WorldWideScience

Sample records for grown nanocrystalline zrtio4

  1. ZrTiO4 nanowire growth using membrane-assisted Pechini route

    Directory of Open Access Journals (Sweden)

    P. R. de Lucena

    2014-11-01

    Full Text Available The high surface-to-volume ratio of nanowires makes them natural competitors as new device components. In this regard, a current major challenge is to produce quasi-one-dimensional nanostructures composed of well established oxide-based materials. This article reports the synthesis of ZrTiO4 nanowires on a silicon (100 wafer in a single-step deposition/thermal treatment. The template-directed membrane synthesis strategy was associated with the Pechini route and spin-coating deposition technique. ZrTiO4 nanowires were obtained at 700 ˚C with diameters in the range of 80-100 nm. FEG- SEM images were obtained to investigate ZrTiO4 nanowire formation on the silicon surface and energy dispersive x-ray detection (EDS and x-ray diffraction (XRD analyses were performed to confirm the oxide composition and structure.

  2. ZrTiO4 Nanowire Growth Using Membrane-assisted Pechini Route

    Directory of Open Access Journals (Sweden)

    Poty Rodrigues de Lucena

    2016-02-01

    Full Text Available The high surface-to-volume ratio of nanowires makes them natural competitors as newer device components. In this regard, a current major challenge is to produce quasi-one-dimensional nanostructures composed of well-established oxide-based materials. This article reports the synthesis of ZrTiO4 nanowires on a silicon (100 wafer in a single-step deposition/thermal treatment. The template-directed membrane synthesis strategy was associated with the Pechini route and spin-coating deposition technique. ZrTiO4 nanowires were obtained at 700 °C with diameters in the range of 80-100 nm. FEGSEM images were obtained to investigate ZrTiO4 nanowire formation on the silicon surface and energy dispersive X-ray detection (EDS and X-ray diffraction (XRD analyses were performed to confirm the oxide composition and structure. 

  3. Al2TiO5-ZrTiO4-ZrO2 composites

    International Nuclear Information System (INIS)

    Parker, F.J.

    1990-01-01

    The characterization and properties of ceramic composites containing the phases Al 2 TiO 5 , ZrTiO 4 , and ZrO 2 are described. The low thermal expansions are apparently due to a combination of microcracking by the titanate phases and a contractive phase transformation by the ZrO 2 . The crystal chemistry and microstructure of the product are processing dependent. Although the composites represent a complex microcracking system, the low thermal expansions and high-temperature stability make them potential candidates for commercial application requiring thermal shock resistance

  4. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal-oxide...

  5. Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal

    International Nuclear Information System (INIS)

    Park, Y.

    1998-01-01

    Thermal expansion in ZrTiO 4 single crystal was investigated in the temperature range covering the normal, incommensurate, and commensurate phases. Remarkable change was found at the normal-incommensurate phase transition (T I ) in all thermal expansion coefficients a, b, and c. The spontaneous strains χ as and χ bs along the a and b axes show linear temperature dependence, while the spontaneous strain χ cs along the c axis shows a nonlinear temperature dependence. Small discontinuity along the c direction was observed at the incommensurate-commensurate transition temperature, T c = 845 C. dT I /dP and dT c /dP depend on the cooling rate

  6. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering

    International Nuclear Information System (INIS)

    Prieto, Pilar; Ruiz, Patricia; Ferrer, Isabel J.; Figuera, Juan de la; Marco, José F.

    2015-01-01

    Highlights: • We have grown tensile and compressive strained nanocrystalline magnetite thin films by dual ion beam sputtering. • The magnetic and thermoelectric properties can be controlled by the deposition conditions. • The magnetic anisotropy depends on the crystalline grain size. • The thermoelectric properties depend on the type of strain induced in the films. • In plane uniaxial magnetic anisotropy develops in magnetite thin films with grain sizes ⩽20 nm. - Abstract: We have explored the influence of an ion-assisted beam in the thermoelectric and magnetic properties of nanocrystalline magnetite thin films grown by ion-beam sputtering. The microstructure has been investigated by XRD. Tensile and compressive strained thin films have been obtained as a function of the parameters of the ion-assisted beam. The evolution of the in-plane magnetic anisotropy was attributed to crystalline grain size. In some films, magneto-optical Kerr effect measurements reveal the existence of uniaxial magnetic anisotropy induced by the deposition process related with a small grain size (⩽20 nm). Isotropic magnetic properties have observed in nanocrystalline magnetite thin film having larger grain sizes. The largest power factor of all the films prepared (0.47 μW/K 2 cm), obtained from a Seebeck coefficient of −80 μV/K and an electrical resistivity of 13 mΩ cm, is obtained in a nanocrystalline magnetite thin film with an expanded out-of-plane lattice and with a grain size ≈30 nm

  7. Photosensitivity of nanocrystalline ZnO films grown by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Bentes, L.; Casteleiro, C.; Conde, O.; Marques, C.P.; Alves, E.; Moutinho, A.M.C.; Marques, H.P.; Teodoro, O.; Schwarz, R.

    2009-01-01

    We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al 2 O 3 ), under substrate temperatures around 400 deg. C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature

  8. Negative thermal expansion up to 1000 C of ZrTiO4-Al2TiO5 ceramics for high-temperature applications

    International Nuclear Information System (INIS)

    Kim, I.J.; Kim, H.C.; Han, I.S.; Aneziris, C.G.

    2005-01-01

    High temperature structural ceramics based on Al 2 TiO 5 -ZrTiO 4 (ZAT) having excellent thermal-shock-resistance were synthesized by a reaction sintering. The ZAT ceramics sintered at 1600 C had a negative thermal expansions up to 1000 C and a much lower thermal expansion coefficient (0.3 ∝ 1.3 x 10 -6 /K) than that of polycrystalline Al 2 TiO 5 (1.5 x 10 -6 /K). These low thermal expansion are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the Al 2 TiO 5 phase. The microstructural degradation of the composites after various thermal treatment for high temperature applications were analyzed by scanning electron microscopy, X-ray diffraction, ultrasonic and dilatometer. (orig.)

  9. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D., E-mail: doina.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Socol, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Lambers, E. [Major Analytical Instrumentation Center, College of Engineering, University of Florida, Gainesville, FL 32611 (United States); McCumiskey, E.J.; Taylor, C.R. [Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Martin, C. [Ramapo College of New Jersey (United States); Argibay, N. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87123 (United States); Tanner, D.B. [Physics Department, University of Florida, Gainesville, FL 32611 (United States); Craciun, V. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania)

    2015-10-15

    Highlights: • Nanocrystalline ZrC thin film were grown on Si by pulsed laser deposition technique. • Structural properties weakly depend on the CH{sub 4} pressure used during deposition. • The optimum deposition pressure for low resistivity is around 2 × 10{sup −5} mbar CH{sub 4}. • ZrC films exhibited friction coefficients around 0.4 and low wear rates. - Abstract: Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH{sub 4} pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH{sub 4} pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. Tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  10. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    Science.gov (United States)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  11. Role of grain size in superconducting boron-doped nanocrystalline diamond thin films grown by CVD

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Janssens, S.D.; Vanacken, J.; Timmermans, M.; Vacík, Jiří; Ataklti, G.W.; Decelle, W.; Gillijns, W.; Goderis, B.; Haenen, K.; Wagner, P.; Moshchalkov, V.V.

    2011-01-01

    Roč. 84, č. 21 (2011), 214517/1-214517/10 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10480505 Keywords : Nanocrystalline diamond * Superconducting transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  12. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  13. Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films

    Directory of Open Access Journals (Sweden)

    Lioutas Ch

    2007-01-01

    Full Text Available AbstractWe have studied ultrafast carrier dynamics in nanocrystalline silicon films with thickness of a few nanometers where boundary-related states and quantum confinement play an important role. Transient non-degenerated photoinduced absorption measurements have been employed to investigate the effects of grain boundaries and quantum confinement on the relaxation dynamics of photogenerated carriers. An observed long initial rise of the photoinduced absorption for the thicker films agrees well with the existence of boundary-related states acting as fast traps. With decreasing the thickness of material, the relaxation dynamics become faster since the density of boundary-related states increases. Furthermore, probing with longer wavelengths we are able to time-resolve optical paths with faster relaxations. This fact is strongly correlated with probing in different points of the first Brillouin zone of the band structure of these materials.

  14. Nanocrystalline Sr{sub 2}CeO{sub 4} thin films grown on silicon by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perea, Nestor [Posgrado en Fisica de Materiales, CICESE-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B.C., 22860 (Mexico); Hirata, G.A. [Centro de Ciencias de la Materia Condensada-UNAM, Km. 107 Carretera Tijuana Ensenada, Ensenada, B.C. 22860 (Mexico)]. E-mail: hirata@ccmc.unam.mx

    2006-02-21

    Blue-white luminescent Sr{sub 2}CeO{sub 4} thin films were deposited by using pulsed laser ablation ({lambda} = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr{sub 2}CeO{sub 4} grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr{sub 2}CeO{sub 4} however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems.

  15. Comprehensive Evaluation of the Properties of Nanocrystalline Diamond Coatings Grown Using CVD with E/H Field Glow Discharge Stabilization

    Directory of Open Access Journals (Sweden)

    Iu. Nasieka

    2015-01-01

    Full Text Available The nanocrystalline diamond films (coatings were prepared using the plasma enhanced chemical vapor deposition (PECVD technique. In this method, direct current (DC glow discharge in the crossed E/H fields was used to activate the gas phase. The diamond coatings were deposited from the working gas mixture CH4/H2 with addition of nitrogen in various concentrations. It was ascertained that addition of N2 to the working gas mixture leads to reduction in the sizes of diamond grains as well as to the substantial decrease in the resistivity of the studied films. The electrophysical data are in good agreement with the changes induced by varying the N2 content in the Raman scattering spectra. The increase in the N2 concentration causes significant lowering of the crystalline diamond related peak and increase in the intensity of the peaks related to the sp2-bonded carbon. These changes in the spectra indicate significant disordering of the structure of prepared films and its uniformity in the nanodiamond film volume. With the great possibility, it is associated with a decrease in the sizes of diamond crystalline grains and tendency of NCD film to amorphization.

  16. Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating

    International Nuclear Information System (INIS)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Kim, Dongwan; Park, Minju; Kim, Haeun; Lee, Wookbin; Leem, Jaeyoung; Kim, Jongsu; Kim, Jin Soo

    2014-01-01

    Nanocrystalline ZnO thin films grown on fluorine-doped tinoxide (FTO) substrates were fabricated using the spin-coating method. The structural and the optical properties of the ZnO thin films prepared using different sol concentrations were investigated by using field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), photoluminescence (PL) measurements, and ultraviolet-visible (UV-vis) spectrometry. The surface morphology of the ZnO thin films, as observed in the SEM images, exhibited a mountain-chain structure. XRD results indicated that the thin films were preferentially orientated along the direction of the c-axis and that the grain size of the ZnO thin films increased with increasing sol concentration. The PL spectra showed a strong ultraviolet emission peak at 3.22 eV and a broad orange emission peak at 2.0 eV. The intensities of deep-level emission (DLE) gradually increased with increasing sol concentration from 0.4 to 1.0 M. The transmittance spectra of the ZnO thin films showed that the ZnO thin films were transparent (∼85%) in the visible region and exhibited sharp absorption edges at 375 nm. Thus, The Urbach energy of ZnO thin films decreased with increasing sol concentration.

  17. An Investigation of Nanocrystalline and Electrochemically Grown Cu2ZnSnS4 Thin Film Using Redox Couples of Different Band Offset

    Directory of Open Access Journals (Sweden)

    Prashant K. Sarswat

    2013-01-01

    Full Text Available Alternative electrolytes were examined to evaluate photoelectrochemical response of Cu2ZnSnS4 films at different biasing potential. Selections of the electrolytes were made on the basis of relative Fermi level position and standard reduction potential. Our search was focused on some cost-effective electrolytes, which can produce good photocurrent during illumination. Thin films were grown on FTO substrate using ink of nanocrystalline Cu2ZnSnS4 particles as well as electrodeposition-elevated temperature sulfurization approach. Our investigations suggest that photoelectrochemical response is mostly due to conduction band-mediated process. Surface topography and phase purity were investigated after each electrochemical test, in order to evaluate film quality and reactivity of electrolytes. Raman examination of film and nanocrystals was conducted for comparison. The difference in photocurrent response was explained due to various parameters such as change in charge transfer rate constant, presence of dangling bond, difference in concentration of adsorbed species in electrode.

  18. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  19. Red shifts of the Eg(1) Raman mode of nanocrystalline TiO2:Er monoliths grown by sol-gel process

    Science.gov (United States)

    Palomino-Merino, R.; Trejo-Garcia, P.; Portillo-Moreno, O.; Jiménez-Sandoval, S.; Tomás, S. A.; Zelaya-Angel, O.; Lozada-Morales, R.; Castaño, V. M.

    2015-08-01

    Nanocrystalline monoliths of Er doped TiO2 were prepared by the sol-gel technique, by controlling the Er-doping levels into the TiO2 precursor solution. As-prepared and annealed in air samples showed the anatase TiO2 phase. The average diameter of the nanoparticles ranged from 19 to 2.6 nm as the nominal concentration of Er varies from 0% to 7%, as revealed by EDS analysis in an electron microscope. Photo Acoustic Spectroscopy (PAS) allowed calculate the forbidden band gap, evidencing an absorption edge at around 300 nm, attributed to TiO2 and evidence of electronic transitions or Er3+. The Raman spectra, corresponding to the anatase phase, show the main phonon mode Eg(1) band position at 144 cm-1 with a red shift for the annealing samples.

  20. Oxidant effect of La(NO{sub 3}){sub 3}·6H{sub 2}O solution on the crystalline characteristics of nanocrystalline ZrO{sub 2} films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Nam Khen [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, Jin-Tae [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kang, Goru; An, Jong-Ki; Nam, Minwoo [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, So Yeon [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Yun, Ju-Young, E-mail: jyun@kriss.re.kr [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of)

    2017-02-01

    Highlights: • The La(NO{sub 3}){sub 3}·6H{sub 2}O aqua solution is introduced as an oxidant in ALD process. • The H{sub 2}O and La(NO{sub 3}){sub 3}·6H{sub 2}O lead different crystalline properties of ZrO{sub 2} films. • Concentration of La(NO{sub 3}){sub 3}·6H{sub 2}O solution minimally influences crystalline status. - Abstract: Nanocrystalline ZrO{sub 2} films were synthesized by atomic layer deposition method using CpZr[N(CH{sub 3}){sub 2}]{sub 3} (Cp = C{sub 5}H{sub 5}) as the metal precursor and La(NO{sub 3}){sub 3}·6H{sub 2}O solution as the oxygen source. La element in the deposited ZrO{sub 2} films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO{sub 3}){sub 3}·6H{sub 2}O solution to conventionally used H{sub 2}O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO{sub 2} films. Specifically, the crystalline structure of the ZrO{sub 2} film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO{sub 2} films prepared from La(NO{sub 3}){sub 3}·6H{sub 2}O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H{sub 2}O oxidant was 142 nm. However, the concentration of La(NO{sub 3}){sub 3}·6H{sub 2}O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO{sub 2} films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  1. Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Kozytskiy, A.V. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Stroyuk, O.L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Kuchmiy, S.Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Mazanik, A.V.; Poznyak, S.K. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A., E-mail: streltea@bsu.by [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Dzhagan, V.M., E-mail: dzhagan@isp.kiev.ua [V.E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 41 Nauky Av., 03028 Kyiv (Ukraine)

    2014-07-01

    Properties of CdS nanoparticles (NPs) grown by successive ionic layer adsorption and reaction (SILAR) method on the surface of electrodeposited ZnO films were studied by Raman, photocurrent and UV–Vis absorption spectroscopies. The CdS nanoparticles deposited at a SILAR cycle number (N) from 5 to 10 exhibit a broadening of the band gap (E{sub g}) by 0.17–0.31 eV as compared with that of the CdS particles grown at N = 30. The size quantization of the interband transition energy in CdS nanoparticles is in accordance with the Raman spectroscopic data demonstrating a considerable increase in the LO peak intensity with increasing the N from 5 to 10 as a result of transition to resonant light scattering. The spectral width of the LO peak decreases from 50 to 15 cm{sup −1} as the N increases from 5 to 30 reflecting a less pronounced effect of the nanoparticle surface on the phonon scattering. A large spectral width of the Raman peaks is assumed to originate from a complex structure of the CdS nanoparticles comprising crystallinity domains that can affect the phonon confinement. The photocurrent spectroscopy of ZnO/CdS heterostructures showed that the band gap of CdS NPs deposited at N > 20 is smaller by ∼ 0.08 eV than that of bulk cadmium sulfide. It was concluded that this effect is not associated with photoexcitation of structural defects but rather reflects intrinsic electronic properties of SILAR-deposited CdS nanoparticles. - Highlights: • Visible-light-sensitive ZnO/CdS heterostructures were prepared by SILAR. • A large Raman peak width originates from a complex structure of CdS nanoparticles. • Vibrational properties of CdS nanoparticles depend on SILAR cycle number.

  2. Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Kozytskiy, A.V.; Stroyuk, O.L.; Kuchmiy, S.Ya.; Mazanik, A.V.; Poznyak, S.K.; Streltsov, E.A.; Kulak, A.I.; Korolik, O.V.; Dzhagan, V.M.

    2014-01-01

    Properties of CdS nanoparticles (NPs) grown by successive ionic layer adsorption and reaction (SILAR) method on the surface of electrodeposited ZnO films were studied by Raman, photocurrent and UV–Vis absorption spectroscopies. The CdS nanoparticles deposited at a SILAR cycle number (N) from 5 to 10 exhibit a broadening of the band gap (E g ) by 0.17–0.31 eV as compared with that of the CdS particles grown at N = 30. The size quantization of the interband transition energy in CdS nanoparticles is in accordance with the Raman spectroscopic data demonstrating a considerable increase in the LO peak intensity with increasing the N from 5 to 10 as a result of transition to resonant light scattering. The spectral width of the LO peak decreases from 50 to 15 cm −1 as the N increases from 5 to 30 reflecting a less pronounced effect of the nanoparticle surface on the phonon scattering. A large spectral width of the Raman peaks is assumed to originate from a complex structure of the CdS nanoparticles comprising crystallinity domains that can affect the phonon confinement. The photocurrent spectroscopy of ZnO/CdS heterostructures showed that the band gap of CdS NPs deposited at N > 20 is smaller by ∼ 0.08 eV than that of bulk cadmium sulfide. It was concluded that this effect is not associated with photoexcitation of structural defects but rather reflects intrinsic electronic properties of SILAR-deposited CdS nanoparticles. - Highlights: • Visible-light-sensitive ZnO/CdS heterostructures were prepared by SILAR. • A large Raman peak width originates from a complex structure of CdS nanoparticles. • Vibrational properties of CdS nanoparticles depend on SILAR cycle number

  3. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  4. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  5. Functionalization of nanocrystalline diamond films with phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Christo [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reintanz, Philipp M. [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Kulisch, Wilhelm [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Degenhardt, Anna Katharina [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Weidner, Tobias [Max Planck Institute for Polymer Research, Mainz (Germany); Baio, Joe E. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR (United States); Merz, Rolf; Kopnarski, Michael [Institut für Oberflächen- und Schichtanalytik (IFOS), Kaiserslautern (Germany); Siemeling, Ulrich [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reithmaier, Johann Peter [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Popov, Cyril, E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany)

    2016-08-30

    Highlights: • Grafting of phthalocyanines on nanocrystalline diamond films with different terminations. • Pc with different central atoms and side chains synthesized and characterized. • Attachment of Pc on H- and O-terminated NCD studied by XPS and NEXAFS spectroscopy. • Orientation order of phthalocyanine molecules on NCD surface. - Abstract: Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  6. Nanocrystalline diamond coatings for mechanical seals applications.

    Science.gov (United States)

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  7. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  8. Tribological properties of nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Fenske, G.R.; Krauss, A.R.; Gruen, D.M.; McCauley, T.; Csencsits, R.T. [Argonne National Lab., IL (United States). Energy Technology Div.

    1999-11-01

    In this paper, we present the friction and wear properties of nanocrystalline diamond (NCD) films grown in Ar-fullerene (C{sub 60}) and Ar-CH{sub 4} microwave plasmas. Specifically, we will address the fundamental tribological issues posed by these films during sliding against Si{sub 3}N{sub 4} counterfaces in ambient air and inert gases. Grain sizes of the films grown by the new method are very small (10-30 nm) and are much smoother (20-40 nm, root mean square) than those of films grown by the conventional H{sub 2}-CH{sub 4} microwave-assisted chemical vapor deposition process. Transmission electron microscopy (TEM) revealed that the grain boundaries of these films are very sharp and free of nondiamond phases. The microcrystalline diamond films grown by most conventional methods consist of large grains and a rough surface finish, which can cause severe abrasion during sliding against other materials. The friction coefficients of films grown by the new method (i.e. in Ar-C{sub 60} and Ar-CH{sub 4} plasmas) are comparable with those of natural diamond, and wear damage on counterface materials is minimal. Fundamental tribological studies indicate that these films may undergo phase transformation during long-duration, high-speed and/or high-load sliding tests and that the transformation products trapped at the sliding interfaces can intermittently dominate friction and wear performance. Using results from a combination of TEM, electron diffraction, Raman spectroscopy, and electron energy loss spectroscopy, we describe the structural chemistry of the debris particles trapped at the sliding interfaces and elucidate their possible effects on friction and wear of NCD films in dry N{sub 2}. Finally, we suggest a few potential applications in which NCD films can improve performance and service lives. (orig.)

  9. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  10. Effect of power on the growth of nanocrystalline silicon films

    International Nuclear Information System (INIS)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma

    2008-01-01

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm -1 and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity

  11. Effect of power on the growth of nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma [Plasma Processed Materials Group, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: skumar@mail.nplindia.ernet.in

    2008-08-20

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm{sup -1} and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity.

  12. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Choi, Sun-Hee; Yoon, Young Soo; Chang, Sung-Yong; Ok, Young-Woo; Seong, Tae-Yeon

    2005-01-01

    The characteristics of RuO 2 -SnO 2 nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O 2 /Ar ambient have RuO 2 -SnO 2 nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film in 0.5 M H 2 SO 4 liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm 2 μm. This suggests that the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor

  13. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  14. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  15. Nanocrystalline diamond coatings for machining

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  16. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  17. Dynamic recovery in nanocrystalline Ni

    International Nuclear Information System (INIS)

    Sun, Z.; Van Petegem, S.; Cervellino, A.; Durst, K.; Blum, W.; Van Swygenhoven, H.

    2015-01-01

    The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress dislocation slip and bring recovery mechanisms into the foreground. When combined with in situ X-ray diffraction it can be shown that grain boundary recovery mechanisms play an important role in producing plastic strain while hardening the microstructure. This result has a significant consequence for the parameters of thermally activated glide of dislocations, such as athermal stress and activation volume, which are traditionally derived from stress/strain rate change tests

  18. Grain boundaries and mechanical properties of nanocrystalline diamond films.

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, H.-G.; Pageler, A.; Gruen, D. M.

    1999-08-06

    Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries.

  19. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  20. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition

    International Nuclear Information System (INIS)

    Wang, Jinlong; Chen, Minghui; Yang, Lanlan; Liu, Li; Zhu, Shenglong; Wang, Fuhui; Meng, Guozhe

    2016-01-01

    Graphical abstract: - Highlights: • Effect of Y addition on oxidation of nanocrystalline coating is studied. • Y addition delays transformation of q-Al_2O_3 to a-Al_2O_3 during oxidation. • Y addition prevents scale rumpling. • Y segregates at grain boundaries of the nanocrystalline coating. • Y retards the transportation of Ta thus reduces its oxidation. - Abstract: The effect of yttrium addition on isothermal oxidation at 1050 °C of a sputtered nanocrystalline coating with moderate amount of tantalum in composition was investigated. Results indicate that yttrium addition delays transformation of metastable θ-Al_2O_3 to equilibrium α-Al_2O_3 grown on the nanocrystalline coatings. It prevents scale rumpling and promotes the formation of oxide pegs at interface between the oxide scale and the underlying coating. Besides, yttrium prefers to segregate at grain boundaries of the nanocrystalline coating and retards the outward transportation of tantalum from coating to oxide scale, thus reducing the excessive oxidation of tantalum.

  1. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, M., E-mail: michael.mertens@uni-ulm.de [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Mohr, M.; Brühne, K.; Fecht, H.J. [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Łojkowski, M.; Święszkowski, W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Łojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-12-30

    Highlights: • Hydrophobic and hydrophilic properties on fluorine-, hydrogen- and oxygen- terminated ultra-nanocrystalline diamond films. • Micropatterned - multi-terminated layers with both hydrophobic and hydrophilic areas on one sample. • Visualization of multi-terminated surfaces by e.g. SEM and LFM. • Roughness and friction investigations on different terminated surfaces. • Smooth and biocompatible surfaces with same roughness regardless of hydrophobicity for microbiological investigations. - Abstract: In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in

  2. Structural elucidation of nanocrystalline biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, S.

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup

  3. Structural elucidation of nanocrystalline biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, S

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup 2

  4. Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lišková-Jakubisová, E., E-mail: liskova@karlov.mff.cuni.cz; Višňovský, Š. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague (Czech Republic); Široký, P.; Hrabovský, D.; Pištora, J. [Nanotechnology Center, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); Sahoo, Subasa C. [Department of Physics, Central University of Kerala, Kasaragod, Kerala 671314 (India); Prasad, Shiva [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Bohra, Murtaza [Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa (Japan); Krishnan, R. [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS-UVSQ, 45 Avenue des Etats-Unis, 78935 Versailles (France)

    2015-05-07

    Ferrimagnetic Zn-ferrite (ZnFe{sub 2}O{sub 4}) films can be grown with the ferromagnetic resonance linewidth of 40 Oe at 9.5 GHz without going through a high temperature processing. This presents interest for applications. The work deals with laser ablated ZnFe{sub 2}O{sub 4} films deposited at O{sub 2} pressure of 0.16 mbar onto fused quartz substrates. The films about 120 nm thick are nanocrystalline and their spontaneous magnetization, 4πM{sub s}, depends on the nanograin size, which is controlled by the substrate temperature (T{sub s}). At T{sub s} ≈ 350 °C, where the grain distribution peaks around ∼20–30 nm, the room temperature 4πM{sub s} reaches a maximum of ∼2.3 kG. The films were studied by magnetooptical polar Kerr effect (MOKE) spectroscopy at photon energies between 1 and 5 eV. The complementary characteristics were provided by spectral ellipsometry (SE). Both the SE and MOKE spectra confirmed ferrimagnetic ordering. The structural details correspond to those observed in MgFe{sub 2}O{sub 4} and Li{sub 0.5}Fe{sub 2.5}O{sub 4} spinels. SE experiments confirm the insulator behavior. The films display MOKE amplitudes somewhat reduced with respect to those in Li{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} due to a lower degree of spinel inversion and nanocrystalline structure. The results indicate that the films are free of oxygen vacancies and Fe{sup 3+}-Fe{sup 2+} exchange.

  5. Nanocrystalline permanent magnets with enhanced properties

    International Nuclear Information System (INIS)

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  6. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  7. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  8. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  9. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  10. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  11. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  12. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mongia [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Farhat, Samir, E-mail: farhat@lspm.cnrs.fr [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Viana, Bruno [LCMCP Chimie-Paristech, UPMC, Collège de France, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mgaidi, Arbi [Laboratoire de chimie minérale industrielle université Tunis el Manar (Tunisia)

    2014-12-05

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation.

  13. Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties

    International Nuclear Information System (INIS)

    Shalini, Jayakumar; Lin, Yi-Chieh; Chang, Ting-Hsun; Sankaran, Kamatchi Jothiramalingam; Chen, Huang-Chin; Lin, I.-Nan; Lee, Chi-Young; Tai, Nyan-Hwa

    2013-01-01

    The effects of N 2 incorporation in Ar/CH 4 plasma on the electrochemical properties and microstructure of ultra-nanocrystalline diamond (UNCD) films are reported. While the electrical conductivity of the films increased monotonously with increasing N 2 content (up to 25%) in the plasma, the electrochemical behavior was optimized for UNCD films grown in (Ar–10% N 2 )/CH 4 plasma. Transmission electron microscopy showed that the main factor resulting in high conductivity in the films was the formation of needle-like nanodiamond grains and the induction graphite layer encapsulating these grains. The electrochemical process for N 2 -incorporated UNCD films can readily be activated due to the presence of nanographite along the grain boundaries of the films. The formation of needle-like diamond grains was presumably due to the presence of CN species that adhered to the existing nanodiamond clusters, which suppressed radial growth of the nanodiamond crystals, promoting anisotropic growth and the formation of needle-like nanodiamond. The N 2 -incorporated UNCD films outperformed other electrochemical electrode materials, such as boron-doped diamond and glassy carbon, in that the UNCD electrodes could sense dopamine, urea, and ascorbic acid simultaneously in the same mixture with clear resolution

  14. Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications.

    Science.gov (United States)

    Garrett, David J; Ganesan, Kumaravelu; Stacey, Alastair; Fox, Kate; Meffin, Hamish; Prawer, Steven

    2012-02-01

    Diamond is well known to possess many favourable qualities for implantation into living tissue including biocompatibility, biostability, and for some applications hardness. However, conducting diamond has not, to date, been exploited in neural stimulation electrodes due to very low electrochemical double layer capacitance values that have been previously reported. Here we present electrochemical characterization of ultra-nanocrystalline diamond electrodes grown in the presence of nitrogen (N-UNCD) that exhibit charge injection capacity values as high as 163 µC cm(-2) indicating that N-UNCD is a viable material for microelectrode fabrication. Furthermore, we show that the maximum charge injection of N-UNCD can be increased by tailoring growth conditions and by subsequent electrochemical activation. For applications requiring yet higher charge injection, we show that N-UNCD electrodes can be readily metalized with platinum or iridium, further increasing charge injection capacity. Using such materials an implantable neural stimulation device fabricated from a single piece of bio-permanent material becomes feasible. This has significant advantages in terms of the physical stability and hermeticity of a long-term bionic implant.

  15. Electrical and optical properties of highly oriented nanocrystalline vanadium pentoxide

    International Nuclear Information System (INIS)

    Bahgat, A.A.; Ibrahim, F.A.; El-Desoky, M.M.

    2005-01-01

    Highly oriented nanocrystalline hydrated vanadium pentoxide, V 2 O 5 .nH 2 O, were grown epitaxially on a glass substrate along the c-axis to form a film of 200 nm thick. The films were prepared by dissolving V 2 O 5 powder in hydrogen peroxide, H 2 O 2 , solution. X-ray diffraction, transmission electron micrograph and electron diffraction were used to identify the structure of the obtained nanocrystals. Homogenous nanocrystals of 7.0 ± 1.0 nm in size were obtained and were closed packed and are distributed evenly. Electrical conductivity and thermoelectric power were measured in the temperature range 300-480 K for the as prepared films parallel to the substrate surface; i.e. normal to the c-axis. The obtained results showed an n-type semiconducting behavior within the whole temperature range. It is also clear to see that a reversible abnormality at about 340 K is realized during the cooling electrical conductivity measurements. On the other hand, optical transmission and reflection were used to evaluate different optical parameters such as; optical band gap, nature of donor levels and different absorption bands parameters. Both the electrical and optical data are correlated and accordingly the conduction mechanism is verified. Electronic parameters such as effective mass, carriers' type and concentration and drift mobility were evaluated

  16. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    International Nuclear Information System (INIS)

    Hosni, Mongia; Farhat, Samir; Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine; Viana, Bruno; Mgaidi, Arbi

    2014-01-01

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation

  17. Radiation influence on properties of nanocrystalline alloy

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  18. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  19. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  20. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  1. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  2. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  3. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  4. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  5. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245 (Indonesia); Sugianto,; Maddu, A. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Institute of Culture, IPB Bogor (Indonesia)

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.

  6. The utilization of mechanochemistry in the extractive metallurgy and at the nanocrystalline materials preparation

    Directory of Open Access Journals (Sweden)

    Boldižárová Eva

    2002-03-01

    Full Text Available The possibility of the application of mechanochemistry in the extractive metallurgy and the nanocrystalline materials preparation is studied. The aim of the experiments is the chloride leaching of a complex sulphidic CuPbZn concentrate (Hodruša-Hámre, the modification of properties of CaCO3 (Yauli, Peru for zinc sorption from model solutions and the mechanochemical reduction of copper sulphide by elemental iron.The chloride leaching of mechanically activated complex sulphidic CuPbZn concentrate is a selective process. While the recoveries of copper, lead and zinc are 65-85 %, the recoveries of silver and gold are less than 7 % and 2 %, respectively.The positive influence of CaCO3 mechanical activation for zinc sorption from ZnSO4 solution was observed. While only 58 % of zinc sorption was determined after 30 minutes for a non-activated sample, 98 % of zinc sorption was determined after 3 minutes sorption for the sample mechanically activated for 15 minutes.By the mechanochemical reduction of copper sulphide with iron, nanocrystalline copper and iron sulphide are formed. This reaction is an example of the new “solid state technology“, where chemical processes in the gaseous and liquid states are excluded.The results can serve as a contribution to the optimization of copper, lead and zinc extraction from complex sulphidic concentrates, the increase of non-ferrous metals sorption efficiency on mineral sorbents as well as to the nanocrystalline copper preparation.The application of mechanical activation has grown in the laboratory research. The Institute of Geotechnics of SAS has also achieved significant theoretical results in study of mechanical activation of sulphides and their reactivity in the different solid-phase reactions with the effect on industrial applications. The Institute has developed the technology of mechanochemical leaching (process MELT which was successfully tested in a pilot plant unit.

  7. Magnetic behavior of nanocrystalline nickel ferrite

    International Nuclear Information System (INIS)

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  8. Transparent nanocrystalline diamond coatings and devices

    Science.gov (United States)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  9. Simulations of intergranular fracture in nanocrystalline molybdenum

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2004-01-01

    Using molecular dynamics simulations we investigate the plastic deformation of nanocrystalline molybdenum with a grain size of 12 nm at high strain rates. The simulations are performed with an interatomic potential which is obtained through matching of atomic forces to a database generated...... with density-functional calculations. The simulations show the plastic deformation to involve both grain boundary processes and dislocation migration which in some cases lead to twin boundary formation. A large component of the strain is accommodated through the formation of cracks in the grain boundaries...

  10. Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ragini Raj, E-mail: raginirajsingh@gmail.com [Department of Physics, Bhopal University, Bhopal-462026 (India); Department of Physical Electronics, Iby and Aladar Fleishman Faculty of Engineering, Tel-Aviv University, Tel-Aviv-69978 (Israel); Painuly, Diksha [Centre for Nanoscience and Nanotechnology, University of Kerala, Thiruanantpuram, Kerala (India); Pandey, R.K. [Department of Physics, Bhopal University, Bhopal-462026 (India)

    2009-07-15

    Electrodeposition is emerging as a method for the synthesis of semiconductor thin films and nanostructures. In this work we prepared the nanocrystalline CdTe thin films on indium tin oxide coated glass substrate from aqueous acidic bath at the deposition temperature 50 {+-} 1 deg. C. The films were grown potentiostatically from -0.60 V to -0.82 V with respect to saturated calomel reference electrode. The structural, compositional, morphological and optical properties were investigated using X-ray diffraction (XRD), energy dispersive analysis by X-rays (EDAX), atomic force microscopy (AFM), and UV-vis spectroscopy respectively and cyclic voltammetery. The structural and optical studies revealed that films are nanocrystalline in nature and possess cubic phase, also the films are preferentially oriented along the cubic (1 1 1) plane. The effect of cadmium composition on the deposited morphology was also investigated. The size dependent blue shift in the experimentally determined absorption edge has been compared with the theoretical predictions based on the effective mass approximation and tight binding approximation. It is shown that the experimentally determined absorption edges depart from the theoretically calculated values.

  11. Characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki [Core Technology Laboratory, Samsung SDI, 575 Shin-dong, Youngtong-Gu, Suwon, Gyeonggi-Do 442-391 (Korea, Republic of)]. E-mail: hanki1031.kim@samsung.com; Choi, Sun-Hee [Nano Materials Research Center, Korea Institute of Science and Technology (KIST), PO Box 131 Choengryang, Seoul 130-650 (Korea, Republic of); Yoon, Young Soo [Department of Advanced Fusion Technology (DAFT), Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Chang, Sung-Yong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Ok, Young-Woo [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of)

    2005-03-22

    The characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O{sub 2}/Ar ambient have RuO{sub 2}-SnO{sub 2} nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film in 0.5 M H{sub 2}SO{sub 4} liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm{sup 2} {mu}m. This suggests that the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor.

  12. Nanocrystalline diamond--an excellent platform for life science applications.

    Science.gov (United States)

    Kloss, Frank R; Najam-Ul-Haq, Muhammed; Rainer, Matthias; Gassner, Robert; Lepperdinger, Günter; Huck, Christian W; Bonn, Günther; Klauser, Frederik; Liu, Xianjie; Memmel, Norbert; Bertel, Erminald; Garrido, Jose A; Steinmüller-Nethl, Doris

    2007-12-01

    Nanocrystalline diamond (NCD) has recently been successfully utilized in a variety of life science applications. NCD films are favorable and salubrious substrates for cells during cultivation. Therefore NCD has also been employed in tissue engineering strategies. NCD as reported in this contribution was grown by means of a modified hot-filament chemical vapor deposition technique, which results in less than 3% sp2-hybridization and yields grain sizes of 5-20 nm. After production the NCD surface was rather hydrophobic, however it could be efficiently refined to exhibit more hydrophilic properties. Changing of the surface structure was found to be an efficient means to influence growth and differentiation capacity of a variety of cells. The particular needs for any given cell type has to be proven empirically. Yet flexible features of NCD appear to be superior to plastic surfaces which can be hardly changed in quality. Besides its molecular properties, crystal structural peculiarities of NCD appear to influence cell growth as well. In our attempt to facilitate, highly specialized applications in biomedicine, we recently discovered that growth factors can be tightly bound to NCD by mere physisorption. Hence, combination of surface functionalization together with further options to coat NCD with any kind of three-dimensional structure opens up new avenues for many more applications. In fact, high through-put protein profiling of early disease stages may become possible from serum samples, because proteins bound to NCD can now be efficiently analyzed by MALDI/TOF-MS. Given these results, it is to be presumed that the physical properties and effective electrochemical characteristics of NCD will allow tailoring devices suitable for many more diagnostic as well as therapeutic applications.

  13. Microhardness studies of nanocrystalline lead molybdate

    International Nuclear Information System (INIS)

    Anandakumar, V.M.; Abdul Khadar, M.

    2009-01-01

    Nanocrystalline lead molybdate (PbMoO 4 ) of four different grain sizes were synthesized through chemical precipitation technique and the grain sizes and crystal structure are determined using the broadening of X-ray diffraction patterns and transmission electron microscopy. The microhardness of nanocrystalline lead molybdate (PbMoO 4 ) with different grain sizes were measured using a Vicker's microhardness tester for various applied loads ranging from 0.049 to 1.96 N. The microhardness values showed significant indentation size effect at low indentation loads. The proportional specimen resistance model put forward by Li and Bradt and energy balance model put forward by Gong and Li were used to analyze the behaviour of measured microhardness values under different indentation loads. The microhardness data obtained for samples of different grain sizes showed grain size dependent strengthening obeying normal Hall-Petch relation. The dependence of compacting pressure and annealing temperature on microhardness of the nanostructured sample with grain size of ∼18 nm were also studied. The samples showed significant increase in microhardness values as the compacting pressure and annealing time were increased. The variation of microhardness of the material with pressure of pelletization and annealing time are discussed in the light of change of pore size distribution of the samples.

  14. Grain growth studies on nanocrystalline Ni powder

    International Nuclear Information System (INIS)

    Rane, G.K.; Welzel, U.; Mittemeijer, E.J.

    2012-01-01

    The microstructure of nanocrystalline Ni powder produced by ball-milling and its thermal stability were investigated by applying different methods of X-ray diffraction line-profile analysis: single-line analysis, whole powder-pattern modelling and the (modified) Warren–Averbach method were employed. The kinetics of grain growth were investigated by both ex-situ and in-situ X-ray diffraction measurements. With increasing milling time, the grain-size reduction is accompanied by a considerable narrowing of the size distribution and an increase in the microstrain. Upon annealing, initial, rapid grain growth occurs, accompanied by the (almost complete) annihilation of microstrain. For longer annealing times, the grain-growth kinetics depend on the initial microstructure: a smaller microstrain with a broad grain-size distribution leads to linear grain growth, followed by parabolic grain growth, whereas a larger microstrain with a narrow grain-size distribution leads to incessant linear grain growth. These effects have been shown to be incompatible with grain-boundary curvature driven growth. The observed kinetics are ascribed to the role of excess free volume at the grain boundaries of nanocrystalline material and the prevalence of an “abnormal grain-growth” mechanism.

  15. Superconductivity and low temperature electrical transport in B-doped CVD nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Milos Nesladek, Jiri J. Mares, Dominique Tromson, Christine Mer, Philippe Bergonzo, Pavel Hubik and Jozef Kristofik

    2006-01-01

    Full Text Available In this work, we report on superconductivity (SC found in thin B-doped nanocrystalline diamond films, prepared by the PE-CVD technique. The thickness of the films varies from about 100 to 400 nm, the films are grown on low-alkaline glass at substrate temperatures of about 500–700 °C. The SIMS measurements show that films can be heavily doped with boron in concentrations in the range of 3×1021 cm−3. The Raman spectra show Fano resonances, confirming the substitutional B-incorporation. The low temperature magnetotransport measurements reveal a positive magnetoresistance. The SC transition is observed at about Tc=1.66 K. A simple theory exploiting the concept of weak localization accounting for this transition is proposed.

  16. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Indian Academy of Sciences (India)

    Abstract. Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route .... is controlled by the iron oxide film in case of alloys with ..... the surface is covered, thus, producing effective protection of.

  17. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    Modifications of the partial gas percentage influences the optical properties and composition ... O2 flow in the Ar ambient and substrate temperature on struc- ture and properties of ..... nism to explain mechanical behaviour of nanocrystalline.

  18. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  19. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  20. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  1. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    surface layers or bulk nanocrystalline metals and alloys more effectively. ... severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. .... scanning electron microscopy (SEM) (Zeiss, model: Sigma. VP), energy ...

  2. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    International Nuclear Information System (INIS)

    Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gao, Kun; Zhou, Shengqiang; Agarwal, Avinash; Singh, Fouran; Gupta, Vinay; Kanjilal, D.

    2014-01-01

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV 58 Ni 6+ ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation

  3. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Saxena, Nupur [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Chandra, Ramesh [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee 247667 (India); Gao, Kun; Zhou, Shengqiang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), P.O. Box 510119, 01314 Dresden (Germany); Agarwal, Avinash [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Gupta, Vinay [Department of Physics and Astrophysics, Delhi University, Delhi 110007 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India)

    2014-03-15

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV {sup 58}Ni{sup 6+} ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation.

  4. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  5. Electrochemistry of Inorganic Nanocrystalline Electrode Materials for Lithium Batteries

    Directory of Open Access Journals (Sweden)

    C. W. Kwon

    2003-01-01

    much different from that of traditional crystalline ones because of their significant ‘surface effects’. In connection with that, the nanocrystalline cathode materials are reported to have an enhanced electrochemical activity when the first significative electrochemical step is insertion of Li ions (discharge process. The “electrochemical grafting” concept will be given as a plausible explanation. As illustrative examples, electrochemical behaviors of nanocrystalline manganese oxydes are presented.

  6. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  7. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  8. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  9. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  10. Stability of nanocrystalline electrochemically deposited layers

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    have different microstructure and properties compared to bulk materials and the thermodynamic non-equilibrium state of as-deposited layers frequently results in changes of the microstructure as a function of time and/or temperature. The evolving microstructure affects the functionality and reliability......The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...... of electrodeposited components, which can be beneficial, as for the electrical conductivity of copper interconnect lines, or detrimental, as for reduced strength of nickel in MEMS applications. The present work reports on in-situ studies of the microstructure stability of as-deposited nanocrystalline Cu-, Ag- and Ni...

  11. Application Potential of Nanocrystalline Ribbons Still Pending

    Science.gov (United States)

    Butvin, Pavol; Butvinová, Beata; Švec, Peter; Sitek, Jozef

    2010-09-01

    Nanocrystalline soft-magnetic ribbons promised a wide-spread practical use when introduced at the beginning of nineties. After 20 years of extensive research there are still unclear material problems which are thought to be the principal reason why these materials show but marginal use. Poorly controllable magnetic anisotropy due to spontaneous intrinsic macroscopic stress that comes from an inevitable heterogeneity of the ribbon materials is pointed to in this work. Certain stress-based mechanisms are shown to induce the unintended anisotropy in the already familiar Finemets as well as in the newer Hitperms. Hysteresis loops, domain structure and power loss is used to reveal the anisotropy consequences and particular connected but still unanswered questions are pinpointed.

  12. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  13. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    International Nuclear Information System (INIS)

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T.

    2012-01-01

    Nanoscale magnetite (Fe 3 O 4 ) ( 12 O 19 , BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 ± 0.52 nm synthesized by thermolysis method at 320 °C do not show hexagonal phase, however, subsequent annealing at 750 °C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  14. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  15. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.; El Sayed, Tamer S.

    2013-01-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline

  16. Synthesis by the polymeric precursor method and characterization of undoped and Sn, Cr and V-doped ZrTiO4

    International Nuclear Information System (INIS)

    Rodrigues de Lucena, Poty; Pessoa-Neto, Osmundo Dantas; Garcia dos Santos, Ieda Maria; Souza, Antonio Gouveia; Longo, Elson; Varela, Jose Arana

    2005-01-01

    In this work, zirconium titanate doped with 0.1, 0.2, and 0.4-bar mole% of tin, chromium and vanadium was synthesized by the polymeric precursors method and characterized by thermal analysis (TG/DTA), X-ray diffraction (XRD), nitrogen adsorption and scanning electronic microscopy (SEM). The powder presented two mass losses attributed to the exit of water and to the pyrolysis of the organic material. The surface area reduction observed from 500-bar o C indicates the beginning of the sintering process. All the dopants led to changes in the lattice parameters and to the decrease of both crystallite size and particle size

  17. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  18. Thermodynamic and experimental study on phase stability in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Xu Wenwu; Song Xiaoyan; Lu Nianduan; Huang Chuan

    2010-01-01

    Nanocrystalline alloys exhibit apparently different phase transformation characteristics in comparison to the conventional polycrystalline alloys. The special phase stability and phase transformation behavior, as well as the essential mechanisms of the nanocrystalline alloys, were described quantitatively in a nanothermodynamic point of view. By introducing the relationship between the excess volume at the grain boundary and the nanograin size, the Gibbs free energy was determined distinctly as a function of temperature and the nanograin size. Accordingly, the grain-size-dependence of the phase stability and phase transformation characteristics of the nanocrystalline alloy were calculated systematically, and the correlations between the phase constitution, the phase transformation temperature and the critical nanograin size were predicted. A series of experiments was performed to investigate the phase transformations at room temperature and high temperatures using the nanocrystalline Sm 2 Co 17 alloy as an example. The phase constitution and phase transformation sequence found in nanocrystalline Sm 2 Co 17 alloys with various grain-size levels agree well with the calculations by the nanothermodynamic model.

  19. InN-based layers grown by modified HVPE

    International Nuclear Information System (INIS)

    Syrkin, A.; Usikov, A.; Soukhoveev, V.; Kovalenkov, O.; Ivantsov, V.; Dmitriev, V.; Collins, C.; Readinger, E.; Shmidt, N.; Davydov, V.; Nikishin, S.; Kuryatkov, V.; Song, D.; Rosenbladt, D.; Holtz, Mark

    2006-01-01

    This paper contains results on InN and InGaN growth by Hydride Vapor Phase Epitaxy (HVPE) on various substrates including sapphire and GaN/sapphire, AlGaN/sapphire, and AlN/sapphire templates. The growth processes are carried out at atmospheric pressure in a hot wall reactor in the temperature range from 500 to 750 and ordm;C. Continuous InN layers are grown on GaN/sapphire template substrates. Textured InN layers are deposited on AlN/sapphire and AlGaN/sapphire templates. Arrays of nano-crystalline InN rods with various shapes are grown directly on sapphire substrates. X-ray diffraction rocking curves for the (002)InN reflection have the full width at half maximum (FWHM) as narrow as 270 arcsec for the nano-rods and 460 arcsec for the continuous layers. In x Ga 1-x N layers with InN content up to 10 mol.% are grown on GaN/sapphire templates. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    Science.gov (United States)

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Roland Yingjie [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Tsang, Siu Hon [Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Loeblein, Manuela; Chow, Wai Leong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); CNRS-International NTU Thales Research Alliance CINTRA UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Singapore, Singapore 637553 (Singapore); Loh, Guan Chee [Institue of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Toh, Joo Wah; Ang, Soon Loong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Teo, Edwin Hang Tong, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore)

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  2. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering

    International Nuclear Information System (INIS)

    Singh, Preetam; Kaur, Davinder

    2010-01-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  3. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    International Nuclear Information System (INIS)

    Mallik, P K; Swain, P.K.; Patnaik, S.C

    2016-01-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles. (paper)

  4. Thermally Stimulated Currents in Nanocrystalline Titania

    Directory of Open Access Journals (Sweden)

    Mara Bruzzi

    2018-01-01

    Full Text Available A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K, in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.

  5. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) (Korea, Republic of)

    2012-07-15

    Nanoscale magnetite (Fe{sub 3}O{sub 4}) (<15 nm) is known to remove arsenic efficiently but is very difficult to separate or require high magnetic fields to separate out from the waste water after treatment. Anisotropic hexagonal ferrite (BaFe{sub 12}O{sub 19}, BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 {+-} 0.52 nm synthesized by thermolysis method at 320 Degree-Sign C do not show hexagonal phase, however, subsequent annealing at 750 Degree-Sign C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  6. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  7. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  8. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  9. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Mansour, S.A.; Ibrahim, M.H. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Ali, Shehab E., E-mail: shehab_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt)

    2011-11-15

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: > The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. > The transmission electronic microscope analysis confirmed the X-ray results. > The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  10. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab E.

    2011-01-01

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: → The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. → The transmission electronic microscope analysis confirmed the X-ray results. → The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  11. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals

    International Nuclear Information System (INIS)

    Song Xiaoyan; Zhang Jiuxing; Li Lingmei; Yang Keyong; Liu Guoquan

    2006-01-01

    We investigated the correlation of thermodynamics and grain growth kinetics of nanocrystalline metals both theoretically and experimentally. A model was developed to describe the thermodynamic properties of nanograin boundaries, which could give reliable predictions in the destabilization characteristics of nanograin structures and the slowing down of grain growth kinetics at a constant temperature. Both the temperature-varying and isothermal nanograin growth behaviors in pure nanocrystalline Co were studied to verify the thermodynamic predictions. The experimental results showing that discontinuous nanograin growth takes place at a certain temperature and grain growth rate decreases monotonically with time confirm our thermodynamics-based description of nanograin growth characteristics. Therefore, we propose a thermodynamic viewpoint to explain the deviation of grain growth kinetics in nanocrystalline metals from those of polycrystalline materials

  12. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  13. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    International Nuclear Information System (INIS)

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  14. Texture-dependent twin formation in nanocrystalline thin Pd films

    International Nuclear Information System (INIS)

    Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.

    2012-01-01

    Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.

  15. Engineering of giant magnetoimpedance effect of amorphous and nanocrystalline microwires

    Directory of Open Access Journals (Sweden)

    V. Zhukova

    2016-12-01

    Full Text Available We present our studies of the factors affecting soft magnetic properties and giant magnetoimpedance effect in thin amorphous and nanocrystalline microwires. We showed that the magnetoelastic anisotropy is one of the most important parameters that determine magnetic softness and GMI effect of glass-coated microwires  and annealing can be very effective for manipulation the magnetic properties of amorphous ferromagnetic glass-coated microwires. Considerable magnetic softening and increasing of the GMI effect is observed in Fe-rich nanocrystalline FINEMET-type glass-coated microwires after the nanocrystallization.

  16. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Science.gov (United States)

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  17. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  18. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  19. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    International Nuclear Information System (INIS)

    Pathan, H.M.; Lokhande, C.D.; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan

    2005-01-01

    Indium sulphide (In 2 S 3 ) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In 2 S 3 thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study

  20. Evolution of structural and electrical properties of carbon films from amorphous carbon to nanocrystalline graphene on quartz glass by HFCVD.

    Science.gov (United States)

    Zhai, Zihao; Shen, Honglie; Chen, Jieyi; Li, Xuemei; Jiang, Ye

    2018-04-25

    Direct growth of graphene films on glass is of great importance but has so far met with limited success. The non-catalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphite-like carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 % to over 80 %. Based on systematically structural and chemical characterizations, a schematic process with three steps including sp2 chains aggregation, aromatic rings formation and sp3 bonds etch was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm2/(V·s) and a resistivity of 5.24×10-3 Ω·cm over an area of 1 cm2. Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localised and extended states respectively when increasing the temperature from 75 K to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.

  1. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Rao, T.V. Chandrasekhar; Bhushan, K.G.; Ali, Kawsar; Debnath, A.; Singh, S.; Arya, A.; Bhattacharya, S.; Basu, S.

    2015-01-01

    Monophasic and homogeneous Ni 10 Zr 7 nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni 10 Zr 7 alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize. • Quantitative

  2. Graphic Grown Up

    Science.gov (United States)

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  3. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    Science.gov (United States)

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  4. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhenfei, E-mail: zhfluo8@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Zhou, Xun, E-mail: zx_zky@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yan, Dawei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Wang, Du; Li, Zeyu [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yang, Cunbang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-01-01

    Nanocrystalline vanadium dioxide (VO{sub 2}) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO{sub 2} thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T{sub SMT}) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO{sub 2} grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T{sub SMT} was found to decrease as average VO{sub 2} grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO{sub 2} film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure.

  5. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    International Nuclear Information System (INIS)

    Luo, Zhenfei; Zhou, Xun; Yan, Dawei; Wang, Du; Li, Zeyu; Yang, Cunbang; Jiang, Yadong

    2014-01-01

    Nanocrystalline vanadium dioxide (VO 2 ) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO 2 thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T SMT ) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO 2 grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T SMT was found to decrease as average VO 2 grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO 2 film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure

  6. Fast response time alcohol gas sensor using nanocrystalline F

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method. Sarbani Basu Yeong-Her Wang C Ghanshyam Pawan Kapur. Volume 36 Issue 4 August 2013 pp 521-533 ...

  7. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi...

  8. Induced anisotropy effect in nanocrystalline cores for GFCBs

    Energy Technology Data Exchange (ETDEWEB)

    Waeckerle, T. E-mail: thierry.waeckerle@imphy.usinor.com; Verin, Ph.; Cremer, P.; Gautard, D

    2000-06-02

    Nanocrystalline materials are very efficient for GFCB cores with flat hysteresis loop, especially if permeability may be raised in keeping low the remanent induction. This can be achieved with peculiar field annealing . A thermodynamic model is proposed to explain the experimental evidence.

  9. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was .... 94·37% CaCO3, hence in order to prepare 1 M Ca2+ ion solu- ... requires an acid or base catalyst hence the pH of the solu-.

  10. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  11. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  12. New route to the fabrication of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Varshney, Deepak; Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-01-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production

  13. Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Laposa, A.; Kulha, Pavel; Kroutil, J.; Husák, M.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2591-2597 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : gas sensor * nanocrystalline diamond * quartz resonator * thickness shear mode Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 1.522, year: 2015

  14. Transparent nanocrystalline ZnO films prepared by spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Berber, M. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany)]. E-mail: mete.berber@sustech.de; Bulto, V. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Kliss, R. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Hahn, H. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Forschungszentrum Karlsruhe, Institute for Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Joint Research Laboratory Nanomaterials, TU Darmstadt, Institute of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany)

    2005-09-15

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents.

  15. Transparent nanocrystalline ZnO films prepared by spin coating

    International Nuclear Information System (INIS)

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  16. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  17. Electrodeposited nanocrystalline bronze alloys as replacement for Ni

    NARCIS (Netherlands)

    Hovestad, A.; Tacken, R.A.; Mannetje, H.H.'t

    2008-01-01

    Nanocrystalline white-bronze, CuSn, electroplating was investigated as alternative to Ni plating as undercoat for noble metals in jewellery applications. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. Polarization

  18. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  19. Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Michalíková, Lenka; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kmoch, S.

    2008-01-01

    Roč. 245, č. 10 (2008), s. 2124-2127 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cell growth * nanocrystalline diamond * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.166, year: 2008

  20. Oxygen reduction on nanocrystalline ruthenia-local structure effects

    DEFF Research Database (Denmark)

    Abbott, Daniel F.; Mukerjee, Sanjeev; Petrykin, Valery

    2015-01-01

    Nanocrystalline ruthenium dioxide and doped ruthenia of the composition Ru1-xMxO2 (M = Co, Ni, Zn) with 0 ≤ x ≤ 0.2 were prepared by the spray-freezing freeze-drying technique. The oxygen reduction activity and selectivity of the prepared materials were evaluated in alkaline media using the RRDE ...

  1. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 129, May (2015), 95-99 ISSN 0927-7765 R&D Projects: GA ČR GAP108/12/0996 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : field-effect transistors * nanocrystalline diamond * osteoblastic cells * leakage currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.902, year: 2015

  2. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  3. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    Directory of Open Access Journals (Sweden)

    Liskova J

    2015-01-01

    Full Text Available Jana Liskova,1 Oleg Babchenko,2 Marian Varga,2 Alexander Kromka,2 Daniel Hadraba,1 Zdenek Svindrych,1 Zuzana Burdikova,1 Lucie Bacakova1 1Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Nanocrystalline diamond (NCD films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination or oxygen atoms (O-termination. Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix

  4. Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Varam, Sreedevi; Rajulapati, Koteswararao V., E-mail: kvrse@uohyd.ernet.in; Bhanu Sankara Rao, K.

    2014-02-05

    Nanocrystalline aluminium powder synthesized using high energy ball milling process was characterized by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The studies indicated the powder having an average grain size of ∼42 nm. The consolidation of the powder was carried out by high-pressure compaction using a uni-axial press at room temperature by applying a pressure of 1.5 GPa. The cold compacted bulk sample having a density of ∼98% was subjected to nanoindentation which showed an average hardness and elastic modulus values of 1.67 ± 0.09 GPa and 83 ± 8 GPa respectively at a peak force of 8000 μN and a strain rate of 10{sup −2} s{sup −1}. Achieving good strength along with good ductility is challenging in nanocrystalline metals. When enough sample sizes are not available to measure ductility and other mechanical properties as per ASTM standards, as is the case with nanocrystalline materials, nanoindentation is a very promising technique to evaluate strain rate sensitivity. Strain rate sensitivity is a good measure of ductility and in the present work it is measured by performing indentation at various loads with varying loading rates. Strain rate sensitivity values of 0.024–0.054 are obtained for nanocrystalline Al which are high over conventional coarse grained Al. In addition, Scanning Probe Microscopy (SPM) image of the indent shows that there is some plastically flown region around the indent suggesting that this nanocrystalline aluminium is ductile.

  5. NATO Advanced Research Workshop on Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    CERN Document Server

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  6. Piezoresistivity in films of nanocrystalline manganites.

    Science.gov (United States)

    Sarkar, Jayanta; Raychaudhuri, A K

    2007-06-01

    Rare earth manganites having perovskite structure are susceptible to lattice strain. So far most investigations have been done with hydrostatic pressure or biaxial strain. We have observed that hole doped rare-earth manganites, which are known to display colossal magnetoresistance (CMR) also show change in its resistance under the influence of uniaxial strain. We report the direct measurement of piezoresistive response of La0.67Ca0.33MnO3 (LCMO) and La0.67Sr0.33MnO3 (LSMO) of this manganite family. The measurements were carried out on nanostructured polycrystalline films of LCMO and LSMO grown on oxidized Si(100) substrates. The piezoresistance was measured by bending the Si cantilevers (on which the film is grown) in flexural mode both with compressive and tensile strain. At room temperature the gauge factor approximately 10-20 and it increases to a large value near metal-insulator transition temperature (Tp) where the resistivity shows a peak.

  7. Theoretical study on recoilless fractions of simple cubic monatomic nanocrystalline particles

    International Nuclear Information System (INIS)

    Huang Jianping; Wang Luya

    2002-01-01

    Recoilless fractions of simple cubic monatomic nanocrystalline particles are calculated by using displacement-displacement Green's function. The numerical results show that the recoilless fractions on the surface of monatomic nanocrystalline particles are smaller than those in the inner, and they decrease when the particle size increase, the recoilless fractions of whole monatomic nanocrystalline particles increase when the particle size increase. These effects are more evident when the temperature is higher

  8. Vibrational thermodynamics of Fe90Zr7B3 nanocrystalline alloy from nuclear inelastic scattering

    DEFF Research Database (Denmark)

    Stankov, S.; Miglierini, M.; Chumakov, A. I.

    2010-01-01

    Recently we determined the iron-partial density of vibrational states (DOS) of nanocrystalline Fe(90)Zr(7)B(3) (Nanoperm), synthesized by crystallization of an amorphous precursor, for various stages of nanocrystallization separating the DOS of the nanograins from that of the interfaces [S. Stank......, vibrational entropy, and lattice specific heat as the material transforms from amorphous, through nanocrystalline, to fully crystallized state. The reported results shed new light on the previously observed anomalies in the vibrational thermodynamics of nanocrystalline materials....

  9. Spectroscopy and structural properties of amorphous and nanocrystalline silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Halindintwali, Sylvain; Knoesen, D.; Julies, B.A.; Arendse, C.J.; Muller, T. [University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Gengler, Regis Y.N.; Rudolf, P.; Loosdrecht, P.H.M. van [Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen (Netherlands)

    2011-09-15

    Amorphous SiC:H thin films were grown by hot wire chemical vapour deposition from a SiH{sub 4}/CH{sub 4}/H{sub 2} mixture at a substrate temperature below 400 C. Thermal annealing in an argon environment up to 900 C shows that the films crystallize as {mu}c-Si:H and SiC with a porous microstructure that favours an oxidation process. By a combination of spectroscopic tools comprising Fourier transform infrared, Raman scattering and X-rays photoelectron spectroscopy we show that the films evolve from the amorphous SiH{sub x}/SiCH{sub 2} structure to nanocrystalline Si and SiC upon annealing at a temperature of 900 C. A strong RT photoluminescence peak of similar shape has been observed at around 420 nm in both as-deposited and annealed samples. Time-resolved luminescence measurements reveal that this peak is fast decaying with lifetimes ranging from 0.5 to {proportional_to}1.1 ns. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A., E-mail: poulon@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Faure, C.; Teulé-Gay, L.; Manaud, J.P. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2015-03-15

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  11. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers

    Energy Technology Data Exchange (ETDEWEB)

    Laha, P., E-mail: plaha@vub.ac.be; Terryn, H.; Ustarroz, J., E-mail: justarro@vub.ac.be [Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Nazarkin, M. Y., E-mail: mikleo@mail.ru; Gavrilov, S. A. [Department of Materials of Functional Electronics (MFE), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation); Volkova, A. V.; Simunin, M. M. [Department of Quantum Physics and Nanoelectronics (QPN), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation)

    2015-03-09

    ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.

  12. Paramagnetic centers in nanocrystalline TiC/C system

    International Nuclear Information System (INIS)

    Guskos, N.; Bodziony, T.; Maryniak, M.; Typek, J.; Biedunkiewicz, A.

    2008-01-01

    Electron paramagnetic resonance is applied to study the defect centers in nanocrystalline titanium carbide dispersed in carbon matrix (TiC x /C) synthesized by the non-hydrolytic sol-gel process. The presence of Ti 3+ paramagnetic centers is identified below 120 K along with a minor contribution from localized defect spins coupled with the conduction electron system in the carbon matrix. The temperature dependence of the resonance intensity of the latter signal indicates weak antiferromagnetic interactions. The presence of paramagnetic centers connected with trivalent titanium is suggested to be the result of chemical disorder, which can be further related to the observed anomalous behavior of conductivity, hardness, and corrosion resistance of nanocrystalline TiC x /C

  13. Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Kaprans, Kaspars; Bajars, Gunars; Kucinskis, Gints; Dorondo, Anna; Mateuss, Janis; Gabrusenoks, Jevgenijs; Kleperis, Janis; Lusis, Andrejs

    2015-01-01

    Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAh·g −1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity retention over 85 % after 50 cycles. Results show that nanocrystalline graphene sheets prepared by EPD demonstrated a high potential for application as anode material in lithium ion batteries

  14. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Science.gov (United States)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  15. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  16. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  17. Grain boundary and triple junction diffusion in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, M., E-mail: m.wegner@uni-muenster.de; Leuthold, J.; Peterlechner, M.; Divinski, S. V., E-mail: divin@uni-muenster.de [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Song, X., E-mail: xysong@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Wilde, G. [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai (China)

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  18. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Directory of Open Access Journals (Sweden)

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  19. Size dependence of the optical spectrum in nanocrystalline silver

    International Nuclear Information System (INIS)

    Taneja, Praveen; Ayyub, Pushan; Chandra, Ramesh

    2002-01-01

    We report a detailed study of the optical reflectance in sputter-deposited, nanocrystalline silver thin films in order to understand the marked changes in color that occur with decreasing particle size. In particular, samples with an average particle size in the 20 to 35 nm range are golden yellow, while those with a size smaller than 15 nm are black. We simulate the size dependence of the observed reflection spectra by incorporating Mie's theory of scattering and absorption of light in small particles, into the bulk dielectric constant formalism given by Ehrenreich and Philipp [Phys. Rev. 128, 1622 (1962)]. This provides a general method for understanding the reflected color of a dense collection of nanoparticles, such as in a nanocrystalline thin film. A deviation from Mie's theory is observed due to strong interparticle interactions

  20. THz generation from a nanocrystalline silicon-based photoconductive device

    International Nuclear Information System (INIS)

    Daghestani, N S; Persheyev, S; Cataluna, M A; Rose, M J; Ross, G

    2011-01-01

    Terahertz generation has been achieved from a photoconductive switch based on hydrogenated nanocrystalline silicon (nc-Si:H), gated by a femtosecond laser. The nc-Si:H samples were produced by a hot wire chemical vapour deposition process, a process with low production costs owing to its higher growth rate and manufacturing simplicity. Although promising ultrafast carrier dynamics of nc-Si have been previously demonstrated, this is the first report on THz generation from a nc-Si:H material

  1. Electrochemical passivation behaviour of nanocrystalline Fe 80 Si ...

    Indian Academy of Sciences (India)

    Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route is studied and compared with that of the commercial pure iron and cast Fe80Si20 in sodium borate buffer solution at two different pH values (7.7 and 8.4). The coating reveals single passivation at a pH of 7.7 and ...

  2. A study of the structure and crystallisation of nanocrystalline zirconia

    International Nuclear Information System (INIS)

    Tucker, M.

    1999-12-01

    Nanocrystalline zirconia, prepared via, calcination of the hydroxide, has been studied using a variety of experimental techniques. Two chemical routes, a precipitation and a sol-gel route, were used to prepare the hydroxide. Neutron and X-ray diffraction, EXAFS, NMR and SANS have been used to study the structure and crystallisation, during in-situ and ambient condition measurements. The structural information from the diffraction data has been complimented by the other techniques to provide information on the short, medium and longer range structure of nanocrystalline zirconia. Pure and yttrium doped samples were studied, this enabled the affects of doping and preparation routes to be investigated. The amorphous hydroxide was found to have a, monoclinic-like structure for all samples, independent of preparation route or yttrium content. The crystallisation temperature was lowest for the pure precipitation sample and was increased by the addition of yttrium or by preparation via, the sol-gel route. For the precipitation samples, in addition to the crystallisation temperature being raised, doping with yttrium also had an effect on the size of the crystallites obtained at high temperatures. Due to the different incorporation method of the yttrium into the sol-gel samples the effect on crystallite size and crystallisation temperature, as seen for the precipitation samples, were not evident for the sol-gel samples. The neutron and NMR data clearly show hydrogen remains in the samples well after crystallisation has become evident. The structural picture of nanocrystalline zirconia consisting of small crystallites surrounded by material containing, or terminated by, hydroxyl groups, is supported by all the results and methods used in this thesis. The in-situ and ambient conditions data is combined into a coherent growth picture of the nanocrystalline material from the hydroxide until at high enough temperatures the bulk or polycrystalline material is formed. (author)

  3. Critical currents and fields of disordered nanocrystalline superconductors

    International Nuclear Information System (INIS)

    Yavary, H.; Shahzamanian, M.A.; Rabbani, H.

    2007-01-01

    Full text: There is an enormous effort directed at increasing the upper critical field of the superconducting materials because this upper critical field provides a fundamental limit to the maximum field a magnet system can produce. High-energy particle accelerators and medical resonance imaging body scanners are limited by the for NbTi (10 T). Gigahertz class nuclear-magnetic-resonance and high field laboratory magnets are limited by for Nb 3 Sn (23 T) [1]. However, the values of critical current density are too low for industrial use, possibly because of degraded or nonsuperconducting phases, such as MoS 2 or Mo 2 S 3 , at the grain boundaries or because the pinning site density is not high enough. It has long been known that decreasing the grain size of low-temperature superconducting (LTS) materials, such as Nb 3 Sn, increases the density of flux pinning sites and hence. Nanocrystalline materials are characterized by ultrafine grains and a high density of grain boundaries [2]. Hence nanocrystalline materials can exhibit unusual physical, chemical, and mechanical properties with respect to conventional polycrystalline materials. The purpose of this paper is to investigate the structure of currents and fields in disordered nanocrystalline superconducting materials by the use of quasiclassical many body techniques. The Keldish Greens functions are used to calculate the current density of the system. Since the disorder and microstructure of these nanocrystalline materials are on a sufficiently short length scale as to increase both the density of pinning site and the upper critical field. (authors)

  4. Investigation of microstructure thermal evolution in nanocrystalline Cu

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2011-01-01

    The microstructure of nanocrystalline Cu prepared by compacting nanoparticles (50-60 nm in diameter) under high pressures has been studied by means of positron lifetime spectroscopy and X-ray diffraction. These nanoparticles were produced by two different methods. We found that there are order regions interior to the grains and disorder regions at the grain boundaries with a wide distribution of interatomic distances. The mean grain sizes of the nanocrystalline Cu samples decrease after being annealed at 900 o C and increase during aging at 180 o C, which are observed by X-ray diffraction, revealing that the atoms exchange between the two regions. The positron lifetime results clearly indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder grain growth when the samples age at 180 o C, and the vacancy clusters inside the disorder regions, which are related to Cu 2 O, need longer aging time to decompose. The disorder regions remain after the heat treatment in this work, in spite of the grain growth, which will be good for the samples keeping the properties of nanocrystalline material. -- Research highlights: → We use a digital positron lifetime spectrometer correlated with XRD to study the microstructure evolution of nanocrystalline Cu during thermal treatment. → An atomic scale microstructure of grain boundary is characterized. Further, the surface oxidation of the nanoparticles is considered. → The disorder regions remain after the heat treatment in this work, in spite of grain growth.

  5. Stress-induced magnetic anisotropy in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Varga, L.K.; Gercsi, Zs.; Kovacs, Gy.; Kakay, A.; Mazaleyrat, F.

    2003-01-01

    Stress-annealing experiments were extended to both nanocrystalline alloy families, Finemet and Nanoperm (Hitperm), and, for comparison, to amorphous Fe 62 Nb 8 B 30 alloy. For both Finemet and bulk amorphous, stress-annealing results in a strong induced transversal anisotropy (flattening of hysteresis loop) but yields longitudinal induced anisotropy (square hysteresis loop) in Nanoperm and Hitperm. These results are interpreted in terms of back-stress theory

  6. Possible origin of superior corrosion resistance for electrodeposited nanocrystalline Ni

    International Nuclear Information System (INIS)

    Roy, I.; Yang, H.W.; Dinh, L.; Lund, I.; Earthman, J.C.; Mohamed, F.A.

    2008-01-01

    We present here for the first time observations that grain boundaries in electrodeposited (ED) nanocrystalline (nc) Ni are predominantly of Σ3 character. The results presented are based on orientation imaging microscopy (OIM) performed to produce electron backscatter diffraction (EBSD) maps. This large volume fraction of coherent low sigma coincidence site lattice (CSL) boundaries appears to be consistent with the superior corrosion resistance of ED nc-Ni in comparison with its coarse-grained counterpart

  7. Thermoelectric nanocrystalline YbCoSb laser prepared layers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Zeipl, Radek; Kocourek, Tomáš; Remsa, Jan; Navrátil, Jiří

    2016-01-01

    Roč. 122, č. 3 (2016), s. 1-5, č. článku 155. ISSN 0947-8396 R&D Projects: GA ČR(CZ) GA13-33056S Institutional support: RVO:68378271 ; RVO:61389013 Keywords : nanocrystalline YbCoSb * thermoelectric layers * pulsed laser deposition Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UMCH-V) Impact factor: 1.455, year: 2016

  8. Microwave PECVD of nanocrystalline diamond with rf induced bias nucleation

    Czech Academy of Sciences Publication Activity Database

    Frgala, Z.; Jašek, O.; Karásková, M.; Zajíčková, L.; Buršíková, V.; Franta, D.; Matějková, Jiřina; Rek, Antonín; Klapetek, P.; Buršík, Jiří

    2006-01-01

    Roč. 56, Suppl. B (2006), s. 1218-1223 ISSN 0011-4626 R&D Projects: GA ČR(CZ) GA202/05/0607 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z20410507 Keywords : nanocrystalline diamond * plasma enhanced chemical vapor deposition * self-bias Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  9. Nanocrystalline SiC film thermistors for cryogenic applications

    Science.gov (United States)

    Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.

    2018-02-01

    We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.

  10. Quantum transport in boron-doped nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Kindl, Dobroslav; Nesládek, Miloš

    2008-01-01

    Roč. 14, č. 7-8 (2008), s. 161-172 ISSN 0948-1907 R&D Projects: GA ČR GA202/07/0525; GA AV ČR IAA1010404; GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond film * ballistic transport * superconductivity * Josephson’s effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2008

  11. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Sun, S. J.; Varga, M.; Chou, H.; Hsu, H.S.; Kromka, A.; Horák, Pavel

    2015-01-01

    Roč. 394, Nov (2015), s. 477-480 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LD14011 EU Projects: European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diamond * nonmetallic ferromagnetic materials * fine-particle systems * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  12. Electrodeposition and characterization of nanocrystalline CoNiFe films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Wang, Q.P. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cai, C. [School of Chemistry and chemical engineering, Ningxia University, Yinchuan 750021 (China); Yuan, Y.N. [Department of Materials and Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao, F.H. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Z., E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, J.Q. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2012-02-29

    Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} films have been fabricated using cyclic voltammetry technique from the solutions containing sulfate, then characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer. Meanwhile, Electrochemical Impedance Spectroscopy technique has been employed to probe into the nucleation/growth behavior of Co{sub 45}Ni{sub 10}Fe{sub 24} films. The results show that, the obtained Co{sub 45}Ni{sub 10}Fe{sub 24} film possesses low coercivity of 973.3 A/m and high saturation magnetic flux density of 1.59 Multiplication-Sign 10{sup 5} A/m. Under the experimental conditions, the nucleation/growth process of Co{sub 45}Ni{sub 10}Fe{sub 24} films is mainly under activation control. With the increase of the applied cathodic potential bias, the charge transfer resistance for CoNiFe deposition decreases exponentially. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} film is obtained using cyclic voltammetry technique. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses low coercivity of 973.3 A/m. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses high saturation magnetic flux density. Black-Right-Pointing-Pointer The nucleation/growth process of CoNiFe films is mainly under activation control. Black-Right-Pointing-Pointer The charge transfer resistance for CoNiFe deposition decreases exponentially.

  13. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  14. Uncertainty propagation in a multiscale model of nanocrystalline plasticity

    International Nuclear Information System (INIS)

    Koslowski, M.; Strachan, Alejandro

    2011-01-01

    We characterize how uncertainties propagate across spatial and temporal scales in a physics-based model of nanocrystalline plasticity of fcc metals. Our model combines molecular dynamics (MD) simulations to characterize atomic-level processes that govern dislocation-based-plastic deformation with a phase field approach to dislocation dynamics (PFDD) that describes how an ensemble of dislocations evolve and interact to determine the mechanical response of the material. We apply this approach to a nanocrystalline Ni specimen of interest in micro-electromechanical (MEMS) switches. Our approach enables us to quantify how internal stresses that result from the fabrication process affect the properties of dislocations (using MD) and how these properties, in turn, affect the yield stress of the metallic membrane (using the PFMM model). Our predictions show that, for a nanocrystalline sample with small grain size (4 nm), a variation in residual stress of 20 MPa (typical in today's microfabrication techniques) would result in a variation on the critical resolved shear yield stress of approximately 15 MPa, a very small fraction of the nominal value of approximately 9 GPa. - Highlights: → Quantify how fabrication uncertainties affect yield stress in a microswitch component. → Propagate uncertainties in a multiscale model of single crystal plasticity. → Molecular dynamics quantifies how fabrication variations affect dislocations. → Dislocation dynamics relate variations in dislocation properties to yield stress.

  15. XRD and HREM studies of nanocrystalline Cu and Pd

    International Nuclear Information System (INIS)

    Nieman, G.W.; Weertmen, J.R.; Siegel, R.W.

    1991-01-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate rain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sized range from 4-60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2-3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of ≥2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. In this paper methodology, results and analysis of XRD and HREM experiments are presented

  16. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  17. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    Science.gov (United States)

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  18. Hydrothermally grown zeolite crystals

    International Nuclear Information System (INIS)

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  19. Structural, microstructural and transport properties study of lanthanum lithium titanium perovskite thin films grown by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Maqueda, O.; Sauvage, F.; Laffont, L.; Martinez-Sarrion, M.L.; Mestres, L.; Baudrin, E.

    2008-01-01

    Lanthanum lithium titanate thin films were grown by Pulsed Laser Deposition. La 0.57 Li 0.29 TiO 3 dense films with smooth surfaces were obtained after optimization of the growth parameters. Such films deposited at 700 deg. C under 15 Pa are nano-crystalline with domains corresponding to the cubic and tetragonal modifications of this phase. In relation to the measured conductivities/activation energy and to previous works, we clearly underlined that the films of practical interest, prepared at relatively low temperature, are predominantly formed from the tetragonal ordered phase

  20. Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles

    International Nuclear Information System (INIS)

    Limaye, Mukta V.; Singh, Shashi B.; Date, Sadgopal K.; Gholap, R.S.; Kulkarni, Sulabha K.

    2009-01-01

    Zinc oxide in the bulk as well as in the nanocrystalline form is thermodynamically stable in the wurtzite structure. However, zinc oxide in the zinc-blende structure is more useful than that in the wurtzite structure due to its superior electronic properties as well as possibility of efficient doping. Therefore, zinc oxide shell is grown epitaxially on zinc sulphide core nanoparticles having zinc-blende structure. It is shown that doping of manganese could be achieved in zinc oxide nanoshell with zinc-blende structure

  1. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Y. E-mail: chimi@popsvr.tokai.jaeri.go.jp; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Okuda, S

    2001-09-01

    Effects of 60 MeV {sup 12}C ion irradiation on nanocrystalline gold (nano-Au) are studied. The experimental results show that the irradiation-produced defects in nano-Au are thermally unstable because of the existence of a large volume fraction of grain boundaries. This suggests a possibility of the use of nanocrystalline materials as irradiation-resistant materials.

  2. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  3. Grown on Novel Microcarriers

    Directory of Open Access Journals (Sweden)

    Torsten Falk

    2012-01-01

    Full Text Available Human retinal pigment epithelial (hRPE cells have been tested as a cell-based therapy for Parkinson’s disease but will require additional study before further clinical trials can be planned. We now show that the long-term survival and neurotrophic potential of hRPE cells can be enhanced by the use of FDA-approved plastic-based microcarriers compared to a gelatin-based microcarrier as used in failed clinical trials. The hRPE cells grown on these plastic-based microcarriers display several important characteristics of hRPE found in vivo: (1 characteristic morphological features, (2 accumulation of melanin pigment, and (3 high levels of production of the neurotrophic factors pigment epithelium-derived factor (PEDF and vascular endothelial growth factor-A (VEGF-A. Growth of hRPE cells on plastic-based microcarriers led to sustained levels (>1 ng/ml of PEDF and VEGF-A in conditioned media for two months. We also show that the expression of VEGF-A and PEDF is reciprocally regulated by activation of the GPR143 pathway. GPR143 is activated by L-DOPA (1 μM which decreased VEGF-A secretion as opposed to the previously reported increase in PEDF secretion. The hRPE microcarriers are therefore novel candidate delivery systems for achieving long-term delivery of the neuroprotective factors PEDF and VEGF-A, which could have a value in neurodegenerative conditions such as Parkinson’s disease.

  4. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  5. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  6. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron

    International Nuclear Information System (INIS)

    Nie, F L; Zheng, Y F; Wei, S C; Hu, C; Yang, G

    2010-01-01

    Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.

  7. Effects of precursors on the crystal structure and photoluminescence of CdS nanocrystalline

    International Nuclear Information System (INIS)

    Fu Zuoling; Zhou Shihong; Shi Jinsheng; Zhang Siyuan

    2005-01-01

    A series of cadmium sulfide (CdS) nanocrystalline were synthesized by precipitation from a mixture of aqueous solutions of cadmium salts and sulfur salts without adding any surface-termination agent. Their crystal structures and particle sizes were determined by X-ray diffraction (XRD). The CdS nanocrystalline precipitated from different precursors exhibited three cases: cubic phase, hexagonal phase and a hybrid of cubic and hexagonal phases. The photoluminescence (PL) of cadmium salt precursors and CdS nanocrystalline is also analyzed. Similar spectral band structure of cadmium salt precursors and CdS nanocrystalline is found. The PL of 3.4, 2.4 and 2.0 nm sized CdS nanocrystalline with the same crystal structure indicated quantum confinement effect

  8. Room temperature growth of nanocrystalline anatase TiO{sub 2} thin films by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preetam, E-mail: preetamphy@gmail.co [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kaur, Davinder [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2010-03-01

    We report, the structural and optical properties of nanocrystalline anatase TiO{sub 2} thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO{sub 2} film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO{sub 2} films for device applications with different refractive index, by changing the deposition parameters.

  9. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  10. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rao, T.V. Chandrasekhar; Bhushan, K.G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ali, Kawsar [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Debnath, A. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Arya, A. [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, S. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Basu, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Monophasic and homogeneous Ni{sub 10}Zr{sub 7} nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni{sub 10}Zr{sub 7} alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize.

  11. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    International Nuclear Information System (INIS)

    Kumar, Pragati; Agarwal, Avinash; Saxena, Nupur; Singh, Fouran; Gupta, Vinay

    2014-01-01

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ a /Γ b ) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  12. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Agarwal, Avinash [Department of Physics, Bareilly College, Bareilly 243 005, Uttar Pradesh (India); Saxena, Nupur; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2014-07-28

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ{sub a}/Γ{sub b}) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  13. GREENHOUSE-GROWN CAPE GOOSEBERRY

    African Journals Online (AJOL)

    /2006 S 4,00. Printed in Uganda. All rights reserved O2006, African Crop Science Society. SHORT COMMINICATION. EFFECT OF GIBBERRELLIC ACID ON GROWTH AND FRUIT YIELD OF. GREENHOUSE-GROWN CAPE GOOSEBERRY.

  14. The radiation response of mesoporous nanocrystalline zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Ayelén M.; Alurralde, Martin A. [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Giménez, Gustavo [Instituto Nacional de Tecnología Industrial - CMNB, Av. General Paz 5445, 1650 San Martín, Provincia de Buenos Aires (Argentina); Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2016-12-15

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce{sup 3+}-stabilized nanocrystalline zirconia (Ce{sub 0.1}Zr{sub 0.9}O{sub 2}) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60–80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8–10 nm. Films stabilized with Ce{sup 3+} contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (10{sup 13} - 10{sup 14} cm{sup −2}) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 10{sup 16} cm{sup −2}) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132–180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD

  15. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  16. Preparation of porous ceramics from nanocrystalline zirconia and its microstructure

    International Nuclear Information System (INIS)

    Nikitin, D.S.; Zhukov, V.A.; Kul'kov, S.N.; Perkov, V.V.; Buyakova, S.P.

    2004-01-01

    The behaviour of ZrO 2 (Y) nanocrystalline powder under pressing, the effect of forming pressure, the temperature and the time of sintering on the structure of the sintered porous ceramics are under study. It is shown that on pressing the fracturing of powder particles and their agglomerates takes place even at low pressures (≅50 MPa). The change of densification mechanisms is revealed - from quasi-liquid displacement of powder particles at the beginning of mechanical action to fracture of coarse structural elements. It is established that a strong skeleton responsible for needed porosity is formed even at the initial stage of sintering [ru

  17. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  18. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  19. Elemental separation in nanocrystalline Cu-Al alloys

    Science.gov (United States)

    Wang, Y. B.; Liao, X. Z.; Zhao, Y. H.; Cooley, J. C.; Horita, Z.; Zhu, Y. T.

    2013-06-01

    Nanocrystallization by high-energy severe plastic deformation has been reported to increase the solubility of alloy systems and even to mix immiscible elements to form non-equilibrium solid solutions. In this letter, we report an opposite phenomenon—nanocrystallization of a Cu-Al single-phase solid solution by high-pressure torsion separated Al from the Cu matrix when the grain sizes are refined to tens of nanometers. The Al phase was found to form at the grain boundaries of nanocrystalline Cu. The level of the separation increases with decreasing grain size, which suggests that the elemental separation was caused by the grain size effect.

  20. Tailoring the wettability of nanocrystalline TiO 2 films

    Science.gov (United States)

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  1. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    Science.gov (United States)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  2. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    Science.gov (United States)

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  3. Electron holography of Fe-based nanocrystalline magnetic materials (invited)

    International Nuclear Information System (INIS)

    Shindo, Daisuke; Park, Young-Gil; Gao, Youhui; Park, Hyun Soon

    2004-01-01

    Magnetic domain structures of nanocrystalline magnetic materials were extensively investigated by electron holography with a change in temperature or magnetic field applied. In both soft and hard magnetic materials, the distribution of lines of magnetic flux clarified in situ by electron holography was found to correspond well to their magnetic properties. An attempt to produce a strong magnetic field using a sharp needle made of a permanent magnet, whose movement is controlled by piezo drives has been presented. This article demonstrates that the attempt is promising to investigate the magnetization process of hard magnetic materials by electron holography

  4. EXAFS and XRD studies of nanocrystalline cerium oxide: the effect of preparation method on the microstructure

    International Nuclear Information System (INIS)

    Savin, S.L.P.; Chadwick, A.V.; Smith, M.E.; O'Dell, L.A.

    2007-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties, such as enhanced ionic conductivity in the case of nanocrystalline ionic solids. This has potential commercial applications, particularly for oxide ion conductors. However, a detailed knowledge of the microstructure is important in fully understanding the novel properties exhibited by nanocrystalline materials. The final microstructure of a material is dependent on the preparation method used, for example, sol-gel and ball-milling methods are commonly used in the preparation of nanocrystalline oxides. Additionally, there is a problem in maintaining the materials in nanocrystalline form when they are subjected to elevated temperatures. We have been exploring strategies to restrict the growth of nanocrystalline oxides and have found that adding a small amount of an inert material, e.g. SiO 2 or Al 2 O 3 , is particularly effective. We will report XRD and EXAFS studies of nanocrystalline ceria prepared by sol-gel, sol-gel pinned and ball-milling methods and the effect of preparation method on the final microstructure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  6. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  7. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  8. Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling

    DEFF Research Database (Denmark)

    Balaz, P.; Godocikova, E.; Alacova, A.

    2004-01-01

    The nanocrystalline pyrrhotite was prepared by high-energy milling of lead sulphide with elemental Fe acting as reducing element. X-ray diffractometry, Mossbauer spectroscopy and VSM magnetometry were used to determine the properties of nanocrystalline iron sulphide prepared by the corresponding...... mechanochemical reaction. Pyrrhotite Fe1-xS together with the residual Fe metal were identified by the X-ray diffractometry. The kinetic studies performed by Mossbauer spectroscopy and VSM magnetometry allowed us to follow in more details the progress of the nanocrystalline magnetic phase formation during...

  9. Syntheses of nanocrystalline BaTiO3 and their optical properties

    Science.gov (United States)

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  10. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  11. Interface effects on effective elastic moduli of nanocrystalline materials

    International Nuclear Information System (INIS)

    Wang Gangfeng; Feng Xiqiao; Yu Shouwen; Nan Cewen

    2003-01-01

    Interfaces often play a significant role in many physical properties and phenomena of nanocrystalline materials (NcMs). In the present paper, the interface effects on the effective elastic property of NcMs are investigated. First, an atomic potential method is suggested for estimating the effective elastic modulus of an interface phase. Then, the Mori-Tanaka effective field method is employed to determine the overall effective elastic moduli of a nanocrystalline material, which is regarded as a binary composite consisting of a crystal or inclusion phase with regular lattice connected by an amorphous-like interface or matrix phase. Finally, the stiffening effects of strain gradients are examined on the effective elastic property by using the strain gradient theory to analyze a representative unit cell. Our analysis shows two physical mechanisms of interfaces that influence the effective stiffness and other mechanical properties of materials. One is the softening effect due to the distorted atomic structures and the increased atomic spacings in interface regions, and another is the baffling effect due to the existence of boundary layers between the interface phase and the crystalline phase

  12. A variational multiscale constitutive model for nanocrystalline materials

    KAUST Repository

    Gurses, Ercan

    2011-03-01

    This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse HallPetch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel. © 2010 Elsevier Ltd. All rights reserved.

  13. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Graetzel, M. [Institut de Chimie Physique, Ecole Polytechnique Federal de Lausanne (Switzerland)

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  14. Mechanical properties of nanocrystalline palladium prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Castrup, Anna; Hahn, Horst [Forschungszentrum Karlsruhe (Germany); Technical University of Darmstadt (Germany); Scherer, Torsten; Ivanisenko, Yulia; Choi, In-Suk; Kraft, Oliver [Forschungszentrum Karlsruhe (Germany)

    2009-07-01

    Nanocrystalline metals and alloys with grain sizes well below 100 nm often demonstrate unique deformation behaviour and therefore attract a great interest in material science. The understanding of deformation mechanisms operating in nanocrystalline materials is important to predict their mechanical properties. In the present study Pd films of 1{mu}m thickness were prepared using UHV rf magnetron sputtering on dog bone shaped Kapton substrates and on Si/SiO2 wafers. The films were sputtered using multilayer technology with an individual layer thickness of 10 nm. This resulted in grain sizes of about 20 nm. Initial microstructure and texture were characterized using conventional XRD measurements and transmission electron microscopy (TEM) in both cross section- and plane view. The mechanical properties were investigated using tensile testing and nanoindentation at several strain rates. An increased hardness and strength as compared to coarse grained Pd was observed, as well as high strain rate sensitivity. The microstructure in the gauge section after tensile testing was again analyzed using TEM in order to reveal signatures of deformation mechanisms like dislocation motion or twinning.

  15. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    Science.gov (United States)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  16. Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes

    Directory of Open Access Journals (Sweden)

    Milošević Olivera B.

    2003-01-01

    Full Text Available This paper represents the results of the design of functional nanocrystalline powders and nanocomposites using chemical reactions in aerosols. The process involves ultrasonic aerosol formation (mist generators with the resonant frequencies of 800 kHz, 1.7 and 2.5 MHz from precursor salt solutions and control over the aerosol decomposition in a high-temperature tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a single-step process. Consequently, spherical, solid, agglomerate-free submicronic particles are obtained. The particle morphology, revealed as a composite structure consisting of primary crystallites smaller than 20 nm was analysed by several methods (XRD, DSC/DTA, SEM, TEM and discussed in terms of precursor chemistry and process parameters. Following the initial attempts, a more detailed aspect of nanocrystalline particle synthesis was demonstrated for the case of nanocomposites based on ZnO-MeO (MeO=Bi Cr+, suitable for electronic applications, as well as an yttrium-aluminum base complex system, suitable for phosphorus applications. The results imply that parts of the material structure responsible for different functional behaviour appear through in situ aerosol synthesis by processes of intraparticle agglomeration, reaction and sintering in the last synthesis stage.

  17. New atom probe approaches to studying segregation in nanocrystalline materials

    International Nuclear Information System (INIS)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J.; Cao, Y.; Liao, X.Z.; Cairney, J.M.

    2013-01-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess

  18. Nanocrystalline zinc oxide for the decontamination of sarin

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, T.H. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Prasad, G.K., E-mail: gkprasad@lycos.com [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India)

    2009-06-15

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of {approx}55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h{sup -1} and 0.16 h in the initial stages of the reaction and 0.361 h{sup -1} and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  19. Nanocrystalline zinc oxide for the decontamination of sarin

    International Nuclear Information System (INIS)

    Mahato, T.H.; Prasad, G.K.; Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R.

    2009-01-01

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of ∼55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h -1 and 0.16 h in the initial stages of the reaction and 0.361 h -1 and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  20. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  1. Magnetic induction heating of FeCr nanocrystalline alloys

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J.I.; Pastor, J.M.; Olivera, J.; Soto-Armañanzas, J.

    2012-01-01

    In this work the thermal effects of magnetic induction heating in (FeCr) 73.5 Si 13.5 Cu 1 B 9 Nb 3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia. - Highlights: ► Amorphous and nanocrystalline Fe based alloys with tailored Curie temperature of the amorphous phase. ► Induction heating effects under the action of a ac magnetic field. ► Self-regulated characteristics based on the control of the Curie temperature. ► Dominant role of the eddy-current losses in the self-heating phenomena.

  2. Magnetotransport in nanocrystalline SmB6 thin films

    Directory of Open Access Journals (Sweden)

    Jie Yong

    2015-07-01

    Full Text Available SmB6 has been predicted to be a prototype of topological Kondo insulator (TKI but its direct experimental evidence as a TKI is still lacking to date. Here we report on our search for the signature of a topological surface state and investigation of the effect of disorder on transport properties in nanocrystalline SmB6 thin films through longitudinal magnetoresistance and Hall coefficient measurements. The magnetoresistance (MR at 2 K is positive and linear (LPMR at low field and become negative and quadratic at higher field. While the negative part is understood from the reduction of the hybridization gap due to Zeeman splitting, the positive dependence is similar to what is observed in other topological insulators (TI. We conclude that the LPMR is a characteristic of TI and is related to the linear dispersion near the Dirac cone. The Hall resistance shows a sign change around 50K. It peaks and becomes nonlinear around 10 K then decreases below 10 K. This indicates that carriers with opposite signs emerge below 50 K. These properties indicate that the surface states are robust and probably topological in our nanocrystalline films.

  3. New atom probe approaches to studying segregation in nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  4. New atom probe approaches to studying segregation in nanocrystalline materials.

    Science.gov (United States)

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Mechanically alloyed PrFeB nanocrystalline magnets

    International Nuclear Information System (INIS)

    Kaszuwara, W.; Leonowicz, M.

    1998-01-01

    Mechanically alloyed PrFeB nanocrystalline magnets were prepared by extensive ball milling of Pr, Fe and Fe 80 B 20 powders, followed by diffusion annealing. After milling, the material consisted of nanocrystalline α-Fe crystallites embedded in amorphous Pr-rich matrix. Thermomagnetic and calorimetric investigations of the transformations which occurred during annealing showed that the amorphous phase crystallised at 240 C, leading to the formation of crystalline Pr having lattice constants 10% greater than those shown in the ASTM data. This fact indicated that mechanical alloying and low temperature annealing led to the formation of a solid solution of either Fe or B in Pr, which does not exist in the equilibrium state. The Pr 2 Fe 14 B phase was subsequently formed within a temperature range of 420-620 C. The magnetic properties of magnets depend on the phase structure and grain size. Milling time appears to be a decisive processing parameter for the tailoring of the magnetic properties. Depending on the phase structure, the coercivities varied from 100 to 1200 kA/m and, respectively, the remanences from 0.98 T to 0.6 T. The highest maximum energy product was 80 kJ/m 3 . (orig.)

  6. Investigation of nanocrystalline Gd films loaded with hydrogen

    KAUST Repository

    Hruška, Petr; Čí žek, Jakub; Dobroň, Patrik; Anwand, Wolfgang; Mü cklich, Arndt; Gemma, Ryota; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid

    2015-01-01

    The present work reports on microstructure studies of hydrogen-loaded nanocrystalline Gd films prepared by cold cathode beam sputtering on sapphire (112¯0) substrates. The Gd films were electrochemically step-by-step charged with hydrogen and the structural development with increasing concentration of absorbed hydrogen was studied by transmission electron microscopy and in-situ   X-ray diffraction using synchrotron radiation. The relaxation of hydrogen-induced stresses was examined by acoustic emission measurements. In the low concentration range absorbed hydrogen occupies preferentially vacancy-like defects at GBs typical for nanocrystalline films. With increasing hydrogen concentration hydrogen starts to occupy interstitial sites. At the solid solution limit the grains gradually transform into the ββ-phase (GdH2). Finally at high hydrogen concentrations xH>2.0xH>2.0 H/Gd, the film structure becomes almost completely amorphous. Contrary to bulk Gd specimens, the formation of the γγ-phase (GdH3) was not observed in this work.

  7. Morphology and Structural Characterization of Carbon Nanowalls Grown via VHF-PECVD

    Science.gov (United States)

    Akmal Hasanudin, M.; Wahab, Y.; Ismail, A. K.; Zahid Jamal, Z. A.

    2018-03-01

    A 150 MHz very high frequency plasma enhanced chemical vapor deposition (150 MHz VHF-PECVD) system was utilized to fabricate two-dimensional carbon nanostructure from the mixture of methane and hydrogen. Morphology and structural properties of the grown nanostructure were investigated by FESEM imaging and Raman spectroscopy. Carbon nanowalls (CNW) with dense and wavy-like structure were successfully synthesized. The wavy-like morphology of CNW was found to be more distinct during growth at small electrode spacing and denser with increasing deposition time due to better flux of hydrocarbon radicals to the substrate and higher rate of reaction, respectively. Typical characteristics of CNW were observed from strong D band, narrow bandwidth of G band and single broad peak of 2D band of Raman spectra indicating the presence of disordered nanocrystalline graphite structure with high degree of graphitization.

  8. Structural, optical and magnetic properties of nanocrystalline Co-doped ZnO thin films grown by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Kayani, Zohra Nazir; Shah, Iqra; Zulfiqar, Bareera; Sabah, Aneeqa [Lahore College for Women Univ., Lahore (Pakistan); Riaz, Saira; Naseem, Shahzad [Univ. of the Punjab, Lahore (Pakistan). Centre of Excellence in Solid State Physics

    2018-04-01

    Cobalt-doped ZnO thin films have been deposited using a sol-gel route by changing the number of coats on the substrate from 6 to 18. This project deals with various film thicknesses by increasing the number of deposited coats. The effect of thickness on structural, magnetic, surface morphology and optical properties of Co-doped ZnO thin film was studied. The crystal structure of the Co-doped ZnO films was investigated by X-ray diffraction. The films have polycrystalline wurtzite hexagonal structures. A Co{sup 2+} ion takes the place of a Zn{sup 2+} ion in the lattice without creating any distortion in its hexagonal wurtzite structure. An examination of the optical transmission spectra showed that the energy band gap of the Co-doped ZnO films increased from 3.87 to 3.97 eV with an increase in the number of coatings on the substrate. Ferromagnetic behaviour was confirmed by measurements using a vibrating sample magnetometer. The surface morphology of thin films was assessed by scanning electron microscope. The grain size on the surface of thin films increased with an increase in the number of coats.

  9. Characterization of carbon nanotubes grown on Fe70Pd30 film

    International Nuclear Information System (INIS)

    Khan, Zishan H.; Islam, S.S.; Kung, S.C.; Perng, T.P.; Khan, Samina; Tripathi, K.N.; Agarwal, Monika; Zulfequar, M.; Husain, M.

    2006-01-01

    Carbon nanotubes have been synthesized by a LPCVD on nanocrystalline Fe-Pd film. CNTs are grown for 30min and 1h respectively. From the SEM images, the diameter of these nanotubes varies from 40-80nm and the length is several micro-meter approximately. TEM observations suggest that the CNTs are multi-walled and the structure changes from ordinary geometry of CNTs to bamboo shaped. We have observed sharp G and D bands in the Raman spectra of these carbon nanotubes. Higher D-band is observed for the carbon nanotubes grown for longer time (1h), showing that these nanotubes contain more amorphous carbon. The field emission measurements for these CNTs are also performed. For CNTs grown for longer time (1h), a superior turn-on field of 4.88V/μm (when the current density achieves 10μA/cm 2 ) is obtained and a current density of 29.36mA/cm 2 can be generated at 9.59V/μm

  10. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2011-01-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary

  11. Preparation and mechanical properties of ultra-high-strength nanocrystalline metals

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 15, č. 4 (2015), s. 596-600 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Mechanical properties * Nanocrystalline materials * Selective leaching * Silver * Spark plasma sintering Subject RIV: JG - Metallurgy

  12. Synthesis, characterization and photoluminescence properties of Dy3+ -doped nano-crystalline SnO2.

    CSIR Research Space (South Africa)

    Pillai, SK

    2010-04-15

    Full Text Available the crystallite size. The experimental result on photoluminescence characteristics originating from Dy3+-doping in nanocrystalline SnO2 reveals the dependence of the luminescent intensity on dopant concentration....

  13. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  14. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  15. On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2010-01-01

    We present a physically motivated computational study explaining the tension/compression (T/C) asymmetry phenomenon in nanocrystalline (nc) and ultrafine-grained (ufg) face centered cubic (fcc) metals utilizing a variational constitutive model where

  16. Round table discussion: Present and future applications of nanocrystalline magnetic materials

    International Nuclear Information System (INIS)

    Herzer, G.; Vazquez, M.; Knobel, M.; Zhukov, A.; Reininger, T.; Davies, H.A.; Groessinger, R.; Sanchez Ll, J.L.

    2005-01-01

    Examples of existing or potential applications of nanocrystalline magnetic materials, ranging from soft to hard magnetic alloys, are presented and discussed by experts in the respective fields of research and technology

  17. Thermal stability of grain boundaries in nanocrystalline Zn studied by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2012-01-01

    Nanocrystalline Zn prepared by compacting nanoparticles with mean grain size about 55 nm at 15 MPa has been studied by positron lifetime spectroscopy. For the bulk Zn sample, the vacancy defect is annealed out at about 350 °C, but for the nanocrystalline Zn sample, the vacancy cluster in grain boundaries is quite difficult to be annealed out even at very high temperature (410 °C). In the grain boundaries of nanocrystalline Zn, the small free volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ 1 ). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τ av ), which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. This stabilization is very important for the nanocrystalline materials using as radiation resistant materials.

  18. Structure and coercivity of nanocrystalline Fe–Si–B–Nb–Cu alloys

    Indian Academy of Sciences (India)

    Unknown

    Fe–Si–B–Nb–Cu alloy; melt-spinning; crystallization; nanocrystalline ... to possess a unique combination of soft magnetic properties ... meability and high electrical resistivity (Yoshizawa et al ... ture and thermal stability of the alloy ribbons.

  19. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    International Nuclear Information System (INIS)

    Zhang Lijie; Webster, Thomas J; Rodriguez, Jose; Raez, Jose; Myles, Andrew J; Fenniri, Hicham

    2009-01-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml -1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  20. Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M. L. [Università degli Studi di Roma “Tor Vergata,” via Della Ricerca Scientifica, Dipartimento di Scienze e Tecnologie Chimiche—MinimaLab (Italy); Rossi, M. [Università degli Studi di Roma “Sapienza,” via A. Scarpa, Dipartimento di Scienze di Base e Applicate per l’Ingegneria and Centro di Ricerca per le Nanotecnologie Applicate all’Ingegneria (CNIS) (Italy); Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it [Università degli Studi di Roma “Tor Vergata,” via Della Ricerca Scientifica, Dipartimento di Scienze e Tecnologie Chimiche—MinimaLab (Italy)

    2016-11-15

    The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

  1. Topological characterization of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites

    Science.gov (United States)

    Bhat, A. H.; Dasan, Y. K.; Khan, Ihsan Ullah; Ahmad, Faiz; Ayoub, Muhammad

    2016-11-01

    This study was conducted to evaluate the morphological and barrier properties of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites. Nanocrystalline cellulose was isolated from waste oil palm empty fruit bunch fiber using Sulphuric acid hydrolysis. Chemical modifications of nanocrystalline cellulose was performed to allow good compatibilization between fiber and the polymer matrices and also to improve dispersion of fillers. Bionanocomposite materials were produced from these nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) using solvent casting and evaporation techniques. The properties of extracted nanocrystalline cellulose were examined using FT-IR spectroscopy, X-ray diffractometer, TEM and AFM. Besides that, the properties of bionanocomposites were examined through FESEM and oxygen permeability properties analysis. Better barrier and morphological properties were obtained for nanocrystalline cellulose reinforced bionanocomposites than for neat polymer blend.

  2. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    Science.gov (United States)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  3. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    Science.gov (United States)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  4. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com [Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš (Serbia); Dimitrijević, Suzana, E-mail: suzana@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Budimir, Milica D., E-mail: mickbudimir@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Vranješ, Mila R., E-mail: mila@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Šaponjić, Zoran V., E-mail: saponjic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2014-12-15

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical and morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.

  5. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinodgopal, K [Department of Chemistry, Indiana University Northwest, Gary, Indiana (United States); Kamat, Prashant V [Notre Dame Radiation Laboratory, Notre Dame, Indiana (United States)

    1995-08-01

    The principle and usefulness of electrochemically assisted photocatalysis has been illustrated with the examples of 4-chlorophenol and Acid Orange 7 degradation in aqueous solutions. Thin nanocrystalline semiconductor films coated on a conducting glass surface when employed as a photoelectrode in an electrochemical cell are effective for degradation of organic contaminants. The degradation rate can be greatly improved even in the absence of oxygen by applying an anodic bias to the TiO{sub 2} film electrodes. A ten-fold enhancement in the degradation rate was observed when TiO{sub 2} particles were coupled with SnO{sub 2} nanocrystallites at an applied bias potential of 0.83 V versus SCE

  6. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, K.A.; Prawer, S.; Nugent, K.W.; Walker, R. J.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  7. Spectroellipsometric and ion beam analytical investigation of nanocrystalline diamond layers

    Energy Technology Data Exchange (ETDEWEB)

    Lohner, T., E-mail: lohner@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary); Csikvari, P. [Department of Atomic Physics, Budapest University of Technology and Economics, H-1111 Budapest, Budafoki ut 8 (Hungary); Khanh, N.Q. [Research Institute for Technical Physics and Materials Science, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary); David, S. [Department of Electronics Technology, Budapest University of Technology and Economics, H-1111 Budapest, Goldmann Gy. ter 3 (Hungary); Horvath, Z.E.; Petrik, P. [Research Institute for Technical Physics and Materials Science, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary); Hars, G. [Department of Atomic Physics, Budapest University of Technology and Economics, H-1111 Budapest, Budafoki ut 8 (Hungary)

    2011-02-28

    Optical properties of nanocrystalline and ultrananocrystalline diamond films were studied by ex situ variable angle spectroscopic ellipsometry. The films were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition method. In the experiments Ar, CH{sub 4}, and H{sub 2} gases were used as source gases. Elastic recoil detection analysis was applied to measure the hydrogen content of the deposited layers. Three-layer optical models were constructed for the evaluation of the measured ellipsometric spectra. Besides the Cauchy relation, the effective medium approximation and the Tauc-Lorentz dispersion relation were also used for the modeling of the optical properties of the diamond films. Atomic force microscopy was applied to investigate the surface roughness in function of the deposition conditions.

  8. 1H-15N correlation spectroscopy of nanocrystalline proteins

    International Nuclear Information System (INIS)

    Morcombe, Corey R.; Paulson, Eric K.; Gaponenko, Vadim; Byrd, R. Andrew; Zilm, Kurt W.

    2005-01-01

    The limits of resolution that can be obtained in 1 H- 15 N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee-Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1 H resonances. Heteronuclear decoupling of 15 N from the 1 H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2 H and 15 N enriched protein where the amides have been exchanged in normal water, MAS at ∼20 kHz, and WALTZ-16 decoupling of the 15 N nuclei. The combination of these techniques results in average 1 H lines of only ∼0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15 N decoupling are described for achieving the best possible performance in these experiments

  9. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, K A; Prawer, S; Nugent, K W; Walker, R J; Weiser, P S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  10. Science at the interface : grain boundaries in nanocrystalline metals.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  11. Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature

    Science.gov (United States)

    Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa

    2017-08-01

    In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.

  12. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  13. Mesoporous nanocrystalline film architecture for capacitive storage devices

    Science.gov (United States)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John; Brezesinski, Torsten; Gruner, George

    2017-05-16

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).

  14. Electrochromic properties of nanocrystalline MoO3 thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Chan, C.-C.; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C.

    2008-01-01

    Electrochromic MoO 3 thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO 3 thin films. The effects of annealing temperatures ranging from 100 o C to 500 o C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO 4 /propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO 3 thin films heat-treated at 350 o C varied from 80% to 35% at λ = 550 nm (ΔT = ∼ 45%) and from 86% to 21% at λ ≥ 700 nm (ΔT = ∼ 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study

  15. Synthesis of nanocrystalline hydroxyapatite by using precipitation method

    International Nuclear Information System (INIS)

    Mobasherpour, I.; Heshajin, M. Soulati; Kazemzadeh, A.; Zakeri, M.

    2007-01-01

    In this investigation, hydroxyapatite powder has been synthesized from the calcium nitrate hydrated and di-ammonium hydrogen phosphate solution by precipitation method and heat treatment of hydroxyapatite powders. In order to study the structural evolution, the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and simultaneous thermal analysis (STA) were used. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to estimate the particle size of the powder and observe the morphology and agglomeration state of the powder. Results show that hydroxyapatite nanocrystalline can successfully be produced by precipitation technique from raw materials. Hydroxyapatite grain gradually increased in size when temperature increased from 100 to 1200 o C, and the hydroxyapatite hexagonal-dipyramidal phase was not transformed to the other calcium phosphates phases up to 1200 o C

  16. In vitro behaviour of nanocrystalline silver-sputtered thin films

    International Nuclear Information System (INIS)

    Piedade, A P; Vieira, M T; Martins, A; Silva, F

    2007-01-01

    Silver thin films were deposited with different preferential orientations and special attention was paid to the bioreactivity of the surfaces. The study was essentially focused on the evaluation of the films by x-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron probe microanalysis (EPMA) and contact angle measurements. The deposited thin films were characterized before and after immersion in S-enriched simulated human plasma in order to estimate the influence of the preferential crystallographic orientation on the in vitro behaviour. Silver thin films with and without (111) preferential crystallographic orientation were deposited by r.f. magnetron sputtering to yield nanocrystalline coatings, high compact structures, very hydrophobic surfaces and low roughness. These properties reduce the chemisorption of reactive species onto the film surface. The in vitro tests indicate that silver thin films can be used as coatings for biomaterials applications

  17. Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate

    International Nuclear Information System (INIS)

    Phuruangrat, Anukorn; Thongtem, Titipun; Thongtem, Somchai

    2009-01-01

    Nanocrystalline calcium molybdate was successfully synthesized from Ca(NO 3 ) 2 and Na 2 MoO 4 in ethylene glycol using a microwave radiation method. Body-centered tetragonal structured calcium molybdate with narrow nanosized distribution was detected using XRD, SAED and TEM. A diffraction pattern was also simulated and was found to be in accordance with those obtained from the experiment and JCPDS standard. Raman and FTIR spectra show the Mo-O prominent stretching bands in the [MoO 4 ] 2- tetrahedrons at 879.59 and 743-895 cm -1 , respectively. Photoluminescence emission of CaMoO 4 was detected at 477 nm, caused by the annihilation of a self-trapped excitons from the [MoO 4 ] 2- excited complex.

  18. Torsion-induced magnetoimpedance in nanocrystalline Fe-based wires

    International Nuclear Information System (INIS)

    Santos, J.D.; Olivera, J.; Alvarez, P.; Sanchez, T.; Perez, M.J.; Sanchez, M.L.; Gorria, P.; Hernando, B.

    2007-01-01

    The magnetic field influence on the real and imaginary parts of axial-diagonal (ζ zz ) and off-diagonal (ζ φz ) components of the surface magnetoimpedance (MI) tensor has been studied in amorphous and nanocrystalline Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 wires. Twisted and untwisted wires were annealed at a temperature near to that of primary crystallization. The MI response has been measured at 1MHz and 5mA rms drive current in all the samples. Even though the higher values for both components of the MI tensor are achieved for the untwisted annealed wire, the most interesting features are observed in the torsion annealed wire

  19. Nanocrystalline diamond film as cathode for gas discharge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jou, Shyankay, E-mail: sjou@mail.ntust.edu.t [Graduate Institute of Materials Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Huang, Bohr-Ran [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Wu, Meng-Chang [Department of Electronic Engineering, National Yunlin University of Science and Technology, Touliu 640, Taiwan (China)

    2010-05-31

    Nanocrystalline diamond (NCD) film was deposited on a silicon substrate utilizing microwave plasma-enhanced chemical vapor deposition in a mixed flow of methane, hydrogen and argon. The deposited film had a cauliflower-like morphology, and was composed of NCD, carbon clusters and mixed sp{sup 2}- and sp{sup 3}-bonded carbon. Electron field emission (EFE) in vacuum and electrical discharges in Ar, N{sub 2} and O{sub 2} using the NCD film as the cathode were characterized. The turn-on field for EFE and the geometric enhancement factor for the NCD film were 8.5 V/{mu}m and 668, respectively. The breakdown voltages for Ar, N{sub 2} and O{sub 2} increased with pressures from 1.33 x 10{sup 4} Pa to 1.01 x 10{sup 5} Pa, following the right side of the normal Paschen curve.

  20. Spectroellipsometric and ion beam analytical investigation of nanocrystalline diamond layers

    International Nuclear Information System (INIS)

    Lohner, T.; Csikvari, P.; Khanh, N.Q.; David, S.; Horvath, Z.E.; Petrik, P.; Hars, G.

    2011-01-01

    Optical properties of nanocrystalline and ultrananocrystalline diamond films were studied by ex situ variable angle spectroscopic ellipsometry. The films were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition method. In the experiments Ar, CH 4 , and H 2 gases were used as source gases. Elastic recoil detection analysis was applied to measure the hydrogen content of the deposited layers. Three-layer optical models were constructed for the evaluation of the measured ellipsometric spectra. Besides the Cauchy relation, the effective medium approximation and the Tauc-Lorentz dispersion relation were also used for the modeling of the optical properties of the diamond films. Atomic force microscopy was applied to investigate the surface roughness in function of the deposition conditions.

  1. Low-temperature creep of nanocrystalline titanium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H.; Averback, R.S. (Dept. of Materials Sceince and Engineering, Univ. of Illinois, Urbana, IL (United States))

    1991-11-01

    This paper reports that nanocrystalline TiO[sub 2] with densities higher than 99% of rutile has been deformed in compression without fracture at temperatures between 600[degrees] and 800[degrees] C. The total strains exceed 0.6 at strain rates as high as 10[sup [minus]3] s[sup [minus]1]. The original average grain size of 40 nm increases during the creep deformation to final values in the range of 120 to 1000 nm depending on the temperature and total deformation. The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is d[sup [minus]q] with q in the range of 1 to 1.5. It is concluded that the creep deformation occurs by an interface reaction controlled mechanism.

  2. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  3. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Samar J. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)]. E-mail: samar@mail.ucf.edu; Bhatt, Himesh A. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)

    2007-05-16

    During recent years, there have been efforts in developing nanocrystalline bioceramics, to enhance their mechanical and biological properties for use in tissue engineering applications. In this research, we made an attempt to synthesize nanocrystalline bioactive hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp) ceramic powder in the lower-end of nano-range (2-10 nm), using a simple low-temperature sol-gel technique and studied its densification behavior. We further studied the effects of metal ion dopants during synthesis on powder morphology, and the properties of the sintered structures. Calcium nitrate and triethyl phosphite were used as precursors for calcium and phosphorous, respectively, for sol-gel synthesis. Calculated quantities of magnesium oxide and zinc oxide were incorporated as dopants into amorphous dried powder, prior to calcination at 250-550 {sup o}C. The synthesized powders were analyzed for their phases using X-ray diffraction technique and characterized for powder morphology and particle size using transmission electron microscopy (TEM). TEM analysis showed that the average particle size of the synthesized powders were in the range of 2-10 nm. The synthesized nano-powders were uniaxially compacted and then sintered at 1250 {sup o}C and 1300 {sup o}C for 6 h, separately, in air. A maximum average sintered density of 3.29 g/cm{sup 3} was achieved in structures sintered at 1300 {sup o}C, developed from nano-powder doped with magnesium. Vickers hardness testing was performed to determine the hardness of the sintered structures. Uniaxial compression tests were performed to evaluate the mechanical properties. Bioactivity and biodegradation behavior of the sintered structures were assessed in simulated body fluid (SBF) and maintained in a dynamic state.

  4. Charge carrier transport mechanisms in nanocrystalline indium oxide

    International Nuclear Information System (INIS)

    Forsh, E.A.; Marikutsa, A.V.; Martyshov, M.N.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.

    2014-01-01

    The charge transport properties of nanocrystalline indium oxide (In 2 O 3 ) are studied. A number of nanostructured In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method and characterized using various techniques. The mean nanocrystals size varies from 7–8 nm to 18–20 nm depending on the conditions of their preparation. Structural characterizations of the In 2 O 3 samples are performed by means of transmission electron microscopy and X-ray diffraction. The analysis of dc and ac conductivity in a wide temperature range (T = 50–300 K) shows that at high temperatures charge carrier transport takes place over conduction band and at low temperatures a variable range hopping transport mechanism can be observed. We find out that the temperature of transition from one mechanism to another depends on nanocrystal size: the transition temperature rises when nanocrystals are bigger in size. The average hopping distance between two sites and the activation energy are calculated basing on the analysis of dc conductivity at low temperature. Using random barrier model we show a uniform hopping mechanism taking place in our samples and conclude that nanocrystalline In 2 O 3 can be regarded as a disordered system. - Highlights: • In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method. • The mean nanocrystal size varies from 7–8 nm to 18–20 nm. • At high temperatures charge carrier transport takes place over conduction band. • At low temperatures a variable range hopping transport mechanism can be observed. • We show a uniform hopping mechanism taking place in our samples

  5. Effect of phase transitions on thermoluminescence characteristics of nanocrystalline alumina

    International Nuclear Information System (INIS)

    Rani, Geeta; Sahare, P.D.

    2013-01-01

    Highlights: •Synthesis of Al 2 O 3 nanocrystalline TLD phosphor. •Material characterizations by XRD, TEM and TL. •Change in structure and morphology of the phase transition alumina. •Change in glow curve structures and trapping parameters on phase transitions. -- Abstract: Nanocrystalline boehmite (γ-AlOOH) was synthesized by hydrothermal method using AlCl 3 ·6H 2 O and Urea as precursors. The material gets decomposed to form the γ-Al 2 O 3 phase at around 873 K on annealing in air. On annealing further at higher temperatures it gets converted into different phases, such as, δ, θ and the most stable α-phase. Not only the phase changes but the annealing has also changed the morphology of the nanomaterial, i.e. it has changed from spindle like edges to vermicular structures and also grew bigger in sizes. The formations of different phases were confirmed by the X-ray diffraction (XRD) patterns and the changes in the morphology were seen through the TEM images. Further the effect of different phases on the thermoluminescence (TL) glow curve structures was studied and it is also shown that the TL glow curves structures do change due to phase transformations. To investigate further and to determine trapping parameters, different glow curves have been theoretically deconvoluted using computerized glow curve deconvolution (CGCD method) into simple glow peaks. The values of different trapping parameters also change as the glow curve structures on phase transformations due to reorganization of energy levels and the stress/strain generated by some intermediate phases

  6. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals

    International Nuclear Information System (INIS)

    Dao, M.; Lu, L.; Asaro, R.J.; Hosson, J.T.M. de; Ma, E.

    2007-01-01

    Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the underlying mechanisms. The mechanical properties reviewed include strength, ductility, strain rate and temperature dependence, fatigue and tribological properties. The highlighted examples include recent experimental studies in obtaining both high strength and considerable ductility, the compromise between enhanced fatigue limit and reduced crack growth resistance, the stress-assisted dynamic grain growth during deformation, and the relation between rate sensitivity and possible deformation mechanisms. The recent advances in obtaining quantitative and mechanics-based models, developed in line with the related transmission electron microscopy and relevant molecular dynamics observations, are discussed with particular attention to mechanistic models of partial/perfect-dislocation or deformation-twin-mediated deformation processes interacting with grain boundaries, constitutive modeling and simulations of grain size distribution and dynamic grain growth, and physically motivated crystal plasticity modeling of pure Cu with nanoscale growth twins. Sustained research efforts have established a group of nanocrystalline and nanostructured metals that exhibit a combination of high strength and considerable ductility in tension. Accompanying the gradually deepening understanding of the deformation mechanisms and their relative importance, quantitative and mechanisms-based constitutive models that can realistically capture experimentally measured and grain-size-dependent stress-strain behavior, strain-rate sensitivity and even ductility limit are becoming available. Some outstanding issues and future opportunities are listed and discussed

  7. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  8. Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene

    Science.gov (United States)

    Lee, Hyunah; Nam, Donggyu; Choi, Jae-Kyung; Araúzo-Bravo, Marcos J.; Kwon, Soon-Yong; Zaehres, Holm; Lee, Taehee; Park, Chan Young; Kang, Hyun-Wook; Schöler, Hans R.; Kim, Jeong Beom

    2016-02-01

    The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.

  9. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption

    International Nuclear Information System (INIS)

    Lorenzetti, M; Kobe, S; Novak, S; Bernardini, G; Santucci, A; Luxbacher, T

    2015-01-01

    This study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO 2 -anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO 2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.4) occurred for the most negatively charged and hydrophobic substrate (Ti non-treated) and for the most nanorough and hydrophilic surface (HT Ti3), indicating that the mutual action of the surface characteristics is responsible for the attraction and adhesion of the proteins. The HT coatings showed a higher adsorption of certain proteins (albumin ‘passivation’ layer, apolipoproteins, vitamin D-binding protein, ceruloplasmin, α-2-HS-glycoprotein) and higher ratios of albumin to fibrinogen and albumin to immunoglobulin γ-chains. The UV pre-irradiation affected the surface properties and strongly reduced the adsorption of the proteins. These results provide in-depth knowledge about the characterization of nanocrystalline TiO 2 coatings for body implants and provide a basis for future studies on the hemocompatibility and biocompatibility of such surfaces. (paper)

  10. UV-laser treatment of nanodiamond seeds - a valuable tool for modification of nanocrystalline diamond films properties

    International Nuclear Information System (INIS)

    Vlček, J; Fitl, P; Vrňata, M; Fekete, L; Taylor, A; Fendrych, F

    2013-01-01

    This work aimed to study the UV-laser treatment of precursor (i.e. nanodiamond (ND) seeds on silicon substrates) and its influence on the properties of grown nanocrystalline diamond (NCD) films. Pulsed Nd:YAG laser operating at the fourth harmonic frequency (laser fluence E L = 250 mJ cm -2 , pulse duration 5 ns) was used as a source, equipped with an optical system for focusing laser beam onto the sample, allowing exposure of a local spot and horizontal patterning. The variable parameters were: number of pulses (from 5 to 400) and the working atmosphere (He, Ar and O 2 ). Ablation and/or graphitization of seeded nanodiamond particles were observed. Further the microwave plasma-enhanced chemical vapour deposition was employed to grow NCD films on exposed and non-exposed areas of silicon substrates. The size, shape and density distribution of laser-treated nanodiamond seeds were observed by atomic force microscopy (AFM) and their chemical composition by x-ray photoelectron spectroscopy (XPS) analysis. The resulting NCD films (uniform thickness of 400 nm) were characterized by: Raman spectroscopy to analyse occurrence of graphitic phase, and AFM to observe morphology and surface roughness. The highest RMS roughness (∼85 nm) was achieved when treating the precursor in He atmosphere. Horizontal microstructures of diamond films were fabricated.

  11. Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, D-01277 Dresden (Germany); Hübner, R. [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany); Redondo-Cubero, A. [Departamento de Física Aplicada and Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2016-07-05

    Chromium oxide (CrO{sub x}) thin films were grown by pulsed-DC reactive magnetron sputter deposition in an Ar/O{sub 2} discharge as a function of the O{sub 2} fraction in the gas mixture (ƒ) and for substrate temperatures, T{sub s}, up to 450 °C. The samples were analysed by Rutherford backscattering spectrometry (RBS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES). On unheated substrates, by increasing ƒ the growth rate is higher and the O/Cr ratio (x) rises from ∼2 up to ∼2.5. Inversely, by increasing T{sub s} the atomic incorporation rate drops and x falls to ∼1.8. XRD shows that samples grown on unheated substrates are amorphous and that nanocrystalline Cr{sub 2}O{sub 3} (x = 1.5) is formed by increasing T{sub s}. In amorphous CrO{sub x}, XANES reveals the presence of multiple Cr environments that indicate the growth of mixed-valence oxides, with progressive promotion of hexavalent states with ƒ. XANES data also confirms the formation of single-phase nanocrystalline Cr{sub 2}O{sub 3} at elevated T{sub s}. These structural changes also reflect on the optical and morphological properties of the films. - Highlights: • XANES of CrO{sub x} thin films grown by pulsed-DC reactive magnetron sputtering. • Identification of mixed-valence amorphous CrO{sub x} oxides on unheated substrates. • Promotion of amorphous chromic acid (Cr{sup VI}) by increasing O{sub 2} partial pressure. • Production of single-phase Cr{sub 2}O{sub 3} films by increasing substrate temperature. • Correlation of bonding structure with morphological and optical properties.

  12. Skin cancer full-grown from scar

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors investigate the peculiarities of skin cancer full-grown from scar, the theory of it's descent, quote some statistical data on skin cancer full-grown from scar and variety clinical forms of skin cancer full-grown from scar was shown, quote some methods of treatment

  13. Co+ -ion implantation induced doping of nanocrystalline CdS thin films: structural, optical, and vibrational properties

    International Nuclear Information System (INIS)

    Chandramohan, S.; Sarangi, S.N.; Majumder, S.; Som, T.; Kanjilal, A.; Sathyamoorthy, R.

    2009-01-01

    Full text: Transition metal (Mn, Fe, Co and Ni) doped CdS nanostructures and nanocrystalline thin films have attracted much attention due to their anticipated applications in magneto-optical, non-volatile memory and future spintronics devices. Introduction of impurities in substitutional positions is highly desirable for such applications. Ion implantation is known to provide many advantages over conventional methods for efficient doping and possibility of its seamless integration with device processing steps. It is not governed by equilibrium thermodynamics and offers the advantages of high spatial selectivity and to overcome the solubility limits. In this communication, we report on modifications of structural morphological, optical, and vibrational properties of 90 keV Co + -ion implanted CdS thin films grown by thermal evaporation. Co + -ion implantation was performed in the fluence range of 0.1-3.6x10 16 ions cm -2 These fluences correspond to Co concentration in the range of 0.34-10.8 at % at the peak position of profile. Implantation was done at an elevated temperature of 573 K in order to avoid amorphization and to enhance the solubility of Co ions in the CdS lattice. Films were characterized by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), optical absorption, and micro-Raman spectroscopy. Implantation does not lead to any secondary phase formation either in the form of impurity or the metallic clusters. However, implantation improves the crystalline quality of the samples and leads to supersaturation of Co ions in the CdS lattice. Thus, nanocrystalline CdS thin films can be considered as a good radiation- resistant material, which can be employed for prolonged use in solar cells for space applications. The optical band gap is found to decrease systematically with increasing ion fluence from 2.39 to 2.28 eV. Implantation leads to agglomeration of grains and a systematic increase in the surface roughness. Both GAXRD and micro

  14. Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Kentaro; Nonaka, Takaaki; Onitsuka, Yuya; Irishika, Daichi; Kobayashi, Hikaru, E-mail: h.kobayashi@sanken.osaka-u.ac.jp

    2017-02-15

    Highlights: • Ultralow reflectivity Si wafers with light trapping effect can be obtained by forming a nanocrystalline Si layer on pyramidal textured Si surfaces. • Surface passivation using phosphosilicate glass improved minority carrier lifetime of the nanocrystalline Si layer/Si structure. • A high photocurrent density of 40.1 mA/cm{sup 2}, and a high conversion efficiency of 18.5% were achieved. - Abstract: The surface structure chemical transfer (SSCT) method has been applied to fabrication of single crystalline Si solar cells with 170 μm thickness. The SSCT method, which simply involves immersion of Si wafers in H{sub 2}O{sub 2} plus HF solutions and contact of Pt catalyst with Si taking only ∼30 s for 6 in. wafers, can decrease the reflectivity to less than 3% by the formation of a nanocrystalline Si layer. However, the reflectivity of the nanocrystalline Si layer/flat Si surface/rear Ag electrode structure in the wavelength region longer than 1000 nm is high because of insufficient absorption of incident light. The reflectivity in the long wavelength region is greatly decreased by the formation of the nanocrystalline Si layer on pyramidal textured Si surfaces due to an increase in the optical path length. Deposition of phosphosilicate glass (PSG) on the nanocrystalline Si layer for formation of pn-junction does not change the ultralow reflectivity because the surface region of the nanocrystalline Si layer possesses a refractive index of 1.4 which is nearly the same as that of PSG of 1.4–1.5. The PSG layer is found to passivate the nanocrystalline Si layer, which is evident from an increase in the minority carrier lifetime from 12 to 44 μs. Hydrogen treatment at 450 °C further increases the minority carrier lifetime approximately to a doubled value. The solar cells with the nanocrystalline Si layer/pyramidal Si substrate/boron-diffused back surface field/Ag rear electrode> structure show a high conversion efficiency of 18

  15. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    Science.gov (United States)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  16. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2013-01-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu 2 O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ 1 ). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τ av ) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  17. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    Science.gov (United States)

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  18. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  19. Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Iqbal, M. Z.; Kumar Singh, Arun; Iqbal, M. W.; Seo, Sunae; Eom, Jonghwa

    2012-01-01

    We have grown graphene by chemical vapor deposition (CVD) and transferred it onto Si/SiO 2 substrates to make tens of micron scale devices for Raman spectroscopy study. The effect of electron beam (e-beam) irradiation of various doses (600 to 12 000 μC/cm 2 ) on CVD grown graphene has been examined by using Raman spectroscopy. It is found that the radiation exposures result in the appearance of the strong disorder D band attributed the damage to the lattice. The evolution of peak frequencies, intensities, and widths of the main Raman bands of CVD graphene is analyzed as a function of defect created by e-beam irradiation. Especially, the D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests transformation of graphene to the nanocrystalline and then to amorphous form. We have also estimated the strain induced by e-beam irradiation in CVD graphene. These results obtained for CVD graphene are in line with previous findings reported for the mechanically exfoliated graphene [D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)]. The results have important implications for CVD graphene characterization and device fabrication, which rely on the electron microscopy.

  20. The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy

    International Nuclear Information System (INIS)

    García Ferré, Francisco; Bertarelli, Emanuele; Chiodoni, Angelica; Carnelli, Davide; Gastaldi, Dario; Vena, Pasquale; Beghi, Marco G.; Di Fonzo, Fabio

    2013-01-01

    In this work, ellipsometry, Brillouin spectroscopy and nanoindentation are combined to assess the mechanical properties of a nanocrystalline Al 2 O 3 /a-Al 2 O 3 composite coating with high accuracy and precision. The nanocomposite is grown by pulsed laser deposition at either room temperature or 600 °C. The adhesive strength is evaluated by nanoscratch tests. In the room temperature process the coating attains an unusual combination of compactness, strong interfacial bonding, moderate stiffness (E = 195 ± 9 GPa and ν = 0.29 ± 0.02) and significant hardness (H = 10 ± 1 GPa), resulting in superior plastic behavior and a relatively high ratio of hardness to elastic modulus (H/E = 0.049). These features are correlated to the nanostructure of the coating, which comprises a regular dispersion of ultrafine crystalline Al 2 O 3 nanodomains (2–5 nm) in a dense and amorphous alumina matrix, as revealed by transmission electron microscopy. For the coating grown at 600 °C, strong adhesion is also observed, with an increase of stiffness and a significant enhancement of hardness (E = 277 ± 9 GPa, ν = 0.27 ± 0.02 and H = 25 ± 1 GPa), suggesting an outstanding resistance to wear (H/E = 0.091)

  1. Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal-insulator transition

    International Nuclear Information System (INIS)

    Janssens, S D; Pobedinskas, P; Ruttens, B; D'Haen, J; Nesladek, M; Haenen, K; Wagner, P; Vacik, J; Petrakova, V

    2011-01-01

    A systematic study on the morphology and electronic properties of thin heavily boron-doped nanocrystalline diamond (NCD) films is presented. The films have nominally the same thickness (∼150 nm) and are grown with a fixed B/C ratio (5000 ppm) but with different C/H ratios (0.5-5%) in the gas phase. The morphology of the films is investigated by x-ray diffraction and atomic force microscopy measurements, which confirm that lower C/H ratios lead to a larger average grain size. Magnetotransport measurements reveal a decrease in resistivity and a large increase in mobility, approaching the values obtained for single-crystal diamond as the average grain size of the films increases. In all films, the temperature dependence of resistivity decreases with larger grains and the charge carrier density and mobility are thermally activated. It is possible to separate the intra- and intergrain contributions for resistivity and mobility, which indicates that in these complex systems Matthiessen's rule is followed. The concentration of active charge carriers is reduced when the boron-doped NCD is grown with a lower C/H ratio. This is due to lower boron incorporation, which is confirmed by neutron depth profiling.

  2. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  3. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  4. SINTERING EFFECTS ON THE DENSIFICATION OF NANOCRYSTALLINE HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    M. Amiriyan

    2011-06-01

    Full Text Available The effects of sintering profiles on the densification behaviour of synthesized nanocrystalline hydroxyapatite (HA powder were investigated in terms of phase stability and mechanical properties. A wet chemical precipitation method was successfully employed to synthesize a high purity and single phase HA powder. Green HA compacts were prepared and subjected to sintering in air atmosphere over a temperature range of 700° C to 1300° C. In this study two different holding times were compared, i.e. 1 minute versus the standard 120 minutes. The results revealed that the 1 minute holding time sintering profile was indeed effective in producing a HA body with high density of 98% theoretical when sintered at 1200° C. High mechanical properties such as fracture toughness of 1.41 MPa.m1/2 and hardness of 9.5 GPa were also measured for HA samples sintered under this profile. Additionally, XRD analysis indicated that decomposition of the HA phase during sintering at high temperatures was suppressed.

  5. Surface ferromagnetism and superconducting properties of nanocrystalline niobium nitride

    International Nuclear Information System (INIS)

    Shipra, R.; Kumar, Nitesh; Sundaresan, A.

    2013-01-01

    Nanocrystalline δ-NbN x samples have been synthesized by reacting NbCl 5 and urea at three different temperatures. A comparison of their structural, magnetic, transport and thermal properties is reported in the present study. The size of the particles and their agglomeration extent increase with increasing reaction temperature. The sample prepared at 900 °C showed the highest superconducting transition temperature (T c ) of 16.2 K with a transition width, ∼1.8 K, as obtained from the resistivity measurement on cold-pressed bars. Above T c , magnetization measurements revealed the presence of surface ferromagnetism which coexists with superconductivity below T c . Heat capacity measurements confirm superconductivity with strong electron–phonon coupling constant. The sample prepared at 800 °C shows a lower T c (10 K) while that prepared at 700 °C exhibit no superconductivity down to the lowest temperature (3 K) measured. - Highlights: ► Synthesis of δ-NbN nanoparticles by urea nitridation of NbCl 5 . ► Superconducting transition temperature (T c ) is 16.2 K. ► Superconductivity and surface ferromagnetism coexist in the nanoparticles. ► Effect of size and agglomeration on the physical properties of nanoparticles

  6. Synthesis and electrical conductivity of nanocrystalline tetragonal FeS

    International Nuclear Information System (INIS)

    Zeng Shu-Lin; Wang Hui-Xian; Dong Cheng

    2014-01-01

    A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of flat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Nanocrystalline samarium oxide coated fiber optic gas sensor

    International Nuclear Information System (INIS)

    Renganathan, B.; Sastikumar, D.; Srinivasan, R.; Ganesan, A.R.

    2014-01-01

    Highlights: • This fiber optic gas sensor works at room temperature. • As-prepared and annealed Sm 2 O 3 nanoparticles are act as sensor materials. • Sm 2 O 3 clad modified fiber detect the ammonia, ethanol and methanol gases. • The response of evanescent wave loss has been studied for different concentrations. - Abstract: Nanocrystalline Sm 2 O 3 coated fiber optic sensor is proposed for detecting toxic gases such as ammonia, methanol and ethanol vapors. Sm 2 O 3 in the as prepared form as well as annealed form have been used as gas sensing materials, by making them as cladding of a PMMA fiber. The spectral characteristics of the Sm 2 O 3 gas sensor are presented for ammonia, methanol and ethanol gases with different concentrations ranging from 0 to 500 ppm. The sensor exhibits a linear variation in the output light intensity with the concentration. The enhanced gas sensitivity and selectivity of the sensor for ethanol is discussed briefly

  8. Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate

    International Nuclear Information System (INIS)

    Kurien, Siby; Mathew, Jose; Sebastian, Shajo; Potty, S.N.; George, K.C.

    2006-01-01

    Nanocrystalline nickel aluminate was prepared by chemical co-precipitation, and nanoparticles having different particle size were obtained by annealing the precursor at different temperatures. The TG/DTA measurements showed thermal decomposition was a three-step process with crystallisation of the spinel phase started at a temperature 420 deg. C. The X-ray diffraction analysis confirmed that the specimen began to crystallise on annealing above 420 deg. C and became almost crystalline at about 900 deg. C. The particle sizes were calculated from XRD. Dielectric properties of nickel aluminate were studied as a function of the frequency of the applied ac signal at different temperatures. It was seen the real dielectric constant ε', and dielectric loss tan δ decreased with frequency of applied field while the ac conductivity increased as the frequency of the applied field increased. The dielectric relaxation mechanism is explained by considering nanostructured NiAl 2 O 4 as a carrier-dominated dielectric with high density of hopping charge carriers. The variation of ε' with different particle size depends on several interfacial region parameters, which change with the average particle size

  9. Characterization of nanocrystalline anatase titania: an in situ HTXRD study

    International Nuclear Information System (INIS)

    Jagtap, Neelam; Bhagwat, Mahesh; Awati, Preeti; Ramaswamy, Veda

    2005-01-01

    Nanocrystalline titania was synthesized by the hydrolysis of titanium iso-propoxide using ultrasonication. The powder XRD patterns of the sample were recorded in static air and vacuum using a Philips X-pert Pro diffractometer equipped with a high-temperature attachment (HTK16) from room temperature (298 K) to 1173 K and were analyzed by the Rietveld refinement technique. The anatase to rutile phase transformation was observed at 1173 K for the data collected in static air. Only 3% of anatase titania transformed to rutile when the experiments were carried out at 1173 K in vacuum. The phase transformation from anatase to rutile is accompanied by a continuous increase in the crystallite size of the anatase phase from 9 nm at room temperature to 28 nm at 873 K and then to 50 nm at 1173 K in air while the process of crystallite growth was suppressed in vacuum. A linear increase in the unit cell parameters 'a' and 'c', and thus, an overall linear increase in the unit cell volume was observed as a function of temperature in static air as well as vacuum. The lattice and volume thermal expansion coefficients (TEC), α a , α c and α V at 873 K are 8.57 x 10 -6 , 8.71 x 10 -6 and 25.91 x 10 -6 K -1 in air and 18.01 x 10 -6 , 14.95 x 10 -6 and 51.13 x 10 -6 K -1 in vacuum, respectively

  10. Thermoluminescent properties of ZnS:Mn nanocrystalline powders

    International Nuclear Information System (INIS)

    Ortiz-Hernández, Arturo Agustín; Méndez García, Víctor Hugo; Pérez Arrieta, María Leticia; Ortega Sígala, José Juan

    2015-01-01

    Thermoluminescent ZnS nanocrystals doped with Mn 2+ ions were synthesized by chemical co-precipitation method. From X-ray diffraction studies it was observed that the synthesized nanoparticles have cubic zinc blende structure with average sizes of about 40–50 nm. Morphology was analyzed by TEM. Photoluminescence studies showed two transitions, one of them close to 396 nm and other close to 598 nm, which is enhanced with increasing dopant concentration, this behavior was also observed in the cathodoluminescence spectrum. The thermoluminescence gamma dose-response has linear behavior over dose range 5–100 mGy, the glow curve structure shows two glow peaks at 436 K and at 518 K that were taken into account to calculate the kinetic parameters using the Computerized Glow Curve Deconvolution procedure. - Highlights: • Nanocrystals in powder of ZnS:Mn were synthesized using the co-precipitation method. • The integrated TL spectra has a linear behavior on the dose range 5–100 mGy of γ-radiation. • The kinetic parameters were obtained by the CGCD procedure. • Results support the possible use of nanocrystalline ZnS:Mn as a new γ-dose nanoTLD

  11. Does nanocrystalline Cu deform by Coble creep near room temperature?

    International Nuclear Information System (INIS)

    Li, Y.J.; Blum, W.; Breutinger, F.

    2004-01-01

    The proposal that nanocrystalline Cu produced by electro deposition (ED) creeps at temperatures slightly above room temperature by diffusive flow via grain boundaries (Coble creep) has been checked by compression tests. It was found that the minimum creep rates obtained in tension are significantly larger than those in compression, probably due to interference of tensile fracture. Scanning electron microscopic investigation showed that the spacing between large-angle grain boundaries is about 10 μm rather than the reported value of 30 nm. Comparison with coarse grained and ultrafine grained Cu produced by equal channel angular pressing showed that the ED-Cu work hardens similarly to coarse grained Cu in contrast to ultrafine grained Cu which reaches its maximum deformation resistance within a small strain interval of 0.04 and has distinctly higher strain rate sensitivity of flow stress. The present results are consistent with the established knowledge that there is no softening by grain boundaries, e.g. due to Coble creep, near room temperature in Cu with grain sizes above 1 μm. The grain boundary effect observed in ultrafine grained Cu is interpreted in terms of modification of dislocation generation and dislocation annihilation by grain boundaries

  12. Structure, microstructure and photoluminescence of nanocrystalline Ti-doped gahnite

    International Nuclear Information System (INIS)

    Vrankić, M.; Gržeta, B.; Mandić, V.; Tkalčec, E.; Milošević, S.; Čeh, M.; Rakvin, B.

    2012-01-01

    Highlights: ► Ti-doped gahnite samples with 0–11.6 at.% Ti were synthesized for the first time. ► The samples had crystallite size of 16.6–20.5 nm and lattice strain of 0.07–0.26%. ► Titanium entered the gahnite structure as Ti 4+ , substituting for octahedral Al 3+ . ► Ti-doped gahnite showed the UV absorption and blue emission under UV excitation. - Abstract: A series of Ti-doped ZnAl 2 O 4 (gahnite) samples with doping levels of 0, 1.8, 3.8, 5.4 and 11.6 at.% Ti in relation to Al were prepared by a sol–gel technique. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), EPR spectroscopy, UV–vis reflectance spectroscopy and photoluminescence (PL) studies. Diffraction patterns indicated that all samples were nanocrystalline, with a spinel-type structure, space group Fd3 ¯ m. Titanium doping of gahnite caused an increase of unit-cell parameter and diffraction line broadening. The structure of samples was refined by the Rietveld method, simultaneously with the analysis of diffraction line broadening. TEM investigations confirmed that samples had spinel-type structure, and showed that samples contained evenly shaped particles of about 20 nm in size. Ti-doped samples exhibited strong absorption at wavelength exc = 308 nm.

  13. F-centre luminescence in nanocrystalline CeO2

    International Nuclear Information System (INIS)

    Aškrabić, S; Dohčević-Mitrović, Z D; Araújo, V D; Ionita, G; De Lima, M M Jr; Cantarero, A

    2013-01-01

    Nanocrystalline CeO 2 powders were synthesized by two cost-effective methods: the self-propagating room temperature (SPRT) method and the precipitation method. Differently prepared samples exhibited different temperature-dependent photoluminescence (PL) in the ultraviolet and visible regions. The PL signals originated from different kinds of oxygen-deficient defect centres with or without trapped electrons (F 0 , F + or F ++ centres). The temperature-dependent PL spectra were measured using different excitation lines, below (457, 488 and 514 nm) or comparable (325 nm) to the ceria optical band gap energy, in order to investigate the positions of intragap localized defect states. Evidence for the presence of F + centres was supported by the signals observed in electron paramagnetic resonance (EPR) measurements. Based on PL and EPR measurements it was shown that F + centres dominate in the CeO 2 sample synthesized by the SPRT method, whereas F 0 centres are the major defects in the CeO 2 sample synthesized by the precipitation method. The luminescence from F ++ states, as shallow trap states, was registered in both samples. Energy level positions of these defect states in the ceria band gap were proposed. (paper)

  14. F-centre luminescence in nanocrystalline CeO2

    Science.gov (United States)

    Aškrabić, S.; Dohčević-Mitrović, Z. D.; Araújo, V. D.; Ionita, G.; de Lima, M. M., Jr.; Cantarero, A.

    2013-12-01

    Nanocrystalline CeO2 powders were synthesized by two cost-effective methods: the self-propagating room temperature (SPRT) method and the precipitation method. Differently prepared samples exhibited different temperature-dependent photoluminescence (PL) in the ultraviolet and visible regions. The PL signals originated from different kinds of oxygen-deficient defect centres with or without trapped electrons (F0, F+ or F++ centres). The temperature-dependent PL spectra were measured using different excitation lines, below (457, 488 and 514 nm) or comparable (325 nm) to the ceria optical band gap energy, in order to investigate the positions of intragap localized defect states. Evidence for the presence of F+ centres was supported by the signals observed in electron paramagnetic resonance (EPR) measurements. Based on PL and EPR measurements it was shown that F+ centres dominate in the CeO2 sample synthesized by the SPRT method, whereas F0 centres are the major defects in the CeO2 sample synthesized by the precipitation method. The luminescence from F++ states, as shallow trap states, was registered in both samples. Energy level positions of these defect states in the ceria band gap were proposed.

  15. Grain Growth in Nanocrystalline Mg-Al Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Venkata Rama Ses; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-10-05

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg - Al thin films containing ~10 wt.% Al and with 14.5 nm average grain size were produced by magnetron-sputtering and subjected to heat-treatments. The grain growth evolution in the early stages of heat treatment at 423 K (150 °C), 473 K (200 °C) and 573K (300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7±2 and the activation energy for grain growth was 31.1±13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  16. The modified nanocrystalline cellulose for hydrophobic drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Qing, Weixia [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Medical College, Henan University, Kaifeng 475004 (China); Wang, Yong [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Wang, Youyou [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Key Lab of Natural Medicine and Immun-engineering of Henan Province, Henan University, Kaifeng 475004 (China); Zhao, Dongbao [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Liu, Xiuhua, E-mail: ll514527@163.com [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Key Lab of Natural Medicine and Immun-engineering of Henan Province, Henan University, Kaifeng 475004 (China); Zhu, Jinhua [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Torispherical NCC was synthesized through the improvements on the hydrolysis method. • NCC was firstly modified with CTMAB as a drug carrier. • Luteolin and luteoloside loading CTMAB-coated NCC were studied. - Abstract: In this work, torispherical nanocrystalline cellulose (NCC) was synthesized, and firstly modified with a cationic surfactant cetyltrimethylammonium bromide (CTMAB). It was proved that the kinetics of NCC adsorbing CTMAB followed the pseudo-second-order kinetics equation, and the adsorption isotherm model followed Freundlich which was multi molecular layer adsorption model. The morphology and structure of NCC and CTMAB-coated NCC were characterized by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Stabilities of NCC and CTMAB-coated NCC were assayed by zeta potential. The results showed that NCC in CTMAB solution was well-dispersed and stable. Moreover, the drug loading and release performance of CTMAB-coated NCC were studied using luteolin (LUT) and luteoloside (LUS) as model drugs.

  17. Computational description of nanocrystalline deformation based on crystal plasticity

    International Nuclear Information System (INIS)

    Fu, H.-H.; Benson, David J.; Andre Meyers, Marc

    2004-01-01

    The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 μm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress-strain evolution

  18. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    Science.gov (United States)

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  19. Application of printed nanocrystalline diamond film for electron emission cathode

    International Nuclear Information System (INIS)

    Zhang Xiuxia; Wei Shuyi; Lei Chongmin; Wei Jie; Lu Bingheng; Ding Yucheng; Zhu Changchun

    2011-01-01

    The low-cost and large area screen-printed nano-diamond film (NDF) for electronic emission was fabricated. The edges and corners of nanocrystalline diamond are natural field-emitters. The nano-diamond paste for screen-printing was fabricated of mixing nano-graphite and other inorganic or organic vehicles. Through enough disperse in isopropyl alcohol by ultrasonic nano-diamond paste was screen-printed on the substrates to form NDF. SEM images showed that the surface morphology of NDF was improved, and the nano-diamond emitters were exposed from NDF through the special thermal-sintering technique and post-treatment process. The field emission characteristics of NDF were measured under all conditions with 10 -6 Pa pressure. The results indicated that the field emission stability and emission uniformity of NDF were improved through hydrogen plasma post-treatment process. The turn-on field decreased from 1.60 V/μm to 1.25 V/μm. The screen-printed NDF can be applied to the displays electronic emission cathode for low-cost outdoor in large area.

  20. Boron Doped Nanocrystalline Diamond Films for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    V. Petrák

    2011-01-01

    Full Text Available With the rise of antibiotic resistance of pathogenic bacteria there is an increased demand for monitoring the functionality of bacteria membranes, the disruption of which can be induced by peptide-lipid interactions. In this work we attempt to construct and disrupt supported lipid membranes (SLB on boron doped nanocrystalline diamond (B-NCD. Electrochemical Impedance Spectroscopy (EIS was used to study in situ changes related to lipid membrane formation and disruption by peptide-induced interactions. The observed impedance changes were minimal for oxidized B-NCD samples, but were still detectable in the low frequency part of the spectra. The sensitivity for the detection of membrane formation and disruption was significantly higher for hydrogenated B-NCD surfaces. Data modeling indicates large changes in the electrical charge when an electrical double layer is formed at the B-NCD/SLB interface, governed by ion absorption. By contrast, for oxidized B-NCD surfaces, these changes are negligible indicating little or no change in the surface band bending profile.

  1. Nanocomposites Based on Polyethylene and Nanocrystalline Silicon Films

    Directory of Open Access Journals (Sweden)

    Olkhov Anatoliy Aleksandrovich

    2014-12-01

    Full Text Available High-strength polyethylene films containing 0.5-1.0 wt. % of nanocrystalline silicon (nc-Si were synthesized. Samples of nc-Si with an average core diameter of 7-10 nm were produced by plasmochemical method and by laser-induced decomposition of monosilane. Spectral studies revealed almost complete (up to ~95 % absorption of UV radiation in 200- 400 nm spectral region by 85 micron thick film if the nc-Si content approaches to 1.0 wt. %. The density function of particle size in the starting powders and polymer films containing immobilized silicon nanocrystallites were obtained using the modeling a complete profile of X-ray diffraction patterns, assuming spherical grains and the lognormal distribution. The results of X-ray analysis shown that the crystallite size distribution function remains almost unchanged and the crystallinity of the original polymer increases to about 10 % with the implantation of the initial nc-Si samples in the polymer matrix.

  2. The modified nanocrystalline cellulose for hydrophobic drug delivery

    International Nuclear Information System (INIS)

    Qing, Weixia; Wang, Yong; Wang, Youyou; Zhao, Dongbao; Liu, Xiuhua; Zhu, Jinhua

    2016-01-01

    Graphical abstract: - Highlights: • Torispherical NCC was synthesized through the improvements on the hydrolysis method. • NCC was firstly modified with CTMAB as a drug carrier. • Luteolin and luteoloside loading CTMAB-coated NCC were studied. - Abstract: In this work, torispherical nanocrystalline cellulose (NCC) was synthesized, and firstly modified with a cationic surfactant cetyltrimethylammonium bromide (CTMAB). It was proved that the kinetics of NCC adsorbing CTMAB followed the pseudo-second-order kinetics equation, and the adsorption isotherm model followed Freundlich which was multi molecular layer adsorption model. The morphology and structure of NCC and CTMAB-coated NCC were characterized by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Stabilities of NCC and CTMAB-coated NCC were assayed by zeta potential. The results showed that NCC in CTMAB solution was well-dispersed and stable. Moreover, the drug loading and release performance of CTMAB-coated NCC were studied using luteolin (LUT) and luteoloside (LUS) as model drugs.

  3. Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Jia Haoling [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China); Zhang Zhonghua [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China)], E-mail: zh_zhang@sdu.edu.cn; Qi Zhen [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China); Liu Guodong [School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); Bian Xiufang [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China)

    2009-03-20

    In this paper, the formation of nanocrystalline TiC from titanium powders and different carbon resources by mechanical alloying (MA) has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results show that nanocrystalline TiC can be synthesized from Ti powders and different carbon resources (activated carbon, carbon fibres or carbon nanotubes) by MA at room temperature. Titanium and different carbon resources have a significant effect on the Ti-C reaction and the formation of TiC during MA. Moreover, the formation of nanocrystalline TiC is governed by a gradual diffusion reaction mechanism during MA, regardless of different carbon resources.

  4. A computation model for the corrosion resistance of nanocrystalline zirconium metal

    International Nuclear Information System (INIS)

    Zhang Xiyan; Shi Minghua; Liu Nianfu; Wei Yiming; Li Cong; Qiu Shaoyu; Zhang Qiang; Zhang Pengcheng

    2007-01-01

    In this paper a computation model of corrosion rate-grain size of nanocrystalline and ultra-fine zirconium has been presented. The model is based on the Wagner's theory and the electron theory of solids. The conductivity, electronic mean free path and grain size of metal were considered. By this model, the corrosion rate of zirconium metal under different temperature was computed. The results show that the corrosion weight gain and rate constant of nanocrystalline zirconium is lower than that of zirconium with coarse grain size. And the corrosion rate constant and weight gain of nanocrystalline zirconium metal decrease with the decrease of grain size. So the refinement of grain size can remarkably improve the corrosion resistance of zirconium metal. (authors)

  5. Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling

    Directory of Open Access Journals (Sweden)

    O. M. Lemine

    2014-01-01

    Full Text Available α-Fe2O3 nanocrystallines were prepared by direct transformation via high energy ball milling treatment for α-FeOOH powder. X-ray diffraction, Rietveld analysis, TEM, and vibrating sample magnetometer (VSM are used to characterize the samples obtained after several milling times. Phase identification using Rietveld analysis showed that the goethite is transformed to hematite nanocrystalline after 40 hours of milling. HRTEM confirm that the obtained phase is mostly a single-crystal structure. This result suggested that the mechanochemical reaction is an efficient way to prepare some iron oxides nanocrystallines from raw materials which are abundant in the nature. The mechanism of the formation of hematite is discussed in text.

  6. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Ghosh, B.; Pradhan, S.K.

    2010-01-01

    Nanocrystalline TiC is produced by mechanical milling the stoichiometric mixture of α-Ti and graphite powders at room temperature under argon atmosphere within 35 min of milling through a self-propagating combustion reaction. Microstructure characterization of the unmilled and ball-milled samples was done by both X-ray diffraction and electron microscopy. It reveals the fact that initially graphite layers were oriented along and in the course of milling, thin graphite layers were distributed evenly among the grain boundaries of α-Ti particles. Both α-Ti and TiC lattices contain stacking faults of different kinds. The grain size distribution obtained from the Rietveld's method and electron microscopy studies ensure that nanocrystalline TiC particles with almost uniform size (∼13 nm) can be prepared by mechanical alloying technique. The result obtained from X-ray analysis corroborates well with the microstructure characterization of nanocrystalline TiC by electron microscopy.

  7. Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiaofeng [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Li, Dan, E-mail: txf8378@163.com [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); You, Zhen Jiang [Australian School of Petroleum, University of Adelaide, SA 5005 (Australia); Li, Tongye [The National Key Laboratory of Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu (China); Ge, Liangquan [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China)

    2017-04-06

    Deformation twinning of nanocrystalline body-centered cubic Mo was studied using molecular dynamics simulations, and the effects of grain sizes and temperatures on the deformation were evaluated. With small grain size, grain rotation accompanying grain growth was found to play important role in nanocrystalline Mo during tensile deformation. Additionally, grain rotation and the deformation controlled by GB-mediated processes induce to the difficulty of creating crack. Twin was formed by successive emission of twinning partials from grain boundaries in small grain size systems. However, the twin mechanisms of GB splitting and overlapping of two extended dislocations were also found in larger size grain. Twin induced crack tips were observed in our simulation, and this confirmed the results of previous molecular dynamics simulations. At higher temperatures, GB activities can be thermally activated, resulting in suppression of twinning tendency and improvement of ductility of nanocrystalline Mo.

  8. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  9. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  10. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    Science.gov (United States)

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  11. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  12. Direct separation of short range order in intermixed nanocrystalline and amorphous phases

    International Nuclear Information System (INIS)

    Frenkel, Anatoly I.; Kolobov, Alexander V.; Robinson, Ian K.; Cross, Julie O.; Maeda, Yoshihito; Bouldin, Charles E.

    2002-01-01

    Diffraction anomalous fine-structure (DAFS) and extended x-ray absorption fine-structure (EXAFS) measurements were combined to determine short range order (SRO) about a single atomic type in a sample of mixed amorphous and nanocrystalline phases of germanium. EXAFS yields information about the SRO of all Ge atoms in the sample, while DAFS determines the SRO of only the ordered fraction. We determine that the first-shell distance distribution is bimodal; the nanocrystalline distance is the same as the bulk crystal, to within 0.01(2) A ring , but the mean amorphous Ge-Ge bond length is expanded by 0.076(19) Angstrom. This approach can be applied to many systems of mixed amorphous and nanocrystalline phases

  13. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels

    International Nuclear Information System (INIS)

    Eskandari, Mostafa; Zarei-Hanzaki, Abbas; Abedi, Hamid Reza

    2013-01-01

    Highlights: ► Strength of nanocrystalline specimens follows a trend of a remarkable rise along with a small drop in ductility in comparison to the coarse-grained one. ► Universal correlation of linear type (UTS = mτ max ) between shear punch test data and the tensile strength may be unreliable for the nanocrystalline materials. ► Actual relation between the maximum shear and ultimate tensile strength follows an empirical formula of UTS=0.013τ max 2 -25.62τ max +13049. -- Abstract: The present work has been conducted to evaluate the mechanical properties of nanostructured 316L and 301 austenitic stainless steels. The nanocrystalline structures were produced through martensite treatment which includes cold rolling followed by annealing treatment. The effect of equivalent rolling strain and annealing parameters on the room temperature mechanical behavior of the experimental alloys have been studied using the shear punch testing technique. The standard uniaxial tension tests were also carried out to adapt the related correlation factors. The microstructures and the volume fraction of phases were characterized by transmission electron microscopy and feritscopy methods, respectively. The results indicate that the strength of nanocrystalline specimens remarkably increases, but the ductility in comparison to the coarse-grained one slightly decreases. In addition the strength of nanocrystalline specimens has been increased by decreasing the annealing temperature and increasing the equivalent rolling strain. The analysis of the load–displacement data has also disclosed that the universal correlation of linear type (UTS = mτ max ) between shear punch test data and the tensile strength is somehow unreliable for the nanocrystalline materials. The results suggest that the actual relation between the maximum shear strength and ultimate tensile strength follows a second order equation of type UTS=aτ max 2 -bτ max +c.

  14. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    International Nuclear Information System (INIS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-01-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe_2O_3–B_2O_3 powder mixtures with sufficient amount of CaH_2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys can be successfully synthesized by the reduction reaction of Fe_2O_3 and B_2O_3 with CaH_2 during mechanical alloying. The structure of produced Fe_9_5B_5 and Fe_8_5B_1_5 alloys was a combination of Fe and Fe_2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–B_2O_3–CaH_2 during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  15. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution

    International Nuclear Information System (INIS)

    Wang Liping; Zhang Junyan; Gao Yan; Xue Qunji; Hu Litian; Xu Tao

    2006-01-01

    Effects of grain size reduction on the electrochemical corrosion behavior of nanocrystalline Ni produced by pulse electrodeposition were characterized using potentiodynamic polarization testing and electrochemical impedance spectroscopy; X-ray photoelectron spectroscopy were used to confirm the electrochemical measurements and the suggested mechanisms. The corrosion resistance of Ni coatings in alkaline solutions considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The higher corrosion resistance of NC Ni may be due to the more rapid formation of continuous Ni(OH) 2 passive films compared with coarse-grained Ni coatings

  16. Preparation, characterization and luminescence of nanocrystalline Y2O3:Ho

    International Nuclear Information System (INIS)

    Biljan, Tomislav; Gajovic, Andreja; Meic, Zlatko; Mestrovic, Ernest

    2007-01-01

    Nanocrystalline Y 2 O 3 :Ho was synthesized by solution combustion method with ethylene glycol as fuel. Material was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties were studied using Raman spectrometers with excitation in near infrared (NIR) and visible regions. The visible and NIR luminescence spectra of nanocrystalline Y 2 O 3 :Ho show some important differences from those of bulk material. The convenience of using Raman instruments for studying luminescence of lanthanide ions is demonstrated

  17. Nanocrystalline alloys of Fe-Cu-Nb-Si-B after neutron irradiation

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Degmova, J.; Uvacik, P.

    1997-01-01

    Transmission Moessbauer spectroscopy was used to study changes induced by irradiation of amorphous and nanocrystalline samples. In an as-cast sample, neutrons mostly affect the orientation of the net magnetic moment. The average hyperfine field decreases with increasing neutron fluencies. In the case of the nanocrystalline samples a new disordered structure is created in the amorphous remainder corresponding to boride phases as it is shown in the samples isothermally heated from 1 to 8 hours. The structural changes of the amorphous remainder depend on the stage of crystallization and total neutron fluencies. (author). 1 tab., 3 figs., 7 refs

  18. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    Science.gov (United States)

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  19. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  20. Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials

    International Nuclear Information System (INIS)

    Gutkin, M Yu; Ovid'ko, I A; Skiba, N V

    2005-01-01

    A theoretical model is suggested that describes emission of partial Shockley dislocations from triple junctions of grain boundaries (GBs) in deformed nanocrystalline materials. In the framework of the model, triple junctions accumulate dislocations due to GB sliding along adjacent GBs. The dislocation accumulation at triple junctions causes partial Shockley dislocations to be emitted from the dislocated triple junctions and thus accommodates GB sliding. Ranges of parameters (applied stress, grain size, etc) are calculated in which the emission events are energetically favourable in nanocrystalline Al, Cu and Ni. The model accounts for the corresponding experimental data reported in the literature

  1. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs; Di Tolla, Francesco

    1999-01-01

    that the main deformation mode is sliding in the grain boundaries through a large number of uncorrelated events, where a few atoms (or a few tens of atoms) slide with respect to each other. Little dislocation activity is seen in the grain interiors. The localization of the deformation to the grain boundaries......Nanocrystalline metals, i.e., metals in which the grain size is in the nanometer range, have a range of technologically interesting properties including increased hardness and yield strength. We present atomic-scale simulations of the plastic behavior of nanocrystalline copper. The simulations show...

  2. Formation of nanocrystalline MgB sub 2 under high pressure

    CERN Document Server

    Sun, L; Kikegawa, T; Cao, L; Zhan, Z; Wu, Q; Wu, X; Wang, W

    2002-01-01

    The microstructural features of MgB sub 2 at ambient pressure and high pressure have been investigated by means of in situ synchrotron radiation x-ray diffraction and transmission electron microscopy (TEM). The x-ray diffraction measurements indicated that nanocrystalline MgB sub 2 formed in the pressure range of 26.3-30.2 GPa. TEM investigations reveal complex structure domains with evident lattice distortion in the relevant samples. The superconductivity of nanocrystalline MgB sub 2 was measured and compared with that of the starting sample of MgB sub 2.

  3. Microstructure and magnetic properties of rapidly solidified nanocrystalline Fe81Zr7B12 alloy

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Muddle, B.C.; Finlayson, T.R.

    2000-01-01

    Full text: Nanocrystalline Fe-Zr-B alloys have aroused extensive research interest due to their high saturation magnetization. There have been several studies [Suzuki et al., 1994; Kim et al., 1994] of the effect of boron on the formation of nanocrystalline structure and magnetic properties, showing that the addition of boron to Fe-Zr alloys improves the glass-forming ability and refines the primary bcc α-Fe grains during crystallization. However, when the boron content is increased to 8 at.%, the magnetic permeability is observed to decrease. There has been no detailed work to date concerning the microstructural evolution and magnetic properties in those alloys with higher boron content

  4. Formation of Nano-crystalline Todorokite from Biogenic Mn Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Zhu, M; Ginder-Vogel, M; Ni, C; Parikh, S; Sparks, D

    2010-01-01

    Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO{sub 6} octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite ({delta}-MnO{sub 2}), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c* axis and a lack of c* periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide {yields} 10-{angstrom} triclinic phyllomanganate {yields} todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.

  5. Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Mansour, S.A. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University, Rabegh (Saudi Arabia); Ibrahim, M.H. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University (Saudi Arabia); Ali, Shehab. E., E-mail: shehab_ali@science.suez.edu.eg [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-09-15

    The structural and magnetic properties of the spinel ferrite system Co{sub 1+x}Fe{sub 2-2x}Sn{sub x}O{sub 4} (x=0.0-1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm{sup -1} and 425 cm{sup -1}, which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer. - Highlights: Black-Right-Pointing-Pointer The spinel ferrite system has been formed at 1000 Degree-Sign C by using ceramic techniques. Black-Right-Pointing-Pointer Structural and microstructural evolutions have been studied using XRD and the Rietveld method. Black-Right-Pointing-Pointer The refinement result showed cationic distribution in the lattice is partially an inverse spinel. Black-Right-Pointing-Pointer The transmission electronic microscope analysis confirmed the X-ray results. Black-Right-Pointing-Pointer Magnetic properties of the samples were characterized by using a vibrating sample magnetometer.

  6. Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab. E.

    2012-01-01

    The structural and magnetic properties of the spinel ferrite system Co 1+x Fe 2−2x Sn x O 4 (x=0.0–1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm −1 and 425 cm −1 , which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer. - Highlights: ► The spinel ferrite system has been formed at 1000 °C by using ceramic techniques. ► Structural and microstructural evolutions have been studied using XRD and the Rietveld method. ► The refinement result showed cationic distribution in the lattice is partially an inverse spinel. ► The transmission electronic microscope analysis confirmed the X-ray results. ► Magnetic properties of the samples were characterized by using a vibrating sample magnetometer.

  7. Effect of Aminosilane Modification on Nanocrystalline Cellulose Properties

    Directory of Open Access Journals (Sweden)

    Nurul Hanisah Mohd

    2016-01-01

    Full Text Available The application of renewable nanomaterials, like nanocrystalline cellulose (NCC, has recently been widely studied by many researchers. NCC has many benefits such as high aspect ratio, biodegradability, and high number of hydroxyl groups which offer great opportunities for modification. In this study, the NCC derived from empty fruit bunches (EFB was modified with aminosilane, 3-(2-aminoethylaminopropyl-dimethoxymethylsilane (AEAPDMS, and the characterization was performed to investigate the potential as carbon dioxide (CO2 capture. Modification of NCC with AEAPDMS was carried out in water/ethanol solvent (80/20 (v/v with a ratio of NCC to aminosilane of 1 : 1, 1 : 2, 1 : 3, and 1 : 4 w/w%. The effects of AEAPDMS on NCC were characterized using Fourier transform infrared (FTIR spectroscopy, thermogravimetric analysis (TGA, X-ray diffraction (XRD analysis, elemental analysis (CHNS, and transmission electron microscopy (TEM. The existence of AEAPDMS onto NCC was confirmed by ATR-FTIR spectroscopy as the new peaks of NH2 were bending and wagging, and Si-CH3 appeared. The thermal stability of NCC increased after modification due to the interaction with AEAPDMS. The elemental analysis result showed that the nitrogen content increased with an enhancement ratio of the modifiers. The XRD indicated that the crystallinity decreased while the rod-like geometry of NCC was maintained after amorphous AEAPDMS grafted on the NCC. Since AEAPDMS can be grafted on the NCC, the sample is applicable as CO2 capture.

  8. Synthesis, characterization and photoluminescence properties of Dy{sup 3+}-doped nano-crystalline SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sreejarani K.; Sikhwivhilu, Lucky M. [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Hillie, Thembela K., E-mail: thillie@csir.co.za [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Physics Department, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-04-15

    Nano-crystalline of tin oxide doped with varying wt% of Dy{sup 3+} was prepared using chemical co-precipitation method and characterised by various advanced techniques such as BET-surface area, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence measurements. Analytical results demonstrated that the nanocrystalline tin oxide is in tetragonal crystalline phase and doping with Dy{sup 3+} could inhibit the phase transformation, increases surface area and decreases the crystallite size. The experimental result on photoluminescence characteristics originating from Dy{sup 3+}-doping in nanocrystalline SnO{sub 2} reveals the dependence of the luminescent intensity on dopant concentration.

  9. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    Science.gov (United States)

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  10. Some aspects of nanocrystalline nickel and zinc ferrites processed using microemulsion technique

    NARCIS (Netherlands)

    Misra, RDK; Kale, A; Kooi, BJ; De Hosson, JTM

    2003-01-01

    Nanocrystalline nickel and zinc ferrites synthesised using a microemulsion technique were characterised by high resolution transmission electron microscopy and vibrating sample magnetometry. A narrow and uniform distribution of crystals of size range 5-8 nm, distinguished by a clear lack of

  11. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd; Merzougui, Belabbes A.; Anjum, Dalaver H.; Hakeem, Abbas Saeed; Yamani, Zain Hassan; Bahnemann, Detlef W.

    2014-01-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found

  12. Nanocrystalline diamond/amorphous carbon films for applications in tribology, optics and biomedicine

    Czech Academy of Sciences Publication Activity Database

    Popov, C.; Kulisch, W.; Jelínek, Miroslav; Bock, A.; Strnad, J.

    2006-01-01

    Roč. 494, - (2006), s. 92-97 ISSN 0040-6090 Grant - others:NATO(XE) CBP.EAP.CLG 981519; Marie-Curie EIF(XE) MEIF-CT-2004-500038 Institutional research plan: CEZ:AV0Z10100502 Keywords : nanocrystalline diamond films * application properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  13. Optical properties and quantum confinement of nanocrystalline II-IV semiconductor particles

    NARCIS (Netherlands)

    Dijken, Albert van

    1999-01-01

    In this thesis, experiments are described that were performed on suspensions of nanocrystalline II-IV semiconductor particles.The object of this research is to study quantum size effects in relation to the luminescence properties of these particles. A pre-requisite for performing studies of

  14. Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Vlčková Živcová, Zuzana; Bartoň, Jan; Petrák, Václav; Nesladek, M.; Cígler, Petr; Kavan, Ladislav

    2015-01-01

    Roč. 17, č. 2 (2015), s. 1165-1172 ISSN 1463-9076 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:61388963 ; RVO:68378271 Keywords : nanocrystallines * visible-light sensitization * boron-doped diamond Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  15. On the GHz frequency response in nanocrystalline FeXN ultra-soft magnetic films

    NARCIS (Netherlands)

    Chechenin, NG; Craus, CB; Chezan, AR; Vystavel, T; Boerma, DO; De Hosson, JTM; Niesen, L; Tidrow, SC; Horwitz, JS; Xi, XX; Levy, J

    2002-01-01

    The periodicity and angular spread of the in-plane magnetization for ultrasoft nanocrystalline FeZrN films were estimated from an analysis of the ripple structure, observed in Lorentz transmission electron microscopy (LTEM) images. The influence of the micromagnetic ripple on the ferromagnetic

  16. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  17. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  18. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  19. Effect of plating time on growth of nanocrystalline Ni–P from ...

    Indian Academy of Sciences (India)

    Nanocrystalline nickel phosphorus (NC-Ni–P) deposits from sulphate/glycine bath using a simple electroless deposition process is demonstrated. In the present investigation, nanoporous alumina films are formed on the aluminium surface by anodization process followed by deposition of nickel onto the pores by electroless ...

  20. Low temperature behavior of hyperfine fields in amorphous and nanocrystalline FeMoCuB

    Czech Academy of Sciences Publication Activity Database

    Kohout, J.; Kříšťan, P.; Kubániová, D.; Kmječ, T.; Závěta, K.; Štěpánková, H.; Lančok, Adriana; Sklenka, L.; Matúš, P.; Miglierini, M.

    2015-01-01

    Roč. 117, č. 17 (2015), "17B718-1"-"17B718-4" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GA14-12449S Institutional support: RVO:61388980 Keywords : rapidly quenched crystalline * nanocrystalline alloy s * magnetic microstructure * metallic glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  1. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, Hua; Liu, J.F.; He, Yongqi

    2007-01-01

    In situ energy dispersive X-ray diffraction measurements with synchrotron radiation source have been performed on nanocrystalline Ge with particle sizes 13, 49 and 100 nm by using diamond anvil cell. Whereas the percentage volume collapse at the transition is almost constant, the values of the bu...

  2. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Administrator

    phous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering ... Auger electron spectroscopy showed that the carbon incorporation in the .... with a 514 nm Ar+ laser excitation source and the laser.

  3. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  4. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    Science.gov (United States)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  5. Surface properties of a nanocrystalline Fe-Ni-Nb-B alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Pavuk, M.; Sitek, J.; Sedlackova, K.

    2014-01-01

    In this work, we studied the impact of a neutron radiation on the surface properties of the nanocrystalline (Fe_0_._2_5Ni_0_._7_5)_8_1Nb_7B_1_2 alloy. Changes in topography and domain structure were observed by means of magnetic force microscopy (MFM). (authors)

  6. Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Ni, D. W.; Gualandris, Fabrizio

    2017-01-01

    Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical...

  7. Phase-pure Nanocrystalline Li4Ti5O12 for Lithium ion Battery

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Zukalová, Markéta; Kavan, Ladislav

    2003-01-01

    Roč. 8, č. 1 (2003), s. 2-6 ISSN 1432-8488 R&D Projects: GA MŠk OC D14.10 Institutional research plan: CEZ:AV0Z4040901 Keywords : phase purity * Li4Ti5O12 * nanocrystalline materials Subject RIV: CG - Electrochemistry Impact factor: 1.195, year: 2003

  8. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display a ...

  9. Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation

    Czech Academy of Sciences Publication Activity Database

    Alcaide, M.; Taylor, Andrew; Fjorback, M.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 10, Mar (2016), 1-9, č. článku 87. ISSN 1662-453X Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * neuroprosthetic interfaces * neural electrodes * boron-doped diamond * titanium nitride * foreign body reaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.566, year: 2016

  10. Influence of nanocrystalline diamond on resonant properties of gold plasmonic antennas

    Czech Academy of Sciences Publication Activity Database

    Kvapil, M.; Kromka, Alexander; Rezek, Bohuslav; Kalousek, R.; Křápek, V.; Dub, P.; Šikola, T.

    2016-01-01

    Roč. 213, č. 6 (2016), 1564-1571 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : antenna resonance wavelength * electric field enhancement * FDTD * nanocrystalline diamond * plasmonic antenna Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  11. On preparation of nanocrystalline chromites by co-precipitation andautocombustion methods

    Czech Academy of Sciences Publication Activity Database

    Matulková, Irena; Holec, Petr; Pacáková, Barbara; Kubíčková, Simona; Mantlíková, Alice; Plocek, Jiří; Němec, I.; Nižňanský, D.; Vejpravová, Jana

    2015-01-01

    Roč. 195, May (2015), s. 66-73 ISSN 0921-5107 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : transition metal chromites * nanocrystalline particles * microstructural analysis * vibrational spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.331, year: 2015

  12. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    Directory of Open Access Journals (Sweden)

    Yuxin Wang

    2017-08-01

    Full Text Available In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM. The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at% Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  13. Fabrication and properties of Er-doped nanocrystalline phase-seperated optical fibers

    Czech Academy of Sciences Publication Activity Database

    Dhar, Anirban; Kašík, Ivan; Podrazký, Ondřej; Matějec, Vlastimil

    2013-01-01

    Roč. 11, č. 1 (2013), s. 29-35 ISSN 1336-1376 R&D Projects: GA ČR GPP102/10/P554; GA ČR GAP102/10/2139 Institutional support: RVO:67985882 Keywords : Er-doping * Phase-separated glass * Nano-crystalline optical fiber Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. Supported lipid bilayer on nanocrystalline diamond: dual optical and field-effect sensor for membrane disruption

    Czech Academy of Sciences Publication Activity Database

    Ang, P.K.; Loh, K.P.; Wohland, T.; Nesládek, Miloš; Van Hove, E.

    2009-01-01

    Roč. 19, č. 1 (2009), s. 109-116 ISSN 1616-301X Institutional research plan: CEZ:AV0Z10100520 Keywords : nanocrystalline diamond * biocompatibility * supported lipid bilayers * biosensors * solution gate field effect transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.990, year: 2009

  15. Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Mohr, Markus; Daccache, Layal; Horvat, Sebastian; Brühne, Kai; Jacob, Timo; Fecht, Hans-Jörg

    2017-01-01

    Diamond combines several outstanding material properties such as the highest thermal conductivity and highest elastic moduli of all materials. This makes diamond an interesting candidate for a multitude of applications. Nonetheless, nanocrystalline diamond films, layers and coatings, usually show properties different to those of single crystalline diamond. This is usually attributed to the larger volume fraction of the grain boundaries with atomic structure different from the single crystal. In this work we measured Young's modulus and thermal conductivity of nanocrystalline diamond films with average grain sizes ranging from 6 to 15 nm. The measured thermal conductivities are modeled considering the thermal boundary conductance between grains as well as a grain size effect on the phonon mean free path. We make a comparison between elastic modulus and thermal boundary conductance of the grain boundaries G_k for different nanocrystalline diamond films. We conclude that the grain boundaries thermal boundary conductance G_k is a measure of the cohesive energy of the grain boundaries and therefore also of the elastic modulus of the nanocrystalline diamond films.

  16. Formation of local nanocrystalline structure in a boron steel induced by electropulsing

    International Nuclear Information System (INIS)

    Ma, Bingdong; Zhao, Yuguang; Ma, Jun; Guo, Haichao; Yang, Qing

    2013-01-01

    Highlights: ► The local NC structures in the uniform size of ∼15 nm were obtained by electropulsing. ► The NC structures were made up of γ-Fe without any other phases coexisting. ► The reduction in nucleation barrier of the γ-Fe helped form the local γ-Fe NC structure. ► The steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties. - Abstract: Nanocrystalline γ-Fe was obtained locally in a cold-rolled boron steel as a result of transient high-energy electropulsing. The nano-grains of γ-Fe were uniformly about 15 nm in size. No phases other than γ-Fe have been found in the nanocrystalline structure. It is believed that the pulse current enhances the nucleation rate of γ-Fe phase during the phase transformation from α-Fe to γ-Fe, resulting in the formation of local nanostructure. Moreover, in this study the steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties.

  17. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3

    International Nuclear Information System (INIS)

    Chen, D.J.; Mayo, M.J.

    1996-01-01

    Conventional ramp-and-hold sintering with a wide range of heating rates was conducted on submicrometer and nanocrystalline ZrO 2 -3 mol% Y 2 O 3 powder compacts. Although rapid heating rates have been reported to produce high density/fine grain size products for many submicrometer and smaller starting powders, the application of this technique to ZrO 2 -3 mol% Y 2 O 3 produced mixed results. In the case of submicrometer ZrO 2 -3 mol% Y 2 O 3 , neither densification nor grain growth was affected by the heating rate used. In the case of nanocrystalline ZrO 2 -3 mol% Y 2 O 3 , fast heating rates severely retarded densification and had a minimal effect on grain growth. The large adverse effect of fast heating rates on the densification of the nanocrystalline powder was traced to a thermal gradient/differential densification effect. Microstructural evidence suggests that the rate of densification greatly exceeded the rate of heat transfer in this material; consequently, the sample interior was not able to densify before being geometrically constrained by a fully dense shell which formed at the sample exterior. This finding implies that rapid rate sintering will meet severe practical constraints in the manufacture of bulk nanocrystalline ZrO 2 -3 mol% Y 2 O 3 specimens

  19. Superconductive B-doped nanocrystalline diamond thin films: Electrical transport and Raman spectra

    Czech Academy of Sciences Publication Activity Database

    Nesládek, M.; Tromson, D.; Mer, Ch.; Bergonzo, P.; Hubík, Pavel; Mareš, Jiří J.

    2006-01-01

    Roč. 88, č. 23 (2006), 232111/1-232111/3 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * superconductivity * magnetoresistance * Raman spectroscopy * Fano resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  20. High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose

    Science.gov (United States)

    Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas

    2010-01-01

    The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...

  1. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  2. Formation of a nanocrystalline layer on the surface of stone wool fibers

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise Frank

    2009-01-01

    In the present paper, we report a simple approach for creating a nanocrystalline layer on the surface of stone wool fibers (SWFs) with a basalt-like composition. The approach is based on a preoxidation process of the SWFs in atmospheric air at a temperature around the glass transition temperature...

  3. Competitiveness of organically grown cereals

    Directory of Open Access Journals (Sweden)

    Jaroslav Jánský

    2007-01-01

    Full Text Available The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale. Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.

  4. Synthesis and luminescence properties of nanocrystalline LiF:Mg,Cu,P phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sahare, P.D., E-mail: pdsahare@physics.du.ac.i [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Bakare, J.S. [SSGM College of Engineering, Amravati University, Shegaon 444 203, Maharashtra (India); Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune 411 007 (India); Ingale, N.B. [Department of Physics, Professor Ram Meghe Institute of Technology and Research, Badnera-Amravati 444 605, Maharashtra (India); Rupasov, A.A. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr-t 53, Moscow (Russian Federation)

    2010-02-15

    Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.

  5. Atomic layer deposited nanocrystalline tungsten carbides thin films as a metal gate and diffusion barrier for Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Beom; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan-si 712-749 (Korea, Republic of); Han, Won Seok [UP Chemical 576, Chilgoedong, Pyeongtaek-si, Gyeonggi-do 459-050 (Korea, Republic of); Lee, Do-Joong [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2016-07-15

    Tungsten carbides (WC{sub x}) thin films were deposited on thermally grown SiO{sub 2} substrates by atomic layer deposition (ALD) using a fluorine- and nitrogen-free W metallorganic precursor, tungsten tris(3-hexyne) carbonyl [W(CO)(CH{sub 3}CH{sub 2}C ≡ CCH{sub 2}CH{sub 3}){sub 3}], and N{sub 2} + H{sub 2} plasma as the reactant at deposition temperatures between 150 and 350 °C. The present ALD-WC{sub x} system showed an ALD temperature window between 200 and 250 °C, where the growth rate was independent of the deposition temperature. Typical ALD characteristics, such as self-limited film growth and a linear dependency of the film grown on the number of ALD cycles, were observed, with a growth rate of 0.052 nm/cycle at a deposition temperature of 250 °C. The ALD-WC{sub x} films formed a nanocrystalline structure with grains, ∼2 nm in size, which consisted of hexagonal W{sub 2}C, WC, and nonstoichiometric cubic β-WC{sub 1−x} phase. Under typical deposition conditions at 250 °C, an ALD-WC{sub x} film with a resistivity of ∼510 μΩ cm was deposited and the resistivity of the ALD-WC{sub x} film could be reduced even further to ∼285 μΩ cm by further optimizing the reactant pulsing conditions, such as the plasma power. The step coverage of ALD-WC{sub x} film was ∼80% on very small sized and dual trenched structures (bottom width of 15 nm and aspect ratio of ∼6.3). From ultraviolet photoelectron spectroscopy, the work function of the ALD-WC{sub x} film was determined to be 4.63 eV. Finally, the ultrathin (∼5 nm) ALD-WC{sub x} film blocked the diffusion of Cu, even up to 600 °C, which makes it a promising a diffusion barrier material for Cu interconnects.

  6. Nanocrystalline SnO2 by liquid pyrolysis

    Directory of Open Access Journals (Sweden)

    Morante, J. R.

    2000-08-01

    Full Text Available Liquid pyrolysis is presented as a new production method of SnO2 nanocrystalline powders suitable for gas sensor devices. The method is based on a pyrolytic reaction of high tensioned stressed drops of an organic solution of SnCl4•5(H2O. The main advantages of the method are its capability to produce SnO2 nanopowders with high stability, its accurate control over the grain size and other structural characteristics, its high level of repeatability and its low industrialization implementation cost. The characterization of samples of SnO2 nanoparticles obtained by liquid pyrolysis in the range between 200ºC and 900ºC processing temperature is carried out by X-ray diffraction, transmission electron microscopy, Raman and X-ray photoelectron spectroscopy. Results are analyzed and discussed so as to validate the advantages of the liquid pyrolysis method.La pirólisis líquida se presenta como un nuevo método para producir SnO2 nanocristalino en polvo ideal para sensores de gas. El método se basa en una reacción pirolítica de gotas altamente tensionadas procedentes de una solución orgánica de SnCl4•5(H2O. Las principales ventajas del método son la capacidad para producir nanopartículas de SnO2 con una gran estabilidad, el preciso control sobre el tamaño de grano y sobre otras características estructurales, el alto nivel de repetibilidad y el bajo coste en su implementación industrial.La caracterización de las muestras de las nanopartículas de SnO2 obtenidas por pirólisis líquida en un rango de temperatura de procesado que va de 200ºC a 900ºC se ha realizado mediante difracción de rayos X, microscopía electrónica de transmisión, espectroscopía Raman y espectroscopía fotoelectrónica de rayos X. Los resultados se han analizado y discutido. Éstos validan las ventajas del método de la pirólisis líquida.

  7. Developments in nanocrystalline magnetic alloys for industry; Alliages magnetiques nanocristallins industriels. Etat de l'art et evolution

    Energy Technology Data Exchange (ETDEWEB)

    Waeckerle, T.; Cremer, P. [Imphy Ugine Precision, 92 - Paris la Defense (France); Gautard, D. [Mecagis, 45 - Amilly (France)

    2003-10-01

    The French industrial production of nanocrystalline precursor ribbon (Imphy Ugine Precision - IUP) and nanocrystalline wound cores (Mecagis) is now mature, promoting then one of the first worldwide provider in this market. Recent progress in ribbon elaboration will provide large increase of industrial efficiency, leading the cost of a nanocrystalline solution to be closed to the cost of a ferrite solution. The precise study and control of magnetoelastic energy allowed the production scattering to be reduced, the alloy to be weakly dependant on external stresses (production, packaging, thermal dilatation), further promoting the performances. Whatever the alloy is very brittle in the nanocrystalline state, some improvements are using or are going around this intrinsic behaviour, and are now developed: powder core for low dissipative filtering, cut core for storage and strong power transformation, wound cores from ribbon nano-crystallized with high stresses during annealing, for the storage and current metering. (authors)

  8. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.

    Science.gov (United States)

    El-Atwani, O; Hinks, J A; Greaves, G; Gonderman, S; Qiu, T; Efe, M; Allain, J P

    2014-05-06

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He(+) ion irradiation at 950 °C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60-100 nm) and ultrafine (100-500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials.

  9. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    Science.gov (United States)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  10. Hysteresis properties of conventionally annealed and Joule-heated nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys

    International Nuclear Information System (INIS)

    Tiberto, P.; Basso, V.; Beatrice, C.; Bertotti, G.

    1996-01-01

    The dependence of magnetic properties on the thermal treatment used to induce the amorphous-to-nanocrystalline transformation in Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloy has been studied. Quasi-static hysteresis loops and initial permeability measurements were performed on nanocrystalline samples obtained by conventional annealing and Joule heating. A comparison between the magnetic properties of nanocrystalline samples obtained by the two heating procedures is presented. (orig.)

  11. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Majid; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid

    2016-12-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3} powder mixtures with sufficient amount of CaH{sub 2} were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys can be successfully synthesized by the reduction reaction of Fe{sub 2}O{sub 3} and B{sub 2}O{sub 3} with CaH{sub 2} during mechanical alloying. The structure of produced Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys was a combination of Fe and Fe{sub 2}B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  12. Spectroscopic ellipsometry characterization of amorphous and crystalline TiO{sub 2} thin films grown by atomic layer deposition at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: babaisps@rrcat.gov.in [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Ajimsha, R.S. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Rajiv, K.; Mukherjee, C. [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Gupta, M. [UGC-DAE Consortium, Indore Centre, Khandwa Road, Indore 452017 (India); Misra, P.; Kukreja, L.M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-10-01

    Highlights: • Refractive index was found to be increased from amorphous to the nanocrystalline films. • Refractive index was found to be inversely proportional with growth per cycle. • Large-grained anatase films showed lower refractive indices than the amorphous films. • Roughness was taken into consideration due to the columnar growths of crystalline films. - Abstract: TiO{sub 2} thin films of widely different structural and morphological characteristics were grown on Si (1 0 0) substrates using Atomic Layer Deposition (ALD) by varying the substrate temperature (T{sub s}) in a wide range (50 °C ≤ T{sub s} ≤ 400 °C). Spectroscopic ellipsometry (SE) measurements were carried out to investigate the effect of growth temperature on the optical properties of the films. Measured SE data were analyzed by considering double layer optical model for the sample together with the single oscillator Tauc-Lorentz dispersion relation. Surface roughness was taken into consideration due to the columnar growths of grains in crystalline films. The refractive index was found to be increased from amorphous (T{sub s} ≤ 150 °C) to the nanocrystalline films (250{sup 0} < T{sub s} ≤ 400 °C). The pronounced surface roughening for the large-grained anatase film obtained at the amorphous to crystalline phase transformation temperature of 200 °C, impeded SE measurement. The dispersions of refractive indices below the interband absorption edge were found to be strongly correlated with the single oscillator Wemple–DiDomenico (WD) model. The increase in dispersion energy parameter in WD model from disordered amorphous to the more ordered nanocrystalline films was found to be associated with the increase in the film density and coordination number.

  13. Solution Grown Se/Te Nanowires: Nucleation, Evolution, and The Role of Triganol Te seeds

    Directory of Open Access Journals (Sweden)

    Shan Xudong

    2009-01-01

    Full Text Available Abstract We have studied the nucleation and growth of Se–Te nanowires (NWs, with different morphologies, grown by a chemical solution process. Through systematic characterization of the Se–Te NW morphology as a function of the Te nanocrystallines (NCs precursor, the relative ratio between Se and Te, and the growth time, a number of significant insights into Se–Te NW growth by chemical solution processes have been developed. Specifically, we have found that: (i the growth of Se–Te NWs can be initiated from either long or short triganol Te nanorods, (ii the frequency of proximal interactions between nanorod tips and the competition between Se and Te at the end of short Te nanorods results in V-shaped structures of Se–Te NWs, the ratio between Se and Te having great effect on the morphology of Se–Te NWs, (iii by using long Te nanorods as seeds, Se–Te NWs with straight morphology were obtained. Many of these findings on Se–Te NW growth can be further generalized and provide very useful information for the rational synthesis of group VI based semiconductor NW compounds.

  14. Synthesis and characterization of β-Ni(OH)2 up grown nanoflakes by SILAR method

    International Nuclear Information System (INIS)

    Kulkarni, S.B.; Jamadade, V.S.; Dhawale, D.S.; Lokhande, C.D.

    2009-01-01

    In this paper we report a 'bottom up' approach to synthesize β-Ni(OH) 2 nanoflakes using novel successive ionic layer adsorption and reaction (SILAR) method. Ni(OH) 2 thin films have been deposited on glass substrate using aqueous alkaline nickel chloride as nickel ion source and double distilled water maintained at 353 K temperature as hydroxyl ion source. The structural, surface morphological, optical and electrical properties of films are examined. The nanocrystallinity and β-phase of Ni(OH) 2 are confirmed by X-ray diffraction and FT-IR studies. Scanning electron microscope study revealed microporous and random distribution of well up grown interlocked nanoflakes. Optical absorption studies show wide optical band gap of 3.26 eV for β-Ni(OH) 2 . The electrical properties revealed that β-Ni(OH) 2 has negative temperature coefficient of resistance with p-type semiconducting behaviour. The electrochemical property studied by cyclic voltametry in 2 M KOH electrolyte solution revealed pseudo capacitive behaviour, when β-Ni(OH) 2 thin film employed as working electrode in three electrode electrochemical cell with platinum as counter electrode and saturated calomel as reference electrode. The specific capacitance of 350 F g -1 is obtained with nanoflake like morphology.

  15. Thick Nano-Crystalline Diamond films for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Dawedeit, Christoph [Technical Univ. of Munich (Germany)

    2010-06-30

    This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuer Nukleartechnik at Technical University of Germany supported the work.

  16. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    Science.gov (United States)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  17. A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Pathan, Habib M.; Kim, Woo Young; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    A lot of methods are developed for the deposition of TiO 2 thin films; however, in each of these methods as-deposited films are amorphous and need further heat treatment at high temperature. In the present article, a chemical bath deposition (CBD) method was used for the preparation of TiO 2 thin films. We investigated nanocrystalline TiO 2 thin films using CBD at room temperature onto glass and ITO coated glass substrate. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The chemically synthesized films were nanocrystalline and composed of crystal grains of 2-3 nm

  18. Radiation stability of nanocrystalline ZrN coatings irradiated with high energy Xe and Bi ions

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Sokhatsky, A.S.; Uglov, V.V.; Zlotski, S.V.; Van Vuuren, A.J.; Neethling, Jan; O'Connell, J.

    2011-01-01

    Swift Xe and Bi ion irradiation effects in nanocrystalline ZrN coatings as a function of ion fluence are reported. Zirconium nitride films of different thickness (0.1, 3, 10 and 20 micrometers) synthesized by vacuum arc-vapour deposition in nanocrystalline state (average size of crystallites is ∼4 nm) were irradiated with 167 MeV Xe and 695 MeV Bi ions to fluences in the range 3x10 12 ÷2.6x10 15 cm -2 (Xe) and 10 12 x10 13 cm -2 (Bi) and studied using XRD and TEM techniques. No evidence of amorphization due to high level ionizing energy losses has been found. The measurements of lattice parameter have revealed nonmonotonic dependence of the stress level in irradiated samples on ion fluence. (authors)

  19. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    Science.gov (United States)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  20. AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties

    International Nuclear Information System (INIS)

    Liu, Y.Q.; Cong, H.T.; Wang, W.; Sun, C.H.; Cheng, H.M.

    2009-01-01

    To improve the specific strength and stiffness of Al-based composites, AlN/Al nanoparticles were in-situ synthesized by arc plasma evaporation of Al in nitrogen atmosphere and consolidated by hot-pressing to fabricate AlN nanoparticle-reinforced nanocrystalline Al composites (0-39 vol.% AlN). Microstructure characterization shows that AlN nanoparticles homogeneously distribute in the matrix of Al nanocrystalline, which forms atomically bonded interfaces of AlN/Al. The hardness and the elastic modulus of the nanocomposite have been improved dramatically, up to 3.48 GPa and 142 GPa, respectively. Such improvement is believed to result from the grain refinement strengthening and the interface strengthening (load transfer) between the Al matrix and AlN nanoparticles

  1. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  2. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    Science.gov (United States)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  3. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    International Nuclear Information System (INIS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-01-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO 2 ) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO 2 ). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO 2 /TiO 2 ) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO 2 -Degussa P25 catalyst is detected.

  4. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    Science.gov (United States)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  5. Characterization of nano-crystalline ZrO{sub 2} synthesized via reactive plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020 India (India); Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Su, L.T.; Tok, A.I.Y.; Guo, J. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2011-07-25

    Highlights: > Direct conversion of micron-sized zirconium hydride powder to nanocrystalline ZrO{sub 2} powder. > The experimental approach uses reactive plasma processing technique. > The product has been characterized by various analytical tools to support the findings. - Abstract: Nano-crystalline ZrO{sub 2} powder has been synthesized via reactive plasma processing. The synthesized ZrO{sub 2} powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and FTIR spectroscopy. The synthesized powder consists of a mixture of tetragonal and monoclinic phases of zirconia. Average crystallite size calculated from the XRD pattern shows that particles with crystallite size 20 nm or less than 20 nm are in tetragonal phase, whereas particles greater than 20 nm are in the monoclinic phase. TEM results show that particles have spherical morphology with maximum percentage of particles distributed in a narrow size from about 15 nm to 30 nm.

  6. Preparation of nanocrystalline iron-carbon materials as fillers for polymers

    International Nuclear Information System (INIS)

    Narkiewicz, U; Pelech, I; Roslaniec, Z; Kwiatkowska, M; Arabczyk, W

    2007-01-01

    This paper presents a method of preparing nanocrystalline iron-carbon materials which can be applied as fillers for polymers. Nanocrystalline iron samples were carburized either under ethylene/hydrogen mixture or under pure ethylene. Three kinds of samples were prepared: cementite/carbon (Fe 3 C/C), iron/cementite (Fe/Fe 3 C) and iron/carbon (Fe/C) ones. After carburization the samples were characterized using XRD and SEM methods. The obtained samples of iron-carbon nanoparticles were applied as fillers to polymer nanocomposites prepared in a polycondensation reaction (in situ) in a poly(ether-ester) matrix. The nanofillers were dispersed in monomers (diols) using a sonificator and a high-speed rotary stirrer. The obtained nanocomposites were characterized as regards their structure (SEM method) and mechanical behaviour

  7. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    Science.gov (United States)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  8. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  9. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  10. Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors

    International Nuclear Information System (INIS)

    Tang, Xin; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K.

    2017-01-01

    Hot-deformed magnets have been processed from amorphous and nanocrystalline precursors and their hard magnetic properties and microstructures have been investigated in order to explore the optimum process route. The hot-deformed magnets processed from an amorphous precursor exhibited the coercivity of 1.40 T that is higher than that processed from nanocrystalline powder, ∼1.28 T. The average grain size was larger in the magnets processed from amorphous precursor. Detailed microstructure analyses by aberration corrected scanning transmission electron microscopy revealed that the Nd + Pr concentrations in the intergranular phases were higher in the hot-deformed magnet processed from the amorphous precursor, which is considered to lead to the enhanced coercivity due to a stronger pinning force against magnetic domain wall motion.

  11. Change of magnetic properties of nanocrystalline alloys under influence of external factors

    Science.gov (United States)

    Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik

    2016-10-01

    Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.

  12. Strain-delocalizing effect of a metal substrate on nanocrystalline Ni film

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dexing [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Zhou, Jianqiu, E-mail: zhouj@njut.edu.cn [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Department of Mechanical Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province 430070 (China); Liu, Hongxi; Dong, Shuhong [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Wang, Ying [Department of Mechanical and Electronic Engineering, Suzhou Institute of Industrial Technology, Suzhou, Jiangsu 215104 (China)

    2015-07-29

    Uniaxial tensile test and scanning electron microscopy (SEM) are introduced to study the tensile properties of electrodeposited nanocrystalline nickel/coarse-grained copper (N/C) composite in this paper. Compared to the stress strain response of pure nanocrystalline (NC) nickel (Ni), the tensile ductility of N/C composite is enhanced significantly. Based on the experimental results, a multi-phase composite model is proposed to investigate the micromechanical behaviors of the NC Ni film and N/C composite plate. The constitutive models are implemented into ABAQUS/Explicit in the form of VUMAT subroutine. A series of numerical simulations are carried out and the predications were in good agreement with experimental results. It can be concluded that the coarse-grained (CG) substrate work well in suppressing the strain localization in the NC Ni film.

  13. Nanocrystalline material in toroidal cores for current transformer: analytical study and computational simulations

    Directory of Open Access Journals (Sweden)

    Benedito Antonio Luciano

    2005-12-01

    Full Text Available Based on electrical and magnetic properties, such as saturation magnetization, initial permeability, and coercivity, in this work are presented some considerations about the possibilities of applications of nanocrystalline alloys in toroidal cores for current transformers. It is discussed how the magnetic characteristics of the core material affect the performance of the current transformer. From the magnetic characterization and the computational simulations, using the finite element method (FEM, it has been verified that, at the typical CT operation value of flux density, the nanocrystalline alloys properties reinforce the hypothesis that the use of these materials in measurement CT cores can reduce the ratio and phase errors and can also improve its accuracy class.

  14. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  15. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan

    2011-12-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.

  16. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  17. Micromechanical modelling of nanocrystalline and ultrafine grained metals: A short overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    An overview of micromechanical models of strength and deformation behaviour of nanostructured and ultrafine grained metallic materials is presented. Composite models of nanomaterials, polycrystal plasticity based models, grain boundary sliding, the effect of non-equilibrium grain boundaries...... and nanoscale properties are discussed and compared. The examples of incorporation of peculiar nanocrystalline effects (like large content of amorphous or semi-amorphous grain boundary phase, partial dislocation GB emission/glide/GB absorption based deformation mechanism, diffusion deformation, etc.......) into the continuum mechanical approach are given. The possibilities of using micromechanical models to explore the ways of the improving the properties of nanocrystalline materials by modifying their structures (e.g., dispersion strengthening, creating non-equilibrium grain boundaries, varying the grain size...

  18. Characterisation of nanocrystalline CdS thin films deposited by CBD

    International Nuclear Information System (INIS)

    Devi, R.; Sarma, B.K.

    2006-01-01

    Nanocrystalline thin films of CdS are deposited on glass substrates by chemical bath deposition using polyvinyl alcohol (PVA) matrix solution. Crystallite sizes of the films are determined from X-ray diffraction and are found to vary from 5.4 nm to 7 nm. The band gaps of the nanocrystalline material is determined from the U-V spectrograph and are found to be within the range from 2.6 eV to 2.8 eV as grain size decreases. The band gaps are also determined from the dependence of electrical conductivity of the films with temperature. An increase of molarity decreases the grain size which in turn increases the band gap. (author)

  19. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-01-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  20. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  1. Effect of degassing temperature on the microstructure of a nanocrystalline Al-Mg alloy

    International Nuclear Information System (INIS)

    Ahn, Byungmin; Newbery, A. Piers; Lavernia, Enrique J.; Nutt, Steven R.

    2007-01-01

    The microstructural evolution of a nanocrystalline Al-Mg alloy was investigated to determine the effects of degassing temperature. Al 5083 powder was ball-milled in liquid nitrogen to obtain a nanocrystalline structure, then vacuum degassed to remove contaminants. The degassed powder was consolidated by cold isostatic pressing and then forged to produce bulk, low-porosity material. The material microstructure was analyzed at different stages using optical microscopy, transmission electron microscopy, and density measurements. The impurity concentration of the final product was also measured. The forged material exhibited a bimodal grain size distribution, consisting of both ultra fine and coarse grains. The bimodal distribution was attributed to the presence of residual coarse grains in the as-milled powder. Higher degassing temperatures resulted in higher density values and lower hydrogen content in the consolidated materials, although these materials also exhibited more extensive grain growth

  2. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  3. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  4. Effect of plating time on growth of nanocrystalline Ni–P from ...

    Indian Academy of Sciences (India)

    of the crystal size increases and the number of nanocrystals decreases as seen in figure 2(f–k) (Wang et al 2003). Dense coverage of Ni–P granular deposits is seen up to 300 s with crystals size in nanometer range and hence the Ni–P coat- ings are nanocrystalline in nature. When the deposition time is increased to 1800 s ...

  5. HRTEM study of the nanocrystalline Al85Y10Ni5 alloy

    International Nuclear Information System (INIS)

    Kozubowski, J.A.; Latuch, J.

    1999-01-01

    Nanocrystalline alloy Al 85 Y 10 Ni 5 obtained by annealing of the amorphous ribbons formed by melt spinning was studied by transmission electron microscopy and energy dispersive X-ray spectroscopy (EDS). The combined use of electron diffraction, electron microscopy and EDS has revealed the presence of several nano-phases: separate grains of Al(Y) and Al(N) solid solutions Al 3 Y grains and an unidentified phase of composition close to Al 3 (Ni,Y). (author)

  6. Nanocrystalline diamond coatings for cutting operations; Nanokristalline Diamantschichten fuer die Zerspanung

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany). Technology

    2006-06-15

    The history of the CVD diamond synthesis goes back into the fifties. However, the scientific and economical potential was only gradually recognized. In the eighties intensive world-wide research on CVD diamond synthesis and applications were launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. The article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  7. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 18, č. 43 (2014), s. 6919-6924 ISSN 1477-9226 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : spinel nanocrystalline cobalt ferrite * nanoparticles * magnetorheological effect Subject RIV: BK - Fluid Dynamics Impact factor: 4.197, year: 2014

  8. Mask-free surface structuring of micro- and nanocrystalline diamond films by reactive ion plasma etching

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Babchenko, Oleg; Varga, Marián; Hruška, Karel; Kromka, Alexander

    2014-01-01

    Roč. 6, č. 7 (2014), s. 780-784 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP108/12/0996; GA MPO FR-TI2/736 Institutional support: RVO:68378271 Keywords : micro- and nanocrystalline diamond * capacitively coupled plasma * reactive ion etching * nanostructuring * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  9. Enzymatic-assisted preparation of nanocrystalline cellulose from non-wood fibers

    OpenAIRE

    Beltramino Heffes, Facundo

    2016-01-01

    In the current scenario of growing environmental concerns, the search for innovative, renewable, non-polluting materials has never been as intensive as it is today. Cellulose, being the most abundant polymer on earth, offers a wide range of possibilities for fulfilling current and potential future needs for novel materials. In this direction, research in the field of nanocrystalline cellulose (NCC) has attracted a great interest in recent years. However, this great interest has been shadowed ...

  10. Combustion synthesis and photoluminescence in novel red emitting yttrium gadolinium pyrosilicate nanocrystalline phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Hedaoo, V.P., E-mail: vraikwar@rediffmail.com [Department of Physics, R. J. College, Ghatkopar, Mumbai, MS 400086 (India); Bhatkar, V.B. [Department of Physics, Shri Shivaji Science College, Amravati, MS 444602 (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati, MS 444602 (India)

    2016-07-05

    Yttrium Gadolinium Pyrosilicate Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+} (x = 0.05, 0.10, 0.15) phosphor powder was prepared by facile and time efficient modified combustion method for the first time. The phosphor was characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence excitation (PLE) and emission (PL) spectroscopy and color chromaticity coordinates. XRD revealed the monoclinic crystal structure with space group P1¯. The crystallite size was calculated by Williamson-Hall (W–H) analysis. Nanoplates-like morphology was observed in FESEM analysis with size in the range 50–80 nm. TEM images confirmed the particle size and shape. Upon excitation by 254 nm UV light, the phosphor showed the characteristic red emission peaks at 589 nm and 613 nm corresponding to {sup 5}D{sub 0} → {sup 7}F{sub 1} and {sup 5}D{sub 0} → {sup 7}F{sub 2} transitions respectively. It was observed that the nanocrystalline phosphor Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+}can be tuned to emit orange to red color by adjusting the ratio Y/Gd. This phosphor thus can be a potential candidate as orange to red color emitting tunable nanocrystalline phosphor for optical devices. - Highlights: • A novel Yttrium Gadolinium Pyrosilicate doped with Eu{sup 3+} is reported. • Facile and time efficient modified combustion method is used. • The nanocrystalline structure was shown by X-ray diffraction, W–H analysis. • FESEM and TEM images confirmed the nanocrystalline structure. • The reported phosphor can be tuned from orange to red by varying Y/Gd ratio.

  11. Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Babchenko, Oleg; Varga, Marián; Stuchlík, Jiří; Jirásek, Vít; Prajzler, Václav; Nekvindová, P.; Kromka, Alexander

    2016-01-01

    Roč. 618, Nov (2016), s. 130-133 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-05053S Grant - others:AV ČR(CZ) MOST-15-04 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : hydrogenated amorphous silicon * nanocrystalline diamond * planar waveguides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.879, year: 2016

  12. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lekdim, Atef, E-mail: atef.lekdim@univ-lyon1.fr; Morel, Laurent; Raulet, Marie-Ange

    2017-04-15

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena. - Highlights: • The magnetic ageing of the nanocrystalline materials is related to their annealing. • The degradations with ageing are not related to a change of the grain size diameter. • The amount of anisotropies introduced with ageing depends just on ageing conditions.

  13. Charged micro-patterns on nanocrystalline diamond are well defined by electrical current application

    Czech Academy of Sciences Publication Activity Database

    Verveniotis, Elisseos; Kromka, Alexander; Rezek, Bohuslav

    2012-01-01

    Roč. 53, č. 2 (2012), s. 61-67 ISSN 0001-7140 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * thin films * electrostatic charging * AFM * KFM Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  15. Ultrathin nanocrystalline diamond films with silicon vacancy color centers via seeding by 2 nm detonation nanodiamonds

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Štěpán; Varga, Marián; Štenclová, Pavla; Ondič, Lukáš; Ledinský, Martin; Pangrác, Jiří; Vaňek, O.; Lipov, J.; Kromka, Alexander; Rezek, Bohuslav

    2017-01-01

    Roč. 9, č. 44 (2017), s. 38842-38853 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LD15003; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : detonation nanodiamond * surface chemistry * hydrogenation * zeta potential * nucleation density * nanocrystalline diamond * SiV center Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.504, year: 2016

  16. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Galář, P.; Čermák, Jan; Malý, P.; Kromka, Alexander; Rezek, Bohuslav

    2014-01-01

    Roč. 116, č. 22 (2014), "223103-1"-"223103-6" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : polypyrrole * nanocrystalline diamond * photoluminescence spectroscopy * opto-electronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  17. Influence of the gas phase composition on nanocrystalline diamond films prepared by MWCVD

    Czech Academy of Sciences Publication Activity Database

    Popov, C.; Jelínek, Miroslav; Boycheva, S.; Vorlíček, Vladimír; Kulisch, W.

    2005-01-01

    Roč. 23, - (2005), s. 31-34 ISSN 1422-6375 R&D Projects: GA AV ČR(CZ) IAA1010110 Grant - others:European Community Marie Curie Fellowship(XE) HPMF-CT-2002-01713 Institutional research plan: CEZ:AV0Z1010914 Keywords : microwave plasma CVD * nanocrystalline diamond films * characterization Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Sensing of phosgene by a porous-like nanocrystalline diamond layer with buried metallic electrodes

    Czech Academy of Sciences Publication Activity Database

    Davydova, Marina; Stuchlík, M.; Rezek, Bohuslav; Larsson, K.; Kromka, Alexander

    2013-01-01

    Roč. 188, NOV (2013), s. 675-680 ISSN 0925-4005 R&D Projects: GA MPO FR-TI2/736; GA ČR GAP108/12/0996 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * phosgene * surface conductivity * gas sensor * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.840, year: 2013 http://dx.doi.org/10.1016/j.snb.2013.07.079

  19. Ion-implantation of erbium into the nanocrystalline diamond thin films

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Babchenko, Oleg; Cajzl, J.; Kromka, Alexander; Macková, Anna; Malinský, Petr; Oswald, Jiří; Prajzler, Václav; Remeš, Zdeněk; Varga, Marián

    2016-01-01

    Roč. 18, 7-8 (2016), s. 679-684 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LM2011019 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : nanocrystalline diamond * optical waveguides * erbium * luminescence * ion implantation * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.449, year: 2016

  20. Combination of surface nanocrystallization and co-rolling: Creating multilayer nanocrystalline composites

    International Nuclear Information System (INIS)

    Waltz, L.; Retraint, D.; Roos, A.; Olier, P.

    2009-01-01

    This paper describes a combination of surface mechanical attrition treatment and co-rolling performed at 550 deg. C. This duplex method leads to the formation of a semi-massive multilayer structure of alternating nanocrystalline layers, transition layers and coarse-grained layers. Transmission electron microscopy observations correlated with nanoindentation hardness measurements demonstrate that the nano- and subnanocrystalline layers are preserved after the process. Tensile tests showed improved yield and ultimate strengths, and acceptable ductility

  1. Combination of surface nanocrystallization and co-rolling: Creating multilayer nanocrystalline composites

    Energy Technology Data Exchange (ETDEWEB)

    Waltz, L. [Institute Charles Delaunay, FRE CNRS 2848, LASMIS, University of Technology of Troyes, 10000 Troyes (France); Retraint, D. [Institute Charles Delaunay, FRE CNRS 2848, LASMIS, University of Technology of Troyes, 10000 Troyes (France)], E-mail: delphine.retraint@utt.fr; Roos, A. [Institute Charles Delaunay, FRE CNRS 2848, LASMIS, University of Technology of Troyes, 10000 Troyes (France); Olier, P. [DEN/DNM/SRMA/LTMEX, Commissariat a l' Energie Atomique de Saclay, 91191 Gif-sur-Yvette (France)

    2009-01-15

    This paper describes a combination of surface mechanical attrition treatment and co-rolling performed at 550 deg. C. This duplex method leads to the formation of a semi-massive multilayer structure of alternating nanocrystalline layers, transition layers and coarse-grained layers. Transmission electron microscopy observations correlated with nanoindentation hardness measurements demonstrate that the nano- and subnanocrystalline layers are preserved after the process. Tensile tests showed improved yield and ultimate strengths, and acceptable ductility.

  2. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Indyka, P., E-mail: paulina.indyka@uj.edu.pl [Jagiellonian University, Faculty of Chemistry, 3 Ingardena St., 30-059 Krakow (Poland); Beltowska-Lehman, E.; Tarkowski, L.; Bigos, A. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); García-Lecina, E. [Surface Finishing Department, CIDETEC-IK4 – Centre for Electrochemical Technologies, P° Miramón 196, 20009 Donostia-San Sebastián (Spain)

    2014-03-25

    Highlights: • Ni–W alloy coatings were electrodeposited from an aqueous electrolyte solutions. • The microstructure was studied with respect to electrodeposition process parameters. • We report optimal plating conditions for crack-free, nanocrystalline Ni–W coatings. • Crystalline Ni–W coatings exhibited the phase structure of an α-Ni(W) solid solution. • Coatings revealed tensile residual stresses and weakly pronounced 〈1 1 0〉 fiber texture. -- Abstract: Ni–W coatings of different tungsten content (2–50 wt%) were electrodeposited on a steel substrates from an aqueous complex sulfate–citrate galvanic baths, under controlled hydrodynamic conditions in a Rotating Disk Electrode (RDE) system. The optimum conditions for the electrodeposition of crack-free, homogeneous nanocrystalline Ni–W coatings were determined on the basis of the microstructure investigation results. The XRD structural characterizations of Ni–W alloy coatings obtained under different experimental conditions were complemented by SEM and TEM analysis. Results of the study revealed that the main factor influencing the microstructure formation of the Ni–W coatings is the chemical composition of an electrolyte solution. X-ray and electron diffraction patterns of all nanocrystalline Ni–W coatings revealed mainly the fcc phase structure of an α-Ni(W) solid solution with a lattice parameter increased along with tungsten content. The use of additives in the plating bath resulted in the formation of equiaxial/quasifibrous, nanocrystalline Ni–W grains of an average size of about 10 nm. The coatings were characterized by relatively high tensile residual stresses (500–1000 MPa), depending on the electrodeposition conditions. Ni–W coatings exhibited weakly pronounced fiber type 〈1 1 0〉 crystallographic texture, consistent with the symmetry of the plating process. Coatings of the highest tungsten content 50 wt% were found to be amorphous.

  3. Simplified procedure for patterned growth of nanocrystalline diamond micro-structures

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Ledinský, Martin; Hruška, Karel; Potměšil, Jiří; Vaněček, Milan

    2009-01-01

    Roč. 518, č. 1 (2009), s. 343-347 ISSN 0040-6090 R&D Projects: GA AV ČR KAN400100701; GA AV ČR KAN400100652; GA AV ČR(CZ) IAAX00100902 Institutional research plan: CEZ:AV0Z1010921 Keywords : atomic force microscopy * Raman spectroscopy * nanocrystalline diamond * selective diamond growth * seed layer * patterning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.727, year: 2009

  4. Carbon nanotubes overgrown and ingrown with nanocrystalline diamonddeposited by different CVD plasma systems

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Vretenár, V.; Ižák, Tibor; Skákalová, V.; Kromka, Alexander

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2413-2419 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) 7AMB14SK037 Institutional support: RVO:68378271 Keywords : carbon nanotubes * chemical vapour deposition * composites * gas composition * nanocrystalline diamond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2014

  5. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    Czech Academy of Sciences Publication Activity Database

    Lišková, Jana; Babchenko, Oleg; Varga, Marián; Kromka, Alexander; Hadraba, Daniel; Švindrych, Zdeněk; Burdíková, Zuzana; Bačáková, Lucie

    2015-01-01

    Roč. 10, č. 2015 (2015), s. 869-884 E-ISSN 1178-2013 R&D Projects: GA MŠk(CZ) EE2.3.30.0025; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 ; RVO:68378271 Keywords : nanocrystalline diamond film * osteoblast * Saos-2 Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.320, year: 2015

  6. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  7. Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures

    Science.gov (United States)

    Saha, D.; Ajimsha, R. S.; Rajiv, K.; Mukherjee, C.; Gupta, M.; Misra, P.; Kukreja, L. M.

    2014-10-01

    TiO2 thin films of widely different structural and morphological characteristics were grown on Si (1 0 0) substrates using Atomic Layer Deposition (ALD) by varying the substrate temperature (Ts) in a wide range (50 °C ≤ Ts ≤ 400 °C). Spectroscopic ellipsometry (SE) measurements were carried out to investigate the effect of growth temperature on the optical properties of the films. Measured SE data were analyzed by considering double layer optical model for the sample together with the single oscillator Tauc-Lorentz dispersion relation. Surface roughness was taken into consideration due to the columnar growths of grains in crystalline films. The refractive index was found to be increased from amorphous (Ts ≤ 150 °C) to the nanocrystalline films (2500 < Ts ≤ 400 °C). The pronounced surface roughening for the large-grained anatase film obtained at the amorphous to crystalline phase transformation temperature of 200 °C, impeded SE measurement. The dispersions of refractive indices below the interband absorption edge were found to be strongly correlated with the single oscillator Wemple-DiDomenico (WD) model. The increase in dispersion energy parameter in WD model from disordered amorphous to the more ordered nanocrystalline films was found to be associated with the increase in the film density and coordination number.

  8. Formation of ZnO Nanocrystalline via Facile Non-Hydrolytic Route

    International Nuclear Information System (INIS)

    Ooi, M. D. Johan; Aziz, A. Abdul; Abdullah, M. J.

    2011-01-01

    Zinc oxide (ZnO) nanocrystalline were synthesized via oxidizing Zn powder in non-aqueous solvent with addition of Diethanolamine (DEA) as a stabilizing agent. The influence of DEA on the structural, optical properties and the formation of ZnO nanocrystalline were studied. The synthesized ZnO were polycrystalline in structures where sample without the addition of DEA shows high intensity peak of (002) phase compared with sample in the presence of DEA which preferred to grow in (101) direction. SEM micrograph displays the morphology of ZnO nanocrystalline for both of the samples which shows micron size and non-uniform particles for sample without DEA whereas for sample with DEA exhibit smaller size (∼110 nm) and nearly spherical in shape despite of some agglomeration occurs at the interparticle separation. The photoluminescence (PL) spectra shows UV emission peak for both of the samples where sample with the absence of DEA possess lower intensity of UV emission peak compared to samples with DEA which demonstrate stronger intensity despite of having very weak visible secondary emission peak at 530 nm.

  9. Grain size dependent electrical studies on nanocrystalline SnO2

    International Nuclear Information System (INIS)

    Bose, A. Chandra; Thangadurai, P.; Ramasamy, S.

    2006-01-01

    Nanocrystalline tin oxide (n-SnO 2 ) with different grain sizes were synthesized by chemical precipitation method. Size variation was achieved by changing the hydrolysis processing time. Structural phases of the nanocrystalline SnO 2 were identified by X-ray diffraction (XRD). The grain sizes of the prepared n-SnO 2 were found to be in the range 5-20 nm which were estimated using the Scherrer formula and they were confirmed by transmission electron microscopy (TEM) measurements. The electrical properties of nanocrystalline SnO 2 were studied using impedance spectroscopy. The impedance spectroscopy results showed that, in the temperature range between 25 and 650 deg. C, the conductivity has contributions from two different mechanisms, which are attributed to different conduction mechanisms in the grain and the grain boundary regions. This is because of the different relaxation times available for the conduction species in those regions. However, for the temperatures above 300 deg. C, there is no much difference between these two different relaxation times. The Arrhenius plots gave the activation energies for the conduction process in all the samples

  10. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Science.gov (United States)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  11. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  12. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Science.gov (United States)

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  13. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Directory of Open Access Journals (Sweden)

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  14. Effect of Mo Ion Implantation on Stability of Nanocrystalline Copper Surface Layers

    Directory of Open Access Journals (Sweden)

    XI Yang

    2016-08-01

    Full Text Available The surface of pure copper was modified using the surface mechanical attrition treatment (SMAT method, and molybdenum ions were implanted in the nanosurface using a metal vapor vacuum arc (MEVVA. The results of the SMAT were observed by optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM. An obvious nanocrystalline layer and a deformation region exist on the surface. The size of the nanocrystalline layer was characterized using atomic force microscopy (AFM. The results indicate remarkable suppression on grain size, the nanocrystalline layer grows to 163nm after annealing and reduces to only 72nm due to the Mo ion implantation. In addition, the hardness of the topmost surface of the material is 3.5 times that of the SMATed copper, which is about 7 times of the value of the matrix. The above improvements most likely result from the dispersion of the Mo ions and the reactions of the crystal defects due to the SMAT and ion implantation.

  15. Thermal conductivity of the amorphous and nanocrystalline phases of the beech wood biocarbon nanocomposite

    Science.gov (United States)

    Kartenko, N. F.; Orlova, T. S.; Parfen'eva, L. S.; Smirnov, B. I.; Smirnov, I. A.

    2014-11-01

    Natural composites (biocarbons) obtained by carbonization of beech wood at different carbonization temperatures T carb in the range of 800-2400°C have been studied using X-ray diffraction. The composites consist of an amorphous matrix and nanocrystallites of graphite and graphene. The volume fractions of the amorphous and nanocrystalline phases as functions of T carb have been determined. Temperature dependences of the phonon thermal conductivity κ( T) of the biocarbons with different temperatures T carb (1000 and 2400°C) have been analyzed in the range of 5-300 K. It has been shown that the behavior of κ( T) of the biocarbon with T carb = 1000°C is controlled by the amorphous phase in the range of 5-50 K and by the nanocrystalline phase in the range of 100-300 K. The character of κ( T) of the biocarbon with T carb = 2400°C is determined by the heat transfer (scattering) in the nanocrystalline phase over the entire temperature range of 5-300 K.

  16. The electrochemical characteristics of Mg2Ni nanocrystalline hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Ling; Zhou Xiaosong; Peng Shuming

    2008-06-01

    The nanocrystalline Mg 2 Ni materials were prepared by mechanical alloying. The cyclic voltametry results indicated that the potential of oxidation peak was shift as the scan rate increased and the absorption property of Mg 2 Ni prepared by mechanical alloying was increased even at ambient temperature. The absorption and desorption of hydrogen in Mg 2 Ni alloy were remarkably accelerated with the rising temperature. Small angel X-ray scattering results indicated that the Mg 2 Ni powder have 1-5 nm and 5-10 nm particle size distribution, which increased the acting sites of hydrogen absorption/desorption reaction and decreased the diffusion path of hydrogen desorption. It was induced to the enhanced performance of Mg 2 Ni nanocrystalline powder. The cycle life investigated results indicated that the activation property of Mg 2 Ni nanocrystal-line hydrogen storage alloy electrode was excellent, the capacitance maintenance ration was 66% after 200 cycles. The coating of epoxy resin on one side of the electrode had no effect on the activation property and the capacitance maintenance ration was better than the uncoating one. But the anode peak current value and the cathodic peak current value were decreased remarkably which indicated that the hydrogen absorption/desorption rate and the charge/discharge degree had decreased. (authors)

  17. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  18. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Lin, C.-K.; Chan, C.-C.; Chang, C.-C.; Tsay, C.-Y.

    2006-01-01

    TiO 2 materials possessing not only photocatalytic but also electrochromic properties have attracted many research and development interests. Though WO 3 exhibits excellent electrochromic properties, the much higher cost and water-sensitivity of WO 3 as compared with the TiO 2 may restrict the practical application of WO 3 materials. In the present study, the feasibility of preparing nanocrystalline porous TiO 2 /WO 3 composite thin films was investigated. Precursors of sols TiO 2 and/or WO 3 and polystyrene microspheres were used to prepare nanocrystalline pure TiO 2 , WO 3 , and composite TiO 2 /WO 3 thin films by spin coating. The spin-coated thin films were amorphous and, after heat treating at a temperature of 500 o C, nanocrystalline TiO 2 , TiO 2 /WO 3 , and WO 3 thin films with or without pores were prepared successfully. The heat-treated thin films were colorless and coloration-bleaching phenomena can be observed during cyclic voltammetry tests. The heat-treated thin films exhibited good reversible electrochromic behavior while the porous TiO 2 /WO 3 composite film exhibited improved electrochromic properties

  19. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Lekdim, Atef, E-mail: atef.lekdim@univ-lyon1.fr; Morel, Laurent; Raulet, Marie-Ange

    2017-05-15

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena. - Highlights: • The coating impacts drastically the magnetic properties during thermal ageing. • Irreversible ageing phenomena after the total coating breakage. • The deteriorations are related to the storage of the magnetoelastic anisotropy.

  20. Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83 T

    Science.gov (United States)

    Liu, Tao; Kong, Fengyu; Xie, Lei; Wang, Anding; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-11-01

    Fe84.75-xCoxSi2B9P3C0.5Cu0.75 (x = 0, 2.5 and 10) nanocrystalline alloys with excellent magnetic properties were successfully developed. The fully amorphous alloy ribbons exhibit wide temperature interval of 145-156 °C between the two crystallization events. It is found that the excessive substitution of Co for Fe greatly deteriorates the magnetic properties due to the non-uniform microstructure with coarse grains. The alloys with x = 0 and 2.5 exhibit high saturation magnetization (above 1.83 T), low core loss and relatively low coercivity (below 5.4 A/m) after annealing. In addition, the Fe84.75Si2B9P3C0.5Cu0.75 nanocrystalline alloy also exhibits good frequency properties and temperature stability. The excellent magnetic properties were explained by the uniform microstructure with small grain size and the wide magnetic domains of the alloy. Low raw material cost, good manufacturability and excellent magnetic properties will make these nanocrystalline alloys prospective candidates for transformer and motor cores.

  1. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-11-01

    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  2. Anti-corrosive and anti-microbial properties of nanocrystalline Ni-Ag coatings

    Energy Technology Data Exchange (ETDEWEB)

    Raghupathy, Y.; Natarajan, K.A.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in

    2016-04-15

    Graphical abstract: - Highlights: • Electrodeposition yielded phase-segregated, nanocrystalline Ni-Ag coatings. • Ni-Ag alloys exhibited smaller Ni crystals compared to pure Ni. • Ultra fine Ni grains of size 12–14 nm favoured Ni-Ag solid solution. • Nanocrystalline Ag resisted bio-fouling by Sulphate Reducing bacteria. • Ni-Ag outperformed pure Ni in corrosion and bio-corrosion tests. - Abstract: Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%).

  3. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    Science.gov (United States)

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Magnetic properties of nanocrystalline Fe–10%Ni alloy obtained by planetary ball mills

    International Nuclear Information System (INIS)

    Hamzaoui, Rabah; Elkedim, Omar

    2013-01-01

    Highlights: •Solid solution formation accompanied by a grain refinement for nanocrystalline Fe-Ni. •The shock mode process (SMP) prevails when Ω > >ω. •The friction mode process (FMP) is stronger when Ω < <ω. •The FMP leads to the formation of alloys exhibiting a soft magnetic behavior. -- Abstract: Planetary ball mill PM 400 from Retsch (with different milling times for Ω = 400 rpm, ω = 800 rpm) and P4 vario ball mill from Fritsch (with different milling conditions (Ω/ω), Ω and ω being the disc and the vial rotation speeds, respectively) are used for obtaining nanocrystalline Fe–10wt% Ni. The structure and magnetic properties are studied by using X-ray diffraction, SEM and hysteresis measurements, respectively. The bcc-Fe(Ni) phase formation is identified by X-ray diffraction. The higher the shock power and the higher milling time are, the larger the bcc lattice parameter and the lower the grain size. The highest value of the coercivity is 1600 A/m for Fe–10 wt.%Ni (with shock mode (424 rpm/100 rpm) after 36 h of milling), while the lowest value is 189 A/m for (400 rpm/800 rpm) after 72 h of milling. The milling performed in the friction mode has been found to lead the formation of alloys exhibiting a soft magnetic behavior for nanocrystalline Fe–10%Ni

  5. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  6. Electrochemical evaluation of corrosion and tribocorrosion behaviour of amorphous and nanocrystalline cobalt–tungsten electrodeposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahzade, N.; Raeissi, K., E-mail: k_raeissi@cc.iut.ac.ir

    2014-11-14

    Amorphous and nanocrystalline Co–W coatings were electrodeposited on copper substrates from a citrate–ammonia bath. The coatings showed nodular surface morphologies, but a microcrack network was detected in the amorphous coating. However, a better corrosion resistance was achieved for the amorphous coating. During sliding under open circuit potential (OCP) condition, the potential of amorphous coating gradually became more active probably due to the widening of wear scar, and thus expansion of active area. The amorphous coatings showed a higher volume loss at OCP probably due to its lower microhardness. In anodic sliding, a sharp increase in current density was observed due to mass transport and depassivation effects. In all sliding conditions, the proportion of mass transport was higher than wear accelerated corrosion, which implied that the dissolution reaction of the coatings was mainly a mass-transport controlled process. The results also showed that the effect of sliding on degradation is more intense for the nanocrystalline coating. For both coatings, the formation of the superficial microcracks in the vicinity of wear scars indicating on a surface fatigue wear mechanism. - Highlights: • Mass-transport effect had higher proportion in tribocorrosion of Co–W coatings. • The major electrochemical-wear degradation was for the nanocrystalline coating. • The higher proportion of wear accelerated corrosion was for the amorphous coating. • Superficial microcracks were formed near scars due to the coatings brittleness.

  7. Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires

    International Nuclear Information System (INIS)

    Talaat, A.; Val, J.J. del; Zhukova, V.; Ipatov, M.; Klein, P.; Varga, R.; González, J.; Churyukanova, M.; Zhukov, A.

    2016-01-01

    We present a new-Fe 38.5 Co 38.5 B 18 Mo 4 Cu 1 Hitperm glass-coated microwires obtained by Taylor-Ulitovsky technique with nanocrystalline structure consisting of about 23 nm of BCC α-FeCo and an amorphous precursors in as-prepared samples. Annealing resulted in a considerable decrease of such nano-grains down to (11 nm). Obtained results are discussed in terms of the stress diffusion of limited crystalline growth and the chemical composition. Rectangular hysteresis loops have been observed on all annealed samples that are necessary conditions to obtain fast domain wall propagation. An enhancement of the domain wall velocity as well as mobility after annealing has been obtained due to the structural relaxation of such grains with positive magnetostriction. These structure benefits found in the nanocrystalline Hitperm glass-coated microwires are promising for developing optimal magnetic properties. - Highlights: • Grains size refinement upon annealing. • Enhancement of the domain wall velocity as well as mobility after annealing. • Nanocrystalline structure in as-prepared microwires.

  8. Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide

    International Nuclear Information System (INIS)

    Wazne, Mahmoud; Meng, Xiaoguang; Korfiatis, George P.; Christodoulatos, Christos

    2006-01-01

    A novel nanocrystalline titanium dioxide was used to treat depleted uranium (DU)-contaminated water under neutral and alkaline conditions. The novel material had a total surface area of 329 m 2 /g, total surface site density of 11.0 sites/nm 2 , total pore volume of 0.415 cm 3 /g and crystallite size of 6.0 nm. It was used in batch tests to remove U(VI) from synthetic solutions and contaminated water. However, the capacity of the nanocrystalline titanium dioxide to remove U(VI) from water decreased in the presence of inorganic carbonate at pH > 6.0. Adsorption isotherms, Fourier transform infrared (FTIR) spectroscopy, and surface charge measurements were used to investigate the causes of the reduced capacity. The surface charge and the FTIR measurements suggested that the adsorbed U(VI) species was not complexed with carbonate at neutral pH values. The decreased capacity of titanium dioxide to remove U(VI) from water in the presence of carbonate at neutral to alkaline pH values was attributed to the aqueous complexation of U(VI) by inorganic carbonate. The nanocrystalline titanium dioxide had four times the capacity of commercially available titanium dixoide (Degussa P-25) to adsorb U(VI) from water at pH 6 and total inorganic carbonate concentration of 0.01 M. Consequently, the novel material was used to treat DU-contaminated water at a Department of Defense (DOD) site

  9. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.

    Science.gov (United States)

    Meraj, Md; Pal, Snehanshu

    2017-10-11

    In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of , , and  distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.

  10. Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications

    Science.gov (United States)

    Woo, Patrick Kai Fai

    Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of

  11. Grain boundaries of nanocrystalline materials - their widths, compositions, and internal structures

    International Nuclear Information System (INIS)

    Fultz, B.; Frase, H.N.

    2000-01-01

    Nanocrystalline materials contain many atoms at and near grain boundaries. Sufficient numbers of Moessbauer probe atoms can be situated in grain boundary environments to make a clear contribution to the measured Moessbauer spectrum. Three types of measurements on nanocrystalline materials are reported here, all using Moessbauer spectrometry in conjunction with X-ray diffractometry, transmission electron microscopy, or small angle neutron scattering. By measuring the fraction of atoms contributing to the grain boundary component in a Moessbauer spectrum, and by knowing the grain size of the material, it is possible to deduce the average width of grain boundaries in metallic alloys. It is found that these widths are approximately 0.5 nm for fcc alloys and slightly larger than 1.0 nm for bcc alloys.Chemical segregation to grain boundaries can be measured by Moessbauer spectrometry, especially in conjunction with small angle neutron scattering. Such measurements on Fe-Cu and Fe 3 Si-Nb were used to study how nanocrystalline materials could be stabilized against grain growth by the segregation of Cu and Nb to grain boundaries. The segregation of Cu to grain boundaries did not stabilize the Fe-Cu alloys against grain growth, since the grain boundaries were found to widen and accept more Cu atoms during annealing. The Nb additions to Fe 3 Si did suppress grain growth, perhaps because of the low mobility of Nb atoms, but also perhaps because Nb atoms altered the chemical ordering in the alloy.The internal structure of grain boundaries in nanocrystalline materials prepared by high-energy ball milling is found to be unstable against internal relaxations at low temperatures. The Moessbauer spectra of the nanocrystalline samples showed changes in the hyperfine fields attributable to movements of grain boundary atoms. In conjunction with SANS measurements, the changes in grain boundary structure induced by cryogenic exposure and annealing at low temperature were found to be

  12. Magnetic behavior of nanocrystalline CoFe2O4

    International Nuclear Information System (INIS)

    Zhang Kai; Holloway, T.; Pradhan, A.K.

    2011-01-01

    Magnetic nanoparticles of CoFe 2 O 4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. One of the nanoparticles demonstrated a constricted magnetic hysteresis loop with no or small coercivity and remanence at low magnetic field. However, the loop opens up at high magnetic field. This magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe 2 O 4 nanoparticles were synthesized under an applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments that produce Co ions and vacancies disorder. - Research highlights: → CoFe 2 O 4 nanoparticles were synthesized by co-precipitation route in a magnetic field. → Smaller nanoparticles present superparamagnetic property above their block temperature. → These nanoparticles show interesting magnetic behavior in the blocking state. → Magnetic behavior is strongly dependent on the annealing temperature.

  13. Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification

    International Nuclear Information System (INIS)

    Ai Zhihui; Lee Shuncheng; Huang Yu; Ho Wingkei; Zhang Lizhi

    2010-01-01

    Nanocrystalline Zn 2 SnO 4 microcubes were hydrothermally synthesized and systematically characterized by XRD, SEM, TEM, XPS, N 2 adsorption-desorption, and UV-vis DRS analysis. The resulting Zn 2 SnO 4 microcubes with the edge size ranging from 0.8 to 1.2 μm were composed of numerous nanoparticles with size of 10-20 nm, and their optical band gap energy was estimated to be 3.25 eV from the UV-vis diffuse reflectance spectra. On degradation of nitrogen monoxide (NO) and formaldehyde (HCHO) at typical concentrations for indoor air quality, these nanocrystalline Zn 2 SnO 4 microcubes exhibited superior photocatalytic activity to the hydrothermally synthesized ZnO, SnO 2 , and Degussa TiO 2 P25, as well as C doped TiO 2 under UV-vis light irradiation. This enhanced photocatalytic activity of the nanocrystalline Zn 2 SnO 4 microcubes was attributed to their bigger surface areas, smaller particle size, special porous structures, and special electronic configuration. The nanocrystalline Zn 2 SnO 4 microcubes were chemically stable as there was no obvious deactivation during the multiple photocatalytic reactions. This work presents a promising approach for scaling-up industrial production of Zn 2 SnO 4 nanostructures and suggests that the synthesized nanocrystalline Zn 2 SnO 4 microcubes are promising photocatalysts for indoor air purification.

  14. Pulsed laser-deposited nanocrystalline GdB{sub 6} thin films on W and Re as field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Suryawanshi, Sachin R.; More, Mahendra A. [Savitribai Phule Pune University, Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Pune (India); Singh, Anil K.; Sinha, Sucharita [Bhabha Atomic Research Centre, Laser and Plasma Technology Division, Trombay, Mumbai (India); Phase, Deodatta M. [UGC-DAE Consortium for Scientific Research Indore Centre, Indore (India); Late, Dattatray J. [CSIR-National Chemical Laboratory, Physical and Materials Chemistry Division, Pune (India)

    2016-10-15

    Gadolinium hexaboride (GdB{sub 6}) nanocrystalline thin films were grown on tungsten (W), rhenium (Re) tips and foil substrates using optimized pulsed laser deposition (PLD) technique. The X-ray diffraction analysis reveals formation of pure, crystalline cubic phase of GdB{sub 6} on W and Re substrates, under the prevailing PLD conditions. The field emission (FE) studies of GdB{sub 6}/W and GdB{sub 6}/Re emitters were performed in a planar diode configuration at the base pressure ∝10{sup -8} mbar. The GdB{sub 6}/W and GdB{sub 6}/Re tip emitters deliver high emission current densities of ∝1.4 and 0.811 mA/cm{sup 2} at an applied field of ∝6.0 and 7.0 V/μm, respectively. The Fowler-Nordheim (F-N) plots were found to be nearly linear showing metallic nature of the emitters. The noticeably high values of field enhancement factor (β) estimated using the slopes of the F-N plots indicate that the PLD GdB{sub 6} coating on W and Re substrates comprises of high-aspect-ratio nanostructures. Interestingly, the GdB{sub 6}/W and GdB{sub 6}/Re planar emitters exhibit excellent current stability at the preset values over a long-term operation, as compared to the tip emitters. Furthermore, the values of workfunction of the GdB{sub 6}/W and GdB6/Re emitters, experimentally measured using ultraviolet photoelectron spectroscopy, are found to be same, ∝1.6 ± 0.1 eV. Despite possessing same workfunction value, the FE characteristics of the GdB{sub 6}/W emitter are markedly different from that of GdB{sub 6}/Re emitter, which can be attributed to the growth of GdB{sub 6} films on W and Re substrates. (orig.)

  15. Nano-crystalline Ag–PbTe thermoelectric thin films by a multi-target PLD system

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, E., E-mail: emilia.cappelli@ism.cnr.it [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Bellucci, A. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Dip. Fisica, Un. Roma Sapienza, Piazzale Aldo Moro 2, 00185 Rome (Italy); Medici, L. [CNR-IMAA, Tito Scalo, 85050 Potenza (Italy); Mezzi, A.; Kaciulis, S. [CNR-ISMN, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Fumagalli, F.; Di Fonzo, F. [Center Nano Science Technology @Polimi, I.I.T., Via Pascoli 70/3, 20133 Milano (Italy); Trucchi, D.M. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy)

    2015-05-01

    Highlights: • Thermoelectric PbTe thin films, with increasing Ag percentage, were deposited by PLD. • Almost stoichiometric PbTe (Ag doped) films were grown, as verified by XPS analysis. • GI-XRD established the formation of cubic PbTe, with nano-metric structure (∼35 nm). • Surface resistivity shows an increase in conductivity, with increasing Ag doping. • From Seebeck values and XPS depth analysis, 10% Ag seems to be the solubility limit. - Abstract: It has been evaluated the ability of ArF pulsed laser ablation to grow nano-crystalline thin films of high temperature PbTe thermoelectric material, and to obtain a uniform and controlled Ag blending, through the entire thickness of the film, using a multi-target system in vacuum. The substrate used was a mirror polished technical alumina slab. The increasing atomic percentage of Ag effect on physical–chemical and electronic properties was evaluated in the range 300–575 K. The stoichiometry and the distribution of the Ag component, over the whole thickness of the samples deposited, have been studied by XPS (X-ray photoelectron spectroscopy) and corresponding depth profiles. The crystallographic structure of the film was analyzed by grazing incidence X-ray diffraction (GI-XRD) system. Scherrer analysis for crystallite size shows the presence of nano-structures, of the order of 30–35 nm. Electrical resistivity of the samples, studied by the four point probe method, as a function of increasing Ag content, shows a typical semi-conductor behavior. From conductivity values, carrier concentration and Seebeck parameter determination, the power factor of deposited films was calculated. Both XPS, Hall mobility and Seebeck analysis seem to indicate a limit value to the Ag solubility of the order of 5%, for thin films of ∼200 nm thickness, deposited at 350 °C. These data resulted to be comparable to theoretical evaluation for thin films but order of magnitude lower than the corresponding bulk materials.

  16. Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos.

    Directory of Open Access Journals (Sweden)

    Noela Rodriguez-Losada

    Full Text Available Regenerative medicine requires, in many cases, physical supports to facilitate appropriate cellular architecture, cell polarization and the improvement of the correct differentiation processes of embryonic stem cells, induced pluripotent cells or adult cells. Because the interest in carbon nanomaterials has grown within the last decade in light of a wide variety of applications, the aim of this study was to test and evaluate the suitability and cytocompatibility of a particular nanometer-thin nanocrystalline glass-like carbon film (NGLC composed of curved graphene flakes joined by an amorphous carbon matrix. This material is a disordered structure with high transparency and electrical conductivity. For this purpose, we used a cell line (SN4741 from substantia nigra dopaminergic cells derived from transgenic mouse embryos. Cells were cultured either in a powder of increasing concentrations of NGLC microflakes (82±37μm in the medium or on top of nanometer-thin films bathed in the same culture medium. The metabolism activity of SN4741 cells in presence of NGLC was assessed using methylthiazolyldiphenyl-tetrazolium (MTT and apoptosis/necrosis flow cytometry assay respectively. Growth and proliferation as well as senescence were demonstrated by western blot (WB of proliferating cell nuclear antigen (PCNA, monoclonal phosphorylate Histone 3 (serine 10 (PH3 and SMP30 marker. Specific dopaminergic differentiation was confirmed by the WB analysis of tyrosine hydroxylase (TH. Cell maturation and neural capability were characterized using specific markers (SYP: synaptophysin and GIRK2: G-protein-regulated inward-rectifier potassium channel 2 protein via immunofluorescence and coexistence measurements. The results demonstrated cell positive biocompatibility with different concentrations of NGLC. The cells underwent a process of adaptation of SN4741 cells to NGLC where their metabolism decreases. This process is related to a decrease of PH3 expression and

  17. Co-sensitization of quantum dot sensitized solar cells composed of TiO2 nanocrystalline photoanode with CdS and PbS nanoparticles and effect of PbS on the performance of solar cell

    Directory of Open Access Journals (Sweden)

    Maziar Marandi

    2017-09-01

    Full Text Available In this research, CdS and PbS quantum dots were applied as the light sensitizers in TiO2 based nanostructured solar cells. The PbS quantum dots could absorb a wide range of the sunlight spectrum on earth due to their low bandgap energy. As a result, the cell sensitization is more effective by application of both CdS and PbS quantum dots sensitizers. The TiO2 nanocrystals were synthesized through a hydrothermal process and deposited on FTO glass substrates as the photoanode scaffold. Then PbS quantum dots were grown on the surface of this nanocrystalline layer by a successive ionic layer adsorption and reaction (SILAR method. The CdS quantum dots were over-grown in the next step through a similar deposition method. Finally this sensitized layer was applied as the photoelectrode of the corresponding quantum dot sensitized solar cells. The results demonstrated that the maximum efficiency was achieved for the cell with a photoanode made of co-sensitization through 2 and 6 cycles of PbS and CdS deposition, respectively. The photovoltaic parameters of this cell were measured as Jsc of 10.81 mA/cm2, Voc of 590 mv and energy conversion efficiency of 2.7+0.2%.

  18. CONSUMER ATTITUDES TOWARD ORGANICALLY GROWN LETTUCE

    OpenAIRE

    Wolf, Marianne McGarry; Johnson, Bradey; Cochran, Kerry; Hamilton, Lynn L.

    2002-01-01

    This research shows that approximately 29 percent of lettuce purchases in California expect to purchase an organically grown lettuce product in the future. Organic lettuce purchasers are more likely to be female, have a higher household income and a higher level of education. Consumers are concerned with the freshness, quality, price, and environmental impact of the lettuce they purchase.

  19. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Hollander, F.; Stasse, O.; van Suchtelen, J.; van Enckevort, W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly,

  20. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope

    International Nuclear Information System (INIS)

    Trimby, Patrick W.; Cao, Yang; Chen, Zibin; Han, Shuang; Hemker, Kevin J.; Lian, Jianshe; Liao, Xiaozhou; Rottmann, Paul; Samudrala, Saritha; Sun, Jingli; Wang, Jing Tao; Wheeler, John; Cairney, Julie M.

    2014-01-01

    Graphical abstract: -- Abstract: The recent development of transmission Kikuchi diffraction (TKD) in a scanning electron microscope enables fast, automated orientation mapping of electron transparent samples using standard electron backscatter diffraction (EBSD) hardware. TKD in a scanning electron microscope has significantly better spatial resolution than conventional EBSD, enabling routine characterization of nanocrystalline materials and allowing effective measurement of samples that have undergone severe plastic deformation. Combining TKD with energy dispersive X-ray spectroscopy (EDS) provides complementary chemical information, while a standard forescatter detector system below the EBSD detector can be used to generate dark field and oriented dark field images. Here we illustrate the application of this exciting new approach to a range of deformed, ultrafine grained and nanocrystalline samples, including duplex stainless steel, nanocrystalline copper and highly deformed titanium and nickel–cobalt. The results show that TKD combined with EDS is a highly effective and widely accessible tool for measuring key microstructural parameters at resolutions that are inaccessible using conventional EBSD

  1. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling

    International Nuclear Information System (INIS)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-01-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs

  2. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    Science.gov (United States)

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  4. Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: Nucleation and growth mechanism, structural and optical studies

    International Nuclear Information System (INIS)

    Henriquez, R.; Badan, A.; Grez, P.; Munoz, E.; Vera, J.; Dalchiele, E.A.; Marotti, R.E.; Gomez, H.

    2011-01-01

    Highlights: → Electrodeposition of CdSe nanocrystalline semiconductor thin films. → Polycrystalline wurtzite structure with a slight (1010) preferred orientation. → Absorption edge shifts in the optical properties due to quantum confinement effects. - Abstract: Cadmium selenide (CdSe) nanocrystalline semiconductor thin films have been synthesized by electrodeposition at controlled potential based in the electrochemical reduction process of molecular selenium in dimethyl sulfoxide (DMSO) solution. The nucleation and growth mechanism of this process has been studied. The XRD pattern shows a characteristic polycrystalline hexagonal wurtzite structure with a slight (1 0 1 0) crystallographic preferred orientation. The crystallite size of nanocrystalline CdSe thin films can be simply controlled by the electrodeposition potential. A quantum size effect is deduced from the correlation between the band gap energy and the crystallite size.

  5. Thermal post-deposition treatment effects on nanocrystalline hydrogenated silicon prepared by PECVD under different hydrogen flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Sana Ben, E-mail: sana.benamor1@gmail.com [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); University of Applied Medical Sciences of Hafr El Baten (Saudi Arabia); Meddeb, Hosny; Daik, Ridha; Othman, Afef Ben; Slama, Sonia Ben; Dimassi, Wissem; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-01-01

    Graphical abstract: At high annealing temperatures, many atoms do not suffer the attraction of surface species due to the thermal agitation and consequently few atoms are adsorbed. As the temperature is lowered the adsorption is more efficient to the point that is no more atoms in the gas phase. Indeed at relatively low temperatures, the atoms have too little energy to escape from the surface or even to vibrate against it. They lost their degree of freedom in the direction perpendicular to the surface. But this does not prevent the atoms to diffuse along the surface. As a result, the layer's thickness decrease with increasing the annealing temperature. - Highlights: The results extracted from this work are: • The post-deposition thermal treatment improves the crystallinity the film at moderate temperature (500 °C). • The higher annealing temperature can lead to decrease the silicon–hydrogen bonds and increase the Si–Si bonds. • Moderate annealing temperature (700 °C) seems to be crucial for obtaining high minority carrier life times. • Hydrogen effusion phenomenon start occurring at 500–550 °C and get worsen at 900 °C. - Abstract: In this paper, hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on mono-crystalline silicon substrate by plasma enhanced chemical vapor deposition (PECVD) under different hydrogen flow rates followed by a thermal treatment in an infrared furnace at different temperature ranging from 300 to 900 °C. The investigated structural, morphological and optoelectronic properties of samples were found to be strongly dependent on the annealing temperature. Raman spectroscopy revealed that nc-Si:H films contain crystalline, amorphous and mixed structures as well. We find that post-deposition thermal treatment may lead to a tendency for structural improvement and a decrease of the disorder in the film network at moderate temperature under 500 °C. As for annealing at higher temperature up to 900

  6. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  7. Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films.

    Science.gov (United States)

    Wang, Tao; Handschuh-Wang, Stephan; Huang, Lei; Zhang, Lei; Jiang, Xin; Kong, Tiantian; Zhang, Wenjun; Lee, Chun-Sing; Zhou, Xuechang; Tang, Yongbing

    2018-01-30

    In this Article, we report the synthesis of micro- and nanocrystalline diamond/β-SiC composite gradient films, using a hot filament chemical vapor deposition (HFCVD) technique and its application as a robust and chemically inert means to actuate water and hazardous liquids. As revealed by scanning electron microscopy, the composition of the surface changed gradually from pure nanocrystalline diamond (hydrophobic) to a nanocrystalline β-SiC surface (hydrophilic). Transmission electron microscopy and Raman spectroscopy were employed to determine the presence of diamond, graphite, and β-SiC phases. The as-prepared gradient films were evaluated for their ability to actuate water. Indeed, water was transported via the gradient from the hydrophobic (hydrogen-terminated diamond) to the hydrophilic side (hydroxyl-terminated β-SiC) of the gradient surface. The driving distance and velocity of water is pivotally influenced by the surface roughness. The nanogradient surface showed significant promise as the lower roughness combined with the longer gradient yields in transport distances of up to 3.7 mm, with a maximum droplet velocity of nearly 250 mm/s measured by a high-speed camera. As diamond and β-SiC are chemically inert, the gradient surfaces can be used to drive hazardous liquids and reactive mixtures, which was signified by the actuation of hydrochloric acid and sodium hydroxide solution. We envision that the diamond/β-SiC gradient surface has high potential as an actuator for water transport in microfluidic devices, DNA sensors, and implants, which induce guided cell growth.

  8. Microstructure and nanoindentation of the CLAM steel with nanocrystalline grains under Xe irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yongqin, E-mail: chang@ustb.edu.cn; Zhang, Jing; Li, Xiaolin; Guo, Qiang; Wan, Farong; Long, Yi

    2014-12-15

    This work presents an early look at irradiation effects on China low activation martensitic (CLAM) steel with nanocrystalline grains (NC-CLAM steels) under 500 keV Xe-ion bombardment at room temperature to doses up to 5.3 displacements per atom (dpa). The microstructure in the topmost region of the steel is composed of nanocrystalline grains with an average diameter of 13 nm. As the samples were implanted at low dose, the nanocrystalline grains had martensite lath structure, and many dislocations and high density bubbles were introduced into the NC-CLAM steels. As the irradiation dose up to 5.3 dpa, a tangled dislocation network exists in the lath region, and the size of the bubbles increases. X-ray diffraction results show that the crystal quality decreases after irradiation, although the nanocrystals obviously coarsen. Grain growth under irradiation may be ascribed to the direct impact of the thermal spike on grain boundaries in the NC-CLAM steels. In irradiated samples, a compressive stress exists in the surface layer because of grain growth and irradiation-introduced defects, while the irradiation introduced grain-size coarsening and defects gradients from the surface to matrix result in a tensile stress in the irradiated NC-CLAM steels. Nanoindentation was used to estimate changes in mechanical properties during irradiation, and the results show that the hardness of the NC-CLAM steels increases with increasing irradiation dose, which was ascribed to the competition between the grain boundaries and the irradiation-introduced defects.

  9. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores

    International Nuclear Information System (INIS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-01-01

    Nanocrystalline Fe–Si–B–P–Cu alloys exhibit high saturation magnetic flux density (B s ) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe–Si–B–P–Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe 85.7 Si 0.5 B 9.5 P 3.5 Cu 0.8 ) 99 C 1 ribbons exhibit low coercivity (H c )~4.5 A/m, high B s ~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60–100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors - Highlights: • Minor addition of C in FeSiBPCu alloy increases amorphous-forming ability. • The FeSiBPCuC alloy exhibits B s close to Si-steel and Core loss lower than it. • Excellent soft magnetic properties were obtained for 120 mm wide ribbons. • Nanocrystalline FeSiBPCuC alloy can be produced at industrial scale with low cost. • The alloy is suitable for making low energy loss power transformers and motors.

  10. Mobility lifetime product in doped and undoped nanocrystalline CdSe

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Al-Kabbi, Alaa S.; Sharma, Kriti; Saini, G.S.S.

    2013-01-01

    This paper reports the effect of doping on the charge transport in nanocrystalline CdSe thin film. The X-ray study confirms that the doping is achieved and the physical properties are improved. The energy resolution of a semiconductor radiation detector depends on the charge transport properties of the semiconductor and the mobility-lifetime (μτ) product is a key figure of merit for the charge transport. μτ product in nanocrystalline CdSe, CdSe:In and CdSe:Zn thin films has been estimated from temperature dependence of the photoconductivity, which increases with increase in temperature and doping. Also, μτ product of electrons in pure and doped nanocrystalline CdSe thin films has been determined by spectral photoconductivity at different applied voltages. Both the μτ and photoconductivity increase linearly with the bias voltage but the wavelength dependence remains qualitatively similar in all samples. The μτ products increase at photon energies > energy gap, which indicates that the recombination process depends on the excitation energy. The doped CdSe thin films have higher drift length in comparison with undoped films which suggest that these thin films can be used in charge collecting devices. - Highlights: • The structure of thin films has been studied using X-ray diffraction. • Spectral dependence of μτ product in pure and doped nc-CdSe thin films is studied. • The mobility-lifetime product shows dependence on temperature and doping type. • The drift length increases linearly with increasing applied field and doping. • The transport properties of nc-CdSe thin films are enhanced with doping

  11. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    International Nuclear Information System (INIS)

    Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.

    2011-01-01

    Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  12. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    Science.gov (United States)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  13. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    Science.gov (United States)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  14. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  15. Photochemical solar cells based on dye-sensitization of nanocrystalline TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Ellingson, R.; Ferrere, S.; Frank, A.J.; Gregg, B.A.; Nozik, A.J.; Park, N.; Schlichthoerl, G. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    A photoelectrochemical solar cell that is based on the dye-sensitization of thin nanocrystalline films of TiO{sub 2} (anatase) nanoparticles in contact with a non-aqueous liquid electrolyte is described. The cell, fabricated at NREL, shows a conversion efficiency of {approximately} 9.2% at AM1.5, which approaches the best reported value of 10--11% by Graetzel at EPFL in Lausanne, Switzerland. The femtosecond (fs) pump-probe spectroscopy has been used to time resolve the injection of electrons into the conduction band of nanocrystalline TiO{sub 2} films under ambient conditions following photoexcitation of the adsorbed Ru(II)-complex dye. The measurement indicates an instrument-limited {minus}50 fs upper limit on the electron injection time. The authors also report the sensitization of nanocrystalline TiO{sub 2} by a novel iron-based dye, CIS-[Fe{sup II}(2,2{prime}-bipyridine-4,4,{prime}-dicarboxylic acid){sub 2}(CN){sub 2}], a chromophore with an extremely short-lived, nonemissive excited state. The dye also exhibits a unique band selective sensitization through one of its two absorption bands. The operational principle of the device has been studied through the measurement of electric field distribution within the device structure and studies on the pH dependence of dye-redox potential. The incorporation of WO{sub 3}-based electrochromic layer into this device has led to a novel photoelectrochromic device structure for smart window application.

  16. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  17. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  18. Na insertion into nanocrystalline Li4Ti5O12 spinel: An electrochemical study

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Pitňa Lásková, Barbora; Klementová, Mariana; Kavan, Ladislav

    2017-01-01

    Roč. 245, AUG 2017 (2017), s. 505-511 ISSN 0013-4686 R&D Projects: GA ČR GA15-06511S; GA MŠk LM2015087 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Na insertion * Li4Ti5O12 * nanocrystalline Subject RIV: CG - Electrochemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis); Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 4.798, year: 2016

  19. Electrodeposition and Characterization of Nanocrystalline Ni-Mo Catalysts for Hydrogen Production

    OpenAIRE

    Halim, J.; Abdel-Karim, R.; El-Raghy, S.; Nabil, M.; Waheed, A.

    2012-01-01

    Ni-Mo nanocrystalline deposits (7–43 nm) with a nodular morphology were prepared by electrodeposition using direct current from citrate-ammonia solutions. They exhibited a single Ni-Mo solid solution phase. The size of the nodules increased as electroplating current density increased. The molybdenum content—estimated using EDX analysis—in the deposits decreased from about 31 to 11 wt% as the current density increased from 5 to 80 mA·cm−2. The highest microhardness value (285 Hv) corresponded ...

  20. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    International Nuclear Information System (INIS)

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-01

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out

  1. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: nuclear fuel durability enhancement

    Czech Academy of Sciences Publication Activity Database

    Škarohlíd, J.; Ashcheulov, Petr; Škoda, R.; Taylor, Andrew; Čtvrtlík, R.; Tomaštík, J.; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, P.; Macák, J.; Xu, P.; Partezana, J.M.; Lorinčík, J.; Prehradná, J.; Steinbrück, M.; Kratochvílová, Irena

    2017-01-01

    Roč. 7, Jul (2017), 1-14, č. článku 6469. ISSN 2045-2322 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR(CZ) GA15-05095S; GA ČR(CZ) GA16-03085S; GA TA ČR TA04020156 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * zirconium alloys * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 4.259, year: 2016

  2. Amorphous and nanocrystalline Fe-Ni-Zr-B ribbons as sensing elements in magnetic field sensors

    International Nuclear Information System (INIS)

    Vertesy, G.; Idzikowski, B.

    2006-01-01

    Fe 81-x Ni x Zr 7 B 12 (x=20, 30, 40) melt-spun alloys were investigated as potential new material applied as a sensing element of a fluxgate-type high-sensitivity magnetic field sensor. The sensitivity of the magnetometer was increased by about 60% by using the amorphous or nanocrystalline Fe 41 Ni 40 Zr 7 B 12 alloy, compared with a standard reference sensing material. Application of this material can also extend the temperature range of the operation of the device

  3. Amorphous and nanocrystalline Fe-Ni-Zr-B ribbons as sensing elements in magnetic field sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vertesy, G. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B. 49 (Hungary)]. E-mail: vertesyg@mfa.kfki.hu; Idzikowski, B. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, PL 60-179 Poznan (Poland)

    2006-04-15

    Fe{sub 81-x}Ni{sub x}Zr{sub 7}B{sub 12} (x=20, 30, 40) melt-spun alloys were investigated as potential new material applied as a sensing element of a fluxgate-type high-sensitivity magnetic field sensor. The sensitivity of the magnetometer was increased by about 60% by using the amorphous or nanocrystalline Fe{sub 41}Ni{sub 40}Zr{sub 7}B{sub 12} alloy, compared with a standard reference sensing material. Application of this material can also extend the temperature range of the operation of the device.

  4. Synthesis of bulk nanocrystalline Pb-Sn-Te alloy under high pressure

    International Nuclear Information System (INIS)

    Zhu, P W; Chen, L X; Jia, X; Ma, H A; Ren, G Z; Guo, W L; Liu, H J; Zou, G T

    2002-01-01

    Pb-Sn-Te bulk nanocrystalline (NC) materials are prepared successfully by quenching melts under high pressure. The mean particle size is about 100 nm and the crystal structure is NaCl type. The mechanism of formation of the bulk NC alloy is explained: there is an increasing of the nucleation rate and a decrease in the growth rate of nuclei with increase of pressure during the solidification processes. The thermoelectric properties of Pb-Sn-Te bulk NC alloy are enhanced. This method is promising for producing thermoelectric materials with improved high-energy conversion efficiency

  5. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative (Briefing Charts)

    Science.gov (United States)

    2011-02-10

    chrome plating utilizes chromium in the hexavalent state (Cr6+) Cr6+ is a known carcinogen and poses a health risk to operators OSHA lowered the Cr6+ PEL...from 52 µg/m3 to 5 µg/m3 8 Apr 09, Memorandum, DoD Directive Hexavalent Chromium Management Policy NAVAIR Cr6+ Authorization Process Hard Chrome ...Aerospace & Defense February 10, 2011 Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative Jack Benfer Co-PI NAVAIR

  6. Electronic structure and chemical bonding of nanocrystalline-TiC/amorphous-C nanocomposites

    OpenAIRE

    Magnuson, Martin; Lewin, Erik; Hultman, Lars; Jansson, Ulf

    2009-01-01

    Theelectronic structure of nanocrystalline (nc-) TiC/amorphous C nanocomposites has beeninvestigated by soft x-ray absorption and emission spectroscopy. The measuredspectra at the Ti 2p and C 1s thresholds of the nanocompositesare compared to those of Ti metal and amorphous C.The corresponding intensities of the electronic states for the valenceand conduction bands in the nanocomposites are shown to stronglydepend on the TiC carbide grain size. An increased chargetransfer between the Ti 3d-eg...

  7. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    Science.gov (United States)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  8. External influence on magnetic properties of Fe-based nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Jozef [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)]. E-mail: jozef.sitek@stuba.sk; Degmova, Jarmila [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Sedlackova, Katarina [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Butvin, Pavol [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2006-09-15

    Amorphous and nanocrystalline ribbons of NANOPERM, FINEMET and HITPERM were studied by Moessbauer spectroscopy (MS) after the influence of external factors: different annealing atmospheres, tensile stress and several kinds of corrosion. MS is a suitable tool for such studies because the spectral parameters are very sensitive to changes in the vicinity of the probe -{sup 57}Fe nuclei. The most sensitive parameters were hyperfine magnetic field in crystalline component, average hyperfine field in amorphous component and direction of net magnetic moments. Influence of external factors modified also the structure of the alloys, i.e. new or modified phases were identified by MS phase analysis.

  9. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    Science.gov (United States)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  10. External influence on magnetic properties of Fe-based nanocrystalline alloys

    International Nuclear Information System (INIS)

    Sitek, Jozef; Degmova, Jarmila; Sedlackova, Katarina; Butvin, Pavol

    2006-01-01

    Amorphous and nanocrystalline ribbons of NANOPERM, FINEMET and HITPERM were studied by Moessbauer spectroscopy (MS) after the influence of external factors: different annealing atmospheres, tensile stress and several kinds of corrosion. MS is a suitable tool for such studies because the spectral parameters are very sensitive to changes in the vicinity of the probe - 57 Fe nuclei. The most sensitive parameters were hyperfine magnetic field in crystalline component, average hyperfine field in amorphous component and direction of net magnetic moments. Influence of external factors modified also the structure of the alloys, i.e. new or modified phases were identified by MS phase analysis

  11. Production of nanocrystalline cermet thermal spray powders for wear resistant coatings by high-energy milling

    International Nuclear Information System (INIS)

    Eigen, N.; Klassen, T.; Aust, E.; Bormann, R.; Gaertner, F.

    2003-01-01

    TiC-Ni based nanocrystalline cermet powders for thermal spraying were produced by high-energy milling. Milling experiments were performed in an attrition mill and a vibration mill in kilogram scale, and powder morphologies and microstructures were characterized using scanning electron microscopy, X-ray diffraction, and laser scattering for particle size analysis. Milling time and powder input were optimized with respect to the desired microstructure and particle sizes, and the results using both types of mill were compared. Powders with homogeneously dispersed hard phase particles below 300 nm could be produced in both mills. Additional processes for the refinement of powder morphology and particle size distribution are discussed

  12. Formation of continuous nanocrystalline diamond layer on glass and silicon at low temperatures

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Rezek, Bohuslav; Remeš, Zdeněk; Michalka, M.; Ledinský, Martin; Zemek, Josef; Potměšil, Jiří; Vaněček, Milan

    2008-01-01

    Roč. 14, 7-8 (2008), s. 181-186 ISSN 0948-1907 R&D Projects: GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR KAN400100652; GA MŠk(CZ) 1M06002 Grant - others:Marie Curie RTN DRIVE(XE) MRTN-CT-2004-512224 Institutional research plan: CEZ:AV0Z10100521 Keywords : AFM * low temperature growth * nanocrystalline diamond * SEM * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2008

  13. Radiation-Induced Damage and Recovery of Ultra-Nanocrystalline Diamond: Toward Applications in Harsh Environments.

    Science.gov (United States)

    Martin, Aiden A; Filevich, Jorge; Straw, Marcus; Randolph, Steven; Botman, Aurélien; Aharonovich, Igor; Toth, Milos

    2017-11-15

    Ultra-nanocrystalline diamond (UNCD) is increasingly being used in the fabrication of devices and coatings due to its excellent tribological properties, corrosion resistance, and biocompatibility. Here, we study its response to irradiation with kiloelectronvolt electrons as a controlled model for extreme ionizing environments. Real time Raman spectroscopy reveals that the radiation-damage mechanism entails dehydrogenation of UNCD grain boundaries, and we show that the damage can be recovered by annealing at 883 K. Our results have significant practical implications for the implementation of UNCD in extreme environment applications, and indicate that the films can be used as radiation sensors.

  14. Zeolite Encapsulated Nanocrystalline CuO: A Redox Catalyst for the Oxidation of Secondary Alcohols

    Directory of Open Access Journals (Sweden)

    Sakthivel Vijaikumar

    2008-01-01

    Full Text Available Zeolite encapsulated nanocrystalline CuO is synthesized and characterized by powder XRD and HRTEM analyses which clearly show that the particles are less than 15 nm and the nanoparticles are highly dispersed. This nano CuO encapsulated CuY zeolite is used as catalyst in the oxidation of aromatic secondary alcohols. CuY zeolite acts as an efficient support for nano CuO, by stabilizing it and preventing its aggregation. Plausible mechanisms for the formation of the various products are also given.

  15. Growth, structural and plasma illumination properties of nanocrystalline diamond-decorated graphene nanoflakes

    OpenAIRE

    Kamatchi Jothiramalingam, Sankaran; Chang, Ting Hsun; Bikkarolla, Santosh Kumar; Roy, Susanta Sinha; Papakonstantinou, Pagona; Drijkoningen, Sien; Pobedinskas, Paulius; Van Bael, Marlies K.; Tai, Nyan-Hwa; Lin, I. -Nan; Haenen, Ken

    2016-01-01

    The improvement of the plasma illumination (PI) properties of a microplasma device due to the application of nanocrystalline diamond-decorated graphene nanoflakes (NCD-GNFs) as a cathode is investigated. The improved plasma illumination (PI) behavior is closely related to the enhanced field electron emission (FEE) properties of the NCD-GNFs. The NCD-GNFs possess better FEE characteristics with a low turn-on field of 9.36 V mu m(-1) to induce the field emission, a high FEE current density of 2...

  16. Surface crack nucleation and propagation in electrodeposited nanocrystalline Ni-P alloy during high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shigeaki; Kamata, Akiyuki [Department of Mechanical Engineering, Faculty of Engineering, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Watanabe, Tadao, E-mail: skoba@ashitech.ac.j [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, 110004 (China)

    2010-07-01

    The morphology of specimen surface after fatigue fracture was evaluated in connection with grain orientation distribution and grain boundary microstructure to reveal a mechanism of fatigue fracture in nanocrystalline materials. The electrodeposited and sharply {l_brace}001{r_brace} textured Ni -2.0 mass% P alloy with the average grain size of ca. 45 nm and high fractions of low-angle and {Sigma}3 boundaries showed 2 times higher fatigue limit than electrodeposited microcrystalline Ni polycrystal. The surface features of fatigued specimen were classified into two different types of morphologies characterized as brittle fracture at the central area and as ductile fracture at the surrounding area.

  17. Function of thin film nanocrystalline diamond-protein SGFET independent of grain size

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Kromka, Alexander; Ukraintsev, Egor; Ledinský, Martin; Brož, A.; Kalbáčová, M.; Rezek, Bohuslav

    166-167, May (2012), s. 239-245 ISSN 0925-4005 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996; GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * solution-gated field-effect transistors (SGFETs) * fetal bovine serum * osteoblastic cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.535, year: 2012

  18. Polydopamine-modified nanocrystalline diamond thin films as a platform for bio-sensing applications

    Czech Academy of Sciences Publication Activity Database

    Pop-Georgievski, Ognen; Neykova, Neda; Proks, Vladimír; Houdková, Jana; Ukraintsev, Egor; Zemek, Josef; Kromka, Alexander; Rypáček, František

    2013-01-01

    Roč. 543, 30 September (2013), s. 180-186 ISSN 0040-6090. [International Conference on NANO-structures self-assembly - NANOSEA 2012 /4./. S. Margherita di Pula - Sardinie, 25.06.2012-29.06.2012] R&D Projects: GA ČR GAP108/11/1857; GA ČR(CZ) GBP108/12/G108 Grant - others:ČVUT(CZ) SGS10/297/OHK4/3T/14 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : nanocrystalline diamond films * NCD * polydopamine Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.867, year: 2013

  19. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  20. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...