies for HNSCC. ©2013 AACR.

  8. A Tumor Suppressor Gene Product, Platelet-Derived Growth Factor Receptor-Like Protein Controls Chondrocyte Proliferation and Differentiation.

    Science.gov (United States)

    Kawata, Kazumi; Kubota, Satoshi; Eguchi, Takanori; Aoyama, Eriko; Moritani, Norifumi H; Oka, Morihiko; Kawaki, Harumi; Takigawa, Masaharu

    2017-11-01

    The platelet-derived growth factor receptor-like (PDGFRL) gene is regarded as a tumor suppressor gene. However, nothing is known about the molecular function of PDGFRL. In this study, we initially clarified its function in chondrocytes. Among all cell lines examined, the PDGFRL mRNA level was the highest in chondrocytic HCS-2/8 cells. Interestingly, the proliferation of chondrocytic HCS-2/8 cells was promoted by PDGFRL overexpression, whereas that of the breast cancer-derived MDA-MB-231 cells was inhibited. Of note, in PDGFRL-overexpressing HCS-2/8 cells, the expression of chondrocyte differentiation marker genes, SOX9, ACAN, COL2A1, COL10A1, and ALP, was decreased. Moreover, we confirmed the expression of PDGFRL mRNA in normal cartilage tissue and chondrocytes. Eventually, the expression of PDGFRL mRNA in condrocytes except in the case of hypertrophic chondrocytes was demonstrated in vivo and in vitro. These findings suggest that PDGFRL plays the different roles, depending upon cell types. Particularly, in chondrocytes, PDGFRL may play a new and important role which is distinct from the function previously reported. J. Cell. Biochem. 118: 4033-4044, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    Science.gov (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  10. Relative Expression of Apoptotic and Vascular Epithelial Growth Factor Receptor Genes in Gamma-Irradiated Rat Kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyang; Chun, Ki Jung; Kim, Jin Kyu [Korea Atomic research Institute, Deajeon (Korea, Republic of); Yoon, Yong Dal [Hanyang Univ., Seoul (Korea, Republic of)

    2005-07-01

    Biological process of wound healing, which occurs in three phases of revascularization (inflammatory, proliferative, and maturation) is an important essential step in regulating this process. Blood vessels serve as carriers for various cells, cytokines, and growth factors that are needed for tissue repair. The formation of new blood vessels is a necessary event during embryogenesis, but it occurs rarely in the adult with few exceptions, such as in the female reproductive system and wound healing. Angiogenesis is controlled by a variety of mitogenic, chemotactic, and inhibitory peptide and lipid factors that act on invading endothelial and smooth muscle cells. One of the most important angiogenic factors is the vascular endothelial growth factor (VEGF), a glycosylated protein of 46-48 kD composed of two disulphide linked subunits. The VEGF family consists of six members, five splicing forms of VEGF and the placenta-derived growth factor (PDGF). In normal, VEGF is expressed during embryogenesis and in a limited number of sites in adults. In disease states, VEGF can be detected in various tumor cells, the synovial pannus in rheumatoid arthritis, and in keratinocytes during wound healing. Five different VEGF isoforms, with 121, 145, 165, 189, and 106 amino acids, can be generated as a result of an alternative splicing from the single VEGF gene. The VEGF molecules bind to receptors known as VEFGR- 1 (FLT-1, fms-like tyrosine kinase 1), VEGFR-2 (KDR, kinase domain region/FLK-1, fetal liver kinase 1), VEGFR-2 (FLT-4), neurophilin-1, neurophilin-2, and heparan sulfate proteoglycans. Ionizing radiation can affect the angiogenesis and neovascularization on normal tissues in radiotherapy or by background radiation surrounding living beings. Kidney belongs to the urinary system and classified to the radio-resistant organ according to the previous studies. Therefore, the present study tested the effect of gamma irradiation and mercury chloride (MgCl{sub 2}) to the renal region

  11. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  12. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy.

    Science.gov (United States)

    Mahmoudabady, Maryam; Mathieu, Myrielle; Touihri, Karim; Hadad, Ielham; Da Costa, Agnes Mendes; Naeije, Robert; Mc Entee, Kathleen

    2009-10-09

    Insulin-like growth factor-1 (IGF-1), transforming growth factor beta (TGFbeta) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFbeta and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFbeta, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.

  13. Serial analysis of gene expression identifies connective tissue growth factor expression as a prognostic biomarker in gallbladder cancer.

    Science.gov (United States)

    Alvarez, Hector; Corvalan, Alejandro; Roa, Juan C; Argani, Pedram; Murillo, Francisco; Edwards, Jennifer; Beaty, Robert; Feldmann, Georg; Hong, Seung-Mo; Mullendore, Michael; Roa, Ivan; Ibañez, Luis; Pimentel, Fernando; Diaz, Alfonso; Riggins, Gregory J; Maitra, Anirban

    2008-05-01

    Gallbladder cancer (GBC) is an uncommon neoplasm in the United States, but one with high mortality rates. This malignancy remains largely understudied at the molecular level such that few targeted therapies or predictive biomarkers exist. We built the first series of serial analysis of gene expression (SAGE) libraries from GBC and nonneoplastic gallbladder mucosa, composed of 21-bp long-SAGE tags. SAGE libraries were generated from three stage-matched GBC patients (representing Hispanic/Latino, Native American, and Caucasian ethnicities, respectively) and one histologically alithiasic gallbladder. Real-time quantitative PCR was done on microdissected epithelium from five matched GBC and corresponding nonneoplastic gallbladder mucosa. Immunohistochemical analysis was done on a panel of 182 archival GBC in high-throughput tissue microarray format. SAGE tags corresponding to connective tissue growth factor (CTGF) transcripts were identified as differentially overexpressed in all pairwise comparisons of GBC (P Cancer Genome Anatomy Project web site and should facilitate much needed research into this lethal neoplasm.

  14. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    International Nuclear Information System (INIS)

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-01-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 ± 9.01 vs. 41.94 ± 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 ± 1303 vs. 1667 ± 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 ± 1084 vs. 1566 ± 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  15. The targeting expression of the vascular endothelial growth factor gene in endothelial cells regulated by HRE.ppET-1.

    Science.gov (United States)

    Zheng, Xiangrong; Zhang, Shangshang; Yang, Yujia; Wang, Xia; Zhong, Le; Yu, Xiaohe

    2008-11-01

    The success of gene therapy depends largely on the efficacy of gene delivery vector systems that can deliver genes to target organs or cells selectively and efficiently with minimal toxicity. Here, we show that by using the HRE.ppET-1 regulatory element, we were able to restrict expression of the transgene of vascular endothelial growth factor (VEGF) to endothelial cells exclusively in hypoxic conditions. Eukaryotic expression vectors such as pEGFP-HRE.ppET-1, pcDNA3.1-VEGF+Pa, pcDNA3.1-ppET-1+ EGF+Pa, and pcDNA3.1-HRE.ppET-1+VEGF+Pa were constructed by using a series of nuclear molecule handling methods like PCR, enzyme digestion. The recombinant vectors were transfected into HUVEC cells and HL7702 cells by the lipofectin method. GFP expression was observed with a fluorescence microscope to validate the specificity of expression in endothelial cells under the regulation of HRE.ppET-1 element. Cobalt chloride (final concentration 100 mumol/L) was added to the medium to mimic hypoxia in vitro. After transfection of vectors, the expression of VEGF mRNA was detected by RT-PCR, and the expression of VEGF was detected by Western blotting and ELISA methods under normoxia and hypoxia, respectively. The cell proliferation rate was detected by the MTT test. The expression of GFP revealed that the exterior gene was transcripted effectively in endothelial cells regulated by the HRE.ppET-1 element, while the expression of GFP was very weak in nonendothelial cells. The results of RT-PCR, Western blotting and ELISA showed that VEGF gene expression in the pcDNA3.1-HRE.ppET-1+VEGF+Pa group and in the pcDNA3.1-ppET-1+VEGF+Pa group was higher in hypoxia than it was in normoxia (PHRE.ppET-1 element was expressed specifically in endothelial cells, and can increase the expression of VEGF in hypoxia and stimulate proliferation of endothelial cells. Taking advantage of these facts could greatly improve the efficiency of gene therapy. The vector would be valuable for various gene transfer

  16. QTL replication and targeted association highlight the nerve growth factor gene for nonverbal communication deficits in autism spectrum disorders.

    Science.gov (United States)

    Lu, A T-H; Yoon, J; Geschwind, D H; Cantor, R M

    2013-02-01

    Autism Spectrum Disorder (ASD) has a heterogeneous etiology that is genetically complex. It is defined by deficits in communication and social skills and the presence of restricted and repetitive behaviors. Genetic analyses of heritable quantitative traits that correlate with ASD may reduce heterogeneity. With this in mind, deficits in nonverbal communication (NVC) were quantified based on items from the Autism Diagnostic Interview Revised. Our previous analysis of 228 families from the Autism Genetics Research Exchange (AGRE) repository reported 5 potential quantitative trait loci (QTL). Here we report an NVC QTL replication study in an independent sample of 213 AGRE families. One QTL was replicated (Panalysis of 476 haplotype blocks with 708 AGRE families using the Family Based Association Test (FBAT). Blocks in two QTL genes were associated with NVC with a P-value of 0.001. Three associated haplotype blocks were intronic to the Nerve Growth Factor (NGF) gene (P=0.001, 0.001, 0.002), and one was intronic to KCND3 (P=0.001). Individual haplotypes within the associated blocks drove the associations (0.003, 0.0004 and 0.0002) for NGF and 0.0001 for KCND3. Using the same methods, these genes were tested for association with NVC in an independent sample of 1517 families from an Autism Genome Project (AGP). NVC was associated with a haplotype in an adjacent NGF block (P=0.0005) and one 46 kb away from the associated block in KCND3 (0.008). These analyses illustrate the value of QTL and targeted association studies for genetically complex disorders such as ASD. NGF is a promising risk gene for NVC deficits.

  17. Single nucleotide polymorphism in Egyptian cattle insulin-like growth factor binding protein-3 gene

    Directory of Open Access Journals (Sweden)

    Othman E. Othman

    2014-12-01

    It is concluded that the IGFBP-3/HaeIII polymorphism may be utilized as a good marker for genetic differentiation between cattle animals for different body functions such as growth, metabolism, reproduction, immunity and energy balance. The nucleotide sequences of Egyptian cattle IGFBP-3 A and C alleles were submitted to GenBank with the accession numbers KF899893 and KF899894, respectively.

  18. Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer.

    Science.gov (United States)

    Kikuchi, Ryoko; Tsuda, Hitoshi; Kanai, Yae; Kasamatsu, Takahiro; Sengoku, Kazuo; Hirohashi, Setsuo; Inazawa, Johji; Imoto, Issei

    2007-08-01

    Connective tissue growth factor (CTGF) is a secreted protein belonging to the CCN family, members of which are implicated in various biological processes. We identified a homozygous loss of CTGF (6q23.2) in the course of screening a panel of ovarian cancer cell lines for genomic copy number aberrations using in-house array-based comparative genomic hybridization. CTGF mRNA expression was observed in normal ovarian tissue and immortalized ovarian epithelial cells but was reduced in many ovarian cancer cell lines without its homozygous deletion (12 of 23 lines) and restored after treatment with 5-aza 2'-deoxycytidine. The methylation status around the CTGF CpG island correlated inversely with the expression, and a putative target region for methylation showed promoter activity. CTGF methylation was frequently observed in primary ovarian cancer tissues (39 of 66, 59%) and inversely correlated with CTGF mRNA expression. In an immunohistochemical analysis of primary ovarian cancers, CTGF protein expression was frequently reduced (84 of 103 cases, 82%). Ovarian cancer tended to lack CTGF expression more frequently in the earlier stages (stages I and II) than the advanced stages (stages III and IV). CTGF protein was also differentially expressed among histologic subtypes. Exogenous restoration of CTGF expression or treatment with recombinant CTGF inhibited the growth of ovarian cancer cells lacking its expression, whereas knockdown of endogenous CTGF accelerated growth of ovarian cancer cells with expression of this gene. These results suggest that epigenetic silencing by hypermethylation of the CTGF promoter leads to a loss of CTGF function, which may be a factor in the carcinogenesis of ovarian cancer in a stage-dependent and/or histologic subtype-dependent manner.

  19. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis.

    Science.gov (United States)

    Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu

    2009-11-01

    To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.

  20. Wound healing gene therapy: cartilage regeneration induced by vascular endothelial growth factor plasmid

    Czech Academy of Sciences Publication Activity Database

    Kološtová, K.; Taltynov, O.; Pintérová, D.; Boubelík, M.; Raška, O.; Hozák, Pavel; Jirkovská, M.; Bobek, V.

    2012-01-01

    Roč. 33, č. 1 (2012), s. 68-74 ISSN 0196-0709 Institutional research plan: CEZ:AV0Z50520514 Keywords : BALB/c mouse strain * significant angiogenesis * cartilage repair * phVEGF(165) injection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.228, year: 2012

  1. KLF10, transforming growth factor-{beta}-inducible early gene 1, acts as a tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki-Duk [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Duk-Jung [The Institute of Hankook Life Science, 7-9 Myungryun-dong, Jongno-gu, Seoul 110-521 (Korea, Republic of); Lee, Jong Eun [Department of Anatomy, College of Medicine, Yonsei University, Seoul 120-752 (Korea, Republic of); Yun, Cheol-Heui [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Lee, Woon Kyu, E-mail: wklee@inha.ac.kr [Laboratory of Developmental Genetics, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of); Brain Korea 21 Center for Advanced Medical Education, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer KLF10{sup -/-} mice exhibited accelerated papilloma development after DMBA/TPA treatment. Black-Right-Pointing-Pointer KLF10{sup -/-} keratinocytes showed increased proliferation and apoptosis. Black-Right-Pointing-Pointer KLF10{sup -/-} MEFs yielded more colonies than wild-type one with H-Ras transfection. Black-Right-Pointing-Pointer KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription. Black-Right-Pointing-Pointer KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription. -- Abstract: Krueppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription, which was independent of p53 and Sp1 binding sites in p21{sup WAF1/CIP1} promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription.

  2. Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy.

    Science.gov (United States)

    Hillenbrand, Matthias; Holzbach, Thomas; Matiasek, Kaspar; Schlegel, Jürgen; Giunta, Riccardo E

    2015-03-01

    The treatment of obstetric brachial plexus palsy has been limited to conservative therapies and surgical reconstruction of peripheral nerves. In addition to the damage of the brachial plexus itself, it also leads to a loss of the corresponding motoneurons in the spinal cord, which raises the need for supportive strategies that take the participation of the central nervous system into account. Based on the protective and regenerative effects of VEGF on neural tissue, our aim was to analyse the effect on nerve regeneration by adenoviral gene transfer of vascular endothelial growth factor (VEGF) in postpartum nerve injury of the brachial plexus in rats. In the present study, we induced a selective crush injury to the left spinal roots C5 and C6 in 18 rats within 24 hours after birth and examined the effect of VEGF-gene therapy on nerve regeneration. For gene transduction an adenoviral vector encoding for VEGF165 (AdCMV.VEGF165) was used. In a period of 11 weeks, starting 3 weeks post-operatively, functional regeneration was assessed weekly by behavioural analysis and force measurement of the upper limb. Morphometric evaluation was carried out 8 months post-operatively and consisted of a histological examination of the deltoid muscle and the brachial plexus according to defined criteria of degeneration. In addition, atrophy of the deltoid muscle was evaluated by weight determination comparing the left with the right side. VEGF expression in the brachial plexus was quantified by an enzyme-linked immunosorbent assay (ELISA). Furthermore the motoneurons of the spinal cord segment C5 were counted comparing the left with the right side. On the functional level, VEGF-treated animals showed faster nerve regeneration. It was found less degeneration and smaller mass reduction of the deltoid muscle in VEGF-treated animals. We observed significantly less degeneration of the brachial plexus and a greater number of surviving motoneurons (P reason for these effects. The clinical use

  3. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Takahashi, Mami; Yamada, Yutaka

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  4. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    OpenAIRE

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) t...

  5. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; LeMerrer, M.; Munnich, A.; Maroteaux, P. [INSERM, Paris (France)

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases; in our series, seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. 31 refs., 4 figs., 2 tabs.

  6. Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab

    Directory of Open Access Journals (Sweden)

    Zeuli Massimo

    2010-04-01

    Full Text Available Abstract Background Responsiveness to Cetuximab alone can be mediated by an increase of Epidermal Growth factor Receptor (EGFR Gene Copy Number (GCN. Aim of this study was to assess the role of EGFR-GCN in advanced colorectal cancer (CRC patients receiving chemotherapy plus Cetuximab. Methods One hundred and one advanced CRC patients (43 untreated- and 58 pre-treated were retrospectively studied by fluorescence in situ hybridization (FISH to assess EGFR-GCN and by immunohistochemistry (IHC to determine EGFR expression. Sixty-one out of 101 patients were evaluated also for k-ras status by direct sequencing. Clinical end-points were response rate (RR, progression-free survival (PFS and overall survival (OS. Results Increased EGFR-GCN was found in 60/101 (59% tumor samples. There was no correlation between intensity of EGFR-IHC and EGFR-GCN (p = 0.43. Patients receiving chemotherapy plus Cetuximab as first line treatment had a RR of 70% (30/43 while it was 18% (10/56 in the group with previous lines of therapy (p Conclusion In metastatic CRC patients treated with chemotherapy plus Cetuximab number of chemotherapy lines and increased EGFR-GCN were significantly associated with a better clinical outcome, independent of k-ras status.

  7. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. (Washington Univ., St. Louis, MO (United States)); Colby, T.V. (Mayo Clinic, Rochester, MN (United States))

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  8. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  9. Correlation Analysis Between Expression Levels of Hepatic Growth Hormone Receptor, Janus Kinase 2, Insulin-Like Growth Factor-I Genes and Dwarfism Phenotype in Bama Minipig.

    Science.gov (United States)

    Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng

    2015-02-01

    Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.

  10. FGF growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  11. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney

    International Nuclear Information System (INIS)

    Werner, H.; Shen-Orr, Z.; Stannard, B.; Burguera, B.; Roberts, C.T. Jr.; LeRoith, D.

    1990-01-01

    Insulinlike growth factor I (IGF-I) is a mitogenic hormone with important regulatory roles in growth and development. One of the target organs for IGF-I action is the kidney, which synthesizes abundant IGF-I receptors and IGF-I itself. To study the involvement of IGF-I and the IGF-I receptor in the development of nephropathy, one of the major complications of diabetes mellitus, we measured the expression of these genes in the kidney and in other tissues of the streptozocin-induced diabetic rat. The binding of 125I-labeled IGF-I to crude membranes was measured in the same tissues. We observed a 2.5-fold increase in the steady-state level of IGF-I-receptor mRNA in the diabetic kidney, which was accompanied by a 2.3-fold increase in IGF-I binding. In addition to this increase in IGF-I binding to the IGF-I receptor, there was also binding to a lower-molecular-weight material that may represent an IGF-binding protein. No change was detected in the level of IGF-I-peptide mRNA. Similarly, IGF-II-receptor mRNA levels and IGF-II binding were significantly increased in the diabetic kidney. IGF-I- and IGF-II-receptor mRNA levels and IGF-I and IGF-II binding returned to control values after insulin treatment. Because the IGF-I receptor is able to transduce mitogenic signals on activation of its tyrosine kinase domain, we hypothesize that, among other factors, high levels of receptor in the diabetic kidney may also be involved in the development of diabetic nephropathy. Increased IGF-II-receptor expression in the diabetic kidney may be important for the intracellular transport and packaging of lysosomal enzymes, although a role for this receptor in signal transduction cannot be excluded. Finally, the possible role of IGF-binding proteins requires further study

  12. New microbial growth factor

    Science.gov (United States)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  13. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    Science.gov (United States)

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  14. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    Science.gov (United States)

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    In-Su Kim

    2017-02-01

    Full Text Available We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD. We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+ to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h. We found that the Epidermal Growth Factor Receptor (EGFR pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26 gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.

  16. Molecular Characterization and Expression Analysis of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-1 Genes in Qinghai-Tibet Plateau and Lowland

    Directory of Open Access Journals (Sweden)

    Ya-bing Chen

    2015-01-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 and insulin-like growth factor binding protein-1 (IGFBP-1 play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak. We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05. The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05 of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

  17. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xingguo, E-mail: chengx@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Vispute, Saurabh G. [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Liu, Jie [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States); Cheng, Christine; Kharitonenkov, Alexei [Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285 (United States); Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States)

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  18. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    International Nuclear Information System (INIS)

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-01-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression

  19. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors

    Science.gov (United States)

    Medina, Angel; Schmidt-Heydt, Markus; Cárdenas-Chávez, Diana L.; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2013-01-01

    The objective of this study was to integrate data on the effect of water activity (aw; 0.995–0.93) and temperature (20–35°C) on activation of the biosynthetic FUM genes, growth and the mycotoxins fumonisin (FB1, FB2) by Fusarium verticillioides in vitro. The relative expression of nine biosynthetic cluster genes (FUM1, FUM7, FUM10, FUM11, FUM12, FUM13, FUM14, FUM16 and FUM19) in relation to the environmental factors was determined using a microarray analysis. The expression was related to growth and phenotypic FB1 and FB2 production. These data were used to develop a mixed-growth-associated product formation model and link this to a linear combination of the expression data for the nine genes. The model was then validated by examining datasets outside the model fitting conditions used (35°C). The relationship between the key gene (FUM1) and other genes in the cluster (FUM11, FUM13, FUM9, FUM14) were examined in relation to aw, temperature, FB1 and FB2 production by developing ternary diagrams of relative expression. This model is important in developing an integrated systems approach to develop prevention strategies to control fumonisin biosynthesis in staple food commodities and could also be used to predict the potential impact that climate change factors may have on toxin production. PMID:23697716

  20. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    Science.gov (United States)

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  1. [From gene to disease; achondroplasia and other skeletal dysplasias due to an activating mutation in the fibroblast growth factor

    NARCIS (Netherlands)

    Ravenswaaij-Arts, C.M.A. van; Losekoot, M.

    2001-01-01

    Achondroplasia, the most common and best known skeletal dysplasia, is inherited in an autosomal dominant fashion. Like a number of other skeletal dysplasias, among which hypochondroplasia and thanatophoric dysplasia, achondroplasia is caused by mutations in the fibroblast growth factor receptor 3

  2. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene

    DEFF Research Database (Denmark)

    Juul, A; Aksglaede, L; Lund, A M

    2007-01-01

    Patients with Klinefelter syndrome (47,XXY) are characterized by eunuchoid body proportions, gynaecomastia, small firm testes and azoospermia. We describe a Klinefelter patient (non-mosaic 47,XXY karyotype) who was heterozygous for the classical 1138G>A mutation in the fibroblast growth factor...

  3. Molecular cloning and functional characterization of the human platelet-derived growth factor alpha receptor gene promoter

    NARCIS (Netherlands)

    Afink, G. B.; Nistér, M.; Stassen, B. H.; Joosten, P. H.; Rademakers, P. J.; Bongcam-Rudloff, E.; van Zoelen, E. J.; Mosselman, S.

    1995-01-01

    Expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) is strictly regulated during mammalian development and tumorigenesis. The molecular mechanisms involved in the specific regulation of PDGF alpha R expression are unknown, but transcriptional regulation of the PDGF alpha R

  4. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    Science.gov (United States)

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  5. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous {beta}-TCP ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Kulbatski, Iris [Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8 (Canada); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Wang Hong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Xiao Baojun [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China)

    2006-09-15

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous {beta} tricalcium phosphate ({beta}-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new

  6. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous β-TCP ceramic scaffolds

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Kulbatski, Iris; Yuan Quan; Yang Shuhua; Shao Zengwu; Wang Hong; Xiao Baojun; Pan Zhengqi; Tang Shuo

    2006-01-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous β tricalcium phosphate (β-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  7. Fibroblast growth factor 23

    African Journals Online (AJOL)

    Dr Olaleye

    Systemic phosphate homeostasis is maintained through several hormonal mechanisms which involve fibroblast growth factor 23 (FGF-23), α-klotho, vitamin D and parathyroid hormone. FGF-23 is known to be the major regulator of phosphate balance (Mirams et al., 2004). FGF-23 is a phosphaturic hormone, which is.

  8. Amplification of the epidermal growth factor receptor gene in glioblastoma: an analysis of the relationship between genotype and phenotype by CISH method.

    Science.gov (United States)

    Miyanaga, Tomomi; Hirato, Junko; Nakazato, Yoichi

    2008-04-01

    We examined epidermal growth factor receptor (EGFR) overexpression and EGFR gene amplification using immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) in 109 glioblastomas, including 98 primary glioblastomas and 11 secondary glioblastomas. EGFR overexpression and EGFR gene amplification were found in 33% and 24% of glioblastoma, respectively, and all of those cases were primary glioblastoma. Large ischemic necrosis was significantly more frequent in primary glioblastomas than in secondary glioblastomas (54% vs. 18%), but pseudopalisading necrosis was not (65% vs. 54%). EGFR gene amplification was detected significantly more frequently in cases with both types of necrosis. Although glioblastomas with EGFR gene amplification invariably exhibited EGFR overexpression at the level of the whole tumor, tumor cells with EGFR gene amplification did not always show EGFR overexpression at the level of individual tumor cells. Cases of "strong" EGFR overexpression on IHC could be regarded as having EGFR gene amplification, and cases without EGFR overexpression could not. Cases of "weak" EGFR overexpression should be tested with CISH to confirm the presence of EGFR gene amplification. We found that 54% of glioblastomas with EGFR gene amplification were composed of areas with and without EGFR gene amplification; however, there were no obvious differences in morphology between tumor cells with and without EGFR gene amplification. Although small cell architecture might be associated with EGFR gene amplification at the level of the whole tumor, it did not always suggest amplification of the EGFR gene at the level of individual tumor cells. In one case, it seemed to suggest that a clone with EGFR gene amplification may arise in pre-existing tumor tissue and extend into the surrounding area. In cases of overall EGFR amplification, CISH would be a useful tool to decide the tumor border in areas infiltrated by tumor cells.

  9. [Liposome-mediated glial growth factor 2 gene therapy in brain injury: an experimental study with rats].

    Science.gov (United States)

    Xue, Ya-jun; Dong, Yan; Han, Xi; Wei, Mei-yang; Ge, Jun-hui; Cai, Ru-jue; Hu, Guo-han; Luo, Chun; Zhu, Cheng; Lu, Yi-cheng

    2006-09-05

    To explore the protective effect of glial growth factor-2 (GGF2) on brain injury. Thirty-four SD rats underwent lateral fluid percussion to establish brain injury models and then were randomly divided into 4 groups: treatment group (n = 10, the plasmid pEGFP-N1-GGF2 mixed with liposome was injected into the brain tissue directly), vector control group (n = 10, the vector pEGFP-N1 mixed with liposome was injected into the brain tissue directly), liposome control group (n = 10, liposome was injected), and sham operation group (n = 4). Three assessment tasks were performed for neurobehavioral evaluation: Clivas Test, Beam Balance Test and Beam Walking Test. 10 days after brain injury, the rats were sacrificed and their brains were embedded in paraffin for HE staining, Nissle staining and immunohistochemical examination of MBP, NSE, and GFAP. The Clivas test score of the treatment group was 66.25 +/- 3.54, significantly higher than those of the vector control group and. liposome control group (58.31 +/- 3.72 and 57.21 +/- 3.93 respectively, both P beam test score of the treatment group was 2.59 +/- 0.21, significantly lower than those the vector control group and liposome control group (3.41 +/- 0.25 and 3.24 +/- 0.22 respectively, both P walking test score of the treatment group was 20.15 +/- 2.59, significantly lower than those of control group and liposome control group (27.00 +/- 3.47 and 27.80 +/- 3.00 respectively, both P beam walking test was the greatest. The neuron number in the external granular layer and external pyramidal layer in cortex of the treatment group was 98 +/- 10, significantly more than those of the vector control group and liposome group (75 +/- 7 and 67 +/- 8, both P < 0.05). The neuron number in the internal pyramidal layer in cortex of the treatment group was 37 +/- 4, significantly more than those of the vector control group and liposome group (19 +/- 3 and 23 +/- 4 respectively, both P < 0.05). The neuron number in the CA1 region in

  10. DNA Polymorphism of Insulin-like Growth Factor-binding Protein-3 Gene and Its Association with Cashmere Traits in Cashmere Goats

    Directory of Open Access Journals (Sweden)

    Haiying Liu

    2012-11-01

    Full Text Available Insulin-like growth factor binding protein-3 (IGFBP-3 gene is important for regulation of growth and development in mammals. The present investigation was carried out to study DNA polymorphism by PCR-RFLP of IGFBP-3 gene and its effect on fibre traits of Chinese Inner Mongolian cashmere goats. The fibre traits data investigated were cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length. Four hundred and forty-four animals were used to detect polymorphisms in the hircine IGFBP-3 gene. A 316-bp fragment of the IGFBP-3 gene in exon 2 was amplified and digested with HaeIII restriction enzyme. Three patterns of restriction fragments were observed in the populations. The frequency of AA, AB and BB genotypes was 0.58, 0.33 and 0.09 respectively. The allelic frequency of the A and B allele was 0.75 and 0.25 respectively. Nucleotide sequencing revealed a C>G transition in the exon 2 region of the IGFBP-3 gene resulting in R158G change which caused the polymorphism. Least squares analysis revealed a significant effect of genotypes on cashmere weight (p0.05. The animals of AB and BB genotypes showed higher cashmere weight, cashmere fibre length and hair length than the animals possessing AA genotype. These results suggested that polymorphisms in the hircine IGFBP-3 gene might be a potential molecular marker for cashmere weight in cashmere goats.

  11. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  12. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  13. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  14. Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1

    International Nuclear Information System (INIS)

    Nogueira, Leticia M; Lavigne, Jackie A; Chandramouli, Gadisetti V R; Lui, Huaitian; Barrett, J Carl; Hursting, Stephen D

    2012-01-01

    The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes

  15. Ultrasound Effect on Gene Expression of Sex Determining Region Y-box 9 (SOX9 and Transforming Growth Factor β Isoforms in Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Hajar Shafaei

    2016-04-01

    Full Text Available Background Cartilage tissue engineering is a promising method for repair of cartilage defects. Induction of chondrogenesis in mesenchymal stem cells (MSC is currently used in cartilage tissue engineering. Among growth factors, transforming growth factor β (TGF-β is common chondrogenic inducer but toward hypertrophic chondrocyte. However, mechanical factors such as ultrasound could stimulate chondrogenesis. Objectives We aimed to investigate stimulation of endogenous TGF-β genes expression by low intensity pulsed ultrasound (LIPUS in MSC. Materials and Methods In this experimental study, adipose tissue stem cells (ASC cultures were treated with or without LIPUS (30 mW/cm2, 20 min/day and with or without TGF-β3 (10 ng/mL for 4 or 14 days. Chondrogenic gene expression of SOX9 and members of TGF-β family (β1, β2 and β3 was assessed in ASC cultures at day 4 and 14 by real time PCR. Results The gene expression of SOX9 significantly increased by LIPUS and TGF-β treatment versus control cultures. Exogenous TGF-β3 treatment stimulated endogenous TGF-β1 and β2 gene expressions more than LIPUS treated cultures at day 4. LIPUS, TGF-β and LIPUS plus TGF-β treated cultures expressed same TGF-β3 gene expression at day 4. The expression of TGF-β1 and β2 decreased by LIPUS in comparison to TGF-β treated cultures at day 14. Conclusions Our results suggest that LIPUS might initiate differentiation of ASC without enhancing endogenous TGF-β genes in in-vitro.

  16. Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells.

    Science.gov (United States)

    Salton, S R; Fischberg, D J; Dong, K W

    1991-05-01

    Nerve growth factor (NGF) plays a critical role in the development and survival of neurons in the peripheral nervous system. Following treatment with NGF but not epidermal growth factor, rat pheochromocytoma (PC12) cells undergo neural differentiation. We have cloned a nervous system-specific mRNA, NGF33.1, that is rapidly and relatively selectively induced by treatment of PC12 cells with NGF and basic fibroblast growth factor in comparison with epidermal growth factor. Analysis of the nucleic acid and predicted amino acid sequences of the NGF33.1 cDNA clone suggested that this clone corresponded to the NGF-inducible mRNA called VGF (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393-395, 1985; R. Possenti, J. D. Eldridge, B. M. Paterson, A. Grasso, and A. Levi, EMBO J. 8:2217-2223, 1989). We have used the NGF33.1 cDNA clone to isolate and characterize the VGF gene, and in this paper we report the complete sequence of the VGF gene, including 853 bases of 5' flank revealed TATAA and CCAAT elements, several GC boxes, and a consensus cyclic AMP response element-binding protein binding site. The VGF promoter contains sequences homologous to other NGF-inducible, neuronal promoters. We further show that VGF mRNA is induced in PC12 cells to a greater extent by depolarization and by phorbol-12-myristate-13-acetate treatment than by 8-bromo-cyclic AMP treatment. By Northern (RNA) and RNase protection analysis, VGF mRNA is detectable in embryonic and postnatal central and peripheral nervous tissues but not in a number of nonneural tissues. In the cascade of events which ultimately leads to the neural differentiation of NGF-treated PC12 cells, the VGF gene encodes the most rapidly and selectively regulated, nervous-system specific mRNA yet identified.

  17. Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    XIAN Chengyu; WANG Yuanliang; ZHANG Bingbing; TANG Liling; PAN Jun; LUO Yanfeng; JIANG Peng; LI Dajun

    2006-01-01

    Insulin-like growth factor 1 (IGF-1) promotes osteoblasts differentiation and bone formation,and its expression is induced by mechanical stretch,thus IGF-1 has been considered an effector molecule that links mechanical stimulation and local tissue responses. In this study, a mechanical stretching device was designed to apply physiological level static or cyclic stretching stimulation to osteoblasts.Different isoforms of IGF-1 mRNA were amplified by RT-PCR from the cells using respective primers and these amplified products were sequenced. An isoform of IGF-1 splicing product was found to be selectively produced by osteoblasts under stretching stimulation. This IGF-1 isoform had identical sequence with the mechano growth factor (MGF) which was originally identified in muscle cells. Regulations of the expression of the liver-type IGF (L.IGF-1) and MGF in osteoblasts under stretch stimulation were further studied using semi-quantitative RT-PCR.Stretch stimulation was found to promot the expression of IGF-1 (L.IGF-1 and MGF), and for both isoforms expression was more effectively stimulated by cyclic stretch than static stretch. MGF was detected only in osteoblasts subjected to mechanical stretch,suggesting MGF was a stretch sensitive growth factor.Expression of MGF peaked earlier than that of L.IGF-1, which was similar to their regulation in muscie and suggested similar roles of MGF and L.IGF-1in bone as in muscle cells. The functions of MGF and L.IGF-1 in osteoblasts shall be established by further experimental studies.

  18. Quantitative gene-expression of the tumor angiogenesis markers vascular endothelial growth factor, integrin alphaV and integrin beta3 in human neuroendocrine tumors

    DEFF Research Database (Denmark)

    Oxboel, Jytte; Binderup, Tina; Knigge, Ulrich

    2009-01-01

    , in neuroendocrine tumors. We used quantitative real-time PCR for measuring mRNA gene-expression of vascular endothelial growth factor (VEGF), integrin alphaV, and integrin beta3, and CD34 for a group of patients with neuroendocrine tumors (n=13). Tissue from patients with colorectal cancer liver metastases (n=14...... compared to both colorectal liver metastases (p=0.10) and normal liver tissue (p=0.06). In neuroendocrine tumors, gene-expression was highly variable of VEGF (530-fold), integrin alphaV (23-fold) and integrin beta3 (106-fold). Quantitative gene-expression levels of the key angiogenesis molecules VEGF......Anti-angiogenesis treatment is a promising new therapy for cancer that recently has also been suggested for patients with neuroendocrine tumors. The aim of the present study was therefore to investigate the level of tumor angiogenesis, and thereby the molecular basis for anti-angiogenesis treatment...

  19. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael D; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C; Dandekar, Satya

    2003-07-20

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression.

  20. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    George, Michael D.; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C.; Dandekar, Satya

    2003-01-01

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression

  1. In vitro and in vivo gene therapy with CMV vector-mediated presumed dog beta-nerve growth factor in pyridoxine-induced neuropathy dogs.

    Science.gov (United States)

    Chung, Jin Young; Choi, Jung Hoon; Shin, Il Seob; Choi, Eun Wha; Hwang, Cheol Yong; Lee, Sang Koo; Youn, Hwa Young

    2008-12-01

    Due to the therapeutic potential of gene therapy for neuronal injury, many studies of neurotrophic factors, vectors, and animal models have been performed. The presumed dog beta-nerve growth factor (pdbeta-NGF) was generated and cloned and its expression was confirmed in CHO cells. The recombinant pdbeta-NGF protein reacted with a human beta-NGF antibody and showed bioactivity in PC12 cells. The pdbeta-NGF was shown to have similar bioactivity to the dog beta-NGF. The recombinant pdbeta-NGF plasmid was administrated into the intrathecal space in the gene therapy group. Twenty-four hours after the vector inoculation, the gene therapy group and the positive control group were intoxicated with excess pyridoxine for seven days. Each morning throughout the test period, the dogs' body weight was taken and postural reaction assessments were made. Electrophysiological recordings were performed twice, once before the experiment and once after the test period. After the experimental period, histological analysis was performed. Dogs in the gene therapy group had no weight change and were normal in postural reaction assessments. Electrophysiological recordings were also normal for the gene therapy group. Histological analysis showed that neither the axons nor the myelin of the dorsal funiculus of L4 were severely damaged in the gene therapy group. In addition, the dorsal root ganglia of L4 and the peripheral nerves (sciatic nerve) did not experience severe degenerative changes in the gene therapy group. This study is the first to show the protective effect of NGF gene therapy in a dog model.

  2. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  3. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    Science.gov (United States)

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (Pbreast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

  4. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    International Nuclear Information System (INIS)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-01-01

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP 3 /calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation

  5. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    Energy Technology Data Exchange (ETDEWEB)

    Zuloaga, R. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Fuentes, E.N.; Molina, A. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile)

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  6. The relationship in Japanese infants between a genetic polymorphism in the promoter region of the insulin-like growth factor I gene and the plasma level.

    Science.gov (United States)

    Kinoshita, Yumiko; Kizaki, Zenro; Ishihara, Yasunori; Nakajima, Hisakazu; Adachi, Shinsuke; Kosaka, Kitaro; Kinugasa, Akihiko; Sugimoto, Tohru

    2007-01-01

    Evidence is accumulating that the promoter region of the insulin-like growth factor I (IGF-I) gene polymorphism and low levels of IGF-I are associated with type 2 diabetes, cardiovascular disease and birth weight; however, the number of wild-type alleles is different in each country. This study aimed to examine the 737/738 marker, a cytosine-adenine repeat in the promoter region of the IGF-I gene polymorphism, and plasma IGF-I levels in Japanese infants and analyze the genetic background. Data were collected for 15 months in Kyoto Prefectural University of Medicine. The body composition parameters of all infants were determined at birth. At 5 days after birth, we took blood samples to measure the product size of the promoter region of the IGF-I gene polymorphism and plasma IGF-I. In a population-based sample of 160 subjects, 6 different alleles and 16 genotypes were identified in the promoter region of the IGF-I gene polymorphism. The existence of a 196-bp allele has proved to result in a low plasma IGF-I level, a small head and chest circumference (p body composition parameters in Japanese infants. Our results suggest genetical influence on prenatal growth and serum IGF-I levels.

  7. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  8. Long-term auxological and pubertal outcome of patients with hereditary insulin-like growth factor-I deficiency (Laron and growth hormone-gene deletion syndrome) treated with recombinant human insulin-like growth factor-I.

    Science.gov (United States)

    Messina, M F; Arrigo, T; Valenzise, M; Ghizzoni, L; Caruso-Nicoletti, M; Zucchini, S; Chiabotto, P; Crisafulli, G; Zirilli, G; De Luca, F

    2011-04-01

    GH-IGF-I axis is mainly involved in the complex process of somatic growth but emerging evidence suggests that it also influences hypothalamic-pituitary-gonadal (HPG) function. We report some data regarding long-term auxological and pubertal outcome of five female patients with hereditary forms of GH-IGF-I deficiency (Laron and GH-gene deletion syndrome) and a mean age of 23.4±5.3 yr (range 19-32). All the patients received recombinant human IGF-I (rhIGF-I, Pharmacia and Upjohn, Stockholm, Sweden, and rhIGF-I, Genentech, San Francisco, CA, USA) from a mean age of 8.6 yr (range 3.2-14.2) up to the final height. Final height was very disappointing (≤ -5.0 SD scores) and lower than target height in all the patients. Pubertal onset was delayed in most of them but menarche occurred spontaneously in all the patients. Median age at menarche was 15.1 yr. Menstrual cycles were regular for several years. Median duration of gynecological follow- up was 8.3 yr with the longest span of 17.2 yr. We can assert that GH-IGF-I axis has an essential role in promoting linear growth in humans and its physiological action cannot be replaced by pharmacological treatment in most patients with hereditary forms of IGF-I insufficiency as demonstrated by their subnormal final height. Our clinical observations can also support an essential role of IGF-I in genitalia growth but not in the function of HPG axis as demonstrated by the maintenance of regular menstrual cycles in the presence of subnormal levels of IGF-I after treatment discontinuation.

  9. Novel Single Nucleotide Polymorphisms of the Insulin-Like Growth Factor-I Gene and Their Associations with Growth Traits in Common Carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Xiu Feng

    2014-12-01

    Full Text Available Insulin-like growth factor-I (IGF-I plays an important role in the growth and development of vertebrates. To study polymorphisms of IGF-I, we screened a total of 4555 bp of genomic sequences in four exons and partial introns for the discovery of single nucleotide polymorphism (SNP in common carp (Cyprinus carpio. Three SNPs (g.3759T>G, g.7627T>A and g.7722T>C in intron 2 and a nonsynonymous SNP (g.7892C>T in exon 3 were identified in a pilot population including random parents and their progenies. 289 progenies were further genotyped for studying possible associations between genotypes or combined genotypes and growth traits. The results showed that the locus g.7627T>A was significantly associated with body weight and body length, and fish with genotype AA had a mean body weight 5.9% higher than those with genotype TT. No significant associations were observed between genotypes of other loci and growth traits. However, when both g.7627T>A and g.7722T>C were considered, the combined genotype TT/TT was extremely associated with the lowest values of body length and body weight and the highest K value in comparison with other diplotypes (p < 0.01. These results suggest that genotype AA at g.7627T>A and its combined genotypes with alleles from another locus have positive effects on growth traits, which would be a candidate molecular marker for further studies in marker-assisted selection in common carp.

  10. Early alterations in extracellular matrix and transforming growth factor β gene expression in mouse lung indicative of late radiation fibrosis

    International Nuclear Information System (INIS)

    Finkelstein, J.N.; Johnston, C.J.; Baggs, R.; Rubin, P.

    1994-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The expression of late radiation injury can be found immediately after irradiation by measuring messenger RNA (mRNA) abundance. To determine if extracellular matrix mRNA and transforming growth factor beta abundance was affected acutely after irradiation, the authors measured mRNA levels of collagen I (CI), collagen III (CIII), collagen IV (CIV), fibronectin (FN), and transforming growth factor β (TGFβ 1,2ampersand3 ) in mouse lungs on day 1 and day 14 after graded doses of radiation. C57BL/6 female mice were irradiated with a single dose to the thorax of 5 or 12.5 Gy. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabelled cDNA probes for CI, CIII, CIV, FN, TGFβ 1,2ampersand3 and a control probe encoding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Autoradiographic data were quantified by video densitometry and results normalized to GAPDH. Changes in the expression of CI, CIII, CIV, FN and TGFβ 1,2ampersand3 were observed as early as 1 day after exposure. Through 14 days, changes in mRNA up to 5-fold were seen for any one dose. Dose related changes as high as 10-fold were also evident. The CI:CIII ratio increased gradually for the 5 Gy dose at 14 days postirradiation while the CI:CII ratio for the 12.5 Gy dose decreased by approximately 4-fold as compared to the control. These studies suggest that alterations in expression of extracellular matrix and TGFβ mRNA occur very early after radiation injury even at low doses and may play a role in the development of chronic fibrosis. 37 refs., 6 figs

  11. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  12. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    Science.gov (United States)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  13. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping

    2006-01-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  14. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khin, Sann Sanda [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Pathology Research Unit, Department of Medical Research (Central Myanmar), Naypyitaw, Union of (Myanmar); Kitazawa, Riko [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Haraguchi, Ryuma [Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Mori, Kiyoshi [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Kitazawa, Sohei, E-mail: kitazawa@m.ehime-u.ac.jp [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan)

    2011-03-03

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  15. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  16. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Kiyoshi Mori

    2011-03-01

    Full Text Available Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β, induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  17. Growth hormone, growth factors, and acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  18. Vascular endothelial growth factor gene polymorphisms in patients with colorectal cancer Polimorfismos del gen del factor de crecimiento vascular endotelial en pacientes con cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    M. Vidaurreta

    2010-01-01

    Full Text Available Background: angiogenesis plays an important role in tumor progression. The vascular endothelial growth factor (VEGF is an important regulator of angiogenesis. In the present study we evaluated single nucleotide polymorphisms (SNPs -2578C > A, -1154G > A, and +936C > T in the VEGF gene, and their prognostic value for patients operated on for colorectal cancer (CRC. Patients and method: VEGF polymorphisms have been analyzed in 177 patients who had undergone surgical resection at Hospital Clínico San Carlos. The analysis of these polymorphisms was performed with specific probes for each nucleotide in a multiplex reaction using real-time PCR. Results: we only found a statistically significant relationship for one of these three polymorphisms, +936C > T, with gender and tumor location; 10.7% of patients heterozygotes for this SNP had tumors located in proximal colon, 35.2% in distal segment and 54.1% in rectum (p = 0.03. Patients with the +936T/T genotype had 100% overall survival (OS. Conclusion: patients with a +936T/T genotype showed increased survival, therefore the +936C > T SNP could be a useful marker in the follow-up and clinical management of patients with colorectal cancer.Introducción: la angiogénesis juega un papel importante en la progresión de los tumores. El factor de crecimiento endotelial vascular (VEGF es un importante regulador de la angiogénesis. En este trabajo se han analizado los polimorfismos de único nucleó-tido (SNP -2578C > A, -1154G > A y +936C > T del gen VEGF en pacientes intervenidos de carcinoma colorrectal, así como su posible implicación pronóstica. Pacientes y método: el estudio de estos SNP se ha realizado en 177 pacientes intervenidos quirúrgicamente de carcinoma colorrectal (CCR en el Hospital Clínico San Carlos. El análisis de los polimorfismos se realizó con sondas específicas para cada nucleótido y se determinó mediante una reacción multiplex mediante real time PCR. Resultados: de los 3

  19. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model.

    Science.gov (United States)

    Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M

    1990-09-01

    The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.

  20. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression.

    Science.gov (United States)

    McCarrel, Taralyn; Fortier, Lisa

    2009-08-01

    Platelet-rich plasma (PRP) has generated substantial interest for tendon and ligament regeneration because of the high concentrations of growth factors in platelet alpha-granules. This study compared the temporal release of growth factors from bone marrow aspirate (BMA), PRP, and lyophilized platelet product (PP), and measured their effects on tendon and ligament gene expression. Blood and BMA were collected and processed to yield PRP and plasma. Flexor digitorum superficialis tendon (FDS) and suspensory ligament (SL) explants were cultured in 10% plasma in DMEM (control), BMA, PRP, or PP. TGF-beta1 and PDGF-BB concentrations were determined at 0, 24, and 96 h of culture using ELISA. Quantitative RT-PCR for collagen types I and III (COL1A1, COL3A1), cartilage oligomeric matrix protein (COMP), decorin, and matrix metalloproteinases-3 and 13 (MMP-3, MMP-13) was performed. TGF-beta1 and PDGF-BB concentrations were highest in PRP and PP. Growth factor quantity was unchanged in BMA, increased in PRP, and decreased in PP over 4 days. TGF-beta1 and platelet concentrations were positively correlated. Lyophilized PP and PRP resulted in increased COL1A1:COL3A1 ratio, increased COMP, and decreased MMP-13 expression. BMA resulted in decreased COMP and increased MMP-3 and MMP-13 gene expression. Platelet concentration was positively correlated with COL1A1, ratio of COL1A1:COL3A1, and COMP, and negatively correlated with COL3A1, MMP-13, and MMP-3. White blood cell concentration was positively correlated with COL3A1, MMP3, and MMP13, and negatively correlated with a ratio of COL1A1:COL3A1, COMP, and decorin. These findings support further in vivo investigation of PRP and PP for treatment of tendonitis and desmitis. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Differential roles of SS18-SSX fusion gene and insulin-like growth factor-1 receptor in synovial sarcoma cell growth

    International Nuclear Information System (INIS)

    Toernkvist, Maria; Natalishvili, Natalia; Xie Yuntao; Girnita, Ada; D'Arcy, Padraig; Brodin, Bertha; Axelson, Magnus; Girnita, Leonard

    2008-01-01

    Recently we demonstrated that the synovial sarcoma specific fusion gene SS18-SSX is crucial for cyclin D1 expression and is linked to cell proliferation. In this report we explore the role of SS18-SSX and IGF-1R for their potential functions in cellular proliferation and survival in cultured synovial sarcoma cells. We found that targeting of SS18-SSX mRNA by antisense oligonucleotide treatment drastically and rapidly decreased cell proliferation but caused only a slight increase of apoptosis. The synovial sarcoma cells were confirmed to express IGF-1R, and treatment with an IGF-1R inhibitor resulted in substantially reduced cell viability by inducing apoptosis in these cells. Conversely, inhibition of the IGF-1R resulted only in a slight to moderate decrease in DNA synthesis. In conclusion, SS18-SSX and IGF-1R seem to play important but different roles in maintaining malignant growth of synovial sarcoma cells. Whereas SS18-SSX maintains cyclin D1 and cell proliferation, IGF-1R protects from apoptosis

  2. Growth factors, muscle function, and doping.

    Science.gov (United States)

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  3. Expression and imprinting of insulin-like growth factor II (IGF2) and H19 genes in uterine leiomyomas

    DEFF Research Database (Denmark)

    Rainho, C A; Pontes, A; Rogatto, S R

    1999-01-01

    status of IGF2 and H19 genes in 47 uterine leiomyomas. Using allelic transcription assay, we detected the expression of the IGF2 gene in 10 of a total of 15 informative cases. No loss of imprinting, as determined by the finding of biallelic expression, was detected in any case. The expression of H19 gene...... was detected in 10 of 20 informative cases and the imprinting pattern was also maintained in all of them. Our data suggest that alterations in IGF2 and H19 genes expression by loss of imprinting do not occur in uterine leiomyomas....

  4. Nonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System

    Directory of Open Access Journals (Sweden)

    Christian Bucher

    2013-01-01

    Full Text Available Intervertebral disc (IVD cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5 by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

  5. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Majesky, M.W.; Benditt, E.P.; Schwartz, S.M.

    1988-01-01

    Cultured arterial smooth muscle cells (SMC) can produce platelet-derived growth factor (PDGF)-like molecules. This property raises the possibility that SMC-derived PDGFs function as autocrine/paracrine regulators in the formation and maintenance of the artery wall. In this study the authors have asked if levels of mRNAs directing synthesis of PDFG are modulated in aortic SMC during postnatal development. The authors report here that genes encoding PDGF A- and B-chain precursors are expressed at similar low levels in intact aortas from newborn and adult rats. Marked differences in regulation of transcript abundance of these genes were revealed when aortic SMC were grown in cell culture. PDGF B-chain transcripts accumulated in passaged newborn rat SMC but not adult rat SMC, whereas PDGF A-chain RNA was found in comparable amounts in SMC from both age groups. Similarly, SMC from newborn rats secreted at least 60-fold more PDGF-like activity into conditioned medium than did adult rat SMC. These results show that PDGF A- and B-chain genes are transcribed in the normal rat aorta and provide evidence for age-related change in the control of PDGF B-chain gene expression in aortic SMC. Independent regulation of transcript levels in cultured SMC leaves open the possibility that PDGFs of different composition (AA, AB, BB) play different roles in normal function of the artery wall

  6. Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Plants respond to different forms of stresses by inducing transcription of a common and distinct set of genes by concerted actions of a cascade of transcription regulators. We previously reported that a gene, CaZF encoding a C2H2-zinc finger family protein from chickpea (Cicer arietinum imparted high salinity tolerance when expressed in tobacco plants. We report here that in addition to promoting tolerance against dehydration, salinity and high temperature, the CaZF overexpressing plants exhibited similar phenotype of growth and development like the plants overexpressing CAP2, encoding an AP2-family transcription factor from chickpea. To investigate any relationship between these two genes, we performed gene expression analysis in the overexpressing plants, promoter-reporter analysis and chromatin immunoprecipitation. A number of transcripts that exhibited enhanced accumulation upon expression of CAP2 or CaZF in tobacco plants were found common. Transient expression of CAP2 in chickpea leaves resulted in increased accumulation of CaZF transcript. Gel mobility shift and transient promoter-reporter assays suggested that CAP2 activates CaZF promoter by interacting with C-repeat elements (CRTs in CaZF promoter. Chromatin immunoprecipitation (ChIP assay demonstrated an in vivo interaction of CAP2 protein with CaZF promoter.

  7. Predicting cellular growth from gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Edoardo M Airoldi

    2009-01-01

    Full Text Available Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  8. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  9. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line

    Directory of Open Access Journals (Sweden)

    Y Kobayashi

    2009-06-01

    Full Text Available Low-intensity pulsed ultrasound (LIPUS stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1 exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x105 cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm2 compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF. These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration.

  10. Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF-1 gene are associated with performance in Holstein-Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Michael Paul Mullen

    2011-02-01

    Full Text Available Insulin-like growth factor 1 (IGF-1 has been shown to be associated with fertility, growth and development in cattle. The aim of this study was to 1 identify novel single nucleotide polymorphisms (SNPs in the bovine IGF-1 gene and alongside previously identified SNPs 2 determine their association with traits of economic importance in Holstein-Friesian dairy cattle. Nine novel SNPs were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5’ promoter, intronic and 3’ regulatory regions, encompassing ~ 5 kb of the IGF-1 gene. Genotyping and associations with daughter performance for milk production, fertility, survival and measures of body size were undertaken on 848 Holstein-Friesian AI sires. Using multiple regression analysis nominal associations (P<0.05 were identified between 6 SNPs (four novel and two previously identified and milk composition, survival, body condition score and body size. The C allele of AF017143 a previously published SNP (C-512T in the promoter region of IGF-1 predicted to introduce binding sites for transcription factors HSF1 and ZNF217 was associated (P<0.05 with increased cow carcass weight (i.e. an indicator of mature cow size. Novel SNPs were identified in the 3’ region of IGF-1 were associated (P<0.05 with functional survival and chest width. The remaining 4 SNPs, all located within introns of IGF-1 were associated (P<0.05 with milk protein yield, milk fat yield, milk fat concentration, somatic cell score, carcass conformation and carcass fat. Results of this study further demonstrate the multifaceted influences of IGF-1 on milk production and growth related traits in cattle.

  11. Fibroblast growth factor 23 (FGF23) gene polymorphisms are associated with essential hypertension risk and blood pressure levels in Chinese Han population.

    Science.gov (United States)

    Cai, Peng; Peng, Yan; Li, Li; Chu, Wei; Wang, Xukai

    2018-01-16

    In this case-control study, 246 EH patients and 157 healthy controls were selected from Chinese Han population to explore the associations between the fibroblast growth factor 23 (FGF23) gene polymorphisms and essential hypertension (EH).The SequenomMassarray system was used for the genotyping of three FGF23 gene Tag single-nucleotide polymorphisms, namely rs7955866, rs13312756, and rs3812822. The primers were designed by Assay Designer 3.1 software, and then the samples were added to a 384-well plate for the polymerase chain reaction amplification, shrimp alkaline phosphatase reaction, and desalting after extension. The distributions of the alleles, genotypes, and haplotypes were compared between the two groups. Confounding factors (sex, age, BMI, smoking, and drinking) were adjusted in the non-logistic regression, and the results showed that rs7955866 and rs3812822 polymorphisms were independently associated with the risk of developing EH (P control group showed that carrying rs7955866 A allele (P = 0.031) and rs3812822 C allele (P = 0.025) was associated with the increase of systolic blood pressure (SBP). The insulin (INS) level in the peripheral blood was significantly different between the case and control groups (P = 0.014). After confounding factors were excluded, the results showed that the serum INS level was also an independent risk factor of developing EH (P = 0.044; OR = 1.604, 95%CI: 1.014-2.539). In summary, our results suggest that FGF23 gene polymorphisms are associated with the risk of developing EH in Chinese Han population.

  12. Study on the Imprinting Status of Insulin-Like Growth Factor II (IGF-II Gene in Villus during 6–10 Gestational Weeks

    Directory of Open Access Journals (Sweden)

    Jianhong Chen

    2010-01-01

    Full Text Available Objective. To compare the difference of imprinting status of insulin-like growth factor II (IGF-II gene in villus between normal embryo development group and abnormal embryo development group and to investigate the relationship between karyotype and the imprinting status of IGF-II gene. Methods. A total of 85 pregnant women with singleton pregnancy were divided into two groups: one with abnormal embryo development (n=38 and the other with normal embryo development (n=47. Apa I polymorphism of IGF-II gene in chorionic villus was assayed with reverse transcriptase polymerase chain reaction (RT-PCR and restriction fragment length polymorphism (RFLP. The relationship between chromosomal abnormal karyotype and IGF-II gene imprinting status was analyzed by primary cell culture and G-banding chromosomal karyotype analysis. Results. IGF-II imprinting loss rate was higher in the abnormal embryo development group than the normal embryo development group (44.7% versus 31.6%, but without significant difference (P>.05. The percentage of abnormal chromosomes of chorionic villus in the abnormal embryo development group was 42.5%, in which IGF-II imprinting loss rate reached 64.7%. No abnormal karyotypes were found in the normal embryo development group. However, there was significant difference in IGF-II imprinting loss rate between two groups (P>.05. Conclusion. During weeks 6–10 of gestation, abnormal embryonic development is correlated with chromosomal abnormalities. The imprinting status of IGF-II gene played important roles in embryonic development, and imprinting loss might be related to chromosomal abnormalities.

  13. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms.

    Science.gov (United States)

    Stålhammar, Gustav; Farrajota, Pedro; Olsson, Ann; Silva, Cristina; Hartman, Johan; Elmberger, Göran

    2015-08-01

    Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Resequencing of genes for transforming growth factor β1 (TGFB1 type 1 and 2 receptors (TGFBR1, TGFBR2, and association analysis of variants with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Patterson Chris C

    2007-02-01

    Full Text Available Abstract Background Diabetic nephropathy is the leading cause of end stage renal failure in the western world. There is substantial epidemiological evidence supporting a genetic predisposition to diabetic nephropathy, however the exact molecular mechanisms remain unknown. Transforming growth factor (TGFβ1 is a crucial mediator in the pathogenesis of diabetic nephropathy. Methods We investigated the role of five known single nucleotide polymorphisms (SNPs in the TGFB1 gene for their association with diabetic nephropathy in an Irish, type 1 diabetic case (n = 272 control (n = 367 collection. The activity of TGFβ1 is facilitated by the action of type 1 and type 2 receptors, with both receptor genes (TGFBR1 and TGFBR2 shown to be upregulated in diabetic kidney disease. We therefore screened TGFBR1 and TGFBR2 genes for genomic variants using WAVE™ (dHPLC technology and confirmed variants by direct capillary sequencing. Allele frequencies were determined in forty-eight healthy individuals. Data for all SNPs was assessed for Hardy Weinberg equilibrium, with genotypes and allele frequencies compared using the χ2 test for contingency tables. Patterns of linkage disequilibrium were established and common haplotypes estimated. Results Fifteen variants were identified in these genes, seven of which are novel, and putatively functional SNPs were subsequently genotyped using TaqMan™, Invader™ or Pyrosequencing® technology. No significant differences (p > 0.1 were found in genotype or allele distributions between cases and controls for any of the SNPs assessed. Conclusion Our results suggest common variants in TGFB1, TGFBR1 and TGFBR2 genes do not strongly influence genetic susceptibility to diabetic nephropathy in an Irish Caucasian population.

  15. Gene and protein expression of epidermal growth factor measured on the kidney 24 hours after irradiation correlates to late radiation damage

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Hatakenaka, Masamitsu

    2001-01-01

    This study was designed to evaluate the proliferative response of epidermal growth factor (EGF) gene expression as an early indicator of late renal radiation damage. EGF gene expression was measured in the irradiated left kidney of C3H/HeSlc mice using RT-PCR 24 hours after radiation doses of 9, 12, or 15 Gy. In a second experiment, the same radiation doses were administered to the right kidney plus the lower half of the left kidney. The partly irradiated left kidneys were harvested and EGF gene expression was measured. The irradiated whole right kidneys were subjected to immunohistochemical staining for EGF protein. In a third experiment, 12 Gy was administered to the right kidney plus the lower half of the left kidney. The mice underwent left nephrectomy 24 hours after radiation, and the EGF gene expression in the kidney was correlated with the blood urea nitrogen (BUN) level representing late renal functional damage. EGF expression increased in 1 of 10 control mice and in 9 of 10 mice that received 15 Gy. The extent of increase of EGF was dependent on radiation dose. In mice having an increased BUN level after irradiation, 7 of 10 had EGF positive irradiated kidneys. All six mice whose BUN levels were unchanged had EGF-negative irradiated kidneys. EGF protein staining was observed in tubule cells only, not in glomerular cells. The amount of EGF protein staining correlated with radiation dose to some extent. EGF gene expression seems to be a very early indicator of late radiation damage to the kidney. (author)

  16. Investigation of the prognostic value of the apoptotic marker p53 gene and vascular endothelial growth factor in evaluating the clinical course of nasopharyngeal angiofibroma

    Directory of Open Access Journals (Sweden)

    O. B. Abdurakhmanov

    2015-01-01

    Full Text Available Objective. To investigate the prognostic value of the apoptotic markers (p53 and vascular endothelial growth factor (VEGF in evaluating the clinical course of juvenile nasopharyngeal angiofibroma (JNA.Subjects and methods. The investigation enrolled 43 patients with primary JNA (a study group and 20 with its relapses (a control group. The expression of VEGF and mutant p53 (mtp53 gene was immunohistochemically determined using DAKO kits (Denmark. The results of reactions with antibodies to VEGF-A and mtp53 located in the nuclei and membranes were expressed as percentages in terms of stained cell counts per 100 cells examined in different visual fields.Results. An associative analysis showed that both study and control group patients with high mtp53 gene expression in the tumor cells had clinical stages IIIA–B and IV and those in whom the expression of this gene in the tumor cells was weak or absent were found to have clinical stages I and II. The high (3+ and moderate (2+ mtp53 gene expressions suggest that the disease is severe. Consequently, this is of prognostic value and a poor predictor and the absence of mutations or the decreased expression of this gene is associated with a favorable disease outcome.Our investigations indicated that the high expression of the VEGF gene was detected in none of the tumor specimens. In the study group, the tumor cell expression of this gene was found to be moderate (2+ in 18 (41.9 % patients, weak in 6 (13.9 % and absent in 19 (44.2 % of the 43 patients. In the control group, the absence of VEGF gene expression in the tumor specimens was 9 times lower than that in the study group.A comparison with the clinical characteristics of the patients demonstrated that in both the study and control groups, the VEGF expression was observed to be moderate, or weak and absent in those with clinical stages IIIA–B and IV or in those with stage II and I, respectively.Conclusion. The associative analysis showed that both

  17. Comparison of numerical change of epidermal growth factor receptor gene among pre- and postradiation glioma, and gliosis, and its clinical use

    International Nuclear Information System (INIS)

    Okada, Yoshifumi; Ohno, Chihiro; Ueki, Keisuke; Ogino, Masahiro; Kawamoto, Shunsuke; Kim, Phyo

    2007-01-01

    Surgery with following chemoradiotherapy is the mainstream glioma treatment. In the course of postradiation events, however, it is sometimes difficult for neurosurgeons, radiologists, and pathologists to discriminate tumor recurrence from radiation necrosis. The epidermal growth factor receptor (EGFR) gene, on chromosome 7, is known to gain in copy number frequently in high-grade gliomas. The authors applied the fluorescence in situ hybridization (FISH) method to observe the gene's numerical status in pre- and postradiation glioma samples to elucidate whether this technique is useful in the discrimination of glioma recurrence from radiation necrosis. When 15 postradiation glioma samples and 4 postradiation nonglioma samples were tested, all the recurrent glioma tissue harbored numerical aberrations of the gene, whereas no abnormality could be observed in necrosis or in nonglioma gliosis. FISH could even prove a residual glioma cell in a gliotic tissue taken by needle biopsy after gamma-knife radiosurgery, which had been executed on a supposed metastatic brain tumor. FISH is considered to be of help in accurate diagnosis, especially when the usual histopathological diagnosis is difficult because of radiation effects or small sample size. (author)

  18. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene

    DEFF Research Database (Denmark)

    Juul, A; Aksglaede, L; Lund, A M

    2007-01-01

    receptor 3 (FGFR3) gene, which is a gain-of-function mutation resulting in achondroplasia. The patient had phenotypic characteristics of achondroplasia (e.g. short limbed dwarfism and frontal bossing). Testicular volume was 8 ml at 27 years of age and repeated semen samples showed sperm concentrations of 0...

  19. Interactions between the vascular endothelial growth factor gene polymorphism and life events in susceptibility to major depressive disorder in a Chinese population.

    Science.gov (United States)

    Han, Dong; Qiao, Zhengxue; Chen, Lu; Qiu, Xiaohui; Fang, Deyu; Yang, Xiuxian; Ma, Jingsong; Chen, Mingqi; Yang, Jiarun; Wang, Lin; Zhu, Xiongzhao; Zhang, Congpei; Yang, Yanjie; Pan, Hui

    2017-08-01

    Recent studies suggest that vascular endothelial growth factor (VEGF) is involved in the development of major depressive disorder. The aim of this study is to investigate the interaction between vascular endothelial growth factor (VEGF) polymorphism (+405G/C, rs2010963) and negative life events in the pathogenesis of major depressive disorder (MDD). DNA genotyping was performed on peripheral blood leukocytes in 274 patients with MDD and 273 age-and sex-matched controls. The frequency and severity of negative life events were assessed by the Life Events Scale (LES). A logistics method was employed to assess the gene-environment interaction (G×E). Differences in rs2010963 genotype distributions were observed between MDD patients and controls. Significant G×E interactions between allelic variation of rs2010963 and negative life events were observed. Individuals carrying the C alleles were susceptible to MDD only when exposed to high-negative life events. These results indicate that interactions between the VEGF rs2010963 polymorphism and environment increases the risk of developing MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Freeze-dried allograft-mediated gene or protein delivery of growth and differentiation factor 5 reduces reconstructed murine flexor tendon adhesions

    DEFF Research Database (Denmark)

    Svensson, Sys Hasslund; Dadali, Tulin; Ulrich-Vinther, Michael

    2014-01-01

    reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and in vivo bioluminescent imaging. We then reconstructed flexor digitorum longus (FDL) tendons of the mouse hindlimb with allografts loaded with low and high doses of recombinant GDF-5 protein and r......Advances in allograft processing have opened new horizons for clinical adaptation of flexor tendon allografts as delivery scaffolds for antifibrotic therapeutics. Recombinant adeno-associated-virus (rAAV) gene delivery of the growth and differentiation factor 5 (GDF-5) has been previously...... associated with antifibrotic effects in a mouse model of flexor tendoplasty. In this study, we compared the effects of loading freeze-dried allografts with different doses of GDF-5 protein or rAAV-Gdf5 on flexor tendon healing and adhesions. We first optimized the protein and viral loading parameters using...

  1. Growth and sporulation of Bacillus cereus ATCC 14579 under defined conditions: temporal expression of genes for key sigma factors

    NARCIS (Netherlands)

    Vries, de Y.P.; Hornstra, L.M.; Vos, de W.M.; Abee, T.

    2004-01-01

    An airlift fermentor system allowing precise regulation of pH and aeration combined with a chemically defined medium was used to study growth and sporulation of Bacillus cereus ATCC 14579. Sporulation was complete and synchronous. Expression of sigA, sigB, sigF, and sigG was monitored with real-time

  2. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Mi-Sun; Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  3. Antisense imaging of epidermal growth factor-induced p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Judy; Chen, Paul; Mrkobrada, Marko [Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, M5S 2S2, Toronto, Ontario (Canada); Hu, Meiduo [Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, M5S 2S2, Toronto, Ontario (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario (Canada); Vallis, Katherine A. [Department of Radiation Oncology, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Reilly, Raymond M. [Department of Medical Imaging, University of Toronto, Toronto, Ontario (Canada)

    2003-09-01

    Molecular imaging of the expression of key genes which determine the response to DNA damage following cancer treatment may predict the effectiveness of a particular treatment strategy. A prominent early response gene for DNA damage is the gene encoding p21{sup WAF-1/CIP-1}, a cyclin-dependent kinase inhibitor that regulates progression through the cell cycle. In this study, we explored the feasibility of imaging p21{sup WAF-1/CIP-1} gene expression at the mRNA level using an 18-mer phosphorothioated antisense oligodeoxynucleotide (ODN) labeled with {sup 111}In. The known induction of the p21{sup WAF-1/CIP-1} gene in MDA-MB-468 human breast cancer cells following exposure to epidermal growth factor (EGF) was used as an experimental tool. Treatment of MDA-MB-468 cells in vitro with EGF (20 nM) increased the ratio of p21{sup WAF-1/CIP-1} mRNA/{beta}-actin mRNA threefold within 2 h as measured by the reverse transcription polymerase chain reaction (RT-PCR). A concentration-dependent inhibition of EGF-induced p21{sup WAF-1/CIP-1} protein expression was achieved in MDA-MB-468 cells by treatment with antisense ODNs with up to a tenfold decrease observed at 1 {mu}M. There was a fourfold lower inhibition of p21{sup WAF-1/CIP-1} protein expression by control sense or random sequence ODNs. Intratumoral injections of EGF (15 {mu}g/day x 3 days) were employed to induce p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 xenografts implanted subcutaneously into athymic mice. RT-PCR of explanted tumors showed a threefold increased level of p21{sup WAF-1/CIP-1} mRNA compared with normal saline-treated tumors. Successful imaging of EGF-induced p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 xenografts was achieved at 48 h post injection of {sup 111}In-labeled antisense ODNs (3.7 MBq; 2 {mu}g). Tumors displaying basal levels of p21{sup WAF-1/CIP-1} gene expression in the absence of EGF treatment could not be visualized. Biodistribution studies showed a significantly higher tumor

  4. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer

    DEFF Research Database (Denmark)

    Fjord-Larsen, L; Kusk, Poul Henrik; Emerich, D F

    2012-01-01

    transposon expression technology to establish a new clinical grade cell line, NGC0211, with at least 10 times higher NGF production than that of NGC-0295. To test whether encapsulation of this cell line provides a relevant dose escalation step in delivering NGF for treatment of the cognitive decline in AD...... cases correlate with highly improved potency.Gene Therapy advance online publication, 24 November 2011; doi:10.1038/gt.2011.178....

  5. Review Paper: Association of Transforming Growth Factor Beta-1 -509C/T Gene Polymorphism with Ischemic Stroke: A Meta Analysis

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2016-05-01

    Full Text Available Introduction: Transforming Growth Factor-Beta 1 (TGF-β1 is a pleiotropic cytokine with potent anti-inflammatory property, which has been considered as an essential risk factor in the inflammatory process of Ischemic Stroke (IS, by involving in the pathophysiological progression of hypertension, atherosclerosis, and lipid metabolisms. -509C/T TGF-β1 gene polymorphism has been found to be associated with the risk of IS. The aim of this meta-analysis was to provide a relatively comprehensive account of the relation between -509C/T gene polymorphisms of TGF-β1 and susceptibility to IS. Methods: A review of literature for eligible genetic association Studies published before October 20, 2014 was conducted in the PubMed, EMBASE, Google Scholar and Trip database. The strength of association was calculated by pooled odds ratios (ORs with 95% confidence intervals using RevMan 5.3 software. Heterogeneity was examined using Higgins I-squared, Tau-squared, and Chi-squared tests. Results: A total of 2 studies involving 614 cases and 617 controls were found. The overall estimates did not show any significant relation between TGF-β1-509C/T polymorphism and risk of IS under dominant (CC+CT vs. TT: OR=1.01, 95%CI=0.31 to 3.26; P=0.99, recessive (CC vs. CT+TT: OR=0.94, 95%CI=0.47 to 1.90; P=0.87, and allelic models (T vs. C: OR=1.06, 95%CI=0.55 to 2.04; P=0.86. Conclusion: This meta-analysis showed that TGF-β1-509C/T gene polymorphism has no significant association with the susceptibility of IS. Further well-designed prospective studies with larger sample size are needed to confirm these findings.

  6. Cellular Injury of Cardiomyocytes during Hepatocyte Growth Factor Gene Transfection with Ultrasound-Triggered Bubble Liposome Destruction

    Directory of Open Access Journals (Sweden)

    Kazuo Komamura

    2011-01-01

    Full Text Available We transfected naked HGF plasmid DNA into cultured cardiomyocytes using a sonoporation method consisting of ultrasound-triggered bubble liposome destruction. We examined the effects on transfection efficiency of three concentrations of bubble liposome (1×106, 1×107, 1×108/mL, three concentrations of HGF DNA (60, 120, 180 μg/mL, two insonification times (30, 60 sec, and three incubation times (15, 60, 120 min. We found that low concentrations of bubble liposome and low concentrations of DNA provided the largest amount of the HGF protein expression by the sonoporated cardiomyocytes. Variation of insonification and incubation times did not affect the amount of product. Following insonification, cardiomyocytes showed cellular injury, as determined by a dye exclusion test. The extent of injury was most severe with the highest concentration of bubble liposome. In conclusion, there are some trade-offs between gene transfection efficiency and cellular injury using ultrasound-triggered bubble liposome destruction as a method for gene transfection.

  7. Identification of a point mutation in growth factor repeat C of the low density lipoprotein-receptor gene in a patient with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Soutar, A.K.; Knight, B.L.; Patel, D.D.

    1989-01-01

    The coding region of the low density lipoprotein (LDL)-receptor gene from a patient (MM) with homozygous familial hypercholesterolemia (FH) has been sequenced from six overlapping 500-base-pair amplified fragments of the cDNA from cultured skin fibroblasts. Two separate single nucleotide base changes from the normal sequence were detected. The first involved substitution of guanine for adenine in the third position of the codon for amino acid residue Cys-27 and did not affect the protein sequence. The second mutation was substitution of thymine for cytosine in the DNA for the codon for amino acid residue 664, changing the codon from CCG (proline) to CTG (leucine) and introducing a new site for the restriction enzyme PstI. MM is a true homozygote with two identical genes, and the mutation cosegregated with clinically diagnosed FH in his family in which first cousin marriages occurred frequently. LDL receptors in MM's skin fibroblasts bind less LDL than normal and with reduced affinity. Thus this naturally occurring single point mutation affects both intracellular transport of the protein and ligand binding and occurs in growth factor-like repeat C, a region that has not previously been found to influence LDL binding

  8. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function

    Science.gov (United States)

    Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover

    2014-01-01

    The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.

  9. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  10. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression.

    Science.gov (United States)

    Ichikawa, Shoji; Sorenson, Andrea H; Austin, Anthony M; Mackenzie, Donald S; Fritz, Timothy A; Moh, Akira; Hui, Siu L; Econs, Michael J

    2009-06-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia. The disease is caused by inactivating mutations in fibroblast growth factor 23 (FGF23), Klotho (KL), and uridine diphosphate-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In vitro studies indicate that GALNT3 O-glycosylates a phosphaturic hormone, FGF23, and prevents its proteolytic processing, thereby allowing secretion of intact FGF23. In this study we generated mice lacking the Galnt3 gene, which developed hyperphosphatemia without apparent calcifications. In response to hyperphosphatemia, Galnt3-deficient mice had markedly increased Fgf23 expression in bone. However, compared with wild-type and heterozygous littermates, homozygous mice had only about half of circulating intact Fgf23 levels and higher levels of C-terminal Fgf23 fragments in bone. Galnt3-deficient mice also exhibited an inappropriately normal 1,25-dihydroxyvitamin D level and decreased alkaline phosphatase activity. Furthermore, renal expression of sodium-phosphate cotransporters and Kl were elevated in Galnt3-deficient mice. Interestingly, there were sex-specific phenotypes; only Galnt3-deficient males showed growth retardation, infertility, and significantly increased bone mineral density. In summary, ablation of Galnt3 impaired secretion of intact Fgf23, leading to decreased circulating Fgf23 and hyperphosphatemia, despite increased Fgf23 expression. Our findings indicate that Galnt3-deficient mice have a biochemical phenotype of tumoral calcinosis and provide in vivo evidence that Galnt3 plays an essential role in proper secretion of Fgf23 in mice.

  11. BRCA1 is expressed in uterine serous carcinoma (USC) and controls insulin-like growth factor I receptor (IGF-IR) gene expression in USC cell lines.

    Science.gov (United States)

    Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan

    2012-06-01

    The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.

  12. Growth factors and new periodontology

    Directory of Open Access Journals (Sweden)

    Paknejad M

    1999-06-01

    Full Text Available Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and"ndifferentiation by acting on specific receptors on the surface of cells and regulating events in wound"nhealing.They can be considered hormones that are not released in to the blood stream but have one a"nlocal action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion"ncycle and even may stimulate synthesis of DNA in suitable cells, Growth substances, primarily secreted"nby fibroblasts, endothelia! cells, macrophages and platelet, include platelet derived growth factor"n(PDGF, insulin like growth factor (IGF transforming growth factor (TGFa and (3 and bone"nmorphogenetic proteins BMPs that approximately are the most important of them. (BMPs could be"nused to control events during periodontal, craniofacial and implant wound healing through favoring bone"nformation"nAccording toLynch, combination of PGDF and IGF1 would be effective in promoting growth of all the"ncomponents of the periodontium."nThe aim of this study was to characterize growth factor and review the literature to determine the"nmechanism of their function, classification and application in implant and periodontal treatment.

  13. [Association of the tagging single nucleotide polymorphisms in transforming growth factor beta-1 gene with hypertension in the Han nationality population in Xinjiang].

    Science.gov (United States)

    Yang, Jian-feng; Shi, Xiao-peng; Zhao, Dan; Deng, Feng-mei; Zhong, Hua; Wang, Gang; Wang, Zhen-huan; Chen, Xiong-ying; He, Fang

    2010-06-01

    Essential hypertension (EH) was a complex disease resulted from the interaction of cumulative effect of multiple genetic and environment factors. The relationship between the genetic polymorphisms in the transforming growth factor-beta1 (TGF-beta1), the blood levels and EH have been investigated, but the conclusions were different. Therefore, we investigate the relationship between the tagging single nucleotide polymorphisms (tSNPs) (rs1800469, rs2241716, rs11466345, rs2241715, rs4803455) in TGF-beta1 gene, blood levels and EH in the Han nationality population in Xinjiang, to clarity the pattern of linkage disequilibrium (LD) and the feature of the structure of haplotype. Based on the case-control study,we selected 732 (365 EH patients,367 controls) Han Chinese population from the Boertonggu countryside of Shawan region in the Xinjiang Uygur Autonomous Region of China by random cluster sampling. After questionnaire and physical examination, we collected blood samples, and the blood levels of TGF-beta1 were quantified using sandwich ELISA. The polymorphisms of TGF-beta1 gene in the study groups were detected with SNaPshot system. The case-control study in a large group was carried out separately for each of the tSNP and followed up by haplotypes analyses to determine the relation between tSNPs of TGF-beta1 gene and EH in the Han population. (1) The frequencies of alleles A, G of rs11466345 of TGF-beta1 gene in EH group and control group were as follows: 69.7%, 30.3%, 74.4%, 25.6%, respectively. It was demonstrated that the G allele of the rs11466345 polymorphism occurred at a significantly higher frequency in EH patients than in healthy controls (30.3% vs. 25.6%, P 0.05). (2)Except the site of rs11466345, the other tSNPs were in strong LD, and no statistical differences were observed in haplotypes distribution in the followup study between case-control groups (P > 0.05). (3) There were no difference of TGF-beta1 levels between the different genotypes and alleles in

  14. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  15. Quantitative analysis of bone morphogenetic protein 15 (BMP15 and growth differentiation factor 9 (GDF9 gene expression in calf and adult bovine ovaries

    Directory of Open Access Journals (Sweden)

    Hayashi Ken-go

    2011-03-01

    Full Text Available Abstract Background It has been reported that calf oocytes are less developmentally competent than oocytes obtained from adult cows. Bone morphogenetic protein 15 (BMP15 and growth and differentiation factor 9 (GDF9 play critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study, we attempted to compare the expression patterns of BMP15 and GDF9 in the cells of calf and cow ovaries to determine a relationship between the level of these genes and the low developmental competence of calf oocytes. Methods Bovine tissues were collected from 9-11 months-old calves and from 4-6 years-old cows. We characterized the gene expression of BMP15 and GDF9 in calf and adult bovine oocytes and cumulus cells using quantitative real-time reverse transcriptase polymerase chain reaction (QPCR and in situ hybridization. Immunohistochemical analysis was also performed. Results The expression of BMP15 and GDF9 in cumulus cells of adult ovaries was significantly higher than that in calf ovaries, as revealed by QPCR. GDF9 expression in the oocytes of calf ovaries was significantly higher than in those of the adult ovaries. In contrast, BMP15 expression in the oocytes of calf and adult ovaries was not significantly different. The localization of gene expression and protein were ascertained by histochemistry. Conclusions Our result showed for the first time BMP15 and GDF9 expression in bovine cumulus cells. BMP15 and GDF9 mRNA expression in oocytes and cumulus cells was different in calves and cows.

  16. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    Directory of Open Access Journals (Sweden)

    Lincer Robert

    2010-10-01

    Full Text Available Abstract Background Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. Case presentation A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2 on day 1 and 8 every 21 days as well as daily erlotinib (100 mg. After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. Conclusion This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  17. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    International Nuclear Information System (INIS)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-01-01

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status

  18. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report.

    Science.gov (United States)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-10-20

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  19. Relationship among expression of basic-fibroblast growth factor ...

    African Journals Online (AJOL)

    Relationship among expression of basic-fibroblast growth factor, MTDH/Astrocyte elevated gene-1, adenomatous polyposis coli, matrix metalloproteinase 9,and COX-2 markers with prognostic factors in prostate carcinomas.

  20. EXPRESSION OF GROWTH HORMONE (PhGH GENE AND ANALYSIS OF INSULINE-LIKE GROWTH FACTOR I (IGF-I PRODUCTION IN AFRICAN CATFISH (Clarias gariepinus TRANSGENIC F-1

    Directory of Open Access Journals (Sweden)

    Huria Marnis

    2013-12-01

    Full Text Available We have previously produced F-1 transgenic of African catfish from crosses between founder transgenic female and non transgenic male. The aim of this study was to evaluate distribution and expression PhGH growth hormone gene transgenic African catfish organs and to measure the concentration of IGF-I in plasma. Transgene was detected using the PCR method in various organs, namely pituitary, brain, liver, heart, spleen, kidney, intestine, stomach, muscle, gill, and eye. Transgene expression levels were analyzed using the method of quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR. Plasma samples were analyzed for Insuline-like Growth Factor (IGF-I using Enzyme Linked Immunosorbent Assay (ELISA method. The results showed that the PhGH was detected and expressed in all organs of the transgenic African catfish (F-1. Liver exhibited the highest level of PhGH mRNA (23 x 106 copies. The plasma IGF-I levels in transgenic individuals were not significant than non transgenic. The higher level of exogenous PhGH gene expression may not represent the production of IGF-1.

  1. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  2. Epidermal growth factor (EGF) A61G polymorphism and EGF gene expression in normal colon tissue from patients with colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise G; Nielsen, Jens N; Ornskov, Dorthe

    2007-01-01

    Introduction. EGF/EGFR interactions are important mechanisms behind colorectal tumour development and growth. Recently a single nucleotide polymorphism in the EGF gene has been identified (EGF A61G). It may be a potential predictor for survival of patients receiving EGFR-inhibitor cetuximab...

  3. Transforming growth factor beta-1 and interleukin-17 gene transcription in peripheral blood mononuclear cells and the human response to infection.

    LENUS (Irish Health Repository)

    White, Mary

    2012-02-01

    INTRODUCTION: The occurrence of severe sepsis may be associated with deficient pro-inflammatory cytokine production. Transforming growth factor beta-1 (TGFbeta-1) predominantly inhibits inflammation and may simultaneously promote IL-17 production. Interleukin-17 (IL-17) is a recently described pro-inflammatory cytokine, which may be important in auto-immunity and infection. We investigated the hypothesis that the onset of sepsis is related to differential TGFbeta-1 and IL-17 gene expression. METHODS: A prospective observational study in a mixed intensive care unit (ICU) and hospital wards in a university hospital. Patients (59) with severe sepsis; 15 patients with gram-negative bacteraemia but without critical illness and 10 healthy controls were assayed for TGFbeta-1, IL-17a, IL-17f, IL-6 and IL-1beta mRNA in peripheral blood mononuclear cells (PBMC) by quantitative real-time PCR and serum protein levels by ELISA. RESULTS: TGFbeta-1 mRNA levels are reduced in patients with bacteraemia and sepsis compared with controls (p=0.02). IL-6 mRNA levels were reduced in bacteraemic patients compared with septic patients and controls (p=0.008). IL-1beta mRNA levels were similar in all groups, IL-17a and IL-17f mRNA levels are not detectable in peripheral blood mononuclear cells. IL-6 protein levels were greater in patients with sepsis than bacteraemic and control patients (p<0.0001). Activated TGFbeta-1 and IL-17 protein levels were similar in all groups. IL-1beta protein was not detectable in the majority of patients. CONCLUSIONS: Down regulation of TGFbeta-1 gene transcription was related to the occurrence of infection but not the onset of sepsis. Interleukin-17 production in PBMC may not be significant in the human host response to infection.

  4. A polymorphism in the insulin-like growth factor 1 gene is associated with postpartum resumption of ovarian cyclicity in Holstein-Friesian cows under grazing conditions

    Science.gov (United States)

    2013-01-01

    Background Insulin-like growth factor 1 (IGF-1) gene is considered as a promising candidate for the identification of polymorphisms affecting cattle performance. The objectives of the current study were to determine the association of the single nucleotide polymorphism (SNP) IGF-1/SnaBI with fertility, milk production and body condition traits in Holstein-Friesian dairy cows under grazing conditions. Methods Seventy multiparous cows from a commercial herd were genotyped for the SNP IGF-1/SnaBI. Fertility measures evaluated were: interval to commencement of luteal activity (CLA), calving to first service (CFS) and calving to conception (CC) intervals. Milk production and body condition score were also evaluated. The study period extended from 3 wk before calving to the fourth month of lactation. Results and discussion Frequencies of the SNP IGF-1/SnaBI alleles A and B were 0.59 and 0.41, respectively. Genotype frequencies were 0.31, 0.54 and 0.14 for AA, AB and BB, respectively. Cows with the AA genotype presented an early CLA and were more likely to resume ovarian cyclicity in the early postpartum than AB and BB ones. No effect of the SNP IGF-1/SnaBI genotype was evidenced on body condition change over the experimental period, suggesting that energy balance is not responsible for the outcome of postpartum ovarian resumption in this study. Traditional fertility measures were not affected by the SNP IGF-1/SnaBI. Conclusion To our knowledge this is the first report describing an association of the SNP IGF-1/SnaBI with an endocrine fertility measure like CLA in cattle. Results herein remark the important role of the IGF-1gene in the fertility of dairy cows on early lactation and make the SNP IGF-1/SnaBI an interesting candidate marker for genetic improvement of fertility in dairy cattle. PMID:23409757

  5. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    Science.gov (United States)

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  6. The relationship between quantitative human epidermal growth factor receptor 2 gene expression by the 21-gene reverse transcriptase polymerase chain reaction assay and adjuvant trastuzumab benefit in Alliance N9831.

    Science.gov (United States)

    Perez, Edith A; Baehner, Frederick L; Butler, Steven M; Thompson, E Aubrey; Dueck, Amylou C; Jamshidian, Farid; Cherbavaz, Diana; Yoshizawa, Carl; Shak, Steven; Kaufman, Peter A; Davidson, Nancy E; Gralow, Julie; Asmann, Yan W; Ballman, Karla V

    2015-10-01

    The N9831 trial demonstrated the efficacy of adjuvant trastuzumab for patients with human epidermal growth factor receptor 2 (HER2) locally positive tumors by protein or gene analysis. We used the 21-gene assay to examine the association of quantitative HER2 messenger RNA (mRNA) gene expression and benefit from trastuzumab. N9831 tested the addition of trastuzumab to chemotherapy in stage I-III HER2-positive breast cancer. For two of the arms of the trial, doxorubicin and cyclophosphamide followed by paclitaxel (AC-T) and doxorubicin and cyclophosphamide followed by paclitaxel and trastuzumab concurrent chemotherapy-trastuzumab (AC-TH), recurrence score (RS) and HER2 mRNA expression were determined by the 21-gene assay (Oncotype DX®) (negative 10 % positive cells = positive), 91 % for RT-PCR versus central fluorescence in situ hybridization (FISH) (≥2.0 = positive) and 94 % for central IHC versus central FISH. In the primary analysis, the association of HER2 expression by 21-gene assay with trastuzumab benefit was marginally nonsignificant (nonlinear p = 0.057). In hormone receptor-positive patients (local IHC) the association was significant (p = 0.002). The association was nonlinear with the greatest estimated benefit at lower and higher HER2 expression levels. Concordance among HER2 assessments by central IHC, FISH, and RT-PCR were similar and high. Association of HER2 mRNA expression with trastuzumab benefit as measured by time to distant recurrence was nonsignificant. A consistent benefit of trastuzumab irrespective of mHER2 levels was observed in patients with either IHC-positive or FISH-positive tumors. Trend for benefit was observed also for the small groups of patients with negative results by any or all of the central assays. Clinicaltrials.gov NCT00005970 . Registered 5 July 2000.

  7. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes

    International Nuclear Information System (INIS)

    Chamaon, Kathrin; Kirches, Elmar; Kanakis, Dimitrios; Braeuninger, Stefan; Dietzmann, Knut; Mawrin, Christian

    2005-01-01

    The reasons for overexpression of the oncogene pituitary tumor transforming gene (PTTG) in tumors are still not fully understood. A possible influence of the insulin-like growth factor I (Igf-I) may be of interest, since enhanced Igf-I signalling was reported in various human tumors. We examined the influence of Igf-I and insulin on PTTG expression in human astrocytoma cells in comparison to proliferating non-neoplastic rat embryonal astrocytes. PTTG mRNA expression and protein levels were increased in malignant astrocytes treated with Igf-I or insulin, whereas in rat embryonic astrocytes PTTG expression and protein levels increased only when cells were exposed to Igf-I. Enhanced transcription did not occur after treatment with inhibitors of phosphoinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK), blocking the two basic signalling pathways of Igf-I and insulin. In addition to this transcriptional regulation, both kinases directly bind to PTTG, suggesting a second regulatory route by phosphorylation. However, the interaction of endogenous PTTG with MAPK and PI3K, as well as PTTG phosphorylation were independent from Igf-I or insulin. The latter results were also found in human testis, which contains high PTTG levels as well as in nonneoplastic astrocytes. This suggest, that PI3K and MAPK signalling is involved in PTTG regulation not only in malignant astrocytomas but also in non-tumorous cells

  8. Breast cancer oestrogen independence mediated by BCAR1 or BCAR3 genes is transmitted through mechanisms distinct from the oestrogen receptor signalling pathway or the epidermal growth factor receptor signalling pathway

    International Nuclear Information System (INIS)

    Dorssers, Lambert CJ; Agthoven, Ton van; Brinkman, Arend; Veldscholte, Jos; Smid, Marcel; Dechering, Koen J

    2005-01-01

    Tamoxifen is effective for endocrine treatment of oestrogen receptor-positive breast cancers but ultimately fails due to the development of resistance. A functional screen in human breast cancer cells identified two BCAR genes causing oestrogen-independent proliferation. The BCAR1 and BCAR3 genes both encode components of intracellular signal transduction, but their direct effect on breast cancer cell proliferation is not known. The aim of this study was to investigate the growth control mediated by these BCAR genes by gene expression profiling. We have measured the expression changes induced by overexpression of the BCAR1 or BCAR3 gene in ZR-75-1 cells and have made direct comparisons with the expression changes after cell stimulation with oestrogen or epidermal growth factor (EGF). A comparison with published gene expression data of cell models and breast tumours is made. Relatively few changes in gene expression were detected in the BCAR-transfected cells, in comparison with the extensive and distinct differences in gene expression induced by oestrogen or EGF. Both BCAR1 and BCAR3 regulate discrete sets of genes in these ZR-75-1-derived cells, indicating that the proliferation signalling proceeds along distinct pathways. Oestrogen-regulated genes in our cell model showed general concordance with reported data of cell models and gene expression association with oestrogen receptor status of breast tumours. The direct comparison of the expression profiles of BCAR transfectants and oestrogen or EGF-stimulated cells strongly suggests that anti-oestrogen-resistant cell proliferation is not caused by alternative activation of the oestrogen receptor or by the epidermal growth factor receptor signalling pathway

  9. c.29C>T polymorphism in the transforming growth factor-β1 (TGFB1) gene correlates with increased risk of urinary bladder cancer.

    Science.gov (United States)

    Gautam, Kirti Amresh; Pooja, Singh; Sankhwar, Satya Narayan; Sankhwar, Pushp Lata; Goel, Apul; Rajender, Singh

    2015-10-01

    TGF-β1 is a pleiotropic cytokine, which plays a dual role in tumor development. In the early stages, it inhibits the growth of tumor while in the late stages of carcinoma, it promotes tumor growth. The purpose of this study was to analyze the distribution of the TGFB1 gene polymorphisms between cases and controls so as to assess their correlation with bladder cancer risk. This study included 237 cases of urinary bladder cancer and 290 age matched controls from the same ethnic background. Three polymorphisms in the TGFB1 gene, c.29C>T (rs-1800470), c.74G>C (rs-1800471) and +140A>G (rs-13447341), were analyzed by direct DNA sequencing. Statistical analyses revealed no significant differences in the demographical data, except that the frequencies of smokers and non-vegetarians were higher in the cases. Eighty percent of the bladder cancer patients had superficial transitional cell carcinoma, and 53.16% and 26.31% of the patients were in grade I and grade II, respectively. We found that c.29C>T substitution increased the risk of bladder cancer significantly and recessive model of analysis was the best fitted model (p=0.004; OR=1.72 95% CI 1.18-2.50). A significantly higher risk in the recessive form was also suggested by co-dominant analysis showing that the homozygous form (TT) was a significant risk factor in comparison to CC and CT genotypes. The other two polymorphisms, c.74G>C (p=0.18, OR=0.67 95% CI 0.37-1.21) and +140A>G (p=0.416, OR=0.77 95% CI 0.41-1.45) did not affect the risk of urinary bladder cancer. In conclusion, we found that the TGFB1 c.29C>T substitution increases the risk of bladder cancer significantly while c.74G>C and +140A>G polymorphisms do not affect the risk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. E3B1, a human homologue of the mouse gene product Abi-1, sensitizes activation of Rap1 in response to epidermal growth factor

    International Nuclear Information System (INIS)

    Jenei, Veronika; Andersson, Tommy; Jakus, Judit; Dib, Karim

    2005-01-01

    E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21 Ras and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21 Ras . Remarkably, we found that EGF-induced activation of the p21 Ras -related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1 cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation

  11. Multiple regulatory mechanisms of hepatocyte growth factor expression in malignant cells with a short poly(dA) sequence in the HGF gene promoter.

    Science.gov (United States)

    Sakai, Kazuko; Takeda, Masayuki; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-01-01

    Hepatocyte growth factor (HGF) expression is a poor prognostic factor in various types of cancer. Expression levels of HGF have been reported to be regulated by shorter poly(dA) sequences in the promoter region. In the present study, the poly(dA) mononucleotide tract in various types of human cancer cell lines was examined and compared with the HGF expression levels in those cells. Short deoxyadenosine repeat sequences were detected in five of the 55 cell lines used in the present study. The H69, IM95, CCK-81, Sui73 and H28 cells exhibited a truncated poly(dA) sequence in which the number of poly(dA) repeats was reduced by ≥5 bp. Two of the cell lines exhibited high HGF expression, determined by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The CCK-81, Sui73 and H28 cells with shorter poly(dA) sequences exhibited low HGF expression. The cause of the suppression of HGF expression in the CCK-81, Sui73 and H28 cells was clarified by two approaches, suppression by methylation and single nucleotide polymorphisms in the HGF gene. Exposure to 5-Aza-dC, an inhibitor of DNA methyltransferase 1, induced an increased expression of HGF in the CCK-81 cells, but not in the other cells. Single-nucleotide polymorphism (SNP) rs72525097 in intron 1 was detected in the Sui73 and H28 cells. Taken together, it was found that the defect of poly(dA) in the HGF promoter was present in various types of cancer, including lung, stomach, colorectal, pancreas and mesothelioma. The present study proposes the negative regulation mechanisms by methylation and SNP in intron 1 of HGF for HGF expression in cancer cells with short poly(dA).

  12. Vascular endothelial growth factor A (VEGFA gene polymorphisms have an impact on survival in a subgroup of indolent patients with chronic lymphocytic leukemia.

    Directory of Open Access Journals (Sweden)

    Carol Lozano-Santos

    Full Text Available Vascular endothelial growth factor (VEGF-mediated angiogenesis contributes to the pathogenesis of B-cell chronic lymphocytic leukaemia (CLL. We investigated the impact of VEGFA gene diversity on the clinical outcome of patients with this disease. A VEGFA haplotype conformed by positions rs699947 (-1540C>A, rs833061 (-460T>C and rs2010963 (405C>G and two additional single-nucleotide polymorphisms (SNPs, rs3025039 (936C>T and rs25648 (1032C>T, were analysed in 239 patients at the time of their CLL diagnosis. Here, we showed that homozygosity for rs699947/rs833061/rs2010963 ACG haplotype (ACG+/+ genotype correlated with a reduced survival in CLL patients (ACG+/+ vs other genotypes: HR = 2.3, p = 0.002; recessive model. In multivariate analysis, the ACG+/+ genotype was identified as a novel independent prognostic factor (HR = 2.1, p = 0.005. Moreover, ACG homozygosity subdivided patients with CLL with otherwise indolent parameters into prognostic subgroups with different outcomes. Specifically, patients carrying the ACG+/+ genotype with mutated IgVH, very low and low-risk cytogenetics, initial clinical stage, CD38 negative status or early age at diagnosis showed a shorter survival (ACG+/+ vs other genotypes: HR = 3.5, p = 0.035; HR = 3.4, p = 0.001; HR = 2.2, p = 0.035; HR = 3.4, p = 0.0001 and HR = 3.1, p = 0.009, respectively. In conclusion, VEGFA ACG+/+ genotype confers an adverse effect in overall survival in CLL patients with an indolent course of the disease. These observations support the biological and prognostic implications of VEGFA genetics in CLL.

  13. Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows.

    Science.gov (United States)

    Mullen, M P; Lynch, C O; Waters, S M; Howard, D J; O'Boyle, P; Kenny, D A; Buckley, F; Horan, B; Diskin, M G

    2011-08-26

    The somatotrophic axis (GH-IGF) is a key regulator of animal growth and development, affecting performance traits that include milk production, growth rate, body composition, and fertility. The aim of this study was to quantify the association of previously identified SNPs in bovine growth hormone (GH1) and insulin-like growth factor 1 (IGF-1) genes with direct performance trait measurements of lactation and fertility in Holstein-Friesian lactating dairy cows. Sixteen SNPs in both IGF-1 and GH1 were genotyped across 610 cows and association analyses were carried out with traits of economic importance including calving interval, pregnancy rate to first service and 305-day milk production, using animal linear mixed models accounting for additive genetic effects. Two IGF-1 SNPs, IGF1i1 and IGF1i2, were significantly associated with body condition score at calving, while a single IGF-1 SNP, IGF1i3, was significantly associated with milk production, including milk yield (means ± SEM; 751.3 ± 262.0 kg), fat yield (21.3 ± 10.2 kg) and protein yield (16.5 ± 8.0 kg) per lactation. Only one GH1 SNP, GH33, was significantly associated with milk protein yield in the second lactation (allele substitution effect of 9.8 ± 5.0 kg). Several GH1 SNPs were significantly associated with fertility, including GH32, GH35 and GH38 with calving to third parity (22.4 ± 11.3 days) (GH32 and GH38 only), pregnancy rate to first service (0.1%) and overall pregnancy rate (0.05%). The results of this study demonstrate the effects of variants of the somatotrophic axis on milk production and fertility traits in commercial dairy cattle.

  14. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    International Nuclear Information System (INIS)

    Páez, David; Salazar, Juliana; Paré, Laia; Pertriz, Lourdes; Targarona, Eduardo; Rio, Elisabeth del; Barnadas, Agusti; Marcuello, Eugenio; Baiget, Montserrat

    2011-01-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5′UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The ∗3/∗3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in ∗3/∗3 vs. 35% in ∗2/∗2 and ∗2/∗3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the ∗3/∗3 patients and 84 months for the ∗2/∗2 and ∗2/∗3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate

  15. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    Energy Technology Data Exchange (ETDEWEB)

    Paez, David, E-mail: dpaez@santpau.cat [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Salazar, Juliana; Pare, Laia [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Pertriz, Lourdes [Department of Radiotherapy, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Targarona, Eduardo [Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Rio, Elisabeth del [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Barnadas, Agusti; Marcuello, Eugenio [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Baiget, Montserrat [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain)

    2011-12-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk

  16. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides

    Czech Academy of Sciences Publication Activity Database

    Blaha, Milan; Němcová, Lucie; Vodičková Kepková, Kateřina; Vodička, P.; Procházka, Radek

    2015-01-01

    Roč. 13, č. 113 (2015) ISSN 1477-7827 R&D Projects: GA ČR GAP502/11/0593; GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : FSH * growth factors * cumulus cell Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.147, year: 2015

  17. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  18. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  19. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  20. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    International Nuclear Information System (INIS)

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A.

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by 125 I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes

  1. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia : A double-blind randomized trial

    NARCIS (Netherlands)

    Kusumanto, YH; Van Weel, [No Value; Mulder, NH; Smit, AJ; Van den Dungen, JJAM; Hooymans, JMM; Sluiter, WJ; Tio, RA; Quax, PHA; Gans, ROB; Dullaart, RPF; Hospers, GAP

    Despite advances in revascularization techniques, limb salvage and relief of pain cannot be achieved in many diabetic patients with diffuse peripheral vascular disease. Our objective was to determine the effect of intramuscular administration of phVEGF(165) (vascular endothelial growth factor

  2. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  3. Epidermal growth factor and growth in vivo

    International Nuclear Information System (INIS)

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of 3 H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of 3 H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated

  4. Role of cytokine gene (interferon-γ, transforming growth factor-β1, tumor necrosis factor-α, interleukin-6, and interleukin-10 polymorphisms in the risk of oral precancerous lesions in Taiwanese

    Directory of Open Access Journals (Sweden)

    Han-Jen Hsu

    2014-11-01

    Full Text Available Oral squamous cell carcinoma can be preceded by some benign oral lesions with malignant potential, including leukoplakia, erythroplakia, oral lichen planus, and oral submucous fibrosis. There are different degrees of inflammatory cells infiltration in histopathology. Inflammatory cytokines may play a pathogenic role in the development of oral precancerous lesions (OPCLs. Genetic polymorphisms of cytokine-encoding genes are known to predispose to malignant disease. We hypothesized that the risk of OPCLs might be associated with cytokine gene polymorphisms of interferon (IFN-γ, transforming growth factor (TGF-β1, tumor necrosis factor (TNF-α, interleukin (IL-6, and IL-10. In the present study, 42 OPCL patients and 128 controls were analyzed for eight polymorphisms in five different cytokine genes [IFN-γ (+874 T/A, TGF-β1 (codons 10 T/C and 25 G/C, TNF-α (−308 G/A, IL-6 (−174 G/C, and IL-10 (−1082 A/G, –819 T/C, and −592 A/C]. Cytokine genotyping was determined by the polymerase chain reaction sequence-specific primer technique using commercial primers. Allele and genotype data were analyzed for significance of differences between cases and controls using the Chi-square (χ2 test. Two-sided p < 0.05 were considered to be statistically significant. A series of multivariate logistic regression models, adjusted for age, sex, betel quid chewing, alcohol consumption, and smoking, was constructed in order to access the contribution of homozygous or heterozygous variant genotypes of polymorphisms. The TNF-α (−308 polymorphism was significantly associated with OPCLs. There were significant differences in the distribution of AA, GA, and GG genotypes between OPCL patients and controls (p = 0.0004. Patients with the AA or GA genotype had a 3.63-fold increased risk of OPCLs. The TGF-β1 (codon 10 and 25 polymorphism was also significantly associated with OPCLs (p < 0.001. The IL-6 polymorphism was significantly associated with OPCLs

  5. The WRKY Transcription Factor Genes in Lotus japonicus

    OpenAIRE

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (...

  6. Ablation of the Galnt3 Gene Leads to Low-Circulating Intact Fibroblast Growth Factor 23 (Fgf23) Concentrations and Hyperphosphatemia Despite Increased Fgf23 Expression

    OpenAIRE

    Ichikawa, Shoji; Sorenson, Andrea H.; Austin, Anthony M.; Mackenzie, Donald S.; Fritz, Timothy A.; Moh, Akira; Hui, Siu L.; Econs, Michael J.

    2009-01-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia. The disease is caused by inactivating mutations in fibroblast growth factor 23 (FGF23), Klotho (KL), and uridine diphosphate-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In vitro studies indicate that GALNT3 O-glycosylates a phosphaturic hormone, FGF23, and prevents its proteolytic processing, thereby allowing secretion of intact FGF23. In this study we generat...

  7. Functional Deficits and Insulin-Like Growth Factor-I Gene Expression Following Tourniquet-Induced Injury of Skeletal Muscle in Young and Old Rats

    Science.gov (United States)

    2008-07-31

    phenomenon. aging; insulin-like growth factor-I; ischemia-reperfusion; muscle re- generation; sarcopenia OVER 20,000 operating room tourniquet (TK...occurring in elderly patients, the postsurgical I/R injury ensu- ing TK application is a notable concern to the elderly popula- tion. With this demographic... elderly population can lead to loss of independence, as the individual loses the ability to perform necessary daily routines. This affliction is a

  8. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.

    Science.gov (United States)

    Hao, Jun; Ci, Xinpei; Xue, Hui; Wu, Rebecca; Dong, Xin; Choi, Stephen Yiu Chuen; He, Haiqing; Wang, Yu; Zhang, Fang; Qu, Sifeng; Zhang, Fan; Haegert, Anne M; Gout, Peter W; Zoubeidi, Amina; Collins, Colin; Gleave, Martin E; Lin, Dong; Wang, Yuzhuo

    2018-06-01

    Although androgen deprivation therapy is initially effective in controlling growth of hormone-naive prostate cancers (HNPCs) in patients, currently incurable castration-resistant prostate cancer (CRPC) inevitably develops. To identify CRPC driver genes that may provide new targets to enhance CRPC therapy. Patient-derived xenografts (PDXs) of HNPCs that develop CRPC following host castration were examined for changes in expression of genes at various time points after castration using transcriptome profiling analysis; particular attention was given to pre-CRPC changes in expression indicative of genes acting as potential CRPC drivers. The functionality of a potential CRPC driver was validated via its knockdown in cultured prostate cancer cells; its clinical relevance was established using data from prostate cancer patient databases. Eighty genes were found to be significantly upregulated at the CRPC stage, while seven of them also showed elevated expression prior to CRPC development. Among the latter, growth factor receptor bound protein 10 (GRB10) was the most significantly and consistently upregulated gene. Moreover, elevated GRB10 expression in clinical prostate cancer samples correlated with more aggressive tumor types and poorer patient treatment outcome. GRB10 knockdown markedly reduced prostate cancer cell proliferation and activity of AKT, a well-established CRPC mediator. A positive correlation between AKT activity and GRB10 expression was also found in clinical cohorts. GRB10 acts as a driver of CRPC and sensitizes androgen receptor pathway inhibitors, and hence GRB10 targeting provides a novel therapeutic strategy for the disease. Development of castration-resistant prostate cancer (CRPC) is a major problem in the management of the disease. Using state-of-the-art patient-derived hormone-naive prostate cancer xenograft models, we found and validated the growth factor receptor bound protein 10 gene as a driver of CRPC, indicating that it may be used as a

  9. Effects of Phytosterol in Feed on Growth and Related Gene ...

    African Journals Online (AJOL)

    depressed antioxidant defence systems in the broiler chickens. Myogen, eIF4E, and S6k1 gene ... Furthermore, the data suggest that developmental decline in skeletal muscle protein synthesis, may be partly attributed to developmental regulation of the activation of growth factor and nutrient components. Keywords: Broiler ...

  10. Functional Profiling of Transcription Factor Genes in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Alexander J. Carrillo

    2017-09-01

    Full Text Available Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6 binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed, followed by asexual sporulation (38%, and the various stages of sexual development (19%. Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.

  11. Nerve growth factor mRNA in brain: localization by in situ hybridization

    International Nuclear Information System (INIS)

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  12. Genes essential for phototrophic growth by a purple alphaproteobacterium: Genes for phototrophic growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianming [Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao Shandong Province People' s Republic of China; Department of Microbiology, University of Washington, Seattle WA USA; Yin, Liang [Department of Microbiology, University of Washington, Seattle WA USA; Lessner, Faith H. [Department of Biological Sciences, University of Arkansas, Fayetteville AR USA; Nakayasu, Ernesto S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Payne, Samuel H. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Fixen, Kathryn R. [Department of Microbiology, University of Washington, Seattle WA USA; Gallagher, Larry [Department of Genome Sciences, University of Washington, Seattle WA USA; Harwood, Caroline S. [Department of Microbiology, University of Washington, Seattle WA USA

    2017-07-24

    Anoxygenic purple phototrophic bacteria have served as important models for studies of photophosphorylation. The pigment-protein complexes responsible for converting light energy to ATP are relatively simple and these bacteria can grow heterotrophically under aerobic conditions, thus allowing for the study of mutants defective in photophosphorylation. In the past, genes responsible for anoxygenic phototrophic growth have been identified in a number of different bacterial species. Here we systematically studied the genetic basis for this metabolism by using Tn-seq to identify genes essential for the anaerobic growth of the purple bacterium Rhodopseudomonas palustris on acetate in light. We identified 171 genes required for growth in this condition, 35 of which are annotated as photosynthesis genes. Among these are a few new genes not previously shown to be essential for phototrophic growth. We verified the essentiality of many of the genes we identified by analyzing the phenotypes of mutants we generated by Tn mutagenesis that had altered pigmentation. We used directed mutagenesis to verify that the R. palustris NADH:quinone oxidoreductase complex IE is essential for phototrophic growth. As a complement to the genetic data, we carried out proteomics experiments in which we found that 429 proteins were present in significantly higher amounts in cells grown anaerobically in light compared to aerobically. Among these were proteins encoded by subset of the phototrophic growth-essential genes.

  13. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  14. The antimicrobial peptide derived from insulin-like growth factor-binding protein 5, AMP-IBP5, regulates keratinocyte functions through Mas-related gene X receptors.

    Science.gov (United States)

    Chieosilapatham, Panjit; Niyonsaba, François; Kiatsurayanon, Chanisa; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki

    2017-10-01

    In addition to their microbicidal properties, host defense peptides (HDPs) display various immunomodulatory functions, including keratinocyte production of cytokines/chemokines, proliferation, migration and wound healing. Recently, a novel HDP named AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5) was shown to exhibit antimicrobial activity against numerous pathogens, even at concentrations comparable to those of human β-defensins and LL-37. However, the immunomodulatory role of AMP-IBP5 in cutaneous tissue remains unknown. To investigate whether AMP-IBP5 triggers keratinocyte activation and to clarify its mechanism. Production of cytokines/chemokines and growth factors was determined by appropriate ELISA kits. Cell migration was assessed by in vitro wound closure assay, whereas cell proliferation was analyzed using BrdU incorporation assay complimented with XTT assay. MAPK and NF-κB activation was determined by Western blotting. Intracellular cAMP levels were assessed using cAMP enzyme immunoassay kit. Among various cytokines/chemokines and growth factors tested, AMP-IBP5 selectively increased the production of IL-8 and VEGF. Moreover, AMP-IBP5 markedly enhanced keratinocyte migration and proliferation. AMP-IBP5-induced keratinocyte activation was mediated by Mrg X1-X4 receptors with MAPK and NF-κB pathways working downstream, as evidenced by the inhibitory effects of MrgX1-X4 siRNAs and ERK-, JNK-, p38- and NF-κB-specific inhibitors. We confirmed that AMP-IBP5 indeed induced MAPK and NF-κB activation. Furthermore, AMP-IBP5-induced VEGF but not IL-8 production correlated with an increase in intracellular cAMP. Our findings suggest that in addition to its antimicrobial function, AMP-IBP5 might contribute to wound healing process through activation of keratinocytes. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  15. Reliability of chromogenic in situ hybridization for epidermal growth factor receptor gene copy number detection in non-small-cell lung carcinomas: a comparison with fluorescence in situ hybridization study.

    Science.gov (United States)

    Yoo, Seol Bong; Lee, Hyun Ju; Park, Jung Ok; Choe, Gheeyoung; Chung, Doo Hyun; Seo, Jeong-Wook; Chung, Jin-Haeng

    2010-03-01

    Fluorescence in situ hybridization (FISH) has been known to be the most representative and standardized test for assessing gene amplification. However, FISH requires a fluorescence microscope, the signals are labile and rapidly fade over time. Recently, chromogenic in situ hybridization (CISH) has emerged as a potential alternative to FISH. The aim of this study is to test the reliability of CISH technique for the detection of epidermal growth factor receptor (EGFR) gene amplification in non-small-cell lung carcinomas (NSCLC), to compare CISH results with FISH. A total of 277 formalin-fixed and paraffin embedded NSCLC tissue samples were retrieved from the surgical pathology archives at Seoul National University Bundang Hospital. CISH and FISH examinations were performed to test EGFR gene amplification status. There was high concordance in the assessment of EGFR gene copy number between CISH and FISH tests (Kappa coefficient=0.83). Excellent concordance was shown between two observers on the interpretation of the CISH results (Kappa coefficient=0.90). In conclusion, CISH result is highly reproducible, accurate and practical method to determine EGFR gene amplification in NSCLC. In addition, CISH allows a concurrent analysis of histological features of the tumors and gene copy numbers.

  16. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  17. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  18. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  19. Prognostic significance of equivocal human epidermal growth factor receptor 2 results and clinical utility of alternative chromosome 17 genes in patients with invasive breast cancer: A cohort study.

    Science.gov (United States)

    Sneige, Nour; Hess, Kenneth R; Multani, Asha S; Gong, Yun; Ibrahim, Nuhad K

    2017-04-01

    The 2013 testing guidelines for determining the human epidermal growth factor receptor 2 (HER2) status include new cutoff points for the HER2/chromosome enumeration probe 17 (CEP17) ratio and the average HER2 copy number per cell, and they recommend using a reflex test with alternative chromosome 17 probes (Ch17Ps) to resolve equivocal HER2 results. This study sought to determine the clinical utility of alternative Ch17Ps in equivocal cases and the effects of equivocal results and/or a change in the HER2 status on patients' outcomes. The University of Texas MD Anderson Cancer Center database of HER2 dual-probe fluorescence in situ hybridization results from 2000 to 2010 was searched for cases of invasive breast cancer with HER2/CEP17 ratios Cancer 2017;123:1115-1123. © 2016 American Cancer Society. © 2016 American Cancer Society.

  20. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora.

    Science.gov (United States)

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2013-12-01

    Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    Science.gov (United States)

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N W; Casewell, Nicholas R; Undheim, Eivind A B; Vidal, Nicolas; Ali, Syed A; King, Glenn F; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

  2. Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenalf

    Science.gov (United States)

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N. W.; Casewell, Nicholas R.; Undheim, Eivind A. B.; Vidal, Nicolas; Ali, Syed A.; King, Glenn F.; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation. PMID:24312363

  3. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    Directory of Open Access Journals (Sweden)

    Kartik Sunagar

    Full Text Available Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF, brain-derived neurotrophic factors (BDNF and neurotrophin-3 (NT-3, which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74% and on the molecular surface of the protein (92%, while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

  4. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Témoin de l'Infarctus du Myocarde (ECTIM) Study.

    Science.gov (United States)

    Cambien, F; Ricard, S; Troesch, A; Mallet, C; Générénaz, L; Evans, A; Arveiler, D; Luc, G; Ruidavets, J B; Poirier, O

    1996-11-01

    Transforming growth factor-beta 1 (TGF-beta 1) plays an important role in the modulation of cellular growth and differentiation and the production and degradation of the extracellular matrix. A number of experimental results suggest that TGF-beta 1 may be involved in cardiovascular physiopathology. In the present study, we assessed whether the TGF-beta 1 gene is a candidate gene for coronary heart disease or hypertension. We screened the coding region and 2181 bp upstream of the TGF-beta gene for polymorphisms and identified seven polymorphisms: 3 in the upstream region of the gene at positions -988, -800, and -509 from the first transcribed nucleotide; 1 in a nontranslated region at position +72; 2 in the signal peptide sequence Leu10-->Pro, Arg25-->Pro; and 1 in the region of the gene coding for the precursor part of the protein not present in the active form, Thr263-->Ile. We analyzed these TGF-beta 1 polymorphisms in 563 patients with myocardial infarction and 629 control subjects from four regions in Northern Ireland and France. The Pro25 allele was more frequent in patients than in control subjects in Belfast (P < .01) and Strasbourg (P < .05). The TGF-beta 1 polymorphisms were not associated with the degree of angiographically assessed coronary artery disease in patients. The presence of a Pro25 allele was associated with a lower systolic pressure in the four control groups (P < .002), and a history of hypertension was significantly less frequent in homozygotes or heterozygotes for Pro25 than in hormozygotes for Arg25 (odds ratio, 0.43, 95% confidence interval, 0.19 to 0.92; P < .03). Since the Pro25 allele was associated with an increased risk of myocardial infarction and a reduced risk of hypertension, we favor a cautious interpretation of these apparently inconsistent results. Other studies will need to verify whether these associations are real.

  5. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  6. Molecular analysis of the nerve growth factor receptor

    International Nuclear Information System (INIS)

    Hempstead, B.; Patil, N.; Olson, K.; Chao, M.

    1988-01-01

    An essential molecule in the translocation of information by nerve growth factor (NGF) to responsive cells is the cell-surface receptor for NGF. This paper presents information on the genomic structure of the NGF receptor gene, NGF receptor models, and transfection of NGF receptors. Equilibrium binding of [ 125 I]NGF to cells reveals two distinct affinity states for the NGF receptor. The human NGF receptor gene is a single-copy gene, consisting of six exons that span 23 kb. The receptor gene is capable of being transferred to fibroblast cells from human genomic DNA and expressed at high levels. The constitutive nature of the receptor promoter sequence is a partial explanation of why this tissue-specific gene is expressed efficiently in a variety of nonneuronal cells after genomic gene transfer. The two kinetic forms of the NGF receptor appear to be encoded by the same protein, which is the product of a single gene

  7. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium- and high-dose groups.

    Science.gov (United States)

    Yang, Zhi-jian; Chen, Bo; Sheng, Zhang; Zhang, Ding-guo; Jia, En-zhi; Wang, Wei; Ma, Dong-chao; Zhu, Tie-bing; Wang, Lian-sheng; Li, Chun-jian; Wang, Hui; Cao, Ke-jiang; Ma, Wen-zhu

    2010-04-01

    Despite advances in surgical and reperfusion therapy, there is no effective therapy currently exists to prevent the progressive decline in cardiac function following myocardial infarction. Hepatocyte growth factor has potent angiogenic and anti-apoptotic activities. The aim of this study was to investigate the therapeutic effect and dose-effect relationship on postinfarction heart failure with different doses of adenovirus-mediated human hepatocyte growth factor (Ad(5)-HGF) transference in swine models. Totally twenty swine were randomly divided into four groups: (a) control group (null- Ad(5), 1 ml); (b) low-dose group (1 x 10(9) Pfu/ml Ad(5)-HGF, 1 ml); (c) medium-dose group (5 x 10(9) Pfu/ml Ad(5)-HGF, 1 ml); (d) high-dose group (1 x 10(10) Pfu/ml Ad(5)-HGF, 1 ml). Four weeks after left anterior descending coronary artery (LAD) ligation, different doses of Ad(5)-HGF were transferred in three therapeutic groups via right coronary artery. Four and seven weeks after LAD ligation, gate cardiac perfusion imaging was performed to evaluate cardiac perfusion and left ventricular ejection fraction (LVEF). Seven weeks after surgery, the apoptotic index of cardiocyte was observed by TUNEL, the expression of Bcl-2, Bax, alpha-SMA and Factor VIII in the border zones were evaluated by immunohistochemistry, respectively. Four weeks after myocardial infarction, no significant difference was observed among four groups. Three weeks after Ad(5)-HGF transfer, the improvement of cardiac perfusion and LVEF was obviously observed, especially after 1 x 10(10) Pfu Ad(5)-HGF transfer. TUNEL assay showed that 5 x 10(9) Pfu and 1 x 10(10) Pfu Ad(5)-HGF treatment had a obvious reduction in the apoptotic index compared with the null-Ad(5) group, especially after 1 x 10(10) Pfu Ad(5)-HGF treatment. The expression of Bcl-2 protein was increased and the expression of Bax protein was inhibited in the 5 x 10(9) Pfu and 1 x 10(10) Pfu Ad(5)-HGF groups compared with the null-Ad(5) group. The vessel

  8. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    Science.gov (United States)

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  9. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness.

    Science.gov (United States)

    Nakagawa, S; Pawelek, P; Grinnell, F

    1989-06-01

    To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.

  10. Dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor.

    Science.gov (United States)

    Lee, Hyun Jae; Park, Jin Sung; Yoon, Yong Pill; Shin, Ye Jin; Lee, Sang Kook; Kim, Yeong Shik; Hong, Jang-Hee; Son, Kun Ho; Lee, Choong Jae

    2015-05-15

    The root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. We investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. Confluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. (1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10(-5) M (p Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model.

    Directory of Open Access Journals (Sweden)

    Jiamin Zhang

    Full Text Available Liver damage caused by radiotherapy is associated with a high mortality rate, but no established treatment exists. Adipose-derived mesenchymal stem cells (ADSCs are capable of migration to injured tissue sites, where they aid in the repair of the damage. Hepatocyte growth factor (HGF is critical for damage repair due to its anti-apoptotic, anti-fibrotic and cell regeneration-promoting effects. This study was performed to investigate the therapeutic effects of HGF-overexpressing ADSCs on radiation-induced liver damage (RILD. ADSCs were infected with a lentivirus encoding HGF and HGF-shRNA. Sprague-Dawley (SD rats received 60Gy of irradiation to induce liver injury and were immediately given either saline, ADSCs, ADSCs + HGF or ADSCs + shHGF. Two days after irradiation, a significant reduction in apoptosis was observed in the HGF-overexpressing ADSC group compared with the RILD group, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. Scanning electron microscopy showed chromatin condensation after irradiation, which was ameliorated in the group that received ADSCs and was reversed in the group that received HGF-overexpressing ADSCs. HGF-overexpressing ADSCs ameliorated radiation- induced liver fibrosis through down regulation of α-SMA and fibronectin. Hepatocyte regeneration was significantly improved in rats treated with ADSCs compared with rats from the RILD group, as assessed by Ki-67 immunohistochemistry. Rats that received HGF-overexpressing ADSCs showed an even greater level of hepatocyte regeneration. HGF-overexpressing ADSCs completely blocked the radiation-induced increase in the enzymes ALT and AST. The effect of mitigating RILD was compromised in the ADSC + shHGF group compared with the ADSC group. Altogether, these results suggest that HGF-overexpressing ADSCs can significantly improve RILD in a rat model, which may serve as a valuable therapeutic alternative.

  12. Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants.

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki

    2018-06-01

    Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.

  13. The WRKY Transcription Factor Genes in Lotus japonicus.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (LjWRKY) genes can be classified into three groups (I-III). Investigations of gene copy number and gene clusters indicate that only one gene duplication event occurred on chromosome 4 and no clustered genes were detected on chromosomes 3 or 6. Researchers previously believed that group II and III WRKY domains were derived from the C-terminal WRKY domain of group I. Our results suggest that some WRKY genes in group II originated from the N-terminal domain of group I WRKY genes. Additional evidence to support this hypothesis was obtained by Medicago truncatula WRKY (MtWRKY) protein motif analysis. We found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved.

  14. Oncogenic Activation of Fibroblast Growth Factor Receptor-3 and RAS Genes as Non-Overlapping Mutual Exclusive Events in Urinary Bladder Cancer.

    Science.gov (United States)

    Pandith, Arshad A; Hussain, Aashaq; Khan, Mosin S; Shah, Zafar A; Wani, M Saleem; Siddiqi, Mushtaq A

    2016-01-01

    Urinary bladder cancer is a common malignancy in the West and ranks as the 7th most common cancer in our region of Kashmir, India. FGFR3 mutations are frequent in superficial urothelial carcinoma (UC) differing from the RAS gene mutational pattern. The aim of this study was to analyze the frequency and association of FGFR3 and RAS gene mutations in UC cases. Paired tumor and adjacent normal tissue specimens of 65 consecutive UC patients were examined. DNA preparations were evaluated for the occurrence of FGFR3 and RAS gene mutations by PCR-SCCP and DNA sequencing. Somatic point mutations of FGFR3 were identified in 32.3% (21 of 65). The pattern and distribution were significantly associated with low grade/stage (<0.05). The overall mutations in exon 1 and 2 in all the forms of RAS genes aggregated to 21.5% and showed no association with any clinic-pathological parameters. In total, 53.8% (35 of 65) of the tumors studied had mutations in either a RAS or FGFR3 gene, but these were totally mutually exclusive in and none of the samples showed both the mutational events in mutually exclusive RAS and FGFR3. We conclude that RAS and FGFR3 mutations in UC are mutually exclusive and non-overlapping events which reflect activation of oncogenic pathways through different elements.

  15. Transforming growth factor-β1 (C509T, G800A, and T869C) gene polymorphisms and risk of ischemic stroke in North Indian population: A hospital-based case-control study.

    Science.gov (United States)

    Kumar, Pradeep; Misra, Shubham; Kumar, Amit; Faruq, Mohammad; Shakya, Sunil; Vardhan, Gyan; Vivekanandhan, Subiah; Srivastava, Achal Kumar; Prasad, Kameshwar

    2017-01-01

    Transforming growth factor-beta 1 (TGF-β1) is a multifunctional pleiotropic cytokine involved in inflammation and pathogenesis of cerebrovascular diseases. There is limited information on the association between variations within the TGF-β1 gene polymorphisms and risk of ischemic stroke (IS). The aim of this study was to investigate the association of the TGF-β1 gene (C509T, G800A, and T869C) polymorphisms, and their haplotypes with the risk of IS in North Indian population. A total of 250 IS patients and 250 age- and sex-matched controls were studied. IS was classified using the Trial of Org 10172 in Acute Stroke Treatment classification. Conditional logistic regression analysis was used to calculate the strength of association between TGF-β1 gene polymorphisms and risk of IS. Genotyping was performed using SNaPshot method. Hypertension, diabetes, dyslipidemia, alcohol, smoking, family history of stroke, sedentary lifestyle, and low socioeconomic status were found to be associated with the risk of IS. The distribution of C509T, G800A and T869C genotypes was consistent with Hardy-Weinberg Equilibrium in the IS and control groups. Adjusted conditional logistic regression analysis showed a significant association of TGF-β1 C509T (odds ratio [OR], 2.1; 95% CI; 1.2-3.8; P = 0.006), G800A (OR, 4.4; 95% CI; 2.1-9.3; P population.

  16. Expression Levels of Some Antioxidant and Epidermal Growth Factor Receptor Genes in Patients with Early-Stage Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Giuseppe De Palma

    2010-01-01

    In the cancerous tissues, antioxidant genes were significantly hypo-expressed than in unaffected tissues. The HER-2 transcript levels prevailed in adenocarcinomas, whereas EGFR in squamocellular carcinomas. Patients overexpressing HER-2 in the cancerous tissues showed significantly lower 5-year survival than the others.

  17. Protein levels and gene expressions of the epidermal growth factor receptors, HER1, HER2, HER3 and HER4 in benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Fredslund Andersen, Rikke

    2008-01-01

    , but this is not elucidated in detail in ovarian tissue. High tumor-to-normal-tissue concentration ratios would be favorable for molecular targeted anti-cancer treatment. The primary aim of the study was to analyze the potential differential protein content and gene expression of the four receptors in benign and malignant...

  18. cDNA for the human β2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor

    International Nuclear Information System (INIS)

    Kobilka, B.K.; Dixon, R.A.F.; Frielle, T.

    1987-01-01

    The authors have isolated and sequenced a cDNA encoding the human β 2 -adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster β 2 -adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. They have localized the gene for the β 2 -adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor

  19. Insulin-Like Growth Factor-I Stimulates Fibronectin Gene Expression in Rat Vascular Smooth Muscle Cells and Glomerular Mesangial Cells

    Science.gov (United States)

    1993-09-21

    Complications of Diabetes Mellitus Diabetes mellitus exhibits symptoms of polyuria , glycosuria, and acidosis. Although the discovery of insulin in 1921 by...Professor Department of Physiology Elevated fibronectin levels have been observed in the matrix of diabetic blood vessels and renal "glomeruli. Growth...1 A. Specific Goal ........... ..................... .. 1 B. Background and Significance ..................... 2 1. Complications of Diabetes

  20. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  1. The role of the gene SERPINH1 as a pharmacogenetic biomarker for choroidal neovascularization (CNV) responses to anti vascular endothelial growth factor (VEGF) treatment in clinical practice

    OpenAIRE

    Pierce, Charles

    2015-01-01

    Age related macular degeneration is the commonest cause of blindness in the western world and current treatment regimens represent a significant output for national health services. The disease process is multifactorial in origin and has a variable progression and response to current methods of treatment. A targeted approach with individualized therapy based on recognized biomarkers to predict disease outcome would be the ideal treatment modality.We plan to investigate the role of genes known...

  2. The effect of polymorphism in gene of insulin-like growth factor-I on the serum periparturient concentration in Holstein dairy cows.

    Science.gov (United States)

    Mirzaei, A; Sharifiyazdi, H; Ahmadi, M R; Ararooti, T; Ghasrodashti, A Rowshan; Kadivar, A

    2012-10-01

    To investigate the relationship between polymorphism within the 5'-untranslated region (5'-UTR) of IGF-I gene and its periparturient concentration in Iranian Holstein dairy cows. Blood samples (5 mL, n = 37) were collected by caudal venipuncture from each animal into sample tubes containing the EDTA and DNA was extracted from blood. In order to measure IGF-I concentration the collection of blood samples (n = 111) was also done at 14 d before calving (prepartum), 25 and 45 d postpartum. We found evidence for a significant effect of C to T mutation in position 512 of IGF-I gene on its serum concentration in dairy cows in Iran. Cows with CC genotype had significantly higher concentration (Mean±SD) of IGF-I at 14 d prepartum (91.8±18.1) µg/L compared to those with TT genotype (73.3±14.4) µg/L (P=0.04). A significant trend (quadratic) was found for IGF-I concentration, as higher in CC cows compared to ones with TT genotype, during the 14 d before calving to 45 d postpartum (P=0.01). We concluded that C/T transition in the promoter region of IGF-I gene can influence the serum concentration of IGF-I in periparturient dairy cows.

  3. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    International Nuclear Information System (INIS)

    Sarfstein, Rive; Belfiore, Antonino; Werner, Haim

    2010-01-01

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells

  4. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarfstein, Rive [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Belfiore, Antonino [Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro 88100 (Italy); Werner, Haim, E-mail: hwerner@post.tau.ac.il [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-03-25

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells.

  5. Associations of vascular endothelial growth factor (VEGF gene and cytokine (IL-1B, IL-4, IL-6, IL-10, TNFA genes combinations with type 2 diabetes mellitus in women

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2012-09-01

    Full Text Available Aim. To study the association between vascular endothelial growth factor (VEGF and cytokine (IL1B, IL4, IL6, IL10 and TNFAgene polymorphism combinations with type 2 diabetes mellitus (T2DM in women. Materials and methods. 374 Caucasian women without carbohydrate metabolism disorders from 23 to 68 years of age and 212 womenwith T2DM from 28 to 69 years of age were included in the study. The combinations of polymorphism А-2578С, С+936Т in VEGFgene with polymorphism in IL1B С-31Т, IL4 С-590Т, IL6 G-174C, IL10 A-592C and А-1082G, TNFA А-238G, A-308G and A-863Cwere studied. Results. Analysis revealed 52 combined genetic variations with different rate of occurrence between diabetic and control groups(р

  6. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  7. Predictive factors for intrauterine growth restriction.

    Science.gov (United States)

    Albu, A R; Anca, A F; Horhoianu, V V; Horhoianu, I A

    2014-06-15

    Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies.

  8. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle.

    Science.gov (United States)

    Sherman, E L; Nkrumah, J D; Murdoch, B M; Li, C; Wang, Z; Fu, A; Moore, S S

    2008-01-01

    Genes that regulate metabolism and energy partitioning have the potential to influence economically important traits in farm animals, as do polymorphisms within these genes. In the current study, SNP in the bovine neuropeptide Y (NPY), growth hormone receptor (GHR), ghrelin (GHRL), uncoupling proteins 2 and 3 (UCP2 and UCP3), IGF2, corticotrophin-releasing hormone (CRH), cocaine and amphetamine regulated transcript (CART), melanocortin-4 receptor (MC4R), proopiomelanocortin (POMC), and GH genes were evaluated for associations with growth, feed efficiency, and carcass merit in beef steers. In total, 24 SNP were evaluated for associations with these traits and haplotypes were constructed within each gene when 2 or more SNP showed significant associations. An A/G SNP located in intron 4 of the GHR gene had the largest effects on BW of the animals (dominance effect P GHRL gene tended to show effects on residual feed intake, FCR, and partial efficiency of growth (P < 0.10). The IGF2 SNP most strongly affected LM area (P < 0.01), back fat, ADG, and FCR (P < 0.05). The SNP in the CART, MC4R, POMC, GH, and CRH genes did not show associations at P < 0.05 with any of the traits. Although most of the SNP that showed associations do not cause amino acid changes, these SNP could be linked to other yet to be detected causative mutations or nearby QTL. It will be very important to verify these results in other cattle populations.

  9. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    Directory of Open Access Journals (Sweden)

    Gauldie Jack

    2010-12-01

    Full Text Available Abstract Background Micro-computed tomography (micro-CT is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time. Methods Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1. Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis. Results We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed. Conclusions Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals.

  10. Insulin-like growth factor 1 (IGF-1): a growth hormone

    Science.gov (United States)

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  11. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein.

    Science.gov (United States)

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-11-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

  12. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  13. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  14. Detection of polymorphism of the insulin-like growth factor-I (IGF-I ...

    African Journals Online (AJOL)

    Molecular genetic selection on individual genes is a promising method to genetically improve economically important traits in chickens. The insulin-like growth factor-I (IGF-I) gene may play important roles in growth of multiple tissues, including muscle cells, cartilage and bone. In the present study, polymorphism of the ...

  15. [A study on relationship between single nucleotide polymorphisms of vascular endothelial growth factor gene and susceptibility to systemic lupus erythematosus in China north Han population].

    Science.gov (United States)

    Lv, Hao-Zhe; Lin, Tao; Zhu, Xiang-Yang; Zhang, Jin-Tao; Lu, Jing

    2010-12-01

    To investigate relationship between single nucleotide polymorphism(SNP) of VEGF gene and susceptibility to systemic lupus erythematosus(SLE) in China north population. Six VEGF SNPs (rs2010963, rs3024994, rs3025000, rs3025010, rs3025035 and rs833070) of forty-four patients with SLE and one hundred healthy controls were examined by Sequenom chip-based MALDI-TOF mass spectomery platform. Different genotypes were analyzed statistically by SPSS 11.5. There was no significant difference between SLE patients and controls in frequency of rs2010963, rs3024994, rs3025000, rs3025010, rs3025035 genotype and allele (P>0.05). The frequency of rs833070 A allele was significantly higher in SLE than that in controls. (31.2% vs 20%, x(2);=4.547, P=0.033, OR=1.818 , 95% CI 1.045-3.162). In the patient with SLE, rs833070 G decreased the susceptibility of arthritis(56% vs 80.4%, x(2);=5.613, P=0.018, OR=0.336, 95% CI 0.134-0.843), while the genotype of rs833070 GG significantly decreased the susceptibility to arthritis(GGvsAG+AA: 28% vs 65.2%, x(2);=6.684, P=0.010, OR=0.207, 95% CI 0.061-0.705). VEGF rs833070 A may represent an inreased susceptibility to SLE in China north Han population. VEGF rs833070 G and rs833070 GG may play protective roles in the case of lupus arthritis.

  16. Alterations of the genes involved in the PI3K and estrogen-receptor pathways influence outcome in human epidermal growth factor receptor 2-positive and hormone receptor-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Takada, Mamoru; Miyazaki, Masaru; Sato-Otsubo, Aiko; Ogawa, Seishi; Kaneko, Yasuhiko; Higuchi, Toru; Tozuka, Katsunori; Takei, Hiroyuki; Haruta, Masayuki; Watanabe, Junko; Kasai, Fumio; Inoue, Kenichi; Kurosumi, Masafumi

    2013-01-01

    Chemotherapy with trastuzumab is widely used for patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but a significant number of patients with the tumor fail to respond, or relapse. The mechanisms of recurrence and biomarkers that indicate the response to the chemotherapy and outcome are not fully investigated. Genomic alterations were analyzed using single-nucleotide polymorphism arrays in 46 HER2 immunohistochemistry (IHC) 3+ or 2+/fluorescent in situ hybridization (FISH)+ breast cancers that were treated with neoadjuvant chemotherapy with paclitaxel, cyclophosphamid, epirubicin, fluorouracil, and trastuzumab. Patients were classified into two groups based on presence or absence of alterations of 65 cancer-associated genes, and the two groups were further classified into four groups based on genomic HER2 copy numbers or hormone receptor status (HR+/−). Pathological complete response (pCR) and relapse-free survival (RFS) rates were compared between any two of the groups. The pCR rate was 54% in 37 patients, and the RFS rate at 3 years was 72% (95% CI, 0.55-0.89) in 42 patients. The analysis disclosed 8 tumors with nonamplified HER2 and 38 tumors with HER2 amplification, indicating the presence of discordance in tumors diagnosed using current HER2 testing. The 8 patients showed more difficulty in achieving pCR (P=0.019), more frequent relapse (P=0.018), and more frequent alterations of genes in the PI3K pathway (P=0.009) than the patients with HER2 amplification. The alterations of the PI3K and estrogen receptor (ER) pathway genes generally indicated worse RFS rates. The prognostic significance of the alterations was shown in patients with a HR+ tumor, but not in patients with a HR- tumor when divided. Alterations of the PI3K and ER pathway genes found in patients with a HR+ tumor with poor outcome suggested that crosstalk between the two pathways may be involved in resistance to the current chemotherapy with trastuzumab. We

  17. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    Science.gov (United States)

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  18. Hematopoietic growth factors and human acute leukemia.

    Science.gov (United States)

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  19. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  20. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3

    Directory of Open Access Journals (Sweden)

    Zhu Liang

    2012-03-01

    Full Text Available Abstract Background Response gene to complement-32 (RGC-32 is comprehensively expressed in many kinds of tissues and has been reported to be expressed abnormally in different kinds of human tumors. However, the role of RGC-32 in cancer remains controversial and no reports have described the effect of RGC-32 in pancreatic cancer. The present study investigated the expression of RGC-32 in pancreatic cancer tissues and explored the role of RGC-32 in transforming growth factor-beta (TGF-β-induced epithelial-mesenchymal transition (EMT in human pancreatic cancer cell line BxPC-3. Methods Immunohistochemical staining of RGC-32 and E-cadherin was performed on specimens from 42 patients with pancreatic cancer, 12 with chronic pancreatitis and 8 with normal pancreas. To evaluate the role of RGC-32 in TGF-β-induced EMT in pancreatic cancer cells, BxPC-3 cells were treated with TGF-β1, and RGC-32 siRNA silencing and gene overexpression were performed as well. The mRNA expression and protein expression of RGC-32 and EMT markers such E-cadherin and vimentin were determined by quantitative reverse transcription-PCR (qRT-PCR and western blot respectively. Finally, migration ability of BxPC-3 cells treated with TGF-β and RGC-32 siRNA transfection was examined by transwell cell migration assay. Results We found stronger expression of RGC-32 and higher abnormal expression rate of E-cadherin in pancreatic cancer tissues than those in chronic pancreatitis tissues and normal pancreatic tissues. Immunohistochemical analysis revealed that both RGC-32 positive expression and E-cadherin abnormal expression in pancreatic cancer were correlated with lymph node metastasis and TNM staging. In addition, a significant and positive correlation was found between positive expression of RGC-32 and abnormal expression of E-cadherin. Furthermore, in vitro, we found sustained TGF-β stimuli induced EMT and up-regulated RGC-32 expression in BxPC-3 cells. By means of si

  1. Fibroblast growth factor 23 - et fosfatregulerende hormon

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe; Pedersen, Susanne Møller; Kassem, Moustapha

    2010-01-01

    Fibroblast growth factor 23 (FGF23) er et nyligt identificeret fosfatonin. FGF23's fysiologiske hovedfunktion er at opretholde normalt serumfosfat og at virke som et D-vitaminmodregulatorisk hormon. Sygdomme, der er koblet til forhøjet serum FGF23, er hypofosfatæmisk rakitis, fibrøs dysplasi og t...

  2. Factor IX gene haplotypes in Amerindians.

    Science.gov (United States)

    Franco, R F; Araújo, A G; Zago, M A; Guerreiro, J F; Figueiredo, M S

    1997-02-01

    We have determined the haplotypes of the factor IX gene for 95 Indians from 5 Brazilian Amazon tribes: Wayampí, Wayana-Apalaí, Kayapó, Arára, and Yanomámi. Eight polymorphisms linked to the factor IX gene were investigated: MseI (at 5', nt -698), BamHI (at 5', nt -561), DdeI (intron 1), BamHI (intron 2), XmnI (intron 3), TaqI (intron 4), MspI (intron 4), and HhaI (at 3', approximately 8 kb). The results of the haplotype distribution and the allele frequencies for each of the factor IX gene polymorphisms in Amerindians were similar to the results reported for Asian populations but differed from results for other ethnic groups. Only five haplotypes were identified within the entire Amerindian study population, and the haplotype distribution was significantly different among the five tribes, with one (Arára) to four (Wayampí) haplotypes being found per tribe. These findings indicate a significant heterogeneity among the Indian tribes and contrast with the homogeneous distribution of the beta-globin gene cluster haplotypes but agree with our recent findings on the distribution of alpha-globin gene cluster haplotypes and the allele frequencies for six VNTRs in the same Amerindian tribes. Our data represent the first study of factor IX-associated polymorphisms in Amerindian populations and emphasizes the applicability of these genetic markers for population and human evolution studies.

  3. Modulation of radiosensitivity by growth factors

    International Nuclear Information System (INIS)

    Paris, F.

    2013-01-01

    The full text of the publication follows. For the past 70 years, radiotherapy protocols were defined to target and kill cancer cells. New research developments showed that the tissue or tumor radiosensitivities might be directly modulated by its own microenvironment. Between all the micro-environmental cells, endothelial cells are playing a unique role due to the need of angio-genesis for tumor genesis and to the microvascular endothelial cell apoptosis involved in acute normal tissue and tumor radiosensitivities. Both endothelial behaviours may be controlled by specific growth factors secreted by tumor cells. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are two cytokines involved in angio genesis and endothelial cell survival. Because radiation exposure develops opposite molecular and cellular responses by inhibiting proliferation and by enhancing apoptosis, inhibiting these cytokines has been proposed as a relevant strategy to improve radiotherapy efficiency. Drugs or antibody against VEGF, or other growth factors have been used with success to limit endothelial cell resistance, but also to transiently normalize of blood vessels to improve oxygen distribution into the tumor. However, better characterisation of the role of the cytokines will help to better improve the strategy of the use of their antagonists. We demonstrate that bFGF or sphingosin 1 phosphate (S1P), a lipid endothelial growth factor, protects endothelial cells from radiation stress by inhibiting the pre-mitotic apoptosis through enhancement of pro-survival molecular cascade, such as the Pi3K/AKT pathway, but not post-mitotic death. This discrepancy allowed a specific use of S1P as pharmacological drug protecting quiescent endothelial cells, present in normal tissue blood vessels, but not in proliferating angiogenic blood vessels, majority present in tumor blood vessel. In vivo studies are underway. (author)

  4. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  5. Dexamethasone protects RAW264.7 macrophages from growth arrest and apoptosis induced by H2O2 through alteration of gene expression patterns and inhibition of nuclear factor-kappa B (NF-κB) activity

    International Nuclear Information System (INIS)

    Fong, C.-C.; Zhang Yaou; Zhang Qi; Tzang, C.-H.; Fong, W.-F.; Wu, R.S.S.; Yang Mengsu

    2007-01-01

    In this study, the effect of dexamethasone, a synthetic glucocorticoid, on H 2 O 2 stimulated murine RAW264.7 macrophages was investigated. It was found that dexamethasone protected the cells from apoptosis induced by H 2 O 2 . A cDNA microarray, which consists of 1000 genes selected from a mouse clone set provided from NIA, was used to study the gene expression profiles involved in the protective effect. Our data show that dexamethasone exerts the anti-apoptosis function by changing the expression patterns of many genes involved inhibiting the up-regulation of apoptosis promoting genes and the down-regulation of cell cycle stimulating genes as well as keeping the up-regulation of cell survival related genes. Our study also revealed that dexamethasone protects RAW264.7 macrophages from H 2 O 2 induced apoptosis through blocking nuclear factor-kappa B (NF-κB) activity

  6. Analysis of association between a microsatellite at intron 1 of the insulin-like growth factor 1 (IGF1 gene and fat deposition, meat production and quality traits in Italian Large White and Italian Duroc pigs

    Directory of Open Access Journals (Sweden)

    Luca Fontanesi

    2013-10-01

    Full Text Available A few studies have shown that a microsatellite at intron 1 of the insulin-like growth factor 1 (IGF1 gene is associated with several production traits in a few pig populations. In the current work we evaluated associations between this microsatellite and production traits in Italian Large White and Italian Duroc pigs. Association studies were carried out on a total of 1120 animals using two experimental designs: i a selective genotyping approach based on extreme and divergent Italian Large White pigs for back fat thickness (BFT estimated breeding value (EBV or on extreme and divergent Italian Duroc pigs for visible intermuscular fat (VIF EBV; and ii analysis of unselected pigs (random groups coming from populations of the two breeds. Allele distributions between Italian Large White and Italian Duroc pigs were different (P<0.05 with longer alleles being more frequent in Italian Large White. Results of the association analyses from two different random groups showed that this marker affects average daily gain EBV, lean cut EBV and BFT EBV in Italian Large White and BFT EBV in Italian Duroc (P<0.05. Association analysis carried out with random residuals confirmed, to some extent (P=0.096, the effects on BFT in the same animals. However, this result was not confirmed in the two extreme and divergent Italian Large White groups used in the selective genotyping experiment. These inconsistent results may indicate that the effect of the IGF1 microsatellite is doubtful in the investigated finishing pigs.

  7. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition.

    Science.gov (United States)

    Stewart, Teneale A; Azimi, Iman; Thompson, Erik W; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2015-03-13

    Epithelial-mesenchymal transition (EMT), a process implicated in cancer metastasis, is associated with the transcriptional regulation of members of the ATP-binding cassette superfamily of efflux pumps, and drug resistance in breast cancer cells. Epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells is calcium signal dependent. In this study induction of EMT was shown to result in the transcriptional up-regulation of ATP-binding cassette, subfamily C, member 3 (ABCC3), a member of the ABC transporter superfamily, which has a recognized role in multidrug resistance. Buffering of cytosolic free calcium inhibited EGF-mediated ABCC3 increases, indicating a calcium-dependent mode of regulation. Silencing of TRPM7 (an ion channel involved in EMT associated vimentin induction) did not inhibit ABCC3 up-regulation. Silencing of the store operated calcium entry (SOCE) pathway components ORAI1 and STIM1 also did not alter ABCC3 induction by EGF. However, the calcium permeable ion channel transient receptor potential cation channel, subfamily C, member 1 (TRPC1) appears to contribute to the regulation of both basal and EGF-induced ABCC3 mRNA. Improved understanding of the relationship between calcium signaling, EMT and the regulation of genes important in therapeutic resistance may help identify novel therapeutic targets for breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Human insulin-like growth factor II leader 2 mediates internal initiation of translation

    DEFF Research Database (Denmark)

    Pedersen, Susanne; Christiansen, Jan; Hansen, T.O.

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IG...

  9. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    Science.gov (United States)

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  10. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  11. Assaying gene function by growth competition experiment.

    Science.gov (United States)

    Merritt, Joshua; Edwards, Jeremy S

    2004-07-01

    High-throughput screening and analysis is one of the emerging paradigms in biotechnology. In particular, high-throughput methods are essential in the field of functional genomics because of the vast amount of data generated in recent and ongoing genome sequencing efforts. In this report we discuss integrated functional analysis methodologies which incorporate both a growth competition component and a highly parallel assay used to quantify results of the growth competition. Several applications of the two most widely used technologies in the field, i.e., transposon mutagenesis and deletion strain library growth competition, and individual applications of several developing or less widely reported technologies are presented.

  12. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore Cattle Are Modulators of Growth.

    Directory of Open Access Journals (Sweden)

    Anirene G T Pereira

    Full Text Available Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS, were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1 as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1, IGF2 (insulin like growth factor 2, GH1 (growth hormone 1, IGF1R (insulin like growth factor 1 receptor and GHR (growth hormone receptor, suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.

  13. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  14. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  15. Polymorphism of the VEGF gene and its association with growth ...

    African Journals Online (AJOL)

    Thus, mutations of this gene may exert a significant influence on animal growth. We screened the exons of the caprine VEGF gene using PCR-SSCP and DNA sequencing methods in 459 individuals from four goat breeds to identify sequence variations that may have an effect on protein structure and function, and might be ...

  16. Interplay of bistable kinetics of gene expression during cellular growth

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2009-01-01

    In cells, the bistable kinetics of gene expression can be observed on the level of (i) one gene with positive feedback between protein and mRNA production, (ii) two genes with negative mutual feedback between protein and mRNA production, or (iii) in more complex cases. We analyse the interplay of two genes of type (ii) governed by a gene of type (i) during cellular growth. In particular, using kinetic Monte Carlo simulations, we show that in the case where gene 1, operating in the bistable regime, regulates mutually inhibiting genes 2 and 3, also operating in the bistable regime, the latter genes may eventually be trapped either to the state with high transcriptional activity of gene 2 and low activity of gene 3 or to the state with high transcriptional activity of gene 3 and low activity of gene 2. The probability to get to one of these states depends on the values of the model parameters. If genes 2 and 3 are kinetically equivalent, the probability is equal to 0.5. Thus, our model illustrates how different intracellular states can be chosen at random with predetermined probabilities. This type of kinetics of gene expression may be behind complex processes occurring in cells, e.g., behind the choice of the fate by stem cells

  17. Novel mutation detection of fibroblast growth factor receptor 1 (FGFR1) gene, FGFR2IIIa, FGFR2IIIb, FGFR2IIIc, FGFR3, FGFR4 gene for craniosynostosis: A prospective study in Asian Indian patient.

    Science.gov (United States)

    Barik, Mayadhar; Bajpai, Minu; Malhotra, Arun; Samantaray, Jyotish Chandra; Dwivedi, Sadananda; Das, Sambhunath

    2015-01-01

    Craniosynostosis (CS) syndrome is an autosomal dominant condition classically combining craniosynostosis and non-syndromic craniosynostosis with digital anomalies of the hands and feet. The majority of cases are caused by heterozygous mutations in the third immunoglobulin-like domain (IgIII) of FGFR2, whilst a larger number of cases can be attributed to mutations outside this region of the protein. To find out the FGFR1, FGFR2, FGFR3 and FGFR4 gene in craniosynostosis syndrome. A hospital based prospective study. Prospective analysis of clinical records of patients registered in CS clinic from December 2007 to January 2015 was done in patients between 4 months to 13 years of age. We have performed genetic findings in a three generation Indian family with Craniosynostosis syndrome. We report for the first time the clinical and genetic findings in a three generation Indian family with Craniosynostosis syndrome caused by a heterozygous missense mutation, Thr 392 Thr and ser 311 try, located in the IgII domain of FGFR2. FGFR 3 and 4 gene basis syndrome was eponymously named. Genetic analysis demonstrated that 51/56 families to be unrelated. In FGFR3 gene 10/TM location of 1172 the nucleotide changes C>A, Ala 391 Glu 19/56 and Exon-19, 5q35.2 at conserved linker region the changes occurred pro 246 Arg in 25/56 families. Independent genetic origins, but phenotypic similarities in the 51 families add to the evidence supporting the theory of selfish spermatogonial selective advantage for this rare gain-of-function FGFR2 mutation.

  18. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  19. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  20. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  1. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  2. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  3. Prognostic importance of vascular endothelial growth factor-A expression and vascular endothelial growth factor polymorphisms in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Smerdel, Maja; Waldstrøm, Marianne; Brandslund, Ivan

    2009-01-01

    INTRODUCTION: Vascular endothelial growth factors (VEGFs) play a central role in angiogenesis and consequently, in various steps of ovarian carcinogenesis. Gene polymorphisms within the VEGF system have revealed a correlation with prognosis in some malignancies. The aim of the present study...... was to examine the possible importance of 2 VEGF polymorphisms and VEGF-A expression in ovarian cancer. METHODS: We investigated 2 single nucleotide polymorphisms VEGF +405G/C and VEGF -460C/T by polymerase chain reaction and also analyzed VEGF-A expression by immunohistochemistry in 159 women with ovarian...... cancer. RESULTS: Vascular endothelial growth factor-A expression revealed a significant correlation with survival in a Cox proportional hazards regression model (P = 0.012). Germline polymorphisms were not correlated with clinicopathological parameters such as stage, type, and histology. Heterozygous...

  4. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  5. Changes in gene expression following growth stimulation of cultured cells

    International Nuclear Information System (INIS)

    Nathans, D.; Lau, L.F.; Lee, S.J.; Linzer, D.I.H.

    1986-01-01

    To identify genes that may be part of a genetic program for the growth of mammalian cells. The authors are characterizing cDNA clones derived from mRNAs that appear at various times after stimulation of resting BALB/c 3T3 cells with serum or growth factors. cDNA libraries were prepared from polyA/sup +/ RNA from cells stimulated with serum for various periods of time, and the libraries were differentially screened with /sup 32/P-cDNA probes made from stimulated or resting cell mRNA. One cDNA library was prepared from cells that were stimulated with serum for 3 hrs in the presence of cycloheximide. The authors purpose in inhibiting protein synthesis was to limit new mRNAs to those that do not require de novo protein synthesis for their accumulation and to amplify mRNAs that are superinduced by serum in the absence of protein synthesis. Of approximately 50,000 recombinant phage plaques screened, 357 clones hybridized to probes derived from stimulated-cell RNA but not to probes from resting-cell RNA. Cross hybridization analysis showed that 4 RNA sequence families accounted for over 95% of the clones; other sequences were found only once

  6. Growth factors: biological and clinical aspects

    International Nuclear Information System (INIS)

    Ruifrok, A.C.C.; McBride, W.H.

    1999-01-01

    Purpose: The purpose of this meeting summary is to provide an overview of cytokine research and its role in radiation oncology. Methods and Materials: The sixth annual Radiation Workshop was held at the International Festival Institute at Round Top, TX. Results: Presentations of seventeen speakers provided the framework for discussions on the biological and clinical aspects of cytokine research. Conclusion: Orchestration of coordinated cellular responses over the time course of radiation effects requires the interaction of many growth factors with their receptors as well as cell-cell and cell-matrix interactions. Cytokine networks and integrated systems are important in tumor development, cancer treatment, and normal and tumor response to cancer treatment

  7. Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGF-I and IGFBP-3 and breast cancer risk: results from the EPIC study.

    NARCIS (Netherlands)

    Canzian, F; McKay, J D; Cleveland, R J; Dossus, Laure; Biessy, Carine; Rinaldi, Sabina; Landi, S; Boillot, C; Monnier, S; Chajès, V; Clavel-Chapelon, Françoise; Téhard, B; Chang-Claude, J; Linseisen, Jakob; Lahmann, Petra H; Pischon, Tobias; Trichopoulos, Dimitrios; Trichopoulou, Antonia; Zilis, D; Palli, Domenico; Tumino, Rosario; Vineis, Paolo; Berrino, Franco; Bueno-de-Mesquita, H Bas; Gils, C H van; Peeters, Petra H M; Pera, Guillem; Ardanaz, Eva; Chirlaque, María-Dolores; Quirós, José Ramón; Larrañaga, Nerea; Martínez-García, Carmen; Allen, Naomi E; Key, Timothy J; Bingham, Sheila A; Khaw, Kay-Tee; Slimani, N; Norat, Teresa; Riboli, Elio; Kaaks, Rudolf

    2006-01-01

    Insulin-like growth factor I (IGF-I) stimulates cell proliferation and can enhance the development of tumours in different organs. Epidemiological studies have shown that an elevated level of circulating IGF-I is associated with increased risk of breast cancer, as well as of other cancers. Most of

  8. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  9. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.

    Science.gov (United States)

    Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu

    2017-10-01

    The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.

  10. Promotion of growth by Coenzyme Q10 is linked to gene expression in C. elegans.

    Science.gov (United States)

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2014-10-03

    Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effects of growth-promoting factors on proliferation of mouse ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... Key words: Growth-promoting factors, mouse spermatogonial stem cells (SSCs), proliferation. INTRODUCTION ... insulin-like growth factor-1 (IGF-1) can stimulate mitotic ...... A Model for Analysis of Spermatogenesis. Zool. Sci.

  12. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    Science.gov (United States)

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-11-18

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  13. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai

    Directory of Open Access Journals (Sweden)

    Mi-Jin Choi

    2015-11-01

    Full Text Available The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3, vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  14. Hepatocyte growth factor profile with breast cancer

    Directory of Open Access Journals (Sweden)

    Hoda A EL-Attar

    2011-01-01

    Full Text Available Background: The multifunctional hepatocyte growth factor (HGF is the ligand of c-Met receptor; it plays important role in mammary differentiation. HGF-Met signaling is a critical downstream function of c-Src-Stat3 pathway in mammalian tumorigenesis. Aim: Evaluation of tissue c-Met receptor hepatocyte growth factor receptor (HGFR and serum level of HGF in female breast ductal carcinoma. Materials and Methods: Sixty-eight premenopausal females were divided as 30 control females subdivided into: [Group 1] 15 healthy volunteer females and [Group 2] five with fibrocystic disease and 10 having fibroadenoma of the breast and patients group [Group 3] consisted of 38 female patients with breast ductal carcinoma. Thorough clinical examination, preoperative fine needle aspiration cytology, estimation of fasting serum glucose, urea, creatinine, and uric acid levels, alanine aminotransferase activities, C-reactive protein, HGF level, before surgery and histopathological examination of the breast masses, and immunohistochemical detection of HGFR were done. Results and Conclusions: Significant increase in serum HGF levels were found in patients with breast cancer as compared with controls. Significant increase was also seen in patients with breast cancer with and without lymph node metastasis when each subgroup was compared with controls. Serum level of HGF is an independent prognostic indicator of breast cancer. Fibrocystic disease of the breast showed weak HGFR expression, while in normal tissue, HGFR was scanty; meanwhile, breast invasive ductal carcinoma showed homogenous strong reaction to HGFR. HGF is only one of a number of key factors involved in breast cancer and preoperative high serum HGF levels and malignancy occur usually together.

  15. Role of growth factors in the growth of normal and transformed cells

    International Nuclear Information System (INIS)

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both 125 I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product

  16. A gene-protein assay for human epidermal growth factor receptor 2 (HER2: brightfield tricolor visualization of HER2 protein, the HER2 gene, and chromosome 17 centromere (CEN17 in formalin-fixed, paraffin-embedded breast cancer tissue sections

    Directory of Open Access Journals (Sweden)

    Nitta Hiroaki

    2012-05-01

    Full Text Available Abstract Background The eligibility of breast cancer patients for human epidermal growth factor receptor 2 (HER2-directed therapies is determined by the HER2 gene amplification and/or HER2 protein overexpression status of the breast tumor as determined by in situ hybridization (ISH or immunohistochemistry (IHC, respectively. Our objective was to combine the US Food and Drug Administration (FDA-approved HER2 & chromosome 17 centromere (CEN17 brightfield ISH (BISH and HER2 IHC assays into a single automated HER2 gene-protein assay allowing simultaneous detection of all three targets in a single tissue section. Methods The HER2 gene-protein assay was optimized using formalin-fixed, paraffin-embedded (FFPE samples of the xenograft tumors MCF7 [HER2 negative (non-amplified gene, protein negative] and Calu-3 [HER2 positive (amplified gene, protein positive]. HER2 IHC was performed using a rabbit monoclonal anti-HER2 antibody (clone 4B5 and a conventional 3,3'-diaminobenzidine IHC detection. The HER2 & CEN17 BISH signals were visualized using horseradish peroxidase-based silver and alkaline phosphatase-based red detection systems, respectively with a cocktail of 2,4-dinitrophenyl-labeled HER2 and digoxigenin-labeled CEN17 probes. The performance of the gene-protein assay on tissue microarray slides containing 189 randomly selected FFPE clinical breast cancer tissue cores was compared to that of the separate HER2 IHC and HER2 & CEN17 BISH assays. Results HER2 protein detection was optimal when the HER2 IHC protocol was used before (rather than after the BISH protocol. The sequential use of HER2 IHC and HER2 & CEN17 BISH detection steps on FFPE xenograft tumor sections appropriately co-localized the HER2 protein, HER2 gene, and CEN17 signals after mitigating the silver background staining by using a naphthol phosphate-containing hybridization buffer for the hybridization step. The HER2 protein and HER2 gene status obtained using the multiplex HER2 gene

  17. Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice*

    Science.gov (United States)

    Takarada, Takeshi; Kodama, Ayumi; Hotta, Shogo; Mieda, Michihiro; Shimba, Shigeki; Hinoi, Eiichi; Yoneda, Yukio

    2012-01-01

    We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression. PMID:22936800

  18. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    International Nuclear Information System (INIS)

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-01-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled 239 PuO 2 were evaluated for aberrant expression of transforming growth factor alpha (TGF-α) and epidermal growth factor receptor (EGFR). Expression of TGF-α protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-α. Many neoplasms expressing TGF-α also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-α were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab

  19. Effects of growth-promoting factors on proliferation of mouse ...

    African Journals Online (AJOL)

    SSCs) in vitro are critical to our understanding of male infertility, genetic resources and endangered species conservation. To investigate the effects of growth-promoting factors, epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and ...

  20. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  1. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  2. Growth Factors and Breast Tumors, Comparison of Selected Growth Factors with Traditional Tumor Markers

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Černá, M.; Ňaršanská, A.; Svobodová, Š.; Straková, M.; Vrzalová, J.; Fuchsová, R.; Třešková, I.; Kydlíček, T.; Třeška, V.; Pecen, Ladislav; Topolčan, O.; Padziora, P.

    2011-01-01

    Roč. 31, č. 12 (2011), s. 4653-4656 ISSN 0250-7005 Grant - others:GA MZd(CZ) NS9727; GA MZd(CZ) NS10238; GA MZd(CZ) NS10253 Institutional research plan: CEZ:AV0Z10300504 Keywords : growth factor * breast cancer * tumor markers * CA 15-3 * CEA * IGF1 * EGF * HGF Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  3. Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer

    International Nuclear Information System (INIS)

    O’Donnell, Patrick; Shieh, Felice; Wei, Wen; Lawrence, H Jeffrey; Wu, Lin; Schilling, Robert; Bloom, Kenneth; Maltzman, Warren; Anderson, Steven; Soviero, Stephen; Ferguson, Jane; Shyu, Johnny; Current, Robert; Rehage, Taraneh; Tsai, Julie; Christensen, Mari; Tran, Ha Bich; Chien, Sean Shih-Chang

    2013-01-01

    Epidermal growth factor receptor (EGFR) gene mutations identify patients with non-small cell lung cancer (NSCLC) who have a high likelihood of benefiting from treatment with anti-EGFR tyrosine kinase inhibitors. Sanger sequencing is widely used for mutation detection but can be technically challenging, resulting in longer turn-around-time, with limited sensitivity for low levels of mutations. This manuscript details the technical performance verification studies and external clinical reproducibility studies of the cobas EGFR Mutation Test, a rapid multiplex real-time PCR assay designed to detect 41 mutations in exons 18, 19, 20 and 21. The assay’s limit of detection was determined using 25 formalin-fixed paraffin-embedded tissue (FFPET)-derived and plasmid DNA blends. Assay performance for a panel of 201 specimens was compared against Sanger sequencing with resolution of discordant specimens by quantitative massively parallel pyrosequencing (MPP). Internal and external reproducibility was assessed using specimens tested in duplicate by different operators, using different reagent lots, instruments and at different sites. The effects on the performance of the cobas EGFR test of endogenous substances and nine therapeutic drugs were evaluated in ten FFPET specimens. Other tests included an evaluation of the effects of necrosis, micro-organisms and homologous DNA sequences on assay performance, and the inclusivity of the assay for less frequent mutations. A >95% hit rate was obtained in blends with >5% mutant alleles, as determined by MPP analysis, at a total DNA input of 150 ng. The overall percent agreement between Sanger sequencing and the cobas test was 96.7% (negative percent agreement 97.5%; positive percent agreement 95.8%). Assay repeatability was 98% when tested with two operators, instruments, and reagent lots. In the external reproducibility study, the agreement was > 99% across all sites, all operators and all reagent lots for 11/12 tumors tested. Test

  4. Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin.

    Science.gov (United States)

    Lai, Duo; Jin, Xiaoyong; Wang, Hao; Yuan, Mei; Xu, Hanhong

    2014-09-20

    Azadirachtin is a botanical insecticide that affects various biological processes. The effects of azadirachtin on the digital gene expression profile and growth inhibition in Drosophila larvae have not been investigated. In this study, we applied high-throughput sequencing technology to detect the differentially expressed genes of Drosophila larvae regulated by azadirachtin. A total of 15,322 genes were detected, and 28 genes were found to be significantly regulated by azadirachtin. Biological process and pathway analysis showed that azadirachtin affected starch and sucrose metabolism, defense response, signal transduction, instar larval or pupal development, and chemosensory behavior processes. The genes regulated by azadirachtin were mainly enriched in starch and sucrose metabolism. This study provided a general digital gene expression profile of dysregulated genes in response to azadirachtin and showed that azadirachtin provoked potent growth inhibitory effects in Drosophila larvae by regulating the genes of cuticular protein, amylase, and odorant-binding protein. Finally, we propose a potential mechanism underlying the dysregulation of the insulin/insulin-like growth factor signaling pathway by azadirachtin. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Growth factors for treating diabetic foot ulcers

    DEFF Research Database (Denmark)

    Martí-Carvajal, Arturo J; Gluud, Christian; Nicola, Susana

    2015-01-01

    following treatment for diabetic foot ulcers (RR 0.64, 95% CI 0.14 to 2.94; P value 0.56, low quality of evidence)Although 11 trials reported time to complete healing of the foot ulcers in people with diabetes , meta-analysis was not possible for this outcome due to the unique comparisons within each trial...... (minimum of one toe), complete healing of the foot ulcer, and time to complete healing of the diabetic foot ulcer as the primary outcomes. DATA COLLECTION AND ANALYSIS: Independently, we selected randomised clinical trials, assessed risk of bias, and extracted data in duplicate. We estimated risk ratios......BACKGROUND: Foot ulcers are a major complication of diabetes mellitus, often leading to amputation. Growth factors derived from blood platelets, endothelium, or macrophages could potentially be an important treatment for these wounds but they may also confer risks. OBJECTIVES: To assess...

  6. Plasma rich in growth factors in dentistry

    Directory of Open Access Journals (Sweden)

    Ana Glavina

    2017-06-01

    Full Text Available Background Plasma rich in growth factors (PRGF has wider use in many fields of dentistry due to its endogenous biocompatible regenerative potential i.e., their potential to stimulate and accelerate tissue healing and bone regeneration. Aims This review shows the increasing use of PRGF technology in various fields of dentistry. Methods In the last nine years PubMed has been searched in order to find out published articles upon PRGF in dentistry and 36 papers have been included. Results PRGF technology has many advantages with positive clinical and biological outcomes in tissue healing and bone regeneration. Conclusion In order to determine the most effective therapeutic value for patients, further research is required.

  7. Aldosterone as a renal growth factor.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-04-05

    Aldosterone regulates blood pressure through its effects on the cardiovascular system and kidney. Aldosterone can also contribute to the development of hypertension that leads to chronic pathologies such as nephropathy and renal fibrosis. Aldosterone directly modulates renal cell proliferation and differentiation as part of normal kidney development. The stimulation of rapidly activated protein kinase cascades is one facet of how aldosterone regulates renal cell growth. These cascades may also contribute to myofibroblastic transformation and cell proliferation observed in pathological conditions of the kidney. Polycystic kidney disease is a genetic disorder that is accelerated by hypertension. EGFR-dependent proliferation of the renal epithelium is a factor in cyst development and trans-activation of EGFR is a key feature in initiating aldosterone-induced signalling cascades. Delineating the components of aldosterone-induced signalling cascades may identify novel therapeutic targets for proliferative diseases of the kidney.

  8. Overexpression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor Mediates Liver Fibrosis in Transgenic Mice.

    Science.gov (United States)

    Guo, Yongze; Ding, Qian; Chen, Lei; Ji, Chenguang; Hao, Huiyao; Wang, Jia; Qi, Wei; Xie, Xiaoli; Ma, Junji; Li, Aidi; Jiang, Xiaoyu; Li, Xiaotian; Jiang, Huiqing

    2017-08-01

    The role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver fibrosis is not clear and is sometimes even contradictory. To clarify this role, a HB-EGF transgenic (Tg) mouse model was, for the first time, used to evaluate the functions of HB-EGF in liver fibrosis. For the in vivo study, carbon tetrachloride injection and bile duct ligation treatment were used to induce liver fibrosis in HB-EGF Tg mice and wild-type (WT) mice, respectively. Primary hepatic satellite cells (HSCs) were isolated from HB-EGF Tg and WT mice for the in vitro study. Compared with the WT mice, HB-EGF Tg mice were shown to develop more severe liver fibrosis when treated with carbon tetrachloride or bile duct ligation, with increased matrix metalloproteinases 13 activity and enhanced expression of fibrogenic genes including α-smooth muscle actin and collagen I. HB-EGF gene transfer led to an increase in proliferation and a decrease in apoptosis in primary HSCs. The ERK signaling pathway was more highly activated in primary HSCs from HB-EGF Tg mice than in those from WT mice. Our investigation confirmed the profibrotic effect of HB-EGF on the liver using a Tg mouse model. This result may contribute to the elucidation of HB-EGF as a therapeutic target in liver fibrosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  9. Polymorphism of growth hormone gene and its association with ...

    African Journals Online (AJOL)

    sunny t

    2016-04-06

    Apr 6, 2016 ... recorded to be more frequent (83.3, 92.86 and 90%) than pattern II (16.7, 7.14 and 10%) in Barki,. Rahmani ... Key words: Sheep, wool, growth hormone (GH) gene, polymorphism, single strand conformation polymorphism. (SSCP). ... electrophoresis and chemical and ribonuclease cleavage,. SSCP has ...

  10. Factor-structure of economic growth in E-commerce

    Institute of Scientific and Technical Information of China (English)

    吴隽; 刘洪久; 栾天行

    2003-01-01

    In order to analyze the factors having effect on economic growth of E-commerce, the economic growthprocess of E-commerce is divided into three stages; growth stage, stabilization stage and re-growth stage. Thesethree different stages are analysed using several economic growth theories, a set of factor-structure is proposedfor each stage of the economic growth process of E-commerce.

  11. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions s...

  12. Effects of Phytosterol in Feed on Growth and Related Gene ...

    African Journals Online (AJOL)

    Results: The dietary phytosterol significantly improved (p < 0.05) the body weight and feed intake of ... developmental regulation of the activation of growth factor and nutrient components. Keywords: ..... Ubiquitin mediates cachexia muscle.

  13. Interdependence of cell growth and gene expression: origins and consequences.

    Science.gov (United States)

    Scott, Matthew; Gunderson, Carl W; Mateescu, Eduard M; Zhang, Zhongge; Hwa, Terence

    2010-11-19

    In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.

  14. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  15. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  16. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Tanu Talwar

    2014-01-01

    Full Text Available Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.

  17. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods.

    Science.gov (United States)

    Williams, Terri A; Nagy, Lisa M

    2017-05-01

    Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Diagnostic values of vascular endothelial growth factor and epidermal growth factor receptor for benign and malignant hydrothorax.

    Science.gov (United States)

    Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua

    2015-02-05

    Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity.

  19. Economic growth factors system: theoretical and methodological aspect

    OpenAIRE

    H.Ya. Hlukha

    2014-01-01

    The aim of the article. The main objective of the article is to create theoretical grounds to build the system of economic growth factors, to modernize their classification, to define exogenous and endogenous factors, to analyze them within the state economic policy structure. The results of the analysis. The article focuses on economic growth factors theoretical studies: - economic growth factors classification characteristics have been highlighted; - various approaches to determine...

  20. Anticancer effects of the engineered stem cells transduced with therapeutic genes via a selective tumor tropism caused by vascular endothelial growth factor toward HeLa cervical cancer cells.

    Science.gov (United States)

    Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul

    2013-10-01

    The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.

  1. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  2. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  3. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  4. The importance of neuronal growth factors in the ovary.

    Science.gov (United States)

    Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R

    2016-01-01

    The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society

  5. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  6. Nerve growth factor actions on the brain

    International Nuclear Information System (INIS)

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with [ 125 I]NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and [ 125 I]NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations

  7. Characterization of MORE AXILLARY GROWTH genes in Populus.

    Directory of Open Access Journals (Sweden)

    Olaf Czarnecki

    Full Text Available Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1, MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.

  8. [Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].

    Science.gov (United States)

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2017-01-01

    In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.

  9. Gene Expression and Polymorphism of Myostatin Gene and its Association with Growth Traits in Chicken.

    Science.gov (United States)

    Dushyanth, K; Bhattacharya, T K; Shukla, R; Chatterjee, R N; Sitaramamma, T; Paswan, C; Guru Vishnu, P

    2016-10-01

    Myostatin is a member of TGF-β super family and is directly involved in regulation of body growth through limiting muscular growth. A study was carried out in three chicken lines to identify the polymorphism in the coding region of the myostatin gene through SSCP and DNA sequencing. A total of 12 haplotypes were observed in myostatin coding region of chicken. Significant associations between haplogroups with body weight at day 1, 14, 28, and 42 days, and carcass traits at 42 days were observed across the lines. It is concluded that the coding region of myostatin gene was polymorphic, with varied levels of expression among lines and had significant effects on growth traits. The expression of MSTN gene varied during embryonic and post hatch development stage.

  10. Radiotherapy and receptor of epidermal growth factor

    International Nuclear Information System (INIS)

    Deberne, M.

    2009-01-01

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  11. Expression of β-nerve growth factor and homeobox A10 in experimental cryptorchidism treated with exogenous nerve growth factor.

    Science.gov (United States)

    Xian, Hua; Xian, Yun; Liu, Lili; Wang, Yongjun; He, Jianghong; Huang, Jianfei

    2015-04-01

    With the exception of standard inguinal orchidopexy, treatment of cryptorchidism with human chorionic gonadotropin has been performed for several years; however, its side effects have limited its application. The β‑nerve growth factor (NGF) and homeobox A10 (HoxA10) genes are closely associated with the development of the testes. To the best of our knowledge, whether exogenous NGF alters the endogenous levels of NGF and HoxA10 in cryptorchidism in rats remains to be elucidated. The aim of the present study was to evaluate the gene and protein expression of NGF and HoxA10 in experimental cryptorchidism following treatment with exogenous NGF. A unilateral mechanical cryptorchidism model in Sprague-Dawley rats was established and different concentrations of exogenous NGF were administered to observe the effects of NGF on cryptorchidism. Changes in the gene and protein expression levels of NGF and HoxA10 in the cryptorchid tissues of each group were identified using one step reverse transcription-quantitative polymerase chain reaction, in situ hybridization with digoxigenin‑labeled‑β‑NGF RNA probes, immunofluorescence and immunohistochemistry, respectively. The expression levels of NGF and HoxA10 were markedly higher in the group treated with a high dose of exogenous NGF compared with the group treated with a low dose of exogenous NGF and the group treated with human chorionic gonadotropin. These results confirmed the potential therapeutic effect of exogenous NGF in human cryptorchidism.

  12. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    Full Text Available Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.

  13. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  14. Physiological Actions of Fibroblast Growth Factor-23

    Directory of Open Access Journals (Sweden)

    Reinhold G. Erben

    2018-05-01

    Full Text Available Fibroblast growth factor-23 (FGF23 is a bone-derived hormone suppressing phosphate reabsorption and vitamin D hormone synthesis in the kidney. At physiological concentrations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho-dependent, because high-affinity binding of FGF23 to FGF receptors requires the presence of the co-receptor αKlotho on target cells. It is well established that excessive concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with normal kidney function. Based on the importance of diseases associated with gain of FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large body of literature has focused on the pathophysiological consequences of FGF23 excess. Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, during recent years, lessons we have learned from loss-of-function models have shown that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase expression and of apical membrane expression of sodium-phosphate co-transporters in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in the bone microenvironment. At present, there is little evidence for a physiological role of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to highlight the current knowledge about the complex physiological functions of FGF23.

  15. The Optimal Level and Impact of Internal Factors on Growth

    OpenAIRE

    Li, Kui-Wai

    2011-01-01

    This paper empirically uses data from the world economy to show that performance of domestic factors are equally important to external factors when comes to growth. Various external and domestic factors are used to construct two separate indices and the principal component method is applied in the analysis. The empirical results show that given a different level of performance in the economy’s external factors, a higher performance in the internal factors will produce a higher growth rate....

  16. Factors influencing graphene growth on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, E; Bartelt, N C; McCarty, K F [Sandia National Laboratories, Livermore, CA (United States); Feibelman, P J [Sandia National Laboratories, Albuquerque, NM (United States)], E-mail: mccarty@sandia.gov

    2009-06-15

    Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces.

  17. POLYMORPHISMS OF GROWTH HORMONE GENE IN HARINGHATA BLACK CHICKEN

    Directory of Open Access Journals (Sweden)

    R. Saikhom

    2017-06-01

    Full Text Available The present study was carried out with an aim to investigate the genetic variability of growth hormone gene in Haringhata Black chicken. Blood samples were collected from 82 experimental birds and genomic DNA was extracted using the modified high salt method. Amplification of specific DNA fragment of intron 4 of growth hormone gene yielded a product size of 713 bp and was analyzed for polymorphism using PCR-SSCP technique. The banding pattern of present investigation revealed two SSCP variants AA and BB genotype in all experimental birds. In the analysed flock of Haringhata Black Chicken, the genotype frequencies were found to be 0.915 for AA and 0.085 for BB genotype. The frequencies of A and B alleles were 0.915 and 0.085 respectively which indicated A allele was predominant in the studied Haringhata Black Chicken population of the farm. The Chi Square Test revealed that studied population was not in accordance with Hardy Weinberg equilibrium with respect to intron 4 of Growth hormone gene.

  18. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  19. Production Of Some Virulence Factors Under Different Growth ...

    African Journals Online (AJOL)

    Production Of Some Virulence Factors Under Different Growth Conditions And Antibiotic Susceptibility Pattern Of ... Animal Research International ... Keywords: Virulence, Haemolytic activity, Susceptibility, Antibiotics, Aeromonas hydrophila

  20. Cardiac Regeneration using Growth Factors: Advances and Challenges.

    Science.gov (United States)

    Rebouças, Juliana de Souza; Santos-Magalhães, Nereide Stela; Formiga, Fabio Rocha

    2016-09-01

    Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. Resumo O infarto do miocárdio representa a manifestação mais significativa da cardiopatia isquêmica e está associado a elevada morbimortalidade. Novas estratégias vêm sendo investigadas com o intuito de regenerar o miocárdio lesionado, incluindo a terapia gênica, a terapia celular e a utilização de fatores de crescimento. A terapia com fatores de crescimento despertou interesse em medicina cardiovascular, devido aos mecanismos de regeneração induzidos por essas biomoléculas, incluindo angiogênese, remodelamento da matriz extracelular, proliferação de cardiomiócitos e recrutamento de células-tronco, dentre outros. Em conjunto, tais mecanismos promovem a reparação do miocárdio e a melhora da função cardíaca. Esta revisão pretende abordar o papel estratégico da terapia, com fatores de crescimento, para a regeneração cardíaca, considerando seu car

  1. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  2. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  3. Growth factors regulate glutamine synthetase activity in ...

    African Journals Online (AJOL)

    Khaled

    2012-07-10

    Jul 10, 2012 ... glutamate and ammonia, which in turn, cells are supplied with ammonia ... out to determine the maximum growth time at which cells will be .... Western blot technique for detection the glutamine synthetase enzyme. Lane 1;.

  4. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    LENUS (Irish Health Repository)

    Sands, Michelle

    2011-01-25

    Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or potentiate the

  5. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    Directory of Open Access Journals (Sweden)

    McLoughlin Paul

    2011-01-01

    Full Text Available Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2 or hypoxia (10% O2 for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA, VEGFB, placenta growth factor (PlGF, VEGF receptor 1 (VEGFR1 and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or

  6. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... Vascular endothelial growth factor (VEGF), a well known angiogenic factor, has been shown to have direct and/or ... Endogenous repair efforts fail to repair ... Spinal cord injury model preparation and intramedullary spinal.

  7. Molecular characterization of transforming growth factor-beta3

    NARCIS (Netherlands)

    Dijke, ten P.

    1991-01-01

    Normal tissue homeostasis is controlled by a critical balance of positive and negative modulators. Chapter 2 gives an overview of the molecular aspects of growth control, in particular the role of growth factors and oncogene and anti-oncogene products. Uncontrolled growth of cancer cells

  8. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  9. Gene transposition causing natural variation for growth in Arabidopsis thaliana.

    Science.gov (United States)

    Vlad, Daniela; Rappaport, Fabrice; Simon, Matthieu; Loudet, Olivier

    2010-05-13

    A major challenge in biology is to identify molecular polymorphisms responsible for variation in complex traits of evolutionary and agricultural interest. Using the advantages of Arabidopsis thaliana as a model species, we sought to identify new genes and genetic mechanisms underlying natural variation for shoot growth using quantitative genetic strategies. More quantitative trait loci (QTL) still need be resolved to draw a general picture as to how and where in the pathways adaptation is shaping natural variation and the type of molecular variation involved. Phenotypic variation for shoot growth in the Bur-0 x Col-0 recombinant inbred line set was decomposed into several QTLs. Nearly-isogenic lines generated from the residual heterozygosity segregating among lines revealed an even more complex picture, with major variation controlled by opposite linked loci and masked by the segregation bias due to the defective phenotype of SG3 (Shoot Growth-3), as well as epistasis with SG3i (SG3-interactor). Using principally a fine-mapping strategy, we have identified the underlying gene causing phenotypic variation at SG3: At4g30720 codes for a new chloroplast-located protein essential to ensure a correct electron flow through the photosynthetic chain and, hence, photosynthesis efficiency and normal growth. The SG3/SG3i interaction is the result of a structural polymorphism originating from the duplication of the gene followed by divergent paralogue's loss between parental accessions. Species-wide, our results illustrate the very dynamic rate of duplication/transposition, even over short periods of time, resulting in several divergent--but still functional-combinations of alleles fixed in different backgrounds. In predominantly selfing species like Arabidopsis, this variation remains hidden in wild populations but is potentially revealed when divergent individuals outcross. This work highlights the need for improved tools and algorithms to resolve structural variation

  10. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    Science.gov (United States)

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein

    DEFF Research Database (Denmark)

    Runge, Steffen; Nielsen, Finn Cilius; Nielsen, Jacob

    2000-01-01

    H19 RNA is a major oncofetal 2.5-kilobase untranslated RNA of unknown function. The maternally expressed H19 gene is located 90 kilobase pairs downstream from the paternally expressed insulin-like growth factor II (IGF-II) gene on human chromosome 11 and mouse chromosome 7; and due to their recip......H19 RNA is a major oncofetal 2.5-kilobase untranslated RNA of unknown function. The maternally expressed H19 gene is located 90 kilobase pairs downstream from the paternally expressed insulin-like growth factor II (IGF-II) gene on human chromosome 11 and mouse chromosome 7; and due...

  12. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  13. Insulin-like growth factor 2

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Hyttel, Poul; Rasmussen, Mikkel Aabech

    2014-01-01

    Intrinsic defects within the embryos, reflected by elevated cell death and low proliferative ability, are considered the most critical factors associated with bovine infertility. The identification of embryonic factors, which are responsible for successful embryo development, is thus critical...

  14. Gender Factors and Inclusive Economic Growth: The Silent Revolution

    Directory of Open Access Journals (Sweden)

    Laura Cabeza-García

    2018-01-01

    Full Text Available The gender factors that trigger economic growth in both high- and low-income countries were investigated in this study. To address these gender factors, four characteristic dimensions of gender inclusion were considered: education, access to the labor market, fertility, and democracy. The relationship between economic growth and gender factors was analyzed in a sample of 127 countries. Value and robustness were added to the results using dynamic models applied to panel data while accounting for endogeneity. We conclude that high fertility in women has negative effects on economic growth. However, when women have greater access to secondary education and the labor market in conditions of equality, the effects are positive. Similarly, the access of women to active political participation has significant effects on economic growth. Overall, this study helps identify which gender factors may promote inclusive economic growth, which is economic growth achieved when both men and women are incorporated in equal conditions.

  15. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor beta induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  16. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  17. Vascular endothelial growth factors and angiogenesis in eye disease

    NARCIS (Netherlands)

    Witmer, A. N.; Vrensen, G. F. J. M.; van Noorden, C. J. F.; Schlingemann, R. O.

    2003-01-01

    The vascular endothelial growth factor (VEGF) family of growth factors controls pathological angiogenesis and increased vascular permeability in important eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The purpose of this review is to develop new insights

  18. Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer

    NARCIS (Netherlands)

    Meijer, Danielle; Sieuwerts, Anieta M.; Look, Maxime P.; van Agthoven, Ton; Foekens, John A.; Dorssers, Lambert C. J.

    2008-01-01

    Tamoxifen treatment of estrogen-dependent breast cancer ultimately loses its effectiveness due to the development of resistance. From a functional screen for identifying genes responsible for tamoxifen resistance in human ZR-75-1 breast cancer cells, fibroblast growth factor (FGF) 17 was recovered.

  19. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    Directory of Open Access Journals (Sweden)

    Angela Wang

    2016-12-01

    Full Text Available Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark, orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

  20. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    Science.gov (United States)

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  1. Associations of polymorphisms in the cytokine genes IL1β (rs16944), IL6 (rs1800795), IL12b (rs3212227) and growth factor VEGFA (rs2010963) with anthracosilicosis in coal miners in Russia and related genotoxic effects.

    Science.gov (United States)

    Volobaev, Valentin P; Larionov, Aleksey V; Kalyuzhnaya, Ekaterina E; Serdyukova, Ekaterina S; Yakovleva, Svetlana; Druzhinin, Vladimir G; Babich, Olga O; Hill, Elena G; Semenihin, Victor A; Panev, Nikolay I; Minina, Varvara I; Sivanesan, Saravana Devi; Naoghare, Pravin; da Silva, Juliana; Barcelos, Gustavo R M; Prosekov, Alexander Y

    2018-04-13

    Anthracosilicosis (AS), a prevalent form of pneumoconiosis among coal miners, results from the accumulation of carbon and silica in the lungs from inhaled coal dust. This study investigated genotoxic effects and certain cytokine genes polymorphic variants in Russian coal miners with АS. Peripheral leukocytes were sampled from 129 patients with AS confirmed by X-ray and tissue biopsy and from 164 asymptomatic coal miners. Four single-nucleotide polymorphisms were genotyped in the extracted DNA samples: IL1β T-511C (rs16944), IL6 C-174G (rs1800795), IL12b A1188C (rs3212227) and VEGFA C634G (rs2010963). Genotoxic effects were assessed by the analysis of chromosome aberrations in cultured peripheral lymphocytes. The mean frequency of chromatid-type aberrations and chromosome-type aberrations, namely, chromatid-type breaks and dicentric chromosomes, was found to be higher in AS patients [3.70 (95% confidence interval {CI}, 3.29-4.10) and 0.28 (95% CI, 0.17-0.38)] compared to the control group [2.41 (95% CI, 2.00-2.82) and 0.09 (95% CI, 0.03-0.15)], respectively. IL1β gene T/T genotype (rs16944) was associated with AS [17.83% in AS patients against 4.35% in healthy donors, odds ratio = 4.77 (1.88-12.15), P < 0.01]. A significant increase in the level of certain chromosome interchanges among AS donors is of interest because such effects are typical for radiation damage and caused by acute oxidative stress. IL1β T allele probably may be considered as an AS susceptibility factor among coal miners.

  2. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica

    2010-01-01

    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...

  3. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    Science.gov (United States)

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  4. Nerve growth factor expression by PLG-mediated lipofection.

    Science.gov (United States)

    Whittlesey, Kevin J; Shea, Lonnie D

    2006-04-01

    Biomaterials capable of efficient gene delivery provide a fundamental tool for basic and applied research models, such as promoting neural regeneration. We developed a system for the encapsulation and sustained release of plasmid DNA complexed with a cationic lipid and investigated their efficacy using in vitro models of neurite outgrowth. Sustained lipoplex release was obtained for up to 50 days, with rates controlled by the fabrication conditions. Released lipoplexes retained their activity, transfecting 48.2+/-8.3% of NIH3T3 cells with luciferase activity of 3.97x10(7)RLU/mg. Expression of nerve growth factor (NGF) was employed in two models of neurite outgrowth: PC12 and primary dorsal root ganglia (DRG) co-culture. Polymer-mediated lipofection of PC12 produced bioactive NGF, eliciting robust neurite outgrowth. An EGFP/NGF dual-expression vector identified transfected cells (GFP-positive) while neurite outgrowth verified NGF secretion. A co-culture model examined the ability of NGF secretion by an accessory cell population to stimulate DRG neurite outgrowth. Polymer-mediated transfection of HEK293T with an NGF-encoding plasmid induced outgrowth by DRG neurons. This system could be fabricated as implants or nerve guidance conduits to support cellular and tissue regeneration. Combining this physical support with the ability to locally express neurotrophic factors will potentiate regeneration in nerve injury and disease models.

  5. Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease.

    Science.gov (United States)

    Klar, Joakim; Blomstrand, Peter; Brunmark, Charlott; Badhai, Jitendra; Håkansson, Hanna Falk; Brange, Charlotte Sollie; Bergendal, Birgitta; Dahl, Niklas

    2011-10-01

    Genetic factors influencing lung function may predispose to chronic obstructive pulmonary disease (COPD). The fibroblast growth factor 10 (FGF10) signalling pathway is critical for lung development and lung epithelial renewal. The hypothesis behind this study was that constitutive FGF10 insufficiency may lead to pulmonary disorder. Therefore investigation of the pulmonary functions of patients heterozygous for loss of function mutations in the FGF10 gene was performed. The spirometric measures of lung function from patients and non-carrier siblings were compared and both groups were related to matched reference data for normal human lung function. The patients show a significant decrease in lung function parameters when compared to control values. The average FEV1/IVC quota (FEV1%) for the patients is 0.65 (80% of predicted) and reversibility test using Terbutalin resulted in a 3.7% increase in FEV1. Patients with FGF10 haploinsufficiency have lung function parameters indicating COPD. A modest response to Terbutalin confirms an irreversible obstructive lung disease. These findings support the idea that genetic variants affecting the FGF10 signalling pathway are important determinants of lung function that may ultimately contribute to COPD. Specifically, the results show that FGF10 haploinsufficiency affects lung function measures providing a model for a dosage sensitive effect of FGF10 in the development of COPD.

  6. Growth factors II: insuline-like growth binging proteins (GFBPs Factores de crecimiento II: factores insulinoides de crecimiento

    Directory of Open Access Journals (Sweden)

    Hilda Norha Jaramillo Londoño

    1996-03-01

    Full Text Available This review summarizes recent knowledge concerning Insulin.like growth factors I and II, with emphasis on their biochemical structure, concentrations, binding proteins, receptors, mechanisms of action, biological effects, and alterations of their concentrations in biological fluids. Se revisan los Factores Insulinoides de Crecimiento, también denominados ";Factores de Crecimiento Similares a la Insulina";, sobre los cuales se dispone de abundante información. Se sintetizan conocimientos recientes sobre dichos factores con énfasis en los siguientes aspectos: estructura bioquímica, concentraciones y sus cambios en los líquidos biológicos, proteínas fijadoras, receptores, mecanismos de acción y efectos biológicos.

  7. Connective tissue growth factor is a substrate of ADAM28

    International Nuclear Information System (INIS)

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-01-01

    Research highlights: → The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. → ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF 165 complex. → CTGF digestion by ADAM28 releases biologically active VEGF 165 from the complex. → ADAM28, CTGF and VEGF 165 are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. → These suggest that ADAM28 promotes VEGF 165 -induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF 165 complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala 181 -Tyr 182 and Asp 191 -Pro 192 bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor 165 (VEGF 165 ), releasing biologically active VEGF 165 from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF 165 -induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF 165 complex.

  8. Kidney gene expression analysis in a rat model of intrauterine growth restriction reveals massive alterations of coagulation genes.

    Science.gov (United States)

    Buffat, Christophe; Boubred, Farid; Mondon, Françoise; Chelbi, Sonia T; Feuerstein, Jean-Marc; Lelièvre-Pégorier, Martine; Vaiman, Daniel; Simeoni, Umberto

    2007-11-01

    In this study, low birth weight was induced in rats by feeding the dams with a low-protein diet during pregnancy. Kidneys from the fetuses at the end of gestation were collected and showed a reduction in overall and relative weight, in parallel with other tissues (heart and liver). This reduction was associated with a reduction in nephrons number. To better understand the molecular basis of this observation, a transcriptome analysis contrasting kidneys from control and protein-deprived rats was performed, using a platform based upon long isothermic oligonucleotides, strengthening the robustness of the results. We could identify over 1800 transcripts modified more than twice (772 induced and 1040 repressed). Genes of either category were automatically classified according to functional criteria, making it possible to bring to light a large cluster of genes involved in coagulation and complement cascades. The promoters of the most induced and most repressed genes were contrasted for their composition in putative transcription factor binding sites, suggesting an overrepresentation of the AP1R binding site, together with the transcription induction of factors actually binding to this site in the set of induced genes. The induction of coagulation cascades in the kidney of low-birth-weight rats provides a putative rationale for explaining thrombo-endothelial disorders also observed in intrauterine growth-restricted human newborns. These alterations in the kidneys have been reported as a probable cause for cardiovascular diseases in the adult.

  9. Epidermal growth factor in mammary glands and milk from rats

    DEFF Research Database (Denmark)

    Thulesen, J; Raaberg, Lasse; Nexø, Ebba

    1993-01-01

    Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF-immunoreact......Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF...

  10. Placental growth factor expression is reversed by antivascular endothelial growth factor therapy under hypoxic conditions.

    Science.gov (United States)

    Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin

    2014-08-01

    Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.

  11. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    Science.gov (United States)

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  12. Gene structure and functional characterization of growth hormone in dogfish, Squalus acanthias.

    Science.gov (United States)

    Moriyama, Shunsuke; Oda, Mayumi; Yamazaki, Tomohide; Yamaguchi, Kiyoko; Amiya, Noriko; Takahashi, Akiyoshi; Amano, Masafumi; Goto, Tomoaki; Nozaki, Masumi; Meguro, Hiroshi; Kawauchi, Hiroshi

    2008-06-01

    Dogfish (Squalus acanthias) growth hormone (GH) was identified by cDNA cloning and protein purification from the pituitary gland. Dogfish GH cDNA encoded a prehormone of 210 amino acids (aa). Sequence analysis of purified GH revealed that the prehormone is composed of a signal peptide of 27 aa and a mature protein of 183 aa. Dogfish GH showed 94% sequence identity with blue shark GH, and also showed 37-66%, 26%, and 48-67% sequence identity with GH from osteichtyes, an agnathan, and tetrapods. The site of production was identified through immunocytochemistry to be cells of the proximal pars distalis of the pituitary gland. Dogfish GH stimulates both insulin-like growth factor-I and II mRNA levels in dogfish liver in vitro. The dogfish GH gene consisted of five exons and four introns, the same as in lamprey, teleosts such as cypriniforms and siluriforms, and tetrapods. The 5'-flanking region within 1082 bp of the transcription start site contained consensus sequences for the TATA box, Pit-1/GHF-1, CRE, TRE, and ERE. These results show that the endocrine mechanism for growth stimulation by the GH-IGF axis was established at an early stage of vertebrate evolution, and that the 5-exon-type gene organization might reflect the structure of the ancestral gene for the GH gene family.

  13. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  14. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  15. Maternal uterine artery VEGF gene therapy for treatment of intrauterine growth restriction.

    Science.gov (United States)

    David, Anna L

    2017-11-01

    Intrauterine growth restriction (IUGR) is a serious pregnancy complication affecting approximately 8% of all pregnancies. The aetiology is believed to be insufficient maternal uteroplacental perfusion which prevents adequate nutrient and oxygen availability for the fetus. There is no treatment that can improve uteroplacental perfusion and thereby increase fetal growth in the uterus. Maternal uterine artery gene therapy presents a promising treatment strategy for IUGR, with the use of adenoviral vectors encoding for proteins such as Vascular Endothelial Growth Factor (VEGF) demonstrating improvements in fetal growth and neonatal outcome in preclinical studies. Mechanistically, maternal VEGF gene therapy delivered to the uterine arteries increases uterine blood flow and enhances vascular relaxation short term, while reducing vascular contractility long term. It also leads to vascular remodeling with increased endothelial cell proliferation in the perivascular adventitia of uterine arteries. Safety assessments suggest no vector spread to the fetus and no adverse risk to the mother or fetus; a clinical trial is in development. This article assesses research into VEGF maternal uterine artery directed gene therapy for IUGR, investigating the use of transgenes and vectors, their route of administration in obstetrics, and the steps that will be needed to take this treatment modality into the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The sheep growth hormone gene polymorphism and its effects on milk traits.

    Science.gov (United States)

    Dettori, Maria Luisa; Pazzola, Michele; Pira, Emanuela; Paschino, Pietro; Vacca, Giuseppe Massimo

    2015-05-01

    Growth hormone (GH) is encoded by the GH gene, which may be single copy or duplicate in sheep. The two copies of the sheep GH gene (GH1/GH2-N and GH2-Z) were entirely sequenced in one 106 ewes of Sarda breed, in order to highlight sequence polymorphisms and investigate possible association between genetic variants and milk traits. Milk traits included milk yield, fat, protein, casein and lactose percentage. We evidenced 75 nucleotide changes. Transcription factor binding site prediction revealed two sequences potentially recognised by the pituitary-specific transcription factor POU1FI at the GH1/GH2-N gene, which were lost at the promoter of GH2-Z, which might explain the different tissues of expression of GH1/GH2-N (pituitary) and GH2-Z (placenta). Significant differences in milk traits were observed among genotypes at polymorphic loci only for the GH2-Z gene. Sheep with homozygote genotype ss748770547 CC had higher fat percentage (P < 0.01) than TT. SNP ss748770547 was part of a potential transcription factor binding site for C/EBP alpha (CCAAT/Enhancer Binding Protein), which is involved in the regulation of adipogenesis and adipoblast differentiation. SNP ss748770547, located in the GH2-Z gene 5' flanking region, may be a causal mutation affecting milk fat content. These findings might contribute to the knowledge of the sheep GH locus and might be useful in selection processes in sheep.

  17. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-β responsiveness

    International Nuclear Information System (INIS)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.; Varga, John

    2008-01-01

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-β (TGF-β) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-β, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-β. To explore this notion, we characterized TGF-β-induced activation of fibroblasts from CCN2-null (CCN2 -/- ) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-β signal transduction and regulation of collagen gene expression were examined in CCN2 -/- MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2 -/- MEFs was markedly reduced compared to wild type MEFs, TGF-β-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2 -/- MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-β-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts

  18. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis

    OpenAIRE

    Nagai, Toshihiro; Sato, Masato; Kobayashi, Miyuki; Yokoyama, Munetaka; Tani, Yoshiki; Mochida, Joji

    2014-01-01

    Introduction Angiogenesis is an important factor in the development of osteoarthritis (OA). We investigated the efficacy of bevacizumab, an antibody against vascular endothelial growth factor and an inhibitor of angiogenesis, in the treatment of OA using a rabbit model of anterior cruciate ligament transection. Methods First, we evaluated the response of gene expression and histology of the normal joint to bevacizumab treatment. Next, in a rabbit model of OA induced by anterior cruciate ligam...

  19. Growth factor combination for chondrogenic induction from human mesenchymal stem cell

    International Nuclear Information System (INIS)

    Indrawattana, Nitaya; Chen Guoping; Tadokoro, Mika; Shann, Linzi H.; Ohgushi, Hajime; Tateishi, Tetsuya; Tanaka, Junzo; Bunyaratvej, Ahnond

    2004-01-01

    During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-β3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-β3 and BMP-6 or TGF-β3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction

  20. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    such as ischemic heart disease, arthritis and tumor growth. Angiogenesis is a complex process with several growth factors involved. Because PlGF modulates VEGF-A responses, we investigated their mutual relationship and impact on breast cancer prognosis. Quantitative PlGF and VEGF-A levels were measured in 229...... tumor tissue specimen from primarily operated patients with unilateral breast cancer. Non-malignant breast tissue was also dissected near the tumor and quantitative measurements were available for 211 patients. PlGF and VEGF-A protein levels in homogenized tissue lysates were analyzed using the Luminex......Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions...

  1. Effects of Growth Hormone Gene Polymorphism on Lipogenic Gene Expression Levels in Diaphragm Tissues of Japanese Black Heifers

    Directory of Open Access Journals (Sweden)

    Astrid Ardiyanti

    2012-08-01

    Full Text Available Two SNPs, i.e. L127V and T172M, of bovine growth hormone (GH causing the presence of GH gene haplotypes A, B, and C was previously shown to alter intramuscular fatty acid (FA composition in Japanese Black (JB heifers. To determine the SNP effect on somatotropic hormone concentration and lipogenesis, we measured plasma GH, insulin, and insulin-like growth factor-1 (IGF-1 concentrations. We also measured mRNA levels of fatty acid synthase (FASN, stearoyl-coA desaturase (SCD, and sterol regulatory element binding proteins-1 (SREBP-1 and FA composition in diaphragm tissues. Heifers with genotype CC had the lowest plasma insulin concentration and FASN and SCD mRNA levels among genotypes. FASN mRNA levels in haplotype A tended to positively correlate with saturated FA (SFA content and negatively correlated with C18:2 and unsaturated FA (USFA contents. SCD mRNA levels in haplotype A positively correlated with monounsaturated FA (MUFA contents and negatively correlated with C18:0 content. They also tended to positively correlate with C16:1, C18:1, and USFA contents and USFA/SFA ratio and negatively correlate with SFA content. Taken together, GH gene polymorphism affects the lipogenic genes expression levels and their relationships with fatty acid compositions in diaphragm tissues of JB heifers at 31 months of age.

  2. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  3. Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky

    Directory of Open Access Journals (Sweden)

    Changxu Tian

    2014-04-01

    Full Text Available Growth hormone (GH has been considered as a candidate gene for growth traits in fish. In this study, polymorphisms of the GH gene were evaluated for associations with growth traits in 282 Siniperca chuatsi individuals. Using directly sequencing, four single nucleotide polymorphisms (SNPs were identified in GH gene, with two mutations in intron 4 (g.4940A>C, g.4948A>T, one mutation in exon 5 (g.5045T>C and one in intron 5 (g.5234T>G. Notably, three of them were significantly associated with growth performance, particularly for g.4940A>C which was highly correlated with all the four growth traits. In conclusion, our results demonstrated that these SNPs in GH gene could influence growth performance of S.chuatsi and could be used for marker-assisted selection (MAS in this species.

  4. Improvement of livestock breeding strategies using physiologic and functional genomic information of the muscle regulatory factors gene family for skeletal muscle development

    NARCIS (Netherlands)

    Pas, te M.F.W.; Soumillon, A.

    2001-01-01

    A defined number of skeletal muscle fibers are formed in two separate waves during prenatal development, while postnatal growth is restricted to hypertrophic muscle fiber growth. The genes of the MRF (muscle regulatory factors) gene family, consisting of 4 structurally related transcription factors

  5. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    Science.gov (United States)

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. An immunologic approach to induction of epidermal growth factor deficiency

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) in pharmacologic doses is able to induce growth and development in the fetus and the newborn. To investigate the opposite situation, the effects of insufficient amounts of EGF during development, we wanted to establish an in vivo model with a state of EGF deficiency....

  8. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  9. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, TB

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling

  10. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  11. [Associated factors in newborns with intrauterine growth retardation].

    Science.gov (United States)

    Thompson-Chagoyán, Oscar C; Vega-Franco, Leopoldo

    2008-01-01

    To identify the risk factors implicated in the intrauterine growth retardation (IUGR) of neonates born in a social security institution. Case controls design study in 376 neonates: 188 with IUGR (weight RCIU in the population.

  12. The effect of vascular endothelial growth factor-1 expression on ...

    African Journals Online (AJOL)

    Riyad Bendardaf

    2017-02-28

    Feb 28, 2017 ... The effect of vascular endothelial growth factor-1 expression on survival of ... Sharjah, Sharjah, United Arab Emirates; cFaculty of Medicine, Suez Canal University, ..... interleukin-6, and C-reactive protein level in colorectal.

  13. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... was quantified by means of western blot and immunohistochemistry technology. ... Key words: Vascular endothelial growth factor (VEGF), spinal cord injury, ... accordance with the National Institute of Health Guide for the Care.

  14. Transient expression of acidic fibroblast growth factor in pea (Pisum ...

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... a 100 W, long-wave UV lamp (Black Ray model B-100 AP; Ultra- ... frequency) was used to estimate the treatment efficiency during 15 days post .... Crystal structure of fibroblast growth factor receptor ectodomain bound to.

  15. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  16. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  17. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  18. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset.

    Science.gov (United States)

    Yuan, Haiming; Huang, Linhuan; Hu, Xizi; Li, Qian; Sun, Xiaofang; Xie, Yingjun; Kong, Shu; Wang, Xiaoman

    2016-07-02

    Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects.

  19. Factors that determine the evolution of high-growth businesses

    Directory of Open Access Journals (Sweden)

    Oriol Amat

    2013-09-01

    Full Text Available Objective: The study herein discusses research aimed at elucidating the factors that contribute to a business’ ability to maintain high growth. Design/Methodology/Perspective: The database from the Iberian Balance Sheet Analysis System (SABI, from its initials in Spanish was used to identify 250 industrial Catalonian businesses with high growth during 2004-2007. These companies participated in a survey on strategies and management practices; in 2013, they were re-analyzed to investigate the factors that contributed to continued growth for certain companies. Contributions: Through diverse statistical techniques, business policies related to quality, innovation, internationalization and finance were shown to influence business growth and sustainability over time. Limitations of the Research: This study focuses on industrial businesses at least ten years old in Catalonia; thus, the conclusions may differ in other geographic locations and economic sectors, as well as for smaller businesses. Practical Implications: Because growth is a measure of business success, identifying variables that contribute to high growth and its sustainability is helpful for businesses that seek to adopt effective policies. Social Implications: Generating employment is one of the primary contributions by high-growth businesses. For years with high unemployment, authorities may be interested in corporate policies that strengthen high-growth businesses. Originality/Added Value: High-growth businesses have been studied throughout the world, but this is the first study to investigate the evolution of businesses after a high-growth phase.

  20. The Prognostic Value of Haplotypes in the Vascular Endothelial Growth Factor

    DEFF Research Database (Denmark)

    Hansen, Torben Frøstrup; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund

    2010-01-01

    Abstract: New prognostic markers in patients with colorectal cancer (CRC) are a prerequisite for individualized treatment. Prognostic importance of single nucleotide polymorphisms (SNPs) in the vascular endothelial growth factor A (VEGF-A) gene has been proposed. The objective of the present study...... using the PHASE program. The prognostic influence was evaluated using Kaplan-Meir plots and log rank tests. Cox regression method was used to analyze the independent prognostic importance of different markers. All three SNPs were significantly related to survival. A haplotype combination, responsible...... findings in a second and independent cohort. Haplotype combinations call for further investigation. Keywords: colorectal neoplasm; single nucleotide polymorphisms; haplotypes; vascular endothelial growth factor A; survival...

  1. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  2. Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

    Directory of Open Access Journals (Sweden)

    Mohsen Azimi-Nezhad

    2014-05-01

    Full Text Available Vascular endothelial growth factor (VEGF is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T lymphocytes and macrophages. Six VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene, consisting of 121, 145, 165, 183, 189, or 206 amino acids. VEGF121, VEGF145, and VEGF165 are secreted whereas VEGF183, VEGF189, and VEGF206 are cell membrane-bound. VEGF145 has a key role during the vascularization of the human ovarian follicle and corpus luteum, in the placentation and embryonic periods, and in bone and wound healing, while VEGF165 is the most abundant and biologically active isoform. VEGF has been linked with a number of vascular pathologies including cardiovascular diseases such ischemic heart disease, heart failure, stroke, and diabetes and its related complications. In this review we aimed to present some important roles of VEGF in a number of clinical issues and indicate its involvement in several phenomena from the initial steps of the embryonic period to cardiovascular diseases.

  3. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  4. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma

    NARCIS (Netherlands)

    Fieten, H; Spee, B; Ijzer, J; Kik, M J; Penning, L C; Kirpensteijn, J

    Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is

  6. Quantification of human epidermal growth factor receptor 2 immunohistochemistry using the Ventana Image Analysis System: correlation with gene amplification by fluorescence in situ hybridization: the importance of instrument validation for achieving high (>95%) concordance rate.

    Science.gov (United States)

    Dennis, Jake; Parsa, Rezvaneh; Chau, Donnie; Koduru, Prasad; Peng, Yan; Fang, Yisheng; Sarode, Venetia Rumnong

    2015-05-01

    The use of computer-based image analysis for scoring human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) has gained a lot of interest recently. We investigated the performance of the Ventana Image Analysis System (VIAS) in HER2 quantification by IHC and its correlation with fluorescence in situ hybridization (FISH). We specifically compared the 3+ IHC results using the manufacturer's machine score cutoffs versus laboratory-defined cutoffs with the FISH assay. Using the manufacturer's 3+ cutoff (VIAS score; 2.51 to 3.5), 181/536 (33.7%) were scored 3+, and FISH was positive in 147/181 (81.2%), 2 (1.1%) were equivocal, and 32 (17.6%) were FISH (-). Using the laboratory-defined 3+ cutoff (VIAS score 3.5), 52 (28.7%) cases were downgraded to 2+, of which 29 (55.7%) were FISH (-), and 23 (44.2%) were FISH (+). With the revised cutoff, there were improvements in the concordance rate from 89.1% to 97.0% and in the positive predictive value from 82.1% to 97.6%. The false-positive rate for 3+ decreased from 9.0% to 0.8%. Six of 175 (3.4%) IHC (-) cases were FISH (+). Three cases with a VIAS score 3.5 showed polysomy of chromosome 17. In conclusion, the VIAS may be a valuable tool for assisting pathologists in HER2 scoring; however, the positive cutoff defined by the manufacturer is associated with a high false-positive rate. This study highlights the importance of instrument validation/calibration to reduce false-positive results.

  7. A single exposure to cocaine during development elicits regionally-selective changes in basal basic Fibroblast Growth Factor (FGF-2) gene expression and alters the trophic response to a second injection.

    Science.gov (United States)

    Giannotti, Giuseppe; Caffino, Lucia; Malpighi, Chiara; Melfi, Simona; Racagni, Giorgio; Fumagalli, Fabio

    2015-02-01

    During adolescence, the brain is maturing and more sensitive to drugs of abuse that can influence its developmental trajectory. Recently, attention has been focused on basic fibroblast growth factor (FGF-2) given that its administration early in life enhances the acquisition of cocaine self-administration and sensitization at adulthood (Turner et al. (Pharmacol Biochem Behav 92:100-4, 2009), Clinton et al. (Pharmacol Biochem Behav103:6-17, 2012)). Additionally, we found that abstinence from adolescent cocaine exposure long lastingly dysregulates FGF-2 transcription (Giannotti et al. (Psychopharmacology (Berl) 225:553-60, 2013 ). The objectives of the study are to evaluate if (1) a single injection of cocaine (20 mg/kg) at postnatal day 35 alters FGF-2 messenger RNA (mRNA) levels and (2) the first injection influences the trophic response to a second injection (10 mg/kg) provided 24 h or 7 days later. We found regional differences in the FGF-2 expression pattern as either the first or the second injection of cocaine by themselves upregulated FGF-2 mRNA in the medial prefrontal cortex and nucleus accumbens while downregulating it in the hippocampus. The first injection influences the trophic response of the second. Of note, 24 h after the first injection, accumbal and hippocampal FGF-2 changes produced by cocaine in saline-pretreated rats were prevented in cocaine-pretreated rats. Conversely, in the medial prefrontal cortex and hippocampus 7 days after the first injection, the cocaine-induced FGF-2 changes were modified by the subsequent exposure to the psychostimulant. These findings show that a single cocaine injection is sufficient to produce enduring changes in the adolescent brain and indicate that early cocaine priming alters the mechanisms regulating the trophic response in a brain region-specific fashion.

  8. Local Delivery of Growth Factors Using Coated Suture Material

    Directory of Open Access Journals (Sweden)

    T. F. Fuchs

    2012-01-01

    Full Text Available The optimization of healing processes in a wide range of tissues represents a central point for surgical research. One approach is to stimulate healing processes with growth factors. These substances have a short half-life and therefore it seems useful to administer these substances locally rather than systemically. One possible method of local delivery is to incorporate growth factors into a bioabsorbable poly (D, L-lactide suspension (PDLLA and coat suture material. The aim of the present study was to establish a procedure for the local delivery of growth factors using coated suture material. Sutures coated with growth factors were tested in an animal model. Anastomoses of the colon were created in a rat model using monofilament sutures. These were either untreated or coated with PDLLA coating alone or coated with PDLLA incorporating insulin—like growth factor-I (IGF-I. The anastomoses were subjected to biomechanical, histological, and immunohistochemical examination. After 3 days the treated groups showed a significantly greater capacity to withstand biomechanical stress than the control groups. This finding was supported by the results of the histomorphometric. The results of the study indicate that it is possible to deliver bioactive growth factors locally using PDLLA coated suture material. Healing processes can thus be stimulated locally without subjecting the whole organism to potentially damaging high systemic doses.

  9. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  10. Insulin-like growth factor-I treatment of children with Laron syndrome (primary growth hormone insensitivity).

    Science.gov (United States)

    Laron, Zvi

    2008-03-01

    Laron syndrome (LS, congenital primary GH insensitivity) is caused by deletions or mutations in the GH receptor gene, resulting in an inability to generate insulin-like growth factor-I (IGF-I). If untreated, the deficiency of IGF-I results in severe dwarfism, as well as skeletal and muscular underdevelopment. The only treatment is the daily administration of recombinant IGF-I. This review summarizes the present experience by several groups worldwide. The main conclusions are: A. The one or two injections regimen result in the same growth velocity; B. The growth velocity obtained with IGF-I administration is smaller than that observed with hGH in children with congenital isolated GH deficiency; C. Overdosage of IGF-I causes a series of adverse effects which can be avoided by carefully monitoring the serum IGF-I and GH levels.

  11. A Microarray Study of Carpet-Shell Clam (Ruditapes decussatus Shows Common and Organ-Specific Growth-Related Gene Expression Differences in Gills and Digestive Gland

    Directory of Open Access Journals (Sweden)

    Carlos Saavedra

    2017-11-01

    Full Text Available Growth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC, i.e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/insulin-like growth factor signaling pathway (IIS, enzymes of four additional signaling pathways (Raf/Ras/Mapk, Jnk, TOR, and Hippo, and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in the microarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO term enrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others

  12. Genetic and environmental factors influencing the Placental Growth Factor (PGF variation in two populations.

    Directory of Open Access Journals (Sweden)

    Rossella Sorice

    Full Text Available Placental Growth Factor (PGF is a key molecule in angiogenesis. Several studies have revealed an important role of PGF primarily in pathological conditions (e.g.: ischaemia, tumour formation, cardiovascular diseases and inflammatory processes suggesting its use as a potential therapeutic agent. However, to date, no information is available regarding the genetics of PGF variability. Furthermore, even though the effect of environmental factors (e.g.: cigarette smoking on angiogenesis has been explored, no data on the influence of these factors on PGF levels have been reported so far. Here we have first investigated PGF variability in two cohorts focusing on non-genetic risk factors: a study sample from two isolated villages in the Cilento region, South Italy (N=871 and a replication sample from the general Danish population (N=1,812. A significant difference in PGF mean levels was found between the two cohorts. However, in both samples, we observed a strong correlation of PGF levels with ageing and sex, men displaying PGF levels significantly higher than women. Interestingly, smoking was also found to influence the trait in the two populations, although differently. We have then focused on genetic risk factors. The association between five single nucleotide polymorphisms (SNPs located in the PGF gene and the plasma levels of the protein was investigated. Two polymorphisms (rs11850328 and rs2268614 were associated with the PGF plasma levels in the Cilento sample and these associations were strongly replicated in the Danish sample. These results, for the first time, support the hypothesis of the presence of genetic and environmental factors influencing PGF plasma variability.

  13. Polymorphisms in Myostatin Gene and Associations with Growth Traits in the Common Carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Jingou Tong

    2012-11-01

    Full Text Available Myostatin (MSTN is a member of the transforming growth factor-β superfamily that negatively regulates skeletal muscle development and growth. In the present study, partial genomic fragments of MSTN were screened for single nucleotide polymorphisms (SNPs in selected common carp individuals from wild populations, and two SNPs in intron 2 (c.371 + 749A > G, c.371 + 781T > C and two synonymous SNPs in exon 3 (c.42A > G, c.72C > T were identified. Genotyping by direct sequencing of polymerase chain reaction (PCR products for these four SNPs were performed in 162 individuals from a commercial hatchery population. Association analysis showed that two SNPs in exon 3 were significantly associated with body weight (BW and condition factor (K, and haplotype analyses revealed that haplotype H7H8 showed better growth performance. Our results demonstrated that some of the SNPs in MSTN may have positive effects on growth traits and suggested that MSTN could be a candidate gene for growth and marker-assisted selection in common carp.

  14. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  15. Risk Factors to Growth Retardation in Major Thalassemia

    Directory of Open Access Journals (Sweden)

    Riva Uda

    2011-03-01

    Full Text Available The increasing in the life span of patients with major thalassemia should be followed by increased quality of life. There are factors which can affect growth retardation in these patients. The aim of this study was to find out the risk factors for growth retardation in patients with major thalassemia. An analytical study with cross-sectional design was conducted at Pediatric Thalassemia Clinics of Dr.Hasan Sadikin Hospital, Bandung, in June to July 2006. The subjects of this study were patients with major thalassemia. Inclusion criteria’s were age under 14 years old, had no chronic diseases like tuberculosis, cerebral palsy with complete medical records. Risk factors were the timing of diagnosis, initial and dose of deferoxamine, volume of transfused blood, mean pretransfusion hemoglobin level, family income, and age. Antropometric measurement indices were used to assess the growth which expressed in Z score. Growth evaluated based on height/age (H/A and growth retardation if H/A <-2 SD. Risk factors for growth retardation were analyzed separately using chi-square test and odds ratio (OR with 95% confidence interval (CI. Then they were analyzed simultaneously with logistic regression method. Subjects consisted of 152 patients with major thalassemia. Seventy three thalassemia patients were stunted. Analysis showed that age (OR: 5.42, 95% CI:2.32–12.65, p <0.001, dosage of deferoxamine (OR: 4.0, 95% CI: 1.29–12.41, p: 0.016, and family income (OR: 2.32, 95% CI: 1.06–5.06, p: 0.036 were risks factors for growth retardation. Conclusion, risk factors for growth retardation in major thalassemia are age, dosage of deferoxamine, and family income.

  16. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  17. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  18. Export Growth and Factor Market Competition: Theory and Some Evidence

    NARCIS (Netherlands)

    J. Emami Namini (Julian); G. Facchini (Giovanni); R.A. Lopez (Ricrado)

    2011-01-01

    textabstractEmpirical evidence suggests that sectoral export growth decreases exporters' survival probability, whereas this is not true for non-exporters. Models with firm heterogeneity in total factor productivity (TFP) predict the opposite. To solve this puzzle, we develop a two{factor framework

  19. Instability restricts signaling of multiple fibroblast growth factors

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Marcela; Chaloupková, R.; Zakrzewska, M.; Veselá, I.; Celá, Petra; Barathová, J.; Gudernová, I.; Zajíčková, R.; Trantírek, L.; Martin, J.; Kostas, M.; Otlewski, J.; Damborský, J.; Kozubík, Alois; Wiedlocha, A.; Krejčí, P.

    2015-01-01

    Roč. 72, č. 12 (2015), s. 2445-2459 ISSN 1420-682X R&D Projects: GA ČR(CZ) GA14-31540S; GA ČR GBP302/12/G157 Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor * FGF * unstable Subject RIV: EA - Cell Biology Impact factor: 5.694, year: 2015

  20. Insulin-like growth factor system in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Wilczak, N; de Keyser, J; Cianfarani, S; Clemmons, DR; Savage, MO

    2005-01-01

    Insulin-like growth factor-I (IGF-I) is a neurotrophic factor with insulin-like metabolic activities, and possesses potential clinical applications, particularly in neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is a chronic progressive devastating disorder of the central nervous

  1. Insulin-like growth factor-I in growth and metabolism

    DEFF Research Database (Denmark)

    Backeljauw, P; Bang, P; Dunger, D B

    2010-01-01

    Deficiency of insulin-like growth factor-I (IGF-I) results in growth failure. A variety of molecular defects have been found to underlie severe primary IGF-I deficiency (IGFD), in which serum IGF-I concentrations are substantially decreased and fail to respond to GH therapy. Identification of more...

  2. Extremity Regeneration of Soft Tissue Injury Using Growth Factor-Impregnated Gels

    Science.gov (United States)

    2017-10-01

    vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Repeated injections of growth factor-alginate material are... Vascularized endothelial growth factor (VEGF) Insulin-like growth factor-1 (IGF-1) Alginate gel Ischemia-reperfusion Large animal model...operative complications including skin necrosis and seroma development. The IACUC protocol was reevaluated and modified thought multiple discussions

  3. Identification of genes important for growth of asymptomatic bacteriuria Escherichia coli in urine.

    Science.gov (United States)

    Vejborg, Rebecca M; de Evgrafov, Mari R; Phan, Minh Duy; Totsika, Makrina; Schembri, Mark A; Hancock, Viktoria

    2012-09-01

    Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence of symptoms. While ABU E. coli can persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABU E. coli strain 83972 and the clinical ABU E. coli strain VR89. Six genes involved in the biosynthesis of various amino acids and nucleobases were identified (carB, argE, argC, purA, metE, and ilvC), and site-specific mutants were subsequently constructed in E. coli 83972 and E. coli VR89 for each of these genes. In all cases, these mutants exhibited reduced growth rates and final cell densities in human urine. The growth defects could be complemented in trans as well as by supplementation with the appropriate amino acid or nucleobase. When assessed in vivo in a mouse model, E. coli 83972carAB and 83972argC showed a significantly reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metE and 83972ilvC did not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABU E. coli in human urine.

  4. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elias G., E-mail: george.elias@medstar.net; Hasskamp, Joanne H.; Sharma, Bhuvnesh K. [Maryland Melanoma Center, Weinberg Cancer Institute, Franklin Square Hospital Center, Baltimore, MD (United States)

    2010-05-07

    Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  5. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Elias G. Elias

    2010-05-01

    Full Text Available Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  6. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  7. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    International Nuclear Information System (INIS)

    Taub, Mary

    2016-01-01

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10"−"5 M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  8. Polymorphisms in the Myostatin-1 gene and their association with growth traits in Ancherythroculter nigrocauda

    Science.gov (United States)

    Sun, Yanhong; Li, Qing; Wang, Guiying; Zhu, Dongmei; Chen, Jian; Li, Pei; Tong, Jingou

    2017-05-01

    Myostatin ( MSTN) is a member of the transforming growth factorgene superfamily that negatively regulates skeletal muscle development and growth. In the present study, partial genomic fragments of Myostatin-1 ( MSTN-1) in two commercial hatchery populations of Ancherythroculter nigrocauda, an economically important freshwater fish, were screened for single nucleotide polymorphisms (SNPs) and then genotyped by direct sequencing of PCR products. Five SNPs were identified in intron 1 and exon 2, including a non-synonymous mutation causing an amino acid change (Val to Ile) at position 180. Association analyses based on 300 individuals revealed that the g.1129T>C SNP locus was significantly associated with total length (TL), body length (BL), body height (BH) and body weight (BW) in 6- and 18-month-old populations, while the g.1289G>A locus was significantly associated with BH and BW in the 6-month-old population. Haplotype analyses revealed that fish with the genotype combinations TC/TC or TC/GA showed better growth performance. Our results suggest that g.1129T>C and g.1289G>A have positive effects on growth traits and may be candidate gene markers for marker-assisted selection in A. nigrocauda.

  9. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis) Revealed by Brain Transcriptome Analysis.

    Science.gov (United States)

    Wang, Pingping; Zheng, Min; Liu, Jian; Liu, Yongzhuang; Lu, Jianguo; Sun, Xiaowen

    2016-08-26

    In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female's highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.

  10. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis Revealed by Brain Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Pingping Wang

    2016-08-01

    Full Text Available In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female’s highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.