WorldWideScience

Sample records for group-v metal-hydrogen systems

  1. Effect of coexistent hydrogen isotopes on tracer diffusion of tritium in alpha phase of group-V metal-hydrogen systems

    International Nuclear Information System (INIS)

    Sakamoto, Kan; Hashizume, Kenichi; Sugisaki, Masayasu

    2009-01-01

    Tracer diffusion coefficients of tritium in the alpha phase of group-V metal-hydrogen systems, α-MH(D)xTy (M=V and Ta; x>>y), were measured in order to clarify the effects of coexistent hydrogen isotopes on the tritium diffusion behavior. The hydrogen concentration dependence of such behavior and the effects of the coexistent hydrogen isotopes (protium and deuterium) were determined. The results obtained in the present (for V and Ta) and previous (for Nb) studies revealed that tritium diffusion was definitely dependent on hydrogen concentration but was not so sensitive to the kind of coexistent hydrogen isotopes. By summarizing those data, it was found that the hydrogen concentration dependence of the tracer diffusion coefficient of tritium in the alpha phase of group-V metals could be roughly expressed by a single empirical curve. (author)

  2. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  3. Texture-geometric deformational effects in some metal-hydrogen systems

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.

    1992-01-01

    Possible deformation effects were studied in vanadium, tantalum, niobium, palladium and iron which occurred during electrolytic hydrogenation of specimens preliminarily deformed by torsion and then annealed. Noticeable texture-geometric effects were observed and related to the system tendency to enhance the degree of specimen form symmetry during hydrogenation. The latter was an off-beat realization of Le-Chatelier principle. It was assumed that the nature of deformation effects was connected with one of minimization channels for overall elastic stress fields in metals being hydrogenated. Some distinction was revealed in behaviour of 5a group metal, palladium and iron

  4. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto

    1975-01-01

    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  5. Teaching - methodical and research center of hydrogen power engineering and platinum group metals in the former Soviet Union countries

    International Nuclear Information System (INIS)

    Evdokimov, A.A; Sigov, A.S; Shinkarenko, V.V.

    2005-01-01

    establish the system of preparing of highly qualified personnel in order to make transition of hydrogen industry and economics in Russia and other countries from the Former Soviet Union. Hydrogen wide-spread training program. On the basis of this program the wide-spread training of population of Russia and other countries from the Former Soviet Union for using of hydrogen industry and living in new hydrogen economics is planned. Research program. On the basis of this program it is planned to develop new technologies of platinum group metals preparation, including nanoparticle form, and new catalysts and catalytic systems for hydrogen power engineering

  6. Electronic specific heats in metal--hydrogen systems

    International Nuclear Information System (INIS)

    Flotow, H.E.

    1979-01-01

    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  7. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  8. Storage of hydrogen in metals

    International Nuclear Information System (INIS)

    Wiswall, R.

    1981-01-01

    A review is dedicated to a problem of hydrogen storage as fuel of future, that can be used under various conditions, is easily obtained with the help of other types of energy and can be transformed into them. Data on reversible metal-hydrogen systems, where hydrogen can be obtained by the way of reaction of thermal decomposition are presented. Pressure-temperature-content diagrams, information on concrete Pd-H, TiFe-H, V-N systems are presented and analyzed from the point of view of thermodynamics. A table with thermodynamical characteristics of several hydrides is presented. The majority of known solid hydrides in relation to their use for hydrogen storage are characterized. The review includes information on real or supposed uses in concrete systems: in fuel cells, for levelling of loading of electric plants, in automobile engines, in hydride engines, for heat storage [ru

  9. Quantum-mechanical approach to the state of hydrogen in b. c. c. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in b.c.c. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include the nature of self-trapped states, the relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  10. Quantum-mechanical approach to the state of hydrogen in B. C. C. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H [Chuo Univ., Tokyo (Japan). Dept. of Physics

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in B.C.C. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include a nature of self-trapped states, a relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  11. Hydrogen uptake characteristics of mechanically alloyed Ti-V-Ni

    International Nuclear Information System (INIS)

    Cauceglia, Dorian; Hampton, Michael D.; Lomness, Janice K.; Slattery, Darlene K.; Resan, Mirna

    2006-01-01

    It has been well established that hydrogen will react directly and reversibly with a large number of metals and alloys to form metallic hydrides. Extensive research has been done over the years to improve properties of these hydrogen purification and recovery media and in developing new compounds for this purpose. In the present study, the hydrogen uptake characteristics of mechanically alloyed titanium-vanadium-nickel have been studied. Thermal and composition data were obtained for the Ti-V-Ni system prepared by mechanical alloying at a ball-to-powder mass ratio of 10:1. It was found that this material would absorb up to approximately 1.0 wt% hydrogen at near ambient temperature and ambient pressure of hydrogen

  12. Nuclear processes in deuterium/natural hydrogen-metal systems

    International Nuclear Information System (INIS)

    Zelensky, V.F.

    2013-01-01

    The survey presents the analysis of the phenomena taking place in deuterium - metal and natural hydrogen - metal systems under cold fusion experimental conditions. The cold fusion experiments have shown that the generation of heat and helium in the deuterium-metal system without emission of energetic gamma-quanta is the result of occurrence of a chain of chemical, physical and nuclear processes observed in the system, culminating in both the fusion of deuterium nuclei and the formation of a virtual, electron-modified excited 4He nucleus. The excitation energy of the helium nucleus is transferred to the matrix through emission of conversion electrons, and that, under appropriate conditions, provides a persistent synthesis of deuterium. The processes occurring in the deuterium/natural hydrogen - metal systems have come to be known as chemonuclear DD- and HD-fusion. The mechanism of stimulation of weak interaction reactions under chemonuclear deuterium fusion conditions by means of strong interaction reactions has been proposed. The results of numerous experiments discussed in the survey bear witness to the validity of chemonuclear fusion. From the facts discussed it is concluded that the chemonuclear deuterium fusion scenario as presented in this paper may serve as a basis for expansion of deeper research and development of this ecologically clean energy source. It is shown that the natural hydrogen-based system, containing 0.015% of deuterium, also has good prospects as an energy source. The chemonuclear fusion processes do not require going beyond the scope of traditional physics for their explanation

  13. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.

    1978-04-01

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  14. Hydrogen storage study on Ti2CrV and ZrFe1.8V0.2 composite system

    International Nuclear Information System (INIS)

    Banerjee, S.; Kumar, A.; Pillai, C.G.S.; Sudarsan, V.

    2012-01-01

    Ti 2 CrV is reported to have one of the highest hydrogen storage capacities (more than 4 wt. %) among the bcc phase transition metal alloys. It has been found from the earlier study that Ti 2 CrV alloy shows quite good hydrogen absorption property but the desorption temperature is on the higher side. The in-situ temperature programmed desorption profile shows that the hydrogen desorption starts from 120℃ and the desorption peak comes at 180℃, which is slightly high for the vehicular application. On the other hand ZrFe 1.8 V 0.2 Laves phase alloy has low hydrogen absorption capacity, but at the room temperature it can desorp all its hydrogen. The pressure composition isotherm of ZrFe 1.8 V 0.2 alloy generated during the experiment shows the typical characteristics of the room temperature reversible hydride. The in-situ temperature programmed desorption shows that the hydride can desorb all the hydrogen below room temperature

  15. Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization

    NARCIS (Netherlands)

    Ngene, Peter; Longo, Alessandro; Mooij, L.P.A.; Bras, Wim; Dam, B.

    2017-01-01

    Hydrogen is a key element in the energy transition. Hydrogen-metal systems have been studied for various energy-related applications, e.g., for their use in reversible hydrogen storage, catalysis, hydrogen sensing, and rechargeable batteries. These applications depend strongly on the

  16. Two-dimensional metal dichalcogenides and oxides for hydrogen evolution

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Vojvodic, Aleksandra; Thygesen, Kristian Sommer

    2015-01-01

    We explore the possibilities of hydrogen evolution by basal planes of 2D metal dichalcogenides and oxides in the 2H and 1T class of structures using the hydrogen binding energy as a computational activity descriptor. For some groups of systems like the Ti, Zr, and Hf dichalcogenides the hydrogen...

  17. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    Science.gov (United States)

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  18. Recyclable hydrogen storage system composed of ammonia and alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hikaru [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Miyaoka, Hiroki; Hino, Satoshi [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Nakanishi, Haruyuki [Higashi-Fuji Technical Center, Toyota Motor Corporation, 1200 Misyuku, Susono, Shizuoka 410-1193 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

    2009-12-15

    Ammonia (NH{sub 3}) reacts with alkali metal hydrides MH (M = Li, Na, and K) in an exothermic reaction to release hydrogen (H{sub 2}) at room temperature, resulting that alkali metal amides (MNH{sub 2}) which are formed as by-products. In this work, hydrogen desorption properties of these systems and the condition for the recycle from MNH{sub 2} back to MH were investigated systematically. For the hydrogen desorption reaction, the reactivities of MH with NH{sub 3} were better following the atomic number of M on the periodic table, Li < Na < K. It was confirmed that the hydrogen absorption reaction of all the systems proceeded under 0.5 MPa of H{sub 2} flow condition below 300 C. (author)

  19. Hydrogen diffusion and trapping in bcc and fcc metals

    International Nuclear Information System (INIS)

    Richter, D.

    1979-01-01

    The fundamental aspects of the metal--hydrogen systems are described. The large number of anomalous properties are the reason for continuous scientific effort. The time scale of hydrogen motion is extremely short. The characteristic frequencies of the localized modes of hydrogen in Ta, Nb, or V are in the order of 10 -14 sec (energies between 0.1 to 0.2 eV); the jump frequencies for H-diffusion at elevated temperatures in those systems are between 10 +12 to 10 +13 sec -1 . They are comparable with the correlation times for diffusion in liquids and more than ten orders of magnitude larger than the jump times for nitrogen in Nb. Out of the large number of experimental data this paper will survey only some recent results on representative fcc and bcc metals for dilute H solutions. The nature of the elementary step in H-diffusion is described. Here the temperature and isotope dependence of the H-diffusion coefficient gives hints to the mechanism involved. The experimental results are discussed in terms of semiclassical and quantum mechanical diffusion theories

  20. Hydrogen-induced metallicity and strengthening of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yakovkin, I.N., E-mail: yakov@iop.kiev.ua; Petrova, N.V.

    2014-04-15

    Highlights: • Hydrogen inserted into MoS{sub 2} bilayers increases the interlayer interaction. • Adsorbed or intercalated H monolayer makes the surface metallic. • Fermi surface of the H/MoS{sub 2} shows a significant nesting. - Abstract: The performed DFT calculations for MoS{sub 2} layers with adsorbed and intercalated hydrogen indicate that the atomic hydrogen monolayer makes the surface metallic. The physisorbed H{sub 2} does not affect electronic properties of the MoS{sub 2} monolayer, which remains a direct gap semiconductor. Due to forming S–H–S bonds, hydrogen atoms, intercalated into the space between MoS{sub 2} layers, increase the interlayer interaction from 0.12 eV to 0.60 eV. The related increase of the stiffness of the Mo–H–Mo layered system is of a primary importance for the interpretation of images of the surface obtained with the Ultrasonic Force Microscopy (Kolosov and Yamanaka, 1993) [42].

  1. First-principles study of hydrogen diffusion in transition metal Rhodium

    International Nuclear Information System (INIS)

    Bao, Wulijibilige; Cui, Xin; Wang, Zhi-Ping

    2015-01-01

    In this study, the diffuse pattern and path of hydrogen in transition metal rhodium are investigated by the first-principles calculations. Density functional theory is used to calculate the system energies of hydrogen atom occupying different positions in rhodium crystal lattice. The results indicate that the most stable position of hydrogen atom in rhodium crystal lattice locates at the octahedral interstice, and the tetrahedral interstice is the second stable site. The activation barrier energy for the diffusion of atomic hydrogen in transition metal rhodium is quantified by determining the most favorable path, i.e., the minimum-energy pathway for diffusion, that is the indirect octahedral-tetrahedral-octahedral (O-T-O) pathway, and the activation energy is 0.8345eV

  2. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  3. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    Directory of Open Access Journals (Sweden)

    Yoshihiro Irokawa

    2011-01-01

    Full Text Available In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.

  4. Phase equilibria in the niobium-vanadium-hydrogen system

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J. (Grumman Aerospace Corp., Bethpage, NY (USA)); Welch, D.O. (Brookhaven National Lab., Upton, NY (USA)); Pick, M.A. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking)

    1990-01-01

    The effect of vanadium additions to niobium on the metal-hydrogen phase equilibria has been studied. Measurements of the equilibrium H{sub 2}(D{sub 2}) pressure-composition-temperature isotherms for Nb{sub 1-x}V{sub x} alloys with 0{le}x<0.2 were used to determine the depression of the {alpha} - {alpha}' critical temperature with increasing vanadium concentration. A simple lattice-fluid model guided reduction of the data. Changes in the triple point temperature as well as the shift of the {zeta} {yields} {epsilon} phase transition were determined by differential scanning calorimetry measurements. A rapid overall depression was found, of the order of 7 K (at.% substituted V){sup -1}, for the metal-hydrogen (deuterium) phase boundary structure when compared with the Nb-H system in the hydrogen concentration range of interest. The results explain the enhanced terminal solubility of hydrogen in this system found previously by other authors. The changes in the phase equilibria are discussed in terms of the effect of hydrogen trapping and compared with the results of a cluster-variation calculation for random-field systems of previous authors, taking into account a distribution of H-site energies due to alloying. (author).

  5. Applications of some microscopic, diffraction and absorption techniques to the study of metal--hydrogen systems

    International Nuclear Information System (INIS)

    Pick, M.A.

    1979-01-01

    Several experimental techniques were reviewed which are used to investigate metal hydrogen systems. The first technique is metallography and optical microscopy. This is a very old technique which was found to be very powerful in the case of metal hydrogen systems. A few examples of such work are shown and the results are discussed

  6. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea)

    2009-02-15

    In order to improve the capacity of hydrogen storage using activated carbon nanofibers, metal and fluorine were introduced into the activated carbon nanofibers by electrospinning, heat treatment, and direct fluorination. The pore structure of the samples was developed by the KOH activation process and investigated using nitrogen isotherms and micropore size distribution. The specific surface area and total pore volume approached 2800 m{sup 2}/g and 2.7 cc/g, respectively. Because of the electronegativity gap between the two elements (metal and fluorine), the electron of a hydrogen molecule can be attracted to one side. This reaction effectively guides the hydrogen molecule into the carbon nanofibers. The amount of hydrogen storage was dramatically increased in this metal-carbon-fluorine system; hydrogen content was as high as 3.2 wt%. (author)

  7. Understanding hydrogen sorption in a metal-organic framework with open-metal sites and amide functional groups

    KAUST Repository

    Pham, Tony T.

    2013-05-09

    Grand canonical Monte Carlo (GCMC) studies of the mechanism of hydrogen sorption in an rht-MOF known as Cu-TPBTM are presented. The MOF is a decorated/substituted isostructural analogue to the unembellished rht-MOF, PCN-61, that was studied previously [ Forrest, K. A.J. Phys. Chem. C 2012, 116, 15538-15549. ]. The simulations were performed using three different hydrogen potentials of increasing complexity. Simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values were in excellent agreement with the reported experimental data for only a polarizable model in one of four experimentally observed crystal structure configurations. The study demonstrates the ability of modeling to distinguish the differential sorption of distinct strucures; one configuration is found to be dominant due to favorable interactions with substrates. In addition, it was discovered that the presence of polar amide groups had a significant effect on the electrostatics of the Cu2+ ions and directs the low-pressure physisorption of hydrogen in the MOF. This is in contrast to what was observed in PCN-61, where an exterior copper ion had a higher relative charge and was the favored loading site. This tunability of the electrostatics of the copper ions via chemical substitution on the MOF framework can be explained by the presence of the negatively charged oxygen atom of the amide group that causes the interior Cu2+ ion to exhibit a higher positive charge through an inductive effect. Further, control simulations, taking advantage of the flexibility afforded by theoretical modeling, include artificially modified charges for both Cu2+ ions chosen equal to or with a higher charge on the exterior Cu2+ ion. This choice resulted in distinctly different hydrogen sorption characteristics in Cu-TPBTM with no direct sorption on the open-metal sites. Thus, this study demonstrates both the tunable nature of MOF platforms and the possibility for rational design of sorption

  8. Study of complex equilibria in niobium(V) and vanadium(V) systems with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, tartrate and hydrogen peroxide using RP-HPLC

    International Nuclear Information System (INIS)

    Oszwaldowski, S.; Jarosz, M.

    1997-01-01

    Complex equilibria in multiligand niobium(V) systems with 2-(5-bromo-2-pyridilazo)-5-diethyl aminophenol (5-Br-PADAP), tartrate and hydrogen peroxide and vanadium(V) with 5-Br-PADP and tartrate were evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) using C 18 column and VIS detection at 590 nm. In Nb(V)-H 2 O 2 -tartrate-(5-Br P ADAP) system formation of multiligand niobium complex, non-reactive towards 5-Br-PADAP, was postulated. For V(V) system distribution of metal ion between V(V)-(5-Br-PADAP) binary and V(V)-tartrate-(5-Br-PADAP) ternary complexes were evaluated. On this base it was proved, that coloured ternary vanadium complex is only an intermediate stage in the formation of stable V(V)-tartrate binary complex. (author). 14 refs, 7 figs

  9. Introduction to hydrogen in alloys

    International Nuclear Information System (INIS)

    Westlake, D.G.

    1980-01-01

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented

  10. Hydrogen formation in metals and alloys during fusion reactor operation

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji

    1994-08-01

    The results of neutron transport calculations of the hydrogen formation based on the JENDL gas-production cross section file are discussed for some metals and alloys, namely 51 V, Cr, Fe, Ni, Mo, austenitic stainless steel (Ti modified 316SS:PCA), ferritic steel (Fe-8Cr-2W:F82H) and the vanadium-base alloy (V-5Cr-5Ti). Impact of the steel fraction in steel/water homogeneous blanket/shield compositions on the hydrogen formation rate in above-mentioned metals and alloys is discussed both for the hydrogen formation in the first wall and the blanket/shield components. The results obtained for the first wall are compared with those for the helium formation obtained at JAERI by the same calculational conditions. Hydrogen formation rates at the first wall having 51 V, Cr, Fe, Ni and Mo are larger than those of helium by 3-8 times. (author)

  11. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  12. Early evaluation of hydrogen isotopes separation by V4Cr4Ti-based sorbents at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, Timur, E-mail: tima@physics.kz [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan); Shestakov, Vladimir; Chikhray, Yevgen; Kenzhina, Inesh; Askerbekov, Saulet [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Gordienko, Yuriy; Ponkratov, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan)

    2016-12-15

    This paper presents the results of experiments on hydrogen isotopes sorption with V4Cr4Ti vanadium alloys from a mixture of hydrogen isotopes. The studies were carried out at temperatures of 353 K, 393 K, 423 K; and pressures of 10{sup 3}–10{sup 4} Pa in gas mixture of hydrogen isotopes. The α-phase domain of V-H (D) system was studied, where the concentration of hydrogen isotopes atoms should not exceed 0.015H (D) atoms per metal atom. The separation parameters were derived for several saturation conditions accordingly to registered time dependences of hydrogen isotopes partial pressure drop. The conclusion was made about the prospects of using vanadium alloys in hydrogen isotopes separation and purification systems.

  13. Metal-support interactions in electrocatalysis: Hydrogen effects on electron and hole transport at metal-support contacts

    International Nuclear Information System (INIS)

    Heller, A.

    1986-01-01

    This paper discusses the effects of hydrogen on electron and hole transport at metal support contacts during electrocatalysis. When hydrogen dissolves in high work function metals such as Pt, Rh or Ru the contact forms between the semiconductor and the hydrogenated metal, which has a work function that is lower than that of the pure metal. Thus by changing the gaseous atmosphere that envelopes metal-substrate contacts, it is possible to reversibly change their diode characteristics. In some cases, such as Pt on n-TiO/sub 2/, Rh on n-TiO/sub 2/ and Ru on n-TiO/sub 2/, it is even possible to reversibly convert Schottky diodes into ohmic contacts by changing the atmosphere from air to hydrogen. In contacts between hydrogen dissolving group VIII metals and semiconducting substrates, one can test for interfacial reaction of the catalysts and the substrate by examining the electrical characteristics of the contacts in air (oxygen) and in hydrogen. In the absence of interfacial reaction, large hydrogen induced variation in the barrier heights is observed and the hydrogenated contacts, approach ideality (i.e. their non-ideality factor is close to unity). When a group VIII metal and a substrate do react, the reaction often produces a phase that blocks hydrogen transport to the interface between the substrate and the reaction product. In this case the hydrogen effect is reduced or absent. Furthermore, because such reaction often introduces defects into the surface of the semiconductor, the contacts have non-ideal diode characteristics

  14. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  15. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  16. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  17. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  18. Cycloadditions to Epoxides Catalyzed by GroupIII-V Transition-Metal Complexes

    KAUST Repository

    D'Elia, Valerio

    2015-05-25

    Complexes of groupIII-V transition metals are gaining increasing importance as Lewis acid catalysts for the cycloaddition of dipolarophiles to epoxides. This review examines the latest reports, including homogeneous and heterogeneous applications. The pivotal step for the cycloaddition reactions is the ring opening of the epoxide following activation by the Lewis acid. Two modes of cleavage (C-C versus C-O) have been identified depending primarily on the substitution pattern of the epoxide, with lesser influence observed from the Lewis acid employed. The widely studied cycloaddition of CO2 to epoxides to afford cyclic carbonates (C-O bond cleavage) has been scrutinized in terms of catalytic efficiency and reaction mechanism, showing that unsophisticated complexes of groupIII-V transition metals are excellent molecular catalysts. These metals have been incorporated, as well, in highly performing, recyclable heterogeneous catalysts. Cycloadditions to epoxides with other dipolarophiles (alkynes, imines, indoles) have been conducted with scandium triflate with remarkable performances (C-C bond cleavage). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cycloadditions to Epoxides Catalyzed by GroupIII-V Transition-Metal Complexes

    KAUST Repository

    D'Elia, Valerio; Pelletier, Jeremie; Basset, Jean-Marie

    2015-01-01

    Complexes of groupIII-V transition metals are gaining increasing importance as Lewis acid catalysts for the cycloaddition of dipolarophiles to epoxides. This review examines the latest reports, including homogeneous and heterogeneous applications. The pivotal step for the cycloaddition reactions is the ring opening of the epoxide following activation by the Lewis acid. Two modes of cleavage (C-C versus C-O) have been identified depending primarily on the substitution pattern of the epoxide, with lesser influence observed from the Lewis acid employed. The widely studied cycloaddition of CO2 to epoxides to afford cyclic carbonates (C-O bond cleavage) has been scrutinized in terms of catalytic efficiency and reaction mechanism, showing that unsophisticated complexes of groupIII-V transition metals are excellent molecular catalysts. These metals have been incorporated, as well, in highly performing, recyclable heterogeneous catalysts. Cycloadditions to epoxides with other dipolarophiles (alkynes, imines, indoles) have been conducted with scandium triflate with remarkable performances (C-C bond cleavage). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solubility and diffusion of hydrogen in pure metals and alloys

    International Nuclear Information System (INIS)

    Wipf, H.

    2001-01-01

    Basic facts are presented of the absorption of hydrogen gas by metals and the diffusion of hydrogen in metals. Specifically considered are crystalline metals without defects and lattice disorder (pure metals), low hydrogen concentrations and the possibility of high hydrogen gas pressures. The first introductory topic is a short presentation of typical phase diagrams of metal hydrogen systems. Then, hydrogen absorption is discussed and shown to be decisively determined by the enthalpy of solution, in particular by its sign which specifies whether absorption is exothermic or endothermic. The formation of high-pressure hydrogen gas bubbles in a metal, which can lead to blistering, is addressed. It is demonstrated that bubble formation will, under realistic conditions, only occur in strongly endothermically hydrogen absorbing metals. The chief aspects of hydrogen diffusion in metals are discussed, especially the large size of the diffusion coefficient and its dependence on lattice structure. It is shown that forces can act on hydrogen in metals, causing a directed hydrogen flux. Such forces arise, for instance, in the presence of stress and temperature gradients and can result in local hydrogen accumulation with potential material failure effects. The final aspect discussed is hydrogen permeation, where the absorption behavior of the hydrogen is found to be in general more decisive on the permeation rate than the value of the diffusion coefficient. (orig.)

  1. High temperature equation of state of metallic hydrogen

    International Nuclear Information System (INIS)

    Shvets, V. T.

    2007-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm 3 , which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen

  2. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id; Dipojono, H. K., E-mail: dipojono@tf.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  3. Molecular metal-Oxo catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  4. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  5. Metal oxide/hydrogen battery; Kinzoku sankabutsu/suiso denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, M.; Niki, H. [Toshiba Research and Development Centre, Komukai, Kawasaki (Japan)

    1995-07-04

    The metal oxide-hydrogen battery consisting mainly of hydrogen storage alloy has high energy density and high volume efficiency. However, it is disadvantageous that the self-discharge takes place since the discharge capacity is lowered due to the delivery of stored hydrogen from the hydrogen electrode. This invention relates to the metal oxide-hydrogen battery consisting of hydrogen storage alloy. Hydrogen storage alloy which is composed of LaNi5 system homogeneous solid solution having an equilibrium plateau pressure of less than 1 atm at 20{degree}C is used. As a result, the battery voltage change and the self-discharge can be reduced, and the cell performance can be improved. Examples of LaNi5 system hydrogen storage alloy are ANi(5-x)Mx (A = La, Mm, and Ca, M = Al, Mn, Si, Ge, Fe, B, Ga, Cu, In, and Co). LaNi(4.7)Al(0.3) and MmNi(4.2)Mn(0.8) are preferable. 3 figs.

  6. Metallic hydrogen research

    International Nuclear Information System (INIS)

    Burgess, T.J.; Hawke, R.S.

    1978-01-01

    Theoretical studies predict that molecular hydrogen can be converted to the metallic phase at very high density and pressure. These conditions were achieved by subjecting liquid hydrogen to isentropic compression in a magnetic-flux compression device. Hydrogen became electrically conducting at a density of about 1.06 g/cm 3 and a calculated pressure of about 2 Mbar. In the experimental device, a cylindrical liner, on implosion by high explosive, compresses a magnetic flux which in turn isentropically compresses a hydrogen sample; coaxial conical anvils prevent escape of the sample during compression. One anvil contains a coaxial cable that uses alumina ceramic as an insulator; this probe allows continuous measurement of the electrical conductivity of the hydrogen. A flash x-ray radiograph exposed during the experiment records the location of the sample-tube boundaries and permits calculation of the sample density. The theoretical underpinnings of the metallic transition of hydrogen are briefly summarized, and the experimental apparatus and technique, analytical methods, and results are described. 9 figures

  7. Hydrogen depth resolution in multilayer metal structures, comparison of elastic recoil detection and resonant nuclear reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. E-mail: leszekw@optushome.com.au; Grambole, D.; Kreissig, U.; Groetzschel, R.; Harding, G.; Szilagyi, E

    2002-05-01

    Four different metals: Al, Cu, Ag and Au have been used to produce four special multilayer samples to study the depth resolution of hydrogen. The layer structure of each sample was analysed using 2 MeV He Rutherford backscattering spectrometry, 4.5 MeV He elastic recoil detection (ERD) and 30 MeV F{sup 6+} HIERD. Moreover the hydrogen distribution was analysed in all samples using H({sup 15}N, {alpha}{gamma}){sup 12}C nuclear reaction analysis (NRA) with resonance at 6.385 MeV. The results show that the best depth resolution and sensitivity for hydrogen detection are offered by resonance NRA. The He ERD shows good depth resolution only for the near surface hydrogen. In this technique the depth resolution is rapidly reduced with depth due to multiple scattering effects. The 30 MeV F{sup 6+} HIERD demonstrated similar hydrogen depth resolution to He ERD for low mass metals and HIERD resolution is substantially better for heavy metals and deep layers.

  8. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  9. Insulator-metal transition of fluid molecular hydrogen

    International Nuclear Information System (INIS)

    Ross, M.

    1996-01-01

    Dynamically compressed fluid hydrogen shows evidence for metallization at the relatively low pressure of 140 GPa (1.4 Mbar) while experiments on solid hydrogen made in a diamond-anvil cell have failed to detect any evidence for gap closure up to a pressure of 230 GPa (2.3 Mbar). Two possible mechanisms for metal- liclike resistivity are put forward. The first is that as a consequence of the large thermal disorder in the fluid (kT∼0.2 endash 0.3 eV) short-range molecular interactions lead to band tailing that extends the band edge into the gap, resulting in closure at a lower pressure than in the solid. The second mechanism argues that molecular dissociation creates H atoms that behave similar to n-type donors in a heavily doped semiconductor and undergo a nonmetal-metal Mott-type transition. copyright 1996 The American Physical Society

  10. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  11. A magnetic investigation of phase transitions for metal-hydrogen systems based on nickel by means of computer-aided data acquisition

    International Nuclear Information System (INIS)

    Martin, W.E.

    1986-01-01

    In the present thesis the magnetic behaviour of Nickel-based metal-hydrogen systems is investigated in relation to its background in metal physics, in order to get information on the formation and the decomposition of metal-hydrogen phases. The magnetic investigations are performed at the systems Ni-Cu-H and Ni-Cr-H with Cu up to 40 at% and Cr up to 7 at%. The differential susceptibility is measured during hydration and decomposition of hydrides and the connection between magnetic moment and hydrogen concentration is discussed. (BHO)

  12. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  13. Tunable hydrogen storage in magnesium-transition metal compounds: first-principles calculations

    NARCIS (Netherlands)

    Er, S.; Tiwari, Dhirendra; Tiwari, D.; de Wijs, Gilles A.; Brocks, G.

    2009-01-01

    Magnesium dihydride (MgH2) stores 7.7 wt % hydrogen but it suffers from a high thermodynamic stability and slow (de)hydrogenation kinetics. Alloying Mg with lightweight transition metals (TM) (=Sc,Ti,V,Cr) aims at improving the thermodynamic and kinetic properties. We study the structure and

  14. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Barger, Vernon; Berger, Joshua [Department of Physics, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States)

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10{sup −11} M{sub ⊙}. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10{sup 13} W×(m{sub a}/5 meV){sup 4}, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  15. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  16. A DFT investigation on group 8B transition metal-doped silicon carbide nanotubes for hydrogen storage application

    Science.gov (United States)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob

    2018-05-01

    The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.

  17. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir

    1999-01-01

    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  19. Hydrogen permeation through metallic foils

    International Nuclear Information System (INIS)

    Bernardi, M.I.B.; Rodrigues, J.A.

    1987-01-01

    The process of electrolytic permeation of hydrogen through metallic foils is studied. A double electrolytic cell, in glass, in which the two compartments of reaction are separated by a metallic foil to be studied, was built. As direct result, the hydrogen diffusion coefficient in the metal is obtained. The hydrogen diffusion coefficients in the palladium and, in austenitic stainless steels 304 and 304 L, used in the Angra-1 reactor, were obtained. Samples of stainless steels with and without welding, were used. (Author) [pt

  20. Liquid metal purification device

    International Nuclear Information System (INIS)

    Sakai, Takao; Shimoyashiki, Shigehiro.

    1992-01-01

    The device of the present invention concerns a liquid metal purification device for removing and purifying impuries in liquid metal sodium used as coolants of an FBR type reactor. A vessel having a group of pipes made of hydrogen permeable metal at the inside thereof is disposed to the inlet pipeline of a cold trap. The group of hydrogen permeable metal pipes is connected to an exhaust pipe and a vacuum pump, so that the inside of the pipes is exhausted. Liquid metal sodium branched from the main pipeline of a coolant system passes through the outer side of the group of the hydrogen permeable metal pipes. In this cae, hydrogen contained as impurities in the liquid metal sodium diffuses and permeates the hydrogen permeation metal pipes and enters into the pipe group and is discharged out of the system by the vacuum pump. This can mitigate the hydrogen removing burden of the cold trap, to extend the device life time. (I.N.)

  1. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  2. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  3. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  4. Adsorption of hydrogen isotopes by metals in non-equilibrium conditions

    International Nuclear Information System (INIS)

    Livshits, A.I.; Notkin, M.E.; Pustovojt, Yu.M.

    1982-01-01

    To study the interaction of thermonuclear plasma and additions with metallic walls, nonequilibrium system of thermal atomary hydrogen - ''cold'' (300-1100 K) metal is experimentally investigated. Atomary hydrogen was feeded to samples of Ni and Pd in the shape of atomic beam, coming into vacuum from high-frequency gaseous discharge. It is shown that hydrogen solubility under nonequilibrium conditions increases with surface passivation (contamination); in this case it surpasses equilibrium solubility by value orders. Nickel and iron dissolve more hydrogen than palladium at a certain state of surface ( passivation) and gas (atomary hydrogen). The sign of the temperature dependence of hydrogen solubility in passivated N 1 and Fe changes when alterating molecular hydrogen by atomary hydrogen

  5. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  6. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  7. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  8. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  9. Interactions of hydrogen isotopes and oxides with metal tubes

    International Nuclear Information System (INIS)

    Longhurst, G. R.; Cleaver, J.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  10. Interactions of hydrogen isotopes and oxides with metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G. R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Cleaver, J. [Idaho State Univ., 921 South 8th Avenue, Pocatello, ID 83201 (United States)

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  11. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    International Nuclear Information System (INIS)

    Longhurst, Glen R.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results

  12. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  13. On the Hydrogen Cyanide Removal from Air using Metal loaded Polyacrylonitrile Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Bozorgmehr Maddah

    2017-12-01

    Full Text Available The present study highlights the potential application of electrospun polyacrylonitrile/metal salts (CrO3, CuCO3 nanofibrous filter media impregnated with TEDA (PAN-M-TEDA as an efficient adsorbent for hydrogen cyanide removal from air. The PAN-M-TEDA nanofiber before and after adsorption of hydrogen cyanide was characterized with Fourier transform infrared microscopy (FTIR. The concentration of hydrogen cyanide passes through the samples was determined by measuring the absorption of hydrogen cyanide in the solution containing indicator via UV-Vis spectroscopy. The results showed that introducing metal salts to PAN nanofiber along with their impregnation with TEDA, significantly increases the adsorption capacity of nanofibrous filter media. The adsorption of hydrogen cyanide over PAN-M-TEDA nanofiber was also studied as a function of thickness, PAN concentration and TEDA concentration by response surface methodology (RSM based on central composite design. It is found that the highest adsorption capacity can be achieved at thickness 28.42 mm, PAN concentration 16.19 w/v % and TEDA concentration 14.80 w/v %.

  14. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  15. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  16. Metal-functionalized silicene for efficient hydrogen storage.

    Science.gov (United States)

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    International Nuclear Information System (INIS)

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated

  18. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    Science.gov (United States)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V

  19. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.

    Science.gov (United States)

    Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan

    2017-08-30

    Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.

  20. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro

    2015-03-05

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  1. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro; Isimjan, Tayirjan; Yu, Weili; Del Gobbo, Silvano; Xu, Wei

    2015-01-01

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  2. The hydrogen-metal systems: experimental data on the solubility and electromigration of hydrogen and deuterium in the V(A) metals

    International Nuclear Information System (INIS)

    Mareche, J.-F.; Rat, J.-C.; Herold, Albert

    1976-01-01

    Experimental results on hydrogen solubility and electromigration in niobium, vanadium and tantalum are given. Previous values of solubility are shown to be fairly good. There is no isotopic effect. Hydrogen is drawn by a direct current as a positive ionisation. A study of most of the possible parameters has been done. The possible effect of a solid solution of oxygen is discussed [fr

  3. Towards hydrogen metallization: an Ab initio approach

    International Nuclear Information System (INIS)

    Bernard, St.

    1998-01-01

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H 2 ) 2 which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author)

  4. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  6. Ultrapure hydrogen thermal compressor based on metal hydrides for fuel cells and hybrid vehicles

    International Nuclear Information System (INIS)

    Almasan, V.; Biris, A.; Coldea, I.; Lupu, D.; Misan, I.; Popeneciu, G.; Ardelean, O.

    2007-01-01

    Full text: In hydrogen economy, efficient compressors are indispensable elements in the storage, transport and distribution of the produced hydrogen. Energetic efficient technologies can contribute to H 2 pipelines transport to the point of use and to distribute H 2 by refuelling stations. Characteristic for metal hydrides systems is the wide area of possibilities to absorb hydrogen at low pressure from any source of hydrogen, to store and deliver it hydrogen at high pressure (compression ratio more than 30). On the basis of innovative concepts and advanced materials for H 2 storage/compression (and fast thermal transfer), a fast mass (H 2 ) and heat transfer unit will be developed suitable to be integrated in a 3 stage thermal compressor. Metal hydrides used for a three stage hydrogen compression system must have different equilibrium pressures, namely: for stage 1, low pressure H 2 absorption and resistant to poisoning with impurities of hydrogen, for stage 2, medium pressure H 2 absorption and for stage 3, high pressure hydrogen delivery (120 bar). In the case of compression device based on metallic hydrides the most important properties are the hydrogen absorption/desorption rate, a smaller process enthalpy and a great structural stability on long term hydrogen absorption/desorption cycling. These properties require metal hydrides with large differences between the hydrogen absorption and desorption pressures at equilibrium, within a rather small temperature range. The main goal of this work is to search and develop metal hydride integrated systems for hydrogen purification, storage and compression. After a careful screening three hydrogen absorbing alloys will be selected. After selection, the work up of the alloys composition on the bases of detailed solid state studies, new multi-component alloys will be developed, with suitable thermodynamic and kinetic properties for a hydrogen compressor. The results of the study are the following: new types of hydrogen

  7. Metallic hydrogen: The most powerful rocket fuel yet to exist

    Energy Technology Data Exchange (ETDEWEB)

    Silvera, Isaac F [Lyman Laboratory of Physics, Harvard University, Cambridge MA 02138 (United States); Cole, John W, E-mail: silvera@physics.harvard.ed [NASA MSFC, Huntsville, AL 35801 (United States)

    2010-03-01

    Wigner and Huntington first predicted that pressures of order 25 GPa were required for the transition of solid molecular hydrogen to the atomic metallic phase. Later it was predicted that metallic hydrogen might be a metastable material so that it remains metallic when pressure is released. Experimental pressures achieved on hydrogen have been more than an order of magnitude higher than the predicted transition pressure and yet it remains an insulator. We discuss the applications of metastable metallic hydrogen to rocketry. Metastable metallic hydrogen would be a very light-weight, low volume, powerful rocket propellant. One of the characteristics of a propellant is its specific impulse, I{sub sp}. Liquid (molecular) hydrogen-oxygen used in modern rockets has an Isp of {approx}460s; metallic hydrogen has a theoretical I{sub sp} of 1700s. Detailed analysis shows that such a fuel would allow single-stage rockets to enter into orbit or carry economical payloads to the moon. If pure metallic hydrogen is used as a propellant, the reaction chamber temperature is calculated to be greater than 6000 K, too high for currently known rocket engine materials. By diluting metallic hydrogen with liquid hydrogen or water, the reaction temperature can be reduced, yet there is still a significant performance improvement for the diluted mixture.

  8. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  9. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  10. Validation of KENO V.a for highly enriched uranium systems with hydrogen and/or carbon moderation

    International Nuclear Information System (INIS)

    Elliott, E.P.; Vornehm, R.G.; Dodds, H.L. Jr.

    1993-01-01

    This paper describes the validation in accordance with ANSI/ANS-8.1-1983(R1988) of KENO V.a using the 27-group ENDF/B-IV cross-section library for systems containing highly-enriched uranium, carbon, and hydrogen and for systems containing highly-enriched uranium and carbon with high carbon to uranium (C/U) atomic ratios. The validation has been performed for two separate computational platforms: an IBM 3090 mainframe and an HP 9000 Model 730 workstation, both using the Oak Ridge Y-12 Plant Nuclear Criticality Safety Software (NCSS) code package. Critical experiments performed at the Oak Ridge Critical Experiments Facility, in support of the Rover reactor program, and at the Pajarito site at Los Alamos National Laboratory were identified as having the constituents desired for this validation as well as sufficient experimental detail to allow accurate construction of KENO V.a calculational models. Calculated values of k eff for the Rover experiments, which contain uranium, carbon, and hydrogen, are between 1.0012 ± 0.0026 and 1.0245 ± 0.0023. Calculation of the Los Alamos experiments, which contain uranium and carbon at high C/U ratios, yields values of k eff between 0.9746 ± 0.0028 and 0.9983 ± 0.0027. Safety criteria can be established using this data for both types of systems

  11. Hydrogen-mediated Nitrogen Clustering in Dilute III-V Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Du, M.-H.; Limpijumnong, S.; Zhang, S. B

    2006-01-01

    First-principles calculation reveals multi-N clusters to be the ground states for hydrogenated N in dilute III-V nitrides. While hydrogenation of a single N, forming H*{sub 2}(N), can relax the large strain induced by the size-mismatched N, formation of the clusters will relax the strain even more effectively. This suppresses the formation of H*{sub 2}(N), the existence of which has recently been debated. More importantly, postgrowth dehydrogenation of the N-H clusters provides an explanation to the observed metastable bare N clusters in GaAsN grown by gas-source molecular beam epitaxy or metal-organic chemical vapor deposition.

  12. Hydrogen-Mediated Nitrogen Clustering in Dilute III-V Nitrides

    Science.gov (United States)

    Du, Mao-Hua; Limpijumnong, Sukit; Zhang, S. B.

    2006-08-01

    First-principles calculation reveals multi-N clusters to be the ground states for hydrogenated N in dilute III-V nitrides. While hydrogenation of a single N, forming H2*(N), can relax the large strain induced by the size-mismatched N, formation of the clusters will relax the strain even more effectively. This suppresses the formation of H2*(N), the existence of which has recently been debated. More importantly, postgrowth dehydrogenation of the N-H clusters provides an explanation to the observed metastable bare N clusters in GaAsN grown by gas-source molecular beam epitaxy or metal-organic chemical vapor deposition.

  13. Hydrogen isotopes mobility and trapping in V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Budylkin, N.; Voloschin, L.; Mironova, E.; Riazantseva, N.; Tebus, V.

    1996-01-01

    In the last years the V-Ti-Cr alloys were considered as candidate materials for different structures of fusion reactors (blanket, first wall, divertor and so on) due to their advantages over other structure materials. Mobility and trapping parameters of hydrogen are essential characteristics for an assessment of using the V-Ti-Cr alloys in FR. In this paper: hydrogen problems for V-Ti-Cr alloys are formulated; V-H system data base is analyzed; study results of the hydrogen mobility and trapping in V-4Ti-4Cr and V-10Ti-5Cr alloys are given; the classification of V-alloys as radioactive waste according to the Russian Federation waste management rules is developed taking into account the residual amount of tritium ('inventory'). (orig.)

  14. NATO International Symposium on the Electronic Structure and Properties of Hydrogen in Metals

    CERN Document Server

    Satterthwaite, C

    1983-01-01

    Hydrogen is the smallest impurity atom that can be implanted in a metallic host. Its small mass and strong interaction with the host electrons and nuclei are responsible for many anomalous and interesting solid state effects. In addition, hydrogen in metals gives rise to a number of technological problems such as hydrogen embrittlement, hydrogen storage, radiation hardening, first wall problems associated with nuclear fusion reactors, and degradation of the fuel cladding in fission reactors. Both the fundamental effects and applied problems have stimulated a great deal of inter­ est in the study of metal hydrogen systems in recent years. This is evident from a growing list of publications as well as several international conferences held in this field during the past decade. It is clear that a fundamental understanding of these problems re­ quires a firm knowledge of the basic interactions between hydrogen, host metal atoms, intrinsic lattice defects and electrons. This understanding is made particularly di...

  15. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  16. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  17. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  18. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  19. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on transportation of hydrogen in the form of metallic hydride; 1974-1980 nendo kinzoku suisokabutsu ni yoru suiso no yuso gijutsu no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report concerns the transportation and storage of hydrogen using metallic hydrides that perform absorption and desorption of hydrogen. Alloys useable for this purpose have to be capable of reversibly absorbing and desorbing hydrogen within a certain temperature range. In the absence of guidelines to follow in the quest for such alloys, the efforts at discovering them turned out to be a continual series of trials and errors. Researches were conducted into the hydrogenation reaction of Mg and Mg-based alloys and into hydrides of V-based alloys, and into Zr-based alloy hydrides such as the ZrMn{sub 2} hydride, ZrNiMn hydride, Zr(Fe{sub x}Mn{sub 1-x}){sub 2} hydrides, TiZrFe{sub 2} hydride, Zr{sub x}Ti{sub 1-x}(Fe{sub y}Mn{sub 1-y}) hydrides, etc. Also studied were the electronics of hydrogen in metallic hydrides, rates of reaction between Mg-Ni-based alloys and hydrogen systems, endurance tests for hydrides of Mg-Ni-based alloys, effects exerted by absorbed gas molecules during the storage of hydrogen in Mg-Ni-based alloys, effective thermal conductivity in a layer filled with a metallic hydride, metallic hydride-aided hydrogen transportation systems, chemical boosters, etc. (NEDO)

  20. Molecular rotations and diffusion in solids, in particular hydrogen in metals

    International Nuclear Information System (INIS)

    Springer, T.

    1977-01-01

    The chapter deals mainly with problems related to physical chemistry. The author treats diffusion in solids, in particular of hydrogen in metals, and studies of molecular rotations, in particular studies of tunneling transitions which is a relatively new and rapidly developing field of high resolution neutron spectroscopy. Typical neutron spectra to be discussed appear in energy ranges of a few 10 -6 to a few 10 -3 eV, or 10 -5 to 10 -2 cm -1 . The discussion is restricted to scattering from the protons which is predominantly incoherent. This means that only the motions, or excitations, of individual protons or protonic groups are discussed, ignoring collective excitations and interference. (HPOE) [de

  1. Hydrogen storage by reaction between metallic amides and imides

    International Nuclear Information System (INIS)

    Eymery, J.B.; Cahen, S.; Tarascon, J.M.; Janot, R.

    2007-01-01

    This paper details the various metal-N-H systems reported in the literature as possible hydrogen storage materials. In a first part, we discuss the hydrogen storage performances of the Li-N-H system and the desorption mechanism of the LiH-LiNH 2 mixture is especially presented. The possibility of storing hydrogen using two other binary systems (Mg-N-H and Ca-N-H) is described in a second part. In the third part of the paper, we discuss about the performances of the highly promising Li-Mg-N-H system, for which a nice reversibility is obtained at 200 C with an experimental hydrogen capacity of about 5.0 wt.%. Other ternary systems, as Li-B-N-H and Li-Al-N-H, are presented in the last part of this review paper. We especially emphasize the performances obtained in our Laboratory at Amiens with a LiAl(NH 2 ) 4 -LiH mixture able to desorb around 6.0 wt.% of hydrogen at only 130 C. (authors)

  2. Methodologies for hydrogen determination in metal oxides by prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Alvarez, E.; Biegalski, S.R.; Landsberger, S.

    2007-01-01

    Prompt gamma activation analysis (PGAA), available at University of Texas at Austin (UT), has been employed for the direct determination of hydrogen content in a series of metal oxide materials typically used as cathodes in lithium ion battery systems. Special attention was given to the experimental setup including potential sources of error and system calibration for the detection of hydrogen. Spectral interference with hydrogen arising from cobalt was identified and corrected for. Limits of detection as a function of cobalt mass present in a given sample are also discussed. PGAA has proven to be a novel and precise technique for the determination of hydrogen in metal oxides. This type of investigation could provide valuable insight regarding the factors that limit the practical capacities of lithium ion oxide cathodes

  3. Borides of the group 1 metals of the periodic system

    International Nuclear Information System (INIS)

    Samsonov, G.V.; Serebryakova, T.I.; Neronov, V.A.

    1975-01-01

    The borides of alkali metals (lithium, sodium, potassium) and the metals of a copper subgroup (copper, silver, gold) are described. Consideration is given to the crystalline structure and state diagrams of the metal systems within the first group of the Periodic Table with boron. Existence, formation conditions and physico-chemical properties of binary boride phases are characterized. Conclusion is made as to the absence of interaction between boron and silver. Information on the interaction between gold and boron is scanty and conflicting. Methods are described suitable for the production of the borides of the metals within the first group of the Periodic Table [ru

  4. Report on the basic design of a hydrogen transportation system utilizing metal hydrides and the evaluation thereon; Kinzoku suisokabutsu wo riyoshita suiso yuso system no kihon sekkei to sono hyoka ni kansuru hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-26

    This paper describes a hydrogen transportation system utilizing metal hydrides. For a storage method for moving, metal hydrides having high hydrogen containing performance like Mg-based hydrides would have high portability, less weight disadvantage, and high economic performance. In the fixed location storage, metal hydrides are superior in safety and maintenance cost to the conventional high-pressure gas holder and liquefied hydrogen storage. Because of their high dependence on equilibrium pressure and temperature, the significance of development thereof is large as the source of high-pressure hydrogen generation and motive force. More effective utilization of low-level heat, and separation and refining of hydrogen may also be expected. With regard to fuel supply for hydrogen fueled automobiles, metal hydrides are better in safety and total energy cost than liquefied hydrogen, but have a number of disadvantageous points in weight demerit. Eliminating the weight demerit would be the central issue of the development. Accompanying the development of hydrogen fueled automobiles, there are a number of technological elements to be developed on fuel supply system, such as storage, moving and transportation in hydrogen manufacturing sites, and filling and storage at using sites. Arranging the related infrastructures would be the issue. (NEDO)

  5. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  6. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    Science.gov (United States)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  7. Ortho-para-conversion of hydrogen in films of rare earth metals

    International Nuclear Information System (INIS)

    Zhavoronkova, K.N.; Peshkov, A.V.

    1979-01-01

    Investigated is specific catalytic activity of REE to clarify to what an extent the change of electron structure of the metals might influence their catalytic properties. Conducted is investigation of Sc, It, La and other lanthanides, except Eu amd Pm prepared in the form of metallic films, impowdered in vacuum of 10 -7 torr. It is established, that pape earth elements as catalysts of low-temperature ortho-para-conversion od hydrogen are divided into 2 groups, differing by mechanism of the reaction. Comparison of experimental results with the calculation results of absolute rates of paramagnetic conversion and also with investigation results of isotopjc exchange on these metals showed, that on the metals of group 1 conversjon proceeds according to chemical mechanism, and on the metals of group 2 - according to oscillating magnetic mechanism

  8. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  9. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; T. Adams

    2008-09-12

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using gaseous hydrogen permeation testing techniques.

  10. Thermodynamical study of the vanadium-hydrogen system. The hydrogen effect on the mechanical properties of V-4Cr-4Ti and V-5Cr-5Ti alloys; Etude thermodynamique du systeme vanadium-hydrogene. Effets de l'hydrogene sur les proprietes mecaniques des alliages V-4Cr-4Ti et V-5Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Coulombeaux, O

    1998-07-01

    In the framework of the international research programs on fusion reactors, the vanadium alloys are among the most appropriate candidate to constitute the first wall. The author deals with the specific alloys V-4Cr-4Ti and V-5Cr-5Ti and study the hydrogen diffusion. Experimental results show that the induced hydrogen concentration in the sample by diffusion is higher, for the same partial pressure of exposure, in the case of the alloy than for the pure vanadium. He shows that this result can be explainedby the trapping for which the hydrogen is trapped by the titanium. (A.L.B.)

  11. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  12. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  13. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  14. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    -up storage systems are designed, tested and described numerically by finite elements simulation. The influence of the tank diameter on sorption rates, hydrogen capacities and temperature profiles inside the material beds is demonstrated. Key aspects for the design of future light metal hydride storage tank systems were derived from the experimental obtained results and the theoretical simulation of Li-RHC as a representative model system for RHCs.

  15. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  16. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    Science.gov (United States)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  17. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  18. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  19. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  20. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  1. Study on Doppler coefficient for metallic fuel fast reactor added hydrogeneous moderator

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Naohiro; Iwasaki, Tomohiko; Tsujimoto, Kazuhumi [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Osugi, Toshitaka; Okajima, Shigeaki; Andoh, Masaki; Nemoto, Tatsuo; Mukaiyama, Takehiko

    1998-01-01

    A series of mock-up experiments for moderator added metallic fast reactor core was carried out at FCA to obtain the experimental verification for improvement of reactivity coefficients. Softened neutron spectrum increases Doppler effect by a factor of 2, and flatter adjoint neutron spectrum decreases Na void effect by a factor of 0.6 when hydrogen to heavy metal atomic number ratio is increased from 0.02 to 0.13. The experimental results are analyzed with SLALOM and CITATION-FBR, which is the standard design code system for a fast reactor at JAERI, and SRAC95 and CITATION-FBR. The present code system gives generally good agreement with the experimental results, especially by the use of the latter, the dependence of the Doppler effect to the hydrogen to fuel element atomic number density ratio is disappeared. Therefore, it looks possible to use the present code system for the conceptual design of a fast reactor system with hydrogeneous materials. (author)

  2. Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements

    Energy Technology Data Exchange (ETDEWEB)

    Gates, Jacklyn M. [Univ. of California, Berkeley, CA (United States)

    2008-07-31

    Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070$+1100\\atop{-760}$ pb was measured at an excitation energy of 16.0 ± 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660$+450\\atop{-370}$ pb was measured at 22.0 ± 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480$+1730\\atop{-1370}$ pb at an excitation energy of 16.0 ± 1.6 MeV. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier. The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid and mixed hydrochloric acid/lithium chloride media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments was to find a system that demonstrates selectivity among the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z = 105). Experiments with niobium and tantalum were performed with carrier (10-6 M), carrier free (10-10 M) and trace (10-16 M) concentrations of metal using hydrochloric acid solution with concentrations ranging from 1 - 11 M. The extraction of niobium and tantalum from mixed hydrochloric acid/lithium chloride media by HDEHP and BEHP as a function of hydrogen ion (H+) concentration was also investigated. The data obtained are used as the basis to discuss the speciation of niobium and tantalum under the conditions studied and to evaluate possible extraction mechanisms. The 74Se(18O,p3n)88gNb excitation function was measured to determine the best energy for producing the 88Nb used in chemistry experiments. A maximum cross section of 495 +- 5 mb was observed at an 18O energy of 74.0 MeV

  3. Hydrogen fuel cell power system

    International Nuclear Information System (INIS)

    Lam, A.W.

    2004-01-01

    'Full text:' Batteries are typically a necessary and prime component of any DC power system, providing a source of on-demand stored energy with proven reliability. The integration of batteries and basic fuel cells for mobile and stationary utility applications poses a new challenge. For high value applications, the specification and operating requirements for this hybrid module differ from conventional requirements as the module must withstand extreme weather conditions and provide extreme reliability. As an electric utility company, BCHydro has embarked in the development and application of a Hydrogen Fuel Cell Power Supply (HFCPS) for field trial. A Proton Exchange Membrane (PEM)- type fuel cell including power electronic modules are mounted in a standard 19-inch rack that provides 48V, 24V, 12V DC and 120V AC outputs. The hydrogen supply consists of hydrogen bottles and regulating devices to provide a continuous fuel source to the power modules. Many tests and evaluations have been done to ensure the HFCPS package is robust and suitable for electric utility grade operation. A field trial demonstrating this standalone system addressed reliability, durability, and installation concerns as well as developed the overall system operating procedures. (author)

  4. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  5. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  6. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    phosphoric acid were investigated in a temperature range from 80 to 170°C. A significant dependence of the activities on temperature was observed for all five carbide samples. Through the entire temperature range Group 6 metal carbides showed higher activity than that of the Group 5 metal carbides......Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated...

  7. Potential of multi-purpose liquid metallic fuelled fast reactor (MPFR) as a hydrogen production system

    International Nuclear Information System (INIS)

    Endo, H.; Ninokata, H.; Netchaev, A.; Sawada, T.

    2001-01-01

    Nuclear energy is the only effective alternative energy source to fossil fuels in the next century. Therefore future nuclear power plants should satisfy the following three requirements: i) multiple energy conversion capability with high temperature not only for electricity generation but also for hydrogen production, ii) extended siting capability so as to eliminate on-site refuelling, and iii) passive safety features. An aim of this paper is to describe the basic concept of the multi-purpose liquid metallic fuelled fast reactor system (MPFR). The MPFR introduces the U-Pu-X (X: Mn, Fe, Co) liquid metallic alloy with Ta and Ta/TaC structural materials, and satisfies all of the conditions listed above based on the following characteristics of the liquid metallic fuel: high temperature operation between 650 deg C (sodium-cooled system) and 1 200 deg C (lead-cooled system), a core lifetime of 15-30 years without radiation damage of fuel materials, and enhanced passive safety by the thermal expansion of liquid fuel and the avoidance of re-criticality due to local core fuel dispersion at fuel failure events. (authors)

  8. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  9. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  10. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  11. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  12. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  13. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target

    Science.gov (United States)

    Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich

    2018-04-01

    We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.

  14. Deactivation of group III acceptors in silicon during keV electron irradiation

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.; Pan, S.C.

    1983-01-01

    Experimental results on p-Si metal-oxide-semiconductor capacitors (MOSC's) are presented which demonstrate the electrical deactivation of the acceptor dopant impurity during 8-keV electron irradiation not only in boron but also aluminum and indium-doped silicon. The deactivation rates of the acceptors during the 8-keV electron irradiation are nearly independent of the acceptor impurity type. The final density of the remaining active acceptor approaches nonzero values N/sub infinity/, with N/sub infinity/(B) Al--H>In-H. These deactivation results are consistent with our hydrogen bond model. The thermal annealing or regeneration rate of the deactivated acceptors in the MOSC's irradiated by 8-keV electron is much smaller than that in the MOSC's that have undergone avalanche electron injection, indicating that the keV electron irradiation gives rise to stronger hydrogen-acceptor bond

  15. Theoretical examination of the trapping of ion-implanted hydrogen in metals

    International Nuclear Information System (INIS)

    Myers, S.M.; Nordlander, P.; Besenbacher, F.; Norskov, J.K.

    1986-01-01

    Theoretical analysis of the defect trapping of ion-implanted hydrogen in metals has been extended in two respects. A new transport formalism has been developed which takes account not only of the diffusion, trapping, and surface release of the hydrogen, which were included in earlier treatments, but also the diffusion, recombination, agglomeration, and surface annihilation of the vacancy and interstitial traps. In addition, effective-medium theory has been used to examine multiple hydrogen occupancy of the vacancy, and, for the fcc structure, appreciable binding enthalpies relative to the solution site have been found for occupancies of up to six. These extensions have been employed to model the depth distribution of ion-implanted hydrogen in Ni and Al during linear ramping of temperature, and the results have been used to interpret previously published data from these metals. The agreement between theory and experiment is good for both systems. In the case of Ni, the two experimentally observed hydrogen-release stages are both accounted for in terms of trapping at vacancies with a binding enthalpy that depends upon occupancy in accord with effective-medium theory

  16. Interaction of hydrogen with metallic nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Halbritter, Andras; Csonka, Szabolcs; Makk, Peter; Mihaly, Gyoergy [Electron Transport Research Group of the Hungarian Academy of Sciences and Department of Physics, Budapest University of Technology and Economics, 1111 Budapest (Hungary)

    2007-03-15

    We study the behavior of hydrogen molecules between atomic-sized metallic electrodes using the mechanically controllable break junction technique. We focus on the interaction H{sub 2} with monoatomic gold chains demonstrating the possibility of a hydrogen molecule being incorporated in the chain. We also show that niobium is strongly reactive with hydrogen, which enables molecular transport studies between superconducting electrodes. This opens the possibility for a full characterization of the transmission properties of molecular junctions with superconducting subgap structure measurements.

  17. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 11. Distributed transportation of hydrogen/hydrogen absorbing alloy for hydrogen storage; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studies were conducted to find out hydrogen absorbing alloys with an effective hydrogen absorption rate of 3 mass % or more, hydrogen discharge temperature of 100 degrees C or lower, hydrogen absorbing capacity after 5,000 cycles not less than 90% of the initial capacity, applicable to stationary and mobile systems. The V-based alloy that achieved an effective hydrogen absorption rate of 2.6 mass % in the preceding fiscal year was subjected to studies relating to safety and durability. Since V is costly, efforts were exerted to develop TiCrMo alloys to replace the V-based alloy. In the search for novel high-performance alloys, endeavors centered on novel ternary alloys, novel alloys based on Mg and Ti, and novel intermetallic compounds of the Mg-4 family. In the study of guidelines for developing next-generation high-performance alloys, methods for creating hydrides with an H/M (hydrogen/metal) ratio far higher than 2 were discussed. Mentioned as techniques to produce such hydrides were the utilization of the hole regulated lattice, novel alloys based on the ultrahigh pressure hydride phase, new substances making use of the cooperative phenomenon in the coexistent multiple-phase structure, and the like. (NEDO)

  18. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1998-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  19. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1999-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  20. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianqiu, E-mail: jianqiu@vt.edu [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Tea, Eric; Li, Guanchen [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Hin, Celine [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Department of Material Science and Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road-MC 0238, Blacksburg, VA 24061 (United States)

    2017-06-01

    Highlights: • Hydrogen release process at the Al/SiO{sub 2} metal-oxide interface has been investigated. • A mathematical model that estimates the hydrogen release potential has been proposed. • Al atoms, Al−O bonds, and Si−Al bonds are the major hydrogen traps at the Al/SiO{sub 2} interface. • Hydrogen atoms are primarily release from Al−H and O−H bonds at the Al/SiO{sub 2} metal-oxide interface. - Abstract: The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO{sub 2} interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO{sub 2} metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Al−Si bonds, passivating a Si sp{sup 3} orbital. Interstitial hydrogen atoms can also break interfacial Al−O bonds, or be adsorbed at the interface on aluminum, forming stable Al−H−Al bridges. We showed that hydrogenated O−H, Si−H and Al−H bonds at the Al/SiO{sub 2} interfaces are polarized. The resulting bond dipole weakens the O−H and Si−H bonds, but strengthens the Al−H bond under the application of a positive bias at the metal gate. Our calculations indicate that Al−H bonds and O−H bonds are more important than Si−H bonds for the hydrogen release process.

  1. Electronic-structure studies of metal-hydrogen systems using photoelectron spectroscopy (PES) radiation. Final report, 1 March 1980-31 August 1982

    International Nuclear Information System (INIS)

    Weaver, J.H.

    1982-09-01

    Photoelectron spectroscopy studies of hydrogen-bearing metals and alloys have provided fundamental information concerning the electronic interactions of hydrides. Studies of surface oxidation of several hydrogen storage materials (the LaNi 5 -family) evaluated the role of surface oxidation on hydrogen uptake. Collaborative band theory studies were undertaken to support experimental studies of the metal-semiconductor transition in LaH 2 -LaH 3 and of the refractory metal mono- and submonohydrides

  2. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  3. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  4. Theory of hydrogen chemisorption on metals

    International Nuclear Information System (INIS)

    Brenig, W.

    1975-01-01

    A theory of hydrogen chemisorption on metals is presented. Green's function is derived taking into account the coupling strength between metal and chemisorbed atom and the strength of the interatomic Coulomb repulsion, allowing the calculation of the local density of states at the adatom, especially for the limiting cases of strong and weak coupling

  5. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  6. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  7. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  8. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    KAUST Repository

    Cabán-Acevedo, Miguel

    2015-09-14

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS 2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm at overpotentials as low as 48mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n -p-p silicon micropyramids achieved photocurrents up to 35 mA cm at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  9. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  10. On the solubility of hydrogen in the systems titanium-aluminium-hydrogen, titanium-vanadium-hydrogen and titanium-aluminium-vanadium-hydrogen in the temperature region of 800 to 1,0000C at hydrogen pressures of 0.1 to 400 mm.Hg

    International Nuclear Information System (INIS)

    Kauder, G.W.

    1973-01-01

    The hydrogen concentrations on Ti-Al, Ti-V and Ti-Al-V alloys were determined in the temperature region from 800 to 1,000 0 C and at hydrogen pressures of 0.1 to 400 mm.Hg using a gravimetric measuring process. The thus obtained results allowed the drawing of hydrogen activity slopes in the titanium rich corner of the systems titanium-hydrogen, titanium-aluminium-hydrogen, titanium-vanadium-hydrogen and such for the technical titanium alloys Ti-6Al-4V and Ti-6Al-6V. In spite of the antagonistic effects of the elements aluminium and vanadium on the stabilization of the α and β phase regions of titanium, a hydrogen-activity-increasing effect was always found in which the aluminium influence was greater than that of vanadium. Breaks occured in the hydrogen activity curves and phase boundaries, and phase regions were determined over their positions. Isothermal phase diagrams for the titanium-rich corner of the system titanium-aluminium-hydrogen at 800, 850 and 900 0 C and for the titanium-rich corner of the titanium-vanadium-hydrogen system at 900, 950 and 1,000 0 C were drawn up from the hydrogen activity curves. (orig./LH) [de

  11. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.

    Science.gov (United States)

    Zee, David Z; Chantarojsiri, Teera; Long, Jeffrey R; Chang, Christopher J

    2015-07-21

    overpotential of 1.0 V, without apparent loss in activity. Replacing the oxo moiety with a disulfide affords [(PY5Me2)MoS2](2+), which bears a molecular MoS2 triangle that structurally and functionally mimics bulk molybdenum disulfide, improving the catalytic activity for water reduction. In water buffered to pH 3, catalysis by [(PY5Me2)MoS2](2+) onsets at 400 mV of overpotential, whereas [(PY5Me2)MoO](2+) requires an additional 300 mV of driving force to operate at the same current density. Metalation of the PY5Me2 ligand with an appropriate Co(ii) source also furnishes electrocatalysts that are active in water. Importantly, the onset of catalysis by the [(PY5Me2)Co(H2O)](2+) series is anodically shifted by introducing electron-withdrawing functional groups on the ligand. With the [(bpy2PYMe)Co(CF3SO3)](1+) system, we showed that introducing a redox-active moiety can facilitate the electro- and photochemical reduction of protons from weak acids such as acetic acid or water. Using a high-throughput photochemical reactor, we examined the structure-reactivity relationship of a series of cobalt(ii) complexes. Taken together, these findings set the stage for the broader application of polypyridyl systems to catalysis under environmentally benign aqueous conditions.

  12. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  13. Ab initio study of hydrogen adsorption on benzenoid linkers in metal-organic framework materials

    International Nuclear Information System (INIS)

    Gao Yi; Zeng, X C

    2007-01-01

    We have computed the energies of adsorption of molecular hydrogen on a number of molecular linkers in metal-organic framework solid materials using density functional theory (DFT) and ab initio molecular orbital methods. We find that the hybrid B3LYP (Becke three-parameter Lee-Yang-Parr) DFT method gives a qualitatively incorrect prediction of the hydrogen binding with benzenoid molecular linkers. Both local-density approximation (LDA) and generalized gradient approximation (GGA) DFT methods are inaccurate in predicting the values of hydrogen binding energies, but can give a qualitatively correct prediction of the hydrogen binding. When compared to the more accurate binding-energy results based on the ab initio Moeller-Plesset second-order perturbation (MP2) method, the LDA results may be viewed as an upper limit while the GGA results may be viewed as a lower limit. Since the MP2 calculation is impractical for realistic metal-organic framework systems, the combined LDA and GGA calculations provide a cost-effective way to assess the hydrogen binding capability of these systems

  14. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  15. Hydrogen diffusion in a one domain. beta. -V sub 2 H single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Richter, D.; Mahling-Ennaoui, S. (Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)); Hempelmann, R. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Festkoerperforschung)

    1989-01-01

    The authors present first quasielastic neutron scattering experiments on hydrogen diffusion in a one-domain crystal of the ordered metal hydride {beta}-V{sub 2}H. The experiments led to a detailed evaluation of the microscopic jump geometries. At temperatures at which the structure is still intact the main diffusion channel leads across antistructural sites situated in empty layers in between occupied H-sheets. (orig.).

  16. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  17. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  18. A portable system powered with hydrogen and one single air-breathing PEM fuel cell

    International Nuclear Information System (INIS)

    Fernández-Moreno, J.; Guelbenzu, G.; Martín, A.J.; Folgado, M.A.; Ferreira-Aparicio, P.; Chaparro, A.M.

    2013-01-01

    Highlights: • A portable system based on hydrogen and single air breathing PEM fuel cell. • Control electronics designed for low single cell voltage (0.5–0.8 V). • Forced air convection and anode purging required to help water management. • Application consisting of a propeller able to display a luminous message. • Up to 20 h autonomy with continuous 1.1 W consumption, using 1 g H 2 . - Abstract: A portable system for power generation based on hydrogen and a single proton exchange membrane fuel cell (PEMFC) has been built and operated. The fuel cell is fed in the anode with hydrogen stored in a metal hydrides cartridge, and in the cathode with oxygen from quiescent ambient air (‘air breathing’). The control electronics of the system performs DC–DC conversion from the low voltage (0.5–0.8 V) and high current output (200–300 mA cm −2 ) of the single fuel cell, up to 3.3 V to power an electronic application. System components assist fuel cell operation, including an electronic valve for anode purging, a fan in front of the open cathode, two supercapacitors for auxiliary power requirements, four LED lights, and a display screen. The influence of the system components on fuel cell behaviour is analyzed. The cathode fan and anodic purging help excess water removal from the electrodes leading to steadier cell response at the expense of extra power consumption. The power system is able to provide above 1 W DC electricity to an external application during 20 h using 1 g of H 2 . An application consisting of a propeller able to display a luminous message is chosen to test system. It is shown that one single air breathing PEM fuel cell powered with hydrogen may provide high energy density and autonomy for portable applications

  19. First-row transition metal hydrogenation and hydrosilylation catalysts

    Science.gov (United States)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja; Levin, Hagit Ben-Daat; Porter, Tyler M.; Ghosh, Chandrani

    2017-07-18

    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  20. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  1. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  2. Hydrogen storage in metal-organic frameworks: A review

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2014-05-01

    Full Text Available Metal-organic frameworks (MOFs) for hydrogen storage have continued to receive intense interest over the past decade. MOFs are a class of organic-inorganic hybrid crystalline materials consisting of metallic moieties that are linked by strong...

  3. Hydrogen storage materials with focus on main group I-II elements

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-07-01

    A future hydrogen based society, viz. a society in which hydrogen is the primary energy carrier, is viewed by many as a solution to many of the energy related problems of the world {integral} the ultimate problem being the eventual depletion of fossil fuels. Although, for the hydrogen based society to become realizable, several technical difficulties must be dealt with. Especially, the transport sector relies on a cheap, safe and reliable way of storing hydrogen with high storage capacity, fast kinetics and favourable thermodynamics. No potential hydrogen storage candidate has been found yet, which meets all the criteria just summarized. The hydrogen storage solution showing the greatest potential in fulfilling the hydrogen storage criteria with respect to storage capacity, is solid state storage in light metal hydrides e.g. alkali metals and alkali earth metals. The remaining issues to be dealt with mainly concerns the kinetics of hydrogen uptake/release and the thermal stability of the formed hydride. In this thesis the hydrogen storage properties of some magnesium based hydrides and alkali metal tetrahydridoaluminates, a subclass of the so called complex hydrides, are explored in relation to hydrogen storage. After briefly reviewing the major energy related problems of the world, including some basic concepts of solid state hydrogen storage the dehydrogenation kinetics of various magnesium based hydrides are investigated. By means of time resolved in situ X-ray powder diffraction, quantitative phase analysis is performed for air exposed samples of magnesium, magnesium-copper, and magnesium-aluminum based hydrides. From kinetic analysis of the different samples it is generally found that the dehydrogenation kinetics of magnesium hydride is severely hampered by the presence of oxide impurities whereas alloying with both Cu and Al creates compounds significantly less sensitive towards contamination. This leads to a phenomenological explanation of the large

  4. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  5. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  6. Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems

    International Nuclear Information System (INIS)

    Langmi, Henrietta W.; McGrady, G. Sean

    2008-01-01

    This paper reports an investigation of hydrogen storage performance of ternary nitrides based on lithium and the Group 13 elements boron, aluminum and gallium. These were prepared by ball milling Li 3 N together with the appropriate Group 13 nitride-BN, AlN or GaN. Powder X-ray diffraction of the products revealed that the ternary nitrides obtained are not the known Li 3 BN 2 , Li 3 AlN 2 and Li 3 GaN 2 phases. At 260 deg. C and 30 bar hydrogen pressure, the Li-Al-N ternary system initially absorbed 3.7 wt.% hydrogen, although this is not fully reversible. We observed, for the first time, hydrogen uptake by a pristine ternary nitride of Li and Al synthesized from the binary nitrides of the metals. While the Li-Ga-N ternary system also stored a significant amount of hydrogen, the storage capacity for the Li-B-N system was near zero. The hydrogenation reaction is believed to be similar to that of Li 3 N, and the enthalpies of hydrogen absorption for Li-Al-N and Li-Ga-N provide evidence that AlN and GaN, as well as the ball milling process, play a significant role in altering the thermodynamics of Li 3 N

  7. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  8. Metal and hydrogen catalysis in isotopic hydrogen exchange in some biologically important heterocyclic compounds

    International Nuclear Information System (INIS)

    Buncel, E.; Joly, H.A.; Jones, J.R.; Onyido, I.

    1989-01-01

    This study reports on the catalytic roles of metal and hydrogen ions in tritium exchange in some heterocyclic substrates which occur as residues in many biologically important molecules. We have found that detritiation of 1-methyl[2- 3 H]imidazole is inhibited by a number of metal ions. As well, inhibition of exchange rates was noted with Ag(I) and Cu(II) for [2- 3 H]thiazole and 1-methyl[8- 3 H]inosine, with Ag(I) for [2- 3 H]benzothiazole, and with Cu(II) for 1-methyl[8- 3 H]guanosine. A complete mechanistic description, which includes the various metal ion-coordinated species generated under the experimental conditions, is presented. The results demonstrate the reactivity order: protonated >> metal-coordinated >> neutral substrates. The differential catalytic effects of metal and hydrogen ions in these processes are discussed in terms of the extent of charge developed on the ligating heteroatom in the reaction intermediate. (author). 13 refs.; 1 fig

  9. On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide

    Science.gov (United States)

    Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.

    2013-01-01

    Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.

  10. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  11. Experimental studies on cold fusion and hydrogen-metal

    International Nuclear Information System (INIS)

    Locou, P.

    2007-01-01

    The cold fusion is a nuclear fusion realized in pervading conditions of temperature and pressure. My own process is parallel to that of the team of the University of Los Angeles, but shaped in 1996 within my personal and private Laboratory: A small cylinder in which we replace the air by some deuterium to the gas state in - 33 d egree (the deuterium is some hydrogen with a neutron, which we find in quantity in the sea water). We introduce a crystal there, extremely rare - the property of which is to emit continuously one thousand times dose of successful energy and it during several years without outside pyro, natural excitement - electric - that is it creates an electric field in the slightest change in temperature. We carry then the whole in + 7 d egree, what generates in some seconds a 200 000 volt electric field, an intense enough field to separate the pits of the deuterium of their electrons and to admit them to collide with those of the crystal. There is a fusion of protons between them (positive particles of the pit (core)) and a emission of neutrons, which do not merge. It is this emission which serves for measuring the quantity of energy produced by the fusion (merger). We so managed to produce some energy in unlimited quantity, allowing us to feed our installation with electric current in total autarky, and to reduce so our costs of functioning to divers domains. This crystal is exceptional in its applications and to give it the name would return has to break our current headway: the thorough problem, in this current period of takeover by the financial bodies of the possible patents, brought to us to the biggest caution as regards our results. And, as we look for no outside financing, we do not need to submit ourselves to the requirements lauded by the scientific Community, only our results are strictly estimated. For example we can make estimate our bars or patches of Hydrogen - Metal: a simple spectroscopy in YEW will give as result, only, the element H

  12. Determination of hydrogen in metals and alloys

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Ramakumar, K.L.

    2008-01-01

    Hydrogen will be invariably present in all materials. Its presence in excess is harmful and sometimes calamitous. Hydrogen embrittlement can occur quite readily in most high strength materials, irrespective of their composition or structure. It is therefore essential to maintain low levels of hydrogen. To know the amount of hydrogen present in the materials, it is essential to determine it with high degree of precision and accuracy. It is required to give the uncertainty associated with the measurement to increase the confidence on measurements. Several methodologies are available for the determination of hydrogen. It its isotope, deuterium, also co-exists it becomes all the more difficult to determine these individually. Hot vacuum extraction cum quadrupole mass spectrometry (HVE-QMS) developed in our laboratory to determine hydrogen and deuterium is routinely employed for the determination of hydrogen and deuterium in metals and alloys. The present paper deals in detail about our experiences with HVE-QMS and estimation of uncertainty associated in this methodology. (author)

  13. Proposed configuration for ITER hydrogen isotope separation system (ISS)

    International Nuclear Information System (INIS)

    Lazar, A.; Brad, S.; Sofalca, N.; Vijulie, M.; Cristescu, I.; Doer, L; Wurster, W.

    2008-01-01

    Full text: The isotope separation system utilizes cryogenic distillation and catalytic reaction for isotope exchange to separate elemental hydrogen isotope gas mixtures. The ISS shall separate hydrogen isotope mixtures from two sources to produce up to five different products. These are: protium, effluent for discharge to the atmosphere, deuterium for fuelling, deuterium for NB injector (NBI) source gas, 50 % and 90% T fuelling streams. The concept of equipment 3D layout for the ISS main components were developed using the Part Design, Assembly Design, Piping Design, Equipment Arrangement and Plant Layout application from CATIA V5. The 3D conceptual layouts for ISS system were created having as reference the DDD -32-B report, the drawings 0028.0001.2D. 0100. R 'Process Flow Diagram'; 0029.0001.2D. 0200.R 'Process Instrumentation Diagram -1' (in the cold box); 0030.0001.2D. 0100. R 'Process Instrumentation Diagram -2' (in the hard shell confinement) and imputes from TLK team. The main components designed for ISS are: ISS cold box system (CB) with cryogenic distillation columns (CD) and recovery heat exchangers (HX), ISS hard shell containment (HSC) system with metals bellow pumps (MB) and chemical equilibrators (RC), valve box system, instrumentation box system, vacuum system and hydrogen expansion vessels. Work related to these topics belongs to the contract FU06-CT-2006-00508 (EFDA 06-1511) from the EFDA Technology Workprogramm 2006 and was done in collaboration with FZK Association team during the period January 2007 - September 2008. (authors)

  14. Photoionization microscopy of hydrogen atom near a metal surface

    International Nuclear Information System (INIS)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom—surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields. (atomic and molecular physics)

  15. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  16. On physics of the hydrogen plasticization and embrittlement of metallic materials, relevance to the safety and standards' problems

    International Nuclear Information System (INIS)

    Yury S Nechaev; Georgy A Filippov; T Nejat Veziroglu

    2006-01-01

    In the present contribution, some related fundamental problems of revealing micro mechanisms of hydrogen plasticization, superplasticity, embrittlement, cracking, blistering and delayed fracture of some technologically important industrial metallic materials are formulated. The ways are considered of these problems' solution and optimizing the technological processes and materials, particularly in the hydrogen and gas-petroleum industries, some aircraft, aerospace and automobile systems. The results are related to the safety and standardization problems of metallic materials, and to the problem of their compatibility with hydrogen. (authors)

  17. Hydrogenation upgrading of heavy oil residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S.; Mazneva, O.A.; Galkina, N.I. [Fossil Fuel Inst., Moscow (Russian Federation). Hydrogenation and Gasification Dept.; Suvorov, U.P.; Khadjiev, S.N. [Inst. Oil and Chemical Synthesis, Moscow (Russian Federation). Hydrogenation of Heavy Residues Dept.

    1997-12-31

    At present time in the world there is no simple and effective technology at low pressure (<15-20 MPa) which could give the opportunity to use oil residues for distillate fractions production. In Russia a process for hydrogenation (up 6 MPa hydrogen pressure) of high boiling point (b.p. >520 C) oil products, including high S, V and Ni contents ones, into distillates, feedstock for catalytic cracking (b.p. 360-520 C) and metal concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with heavy oil residues, dispersed and then subjected to additional supercavitation in a special apparatus. (orig.)

  18. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  19. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  20. Synthesis and characterization of group V metal carbide and nitride catalysts

    Science.gov (United States)

    Kwon, Heock-Hoi

    1998-11-01

    Group V transition metal carbides and nitrides were prepared via the temperature programmed reaction (TPR) of corresponding oxides with NHsb3 or a CHsb4/Hsb2 mixture. Except for the tantalum compounds, phase-pure carbides and nitrides were prepared. The vanadium carbides and nitrides were the most active and selective catalysts. Therefore the principal focus of the research was the preparation, characterization, and evaluation of high surface area vanadium nitride catalysts. A series of vanadium nitrides with surface areas up to 60 msp2/g was prepared. Thermal gravimetric analysis coupled with x-ray diffraction and scanning electron microscopy indicated that the solid-state reaction proceeded by the sequential reduction of Vsb2Osb5 to VOsb{0.9} and concluded with the topotactic substitution of nitrogen for oxygen in VOsb{0.9}. The transformation of Vsb2Osb5 to VN was pseudomorphic. An experimental design was executed to determine effects of the heating rates and space velocities on the VN microstructures. The heating rates had minor effects on the surface areas and pore size distributions; however, increasing the space velocity significantly increased the surface area. The materials were mostly mesoporous. Oxygen chemisorption on the vanadium nitrides scaled linearly with the surface area. The corresponding O/Vsbsurface ratio was ≈0.6. The vanadium nitrides were active for butane activation and pyridine hydrodenitrogenation. During butane activation, their selectivities towards dehydrogenation products were as high as 98%. The major product in pyridine hydrodenitrogenation was pentane. The reaction rates increased almost linearly with the surface area suggesting that these reactions were structure insensitive. The vanadium nitrides were not active for crotonaldehyde hydrogenation; however, they catalyzed an interesting ring formation reaction that produced methylbenzaldehyde and xylene from crotonaldehyde. A new method was demonstrated for the production of very

  1. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  2. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solubility of hydrogen in transition metals

    International Nuclear Information System (INIS)

    Lee, H.M.

    1976-01-01

    Correlations exist between the heat of solution of hydrogen and the difference in energy between the lowest lying energy levels of the trivalent d/sup n-1/s electronic configuration and the divalent d/sup n-2/s 2 (or the tetravalent d/sup n/) configuration of the neutral gaseous atoms. The trends observed in the transition metal series are discussed in relation to the number of valence electrons per atom in the transition elements in their metallic and neutral states

  4. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    International Nuclear Information System (INIS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-01-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm–1 μm) with metal-oxide core–shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg–Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  5. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    Science.gov (United States)

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  6. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  7. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  8. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and carbon containing alloys

  9. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  10. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  11. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  12. Management of Leaks in Hydrogen Production, Delivery, and Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G

    2006-04-27

    A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

  13. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  14. Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Zhang, Jian-Han; Mao, Jiang-Gao

    2016-01-01

    We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV 2 (H 3 O)(HPO 3 ) 4 (1), and Ba 3 V 2 (HPO 3 ) 6 (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO 6 octahedra which are connected by HPO 3 tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV 2 (H 3 O) (HPO 3 ) 4 (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.6 2 } 2 {4 2 .6 6 .8 2 }{6 3 }{6 5 .8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV 2 (H 3 O)(HPO 3 ) 4 suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H 2 evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV–vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated. - Graphical abstract: Metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution and the degradation of methylene blue aqueous solution. - Highlights: • Two new vanadium phosphites, CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 , are reported. • CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 feature complicated 3D framework structures with different channels. • CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 exhibit strong and broad absorptions in the visible and Near IR region. • Photocatalytic properties of CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 are investigated. • The magnetic measurement of CsV 2 (H 3 O)(HPO 3 ) 4 was performed in the temperature range of 2–300 K.

  15. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  16. Hydrogen ratios and profiles in deposited amorphous and polycrystalline films and in metals using nuclear techniques

    International Nuclear Information System (INIS)

    Benenson, R.E.; Feldman, L.C.; Bagley, B.G.

    1980-01-01

    Plasma- and chemical vapor deposited films containing hydrogen, Si, B and O, but of unknown thickness and stoichiometry have been assigned concentration ratios through a combination of H-profiling using the 1 H( 15 N,αγ) 12 C(4.43 MeV) reaction and RBS analysis. Relatively intense 15 N ++ beams exceeding the 6.38 MeV resonance energy have been obtained from a 3.75 MeV accelerator with a commercial ion source and terminal analysis. A discussion is given of the method of obtaining film concentration ratios in some representative cases. A search was made for H at the SiO 2 -Si interface. Some preliminary investigations have been made on the H concentration in several metals as supplied: Nb, V, Ta, Al, Ni, OFHC Cu, Ti, Mo and steel and on the effect of acid dips in loading H. Hydrogen in acid-loaded steel migrated under the influence of the probing 15 N beam, but relaxed back when the beam was removed. (orig.)

  17. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  18. Controlled delamination of metal films by hydrogen loading

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Eugen

    2008-11-18

    n this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated. (orig.)

  19. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Sanyal, Udishnu; Pangotra, Dhananjai; Holladay, Jamelyn D.; Camaioni, Donald M.; Gutierrez-Tinoco, Oliver Y.; Lercher, Johannes A.

    2018-03-01

    Abstract Selective reduction of benzaldehyde to benzyl alcohol on C-supported Pt, Rh, Pd, and Ni in aqueous phase was conducted using either directly H2 (thermal catalytic hydrogenation, TCH) or in situ electrocatalytically generated hydrogen (electrocatalytic hydrogenation, ECH). In TCH, the intrinsic activity of the metals at room temperature and 1 bar H2 increased in the sequence Rh/C < Pt/C < Pd/C, while Ni/C is inactive at these conditions due to surface oxidation in the absence of cathodic potential. The reaction follows a Langmuir-Hinshelwood mechanism with the second hydrogen addition to the adsorbed hydrocarbon being the rate-determining step. All tested metals were active in ECH of benzaldehyde, although hydrogenation competes with the hydrogen evolution reaction (HER). The minimum cathodic potentials to obtain appreciable ECH rates were identical to the onset potentials of HER. Above this onset, the relative rates of H reacting to H2 and H addition to the hydrocarbon determines the selectivity to ECH and TCH. Accordingly, the selectivity of the metals towards ECH increases in the order Ni/C < Pt/C < Rh/C < Pd/C. Pd/C shows exceptionally high ECH selectivity due to its surprisingly low HER reactivity under the reaction conditions. Acknowledgements The authors would like to thank the groups of Hubert A. Gasteiger at the Technische Universität München of Jorge Gascon at the Delft University of Technology for advice and valuable discussions. The authors are grateful to Nirala Singh, Erika Ember, Gary Haller, and Philipp Rheinländer for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory Directed Research and

  20. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  1. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47. Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355. The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in

  2. Assessment for ion beam analysis methods about hydrogen isotope in hydrogen storaged metal

    International Nuclear Information System (INIS)

    Ding Wei; Long Xinggui; Shi Liqun

    2006-01-01

    In this paper, experimental arrangements of measuring hydrogen isotope concentration and distribution in metal hydride with ion beam analysis methods were reported, and the advantage and disadvantage of different methods were analyzed too. Experiment results show that it can get abundant information and accurate value by these ways. It can get an accurate value since it's the Rutherford cross-section, and the Mylar film used in the experiment is thin enough for H, D and T distinguishing each other while using ERD analysis method with 6.0 MeV O ion beam to proceed this work, but the disadvantage of this method is that the sample preparing is more difficult, and the analysis depth is lower. It could get the distribution information of H, D and T and the analysis depth is about 3.0 μm while using ERD analysis method with 7.4 MeV 4 He ion beam, but the disadvantage is that the spectra of H, D and T overlap each other, which makes a big error in simulated calculation. If using PBS method with 3.0 MeV proton, the analysis depth is deeper, but it couldn't get the H distribution information. (authors)

  3. Heat of solution and site energies of hydrogen in disordered transition-metal alloys

    International Nuclear Information System (INIS)

    Brouwer, R.C.; Griessen, R.

    1989-01-01

    Site energies, long-range effective hydrogen-hydrogen interactions, and the enthalpy of solution in transition-metal alloys are calculated by means of an embedded-cluster model. The energy of a hydrogen atom is assumed to be predominantly determined by the first shell of neighboring metal atoms. The semiempirical local band-structure model is used to calculate the energy of the hydrogen atoms in the cluster, taking into account local deviations from the average lattice constant. The increase in the solubility limit and the weak dependence of the enthalpy of solution on hydrogen concentration in disordered alloys are discussed. Calculated site energies and enthalpies of solution in the alloys are compared with experimental data, and good agreement is found. Due to the strong interactions with the nearest-neighbor metal atoms, hydrogen atoms can be used to determine local lattice separations and the extent of short-range order in ''disordered'' alloys

  4. Computational investigation of hydrogen storage on B5V3

    Science.gov (United States)

    Guo, Chen; Wang, Chong

    2018-05-01

    Based on density functional theory method with 6-311+G(d,p) basis set, the structures, stability and hydrogen storage capacity of B5V3 have been theoretically investigated. It is found that a maximum of seven hydrogen molecules can be adsorbed on B5V3 with gravimetric uptake capacity of 6.39 wt%. The uptake capacity exceeds the target set by the US Department of Energy for vehicular application. Moreover, the average adsorption energy of B5V3 01 (7H2) is 0.60 eV/H2 in the desirable range of reversible hydrogen storage. The kinetic stability of H2 adsorbed on B5V3 01 is confirmed by using gap between highest occupied molecular orbital (HOMO)and the lowest unoccupied molecular orbital (LUMO). The gap value of B5V3 01 (7H2) is 2.81 eV, which indicates the compound with high stability. In addition, the thermochemistry calculation (Gibbs free energy corrected adsorption energy) is used to analyse if the adsorption is favourable or not at different temperatures. It can be found that the Gibbs corrected adsorption energy of B5V3 01 (7H2) is still positive at 400 K at 1 atm. It means that the adsorption of seven hydrogen molecules on B5V3 01 is energetically favourable in a fairly wide temperature range. All the results show that B5V3 01 can be considered as a promising material for hydrogen storage.

  5. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models consider simultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  6. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  7. New vistas in the determination of hydrogen in aerospace engine metal alloys

    Science.gov (United States)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  8. Advanced hydrogen technologies for FC applications and PGM beneficiation in SA: Presentation

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-03-01

    Full Text Available developing hydrogen storage systems for fuel cell applications, and developing applications and solutions for small- and medium-scale hydrogen production through innovative research and development to promote beneficiation of Platinum-Group Metals (PGMs)....

  9. Hydrogen and helium in metals: positron lifetime experiments. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Rajainmaeki, Hannu.

    1987-09-01

    This thesis reviews a new approach to studying the role of hydrogen and helium in defect recovery of metals by the positron lifetime technique. A cryostat has been built at the University of Jyvaeskylae for irradiating and/or implaning solids by high-energy proton or helium beams from the MC-20 cyclotron. The samples can be kept continuously below 20 K and the isochronal annealings and the subsequent positron lifetime measurements are carried ou in the same cryostat after the irradiations. During the implantations below 20 K both impuities (H or He) and Frenkel pairs are produced simultaneously. By measuring positron lifetimes during the annealing detailed information is obtained about radiation damage, impurity-defect interactions, lattice defect annealing, void nucleation and formation of helium bubbles. In this work positron lifetime spectroscopy has been utilized for the first time to study defect recovery below the liquid nitrogen temperature (77 K). The annealing stages are investigated in aluminium, nickel and molybdenum in the temperature range 20-700 K. Hydrogen is found to get trapped at vacancies in all the studied metals with binding energies 0.53+-0.04 and 1.6+-0.1 eV, respectively. Trapped hydrogen retards the vacancy migration in Al and Mo, while H-vancancy pairs dissociate in Ni below the free vacancy migration stage. helium gets deeply trapped at vacancies in Al and migrates substitutionally with the activation energy of 1.3+-0.1 eV. Helium-vacancy pairs are observed to nucleate into clusters and form helium bubbles which are stable up to the Al melting temperature. The growth mechanisms for the bubbles are established as thermal vacancy absorption and bubble migration/coalescence

  10. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Börries, S., E-mail: stefan.boerries@hzg.de [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Metz, O.; Pranzas, P.K. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Bücherl, T. [ZTWB Radiochemie München (RCM), Technische Universität München (TUM), Walther-Meissner-Str. 3, D-85748 Garching (Germany); Söllradl, S. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII), Technische Universität München (TUM), Lichtenbergstr. 1, D-85748 Garching (Germany); Dornheim, M.; Klassen, T.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

    2015-10-11

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  11. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  12. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  13. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  14. Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material.

    Science.gov (United States)

    Huang, Liping; Li, Ming; Pan, Yuzhen; Quan, Xie; Yang, Jinhui; Puma, Gianluca Li

    2018-04-16

    The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m 3 /m 3 /d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)). Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  16. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    Science.gov (United States)

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  17. Cellular automaton model for hydrogen transport dynamics through metallic surface

    International Nuclear Information System (INIS)

    Shimura, K.; Yamaguchi, K.; Terai, T.; Yamawaki, M.

    2002-01-01

    Hydrogen re-emission and re-combination at the surface of first wall materials are a crucial issue for the understanding of the fuel recycling and for the tritium inventory in plasma facing materials. It is know to be difficult to model the transient behaviour of those processes due to their complex time-transient nature. However, cellular automata (CA) are powerful tools to model such complex systems because of their nature of discreteness in both dependent and independent variables. Then the system can be represented by the fully local interactions between cells. For that reason, complex physical and chemical systems can be described by fairly simple manner. In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in CA. Thermal desorption is simulated with this model and the comparison with the theory of rate processes is performed to identify the validity of this model. The overall results show that this model is reasonable to express the desorption kinetics

  18. Hydrogen permeation resistant layers for liquid metal reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented

  19. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  20. Design of the electrolyzer for the solar hydrogen production system

    International Nuclear Information System (INIS)

    Ibrahim, M.; Kamaruzzaman Sopian; Wan Ramli Wan Daud

    2006-01-01

    This paper presents the theoretical design of hydrogen system. Also, it shown the details steps of theoretical calculation to produce the required amount of hydrogen. Hydrogen is considered the fuel of the future. It is promising alternative for fossil fuel. Since, it is non-pollutant and renewable. The system contains and required equipment are photovoltaic panel, energy storage battery, converter, electrolyzer and hydrogen storage. By using 1.7 V supplied by PV, the simulation results gives 89 1/day of hydrogen. Since, the electrolyzer efficiency assumed to be 50%

  1. Hydrogen transport behavior of metal coatings for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D{sub 3}{sup +} ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates of tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5x10{sup 19} D/m{sup 2} s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. (orig.).

  2. Hydrogen transport behavior of metal coatings for plasma-facing components

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  3. Hydrogen transport behavior of metal coatings for plasma facing components

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1990-01-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3-keV D 3 + ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 K to 825 K and implanting particle fluxes of approximately 5 x 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. 18 refs., 3 figs., 3 tabs

  4. Development and characterization of a solar-hydrogen energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Vejar, S.; Gonzalez, E.; Perez, M.; Gamboa, S.A.

    2009-01-01

    'Full text': The details of the development of a PV-hydrogen hybrid energy system are presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operates as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW of power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1 kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet, and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations have been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  5. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  6. Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plants

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Belapurkar, A.D.; Venkateswaran, G.; Kishore, K.

    2005-01-01

    Radiolytic hydrogen generation on γ irradiation of turbid solutions containing metal turbidities such as titanium, nickel, iron, chromium, copper, indium, and aluminium was studied. It is suggested that the chemical reactivity of the metal in the turbid solution with e aq -/H/OH produced by radiolysis of water interferes with the recombination reactions which destroy H 2 and H 2 O 2 , thus leading to higher yield of hydrogen. The rate of generation of hydrogen and the G(H 2 ) value is related to the reactivity of the metal ion/hydroxylated species with the free radicals. (orig.)

  7. Hydrogen Release From 800-MeV Proton-Irradiated Tungsten

    International Nuclear Information System (INIS)

    Oliver, Brian M.; Venhaus, Thomas J.; Causey, Rion A.; Garner, Francis A.; Maloy, Stuart A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources such as those proposed for the Accelerator Production of Tritium (APT) project, or in proposed fusion reactors, will contain large quantities of generated helium and hydrogen gas. In the APT, spallation neutrons would be generated by the interaction of high energy (∼1 GeV) protons with solid tungsten rods or cylinders. In fusion reactors, tungsten used in a tokamak diverter will contain hydrogen, as well as deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and afterheat-induced rises in temperature is of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten was measured using a dedicated mass spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼323 K to ∼1473 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). Input parameters for the modeling, consisting of diffusivity, recombination rate coefficient, and trapping, are discussed. The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show reasonable agreement at high proton dose using a trap value of 1.4 eV and a trap density of 3%. There is also a small release fraction occurring at ∼600 K which predominates at lower proton doses, and which is relatively independent of dose. This lower-temperature release is predicted by TMAP if no traps are assumed, suggesting that this release may represent an adsorbed surface component

  8. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  9. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  10. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  11. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  12. High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering

    International Nuclear Information System (INIS)

    Phillips, A B; Shivaram, B S

    2009-01-01

    We have recently shown that organo-metallic complexes formed by laser ablating transition metals in ethylene are high hydrogen absorbers at room temperature (Phillips and Shivaram 2008 Phys. Rev. Lett. 100 105505). Here we show that the absorption percentage depends strongly on the ethylene pressure. High ethylene pressures (>100 mTorr) result in a lowered hydrogen uptake. Transmission electron microscopy measurements reveal that while low pressure ablations result in metal atoms dispersed uniformly on a near atomic scale, high pressure ones yield distinct nanoparticles with electron energy-loss spectroscopy demonstrating that the metal atoms are confined solely to the nanoparticles.

  13. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  14. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  15. The Adsorption Langmuir Model of Transfer Metal Ti, V and Mn on System Water-Sediment in Along Side Code River, Yogyakarta

    International Nuclear Information System (INIS)

    Rini Jati Wardani; Muzakky; Agus Taftazani

    2007-01-01

    The adsorption langmuir model of transfer metal Ti, V and Mn on system water-sediment in along side Code river, Yogyakarta has been studied. For that purpose, the study is to make prediction about adsorption langmuir model of identified metal Ti, V and Mn from upstream until downstream samples water and sediment in along side Code river. The factor influenced of langmuir adsorption on transfer metal Ti, V and Mn in system water-sediment is Total Suspended Solid (TSS). The analysis showed that between TSS with metal concentration in sediment have linear correlation. The result of calculation from curve of langmuir isotherm, showed for Ti has R 2 = 0.8006 with capacities of adsorption = 0.5 mol/l and energy of adsorption = 13.286 J/mol, V has R 2 = 0.9883 with capacities of adsorption = 0.0137 mol/l and energy of adsorption = 16.64 J/mol, Mn has R 2 = 0.9624 with capacities of adsorption 0.152 mol/l and energy of adsorption = 10.51 J/mol. The conclusion from this topic about adsorption langmuir for metal Ti, V and Mn according to energy of langmuir adsorption by chemisorption process above 10 J/mo. (author)

  16. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  17. Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts.

    Science.gov (United States)

    Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng

    2018-03-16

    As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selective gettering of hydrogen in high pressure metal iodide lamps

    International Nuclear Information System (INIS)

    Kuus, G.

    1976-01-01

    One of the main problems in the manufacture of high pressure gas discharge lamps is the elimination of gaseous impurities from their arc tubes. Long degassing processes of all the lamp components are necessary in order to produce lamps with a low ignition voltage and good maintenance of the radiation properties. The investigation described deals with a selective getter place in the arc tube which can replace the long degassing process. The getter consists of a piece of yttrium encapsulated in thin tantalum foil. By this way it is possible to use the gettering action of tantalum and yttrium without having reaction between the metal iodide of the arc tube and yttrium. Yttrium is used because this metal can adsorb a large quantity of hydrogen even at a temperature of 1000 0 C. Hydrogen forms the main gaseous impurity in the high pressure metal iodide lamp. For this reason the adsorption properties like adsorption rate and capacity of the tantalum--yttrium getter for hydrogen are examined, and the results obtained from lamp experiments are given

  19. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  20. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  1. Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C24 fullerene: A DFT study

    Science.gov (United States)

    Zhang, Yafei; Cheng, Xinlu

    2018-04-01

    The hydrogen storage behavior of alkali and alkaline-earth metal (AM = Li, Na, K, Mg, Ca) atoms decorated C24 fullerene was investigated by using density functional theory (DFT) study. Our results indicate that the AM atoms prefer to adsorb atop the center of tetragon of C24 fullerene with the largest binding energy than other possible adsorption sites. Moreover, the hydrogen storage gravimetric density of 24H2/6Li/C24, 24H2/6Na/C24 and 36H2/6Ca/C24 configurations reaches up to 12.7 wt%, 10.1 wt% and 12 wt%, higher than the year 2020 target from the US department of energy (DOE). Also, the average adsorption energies of H2 molecules of the 24H2/6Li/C24, 24H2/6Na/C24 and 36H2/6Ca/C24 configurations are -0.198 eV/H2, -0.164 eV/H2 and -0.138 eV/H2, locate the desirable range under the physical adsorption at near ambient conditions. These findings will have important implications on designing new hydrogen storage materials in the future.

  2. Reactions of Hydrogen Chloride and Boron Trichloride with Trimethylsilylamino Groups

    Science.gov (United States)

    1989-04-04

    SUPPLEMENTARY NOTATION 17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and kientify by block number) FIELD ,,GROUP SU8 -GROUP...nitride preceramic polymers . Due to the low yield multistage synthesis, alternate routes to isomeric compositions and intermediates needed to be...Organo- metallic Polymers , Zeldin, M., Wynne, K. J., Allcock, H. R.; Ed, ACS Symposium Series 360. (4) Ebsworth, E.A.V. Volatile Silicon Compounds

  3. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide.

    Science.gov (United States)

    Reanpang, Preeyaporn; Themsirimongkon, Suwaphid; Saipanya, Surin; Chailapakul, Orawon; Jakmunee, Jaroon

    2015-11-01

    Various metal nanoparticles (NPs) decorated on carbon nanotube (CNT) was modified on the home-made screen printed carbon electrode (SPCE) in order to enhances sensitivity of hydrogen peroxide (H2O2) determination. The simple casting method was used for the electrode modification. The monometallic and bimetallic NPs modified electrodes were investigated for their electrochemical properties for H2O2 reduction. The Pd-CNT/SPCE is appropriated to measure the H2O2 reduction at a potential of -0.3 V, then this modified electrode was incorporated with a home-made flow through cell and applied in a simple flow injection amperometry (FI-Amp). Some parameters influencing the resulted modified electrode and the FI-Amp system were studied. The proposed detection system was able to detect H2O2 in the range of 0.1-1.0 mM, with detection limit of 20 µM. Relative standard deviation for 100 replicated injections of 0.6 mM H2O2 was 2.3%. The reproducibility of 6 electrodes preparing in 3 different lots was 8.2%. It was demonstrated for determination of H2O2 in disinfectant, hair colorant and milk samples. Recoveries in the range of 90-109% were observed. The developed system provided high stability, good repeatability, high sample throughput and low reagent consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  5. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  6. Feasibility analysis of a hydrogen backup power system for Russian telecom market

    Science.gov (United States)

    Borzenko, V. I.; Dunikov, D. O.

    2017-11-01

    We performed feasibility analysis of 10 kW hydrogen backup power system (H2BS) consisting of a water electrolyzer, a metal hydride hydrogen storage and a fuel cell. Capital investments in H2BS are mostly determined by the costs of the PEM electrolyzer, the fuel cell and solid state hydrogen storage materials, for single unit or small series manufacture the cost of AB5-type intermetallic compound can reach 50% of total system cost. Today the capital investments in H2BS are 3 times higher than in conventional lead-acid system of the same capacity. Wide distribution of fuel cell hydrogen vehicles, development of hydrogen infrastructure, and mass production of hydrogen power systems will for sure lower capital investments in fuel cell backup power. Operational expenditures for H2BS is only 15% from the expenditures for lead acid systems, and after 4-5 years of exploitation the total cost of ownership will become lower than for batteries.

  7. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  8. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  9. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  10. Metal oxide-hydrogen secondary battery; Kinzoku sankabutsu-suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Hosobuchi, H.; Edoi, M.; Katsumata, T.

    1995-06-06

    Recently, the metal oxide - hydrogen secondary battery characterized by employing the hydrogen storage alloy as the hydrogen negative electrode draws attention. However, the secondary batteries equipped with the negative electrode composed of hydrogen storage alloy powder have such shortcoming that the charge-discharge cycle life is rather short and it changes widely from battery to battery, as the hydrogen storage alloy is disintegrated. This invention solves the problem. Employing the alloy having a composition expressed as LmNi(w)Co(X)Mn(y)Al(z) (Lm = rare earth elements including La) can suppress the disintegration of hydrogen storage alloy powder during the charge-discharge cycle. In addition, controlling the oxygen content in the hydrogen storage alloy powder to 500 - 1500ppm can reduce the oxidation corrosion of the hydrogen storage alloy, resulting in suppression of its deterioration. 1 fig., 2 tabs.

  11. Radiological analysis by the addition of hydrogen and noble metals in the reactors of the Laguna Verde central

    International Nuclear Information System (INIS)

    Padilla C, I.

    2006-01-01

    During the operation of the nuclear power stations there are metals that are subject to condition and agents that cause that these they present indications of intergranular corrosion and for their importance they are subject to a continuous surveillance to assure their integrity. During the time of operation, for the level of indications, it can be necessary the substitution of these. The internal components of the vessel and particularly those of the structure of the reactor core are exposed during the operation to a neutron flow that causes that these they are activated and, in consequence, before an eventual repair it will be necessary to face high radiation levels. At the moment a technique that controls exists and it reduces the growth rate of the indications in the metals and it increases its useful life: the addition of hydrogen. The addition of hydrogen it is an ALARA measure from long term when protecting the internals of the vessel that requires to establish radiological controls in the stage of their application to avoid unnecessary dose to the personnel. The addition of hydrogen to the primary system has as objective to reduce the growth of indications taken place by intergranular corrosion in metals of the reactor core and this is achieved when the electrochemical thresholds are reached. Hydrogen to interacting with the metal surfaces it generates reductive reactions causing in consequence an increment in the concentration of soluble cobalt in the coolant one and an increment in the nitrogen concentration. To reduce the magnitude of the radiological impact that in some NC reach up to factors 10, its are injected to the system noble metals as the rhodium and the platinum, to reduce the concentration of hydrogen to the system and to be below the threshold electrochemical potential necessary to protect the internals of the reactor vessel. The external and internal operational experience generated on this protection technique to the internals of the vessel

  12. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  13. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  14. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  15. Catalysed hydrogen isotope exchange

    International Nuclear Information System (INIS)

    1973-01-01

    A method is described for enhancing the rate of exchange of hydrogen atoms in organic compounds or moieties with deuterium or tritium atoms. It comprises reacting the organic compound or moiety and a compound which is the source of deuterium or tritium in the presence of a catalyst consisting of a non-metallic, metallic or organometallic halide of Lewis acid character and which is reactive towards water, hydrogen halides or similar protonic acids. The catalyst is a halide or organometallic halide of: (i) zinc or another element of Group IIb; (ii) boron, aluminium or another element of Group III; (iii) tin, lead, antimony or another element of Groups IV to VI; or (iv) a transition metal, lanthanide or stable actinide; or a halohalide. (author)

  16. Detail Design of the hydrogen system and the gas blanketing system for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Kim, Young Ki; Wu, Sang Ik; Kim, Bong Su; Lee, Yong Seop

    2007-04-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system (HRS). Because of its installed location, the hydrogen system is designed to be surrounded by the gas blanketing system to notify the leakage on the system and to prevent hydrogen leakage out of the CNS. The hydrogen system, consisted of hydrogen charging unit, hydrogen storage unit, hydrogen buffer tank, and hydrogen piping, is designed to smoothly and safely supply hydrogen to and to draw back hydrogen from the IPA of the CNS under the HRS operation mode. Described is that calculation for total required hydrogen amount in the CNS as well as operation schemes of the hydrogen system. The gas blanketing system (GBS) is designed for the supply of the compressed nitrogen gas into the air pressurized valves for the CNS, to isolate the hydrogen system from the air and the water, and to prevent air or water intrusion into the vacuum system as well as the hydrogen system. All detail descriptions are shown inhere as well as the operation scheme for the GBS

  17. Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulffides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  18. Precipitation of metal sulphides using gaseous hydrogen sulphide : mathematical modelling

    NARCIS (Netherlands)

    Tarazi, Mousa Al-; Heesink, A. Bert M.; Versteeg, Geert F.

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulphides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  19. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    Science.gov (United States)

    Chuang, Feng-Chuan; Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Su, Wan-Sheng; Guo, Guang-Yu

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV, depending on the parent and passivating elements as well as the applied strain, magnetic configuration and magnetization orientation. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as 9 meV/edge-site, being 2000 time greater than that of bulk Ni and Fe ( 5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5 % to 5 %. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  20. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This practice gives a procedure for the evaluation of hydrogen uptake, permeation, and transport in metals using an electrochemical technique which was developed by Devanathan and Stachurski. While this practice is primarily intended for laboratory use, such measurements have been conducted in field or plant applications. Therefore, with proper adaptations, this practice can also be applied to such situations. 1.2 This practice describes calculation of an effective diffusivity of hydrogen atoms in a metal and for distinguishing reversible and irreversible trapping. 1.3 This practice specifies the method for evaluating hydrogen uptake in metals based on the steady-state hydrogen flux. 1.4 This practice gives guidance on preparation of specimens, control and monitoring of the environmental variables, test procedures, and possible analyses of results. 1.5 This practice can be applied in principle to all metals and alloys which have a high solubility for hydrogen, and for which the hydrogen permeation is ...

  1. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  2. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  3. Investigation of the structural and hydrogenation properties of disordered Ti-V-Cr-Mo BCC solid solutions

    International Nuclear Information System (INIS)

    Raufast, C.; Planté, D.; Miraglia, S.

    2014-01-01

    Highlights: • Materials synthesis and structural analysis of selected compositions of TiVCr(Mo) bcc samples. • Extraction of the thermodynamics relevant parameters for hydride formation and dissociation state of Ti 0.3 V 1.7 Cr 0.7 Mo 0.3 sample. • Discussion of the hydrides practicability. - Abstract: Selected compositions in the Ti-Cr-V-Mo system (with the BCC structure-type) have been synthesized and characterized for structural (crystalline structure, solidification microstructure) and thermodynamic properties (equilibrium and reversible hydrogen storage capacity). We present as well the effect of co-melting with a so-called activating phase that results in a secondary phase development and a subsequent enhancement of the hydrogen sorption kinetics. Ageing properties and applicability of such materials for hybrid hydrogen storage systems are also discussed

  4. Superior performance of borocarbonitrides, BxCyNz , as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction

    Science.gov (United States)

    Chakraborty, Himanshu; Chhetri, Manjeet; Maitra, Somak; Waghmare, Umesh; Rao, C. N. R.

    We report superior hydrogen evolution activity of metal-free borocarbonitride (BCN) catalysts. The highly positive onset potential (-56 mV vs. RHE) and the current density of 10 mAcm2 at an overpotential of 70 mV exhibited by a carbon-rich BCN with the composition BC7N2 demonstrates the extraordinary electrocatalytic activity at par with Pt. Theoretical studies throw light on the cause of high activity of this composition. The high activity and good stability of BCN's surpass the characteristics of other metal-free catalysts reported in recent literature. an Energy Frontier Research Centre funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012575.

  5. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  6. Hydrogen release from 800 MeV proton-irradiated tungsten

    Science.gov (United States)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  7. Hydrogen release from 800 MeV proton-irradiated tungsten

    International Nuclear Information System (INIS)

    Oliver, B.M.; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼300 to ∼1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ∼7%. There is a small additional release fraction occurring at ∼550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model

  8. Hydrogen release from 800 MeV proton-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, B.M. E-mail: brian.oliver@pnl.gov; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from {approx}300 to {approx}1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of {approx}7%. There is a small additional release fraction occurring at {approx}550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  9. Intrinsic thermoelectric power of group VB metals

    Directory of Open Access Journals (Sweden)

    Gunadhor Singh Okram

    2012-03-01

    Full Text Available We have reinvestigated the thermopower of group VB metals in polycrystalline forms in the temperature range of 6-300K, taking into account the critical nature of the sample surface and heat treatment especially for niobium. Strikingly small magnitude, negative sign, phonon drag dip and superconductivity not reported previously were observed in surface-cleaned single crystalline Nb. However, while thermopower magnitudes are small, mixed signs were found in the polycrystalline V, Nb and Ta samples. These properties were therefore interpreted as their intrinsic properties and were briefly discussed taking into account of the existing theory by fitting also the data that give the Fermi energies of 10.94 eV, 5.08 eV and 1.86eV, respectively.

  10. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  11. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    International Nuclear Information System (INIS)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun; Tang, Yingru; Cao, Juexian

    2015-01-01

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%, 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.

  12. An electrochemical method for determining hydrogen concentrations in metals and some applications

    Science.gov (United States)

    Danford, M. D.

    1983-01-01

    An electrochemical method was developed for the determination of hydrogen in metals using the EG&G-PARC Model 350A Corrosion Measurement Console. The method was applied to hydrogen uptake, both during electrolysis and electroplating, and to studies of hydrogen elimination and the effect of heat treatment on elimination times. Results from these studies are presented.

  13. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  14. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A

    2015-03-01

    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  15. Liquid Metallic Hydrogen II. A Critical Assessment of Current and Primordial Helium Levels in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available Before a solar model becomes viable in astrophysics, one mus t consider how the ele- mental constitution of the Sun was ascertained, especially relative to its principle com- ponents: hydrogen and helium. Liquid metallic hydrogen has been proposed as a solar structural material for models based on condensed matter (e .g. Robitaille P.-M. Liq- uid Metallic Hydrogen: A Building Block for the Liquid Sun. Progr. Phys. , 2011, v. 3, 60–74. There can be little doubt that hydrogen plays a d ominant role in the uni- verse and in the stars; the massive abundance of hydrogen in t he Sun was established long ago. Today, it can be demonstrated that the near isointe nse nature of the Sun’s Balmer lines provides strong confirmatory evidence for a dis tinct solar surface. The situation relative to helium remains less conclusive. Stil l, helium occupies a prominent role in astronomy, both as an element associated with cosmol ogy and as a byproduct of nuclear energy generation, though its abundances within the Sun cannot be reliably estimated using theoretical approaches. With respect to th e determination of helium lev- els, the element remains spectroscopically silent at the le vel of the photosphere. While helium can be monitored with ease in the chromosphere and the prominences of the corona using spectroscopic methods, these measures are hig hly variable and responsive to elevated solar activity and nuclear fragmentation. Dire ct assays of the solar winds are currently viewed as incapable of providing definitive in formation regarding solar helium abundances. As a result, insight relative to helium r emains strictly based on the- oretical estimates which couple helioseismological appro aches to metrics derived from solar models. Despite their “state of the art” nature, heliu m estimates based on solar models and helioseismology are suspect on several fronts, i ncluding their reliance on solar opacities. The best knowledge can only come from the so

  16. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  17. Radiative proton-capture nuclear processes in metallic hydrogen

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo

    2001-01-01

    Protons being the lightest nuclei, metallic hydrogen may exhibit the features of quantum liquids most relevant to enormous enhancement of nuclear reactions; thermonuclear and pycnonuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycnonuclear p-d reactions are prodigiously high at densities ≥20 g/cm 3 , pressures ≥1 Gbar, and temperatures ≥950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates, owing to strong screening by K-shell electrons, if the densities ≥60-80 g/cm 3 , the pressures ≥7-12 Gbar, and the temperatures just above solidification. The possibilities and significance of pycnonuclear p-d fusion experiments are specifically remarked

  18. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  19. The motion of hydrogen isotopes in metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Drexel, W.; Murani, A.; Tocchetti, D.; Kley, W.

    1976-08-01

    The existence of local and band modes of hydrogen and deuterium impurities in α-palladium hydride was observed by inelastic scattering of thermal neutrons of 12.6 meV. The first and second harmonic of the hydrogen local mode could be observed at Esub(1)sup(H)=(66+-4)meV and Esub(2)sup(H)=(135+-15)meV. For deuterium the first harmonics appears at Esub(1)sup(D)=(48+-4)meV. The width of the hydrogen local mode Esub(1)sup(H) is changing from 30 to 20 meV and its position from 63 to 66meV if the hydrogen concentration is altered from 2.7 to 0.2 atom percent. The intensity of the Esub(1)sup(H) mode, integrated for scattering angles from 11 0 till 68 0 and a mean k-vector pointing in the [210]-direction, is decreasing by a factor of 5 with respect to harmonic oscillator while the intensity of the second harmonic Esub(2)sup(H) and of the band modes stays almost constant if the temperature is changed from 423 0 K till 673 0 K. The behavior of this intensity distributions with temperature indicates a partition of the proton motions in diffusive and localized motions and supports the assumption of an anharmonic periodic potential along the [110] direction. The frequency distribution function of the hydrogen band modes has a shape as expected from measured dispersion curves. For [Pdsub(0.018)sup(D)-Pd] a broad quasielastic line is observed that indicates the existence of overdamped phonons in the vicinity of the impurity atom

  20. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    the model for numerical predictions. This approach describes the material as a mixture composed of different types of reacting materials, which avoids the use of correction terms for the experimental capacities, as it is commonly done in other empirical sorption models for metal hydrides. To study cycling, kinetics and heat transfer in hydride tanks up to kg scale, a hydrogen tank station was designed and constructed. The sorption behaviour of sodium alanate storage tanks was evaluated, and it was confirmed, that the addition of expanded graphite improves the heat transfer resulting in faster hydrogenation kinetics. The hydrogen sorption process of practical systems based on hydride beds was modelled for the simultaneous sub-processes of hydrogen transport, intrinsic reaction and heat transfer. Based on the modelling equations, a comparative resistance analysis was developed in order to quantify the effect of each sub-process on the overall sorption kinetics in sodium alanate beds. It was found that large size systems are mainly heat transfer limited. Moreover, on the basis of the modelling equations, a numerical simulation was developed. The simulation was validated with the experimental results obtained in this work. Optimisation of the volumetric hydrogen storage capacity of sodium alanate based hydrogen storage tanks is experimentally demonstrated by powder compaction. Quite interesting results are discovered on the sorption behaviour of these manufactured compacts: sorption improvement and volumetric expansion of the pellets through cycling as well as enhanced volumetric and gravimetric hydrogen storage capacity of the material. To conclude the work, a tubular tank filled with sodium alanate material was theoretically optimised towards its gravimetric hydrogen storage capacity using the developed simulation and the results obtained during this investigation. The optimisation process includes the evaluation of compaction, the addition of expanded graphite and

  1. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  2. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  3. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  4. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  5. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  6. Direct coupling of a solar-hydrogen system in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, L.G. [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas (IIE), Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque tecnologico Queretaro Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico); Martinez, W. [Departamento de Materiales Solares, CIE-UNAM, Av. Xochicalco s/n, Col. Centro, 62580 Temixco, Morelos (Mexico); Cano, U.; Blud, H. [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas (IIE), Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2007-09-15

    The scope of this article is to show the initial results obtained in the interconnection of a 2.7 kW solar panel system with a solid polymer electrolyte (SPE) electrolyzer. The Non-Conventional Energies Department (ENC) at the Electrical Research Institute (IIE) considers that the storage of this intermittent energy by a chemical element such as hydrogen can be advantageous for certain applications. One of the arguments is that unlike traditional battery systems, hydrogen presents the great advantage of not discharging its energy content as long as it is not used. The solar-hydrogen (S-H) system proposed consists of a commercial electrolyzer stack by Proton Energy Systems and a photovoltaic (PV) solar system of 36 panels (75 W each) of monocrystalline silicon (Siemens) interconnected in a configuration for 2.7 kW power at 48V{sub DC}. The complete electrolyzer (stack plus auxiliaries) has a maximum capacity of 1000lN/h of hydrogen with a power energy consumption of 8 kVA (220V{sub AC}, 32 A) and uses a stack of 25 cells of SPE with an energy consumption of 5.6 kW. We present voltage, current and energy consumption of the electrolyzer as a whole system and of the stack alone, as well as hydrogen quantification for the Hogen 40 operating in laboratory. These results allowed us to estimate the possibilities of coupling the electrolyzer stack alone, i.e. no auxiliaries nor power conditioning, with the solar PV system. Results such as I-E curves of the solar PV system obtained at different irradiances and temperatures, as well as I-E curve of SPE electrolyzer stack, gave direction for confirming that PV system configuration was sufficiently good to have the electrolyzer stack working near the maximum power point at a good range of irradiances ({proportional_to}600-800W/m{sup 2}). (author)

  7. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst

    International Nuclear Information System (INIS)

    Hoogeveen, Dijon A.; Fournier, Maxime; Bonke, Shannon A.; Fang, Xi-Ya; Mozer, Attila J.; Mishra, Amaresh; Bäuerle, Peter; Simonov, Alexandr N.; Spiccia, Leone

    2016-01-01

    Dye-sensitised photocathodes promoting hydrogen evolution are usually coupled to a catalyst to improve the reaction rate. Herein, we report on the first successful integration of a heterogeneous metal particulate catalyst, viz., Pt aggregates electrodeposited from acidic solutions on the surface of a NiO-based photocathode sensitised with a p-type perylenemonoimid-sexithiophene-triphenylamine dye (PMI-6T-TPA). The platinised dye-NiO electrodes generate photocurrent density of ca −0.03 mA cm −2 (geom.) with 100% faradaic efficiency for the H 2 evolution at 0.059 V vs. reversible hydrogen electrode under 1 sun visible light irradiation (AM1.5G, 100 mW cm −2 , λ > 400 nm) for more than 10 hours in 0.1 M H 2 SO 4 (aq.). The Pt-free dye-NiO and dye-free Pt-modified NiO cathodes show no photo-electrocatalytic hydrogen evolution under these conditions. The performance of these Pt-modified PMI-6T-TPA-based photoelectrodes compares well to that of previously reported dye-sensitised photocathodes for H 2 evolution.

  8. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  9. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Administrator

    We are interested in obtaining single crystals of metal-opda complexes because their crystal structures would show complex hydrogen bonding network due to the presence of. –NH2 groups in the opda ligand (hydrogen bonding donor sites) and inorganic anions having mostly oxo groups (hydrogen bonding acceptor sites) ...

  10. Metal complex derivatives of hydrogen uranyl phosphate

    International Nuclear Information System (INIS)

    Grohol, D.; Blinn, E.L.

    1994-01-01

    Derivatives of hydrogen uranyl phosphate were prepared by incorporating transition metal complexes into the uranyl phosphate matrix. The transition metal complexes employed include bis(ethylenediamine)copper(II), bis(1,3-propanediamine)copper(II) chloride, (triethylenetetramine)copper(II), (1,4,8,11-tetraazacyclotetradecane)copper(II), (1,4,8,12-tetraazacyclopentadecane)copper(II), (1,4,8,11-tetraazacyclotetradecane)nickel(II) chloride, (triethylenetetramine)nickel(II) and others. The chemical analyses of these derivatives indicated that the incorporation of the transition metal complexes into the uranyl phosphate matrix via ion exchange was not stoichiometric. The extent of ion exchange is dependent on the size and structure of the transition metal complex. All complexes were characterized by X-ray powder diffractometry, electronic and infrared spectra, thermal analyses and chemical analysis. An attempt was made to correlate the degree of quenching of the luminescence of the uranyl ion to the spacing between the uranyl phosphate layers in the derivatives

  11. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  12. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  13. Effect of hydrogen on Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Costa, J.E.

    1985-01-01

    The effect of hydrogen on the physical and mechanical properties of the metastable β alloy Ti-10V-2Fe-3Al was examined. This study had three main goals. The first was to improve the understanding of the effects of hydrogen in the β phase. The second goal was to determine the effects of hydrogen on the specific alloy Ti-10V-2Fe-3Al. The third goal was to identify possible in-service problems that could occur in Ti-10V-2Fe-3Al and in similar alloys. The effects of hydrogen were examined in three different microstructures: beta-annealed and water-quenched (B/WQ), beta-annealed and furnace cooled (B/FC), and solution treated and aged (STA). The B/WQ microstructure was nominally all-β with some athermal omega phase while the B/FC and STA microstructures were α + β microstructures. Hydrogen concentrations from approx.0 to >30 at.% were used. Hydrogen was introduced into test specimens using either Sieverts charging or cathodic charging techniques. When the B/WQ microstructure was deformed, the β phase was transformed to orthorhombic α'' martensite. Hydrogen effects in the B/FC and STA microstructures were largely the result of hydride formation at α/β interfaces. The effect of hydride formation was observed as decreases in the reduction of area for tensile specimens

  14. Performance study of a hydrogen powered metal hydride actuator

    International Nuclear Information System (INIS)

    Bhuiya, Md Mainul Hossain; Kim, Kwang J

    2016-01-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi 5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C–50 °C. Stress–strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress–strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future. (paper)

  15. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui

    2018-02-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  16. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui; Sun, Ying; Yuan, Zhong-Yong; Zhu, Yun-Pei; Ma, Tianyi

    2018-01-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  17. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  18. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  19. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  20. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  1. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  2. Development of the work function approach to the underpotential deposition of metals. Application to the hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Trasatti, S.

    1975-01-01

    A theory is developed for the underpotential deposition of metals. Concepts are then extended to oxygen and hydrogen adsorption. Analysis of results shows that, unlike oxygen adsorption, hydrogen adsorption in solution probably follows a different pattern with respect to the gas phase situation. The hydrogen evolution reaction is discussed in the light of the above findings and it is shown that usual concepts regarding the reactivity scale of metals towards hydrogen should be reconsidered taking into account solvent and entropy effects. The latters can account for the behaviour of sp-metals. The formers are important with transition metals. The final picture is consistent with the idea that M-H 2 O interactions are much stronger on transition than on sp-metals. (orig.) [de

  3. Hydrogen evolution on nano-particulate transition metal sulfides

    DEFF Research Database (Denmark)

    Bonde, Jacob Lindner; Moses, Poul Georg; Jaramillo, Thomas F.

    2008-01-01

    The hydrogen evolution reaction (HER) on carbon supported MoS2 nanoparticles is investigated and compared to findings with previously published work on Au(111) supported MoS2. An investigation into MoS2 oxidation is presented and used to quantify the surface concentration of MoS2. Other metal sul...

  4. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  5. Hydrogen spillover on DV (555-777) graphene – vanadium cluster system: First principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Mathan, E-mail: ranjit.t@res.srmuniv.ac.in, E-mail: mathanranjitha@gmail.com; Thapa, Ranjit, E-mail: ranjit.t@res.srmuniv.ac.in, E-mail: mathanranjitha@gmail.com [SRM Research Institute, SRM University, Kattankulathur, Tamil Nadu - 603203 (India); P, Sabarikirishwaran [Department of Physics and Nanotechnology, SRM University, Kattankulathur, Tamil Nadu - 603203 (India)

    2015-06-24

    Using dispersion corrected density functional theory (DFT+D), the interaction of Vanadium adatom and cluster with divacancy (555-777) defective graphene sheet has been studied elaborately. We explore the prospect of hydrogen storage on V{sub 4} cluster adsorbed divacancy graphene system. It has been observed that V{sub 4} cluster (acting as a catalyst) can dissociate the H{sub 2} molecule into H atoms with very low barrier energy. We introduce the spillover of the atomic hydrogen throughout the surface via external mediator gallane (GaH{sub 3}) to form a hydrogenated system.

  6. Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zlotea, Claudia; Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei

    2016-01-01

    Recent advances on synthesis, characterization, and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions, contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd 90 Rh 10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions, as suggested by in situ X-ray diffraction (XRD). Apart from this composition, common laboratory techniques, such as in situ XRD, DSC, and PCI, failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd 75 Rh 25 and Pd 50 Rh 50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover, the hydrogen solubility in these solid solutions is higher with increasing Pd content, and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions, as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd 25 Rh 75 and Pd 10 Rh 90 ) only adsorb hydrogen on the developed surface of ultrasmall

  7. Oxidative damage to collagen and related substrates by metal ion/hydrogen peroxide systems

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1997-01-01

    . In this study electron paramagnetic resonance spectroscopy with spin trapping has been used to identify radicals formed on collagen and related materials by metal ion-H2O2 mixtures. Attack of the hydroxyl radical, from a Fe(II)-H2O2 redox couple, on collagen peptides gave signals from both side chain (.CHR...... are similar to those from the alpha-carbon site of peptides and the side-chain of lysine. Enzymatic digestion of the large, protein-derived, species releases similar low-molecular-weight adducts. The metal ion employed has a dramatic effect on the species observed. With Cu(I)-H2O2 or Cu(II)-H2O2 instead of Fe(II)-H......2O2, evidence has been obtained for: i) altered sites of attack and fragmentation, ii) C-terminal decarboxylation, and iii) hydrogen abstraction at N-terminal alpha-carbon sites. This altered behaviour is believed to be due to the binding of copper ions to some substrates and hence site...

  8. Nano tubular Transition Metal Oxide for Hydrogen Production

    International Nuclear Information System (INIS)

    Sreekantan, S.; San, E.P.; Kregvirat, W.; Wei, L.C.

    2011-01-01

    TiO 2 , transition metal oxide nano tubes were successfully grown by anodizing of titanium foil (Ti) in ethylene glycol electrolyte containing 5wt. % hydrogen peroxide and 5wt. % ammonium fluoride for 60 minutes at 60V. It was found such electrochemical condition resulted in the formation of nano tube with average diameter of 90nm and length of 6.6 μm. These samples were used to study the effect of W loading by RF sputtering on TiO 2 nano tubes. Amorphous TiO 2 nano tube substrate leads to enhance incorporation of W instead of anatase. Therefore for the entire study, W was sputtered on amorphous TiO 2 nano tube substrate. TiO 2 nano tube sputtered for 1 minute resulted in the formation of W-O-Ti while beyond this point (10 minutes); it accumulates to form a self independent structure of WO 3 on the surface of the nano tubes. TiO 2 nano tube sputtered for 1 minute at 150 W and annealed at 450 degree Celsius exhibited best photocurrent density (1.4 mA/ cm 2 ) with photo conversion efficiency of 2.5 %. The reason for such behavior is attributed to W 6+ ions allows for electron traps that suppress electron hole recombination and exploit the lower band gap of material to produce a water splitting process by increasing the charge separation and extending the energy range of photoexcitation for the system. (author)

  9. Neutron spectroscopy of fast hydrogen diffusion in BCC transition metals

    International Nuclear Information System (INIS)

    Richter, D.; Lottner, V.

    1979-01-01

    Quasielastic neutron scattering reveals microscopic details of both the time and space development of the H-diffusion process on an atomic scale. After outlining the method on the example of PdH/sub x/, new results on the jump geometry in bcc metals are surveyed. In particular, the anomalous diffusion behavior of H in Nb, Ta, and V at elevated temperature is emphasized, where correlated jump processes are important. The influence of impurities on the H-diffusion process is demonstrated by experiments performed on NbH/sub x/ doped with nitrogen impurities, which act as trapping centers for the diffusing hydrogen. The results are discussed in terms of a two-state random walk model which includes multiple trapping and detrapping processes. The concentration and temperature dependence of the capture and escape rates of traps are obtained

  10. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  11. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.

    2006-01-01

    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  12. Invariance Lie algebra and group of the non relativistic hydrogen atom

    International Nuclear Information System (INIS)

    Decoster, Alain

    1970-01-01

    The first part of this work contains a general survey of the use of Lie groups and algebras in quantum mechanics, followed by an extensive description of tbe invariance algebra and invariance group of the non-relativistic hydrogen atom; the realization of this group discovered by FOCK is specially examined. The second part is a two-hundred items bibliography on invariance groups and algebras of classical and quantum-mechanical simple systems. (author) [fr

  13. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  14. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  15. Analysis of an Improved Solar-Powered Hydrogen Generation System for Sustained Renewable Energy Production

    Science.gov (United States)

    2017-12-01

    hydrogen gas by electrolysis. In LT Aviles’ design , distilled water was collected from the ambient air using Peltier dehumidifiers, manufactured by...Figure 13 shows the shelfing along with the entire system. Figure 13. Reconfigured Hydrogen Production Facility Because the system was designed for...POWERED HYDROGEN GENERATION SYSTEM FOR SUSTAINED RENEWABLE ENERGY PRODUCTION by Sen Feng Yu December 2017 Thesis Advisor: Garth V. Hobson Co

  16. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  17. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    Science.gov (United States)

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  18. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Survey on the R and D of technologies for hydrogen transport and storage by hydrogen absorbing alloys (V. Development of the distributed transport/storage use hydrogen absorbing alloys); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 5. Suiso yuso chozo gijutsu no kaihatsu (V. bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the FY 1998 results of the development of hydrogen distributed transport/storage use absorbing alloys in the WE-NET project. Study was made of improvement of hydrogen desorption characteristics by substituting Ca for part of Mg of Mg-Ni alloys and substituting Cr for part of Ni. It is necessary to shift the state of atomic bond by H atom and metal atom in alloys from the ionic bond to the metallic bond, and to change from the amorphous state to the BCC type crystal structure. It was found out that it was possible to do it by improving the composition and heat treatment. The addition of Cu to LaMg{sub 2} alloys shifts the bond with hydrogen to the bond with metal. Easy hydrogen desorption and large absorbing capacity can be expected. It was found out that LaMg{sub 2}Cu{sub 2} synthesized by the reaction sintering method has reversible hydrogen absorbing desorption characteristics. The absorbing amount is 2.4 wt%, the desorption amount 1.2 wt%, and the desorption temperature 190 degrees C. Those are still far from WE-NET targeted values, but a clue to the search was obtained. It was found out that by applying doping technology by Ti, etc. to NaAlH{sub 4}, characteristics can be expected of the desorption amount, 4.5 wt%, of the hydrogen desorption starting temperature from 100 degrees C to 200 degrees C. (NEDO)

  19. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...

  20. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face

    Science.gov (United States)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming

    2016-01-01

    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  1. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  2. CSRL-V: processed ENDF/B-V 227-neutron-group and pointwise cross-section libraries for criticality safety, reactor, and shielding studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Diggs, B.R.; Petrie, L.M.; Webster, C.C.; Westfall, R.M.

    1982-01-01

    A P 3 227-neutron-group cross-section library has been processed for the subsequent generation of problem-dependent fine- or broad-group cross sections for a broad range of applications, including shipping cask calculations, general criticality safety analyses, and reactor core and shielding analyses. The energy group structure covers the range 10 -5 eV - 20 MeV, including 79 thermal groups below 3 eV. The 129-material library includes processed data for all materials in the ENDF/B-V General Purpose File, several data sets prepared from LENDL data, hydrogen with water- and polyethyelene-bound thermal kernels, deuterium with C 2 O-bound thermal kernels, carbon with a graphite thermal kernel, a special 1/V data set, and a dose factor data set. The library, which is in AMPX master format, is designated CSRL-V (Criticality Safety Reference Library based on ENDF/B-V data). Also included in CSRL-V is a pointwise total, fission, elastic scattering, and (n,γ) cross-section library containing data sets for all ENDF/B-V resonance materials. Data in the pointwise library were processed with the infinite dilute approximation at a temperature of 296 0 K

  3. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  4. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  5. Permeation of hydrogen through metal membranes

    International Nuclear Information System (INIS)

    Wienhold, P.; Rota, E.; Waelbroeck, F.; Winter, J.; Banno, Tatsuya.

    1986-08-01

    Experiments show that the permeant flux of hydrogen through a metal membrane at low driving pressures ( r is introduced into the model as a new material constant and the rate equations are given. After the description of the wall pump effect, a variety of different limiting cases are discussed for a symmetrical permeation membrane. This is modified to the asymmetric case and to the influence of particle implantation. The permeation number W turns out to be a dimensionless quantity which characterizes the permeation range and predicts the permeant flux in steady state. (orig.)

  6. Cleavage of hydrogen by activation at a single non-metal centre - towards new hydrogen storage materials.

    Science.gov (United States)

    Grabowski, Sławomir J

    2015-05-28

    Molecular surfaces of non-metal species are often characterized by both positive and negative regions of electrostatic potential (EP) at a non-metal centre. This centre may activate molecular hydrogen which further leads to the addition reaction. The positive EP regions at the non-metal centres correspond to σ-holes; the latter sites are enhanced by electronegative substituents. This is why the following simple moieties; PFH2, SFH, AsFH2, SeFH, BrF3, PF(CH3)2 and AsF(CH3)2, were chosen here to analyze the H2 activation and its subsequent splitting at the P, As, S, Se and Br centres. Also the reverse H-H bond reforming process is analyzed. MP2/aug-cc-pVTZ calculations were performed for systems corresponding to different stages of these processes. The sulphur centre in the SFH moiety is analyzed in detail since the potential barrier height for the addition reaction for this species is the lowest of the moieties analyzed here. The results of calculations show that the SFH + H2 → SFH3 reaction in the gas phase is endothermic but it is exothermic in polar solvents.

  7. Modifications for the improvement of catalyst materials for hydrogen evolution

    Directory of Open Access Journals (Sweden)

    DRAGAN SLAVKOV

    2006-02-01

    Full Text Available The structural and electrocatalytic characteristics of composite materials based on non-precious metals were studied. Precursors of metallic phase (Ni, Co or CoNi and oxide phase (TiO2 were grafted on a carbon substrate (Vulcan XC-72 by the sol-gel procedure and thermally treated at 250 ºC. Ni and CoNi crystals of 10–20 nm were produced, in contrast the Co and TiO2 were amorphous. The dissimilar electronic character of the components gives rise to a significant electrocatalytic activity for the hydrogen evolution reaction (HER, even in the basic series of prepared materials. Further improvement of the catalysts was achieved by modification of all three components. Hence, Mo was added into the metallic phase, TiO2 was converted into the crystalline form and multiwall carbon nanotubes (MWCNTs were used instead of carbon particles. The improvement, expressed in terms of the lowering the hydrogen evolution overpotential at 60 mA cm–2, was the most pronounced in the Ni-based systems grafted on MWCNTs (120 mV lower HER overpotential compared to 60 mV in case of Ni-based systems grafted on crystalline TiO2 (TiO2 prepared at 450 ºC and of Ni-based systems containing 25 at.% Mo. Nevertheless, even with the realized enhancement, of all the fested materials, the Co-based systems remained superior HER catalysts.

  8. Micro poly(3-sulfopropyl methacrylate) hydrogel synthesis for in situ metal nanoparticle preparation and hydrogen generation from hydrolysis of NaBH4

    International Nuclear Information System (INIS)

    Turhan, Tugce; Güvenilir, Yuksel Avcıbası; Sahiner, Nurettin

    2013-01-01

    Polymeric hydrogels derived from SPM (3-sulfopropyl methacrylate) of micrometer size were used in the preparation of a composite-catalyst system for hydrogen generation from hydrolysis of NaBH 4 . In situ Co and Ni nanoparticles were prepared by chemical reduction of absorbed Co (II) and Ni (II) ions inside the hydrogel networks, and the whole composite was used as a catalyst system. The catalytic activity of the metal nanoparticles within the p(SPM) hydrogel matrix was better and faster using Co than with Ni. Additionally, other parameters that affect the hydrogen generation rate, such as temperature, metal reloading, the catalyst amounts as well as reusability, were also investigated. It was found that p(SPM)–Co micro hydrogels were even effective for hydrogen generation at 0 °C with a hydrogen generation rate of 966 (mL H 2 ) (min) −1 (g of Co) −1 . The activation energy, activation enthalpy, and activation entropy for the hydrolysis reaction of NaBH 4 with micro p(SPM)–Co catalyst system were calculated as 44.3 kJ/mol, 43.26 kJ/mol K, and −150.93 J/mol K, respectively. - Highlights: ► Microgel embedding metal catalyst for H 2 production. ► Advanced materials for green energy. ► Soft microgel reactors for H 2 production from NaBH 4 hydrolysis

  9. Hydrogen incorporation and radiation induced dynamics in metal-oxide-silicon structures. A study using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Briere, M.A.

    1993-07-01

    Resonant nuclear reaction analysis, using the 1 H( 15 N, αγ) 12 C reaction at 6.4 MeV, has been successfully applied to the investigation of hydrogen incorporation and radiation induced migration in metal-oxide-silicon structures. A preliminary study of the influence of processing parameters on the H content of thermal oxides, with and without gate material present, has been performed. It is found that the dominant source of hydrogen in Al gate devices and dry oxides is often contamination, likely in the form of adsorbed water vapor, formed upon exposure to room air after removal from the oxidation furnace. Concentrations of hydrogen in the bulk oxide as high as 3 10 20 cm -3 (Al gate), and as low as 1 10 18 cm -3 (poly Si-gate) have been observed. Hydrogen accumulation at the Si-SiO 2 interface has been reproducibly demonstrated for as-oxidized samples, as well as for oxides exposed to H 2 containing atmospheres during subsequent thermal processing. The migration of hydrogen, from the bulk oxide to the silicon-oxide interface during NRA, has been observed and intensively investigated. A direct correlation between the hydrogen content of the bulk oxide and the radiation generated oxide charges and interface states is presented. These data provide strong support for the important role of hydrogen in determining the radiation sensitivity of electronic devices. (orig.)

  10. Metal oxide/hydrogen secondary battery; Kinzoku sankabutsu/suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Hosobuchi, H.; Ema, M.

    1995-12-12

    Since the shape of powder produced by crushing the hydrogen storage alloy containing rare earth element varies widely, the density of the negative electrode made by packing the alloy powder is low. As a result, the secondary battery employing this negative electrode has a small discharge capacity. This invention solves the problem. Employing the hydrogen storage alloy containing rare earth element composed of particle shape of aspect ratio, A, of over 1.0 and below 3.0 gives rise to the negative electrode with high packing density, improving the discharge capacity of the metal oxide - hydrogen secondary battery. The more the shape of powder of hydrogen storage alloy containing rare earth element is near to sphere, the higher the packing density of negative electrode made of the hydrogen storage alloy containing rare earth element becomes. The preferable aspect ratio, A, of the powder is 1.0 {le} A {le} 2.0. Such alloy powder can be produced by mechanically grinding the rare-earth-element-containing hydrogen alloy ingot, or grinding by hydration, or grinding by atomizing followed by sieving. 1 fig., 1 tab.

  11. Hydrogen production during processing of radioactive sludge containing noble metals

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 x10 -7 g H 2 /hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 x10 -4 g H 2 /hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges

  12. Lunar-derived titanium alloys for hydrogen storage

    Science.gov (United States)

    Love, S.; Hertzberg, A.; Woodcock, G.

    1992-01-01

    Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.

  13. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts

    KAUST Repository

    Chen, Yin

    2015-11-02

    The graphitic carbon nitride (g-C3N4) usually is thought to be an inert material and it’s difficult to have the surface terminated NH2 groups functionalized. By modifying the g-C3N4 surface with hydrazine, the diazanyl group was successfully introduced onto the g-C3N4 surface, which allows the introduction with many other function groups. Here we illustrated that by reaction of surface hydrazine group modified g-C3N4 with CS2 under basic condition, a water electrolysis active group C(=S)SNi can be implanted on the g-C3N4 surface, and leads to a noble metal free hydrogen evolution catalyst. This catalyst has 40% hydrogen evolution efficiency compare to the 3 wt% Pt photo precipitated g-C3N4, with only less than 0.2 wt% nickel.

  14. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts

    KAUST Repository

    Chen, Yin; Lin, Bin; Wang, Hong; Yang, Yong; Zhu, Haibo; Yu, Weili; Basset, Jean-Marie

    2015-01-01

    The graphitic carbon nitride (g-C3N4) usually is thought to be an inert material and it’s difficult to have the surface terminated NH2 groups functionalized. By modifying the g-C3N4 surface with hydrazine, the diazanyl group was successfully introduced onto the g-C3N4 surface, which allows the introduction with many other function groups. Here we illustrated that by reaction of surface hydrazine group modified g-C3N4 with CS2 under basic condition, a water electrolysis active group C(=S)SNi can be implanted on the g-C3N4 surface, and leads to a noble metal free hydrogen evolution catalyst. This catalyst has 40% hydrogen evolution efficiency compare to the 3 wt% Pt photo precipitated g-C3N4, with only less than 0.2 wt% nickel.

  15. Theoretical study of hydrogen storage in a truncated triangular pyramid molecule consisting of pyridine and benzene rings bridged by vinylene groups

    Science.gov (United States)

    Ishikawa, Shigeru; Nemoto, Tetsushi; Yamabe, Tokio

    2018-06-01

    Hydrogen storage in a truncated triangular pyramid molecule C33H21N3, which consists of three pyridine rings and one benzene ring bridged by six vinylene groups, is studied by quantum chemical methods. The molecule is derived by substituting three benzene rings in a truncated tetrahedron hydrocarbon C36H24 with pyridine rings. The optimized molecular structure under C 3v symmetry shows no imaginary vibrational modes at the B3LYP/cc-pVTZ level of theory. The hydrogen storage process is investigated based on the MP2/cc-pVTZ method. Like the structure before substitution, the C33H21N3 molecule has a cavity that stores a hydrogen molecule with a binding energy of - 140 meV. The Langmuir isotherm shows that this cavity can store hydrogen at higher temperatures and lower pressures than usual physisorption materials. The C33H21N3 molecule has a kinetic advantage over the C36H24 molecule because the former molecule has a lower barrier (+ 560 meV) for the hydrogen molecule entering the cavity compared with the latter molecule (+ 730 meV) owing to the lack of hydrogen atoms narrowing the opening.

  16. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    International Nuclear Information System (INIS)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-01-01

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H 2 O, MgO, and SiO 2 dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures

  17. Low-cost storage options for solar hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Suhaib Muhammad Ali; John Andrews

    2006-01-01

    Equipment for storing hydrogen gas under pressure typically accounts for a significant proportion of the total capital cost of solar-hydrogen systems for remote area power supply (RAPS). RAPS remain a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. In the present paper the storage requirements of PV-based solar-hydrogen RAPS systems employing PEM electrolysers and fuel cells to meet a range of typical remote area daily and annual demand profiles are investigated using a spread sheet-based simulation model. It is found that as the costs of storage are lowered the requirement for longer-term storage from summer to winter is increased with consequent potential gains in the overall economics of the solar-hydrogen system. In many remote applications, there is ample space for hydrogen storages with relatively large volumes. Hence it may be most cost-effective to store hydrogen at low to medium pressures achievable by using PEM electrolysers directly to generate the hydrogen at the pressures required, without a requirement for separate electrically-driven compressors. The latter add to system costs while requiring significant parasitic electricity consumption. Experimental investigations into a number of low-cost storage options including plastic tanks and low-to-medium pressure metal and composite cylinders are reported. On the basis of these findings, the economics of solar-hydrogen RAPS systems employing large-volume low-cost storage are investigated. (authors)

  18. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  19. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    International Nuclear Information System (INIS)

    Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana; Azzouz, A.

    2017-01-01

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe"0-NPs and Cu"0-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO_2 and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu"o (CuNPs) and Fe"o (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO_2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  20. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ouargli-Saker, R. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Bouazizi, N. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Unité de recherche, Electrochimie, Matériaux et Environnement, Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès (Tunisia); Boukoussa, B. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Lqamb, Laboratório de Química Analítica Ambiental, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul (Brazil); Barrimo, Diana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Paola-Nunes-Beltrao, Ana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Laboratory of Materials Chemistry L.C.M, University of Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran (Algeria); Azzouz, A., E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada)

    2017-07-31

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe{sup 0}-NPs and Cu{sup 0}-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO{sub 2} and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu{sup o} (CuNPs) and Fe{sup o} (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO{sub 2} retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  1. Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Sebastiano Garroni

    2018-04-01

    Full Text Available Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen, further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU and U.S. Department of Energy (DOE. Recent projections indicate that a system possessing: (i an ideal enthalpy in the range of 20–50 kJ/mol H2, to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii a gravimetric hydrogen density of 5 wt. % H2 and (iii fast sorption kinetics below 110 °C is strongly recommended. Among the known hydrogen storage materials, amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however, some barriers still have to be overcome before considering this class of material mature for real applications. In this review, the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties, experimentally measured for the most promising systems, are reported and properly discussed.

  2. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  3. Solid-State Hydrogen Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a method for converting metals to metal hydrides at low pressures for hydrogen storage systems with high efficiency with respect to volume...

  4. Efficient production and diagnostics of MeV proton beams from a cryogenic hydrogen ribbon

    International Nuclear Information System (INIS)

    Velyhan, A.; Giuffrida, L.; Scuderi, V.; Lastovicka, T.; Margarone, D.; Perin, J.P.; Chatain, D.; Garcia, S.; Bonnay, P.; Dostal, J.; Ullschmied, J.; Dudzak, R.; Krousky, E.; Cykhardt, J.; Prokupek, J.; Pfeifer, M.; Rosinski, M.; Krasa, J.; Brabcova, K.; Napoli, M. De

    2017-01-01

    A solid hydrogen thin ribbon, produced by the cryogenic system ELISE (Experiments on Laser Interaction with Solid hydrogEn) target delivery system, was experimentally used at the PALS kJ-laser facility to generate intense proton beams with energies in the MeV range. This sophisticated target system operating at cryogenic temperature (∼ 10 K) continuously producing a 62 μm thick target was combined with a 600 J sub-nanosecond laser pulse to generate a collimated proton stream. The accelerated proton beams were fully characterized by a number of diagnostics. High conversion efficiency of laser to energetic protons is of great interest for future potential applications in non-conventional proton therapy and fast ignition for inertial confinement fusion.

  5. Investigation of neptunium(V) reduction to neptunium(IV) by semiconductor photocatalysis

    International Nuclear Information System (INIS)

    Takahashi, M.; Nakamura, T.; Ikeda, T.; Karasawa, H.

    1990-01-01

    Np(V) is the dominant Np oxidation state in high level liquid waste from reprocessing plants. Since low extractability of Np(V) makes its separation from other nuclei difficult, valence control is required. When a 1mM Np(V) solution of 3M nitric acid was irradiated by a Xe-lamp, using n-SiC (5g/dm 3 ) as photocatalyst and hydrazine (0.1M) as donor, 100% of the Np(V) was reduced to Np(IV) within 30 min at room temperature. Electrochemical investigations suggested that Np(V) is reduced by the atomic hydrogen adsorbed on the photocatalyst surface. According to this mechanism, platinum group metals can act as reducing catalysts for No(V) reduction due to their low hydrogen overvoltage. The proposed mechanism was experimentally confirmed using platinum black (5g/dm 3 ) as catalyst and hydroxylammonium nitrate (0.9M) as reducing agent

  6. System optimization of solar hydrogen energy system based on hydrogen production cost. 2; Suiso seizo cost wo hyoka shihyo to shita taiyo suiso energy system no saiteki sekkei. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ota, D; Yamagami, Y; Tani, T [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    In this paper, to evaluate the hydrogen production cost per unit volume, system optimization of solar hydrogen energy system is discussed. Based on the simulation of the I-V characteristics of amorphous Si (a-Si) photovoltaic array, the working point between the array and hydrogen generator was determined. The cost ratio of each design point was calculated. The optimum design points were 500 W/m{sup 2} for the single crystal Si system, and 600 W/m{sup 2} for the a-Si system. When the rating capacity of design point was constant, almost constant cost ratio was obtained independent of the type of photovoltaic cells. It was found that the photovoltaic cells can be fabricated in about 15% lower cost at maximum. It was also found that the optimum design point sifts to the lower insolation site due to reduction of the photovoltaic cell cost. Since the annual hydrogen generation quantity does not depend on the type of photovoltaic cells under the constant rating capacity of design point, hydrogen can be produced in lower cost by using photovoltaic cell of lower cost. 5 refs., 10 figs., 5 tabs.

  7. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  8. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  9. Metal organoclays with compacted structure for truly physical capture of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, M. Nazir; Sennour, Radia [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Arus, Vasilica Alisa [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 (Romania); Sallam, Lamyaa M. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Roy, René, E-mail: roy.rene@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Azzouz, Abdelkrim, E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada)

    2017-03-15

    Highlights: • Functionalization of thio-dendrons onto montmorillonite clay. • Incorporation and stabilization of PdNP in to the functionalized clays. • Role of −S:Pd and −O:Pd interactions in NP dispersion and stabilization. • Applications of PdNP incorporated modified clays for physical adsorption of H{sub 2}. - Abstract: Truly reversible capture of hydrogen was achieved at ambient conditions on Pd-loaded organo-montmorillonites obtained by photo-addition of different thiols on propargylated-TRIS cations already grafted on the clay surface. TEM insights showed that more than 90% of Pd{sup 0} incorporated occur as 0.3–0.5 nm subnanoparticles (PdSNPs). XPS and NMR analyses revealed simultaneous strong S:Pd{sup 0} and O:Pd{sup 0} interactions that ”cement” the organic moiety around PdSNPs. The significant decrease in porosity suggests a compacted structure that impedes not only metal aggregation, but also hydrogen diffusion in the metal bulk. Thus, hydrogen appears to adsorb mainly via physical condensation around PdSNPs. These thiol-clay matrices showed hydrogen surface affinity factors of up to 0.51 mmol m{sup −2} at ambient temperature and pressure. This is higher than those reported for much more sophisticated materials. DSC measurements showed very low desorption heat between 20 and 80 °C. Hydrogen release was achieved merely under vacuum or slight heating starting from 40 °C and was almost completed up to 85 °C. This provides a proof of concept of truly reversible capture of hydrogen for concentration and/or storage purposes. Such a performance has never been achieved at ambient temperature and pressure. These findings open new prospects to develop low-cost materials for reversible hydrogen storage without energy and safety constraints.

  10. Metal organoclays with compacted structure for truly physical capture of hydrogen

    International Nuclear Information System (INIS)

    Tahir, M. Nazir; Sennour, Radia; Arus, Vasilica Alisa; Sallam, Lamyaa M.; Roy, René; Azzouz, Abdelkrim

    2017-01-01

    Highlights: • Functionalization of thio-dendrons onto montmorillonite clay. • Incorporation and stabilization of PdNP in to the functionalized clays. • Role of −S:Pd and −O:Pd interactions in NP dispersion and stabilization. • Applications of PdNP incorporated modified clays for physical adsorption of H_2. - Abstract: Truly reversible capture of hydrogen was achieved at ambient conditions on Pd-loaded organo-montmorillonites obtained by photo-addition of different thiols on propargylated-TRIS cations already grafted on the clay surface. TEM insights showed that more than 90% of Pd"0 incorporated occur as 0.3–0.5 nm subnanoparticles (PdSNPs). XPS and NMR analyses revealed simultaneous strong S:Pd"0 and O:Pd"0 interactions that ”cement” the organic moiety around PdSNPs. The significant decrease in porosity suggests a compacted structure that impedes not only metal aggregation, but also hydrogen diffusion in the metal bulk. Thus, hydrogen appears to adsorb mainly via physical condensation around PdSNPs. These thiol-clay matrices showed hydrogen surface affinity factors of up to 0.51 mmol m"−"2 at ambient temperature and pressure. This is higher than those reported for much more sophisticated materials. DSC measurements showed very low desorption heat between 20 and 80 °C. Hydrogen release was achieved merely under vacuum or slight heating starting from 40 °C and was almost completed up to 85 °C. This provides a proof of concept of truly reversible capture of hydrogen for concentration and/or storage purposes. Such a performance has never been achieved at ambient temperature and pressure. These findings open new prospects to develop low-cost materials for reversible hydrogen storage without energy and safety constraints.

  11. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  12. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  13. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery– Part 2: Cells with Metal Hydride Storage

    Science.gov (United States)

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A sub-atmospheric pressure nickel hydrogen (Ni-H2) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used. PMID:22711974

  14. Method and apparatus for hydrogen production from water

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  15. Hydrogen absorption-desorption at metal surfaces

    International Nuclear Information System (INIS)

    Ward, C.A.; Pataki, L.

    1991-04-01

    On the basis of experimental studies, it has been proposed that when zirconium oxide (ZrO 2 ) is exposed to hydrogen at 300 degrees C or higher, a reaction occurs to produce metallic zirconium and water, thereby increasing the electrical conductivity of the oxide film and its permeability to hydrogen. A series of experiments has been performed in which specimens of zirconium and zirconium-2.5% niobium were either hydrided or deuterided in a furnace at a temperature between 300 degrees C and 800 degrees C and in an atmosphere that consisted primarily of either hydrogen (H 2 ) or deuterium (D 2 ). After cooling a specimen to room temperature, it was placed in a thermogravimetric analyzer that was equipped with a mass spectrometer, TGA-MS. Each specimen was then heated to 1200 degrees C at a controlled rate in a primarily helium atmosphere monitored with the mass spectrometer. Light water (H 2 O) evolved from the hydrided specimens and heavy water (D 2 0) from the deuterided ones and there was a weight loss of the specimens that accompanied the water evolution. The specimens having approximately the same amount of hydride but more oxide also evolved more H 2 O, and that the H 2 O did not come from reactions between impurity H 2 and oxygen (O 2 ) in the TGA-MS. Heating a zirconium or zirconium alloy specimen that contains a hydride or deuteride phase within and an oxide layer on its surface causes the hydrogen to diffuse toward the surface and when it encounters the oxide a reaction follows that produces water. The conventional mechanism for the dissipation of the imperviousness of ZrO 2 to H 2 that results from the oxide being exposed to a reducing atmosphere will not explain the water production observed in these experiments. However, the existence of the proposed reaction can account for the elevated hydrogen concentration in an oxide film that has been observed to accompany the aqueous corrosion of zirconium and the effects on both the electrical conductivity and

  16. Metallization of some simple systems

    International Nuclear Information System (INIS)

    Ross, M.; McMahan, A.K.

    1981-01-01

    We discuss the metallization of Xe, Ar, He, I 2 , H 2 , and N 2 in terms of some recent theoretical work and shock-wave experiments. New shock-wave data on liquid hydrogen and deuterium leads to a predicted pressure above 3 Mbar for the appearance of a monatomic metal phase. We expect CsI to become metallic near 0.8 Mbar

  17. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  18. The hydrogen village: building hydrogen and fuel cell opportunities

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    The presentation addressed the progress the Hydrogen Village Program has made in its first 24 months of existence and will provide an understanding of the development of new markets for emerging Hydrogen and Fuel Cell technologies based on first hand, real world experience. The Hydrogen Village (H2V) is an End User driven, Market Development Program designed to accelerate the sustainable commercialization of hydrogen and fuel cell technologies through awareness, education and early deployments throughout the greater Toronto area (GTA). The program is a collaborative public-private partnership of some 35 companies from a broad cross section of industry administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. The intent of the H2V is to develop markets for Hydrogen and Fuel Cell technologies that benefit the local and global community. The following aspects of market development are specifically targeted: 1) Deployments: of near market technologies in all aspects of community life (stationary and mobile). All applications must be placed within the community and contact peoples in their day-to-day activity. End user involvement is critical to ensure that the applications chosen have a commercial justification and contribute to the complementary growth of the market. 2) Development: of a coordinated hydrogen delivery and equipment service infrastructure. The infrastructure will develop following the principles of conservation and sustainability. 3) Human and societal factors: - Public and Corporate policy, public education, Codes/ Standards/ Regulations - Opportunity for real world implementation and feedback on developing codes and standards - Build awareness among regulatory groups, public, and the media. The GTA Hydrogen Village is already well under way with strategically located projects covering a wide range of hydrogen and fuel cell applications including: Residential heat and power generation using solid oxide

  19. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  20. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  1. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. A neutronic method to determine low hydrogen concentrations in metals

    International Nuclear Information System (INIS)

    Bennun, Leonardo; Santisteban, Javier; Diaz-Valdes, J.; Granada, J.R.; Mayer, R.E.

    2007-01-01

    We propose a method for the non-destructive determination of low hydrogen content in metals. The method is based on measurements of neutron inelastic scattering combined with cadmium filters. Determination is simple and the method would allow to construct a mobile device, to perform the analysis 'in situ'. We give a brief description of the usual methods to determine low hydrogen contents in solids, paying special attention to those methods supported by neutron techniques. We describe the proposed method, calculations to achieve a better sensitivity, and experimental results

  3. Study of hydrogen in metal and alloy by nuclear reaction channeling method

    International Nuclear Information System (INIS)

    Yagi, Eiichi

    1998-01-01

    The position of hydrogen in the lattice was determined by the combination method of 1 H( 11 B, α)αα with a channeling effect of 11 B ion in the crystal. When the concentration of hydrogen in V single crystal was VH 0.1 at the room temperature, hydrogen occupied T position in the body-centered cubic lattice. The position was shifted to the displaced-T by the thermal treatment. Hydrogen in V is oversensitive to a stress, so that it located the displaced-T or 4T state under 7 kg/mm 2 of compressive stress. Hydrogen in Nb and Ta located T position, too. But their displaced states were not observed by the thermal treatment. All hydrogen in Nb-3 at % Mo-2 at % H alloy were captured by Mo and they located the positions of 0.62A displaced from T in the direction of Mo. In Nb-3 at % Mo-5 at % H alloy, a part of hydrogen were captured by Mo, but the other located T positions. At 100degC, hydrogen was free from capture of Mo and moved to T position. (S.Y.)

  4. 40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste

    Science.gov (United States)

    2010-07-01

    ... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...: Generation of toxic hydrogen cyanide or hydrogen sulfide gas. Group 6-A Group 6-B Chlorates Acetic acid and...

  5. The influence of hydrogen on the fatigue life of metallic leaf spring components in a vacuum environment

    NARCIS (Netherlands)

    Kouters, M.H.M.; Slot, H.M.; Zwieten, W. van; Veer, J. van der

    2014-01-01

    Hydrogen is used as a process gas in vacuum environments for semiconductor manufacturing equipment. If hydrogen dissolves in metallic components during operation it can result in hydrogen embrittlement. In order to assess if hydrogen embrittlement occurs in such a vacuum environment a special

  6. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  7. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  8. Metal oxide, Group V-VI chalcogenides and GaN/AlGaN photodetectors

    Science.gov (United States)

    Hasan, Md. Rezaul

    In this work, a simple, low-cost and catalyst free one-step solution processing of onedimensional Sb2S3 nanostructures on polyimide substrates was done. This structure demonstrated its potential application as a photoconductor in the UV and visible regime. Using-field emission scanning electron microscopy (SEM), grazing incidence X-Ray diffraction, Raman spectra and transmission electron microscopy measurements, it was shown that the Sb 2S3 films have high crystallinity, uniform morphology and nearstoichiometric composition. Further, using tauc plot, it was found that the films have a direct bandgap of 1.67 eV. MSM photodetectors, fabricated using these films showed a clear photo response in both UV as well as visible wavelength. These devices showed UV on/off ratio as high as 160 under the light intensity of 30 mW/cm2 and a small rise time and fall time of 44 ms 28 ms respectively. The effect of geometry of metal pad and bonding wire orientation of a multi-channel FET on the coupling of THz radiation was studied. The spatial variation images were taken by raster scan with the resolution of 0.07 mm steps in both x and y directions. An effective gate bias, where the effect of noise is minimum and photoresponse is maximum, was used for imaging. By applying VGS =-2.8V and VDS =380mV, the images were taken for all different combinations of activated bonding wires and metal pads. It was observed that, effect of bonding wire orientation is negligible for the large source pad as the radiation is coupled basically between drain and gate pad. Effect of drain bonding wire on coupling depends on the maximum width or diameter of metal pad and the incoming wavelength. In this work, Position of activated Drain pad and orientation of respective bonding wire defined the image tilting angle. Voltage drop across the shorting metal between drain pads, also played a role in increasing the asymmetry by selectively exciting a certain portion of FET Channels more than the other portion

  9. Hydrogenations of alloys and intermetallic compounds of magnesium

    International Nuclear Information System (INIS)

    Gavra, Z.

    1981-08-01

    A kinetic and thermodynamic study of the hydrogenation of alloys and intermetallic compounds of magnesium is presented. It was established that the addition of elements of the IIIA group (Al, Ga, In) to magnesium catalyses its hydrogenation. This is explained by the mechanism of diffusion of magnesium cation vacancies. The hydride Mg 2 NiH 4 was characterized by thermal analysis, x-ray diffraction and NMR measurements. The possibility of forming pseudo-binary compounds of Mg 2 Ni by the substitution of nickel or magnesium was examined. The hydrogenation of the inter-metallic compounds of the Mg-Al system was investigated. It was found that the addition of indium and nickel affected the hydrogenation kinetics. A preliminary study of the hydrogenation of various binary and ternary alloys of magnesium was carried out. (Author)

  10. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  11. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  12. Nuclear Electrical and Optical Studies of Hydrogen in Semiconductors.

    CERN Multimedia

    Dietrich, M; Toulemonde, M

    2002-01-01

    During the last years, the understanding of H and its interaction with dopant atoms in Si, Ge and III-V semiconductors has improved considerably concerning the stability of the formed complexes their structural arrangements, and the implications of this interaction on the electrical properties of the semiconductors " passivation " The perturbed angular correlation technique (PAC) has contributed to the understanding of this phenomena on an atomistic scale using radioactive isotopes provided by ISOLDE. \\\\ \\\\The aim of the proposed experiments is twofold: \\\\ \\\\\\begin{enumerate} \\item The H passivation mechanism of acceptors in GaN and ternary III-V compounds (AlGaAs, GaInP, AlGaN) shall be investigated, using the PAC probe atom $^{111m}$Cd as a 'representative' of group II-B metal acceptors. The problems addressed in these technological important systems are microscopic structure, formation and stability of the hydrogen correlated complexes as function of doping and stoichiometry (i.e. the size of the band gap)...

  13. Re-examination of the neptunium-hydrogen system

    International Nuclear Information System (INIS)

    Ward, J.W.; Bartscher, W.; Rebizant, J.

    1986-01-01

    New P-C-T studies have been made on the Np + H system, using ultrapure double-electrorefined metal. Measurements were carried out over six orders of magnitude in pressure, from 0.0005 to 70 bar. The solubility of hydrogen was found to be very low. Metal-dihydride plateaus were flat, the two-phase boundary extremely sharp; this occurred at the unusual value H/Np approx. = 2.13. The dihydride lattice expanded upon addition of hydrogen, also in contrast to other trivalent rare-earth and actinide hydrides. A rather narrow cubic/hexagonal two-phase region was found (only on dehydriding), together with an even narrower hexagonal phase region. The effect of the beta-gamma transition at 576 0 C could be seen both in the curvature of the phase boundary and the partial molal enthalpy values. Entropies of formation were found to be nearly constant. The data below 576 0 C can be described by the equation ln P(bar) = 13.297 - 13233/T(K), giving values, adjusted for the reaction 0.93 Np + H 2 = 0.93 NpH/sub 2.13/: ΔH/sub f/(NpH/sub 2.13/) = 118.3 kJ/mol (28.27 kcal/mol), and ΔS/sub f/(NpH/sub 2.13/) = 118.4 J/mol-K (28.3 cal/mol/-K). Integral heats and entropies are calculated for the entire system, and the unusual phase behavior is discussed in terms of the electronic structure

  14. Antiproton-hydrogen scattering at low-eV energies

    International Nuclear Information System (INIS)

    Morgan Jr., D.L.

    1993-01-01

    In the scattering of negative particles other than the electron by atoms at lab-frame energies around 10 eV, an elastic process termed 'brickwall scattering' might lead to a high probability for scattering angles around 180deg. For an antiproton slowing in hydrogen, this backward scattering would result in the loss of nearly all of its energy in a single collision, since it and a hydrogen atom have nearly the same mass. Such energy loss would have a significant effect on the energy distribution of antiprotons at energies where capture by the protons of hydrogen is possible and might, thereby, affect the capture rate and the distribution of capture states. In the semiclassical treatment of the problem with an adiabatic potential energy, brickwall scattering is indeed present, and with a substantial cross section. However, this model appears to underestimate inelastic processes. Based on calculations for negative muons on hydrogen atoms, these processes appear to occur for about the same impact parameters as brickwall scattering and thus substantially reduce its effect. (orig.)

  15. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  16. Tritiated hydrogen conversion on heated metallic surfaces

    International Nuclear Information System (INIS)

    Ionita, G.; Mihaila, V.; Purghel, L.; Rebigan, F.

    1995-01-01

    This work reports investigations on tritiated hydrogen conversion to tritiated water on heated metallic surfaces. The HT conversion process has been revealed for copper, aluminium and stainless steel W4541 surfaces in the temperature range 150 to 300 o C, in case of the static regime and in the range 250 to 400 o C for the dynamic case. The most significant catalytic activity was shown by the copper sample. Studies on this subject are used as input information for different nuclear accident scenarios implying tritium leakage

  17. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  18. In-situ hydrogen in metal determination using a minimum neutron source strength and exposure time.

    Science.gov (United States)

    Hatem, M; Agamy, S; Khalil, M Y

    2013-08-01

    Water is frequently present in the environment and is a source of hydrogen that can interact with many materials. Because of its small atomic size, a hydrogen atom can easily diffuse into a host metal, and though the metal may appear unchanged for a time, the metal will eventually abruptly lose its strength and ductility. Thus, measuring the hydrogen content in metals is important in many fields, such as in the nuclear industry, in automotive and aircraft fabrication, and particularly, in offshore oil and gas fields. It has been demonstrated that the use of nuclear methods to measure the hydrogen content in metals can achieve sensitivity levels on the order of parts per million. However, the use of nuclear methods in the field has not been conducted for two reasons. The first reason is due to exposure limitations. The second reason is due to the hi-tech instruments required for better accuracy. In this work, a new method using a low-strength portable neutron source is explored in conjunction with detectors based on plastic nuclear detection films. The following are the in-situ requirements: simplicity in setup, high reliability, minimal exposure dose, and acceptable accuracy at an acceptable cost. A computer model of the experimental setup is used to reproduce the results of a proof-of-concept experiment and to predict the sensitivity levels under optimised experimental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Diffusion characteristics of specific metals at the high temperature hydrogen separation; Diffusionseigenschaften bestimmter Metalle bei der Hochtemperatur-Wasserstoffabtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Christian

    2010-09-07

    This paper evaluates the metals palladium, nickel, niobium, tantalum, titanium and vanadium according to their ability to separate hydrogen at high temperatures. This evaluation is chiefly based on a thorough consideration of the properties of diffusion for these metals. The various known hydrogen permeabilities of the metals in a temperature range from 300 to 800 C, as well as their physical and mechanical properties will be presented consistent with the current state of technology. The theory of hydrogen diffusion in metals and the mathematical basis for the calculation of diffusion will also be shown. In the empirical section of the paper, permeability measurements are taken in a temperature range of 400 to 825 C. After measurement, the formation of the oxide coating on these membranes is examined using a light-optical microscope. The results of these examinations allow a direct comparison of the different permeabilities of the various metals within the temperature range tested, and also allow for a critical evaluation of the oxide coating formed on the membranes. The final part of the paper shows the efficiency of these metals in the context of in-situ hydrogen separation in a biomass reformer. (orig.)

  20. Hydrogen storage material and related processes

    Science.gov (United States)

    Soloveichik, Grigorii Lev [Latham, NY; Andrus, Matthew John [Cape Canaveral, FL

    2012-06-05

    Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH.sub.4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.

  1. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun [Dongguk University, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications.

  2. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    International Nuclear Information System (INIS)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun

    2016-01-01

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications

  3. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-04-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated.

  4. Softening of metals under hydrogen ion irradiation

    International Nuclear Information System (INIS)

    Guseva, M.I.; Korshunov, S.N.; Martynenko, Yu.V.; Skorlupkin, I.D.

    2005-01-01

    Experimental study results are presented on steel type 18-10 creep under hydrogen ion irradiation. The Irradiation of annealed specimens is accomplished by 15 keV H 2 + ions with a dose up to 10 22 m -2 at current density of 0.6 A/m 2 at temperatures of 570-770 K. Creep tests show that the irradiation at T = 770 K results in a sharp increase of creep rate. At t 570 K the effect of ion-induced creep in steel 18-10 is not observed. The model is proposed which explains the ion-induced creep by accumulation of hydrogen along grain boundaries, their weakening and removal of obstacles to sliding [ru

  5. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    Science.gov (United States)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  6. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  8. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  9. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide.

    Science.gov (United States)

    Jadhav, Umesh; Su, C; Hocheng, Hong

    2016-12-01

    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H 2 O 2 ) was used to leach the metals from CPCB piece. The influence of system variables such as H 2 O 2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H 2 O 2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H 2 O 2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  10. 3D imaging of hydrogen assisted cracking in metals using refraction enhanced synchrotron CT

    Energy Technology Data Exchange (ETDEWEB)

    Laquai, Rene; Mueller, Bernd R.; Bruno, Giovanni [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. 8.5 Micro-NDT; Schaupp, Thomas; Griesche, Axel; Kannengiesser, Thomas [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. 9.4 Weld Mechanics

    2015-07-01

    Hydrogen in metals can cause a degradation of the mechanical properties with possible subsequent hydrogen assisted cracking (HAC). Though, the mechanism of HAC is not completely understood yet and thus suitable methods for in situ investigations to characterise the crack formation are needed. X-ray computed tomography (CT) is a well-known tool for analysing these properties. However, the effective resolution of the detector system limits the detection of small defects by CT. Analyser based imaging (ABI) takes advantage of X-ray refraction at interfaces between volumes of different density, i.e. of cracks, pores, inclusions, etc., within the sample to detect defects smaller than the resolution of the detector system. In this study, measurements on an aluminium alloy weld showed that ABI allows us to resolve the 3D structure of cracks undetected by absorption based CT. Prospective investigations will analyse HAC in steels.

  11. 3D imaging of hydrogen assisted cracking in metals using refraction enhanced synchrotron CT

    International Nuclear Information System (INIS)

    Laquai, Rene; Mueller, Bernd R.; Bruno, Giovanni; Schaupp, Thomas; Griesche, Axel; Kannengiesser, Thomas

    2015-01-01

    Hydrogen in metals can cause a degradation of the mechanical properties with possible subsequent hydrogen assisted cracking (HAC). Though, the mechanism of HAC is not completely understood yet and thus suitable methods for in situ investigations to characterise the crack formation are needed. X-ray computed tomography (CT) is a well-known tool for analysing these properties. However, the effective resolution of the detector system limits the detection of small defects by CT. Analyser based imaging (ABI) takes advantage of X-ray refraction at interfaces between volumes of different density, i.e. of cracks, pores, inclusions, etc., within the sample to detect defects smaller than the resolution of the detector system. In this study, measurements on an aluminium alloy weld showed that ABI allows us to resolve the 3D structure of cracks undetected by absorption based CT. Prospective investigations will analyse HAC in steels.

  12. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  13. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  14. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  15. Some aspects of hydrogen interaction with amorphous metallic materials

    International Nuclear Information System (INIS)

    Spivak, L.V.; Khonik, V.A.; Skryabina, N.E.

    1995-01-01

    For the first time is considered change of some properties of amorphous metallic materials (AMM) directly in the process of hydrogenation. A supposition is made that many found effects are consequence of accumulation and relief of internal stresses during hydrogenation, exposure or following annealing of AMM. Fe 81 B 14 Si 15 , Fe 52 Co 20 Si 15 B 13 , Fe 5 Co 70 Si 15 B 10 , Fe 5 Co 58 Ni 10 Si 11 B 16 , Co 67 Fe 4 Cr 7 Si 8 B 14 84KChSP, Ni 60 Nb 35 Ti 5 , Ni 60 Nb 40 and Pd 17,5 Cu 6 Si 16.5 AMM were investigated. 24 refs.; 4 figs

  16. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  17. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  18. Thermo-hydrogenating treatments in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Guitar, A; Domizzi, G; Luppo, M.I; Vigna, G

    2006-01-01

    The production of components of Ti alloys, specifically Ti-6Al-4V, involves some difficulties in obtaining the final desired microstructure, producing decrease in the material's mechanical properties. In the specific case of materials to be used for surgical implants an equiaxial fine grain microstructure of α phase a with an homogenously precipitated β phase is needed. The modification of certain microstructural features is not possible based on simple thermal treatments. Thermomechanical treatments are effective for transforming the lamellar α phase into equiaxial α, but these methods include major deformations in the (α + β) two-phase field. In order to avoid this stage, thermo-hydrogenating processes were used (THP). The THP involve a treatment of β solubilization before, during or after the hydrogenation, a possible isothermal treatment below the β hydrogenated transus temperature and the final vacuum dehydrogenation. The development of treatments using hydrogen as a temporary alloying element creates a new class of microstructures, which are finer than equiaxial structures and respond well to resistance to traction and fatigue. Since the THP do not include the working of the material to control the microstructure, they are more appropriate for use with shaped components close to the end, like those obtained by powder metallurgy or smelting. Different thermo-hydrogenating treatments in Ti-6Al-4V to modify the microstructure were studied. Final microstructures of α fine phase and β disperse phase were obtained using THP in samples with initial lamellar α phase separated by thin sheets of β phase. The characterization of the initial material and of the transformed material was carried out using optic and scanning electron microscopy (CW)

  19. Positron impact excitation (n = 2 states) of hydrogen at 20 eV

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, M. Z. M.; Ratnavelu, K. [University of Malaya, Kuala Lumpur (Malaysia)

    2011-10-15

    The calculation of accurate differential cross sections (DCS) has always posed a litmus test for theoretical models. Among the positron-atom scattering systems, the positron-hydrogen (e{sup +}-H) atom system is the fundamental prototype. Thus, the present work utilizes 12- and 15-states coupled channel optical method (CCOM) calculations to study the DCS H(2s+2p) excitation, together with the angular correlation parameters ({lambda}(2p)), for the e{sup +}-H system at 20 eV, but up to now, there have been no measurements yet on the DCS for this system. A comparison is done with other theoretical and experimental works, including the electron case.

  20. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  1. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Mas-Ribas, Lluís [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029, NO-0315 Oslo (Norway); Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi; Arinyo-i-Prats, Andreu [Institut de Ciències del Cosmos, Universitat de Barcelona (UB-IEEC), Barcelona E-08028, Catalonia (Spain); Noterdaeme, Pasquier; Petitjean, Patrick [Institut d’Astrophysique de Paris, UPMC and CNRS, UMR7095 98bis Boulevard Arago, F-75014—Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); York, Donald G. [Department of Astronomy and Astrophysics and the Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ge, Jian, E-mail: l.m.ribas@astro.uio.no [Department of Astronomy, University of Florida, Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)

    2017-09-01

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker. The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.

  2. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  3. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  4. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  5. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  6. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  7. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  8. System approach on solar hydrogen generation and the gas utilization; Taiyo energy ni yoru suiso no seisei oyobi sono riyo system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Hirooka, N; Deguchi, Y; Narita, D [Meiji University, Tokyo (Japan)

    1997-11-25

    An apparatus is developed to establish a system which allows utilization of hydrogen safely and easily, and its applicability to a hydrogen system for domestic purposes is tested. The system converts solar energy by the photovoltaic cell unit into power, which is used to generate hydrogen by electrolysis of water at the hydrogen generator, stores hydrogen in a metal hydride , and sends stored hydrogen to the burner and fuel cell units. It is found that a hydrogen occluding alloy of LaNi4.8Al0.2 stores hydrogen to approximately 80% when cooled to 20 to 25degC, and releases it to 10% when heated to 40degC. The fuel cell uses a solid polymer as the electrolyte. The hydrogen gas burner is a catalytic combustion burner with a Pt catalyst carried by expanded Ni-Al alloy. The optimum distance between the burner and object to be heated is 22mm. High safety and fabrication simplicity are confirmed for use for domestic purposes. The system characteristics will be further investigated. 4 refs., 8 figs.

  9. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  10. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad; Wakil Shahzad, Muhammad; Ng, Kim Choon

    2017-01-01

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  11. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  12. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  13. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yungang; Wang, Zhiguo; Yang, Ping; Sun, Xin; Zu, Xiaotao; Gao, Fei

    2012-03-08

    The electronic and magnetic properties of graphene nanoflakes (GNFs) can be tuned by patterned adsorption of hydrogen. Controlling the H coverage from bare GNFs to half hydrogenated and then to fully hydrogenated GNFs, the transformation of small-gap semiconductor {yields} half-metal {yields} wide-gap semiconductor occurs, accompanied by a magnetic {yields} magnetic {yields} nonmagnetic transfer and a nonmagnetic {yields} magnetic {yields} nonmagnetic transfer for triangular and hexagonal nanoflakes, respectively. The half hydrogenated GNFs, associated with strong spin polarization around the Fermi level, exhibit the unexpected large spin moment that is scaled squarely with the size of flakes. The induced spin magnetizations of these nanoflakes align parallel and lead to a substantial collective character, enabling the half hydrogenated GNFs to be spin-filtering flakes. These hydrogenation-dependent behaviors are then used to realize an attractive approach to engineer the transport properties, which provides a new route to facilitate the design of tunable spin devices.

  14. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  15. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  16. Hydrogen bonding-mediated dehydrogenation in the ammonia borane combined graphene oxide systems

    Science.gov (United States)

    Kuang, Anlong; Liu, Taijuan; Kuang, Minquan; Yang, Ruifeng; Huang, Rui; Wang, Guangzhao; Yuan, Hongkuan; Chen, Hong; Yang, Xiaolan

    2018-03-01

    The dehydrogenation of ammonia borane (AB) adsorbed on three different graphene oxide (GO) sheets is investigated within the ab initio density functional theory. The energy barriers to direct combination the hydrogens of hydroxyl groups and the hydridic hydrogens of AB to release H2 are relatively high, indicating that the process is energetically unfavorable. Our theoretical study demonstrates that the dehydrogenation mechanism of the AB-GO systems has undergone two critical steps, first, there is the formation of the hydrogen bond (O-H-O) between two hydroxyl groups, and then, the hydrogen bond further react with the hydridic hydrogens of AB to release H2 with low reaction barriers.

  17. Effect of Microstructure on Hydrogen Diffusion in Weld and API X52 Pipeline Steel Base Metals under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    R. C. Souza

    2017-01-01

    Full Text Available The aim of this research was to evaluate the influence of microstructure on hydrogen permeation of weld and API X52 base metal under cathodic protection. The microstructures analyzed were of the API X52, as received, quenched, and annealed, and the welded zone. The test was performed in base metal (BM, quenched base metal (QBM, annealed base metal (ABM, and weld metal (WM. Hydrogen permeation flows were evaluated using electrochemical tests in a Devanathan cell. The potentiodynamic polarization curves were carried out to evaluate the corrosion resistance of each microstructure. All tests were carried out in synthetic soil solutions NS4 and NS4 + sodium thiosulfate at 25°C. The sodium thiosulfate was used to simulate sulfate reduction bacteria (SRB. Through polarization, assays established that the microstructure does not influence the corrosion resistance. The permeation tests showed that weld metal had lower hydrogen flow than base metal as received, quenched, and annealed.

  18. Deep levels due to hydrogen in ZnO single crystals

    Science.gov (United States)

    Parmar, Narendra; Weber, Marc; Lynn, Kelvin

    2009-05-01

    Hydrogen impurities and oxygen vacancies are involved in the ˜0.7 eV shift of the optical absorption edge of ZnO. Deuterium causes a smaller shift. Titanium metal is used to bind hydrogen as it diffuses out of ZnO. Positron annihilation spectroscopy coupled with other techniques point to the presence of oxygen vacancies. Removing hydrogen followed by annealing in oxygen reduces the carrier concentration.

  19. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment

    KAUST Repository

    Jang, Ji-Wook

    2017-08-25

    Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Time-resolved microwave and terahertz conductivity measurements reveal more than twofold enhancement of the carrier lifetime for the hydrogen-treated BiVO4, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO4, although hydrogen is also a donor type dopant in BiVO4. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation or reduction of deep trap states related to vanadium antisite on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxides, which benefit the development of low-cost, highly-efficient solar energy conversion devices.

  20. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  1. Report on generation IV technical working group 3 : liquid metal reactors

    International Nuclear Information System (INIS)

    Lineberry, M. J.; Rosen, S. L.; Sagayama, Y.

    2002-01-01

    This paper reports on the first round of R and D roadmap activities of the Generation IV (Gen IV) Technical Working Group (TWG) 3, on liquid metal-cooled reactors. Liquid metal coolants give rise to fast spectrum systems, and thus the reactor systems considered in this TWG are all fast reactors. Gas-cooled fast reactors are considered in the context of TWG 2. As is noted in other Gen IV papers, this first round activity is termed ''screening for potential'', and includes collecting the most complete set of liquid metal reactor/fuel cycle system concepts possible and evaluating the concepts against the Gen IV principles and goals. Those concepts or concept groups that meet the Gen IV principles and which are deemed to have reasonable potential to meet the Gen IV goals will pass to the next round of evaluation. Although we sometimes use the terms ''reactor'' or ''reactor system'' by themselves, the scope of the investigation by TWG 3 includes not only the reactor systems, but very importantly the closed fuel recycle system inevitably required by fast reactors. The response to the DOE Request for Information (RFI) on liquid metal reactor/fuel cycle systems from principal investigators, laboratories, corporations, and other institutions, was robust and gratifying. Thirty three liquid metal concept descriptions, from eight different countries, were ultimately received. The variation in the scope, depth, and completeness of the responses created a significant challenge for the group, but the TWG made a very significant effort not to screen out concepts early in the process

  2. Modification of interlayer exchange coupling in Fe/V/Fe trilayers using hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Skoryna, J., E-mail: jskoryna@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland); Marczyńska, A. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland); Lewandowski, M. [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85 St., 61-614 Poznań (Poland); Smardz, L. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland)

    2015-10-05

    Highlights: • Magnetic films and multilayers. • Thin films. • Hydrogen absorbing materials. • Magnetic measurements. • Exchange coupling. - Abstract: Fe/V/Fe trilayers with constant-thickness Fe and step-like wedged V sublayers were prepared at room temperature using UHV magnetron sputtering. The bottom Fe layer grows onto oxidised Si(1 0 0) substrate and shows relatively high coercivity. The top Fe layer grows on vanadium spacer and shows considerably lower coercivity. The planar growth of the Fe and V sublayers was confirmed in-situ by X-ray photoelectron spectroscopy. Results show that the Fe sublayers are weakly exchange coupled for d{sub V} > 1.4 nm. Results on the coercivity studies as a function of the V interlayer thickness show near d{sub V} ∼ 1.95 nm (∼2.45 nm) weak antiferromagnetic (ferromagnetic) coupling, respectively. The hydrogenation of the Fe/V/Fe trilayers leads to increase of the strength of the ferromagnetic interlayer exchange coupling.

  3. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanovic, B. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Brand, R.A. [Department of Physics, Gerhard-Mercator-Universitaet GH Duisburg, D-47048, Duisburg (Germany); Marjanovic, A.; Schwickardi, M.; Toelle, J. [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Muelheim an der Ruhr (Germany)

    2000-04-28

    Thermodynamics and kinetics of the reversible dissociation of metal-doped NaAlH{sub 4} as a hydrogen (or heat) storage system have been investigated in some detail. The experimentally determined enthalpies for the first (3.7 wt% of H) and the second dissociation step of Ti-doped NaAlH{sub 4} (3.0 wt% H) of 37 and 47 kJ/mol are in accordance with low and medium temperature reversible metal hydride systems, respectively. Through variation of NaAlH{sub 4} particle sizes, catalysts (dopants) and doping procedures, kinetics as well as the cyclization stability within cycle tests have been substantially improved with respect to the previous status [B. Bogdanovic, M. Schwickardi (1997)]. In particular, using combinations of Ti and Fe compounds as dopants, a cooperative (synergistic) catalytic effect of the metals Ti and Fe in enhancing rates of both de- and rehydrogenation of Ti/Fe-doped NaAlH{sub 4} within cycle tests, reaching a constant storage capacity of {proportional_to}4 wt% H{sub 2}, has been demonstrated. By means of {sup 57}Fe Moessbauer spectroscopy of the Ti/Fe-doped NaAlH{sub 4} before and throughout a cycle test, it has been ascertained that (1) during the doping procedure, nanosize metallic Fe particles are formed from the doping agent Fe(OEt){sub 2} and (2) already after the first dehydrogenation, the nanosize Fe particles with NaAlH{sub 4} present are probably transformed into an Fe-Al-alloy which throughout the cycle test remains practically unchanged. (orig.)

  4. Early hydrogen water chemistry in the boiling water reactor: industry-first demonstration

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Hydrogen injection into the BWR feedwater during power operation has resulted in significant IGSCC reductions. Further, noble metal application (NMCA) during shutdown or On-line NobleChem TM (OLNC) during power operation has greatly reduced the required hydrogen injection rate by catalyzing the hydrogen-oxygen reaction on the metal surfaces, reducing the electrochemical corrosion potential (ECP) at operating temperature to well below the mitigation ECP of -230 mV (SHE) at reactor water hydrogen to oxidant (O 2 + H 2 O 2 ) molar ratios of ≥2. Since IGSCC rates increase markedly at reduced temperature, and the potential for crack initiation exists, additional crack mitigation was desired. To close this gap in mitigation, the EPRI BWR Startup ECP Reduction research and development program commenced in 2008 to undertake laboratory and feasibility studies for adding a reductant to the reactor water system during start-ups. Under this program, ECP reductions of noble metal treated stainless steel sufficient to mitigate IGSCC at startup temperatures were achieved in the laboratory in the absence of radiation at hydrogen, hydrazine and carbohydrazide to oxygen molar ratios of ≥ 2, ≥1.5 and ≥0.7, respectively. Based on the familiarity of operating BWRs with using hydrogen, a demonstration of hydrogen injection during the startup of an actual BWR using noble metals was planned. This process, named EHWC (Early Hydrogen Water Chemistry), differs from the HDS (Hydrogen During Startup) approach that has been successful in Japan in that HDS injects sufficient hydrogen for bulk oxidant reduction whereas EHWC injects a smaller amount of hydrogen, sufficient to achieve a hydrogen:oxidant molar ratio of at least two at noble metal treated surfaces. The industry-first EHWC demonstration was performed at Exelon's Peach Bottom 3 nuclear power plant in October 2011. Prior to EHWC, Peach Bottom 3 had one NMCA (October 1999) and five annual OLNC applications (starting in 2007

  5. Metal derivatives of organo-phosphorous compounds. Part II : niobium(V) and tantalum(V) derivatives

    International Nuclear Information System (INIS)

    Puri, D.M.; Singh, Soran

    1981-01-01

    Reactions between niobium(V) chloride, tantalum(V) chloride and dialkyl/diaryl (Et-, Prsup(i)-, Busup(n)- and Ph-) phosphites have been studied in different molar ratios and under different conditions of temperature and solvent systems. The isolated complex compounds have been characterised on the basis of infrared spectral measurements, elemental analyses and magnetic susceptibility data. The polymeric nature of the products has been indicated by their molecular weights. The coordination of phosphite units to metal atom of the other molecule through phosphoryl oxygen gave rise to O-P-O-bridges. (author)

  6. The orientation dependence of the hydrogen distribution within Mo/V (110) and (001) multilayered artificial superlattices

    CERN Document Server

    Hjörvarsson, B; Olafsson, S; Karlsson, E B; Birch, J; Sundgren, J E

    1997-01-01

    We have investigated the hydrogen distribution within multilayered Mo/V (110) and (001) artificial superlattices. The hydrogen concentration, determined by the sup 1 H( sup 1 sup 5 N, alpha gamma) sup 1 sup 2 C nuclear resonance reaction, is found to decrease with decreasing layer thickness. The decrease is attributed to an interface region with reduced hydrogen content. The extension of this interface region is found to be two monolayers in Mo/V (110), compared to the previously reported three monolayers in Mo/V (001) superlattices. In the (110) oriented samples the relative amount of H in the interface region decreases with increasing average H content (H/V (atomicratio) approx. 0.3-0.5). This effect is shown to be related to the orientation of the hydrogen planes with respect to the boundaries implied by the Mo/V interfaces. The hydrogen induced volume change, obtained by conventional theta-2 theta x-ray diffraction (XRD) and reciprocal space mapping, is found to be smaller for the (110) samples than for t...

  7. Hydrogen induced crack propagation in metal under plain-strain deformation

    International Nuclear Information System (INIS)

    Fishgojt, A.V.; Kolachev, B.A.

    1981-01-01

    A model of subcritical crack propagation conditioned by the effect of dissolved hydrogen in the case of plane-strain deformation of high-strength materials, is suggested. It is supposed that diffusion takes place in the isotropic material and hydrogen diffuses in the region of tensile stress maximum before crack tip under the effect of the stress gradient. When hydrogen achieves the critical concentration, microcrack growth takes place. Values of crack growth rates experimentally obtained agree with values calculated according to the suggested formula. Calculation and experimental data on the Ti-6Al-4V alloy, are presented [ru

  8. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  9. Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization.

    Science.gov (United States)

    Benson, Eric E; Zhang, Hanyu; Schuman, Samuel A; Nanayakkara, Sanjini U; Bronstein, Noah D; Ferrere, Suzanne; Blackburn, Jeffrey L; Miller, Elisa M

    2018-01-10

    We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS 2 ) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS 2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS 2 functionalized with the most electron donating functional group (p-(CH 3 CH 2 ) 2 NPh-MoS 2 ) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS 2 . The p-(CH 3 CH 2 ) 2 NPh-MoS 2 is more stable than unfunctionalized metallic MoS 2 and outperforms unfunctionalized metallic MoS 2 for continuous H 2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS 2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS 2 nanosheet. The functional groups preserve the metallic nature of the MoS 2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS 2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS 2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.

  10. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Hartoog, O. E.; Kaper, L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); D' Elia, V. [INAF/Rome Astronomical Observatory, via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy); Zafar, T. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Afonso, P. M. J. [Physics and Astronomy Department, American River College, 4700 College Oak Drive, Sacramento, CA 95841 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Universite Paris Diderot 5 place Jules Janssen, F-92195 Meudon (France); Goldoni, P. [APC, Astroparticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, Rue Alice Domon et Léonie Duquet, F-75205 Paris, Cedex 13 (France); Greiner, J. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Klose, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Levan, A. J., E-mail: sparre@dark-cosmology.dk [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  11. Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies

    International Nuclear Information System (INIS)

    Shirley, A.I.; Hall, C.K.

    1986-01-01

    The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride

  12. Photocurrent increase by metal modification of Fe{sub 2}O{sub 3} photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Iervolino, Giuseppina [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Tantis, Iosif [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece); Sygellou, Lamprini [FORTH/ICE-HT, P.O. Box 1414, 26504, Patras (Greece); Vaiano, Vincenzo, E-mail: vvaiano@unisa.it [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Sannino, Diana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece)

    2017-04-01

    Highlights: • Metals-modified hematite photoanodes prepared by electrodeposition method. • Ti and Ni-modified hematite thin films showed the higher photocurrents values. • The optimal loading of modifier was found at nominal 1% for Ni and 3% for Ti. • The highest H2 production was obtained on 3%Ti-Fe2O3 in the presence of glucose. - Abstract: The present work reports the investigation of photocurrent increase by metal modification of Fe{sub 2}O{sub 3} photoanodes and its effect on photoelectrocatalytic hydrogen production using aqueous solutions containing various organic compounds. Fe{sub 2}O{sub 3} photoanodes were prepared by the electrodeposition method. The efficiency of various metal modifiers of the hematite structure (Ti, Ni, Sn, Co and Cu) has been tested by monitoring the photoelectrochemical behavior of the ensuing photoanodes. Hydrogen production was monitored in an H-shaped reactor using pure and metal-modified hematite films deposited on FTO electrodes as photocatalyst while a combination of commercial carbon paste with dispersed Pt nanoparticles was used as electrocatalyst. In all cases, hydrogen production was obtained by application of a small external electric bias (in the range 0.5- 0.7 V vs Ag/AgCl electrode). Highest photocurrent production has been achieved with a Ti-modified Fe{sub 2}O{sub 3} photoanode in the presence of glucose as sacrificial agent.

  13. Canadian Hydrogen Association workshop on building Canadian strength with hydrogen systems. Proceedings

    International Nuclear Information System (INIS)

    2006-01-01

    The Canadian Hydrogen Association workshop on 'Building Canadian Strength with Hydrogen Systems' was held in Montreal, Quebec, Canada on October 19-20, 2006. Over 100 delegates attended the workshop and there were over 50 presentations made. The Canadian Hydrogen Association (CHA) promotes the development of a hydrogen infrastructure and the commercialization of new, efficient and economic methods that accelerate the adoption of hydrogen technologies that will eventually replace fossil-based energy systems to reduce greenhouse gas emissions. This workshop focused on defining the strategic direction of research and development that will define the future of hydrogen related energy developments across Canada. It provided a forum to strengthen the research, development and innovation linkages among government, industry and academia to build Canadian strength with hydrogen systems. The presentations described new technologies and the companies that are making small scale hydrogen and hydrogen powered vehicles. Other topics of discussion included storage issues, hydrogen safety, competition in the hydrogen market, hydrogen fuel cell opportunities, nuclear-based hydrogen production, and environmental impacts

  14. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  15. Preparation and Characterization of Styrene Bearing Diethanolamine Side Group, Styrene Copolymer Systems, and Their Metal Complexes

    Directory of Open Access Journals (Sweden)

    Aslışah Açıkses

    2018-01-01

    Full Text Available The two copolymer systems of styrene bearing diethanol amine side group and styrene were prepared by free radical polymerization method at 60°C in presence of 1,4-dioxane as solvent and AIBN as initiator. Their metal complexes were prepared by reaction of the copolymer used as ligand P(DEAMSt-co-StL′′ and Ni(II and Co(II metal ions, which was carried out in presence of ethanol and NaOH at 65°C for 48 h in pH = 7.5. The structures of the copolymers used as ligand and metal complexes were identified by FT-IR, 1H-NMR spectra, and elemental analysis. The properties of the copolymers used as ligand and metal complexes were characterized by SEM-EDX, AAS, DSC, TGA, and DTA techniques. Then, the electrical properties of the copolymers and metal complexes were examined as a function of the temperature and frequency, and the activation energies (Ea were estimated with conductivity measurements.

  16. Hydrogen storage compositions

    Science.gov (United States)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  17. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X. [Univ of Wollongong, Wollongong, NSW (Australia). Centre for Superconducting and Electronic Materials

    1996-12-31

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg{sub 2}Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg{sub 2}Ni; (2) by composite of Mg{sub 2}Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg{sub 2}Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  18. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    International Nuclear Information System (INIS)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg 2 Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg 2 Ni; (2) by composite of Mg 2 Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg 2 Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  19. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  20. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    Science.gov (United States)

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  1. A 60 keV implanter for metals

    International Nuclear Information System (INIS)

    Leutenecker, R.; Ryssel, H.; Zeller, K.-H.; Spoehrle, H.P.

    1985-01-01

    The design and preliminary performance data of a 60 keV high current implanter for the implantation of non-separated ion beams into metals are described. The target chamber accepts samples up to 70 cm in diameter and is equipped with holders to implant ball bearings, axles and other components which have to be rotated during implantation. Samples are mounted on a rugged table which can move up to 35 kg for +-35 cm in the x and y directions. The implanter, including the vacuum system, is completely computer controlled. The ion source is equipped with an oven having a maximum temperature of 1200 0 C and can deliver ion beams of nitrogen as well as different metal ions such as tin and silver with currents up to 10 mA. (Auth.)

  2. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  3. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.

  4. Improved stability of a metallic state in benzothienobenzothiophene-based molecular conductors: an effective increase of dimensionality with hydrogen bonds.

    Science.gov (United States)

    Higashino, Toshiki; Ueda, Akira; Yoshida, Junya; Mori, Hatsumi

    2017-03-25

    A dihydroxy-substituted benzothienobenzothiophene, BTBT(OH) 2 , was synthesized, and its charge-transfer (CT) salt, β-[BTBT(OH) 2 ] 2 ClO 4 , was successfully obtained. Thanks to the introduced hydroxy groups, a hydrogen-bonded chain structure connecting the BTBT molecules and counter anions was formed in the CT salt, which effectively increases the dimensionality of the electronic structure and consequently leads to a stable metallic state.

  5. Secondary ion emission from metal surfaces bombarded by 0.5-10 keV protons and hydrogens

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yano, Syukuro

    1978-01-01

    Secondary ion emission coefficients by bombardment of 0.5 - 10 keV protons K 11 and atomic hydrogens K 01 on copper, stainless steel, molybdenum and evaporated gold surfaces have been measured in a moderate vacuum. Results are summarized as follows; 1) There is no significant difference between K 11 and K 01 . 2) Differences in K 11 and K 11 between different samples of the same material and between the sample before baking-out and the same sample after baking-out are of the order of several tens of percent. 3) The incident particle energy E sub(max) at which K 11 and K 01 have the maximum value lies in the keV region, and increases with the target mass. According to the fact that E sub(max) differs substantially from the energy at which the elastic stopping power has the maximum value, a characteristic length l is introduced and calculated to be of the order of hundreds of A; the factor exp (-x/l) represents the degree of contribution of collision at depth x to K 11 or K 01 . (author)

  6. Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation

    Science.gov (United States)

    Rao, Heng; Yu, Wen-Qian; Zheng, Hui-Qin; Bonin, Julien; Fan, Yao-Ting; Hou, Hong-Wei

    2016-08-01

    Earth-abundant metal complexes have emerged as promising surrogates of platinum for catalyzing the hydrogen evolution reaction (HER). In this study, we report the design and synthesis of two novel nickel quinolinethiolate complexes, namely [Ni(Hqt)2(4, 4‧-Z-2, 2‧-bpy)] (Hqt = 8-quinolinethiol, Z = sbnd H [1] or sbnd CH3 [2], bpy = bipyridine). An efficient three-component photocatalytic homogeneous system for hydrogen generation working under visible light irradiation was constructed by using the target complexes as catalysts, triethylamine (TEA) as sacrificial electron donor and xanthene dyes as photosensitizer. We obtain turnover numbers (TON, vs. catalyst) for H2 evolution of 5923/7634 under the optimal conditions with 5.0 × 10-6 M complex 1/2 respectively, 1.0 × 10-3 M fluorescein and 5% (v/v) TEA at pH 12.3 in EtOH/H2O (1:1, v/v) mixture after 8 h irradiation (λ > 420 nm). We discuss the mechanism of H2 evolution in the homogeneous photocatalytic system based on fluorescence spectrum and cyclic voltammetry data.

  7. First-principles study of hydrogen dissociation and diffusion on transition metal-doped Mg(0 0 0 1) surfaces

    International Nuclear Information System (INIS)

    Wang, Zhiwen; Guo, Xinjun; Wu, Mingyi; Sun, Qiang; Jia, Yu

    2014-01-01

    First-principles calculations within the density functional theory (DFT) have been carried out to study hydrogen molecules dissociation and diffusion on clean and transition metals (TMs) doped Mg(0 0 0 1) surfaces following Pozzo et al. work. Firstly, the stability of Mg(0 0 0 1) surface doped with transition metals atom has been studied. The results showed that transition metals on the left of the table tend to substitute Mg in the second layer, while the other transition metals prefer to substitute Mg in the first layer. Secondly, we studied hydrogen molecules dissociation and diffusion on clean and Mg(0 0 0 1) surfaces which the transition metal atoms substituted both in the first layer and second layer. When transition metal atoms substitute in the first layer, the results agree with the Pozzo et al. result; when transition metal atoms substitute in the second layer, the results showed that the transition metals on the left of the periodic table impact on the dissociation barriers is less. However, for the transition metals (Mn, Fe, Co, Ni) on the right, there is a great impact on the barriers. The transition metals doped surfaces bind the dissociated H atoms loosely, making them easily diffused. The results further reveal that the Fe dopant on the Mg surface is the best choice for H 2 dissociation and hydrogen storage.

  8. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli.

    Science.gov (United States)

    Sharma, Preeti; Melkania, Uma

    2018-05-01

    In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH 2 /gCarbo initial with 10 mg/L copper supplementation as compared to 24.2 mLH 2 /gCarbo initial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu 2+  metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  10. Nickel-hydrogen bipolar battery system

    Science.gov (United States)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  11. Role of synergism effect of mixed metal oxides on molecular hydrogen formation from photocatalitic water splitting

    International Nuclear Information System (INIS)

    Mahmudov, H.M.; Ismayilova, M.K.; Jafarova, N.A.; Azizova, K.V.

    2017-01-01

    The paper deals with hydrogen production using photocatalysis. In particular, we focus on the role of synergism on the reaction rate. For hydrogen production presented photocatalyst is composed of nanoAl_2O_3 and dispers TiO_2. Yet, the presence of the two mixed metal oxides together results in considerable enhancement of the reaction rate. The main reason for this is the increase of the charge carriers lifetime allowing for electron transfer to hydrogen ions and hole transfer to oxygen ions. It was investigated the mechanism of water splitting in presence of mixed nanocatalysed. It has been shown that the effect occurs during irradiation as a result of photooxidation of water with mixed metal oxides catalyst.

  12. Hydrogen-deuterium exchange of the anionic group 6B transition-metal hydrides. Convenient, in-situ-deuterium transfer reagents

    International Nuclear Information System (INIS)

    Gaus, P.L.; Kao, S.C.; Darensbourg, M.Y.; Arndt, L.W.

    1984-01-01

    The facile exchange of hydrogen for detuerium in the anionic group 6B carbonyl hydrides HM(CO) 4 L - (M = Cr, W; L = CO P(OMe) 3 ) has been studied in THF 4 (tetrahydrofuran) with CH 3 OD, D 2 O, and CH 3 CO 2 D. This has provided a synthesis of the deuterides, DM(CO) 4 L - , as well as a convenient in situ source of deuteride reducing reagents for organic halides. A number of such reductions are described, using 2 H NMR to demonstrate both selectivity and stereospecificity for certain systems. The carbonyl region of the infrared spectra of the hydrides is not affected by deuteration of the hydrides, suggesting that the M-H or M-D vibrational modes are not coupled significantly to CO vibrations in these hydrides. The mechanism of the H/D exchange and of a related H 2 elimination reaction is discussed

  13. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  14. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading

    International Nuclear Information System (INIS)

    Kotake, Hirokazu; Matsumoto, Ryosuke; Taketomi, Shinya; Miyazaki, Noriyuki

    2008-01-01

    The effect of hydrogen on the material strengths of metals is known as the hydrogen embrittlement, which affects the structural integrity of a hydrogen energy system. In the present paper, we developed a computer program for a transient hydrogen diffusion-elastoplastic coupling analysis by combining an in-house finite element program with a general purpose finite element computer program to analyze hydrogen diffusion. In this program, we use a hypothesis that the hydrogen absorbed in the metal affects the yield stress of the metal. In the present paper, we discuss the effects of the cyclic loading on the hydrogen concentration near the crack tip. An important finding we obtained here is the fact that the hydrogen concentration near the crack tip greatly depends on the loading frequency. This result indicates that the fatigue lives of the components in a hydrogen system depend not only on the number of loading cycles but also on the loading frequency

  15. Electrical conductivity of hydrogen shocked to megabar pressures

    International Nuclear Information System (INIS)

    Weir, S.T.; Nellis, W.J.; Mitchell, A.C.

    1993-08-01

    The properties of ultra-high pressure hydrogen have been the subject of much experimental and theoretical study. Of particular interest is the pressure-induced insulator-to-metal transition of hydrogen which, according to recent theoretical calculations, is predicted to occur by band-overlap in the pressure range of 1.5-3.0 Mbars on the zero temperature isotherm. Extremely high pressures are required for metallization since the low-pressure band gap is about 15 eV. Recent static-pressure diamond anvil cell experiments have searched for evidence of an insulator-to-metal transition, but no conclusive evidence for such a transition has yet been supplied. Providing conclusive evidence for hydrogen metallization is difficult because no technique has yet been developed for performing static high-pressure electrical conductivity experiments at megabar pressures. The authors report here on electrical conductivity experiments performed on H 2 and D 2 multi-shocked to megabar pressures. Electrical conductivities of dense fluid hydrogen at these pressures and temperatures reached are needed for calculations of the magnetic fields of Jupiter and Saturn, the magnetic fields being generated by convective dynamos of hot, dense, semiconducting fluid hydrogen. Also, since electrical conduction at the pressure-temperature conditions being studied is due to the thermal excitation of charge carriers across the electronic band gap, these experiments yield valuable information on the width of the band gap at high densities

  16. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  17. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U. [Instituto de Investigaciones Electricas Av. Reforma 113, col. Palmira c.p.62490 Cuernavaca Morelos (Mexico)

    2006-07-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm{sup 2} of geometrical area) with a maximum hydrogen production of 1 Nm{sup 3}/h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  18. Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond.

    Science.gov (United States)

    Mona, Sharma; Kaushik, Anubha; Kaushik, C P

    2011-02-01

    Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-01-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir

  20. Neutronographic measurements of the motion of hydrogen and hydrogeneous substances in liquids and solids

    International Nuclear Information System (INIS)

    Zeilinger, A.; Pochman, W.A.; Rauch, H.; Suleiman, M.

    1976-01-01

    Earlier measurements of hydrogen motion in liquids by neutron radiography have been extended to obtain additional parameters of governing the mixing behavior of light and heavy water. Furthermore motion of water in concrete was measured leading to a determination of (1) the vapor diffusion coefficient of water in concrete, (2) the porosity of the concrete, and (3) the mass transfer coefficient of vapor from the concrete to the environment. Recently the ability of neutron radiography to measure the hydrogen motion in metals was demonstrated and the diffusion coefficients of hydrogen in V, Ta, Nb and beta-Ti was determined. In addition, some work on resolution measurements of neutron radiography will be reported. (author)

  1. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    content rather than nitride. In addition, the reactivity of the transition metals of group IV-VI with the reactive template was investigated under a flow of N2 at different temperatures in the range of 1023 to 1573 K while keeping the weight ratio constant at 1:1. The results show that Ti, V, Nb, Ta, and Cr reacted with mpg-C3N4 at 1023 K to form nitride phase with face centered cubic structure. The nitride phase destabilized at higher temperature ≥1223 K through the reaction with the remaining carbon residue originated from the decomposition of the template to form carbonitride and carbide phases. Whereas, Mo and W produce a hexagonal structure of carbide irrespective of the applying reaction temperature. The tendency to form transition metal nitrides and carbides at 1023 K was strongly driven by the free energy of formation. The observed trend indicates that the free energy of formation of nitride is relatively lower for group IV and V transition metals, whereas the carbide phase is thermodynamically more favorable for group VI, in particular for Mo and W. The thermal stability of nitride decreases at high temperature due to the evolution of nitrogen gas. The electrocatalytic activities of the produced nanoparticles were tested for hydrogen evolution reaction in acid media and the results demonstrated that molybdenum carbide nanoparticles exhibited the highest HER current with over potential of 100 mV vs. RHE, among the samples prepared in this study. This result is attributed to the sufficiently small particle size (8 nm on average) and accordingly high surface area (308 m2 g-1). Also, the graphitized carbon layer with a thickness of 1 nm on its surface formed by this synthesis provides excellent electron pathway to the catalyst which will improve the rate of electron transfer reaction.

  2. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21. Next to hydrogen, helium is perhaps the most intriguing component in this region of the Sun. Much like other elements, which combine with hydrogen to produce hydrides, helium can form the well-known helium hydride molecular ion, HeH+, and the excited neutral helium hydride molecule, HeH∗. While HeH+ is hypothesized to be a key cosmologicalmolecule, its possible presence in the Sun, and that of its excited neutral counterpart, has not been considered. Still, these hydrides are likely to play a role in the synthesis of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study of helium emission spectra can provide insight into the condensed nature of the Sun, especially when considering the 10830 Å line associated with the 23P→2 3S triplet state transition. This line is strong in solar prominences and can be seen clearly on the disk. The excessive population of helium triplet states cannot be adequately explained using the gaseous models, since these states should be depopulated by collisional processes. Conversely, when He-based molecules are used to build CHS in a liquid metallic hydrogen model, an ever increasing population of the 23S and 23P states might be expected. The overpopulation of these triplet states leads to the conclusion that these emission lines are unlikely to be produced through random collisional or photon excitation, as required by the gaseous models. This provides a significant hurdle for these models. Thus, the strong 23P→2 3S lines and the overpopulation of the helium triplet

  3. Hydrogen adsorption on metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Lafi, L.; Dorval-Douville, G.; Chandonia, P.-A. [Univ. du Quebec a Trois-Rivieres, Inst. de recherche sur l' hydrogene, Trois-Rivieres, Quebec (Canada)]. E-mail: Lyubov.Lafi@uqtr.ca

    2006-07-01

    'Full text:' In recent years, several novel carbon-based microporous materials such as single-walled carbon nanotubes (SWNTs) and metal-organic frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. Hydrogen adsorption measurements on Al-, Cr- and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77K ranges from 2,8 to 3,9 wt % for the MOFs and from 1,5 to 2,5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (< 0,4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is found to be about 2,9 kJ/mol for the MOF-5 and about 3,6 - 4,2 kJ/mol for SWNTs. The uptake of hydrogen on SWNTs and MOF-5 appears to be due to physisorption and can be described, through the DA-model, by a traditional theory of micropore filling. (author)

  4. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  5. Sputtering of solid nitrogen and oxygen by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Stenum, B.

    1994-01-01

    Electronic sputtering of solid nitrogen and oxygen by keV hydrogen ions has been studied at two low-temperature setups. The yield of the sputtered particles has been determined in the energy regime 4-10 keV for H+, H-2+ and H-3+ ions. The yield for oxygen is more than a factor of two larger than...... that for nitrogen. The energy distributions of the sputtered N2 and O2 molecules were measured for hydrogen ions in this energy regime as well. The yields from both solids turn out to depend on the sum of the stopping power of all atoms in the ion. The yield increases as a quadratic function of the stopping power...

  6. Light Metal Decorated Graphdiyne (GDY) Nanosheets for Reversible Hydrogen Storage.

    Science.gov (United States)

    Panigrahi, P; Dhinakaran, A K; Naqvi, S R; Rao, Sankara Gollu; Ahuja, Rajeev; Hussain, Tanveer

    2018-05-29

    The sensitive nature of molecular hydrogen (H2) interaction with the surfaces of pristine and functionalized nanostructures, especially two-dimensional materials (2D) has been a subject of debate for a while now. An accurate approximation of H2 adsorption mechanism has a vital significance for the specific fields like H2 storage applications. Owing to the importance of this issue, we have performed a comprehensive DFT study by means of several different approximations to investigate the structural, electronic, charge transfer and energy storage properties of pristine and functionalized graphdiyne (GDY) nano sheets. The dopants considered here include light-metals Li, Na, K, Ca, Sc and Ti, which make uniform distribution over GDY even at high doping concentration due to their strong binding and charge transfer mechanism. Upon 11% of metal functionalization, GDY changes into metallic state from being a small band gap semiconductor. Such situations turn the dopants to a partial positive state, which is favorable for adsorption of H2 molecules. The adsorption mechanism of H2 on GDY has been studied and compared by different methods like GGA, vdW-DF and DFT-D3 functionals. It has been established that each functionalized systems anchor multiple H2 molecules with adsorption energies that falls into a suitable range regardless of the functional used for approximations. A significantly high H2 storage capacity would guarantee that light metal-doped GDY nano sheets could serve the purpose of an efficient and reversible H2 storage material. © 2018 IOP Publishing Ltd.

  7. Hydrogen Solubility in Heavy Undefined Petroleum Fractions Using Group Contributions Methods

    Directory of Open Access Journals (Sweden)

    Aguilar-Cisneros Humberto

    2017-01-01

    Full Text Available Hydrogen solubility in heavy undefined petroleum fractions is estimated by taking as starting point a method of characterization based on functional groups [ Carreón-Calderón et al. (2012 Ind. Eng. Chem. Res. 51, 14188-14198 ]. Such method provides properties entering into equations of states and molecular pseudostructures formed by non-integer numbers of functional groups. Using Vapor-Liquid Equilibria (VLE data from binary mixtures of known compounds, interaction parameters between hydrogen and the calculated functional groups were estimated. Besides, the incorporation of the hydrogen-carbon ratio of the undefined petroleum fractions into the method allows the corresponding hydrogen solubility to be properly estimated. This procedure was tested with seven undefined petroleum fractions from 27 to 6 API over wide ranges of pressure and temperature (323.15 to 623.15 K. The results seem to be in good agreement with experimental data (overall Relative Average Deviation, RAD < 15%.

  8. The analysis of irradiated nuclear fuel and cladding materials, determination of carbon, hydrogen and oxygen/metal ratio

    International Nuclear Information System (INIS)

    Jones, I.G.

    1976-02-01

    Equipment has been developed for the determination of carbon, hydrogen and oxygen/metal ratio on irradiated fuels, of carbon in stainless steel cladding materials and in graphite rich deposits, and of hydrogen in zircaloy. Carbon is determined by combustion to carbon dioxide which is collected and measured manometrically, hydrogen by vacuum extraction followed by diffusion through a palladium thimble, and oxygen/metal ratio by CO/CO 2 equilibration. A single set of equipment was devised in order to minimise the time and work involved in changing to a different set of equipment in a separate box, for each type of analysis. For each kind of analysis, alterations to the apparatus are involved but these can be carried out with the basic set in position in a shielded cell, although to do so it is necessary to obtain access via the gloves on the fibre-glass inner glove box. This requires a removal of samples emitting radiation, by transfer to an adjoining cell. A single vacuum system is employed. This is connected through a plug in the lead wall of the shielded cell, and couplings in the glove box wall to the appropriate furnaces. Carbon may be determined, in stainless steel containing 400 to 800 ppm C, with a coefficient of variation of +- 2%. On deposits containing carbon, the coefficient of variation is better than +- 1% for 2 to 30 mg of carbon. Hydrogen, at levels between 30 and 200 ppm in titanium can be determined with a coefficient of variation of better than +- 5%. Titanium has been used in lieu of zircaloy since standardised zircaloy specimens are not available. The precision for oxygen/metal ratio is estimated to be +- 0.001 Atoms oxygen. Sample weights of 200 mg are adequate for most analyses. (author)

  9. A new technique for pumping hydrogen gas

    Science.gov (United States)

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  10. Determination of the ratio r v = d v u v of the valence quark distributions in the proton from neutrino and antineutrino reactions on hydrogen and deuterium

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Klein, H.; Morrison, D. R. O.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Cooper-Sarkar, A. M.; Guy, J.; Venus, W.; Bullock, F. W.; Burke, S.

    1994-12-01

    Based on a QCD analysis of the parton momentum distributions in the proton, the ratio r v = d v / u v of the d and u valence quark distributions is determined as function of x in the range 0.01< x<0.7. The analysis uses data from neutrino and antineutrino charged current interactions on hydrogen and deuterium, obtained with BEBC in the (anti)neutrino wideband beam of the CERN SPS. Since v mainly depends on the deuterium/hydrogen ratios of the normalised x-y-Q 2-distributions many systematic effects cancel. It is found that r v decreases with increasing x, and drops below the naive SU(6) expectation of 0.5 for x≳0.3. An extrapolation of r v to x=1 is consistent with the hypothesis r v (1)=0.

  11. Hydrogenation of cyclohexene with LaNi5−xAlxHn metal hydrides suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  12. Hydrogenation of cyclohexene with LaNi@#5@#-@#x@#Al@#x@#Hn metal hydrides, suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Snijder, E.D.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  13. Computational investigation of the effects of barrier layers on the permeation of hydrogen through metals

    International Nuclear Information System (INIS)

    Perkins, W.G.

    1975-01-01

    Results of a computational investigation of the permeation behavior of oxide-coated metal membranes are presented. A steady-state permeation model was developed which promises to be useful in evaluation of oxide layers on metals as hydrogen permeation barriers. The pressure and thickness dependence of steady state permeation through oxide-coated metal membranes is described using plots of logarithmic functions. (U.S.)

  14. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Experimental charge fractions of hydrogen scattered from insulators at 50-340 keV

    CERN Document Server

    Ross, Graham G

    2002-01-01

    Ion bombardment of insulators induces accumulation of electric charges at and under the insulator surfaces. This paper deals with the effect of the accumulated electric charges on the charge fractions of scattered hydrogen. We have measured and compiled charge fractions of hydrogen, in the energy range (for the scattered particles) from 50 to 340 keV, scattered from polystyrene, polymethylmethacrylate, polycarbonate, polyethylene and silicon. In order to establish the effect of the charge accumulation, some samples have been cut from a thick (1 mm) sheet, while some others have been spin coated (approx 250 nm) onto silicon wafers. Experimental measurements have been fitted with the equation f(0)=Aexp(-V sup 2 /V sub i V sub 0), where f(0) is the neutral fraction, V the velocity, V sub i the 'Bohr velocity' for the electron of projectiles, A and V sub 0 the fitting parameters. Comparisons using the least-square fitting procedure have shown that the accumulation of electric charges on the thick polymer samples ...

  16. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters

    International Nuclear Information System (INIS)

    Perez, R.M.; Cabrera, G.; Gomez, J.M.; Abalos, A.; Cantero, D.

    2010-01-01

    The precipitation of chromium(III), copper(II), manganese(II) and zinc(II) by biogenic hydrogen sulfide generated by sulfate-reducing bacteria, Desulfovibrio sp., and the degradation of total petroleum hydrocarbons (TPH) in the presence of heavy metal by Pseudomonas aeruginosa AT18 have been carried out. An anaerobic stirred tank reactor was used to generate hydrogen sulfide with Desulfovibrio sp. culture and the precipitation of more than 95% of each metal was achieved in 24 h (metal solutions contained: 60, 49, 50 and 80 mg L -1 of chromium, copper, manganese and zinc sulfates). A stirred tank reactor with P. aeruginosa AT18, in the presence of the heavy metal solution and 2% (v/v) of petroleum, led to the degradation of 60% of the total petroleum hydrocarbons and the removal of Cr(III) 99%, Cu(II) 93%, Zn(II) 46% and Mn(II) 88% in the medium through biosorption phenomena. These results enabled the development of an integrated system in which the two processes were combined. The overall aim of the study was achieved, with 84% of TPH degraded and all of the metals completely removed. Work is currently underway aimed at improving this system (decrease in operation time, culture of P. aeruginosa in anaerobic conditions) in an effort to apply this process in the bioremediation of natural media contaminated with heavy metals and petroleum.

  17. Development of radioactive platinum group metal catalysts

    International Nuclear Information System (INIS)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E.

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m 2 /g. The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs

  18. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  19. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  20. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  1. Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-09-01

    Full Text Available materials to form part of a practical hydrogen storage system, knowledge of the ‘processing’ techniques to improve the properties of the powders is essential. However, the processing routes of MOF materials towards system integration are rarely reviewed...

  2. Effects of Boron-Incorporation in a V-Containing Zr-Based AB2 Metal Hydride Alloy

    Directory of Open Access Journals (Sweden)

    Shiuan Chang

    2017-11-01

    Full Text Available In this study, boron, a metalloid element commonly used in semiconductor applications, was added in a V-containing Zr-based AB2 metal hydride alloy. In general, as the boron content in the alloy increased, the high-rate dischargeability, surface exchange current, and double-layer capacitance first decreased and then increased whereas charge-transfer resistance and dot product of charge-transfer resistance and double-layer capacitance changed in the opposite direction. Electrochemical and gaseous phase characteristics of two boron-containing alloys, with the same boron content detected by the inductively coupled plasma optical emission spectrometer, showed significant variations in performances due to the difference in phase abundance of a newly formed tetragonal V3B2 phase. This new phase contributes to the increases in electrochemical high-rate dischargeability, surface exchange current, charge-transfer resistances at room, and low temperatures. However, the V3B2 phase does not contribute to the hydrogen storage capacities in either gaseous phase and electrochemical environment.

  3. Heat energy from hydrogen-metal nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hadjichristos, John [Defkalion GT SA, 1140 Homer Street, Suite 250, Vancouver BC V682X6 (Canada); Gluck, Peter [Retired from INCDTIM Cluj-Napoca in 1999 (Romania)

    2013-11-13

    The discovery of the Fleischmann-Pons Effect in 1989, a promise of an abundant, cheap and clean energy source was premature in the sense that theoretical knowledge, relative technologies and the experimental tools necessary for understanding and for scale-up still were not available. Therefore the field, despite efforts and diversification remained quasi-stagnant, the effect (a scientific certainty) being of low intensity leading to mainstream science to reject the phenomenon and not supporting its study. Recently however, the situation has changed, a new paradigm is in statunascendi and the obstacles are systematically removed by innovative approaches. Defkalion, a Greek company (that recently moved in Canada for faster progress) has elaborated an original technology for the Ni-H system [1-3]. It is about the activation of hydrogen and creation of nuclear active nano-cavities in the metal through a multi-stage interaction, materializing some recent breakthrough announcements in nanotechnology, superconductivity, plasma physics, astrophysics and material science. A pre-industrial generator and a novel mass-spectrometry instrumentations were created. Simultaneously, a meta-theory of phenomena was sketched in collaboration with Prof. Y. Kim (Purdue U)

  4. Heat energy from hydrogen-metal nuclear interactions

    International Nuclear Information System (INIS)

    Hadjichristos, John; Gluck, Peter

    2013-01-01

    The discovery of the Fleischmann-Pons Effect in 1989, a promise of an abundant, cheap and clean energy source was premature in the sense that theoretical knowledge, relative technologies and the experimental tools necessary for understanding and for scale-up still were not available. Therefore the field, despite efforts and diversification remained quasi-stagnant, the effect (a scientific certainty) being of low intensity leading to mainstream science to reject the phenomenon and not supporting its study. Recently however, the situation has changed, a new paradigm is in statunascendi and the obstacles are systematically removed by innovative approaches. Defkalion, a Greek company (that recently moved in Canada for faster progress) has elaborated an original technology for the Ni-H system [1-3]. It is about the activation of hydrogen and creation of nuclear active nano-cavities in the metal through a multi-stage interaction, materializing some recent breakthrough announcements in nanotechnology, superconductivity, plasma physics, astrophysics and material science. A pre-industrial generator and a novel mass-spectrometry instrumentations were created. Simultaneously, a meta-theory of phenomena was sketched in collaboration with Prof. Y. Kim (Purdue U)

  5. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  6. Hydrogen potential in β-V2H studied by deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Hempelmann, R.; Price, D.L.; Reiter, G.; Richter, D.

    1989-02-01

    Two complementary techniques of deep inelastic neutron scattering were used to study hydrogen in β-V 2 H: (i) by means of neutron vibrational spectroscopy we measured hydrogen vibrations up to the fourteenth order; from these data we derived the effective single-particle potential, the shape of which is a parabola with a flattened bottom, and the hydrogen wave functions. (ii) By means of neutron Compton scattering we determined the kinetic of energy of the hydrogen; the value agrees with that calculated from the vibrational ground-state wave function. 6 refs., 5 figs

  7. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst

    International Nuclear Information System (INIS)

    Yan, Kai; Chen, Aicheng

    2013-01-01

    Biomass-derived platform intermediate furfural and levulinic acid were efficiently hydrogenated to the value-added furfuryl alcohol and promising biofuel γ-valerolactone, respectively, using a noble-metal-free Cu–Cr catalyst, which was facilely and successfully synthesized by a modified co-precipitation method using the cheap metal nitrates. In the first hydrogenation of furfural, 95% yield of furfuryl alcohol was highly selectively produced at 99% conversion of furfural under the mild conditions. For the hydrogenation of levulinic acid, 90% yield of γ-valerolactone was highly selectively produced at 97.8% conversion. Besides, the physical properties of the resulting Cu–Cr catalysts were studied by XRD (X-ray diffraction), EDX (Energy-dispersive X-ray), TEM (Transmission electron microscopy) and XPS (X-ray photoelectron spectroscopy) to reveal their influence on the catalytic performance. Subsequently, different reaction parameters were studied and it was found that Cu 2+ /Cr 3+ ratios (0.5, 1 and 2), reaction temperature (120–220 °C) and hydrogen pressure (35–70 bar) presented important influence on the catalytic activities. In the end, the stability of the Cu–Cr catalysts was also studied. - Highlights: • A noble-metal-free Cu–Cr catalyst was successfully synthesized using metal nitrates. • Cu–Cr catalysts were highly selective hydrogenation of biomass-derived furfural to FA. • Cu–Cr catalysts were efficient for hydrogenation of biomass-derived LA to biofuel GVL. • The physical properties of the resulting Cu–Cr catalysts were systematically studied. • Reaction parameters and stability in the hydrogenation of furfural were studied in details

  8. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    International Nuclear Information System (INIS)

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-01-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage (C-V) measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with 60 Co γ-rays at 100 C and zero bias, where the dopant deactivation is significant

  9. Probing the structure, stability and hydrogen adsorption of lithium functionalized isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by density functional theory.

    Science.gov (United States)

    Venkataramanan, Natarajan Sathiyamoorthy; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2009-04-14

    Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen.

  10. Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn by Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kawazoe

    2009-04-01

    Full Text Available Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen.

  11. Hydrogen-absorbing alloys for the nickel-metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Mingming Geng; Jianwen Han; Feng Feng [University of Windsor, Ontario (Canada). Mechanical and Materials Engineering; Northwood, D.O. [University of Windsor, Ontario (Canada). Mechanical and Materials Engineering]|[Ryerson Polytechnic University, Toronto (Canada)

    1998-12-31

    In recent years, owing to the rapid development of portable electronic and electrical appliances, the market for rechargeable batteries has increased at a high rate. The nickel-metal hydride battery (Ni/MH) is one of the more promising types, because of its high capacity, high-rate charge/discharge capability and non-polluting nature. This type of battery uses a hydrogen storage alloy as its negative electrode. The characteristics of the Ni/MH battery, including discharge voltage, high-rate discharge capability and charge/discharge cycle lifetime are mainly determined by the construction of the negative electrode and the composition of the hydrogen-absorbing alloy. The negative electrode of the Ni/MH battery described in this paper was made from a mixture of hydrogen-absorbing alloy, nickel powder and polytetrafluoroethylene (PTFE). A multicomponent MmNi{sub 5}-based alloy (Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85} Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35}) was used as the hydrogen-absorbing alloy. The discharge characteristics of the negative electrode, including discharge capacity, cycle lifetime, and polarization overpotential, were studied by means of electrochemical experiments and analysis. The decay of the discharge capacity for the Ni/MH battery (AA size, 1 Ah) was about 1% after 100 charge/discharge cycles and 10% after 500 charge/discharge cycles. (author)

  12. Hydrogen release from vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh; Kulsartov, T.V.; Chikhray, E.V.; Romanenko, O.G.; Tazhibaeva, I.L.; Shestakov, V.P.

    1999-01-01

    The experiments on hydrogen loading of vanadium alloy with the following thermodesorption spectroscopy (TDS) measurements were carried out with the sample of the V-4Cr-4Ti vanadium alloy (Russia production). Hydrogen solubility was calculated from experimental TDS curves, obtained after equilibrium loading of the sample at the temperatures 673, 773, 873, 973, and 1073 K. The range of loading pressures was 10-100 Pa. The experiments carried out had an objective to determine the regimes (loading time, temperatures and pressures) for the experiment on in-pile loading of the vanadium alloy. (author)

  13. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  14. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  15. Investigation of hydrogen micro-kinetics in metals with ion beam implantation and analysis

    International Nuclear Information System (INIS)

    Wang, T.S.; Peng, H.B.; Lv, H.Y.; Han, Y.C.; Grambole, D.; Herrmann, F.

    2007-01-01

    One of the most important subjects in the fusion material research is to study the hydrogen and helium concentration, diffusion and evolution in the structure material of fusion reactor, since the hydrogen and helium can be continuously produced by the large dose fast neutron irradiation on material. Various analysis Methods can be used, but the ion beam analysis method has some advantages for studying the hydrogen behaviors in nano- or micrometer resolution. In this work, the hydrogen motion and three-dimensional distribution after implantation into metal has been studied by resonance NRA, micro-ERDA and XRD etc Methods. The resolution of the H-depth-profile is in nanometer level and the lateral resolution can be reached to 2 micrometers. The evolution of hydrogen depth-profile in a titanium sample has been studied versus the change of normal stress in samples. Evident hydrogen diffusion has been observed, while a normal stress is changed in the range of 107-963 MPa. A new phase transformation during the hydrogenation is observed by the in-situ XRD analysis. The further study on the hydrogen behaviors in the structure materials of fusion reactor is in plan. (authors)

  16. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Venkataramanan, Natarajan Sathiyamoorthy; Belosludov, Rodion Vladimirovich; Note, Ryunosuke; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-01-01

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H 2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H 2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H 2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li 6 B 36 N 36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li 6 B 36 N 36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  17. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture.

    Science.gov (United States)

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K

    2014-06-04

    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  18. Hydrogen absorption kinetics in powdered V + 80 wt.% LaNi5 composite

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Tirpude, Amit; Taxak, Manju; Krishnamurthy, Nagaiyar

    2013-01-01

    Highlights: •Vanadium prevents the pulverization of LaNi 5 . •H absorption capacity LaNi 5 –V composite is higher than LaNi 5 . •H absorption kinetics of LaNi 5 –V composite is relatively faster than V and LaNi 5 . •Fermi energy level of LaNi 5 –V composite lowered by vanadium addition. -- Abstract: The hydrogen absorption behavior of V + 80 wt.% LaNi 5 composite, LaNi 5 and V has been investigated. The LaNi 5 –V composite was prepared by high energy ball-milling technique using high pure vanadium and LaNi 5 powder. Lattice expansion of the composite has been observed in X-ray analysis which indicates the solid solution formation. Presence of free V and traces of V 2 O 5 phase were also observed in the composite. The hydrogen absorption capacity and absorption kinetics of the composite showed improvement as compared to LaNi 5 . The improved kinetics of the composite has been co-related to the change in lattices parameter, Fermi energy level and catalytic property of vanadium. Integrity of the composite has found to be effective even after 20 numbers of hydriding and dehydriding cycles due to the presence of vanadium

  19. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  20. Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory

    DEFF Research Database (Denmark)

    Valdes, Alvaro; Brillet, Jeremie; Graetzel, Michael

    2012-01-01

    An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO2 functionalized with gold n...... nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals....