WorldWideScience

Sample records for group protein ezh2

  1. Regulation of T cell differentiation and function by EZH2

    Directory of Open Access Journals (Sweden)

    THEODOROS KARANTANOS

    2016-05-01

    Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.

  2. Regulation of T Cell Differentiation and Function by EZH2

    Science.gov (United States)

    Karantanos, Theodoros; Christofides, Anthos; Bardhan, Kankana; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  3. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2*

    Science.gov (United States)

    Dudakovic, Amel; Camilleri, Emily T.; Xu, Fuhua; Riester, Scott M.; McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Paradise, Christopher R.; Lewallen, Eric A.; Thaler, Roman; Deyle, David R.; Larson, A. Noelle; Lewallen, David G.; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2015-01-01

    Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production. PMID:26424790

  4. Inhibitory Effect of Berberine on Zeste Homolog 2 (Ezh2 ...

    African Journals Online (AJOL)

    homolog 2 (Ezh2) expressions in KYSE450 human esophageal cancer cells. Methods: ... of the AXL receptor kinase. The results of ... effects of estrogen receptor antagonists on ..... protein EZH2 is involved in progression of prostate cancer.

  5. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.

    Science.gov (United States)

    Christofides, Anthos; Karantanos, Theodoros; Bardhan, Kankana; Boussiotis, Vassiliki A

    2016-12-20

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.

  6. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show...

  7. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor.

    Science.gov (United States)

    Honma, Daisuke; Kanno, Osamu; Watanabe, Jun; Kinoshita, Junzo; Hirasawa, Makoto; Nosaka, Emi; Shiroishi, Machiko; Takizawa, Takeshi; Yasumatsu, Isao; Horiuchi, Takao; Nakao, Akira; Suzuki, Keisuke; Yamasaki, Tomonori; Nakajima, Katsuyoshi; Hayakawa, Miho; Yamazaki, Takanori; Yadav, Ajay Singh; Adachi, Nobuaki

    2017-10-01

    Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 and represses gene expression to regulate cell proliferation and differentiation. Enhancer of zeste homolog 2 (EZH2) or its close homolog EZH1 functions as a catalytic subunit of PRC2, so there are two PRC2 complexes containing either EZH2 or EZH1. Tumorigenic functions of EZH2 and its synthetic lethality with some subunits of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes have been observed. However, little is known about the function of EZH1 in tumorigenesis. Herein, we developed novel, orally bioavailable EZH1/2 dual inhibitors that strongly and selectively inhibited methyltransferase activity of both EZH2 and EZH1. EZH1/2 dual inhibitors suppressed trimethylation of histone H3 lysine 27 in cells more than EZH2 selective inhibitors. They also showed greater antitumor efficacy than EZH2 selective inhibitor in vitro and in vivo against diffuse large B-cell lymphoma cells harboring gain-of-function mutation in EZH2. A hematological cancer panel assay indicated that EZH1/2 dual inhibitor has efficacy against some lymphomas, multiple myeloma, and leukemia with fusion genes such as MLL-AF9, MLL-AF4, and AML1-ETO. A solid cancer panel assay demonstrated that some cancer cell lines are sensitive to EZH1/2 dual inhibitor in vitro and in vivo. No clear correlation was detected between sensitivity to EZH1/2 dual inhibitor and SWI/SNF mutations, with a few exceptions. Severe toxicity was not seen in rats treated with EZH1/2 dual inhibitor for 14 days at drug levels higher than those used in the antitumor study. Our results indicate the possibility of EZH1/2 dual inhibitors for clinical applications. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Increased expression of enhancer of Zeste Homolog 2 (EZH2) differentiates squamous cell carcinoma from normal skin and actinic keratosis.

    Science.gov (United States)

    Xie, Qiang; Wang, Hongbei; Heilman, Edward R; Walsh, Michael G; Haseeb, M A; Gupta, Raavi

    2014-01-01

    Enhancer of Zeste Homolog 2 (EZH2) is a polycomb group protein that has been shown to be involved in the progression of multiple human cancers including melanoma. The expression of EZH2 in normal skin and in pre-malignant and malignant cutaneous squamous cell carcinoma (SCC) has not been studied. We examined the expression of EZH2 in normal skin, actinic keratosis (AK), SCC in situ, well-differentiated (SCC-WD), moderately-differentiated (SCC-MD) and poorly-differentiated SCC (SCC-PD) to ascertain whether EZH2 expression differentiates these conditions. Immunohistochemical staining for EZH2 was performed on formalin-fixed paraffin-embedded biopsies and a tissue microarray containing normal skin, AK, SCC in situ, and SCC of different grades. In comparison to the normal skin, EZH2 expression in actinic keratosis was increased (p=0.03). Similarly, EZH2 expression in all of the neoplastic conditions studied (SCC in situ, SCC-WD, SCC-MD and SCC-PD) was greatly increased in comparison to both the normal skin and actinic keratosis (p≤0.001). EZH2 expression increases incrementally from normal skin to AK and further to SCC, suggesting a role for EZH2 in the progression and differentiation of SCC. EZH2 expression may be used as a diagnostic marker for differentiating SCC from AK or normal skin.

  9. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia.

    Science.gov (United States)

    Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G

    2009-09-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.

  10. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications.

    Science.gov (United States)

    Li, Zhenghao; Takenobu, Hisanori; Setyawati, Amallia Nuggetsiana; Akita, Nobuhiro; Haruta, Masayuki; Satoh, Shunpei; Shinno, Yoshitaka; Chikaraishi, Koji; Mukae, Kyosuke; Akter, Jesmin; Sugino, Ryuichi P; Nakazawa, Atsuko; Nakagawara, Akira; Aburatani, Hiroyuki; Ohira, Miki; Kamijo, Takehiko

    2018-05-01

    The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also

  11. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  12. EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Ke-Sin Yan

    2017-05-01

    Full Text Available Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase, catalyzes tri-methylation of histone H3 at Lys 27 (H3K27me3 to regulate gene expression through epigenetic machinery. EZH2 functions as a double-facet molecule in regulation of gene expression via repression or activation mechanisms, depending on the different cellular contexts. EZH2 interacts with both histone and non-histone proteins to modulate diverse physiological functions including cancer progression and malignancy. In this review article, we focused on the updated information regarding microRNAs (miRNAs and long non coding RNAs (lncRNAs in regulation of EZH2, the oncogenic and tumor suppressive roles of EZH2 in cancer progression and malignancy, as well as current pre-clinical and clinical trials of EZH2 inhibitors.

  13. A cytosolic Ezh1 isoform modulates a PRC2Ezh1 epigenetic adaptive response in postmitotic cells

    KAUST Repository

    Bodega, Beatrice; Marasca, Federica; Ranzani, Valeria; Cherubini, Alessandro; Valle, Francesco Della; Neguembor, Maria Victoria; Wassef, Michel; Zippo, Alessio; Lanzuolo, Chiara; Pagani, Massimiliano; Orlando, Valerio

    2017-01-01

    The evolution of chromatin-based epigenetic cell memory may be driven not only by the necessity for cells to stably maintain transcription programs, but also by the need to recognize signals and allow plastic responses to environmental stimuli. The mechanistic role of the epigenome in adult postmitotic tissues, however, remains largely unknown. In vertebrates, two variants of the Polycomb repressive complex (PRC2-Ezh2 and PRC2-Ezh1) control gene silencing via methylation of histone H3 on Lys27 (H3K27me). Here we describe a reversible mechanism that involves a novel isoform of Ezh1 (Ezh1β). Ezh1β lacks the catalytic SET domain and acts in the cytoplasm of skeletal muscle cells to control nuclear PRC2-Ezh1 activity in response to atrophic oxidative stress, by regulating Eed assembly with Suz12 and Ezh1α (the canonical isoform) at their target genes. We report a novel PRC2-Ezh1 function that utilizes Ezh1β as an adaptive stress sensor in the cytoplasm, thus allowing postmitotic cells to maintain tissue integrity in response to environmental changes.

  14. A cytosolic Ezh1 isoform modulates a PRC2Ezh1 epigenetic adaptive response in postmitotic cells

    KAUST Repository

    Bodega, Beatrice

    2017-03-27

    The evolution of chromatin-based epigenetic cell memory may be driven not only by the necessity for cells to stably maintain transcription programs, but also by the need to recognize signals and allow plastic responses to environmental stimuli. The mechanistic role of the epigenome in adult postmitotic tissues, however, remains largely unknown. In vertebrates, two variants of the Polycomb repressive complex (PRC2-Ezh2 and PRC2-Ezh1) control gene silencing via methylation of histone H3 on Lys27 (H3K27me). Here we describe a reversible mechanism that involves a novel isoform of Ezh1 (Ezh1β). Ezh1β lacks the catalytic SET domain and acts in the cytoplasm of skeletal muscle cells to control nuclear PRC2-Ezh1 activity in response to atrophic oxidative stress, by regulating Eed assembly with Suz12 and Ezh1α (the canonical isoform) at their target genes. We report a novel PRC2-Ezh1 function that utilizes Ezh1β as an adaptive stress sensor in the cytoplasm, thus allowing postmitotic cells to maintain tissue integrity in response to environmental changes.

  15. EZH2 Inhibition Ameliorates Transverse Aortic Constriction-Induced Pulmonary Arterial Hypertension in Mice

    Directory of Open Access Journals (Sweden)

    Zhan-Li Shi

    2018-01-01

    Full Text Available Background. EPZ005687 is a selective inhibiter of methyltransferase EZH2. In this article, we investigated the protective role and mechanism of EPZ005687 in transverse aortic constriction-induced pulmonary arterial hypertension in mice. Methods. We assigned 15 (6–8 weeks old male balb/c mice to 3 groups randomly: Sham control + DMSO group, TAC + DMSO group, and TAC + EPZ005687 group (10 mg kg−1, once a week for 4 weeks. On day 28 following TAC operation, the right ventricular systolic blood pressure (RVSBP was measured, and lung tissues were collected for laboratory examinations (DHE, Western blot, real-time PCR, and ChIP. Results. Murine PAH model was successfully created by TAC operation as evidenced by increased RVSBP and hypertrophic right ventricle. Compared with the sham control, TAC-induced PAH markedly upregulated the expression of EZH2 and ROS deposition in lungs in PAH mice. The inhibiter of methyltransferase EZH2, EPZ005687 significantly inhibits the development of TAC-induced PAH in an EZH2-SOD1-ROS dependent manner. Conclusion. Our data identified that EZH2 serves a fundamental role in TAC-induced PAH, and administration of EPZ005687 might represent a novel therapeutic target for the treatment of TAC-induced PAH.

  16. Somatic mutation of EZH2 (Y641) in follicular and diffuse large B-cell lymphomas of germinal center origin | Office of Cancer Genomics

    Science.gov (United States)

    Morin et al. describe recurrent somatic mutations in EZH2, a polycomb group oncogene. The mutation, found in the SET domain of this gene encoding a histone methyltransferase, is found only in a subset of lymphoma samples. Specifically, EZH2 mutations are found in about 12% of follicular lymphomas (FL) and almost 23% of diffuse large B-cell lymphomas (DLBCL) of germinal center origin. This paper goes on to demonstrate that altered EZH2 proteins, corresponding to the most frequent mutations found in human lymphomas, have reduced activity using in vitro histone methylation assays.

  17. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer

    NARCIS (Netherlands)

    Pietersen, Alexandra M.; Horlings, Hugo M.; Hauptmann, Michael; Langerod, Anita; Ajouaou, Abderrahim; Cornelissen-Steijger, Paulien; Wessels, Lodewijk F.; Jonkers, Jos; van de Vijver, Marc J.; van Lohuizen, Maarten

    2008-01-01

    Introduction PolycombGroup (PcG) proteins maintain gene repression through histone modifications and have been implicated in stem cell regulation and cancer. EZH2 is part of Polycomb Repressive Complex 2 (PRC2) and trimethylates H3K27. This histone mark recruits the BMI1-containing PRC1 that

  18. A non-canonical function of Ezh2 preserves immune homeostasis.

    Science.gov (United States)

    Vasanthakumar, Ajithkumar; Xu, Dakang; Lun, Aaron Tl; Kueh, Andrew J; van Gisbergen, Klaas Pjm; Iannarella, Nadia; Li, Xiaofang; Yu, Liang; Wang, Die; Williams, Bryan Rg; Lee, Stanley Cw; Majewski, Ian J; Godfrey, Dale I; Smyth, Gordon K; Alexander, Warren S; Herold, Marco J; Kallies, Axel; Nutt, Stephen L; Allan, Rhys S

    2017-04-01

    Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis. T-cell-specific depletion of Ezh2 induces a pronounced expansion of natural killer T (NKT) cells, although Ezh2-deficient T cells maintain normal levels of H3K27me3. In contrast, removal of Suz12 or Eed destabilizes canonical PRC2 function and ablates NKT cell development completely. We further show that Ezh2 directly methylates the NKT cell lineage defining transcription factor PLZF, leading to its ubiquitination and subsequent degradation. Sustained PLZF expression in Ezh2-deficient mice is associated with the expansion of a subset of NKT cells that cause immune perturbation. Taken together, we have identified a chromatin-independent function of Ezh2 that impacts on the development of the immune system. © 2017 The Authors.

  19. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.

    Science.gov (United States)

    Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin

    2018-01-01

    Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comprehensive Evaluation of the Role of EZH2 in the Growth, Invasion, and Aggression of a Panel of Prostate Cancer Cell Lines

    Science.gov (United States)

    Karanikolas, Breanne D.W.; Figueiredo, Marxa L.; Wu, Lily

    2010-01-01

    Background Although most prostate cancers respond well to initial treatments, a fraction of prostate cancers are more aggressive and will recur and metastasize. At that point, there are few treatment options available. Significant efforts have been made to identify biomarkers that will identify these more aggressive cancers to tailor a more vigorous treatment in order to improve outcome. Polycomb Group protein Enhancer of Zeste 2 (EZH2) was found to be overexpressed in metastatic prostate tumors, and is considered an excellent candidate for such a biomarker. Scattered studies have found that EZH2 overexpression causes neoplastic transformation, invasion, and growth of prostate cells. However, these studies utilized different systems and cell lines, and so are difficult to correlate with one another. Methods In this study, a comprehensive evaluation of the phenotypic effects of EZH2 in a panel of five prostate cancer cell lines was performed. By using multiple cell lines, and examining overexpression and knockdown of EZH2 concurrently, a broad view of EZH2's role in prostate cancer was achieved. Results Overexpression of EZH2 led to more aggressive behaviors in all prostate cell lines tested. In contrast, downregulation of EZH2 reduced invasion and tumorigenicity of androgen-independent cell lines CWR22Rv1, PC3, and DU145, but not of androgen-dependent cell lines LAPC4 and LNCaP. Conclusions Findings from this study suggest androgen-independent prostate tumors are more dependent on EZH2 expression than androgen-dependent tumors. Our observations provide an explanation for the strong correlation between EZH2 overexpression and advanced stage, aggressive prostate cancers. PMID:20087897

  1. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells

    Science.gov (United States)

    Qin, Haiyan; Zhang, Guang; Zhang, Lianbo

    2018-01-01

    Polycomb group genes (PcG) encode chromatin modification proteins that are involved in the epigenetic regulation of cell differentiation, proliferation and the aging processes. The key subunit of the PcG complex, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), has a central role in a variety of mechanisms, such as the formation of chromatin structure, gene expression regulation and DNA damage. In the present study, ultraviolet A (UVA) was used to radiate human dermal fibroblasts in order to construct a photo-aged cell model. Subsequently, the cell viability assay, Hoechst staining, apoptosis detection using flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining and erythrocyte exclusion experiments were performed. GSK126, a histone methylation enzyme inhibitor of EZH2, was used as an experimental factor. Results suggested that GSK126 downregulated the mRNA expression levels of EZH2 and upregulated the mRNA expression levels of BMI-1. Notably, GSK126 affected the transcription of various photoaging-related genes and thus protected against photoaging induced by UVA radiation. PMID:29545866

  2. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    Science.gov (United States)

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  3. EZH2: a pivotal regulator in controlling cell differentiation.

    Science.gov (United States)

    Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan

    2012-01-01

    Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.

  4. Identification of coexistence of BRAF V600E mutation and EZH2 gain specifically in melanoma as a promising target for combination therapy.

    Science.gov (United States)

    Yu, Huan; Ma, Meng; Yan, Junya; Xu, Longwen; Yu, Jiayi; Dai, Jie; Xu, Tianxiao; Tang, Huan; Wu, Xiaowen; Li, Siming; Lian, Bin; Mao, Lili; Chi, Zhihong; Cui, Chuanliang; Guo, Jun; Kong, Yan

    2017-12-04

    Coexistence of enhancer of zeste homolog 2 (EZH2) and BRAF gene aberrations has been described in many cancer types. In this study, we aim to explore the coexistence status of BRAF V600E mutation and the copy number variation of EZH2 and explore the potential of this combination as a therapeutic target. A total of 138 cases of melanoma samples harboring BRAF V600E mutation were included, and EZH2 copy numbers were examined by QuantiGenePlex DNA Assays. Clinical pathological distinction between patient groups with or without EZH2 amplification (hereafter referred to as EZH2 gain) was statistically analyzed. The sensitivity of melanoma cell lines and patient-derived xenograft (PDX) models containing BRAF V600E mutation with or without EZH2 gain to vemurafenib (BRAF inhibitor), GSK2816126 (EZH2 inhibitor) and a combination of both agents was evaluated. In our cohort, the coexistence rate of BRAF V600E mutation and EZH2 gain was up to 29.0%, and significant differences in overall survival and disease-free survival were found between no EZH2 copy number gain and gain groups (P = 0.038, P = 0.030), gain and high EZH2 copy number gain groups (P = 0.006, P = 0.010). Combination with BRAF and EZH2 inhibition showed better inhibitory efficacy in melanoma prevention compared with vemurafenib monotherapy. More importantly, this improved therapeutic effect was observed especially in melanoma cell lines and PDX models containing concurrently BRAF V600E mutation and EZH2 gain. Coexistence of BRAF V600E mutation and EZH2 gain is rather prevalent in melanoma. Our findings provided evidence for the feasibility of combination therapy with EZH2 and BRAF inhibitors in melanoma with concurrent BRAF V600E mutation and EZH2 gain.

  5. Multifaceted role of EZH2 in breast and prostate tumorigenesis: epigenetics and beyond.

    Science.gov (United States)

    Deb, Gauri; Thakur, Vijay S; Gupta, Sanjay

    2013-05-01

    Overexpression of EZH2 and other PRC2 subunits, such as SUZ12, is associated with tumor progression and poor prognosis in several human malignancies. Nevertheless, the underlying mechanisms driving aberrant EZH2 expression are poorly understood. This review provides molecular insights into the essential role of EZH2 in breast and prostate tumorigenesis. We addressed the current understanding on the oncogenic role of EZH2, with an emphasis on: (1) the less known PRC2-independent role of EZH2 in gene activation, in addition to its canonical role in transcriptional silencing as a histone methyltransferase catalyzing the trimethylation of histone H3 at lysine 27; (2) causes and consequences of its deregulation in tumor cells and; (3) collaboration of EZH2 with other epigenetic and hormone receptor-mediated oncogenic signaling pathways. We also summarize how EZH2 has emerged as a promising therapeutic target in hormone-refractory cancers and the prospects for integrating EZH2 blockade with available pharmacological inhibitors.

  6. SAH derived potent and selective EZH2 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Pei-Pei; Huang, Buwen; Zehnder, Luke; Tatlock, John; Bingham, Patrick; Krivacic, Cody; Gajiwala, Ketan; Diehl, Wade; Yu, Xiu; Maegley, Karen A.

    2015-04-01

    A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50’s against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.

  7. The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic lymphocytic leukemia.

    Science.gov (United States)

    Papakonstantinou, Nikos; Ntoufa, Stavroula; Chartomatsidou, Elisavet; Kotta, Konstantia; Agathangelidis, Andreas; Giassafaki, Lefki; Karamanli, Tzeni; Bele, Panagiota; Moysiadis, Theodoros; Baliakas, Panagiotis; Sutton, Lesley Ann; Stavroyianni, Niki; Anagnostopoulos, Achilles; Makris, Antonios M; Ghia, Paolo; Rosenquist, Richard; Stamatopoulos, Kostas

    2016-06-14

    The histone methyltransferase EZH2 induces gene repression through trimethylation of histone H3 at lysine 27 (H3K27me3). EZH2 overexpression has been reported in many types of cancer and associated with poor prognosis. Here we investigated the expression and functionality of EZH2 in chronic lymphocytic leukemia (CLL). Aggressive cases with unmutated IGHV genes (U-CLL) displayed significantly higher EZH2 expression compared to indolent CLL cases with mutated IGHV genes (M-CLL); furthermore, in U-CLL EZH2 expression was upregulated with disease progression. Within U-CLL, EZH2high cases harbored significantly fewer (p = 0.033) TP53 gene abnormalities compared to EZH2low cases. EZH2high cases displayed high H3K27me3 levels and increased viability suggesting that EZH2 is functional and likely confers a survival advantage to CLL cells. This argument was further supported by siRNA-mediated downmodulation of EZH2 which resulted in increased apoptosis. Notably, at the intraclonal level, cell proliferation was significantly associated with EZH2 expression. Treatment of primary CLL cells with EZH2 inhibitors induced downregulation of H3K27me3 levels leading to increased cell apoptosis. In conclusion, EZH2 is overexpressed in adverse-prognosis CLL and associated with increased cell survival and proliferation. Pharmacologic inhibition of EZH2 catalytic activity promotes apoptosis, highlighting EZH2 as a novel potential therapeutic target for specific subgroups of patients with CLL.

  8. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Li, B; Yu, F; Wu, F; Hui, T; A, P; Liao, X; Yin, B; Wang, C; Ye, L

    2018-05-01

    The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (polycomb repressor complex 2). It mediates gene silencing via methyltransferase activity and is involved in the determination of cell lineage. However, the function of EZH2 and the underlying mechanisms by which it affects the differentiation of human dental pulp cell (hDPC) have remained underexplored. In this research, we found that EZH2 expression decreased during the mineralization of hDPCs, with attenuated H3K27me3 (trimethylation on lysine 27 in histone H3). Overexpression of EZH2 impaired the odontogenic differentiation of hDPCs, while EZH2 without methyltransferase activity mutation (mutation of suppressed variegation of 3 to 9, enhancer of zeste and trithorax domain, EZH2ΔSET) did not display this phenotype. In addition, siRNA knockdown studies showed that EZH2 negatively modulated hDPC differentiation in vitro and inhibited mineralized nodule formation in transplanted β-tricalcium phosphate / hDPC composites. To further investigate the underlying mechanisms, we explored the Wnt/β-catenin signaling pathway in view of the fact that previous research had documented the essential role that it plays during hDPC mineralization, as well as its links to EZH2 in other cells. We demonstrated for the first time that EZH2 depletion activated the Wnt/β-catenin signaling pathway and enhanced the accumulation of β-catenin in hDPCs. Chromatin immunoprecipitation analysis suggested that these effects are attributable to the level of the EZH2-regulated H3K27me3 on the β-catenin promoter. We conclude that EZH2 plays a negative role during the odontogenic differentiation of hDPCs. Suppression of EZH2 could promote hDPC mineralization by epigenetically regulating the expression of β-catenin and activating the Wnt canonical signaling pathway.

  9. Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis

    NARCIS (Netherlands)

    Fluge, Ø.; Gravdal, K.; Carlsen, E.; Vonen, B.; Kjellevold, K.; Refsum, S.; Lilleng, R.; Eide, T.J.; Halvorsen, T.B.; Tveit, K.M.; Otte, A.P.; Akslen, L.A.; Dahl, O.

    2009-01-01

    Background: Enhancer of zeste homologue 2 (EZH2) is a member of the Polycomb group of genes that is involved in epigenetic silencing and cell cycle regulation. Methods: We studied EZH2 expression in 409 patients with colorectal cancer stages II and III. The patients were included in a randomised

  10. MUC1-C activates EZH2 expression and function in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Christensen, Camilla L; Samur, Mehmet; Wong, Kwok-Kin; Kufe, Donald

    2017-08-07

    The EZH2 histone methyltransferase is a member of the polycomb repressive complex 2 (PRC2) that is highly expressed in diverse human cancers and is associated with a poor prognosis. MUC1-C is an oncoprotein that is similarly overexpressed in carcinomas and has been linked to epigenetic regulation. A role for MUC1-C in regulating EZH2 and histone methylation is not known. Here, we demonstrate that targeting MUC1-C in diverse human carcinoma cells downregulates EZH2 and other PRC2 components. MUC1-C activates (i) the EZH2 promoter through induction of the pRB→E2F pathway, and (ii) an NF-κB p65 driven enhancer in exon 1. We also show that MUC1-C binds directly to the EZH2 CXC region adjacent to the catalytic SET domain and associates with EZH2 on the CDH1 and BRCA1 promoters. In concert with these results, targeting MUC1-C downregulates EZH2 function as evidenced by (i) global and promoter-specific decreases in H3K27 trimethylation (H3K27me3), and (ii) activation of tumor suppressor genes, including BRCA1. These findings highlight a previously unreported role for MUC1-C in activating EZH2 expression and function in cancer cells.

  11. Update of research on the role of EZH2 in cancer progression

    Directory of Open Access Journals (Sweden)

    Shen L

    2013-04-01

    Full Text Available Liang Shen,1 Jing Cui,2 Shumei Liang,3 Yingxin Pang,1 Peishu Liu11Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 2Department of Oral and Maxillofacial Surgery, Jinan Stomatologic Hospital, 3Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of ChinaAbstract: Accumulating evidence shows that enhancer of zeste homolog 2 (E2H2 is upregulated in a broad range of cancer types, such as breast cancer, prostate cancer, ovarian cancer, and colon cancer. Therefore, inhibiting EZH2 expression may be a promising strategy for anticancer therapy. This review focuses on the current understanding of the mechanisms underlying EZH2 regulation that are involved in cancer progression. Also, it introduces two EZH2 inhibitors that target EZH2 and could be potentially applied in the treatment of cancer in the future.Keywords: EZH2, PRC2, cancer

  12. A non-canonical function of Ezh2 preserves immune homeostasis

    NARCIS (Netherlands)

    Vasanthakumar, Ajithkumar; Xu, Dakang; Lun, Aaron Tl; Kueh, Andrew J.; van Gisbergen, Klaas Pjm; Iannarella, Nadia; Li, Xiaofang; Yu, Liang; Wang, Die; Williams, Bryan Rg; Lee, Stanley Cw; Majewski, Ian J.; Godfrey, Dale I.; Smyth, Gordon K.; Alexander, Warren S.; Herold, Marco J.; Kallies, Axel; Nutt, Stephen L.; Allan, Rhys S.

    2017-01-01

    Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histoneH3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we

  13. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation. © 2015. Published by The Company of Biologists Ltd.

  14. Ezh2 regulates transcriptional and post-translational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice1

    Science.gov (United States)

    Tong, Qing; He, Shan; Xie, Fang; Mochizuki, Kazuhiro; Liu, Yongnian; Mochizuki, Izumi; Meng, Lijun; Sun, Hongxing; Zhang, Yanyun; Guo, Yajun; Hexner, Elizabeth; Zhang, Yi

    2014-01-01

    Acquired aplastic anemia (AA) is a potentially fatal bone marrow (BM) failure syndrome. IFN-γ-producing T helper (Th)1 CD4+ T cells mediate the immune destruction of hematopoietic cells, and are central to the pathogenesis. However, the molecular events that control the development of BM-destructive Th1 cells remain largely unknown. Ezh2 is a chromatin-modifying enzyme that regulates multiple cellular processes primarily by silencing gene expression. We recently reported that Ezh2 is crucial for inflammatory T cell responses after allogeneic BM transplantation. To elucidate whether Ezh2 mediates pathogenic Th1 responses in AA and the mechanism of Ezh2 action in regulating Th1 cells, we studied the effects of Ezh2 inhibition in CD4+ T cells using a mouse model of human AA. Conditionally deleting Ezh2 in mature T cells dramatically reduced the production of BM-destructive Th1 cells in vivo, decreased BM-infiltrating Th1 cells, and rescued mice from BM failure. Ezh2 inhibition resulted in significant decrease in the expression of Tbx21 and Stat4 (which encode transcription factors T-bet and STAT4, respectively). Introduction of T-bet but not STAT4 into Ezh2-deficient T cells fully rescued their differentiation into Th1 cells mediating AA. Ezh2 bound to the Tbx21 promoter in Th1 cells, and directly activated Tbx21 transcription. Unexpectedly, Ezh2 was also required to prevent proteasome-mediated degradation of T-bet protein in Th1 cells. Our results identify T-bet as the transcriptional and post-translational Ezh2 target that acts together to generate BM-destructive Th1 cells, and highlight the therapeutic potential of Ezh2 inhibition in reducing AA and other autoimmune diseases. PMID:24760151

  15. EZH2-mediated α-actin methylation needs lncRNA TUG1, and promotes the cortex cytoskeleton formation in VSMCs.

    Science.gov (United States)

    Chen, Rong; Kong, Peng; Zhang, Fan; Shu, Ya-Nan; Nie, Xi; Dong, Li-Hua; Lin, Yan-Ling; Xie, Xiao-Li; Zhao, Li-Li; Zhang, Xiang-Jian; Han, Mei

    2017-06-15

    Recent studies have revealed that long non-coding RNAs (lncRNAs) participate in vascular homeostasis and pathophysiological conditions development. But still very few literatures elucidate the regulatory mechanism of non-coding RNAs in this biological process. Here we identified lncRNA taurine up-regulated gene 1 (TUG1) in rat vascular smooth muscle cells (VSMCs), and got 4612bp nucleotide sequence. The expression level of TUG1 RNA was increased in synthetic VSMCs by real-time PCR analysis. Meanwhile, the expression of enhancer of zeste homolog 2 (EZH2) (TUG1 binding protein) increased in cytoplasm of VSMCs under the same conditions. Immunofluoresce analysis displayed the colocalization of EZH2 with α-actin in cytoplasm and F-actin in cell edge ruffles. This leads us to hypothesize the existence of cytoplasmic TUG1/EZH2/α-actin complex. Using RNA pull down assay, we found that TUG1 interacted with both EZH2 and α-actin. Disruption of TUG1 abolished the interaction of EZH2 with α-actin, and accelerated depolymerization of F-actin in VSMCs. Based on EZH2 methyltransferase activity and the potential methylation sites in α-actin structure, we revealed that α-actin was lysine-methylated. Furthermore, the methylation of α-actin was inhibited by knockdown of TUG1. In conclusion, these findings partly suggested that EZH2-mediated methylation of α-actin may be dependent on TUG1, and thereby promotes cortex F-actin polymerization in synthetic VSMCs. Copyright © 2017. Published by Elsevier B.V.

  16. Ezh2 does not mediate retinal ganglion cell homeostasis or their susceptibility to injury.

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    Full Text Available Epigenetic predisposition is thought to critically contribute to adult-onset disorders, such as retinal neurodegeneration. The histone methyltransferase, enhancer of zeste homolog 2 (Ezh2, is transiently expressed in the perinatal retina, particularly enriched in retinal ganglion cells (RGCs. We previously showed that embryonic deletion of Ezh2 from retinal progenitors led to progressive photoreceptor degeneration throughout life, demonstrating a role for embryonic predisposition of Ezh2-mediated repressive mark in maintaining the survival and function of photoreceptors in the adult. Enrichment of Ezh2 in RGCs leads to the question if Ezh2 also mediates gene expression and function in postnatal RGCs, and if its deficiency changes RGC susceptibility to cell death under injury or disease in the adult. To test this, we generated mice carrying targeted deletion of Ezh2 from RGC progenitors driven by Math5-Cre (mKO. mKO mice showed no detectable defect in RGC development, survival, or cell homeostasis as determined by physiological analysis, live imaging, histology, and immunohistochemistry. Moreover, RGCs of Ezh2 deficient mice revealed similar susceptibility against glaucomatous and acute optic nerve trauma-induced neurodegeneration compared to littermate floxed or wild-type control mice. In agreement with the above findings, analysis of RNA sequencing of RGCs purified from Ezh2 deficient mice revealed few gene changes that were related to RGC development, survival and function. These results, together with our previous report, support a cell lineage-specific mechanism of Ezh2-mediated gene repression, especially those critically involved in cellular function and homeostasis.

  17. Divergent Requirements for EZH1 in Heart Development Versus Regeneration.

    Science.gov (United States)

    Ai, Shanshan; Yu, Xianhong; Li, Yumei; Peng, Yong; Li, Chen; Yue, Yanzhu; Tao, Ge; Li, Chuanyun; Pu, William T; He, Aibin

    2017-07-07

    Polycomb repressive complex 2 is a major epigenetic repressor that deposits methylation on histone H3 on lysine 27 (H3K27me) and controls differentiation and function of many cells, including cardiac myocytes. EZH1 and EZH2 are 2 alternative catalytic subunits with partial functional redundancy. The relative roles of EZH1 and EZH2 in heart development and regeneration are unknown. We compared the roles of EZH1 versus EZH2 in heart development and neonatal heart regeneration. Heart development was normal in Ezh1 -/- ( Ezh 1 knockout) and Ezh2 f/f ::cTNT -Cre ( Ezh 2 knockout) embryos. Ablation of both genes in Ezh1 -/- ::Ezh2 f/f ::cTNT -Cre embryos caused lethal heart malformations, including hypertrabeculation, compact myocardial hypoplasia, and ventricular septal defect. Epigenome and transcriptome profiling showed that derepressed genes were upregulated in a manner consistent with total EZH dose. In neonatal heart regeneration, Ezh1 was required, but Ezh2 was dispensable. This finding was further supported by rescue experiments: cardiac myocyte-restricted re-expression of EZH1 but not EZH2 restored neonatal heart regeneration in Ezh 1 knockout. In myocardial infarction performed outside of the neonatal regenerative window, EZH1 but not EZH2 likewise improved heart function and stimulated cardiac myocyte proliferation. Mechanistically, EZH1 occupied and activated genes related to cardiac growth. Our work unravels divergent mechanisms of EZH1 in heart development and regeneration, which will empower efforts to overcome epigenetic barriers to heart regeneration. © 2017 American Heart Association, Inc.

  18. NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF

    Directory of Open Access Journals (Sweden)

    Mitchell E. Fane

    2017-02-01

    Full Text Available While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis.

  19. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells.

    Science.gov (United States)

    Hua, Wen-Feng; Fu, Yong-Shui; Liao, Yi-Ji; Xia, Wen-Jie; Chen, Yang-Chao; Zeng, Yi-Xin; Kung, Hsiang-Fu; Xie, Dan

    2010-07-10

    Curcumin, a natural compound isolated from turmeric, may inhibit cell proliferation in various tumor cells through a mechanism that is not fully understood. The enhancer of zeste homolog 2 (EZH2) gene is overexpressed in human breast cancers with poor prognosis. In this study, we observed a dose- and time-dependent down-regulation of expression of EZH2 by curcumin that correlates with decreased proliferation in the MDA-MB-435 breast cancer cell line. The curcumin treatment resulted in an accumulation of cells in the G(1) phase of the cell cycle. Further investigation revealed that curcumin-induced down-regulation of EZH2 through stimulation of three major members of the mitogen-activated protein kinase (MAPK) pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. These data suggest that an underlying mechanism of the MAPK pathway mediates the down-regulation of EZH2, thus contributing to the anti-proliferative effects of curcumin against breast cancer. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Increased expression of EZH2 in Merkel cell carcinoma is associated with disease progression and poorer prognosis.

    Science.gov (United States)

    Harms, Kelly L; Chubb, Heather; Zhao, Lili; Fullen, Douglas R; Bichakjian, Christopher K; Johnson, Timothy M; Carskadon, Shannon; Palanisamy, Nallasivam; Harms, Paul W

    2017-09-01

    Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that affects tumorigenesis by epigenetic gene silencing. Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine carcinoma that has a high risk of disease progression with nodal and distant metastases. Here, we evaluated EZH2 expression by immunohistochemistry in a cohort of 85 MCC tumors (29 primary tumors, 41 lymph node metastases, 13 in-transit metastases, and 2 distant metastases) with clinical follow-up. We show strong/moderate EZH2 expression in 54% of tumors. Importantly, weak expression of EZH2 in the primary tumor, but not nodal metastases, correlated with improved prognosis compared to moderate/strong EZH2 expression (5-year MCC-specific survival of 68% versus 22%, respectively, P=.024). In addition, EZH2 was expressed at higher levels in nodal metastases compared to primary tumors (P=.005). Our data demonstrate that EZH2 has prognostic value and may play an oncogenic role in MCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma.

    Directory of Open Access Journals (Sweden)

    Satoshi Kawano

    Full Text Available The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2 methyltransferase and the SWItch/Sucrose Non-Fermentable (SWI/SNF chromatin remodeler have been reported to act in opposition to each other during development and homeostasis. An imbalance in their activities induced by mutations/deletions in complex members (e.g. SMARCB1 has been suggested to be a pathogenic mechanism in certain human cancers. Here we show that preclinical models of synovial sarcoma-a cancer characterized by functional SMARCB1 loss via its displacement from the SWI/SNF complex through the pathognomonic SS18-SSX fusion protein-display sensitivity to pharmacologic inhibition of EZH2, the catalytic subunit of PRC2. Treatment with tazemetostat, a clinical-stage, selective and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity reverses a subset of synovial sarcoma gene expression and results in concentration-dependent cell growth inhibition and cell death specifically in SS18-SSX fusion-positive cells in vitro. Treatment of mice bearing either a cell line or two patient-derived xenograft models of synovial sarcoma leads to dose-dependent tumor growth inhibition with correlative inhibition of trimethylation levels of the EZH2-specific substrate, lysine 27 on histone H3. These data demonstrate a dependency of SS18-SSX-positive, SMARCB1-deficient synovial sarcomas on EZH2 enzymatic activity and suggests the potential utility of EZH2-targeted drugs in these genetically defined cancers.

  2. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p.

    Science.gov (United States)

    Cao, Jiaqing; Han, Xinyou; Qi, Xin; Jin, Xiangyun; Li, Xiaolin

    2017-10-01

    lncRNA-TUG1 (Taurine upregulated 1) is up-regulated and highly correlated with poor prognosis and disease status in osteosarcoma. TUG1 knockdown inhibits osteosarcoma cell proliferation, migration and invasion, and promotes apoptosis. However, its mechanism of action has not been well addressed. Growing evidence documented that lncRNA works as competing endogenous (ce)RNAs to modulate the expression and biological functions of miRNA. As a putative combining target of TUG1, miR-144-3p has been associated with the progress of osteosarcoma. To verify whether TUG1 functions through regulating miR-144-3p, the expression levels of TUG1 and miR-144-3p in osteosarcoma tissues and cell lines were determined. TUG1 was upregulated in osteosarcoma tissues and cell lines, and negatively correlated with miR-144-3p. TUG1 knockdown induced miR-144-3p expression in MG63 and U2OS cell lines. Results from dual luciferase reporter assay, RNA-binding protein immuno-precipitation (RIP) and applied biotin-avidin pull-down system confirmed TUG1 regulated miR-144-3p expression through direct binding. EZH2, a verified target of miR-144-3p was upregulated in osteosarcoma tissues and negatively correlated with miR-144-3p. EZH2 was negatively regulated by miR-144-3p and positively regulated by TUG1. Gain-and loss-of-function experiments were performed to analyze the role of TUG1, miR-144-3p and EZH2 in the migration and EMT of osteosarcoma cells. EZH2 over-expression partly abolished TUG1 knockdown or miR-144-3p overexpression induced inhibition of migration and EMT in osteosarcoma cells. In addition, TUG1 knockdown represses the activation of Wnt/β-catenin pathway, which was reversed by EZH2 over-expression. The activator of Wnt/β-catenin pathway LiCl could partially block the TUG1-knockdown induced osteosarcoma cell migration and EMT inhibition. In conclusion, our results showed that TUG1 plays an important role in osteosarcoma development through miRNA-144-3p/EZH2/Wnt/β-catenin pathway.

  3. SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Relster, Mette Marie; Greve, Katrine Buch Viden

    2014-01-01

    Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body...... formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition...

  4. Interplay between EZH2 and G9a Regulates CXCL10 Gene Repression in Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Coward, William R; Brand, Oliver J; Pasini, Alice; Jenkins, Gisli; Knox, Alan J; Pang, Linhua

    2018-04-01

    Selective repression of the antifibrotic gene CXCL10 contributes to tissue remodeling in idiopathic pulmonary fibrosis (IPF). We have previously reported that histone deacetylation and histone H3 lysine 9 (H3K9) methylation are involved in CXCL10 repression. In this study, we explored the role of H3K27 methylation and the interplay between the two histone lysine methyltransferases enhancer of zest homolog 2 (EZH2) and G9a in CXCL10 repression in IPF. By applying chromatin immunoprecipitation, Re-ChIP, and proximity ligation assays, we demonstrated that, like G9a-mediated H3K9 methylation, EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3) was significantly enriched at the CXCL10 promoter in fibroblasts from IPF lungs (F-IPF) compared with fibroblasts from nonfibrotic lungs, and we also found that EZH2 and G9a physically interacted with each other. EZH2 knockdown reduced not only EZH2 and H3K27me3 but also G9a and H3K9me3, and G9a knockdown reduced not only G9 and H3K9me3 but also EZH2 and H3K27me3. Depletion and inhibition of EZH2 and G9a also reversed histone deacetylation and restored CXCL10 expression in F-IPF. Furthermore, treatment of fibroblasts from nonfibrotic lungs with the profibrotic cytokine transforming growth factor-β1 increased EZH2, G9a, H3K27me3, H3K9me3, and histone deacetylation at the CXCL10 promoter, similar to that observed in F-IPF, which was correlated with CXCL10 repression and was prevented by EZH2 and G9a knockdown. These findings suggest that a novel and functionally interdependent interplay between EZH2 and G9a regulates histone methylation-mediated epigenetic repression of the antifibrotic CXCL10 gene in IPF. This interdependent interplay may prove to be a target for epigenetic intervention to restore the expression of CXCL10 and other antifibrotic genes in IPF.

  5. Evidence for alteration of EZH2, BMI1, and KDM6A and epigenetic reprogramming in human papillomavirus type 16 E6/E7-expressing keratinocytes.

    Science.gov (United States)

    Hyland, Paula L; McDade, Simon S; McCloskey, Rachel; Dickson, Glenda J; Arthur, Ken; McCance, Dennis J; Patel, Daksha

    2011-11-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2 at both the mRNA and protein levels but do not exhibit the expected increase in trimethylated H3K27 (H3K27me3) compared to normal keratinocytes. In contrast, these cells show a reduction in global H3K27me3 levels in vitro, as well as upregulation of the KDM6A demethylase. We further show for the first time that transformation with the HPV16 E6 and E7 oncogenes also results in an increase in phosphorylated EZH2 serine 21 (P-EZH2-Ser21), mediated by active Akt, and in a downregulation of the PRC1 protein BMI1 in these cells. High-grade squamous cervical intraepithelial lesions also showed a loss of H3K27me3 in the presence of increased expression of EZH2. Correlating with the loss of H3K27me3, E6/E7 cells exhibited derepression of specific EZH2-, KMD6A-, and BMI1-targeted HOX genes. These results suggest that the observed reduction in H3K27me3 may be due to a combination of reduced activities/levels of specific polycomb proteins and increases in demethylases. The dysregulation of multiple chromatin proteins resulting in the loss of global H3K27me3 and the transcriptional reprogramming in HPV16 E6/E7-infected cells could provide an epigenetic signature associated with risk and/or progression of HPV16-associated cancers, as well as the potential for epigenetic reversion in the future.

  6. EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MELK/FOXM1-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Sung-Hak Kim

    2015-02-01

    Full Text Available Glioblastoma (GBM-derived tumorigenic stem-like cells (GSCs may play a key role in therapy resistance. Previously, we reported that the mitotic kinase MELK binds and phosphorylates the oncogenic transcription factor FOXM1 in GSCs. Here, we demonstrate that the catalytic subunit of Polycomb repressive complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs. Clinically, EZH2 and MELK are coexpressed in GBM and significantly induced in postirradiation recurrent tumors whose expression is inversely correlated with patient prognosis. Through a gain-and loss-of-function study, we show that MELK or FOXM1 contributes to GSC radioresistance by regulation of EZH2. We further demonstrate that the MELK-EZH2 axis is evolutionarily conserved in Caenorhabditis elegans. Collectively, these data suggest that the MELK-FOXM1-EZH2 signaling axis is essential for GSC radioresistance and therefore raise the possibility that MELK-FOXM1-driven EZH2 signaling can serve as a therapeutic target in irradiation-resistant GBM tumors.

  7. Evidence for Alteration of EZH2, BMI1, and KDM6A and Epigenetic Reprogramming in Human Papillomavirus Type 16 E6/E7-Expressing Keratinocytes ▿

    Science.gov (United States)

    Hyland, Paula L.; McDade, Simon S.; McCloskey, Rachel; Dickson, Glenda J.; Arthur, Ken; McCance, Dennis J.; Patel, Daksha

    2011-01-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2 at both the mRNA and protein levels but do not exhibit the expected increase in trimethylated H3K27 (H3K27me3) compared to normal keratinocytes. In contrast, these cells show a reduction in global H3K27me3 levels in vitro, as well as upregulation of the KDM6A demethylase. We further show for the first time that transformation with the HPV16 E6 and E7 oncogenes also results in an increase in phosphorylated EZH2 serine 21 (P-EZH2-Ser21), mediated by active Akt, and in a downregulation of the PRC1 protein BMI1 in these cells. High-grade squamous cervical intraepithelial lesions also showed a loss of H3K27me3 in the presence of increased expression of EZH2. Correlating with the loss of H3K27me3, E6/E7 cells exhibited derepression of specific EZH2-, KMD6A-, and BMI1-targeted HOX genes. These results suggest that the observed reduction in H3K27me3 may be due to a combination of reduced activities/levels of specific polycomb proteins and increases in demethylases. The dysregulation of multiple chromatin proteins resulting in the loss of global H3K27me3 and the transcriptional reprogramming in HPV16 E6/E7-infected cells could provide an epigenetic signature associated with risk and/or progression of HPV16-associated cancers, as well as the potential for epigenetic reversion in the future. PMID:21865393

  8. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification.

    Science.gov (United States)

    Gherardi, Samuele; Ripoche, Doriane; Mikaelian, Ivan; Chanal, Marie; Teinturier, Romain; Goehrig, Delphine; Cordier-Bussat, Martine; Zhang, Chang X; Hennino, Ana; Bertolino, Philippe

    2017-04-01

    Although Men1 is a well-known tumour suppressor gene, little is known about the functions of Menin, the protein it encodes for. Since few years, numerous publications support a major role of Menin in the control of epigenetics gene regulation. While Menin interaction with MLL complex favours transcriptional activation of target genes through H3K4me3 marks, Menin also represses gene expression via mechanisms involving the Polycomb repressing complex (PRC). Interestingly, Ezh2, the PRC-methyltransferase that catalyses H3K27me3 repressive marks and Menin have been shown to co-occupy a large number of promoters. However, lack of binding between Menin and Ezh2 suggests that another member of the PRC complex is mediating this indirect interaction. Having found that ActivinB - a TGFβ superfamily member encoded by the Inhbb gene - is upregulated in insulinoma tumours caused by Men1 invalidation, we hypothesize that Menin could directly participate in the epigenetic-repression of Inhbb gene expression. Using Animal model and cell lines, we report that loss of Menin is directly associated with ActivinB-induced expression both in vivo and in vitro. Our work further reveals that ActivinB expression is mediated through a direct modulation of H3K27me3 marks on the Inhbb locus in Menin-KO cell lines. More importantly, we show that Menin binds on the promoter of Inhbb gene where it favours the recruitment of Ezh2 via an indirect mechanism involving Akt-phosphorylation. Our data suggests therefore that Menin could take an important part to the Ezh2-epigenetic repressive landscape in many cells and tissues through its capacity to modulate Akt phosphorylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    Science.gov (United States)

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.

  10. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Etienne Danis

    2016-03-01

    Full Text Available Early T cell precursor acute lymphoblastic leukemia (ETP-ALL is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.

  11. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β

    Directory of Open Access Journals (Sweden)

    Xu Jianfeng

    2010-05-01

    Full Text Available Abstract Background In prostate cancer (PCa, the common treatment involving androgen ablation alleviates the disease temporarily, but results in the recurrence of highly aggressive and androgen-independent metastatic cancer. Therefore, more effective therapeutic approaches are needed. It is known that aberrant epigenetics contributes to prostate malignancy. Unlike genetic changes, these epigenetic alterations are reversible, which makes them attractive targets in PCa therapy to impede cancer progression. As a histone methyltransferease, Ezh2 plays an essential role in epigenetic regulation. Since Ezh2 is overexpressed and acts as an oncogene in PCa, it has been proposed as a bona fide target of PCa therapy. MicroRNAs (miRNAs regulate gene expression through modulating protein translation. Recently, the contribution of miRNAs in cancer development is increasingly appreciated. In this report, we present our study showing that microRNA-101 (miR-101 inhibits Ezh2 expression and differentially regulates prostate cancer cells. In addition, the expression of miR-101 alters upon androgen treatment and HIF-1α/HIF-1β induction. Result In our reporter assays, both miR-101 and miR-26a inhibit the expression of a reporter construct containing the 3'-UTR of Ezh2. When ectopically expressed in PC-3, DU145 and LNCaP cells, miR-101 inhibits endogenous Ezh2 expression in all three cell lines, while miR-26a only decreases Ezh2 in DU145. Ectopic miR-101 reduces the invasion ability of PC-3 cells, while restored Ezh2 expression rescues the invasiveness of PC-3 cells. Similarly, miR-101 also inhibits cell invasion and migration of DU145 and LNCaP cells, respectively. Interestingly, ectopic miR-101 exhibits differential effects on the proliferation of PC-3, DU-145 and LNCaP cells and also causes morphological changes of LNCaP cells. In addition, the expression of miR-101 is regulated by androgen receptor and HIF-1α/HIF-1β. While HIF-1α/HIF-1β induced by

  12. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas.

    Science.gov (United States)

    Knutson, Sarah K; Warholic, Natalie M; Johnston, L Danielle; Klaus, Christine R; Wigle, Tim J; Iwanowicz, Dorothy; Littlefield, Bruce A; Porter-Scott, Margaret; Smith, Jesse J; Moyer, Mikel P; Copeland, Robert A; Pollock, Roy M; Kuntz, Kevin W; Raimondi, Alejandra; Keilhack, Heike

    2014-01-01

    Patients with non-Hodgkin lymphoma (NHL) are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone). Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone - a glucocorticoid receptor agonist (GRag) component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting.

  13. Transcriptome and H3K27 tri-methylation profiling of Ezh2-deficient lung epithelium

    Directory of Open Access Journals (Sweden)

    Aliaksei Z. Holik

    2015-09-01

    Full Text Available The adaptation of the lungs to air breathing at birth requires the fine orchestration of different processes to control lung morphogenesis and progenitor cell differentiation. However, there is little understanding of the role that epigenetic modifiers play in the control of lung development. We found that the histone methyl transferase Ezh2 plays a critical role in lung lineage specification and survival at birth. We performed a genome-wide transcriptome study combined with a genome-wide analysis of the distribution of H3K27 tri-methylation marks to interrogate the role of Ezh2 in lung epithelial cells. Lung cells isolated from Ezh2-deficient and control mice at embryonic day E16.5 were sorted into epithelial and mesenchymal populations based on EpCAM expression. This enabled us to dissect the transcriptional and epigenetic changes induced by the loss of Ezh2 specifically in the lung epithelium. Here we provide a detailed description of the analysis of the RNA-seq and ChIP-seq data, including quality control, read mapping, differential expression and differential binding analyses, as well as visualisation methods used to present the data. These data can be accessed from the Gene Expression Omnibus database (super-series accession number GSE57393.

  14. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas.

    Directory of Open Access Journals (Sweden)

    Sarah K Knutson

    Full Text Available Patients with non-Hodgkin lymphoma (NHL are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone. Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone - a glucocorticoid receptor agonist (GRag component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting.

  15. Altered expression of polycomb group genes in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available The Polycomb group (PcG proteins play a critical role in histone mediated epigenetics which has been implicated in the malignant evolution of glioblastoma multiforme (GBM. By systematically interrogating The Cancer Genome Atlas (TCGA, we discovered widespread aberrant expression of the PcG members in GBM samples compared to normal brain. The most striking differences were upregulation of EZH2, PHF19, CBX8 and PHC2 and downregulation of CBX7, CBX6, EZH1 and RYBP. Interestingly, changes in EZH2, PHF19, CBX7, CBX6 and EZH1 occurred progressively as astrocytoma grade increased. We validated the aberrant expression of CBX6, CBX7, CBX8 and EZH2 in GBM cell lines by Western blotting and qRT-PCR, and further the aberrant expression of CBX6 in GBM tissue samples by immunohistochemical staining. To determine if there was functional significance to the diminished CBX6 levels in GBM, CBX6 was overexpressed in GBM cells resulting in decreased proliferative capacity. In conclusion, aberrant expression of PcG proteins in GBMs may play a role in the development or maintenance of the malignancy.

  16. Genetic and epigenetic inactivation of SESTRIN1 controls mTORC1 and response to EZH2 inhibition in follicular lymphoma.

    Science.gov (United States)

    Oricchio, Elisa; Katanayeva, Natalya; Donaldson, Maria Christine; Sungalee, Stephanie; Pasion, Joyce P; Béguelin, Wendy; Battistello, Elena; Sanghvi, Viraj R; Jiang, Man; Jiang, Yanwen; Teater, Matt; Parmigiani, Anita; Budanov, Andrei V; Chan, Fong Chun; Shah, Sohrab P; Kridel, Robert; Melnick, Ari M; Ciriello, Giovanni; Wendel, Hans-Guido

    2017-06-28

    Follicular lymphoma (FL) is an incurable form of B cell lymphoma. Genomic studies have cataloged common genetic lesions in FL such as translocation t(14;18), frequent losses of chromosome 6q, and mutations in epigenetic regulators such as EZH2 Using a focused genetic screen, we identified SESTRIN1 as a relevant target of the 6q deletion and demonstrate tumor suppression by SESTRIN1 in vivo. Moreover, SESTRIN1 is a direct target of the lymphoma-specific EZH2 gain-of-function mutation ( EZH2 Y641X ). SESTRIN1 inactivation disrupts p53-mediated control of mammalian target of rapamycin complex 1 (mTORC1) and enables mRNA translation under genotoxic stress. SESTRIN1 loss represents an alternative to RRAGC mutations that maintain mTORC1 activity under nutrient starvation. The antitumor efficacy of pharmacological EZH2 inhibition depends on SESTRIN1, indicating that mTORC1 control is a critical function of EZH2 in lymphoma. Conversely, EZH2 Y641X mutant lymphomas show increased sensitivity to RapaLink-1, a bifunctional mTOR inhibitor. Hence, SESTRIN1 contributes to the genetic and epigenetic control of mTORC1 in lymphoma and influences responses to targeted therapies. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples

    Science.gov (United States)

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda

    2013-01-01

    BACKGROUND: Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. METHODS: DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. RESULTS: All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. CONCLUSIONS: Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377–386. © 2013 American Cancer Society. PMID:23361872

  18. High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression

    Directory of Open Access Journals (Sweden)

    Ji Young Oh

    2018-04-01

    Full Text Available Background/Aims: Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC migration, and analyze the mechanism accompanied by this effect. Methods: Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. Results: High concentration glucose (25 mM elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS promotes two signaling; JNK which regulates γ–secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. Conclusion: This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways.

  19. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  20. Chromatin organization regulated by EZH2-mediated H3K27me3 is required for OPN-induced migration of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Ju, Yang; Morita, Yasuyuki; Song, Guanbin

    2018-03-01

    Osteopontin (OPN) is a chemokine-like extracellular matrix-associated protein involved in the migration of bone marrow-derived mesenchymal stem cells (BMSCs). An increasing number of studies have found that chromatin organization may affect cellular migration. However, whether OPN regulates chromatin organization is not understood, nor are the underlying molecular mechanisms. In this study, we investigated the link between chromatin organization and BMSC migration and demonstrated that OPN-mediated BMSC migration leads to elevated levels of heterochromatin marker histone H3 lysine 27 trimethylation (H3K27me3) through the methyltransferase EZH2. The expression of EZH2 reorganizes the chromatin structure of BMSCs. Pharmacological inhibition or depletion of EZH2 blocks BMSC migration. Moreover, using an atomic force microscope (AFM), we found that chromatin decondensation alters the mechanical properties of the nucleus. In addition, inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) signals represses OPN-promoted chromatin condensation and cell migration. Thus, our results identify a mechanism by which ERK1/2 signalling drives specific chromatin modifications in BMSCs, which alters chromatin organization and thereby enables OPN-mediated BMSC migration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effects of four single nucleotide polymorphisms of EZH2 on cancer risk: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ling Z

    2018-02-01

    Full Text Available Zhixin Ling,1,2,* Zonghao You,1,2,* Ling Hu,3 Lei Zhang,1,2 Yiduo Wang,1,2 Minhao Zhang,1,2 Guangyuan Zhang,1,2 Shuqiu Chen,1,2 Bin Xu,1,2 Ming Chen1,2 1Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China; 2Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; 3Department of Nephrology, People’s Hospital of Wuxi City, Wuxi, China *These authors contributed equally to this work Background: Although the relationship between several single nucleotide polymorphisms (SNPs of the oncogene EZH2 and cancer risk has been assessed by some case–control studies, results of subsequent studies are controversial. Sample sizes from single-center studies are also limited, thereby providing unreliable findings. Hence, we conducted a comprehensive search and meta-analysis to evaluate the associations between EZH2 SNPs and cancer risk.Materials and methods: A comprehensive literature search for studies focusing on EZH2 SNPs and cancer risk was conducted on PubMed, Web of Science, Embase, and China National Knowledge Infrastructure online databases. Genotype data were extracted and examined through a meta-analysis, and pooled odds ratios (ORs with 95% CIs were used to assess the corresponding associations. Sensitivity analysis, publication bias assessment, and heterogeneity test were performed using STATA 12.0.Results: Twelve eligible studies were included in this meta-analysis. The association of 4 SNPs, namely, rs887569, rs2302427, rs3757441, and rs41277434, in the EZH2 locus with cancer risk was evaluated. Five studies (1,794 cases and 1,878 controls indicated that rs887569 was related to a decreased cancer risk (CTTT/CC: OR =0.849, 95% CI: [0.740 to 0.973], P=0.019; TT/CCCT: OR =0.793, 95% CI: [0.654 to 0.962], P=0.019. Seven studies (2,408 cases and 2,910 controls showed that rs2302427 was linked to a decreased cancer risk (GG/CC: OR =0.562, 95% CI: [0.400 to 0.792], P

  2. Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex

    Science.gov (United States)

    Hu, Guangzhen; Gupta, Shiv K.; Troska, Tammy P.; Nair, Asha; Gupta, Mamta

    2017-01-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by rapid disease progression. The needs for new therapeutic strategies for MCL patients call for further understanding on the molecular mechanisms of pathogenesis of MCL. Recently, long noncoding RNAs (lncRNAs) have been recognized as key regulators of gene expression and disease development, however, the role of lncRNAs in non-Hodgkin lymphoma and specifically in MCL is still unknown. Next generation RNA-sequencing was carried out on MCL patient samples along with normal controls and data was analyzed. As a result, several novel lncRNAs were found significantly overexpressed in the MCL samples with lncRNA ROR1-AS1 the most significant one. We cloned the ROR1-AS1 lncRNA in expression vector and ectopically transfected in MCL cell lines. Results showed that overexpression of ROR1-AS1 lncRNA promoted growth of MCL cells while decreased sensitivity to the treatment with drugs ibrutinib and dexamethasone. ROR-AS1 overexpression also decreased the mRNA expression of P16 (P = 0.21), and SOX11 (p = 0.017), without much effect on P53, ATM and P14 mRNA. RNA-immunoprecipitation assays demonstrated high affinity binding of lncRNA ROR1-AS1 with EZH2 and SUZ12 proteins of the polycomb repressive complex-2 (PRC2). Suppressing EZH2 activity with pharmacological inhibitor GSK343 abolished binding of ROR1-AS1 with EZH2. Taken together, this study identified a functional lncRNA ROR-AS1 involved with regulation of gene transcription via associating with PRC2 complex, and may serve as a novel biomarker in MCL patients. PMID:29113297

  3. DOC-2/DAB2 Interacting Protein Status in High-Risk Prostate Cancer Correlates With Outcome for Patients Treated With Radiation Therapy

    International Nuclear Information System (INIS)

    Jacobs, Corbin; Tumati, Vasu; Kapur, Payal; Yan, Jingsheng; Hong, David; Bhuiyan, Manzerul; Xie, Xian-Jin; Pistenmaa, David; Yu, Lan; Hsieh, Jer-Tsong; Saha, Debabrata; Kim, D. W. Nathan

    2014-01-01

    Purpose: This pilot study investigates the role of DOC-2/DAB2 Interacting Protein (DAB2IP) and enhancer of zeste homolog 2 (EZH2) as prognostic biomarkers in high-risk prostate cancer patients receiving definitive radiation therapy. Methods and Materials: Immunohistochemistry was performed and scored by an expert genitourinary pathologist. Clinical endpoints evaluated were freedom from biochemical failure (FFBF), castration resistance–free survival (CRFS), and distant metastasis–free survival (DMFS). Log-rank test and Cox regression were used to determine significance of biomarker levels with clinical outcome. Results: Fifty-four patients with high-risk prostate cancer (stage ≥T3a, or Gleason score ≥8, or prostate-specific antigen level ≥20 ng/mL) treated with radiation therapy from 2005 to 2012 at our institution were evaluated. Nearly all patients expressed EZH2 (98%), whereas 28% of patients revealed DAB2IP reduction and 72% retained DAB2IP. Median follow-up was 34.0 months for DAB2IP-reduced patients, 29.9 months for DAB2IP-retained patients, and 32.6 months in the EZH2 study. Reduction in DAB2IP portended worse outcome compared with DAB2IP-retained patients, including FFBF (4-year: 37% vs 89%, P=.04), CRFS (4-year: 50% vs 90%, P=.02), and DMFS (4-year: 36% vs 97%, P=.05). Stratified EZH2 expression trended toward significance for worse FFBF and CRFS (P=.07). Patients with reduced DAB2IP or highest-intensity EZH2 expression exhibited worse FFBF (4-year: 32% vs 95%, P=.02), CRFS (4-year: 28% vs 100%, P<.01), and DMFS (4-year: 39% vs 100%, P=.04) compared with the control group. Conclusion: Loss of DAB2IP is a potent biomarker that portends worse outcome despite definitive radiation therapy for patients with high-risk prostate cancer. Enhancer of zeste homolog 2 is expressed in most high-risk tumors and is a less potent discriminator of outcome in this study. The DAB2IP status in combination with degree of EZH2 expression may be useful for

  4. DOC-2/DAB2 Interacting Protein Status in High-Risk Prostate Cancer Correlates With Outcome for Patients Treated With Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Corbin; Tumati, Vasu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Kapur, Payal [Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Yan, Jingsheng [Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Hong, David; Bhuiyan, Manzerul [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Xie, Xian-Jin [Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Pistenmaa, David [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Simmons Cancer Center, Dallas, Texas (United States); Yu, Lan [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Hsieh, Jer-Tsong [Simmons Cancer Center, Dallas, Texas (United States); Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Saha, Debabrata [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Simmons Cancer Center, Dallas, Texas (United States); Kim, D. W. Nathan, E-mail: Nathan.Kim@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Simmons Cancer Center, Dallas, Texas (United States)

    2014-07-15

    Purpose: This pilot study investigates the role of DOC-2/DAB2 Interacting Protein (DAB2IP) and enhancer of zeste homolog 2 (EZH2) as prognostic biomarkers in high-risk prostate cancer patients receiving definitive radiation therapy. Methods and Materials: Immunohistochemistry was performed and scored by an expert genitourinary pathologist. Clinical endpoints evaluated were freedom from biochemical failure (FFBF), castration resistance–free survival (CRFS), and distant metastasis–free survival (DMFS). Log-rank test and Cox regression were used to determine significance of biomarker levels with clinical outcome. Results: Fifty-four patients with high-risk prostate cancer (stage ≥T3a, or Gleason score ≥8, or prostate-specific antigen level ≥20 ng/mL) treated with radiation therapy from 2005 to 2012 at our institution were evaluated. Nearly all patients expressed EZH2 (98%), whereas 28% of patients revealed DAB2IP reduction and 72% retained DAB2IP. Median follow-up was 34.0 months for DAB2IP-reduced patients, 29.9 months for DAB2IP-retained patients, and 32.6 months in the EZH2 study. Reduction in DAB2IP portended worse outcome compared with DAB2IP-retained patients, including FFBF (4-year: 37% vs 89%, P=.04), CRFS (4-year: 50% vs 90%, P=.02), and DMFS (4-year: 36% vs 97%, P=.05). Stratified EZH2 expression trended toward significance for worse FFBF and CRFS (P=.07). Patients with reduced DAB2IP or highest-intensity EZH2 expression exhibited worse FFBF (4-year: 32% vs 95%, P=.02), CRFS (4-year: 28% vs 100%, P<.01), and DMFS (4-year: 39% vs 100%, P=.04) compared with the control group. Conclusion: Loss of DAB2IP is a potent biomarker that portends worse outcome despite definitive radiation therapy for patients with high-risk prostate cancer. Enhancer of zeste homolog 2 is expressed in most high-risk tumors and is a less potent discriminator of outcome in this study. The DAB2IP status in combination with degree of EZH2 expression may be useful for

  5. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM.

    Directory of Open Access Journals (Sweden)

    Dejuan Kong

    Full Text Available The emergence of castrate-resistant prostate cancer (CRPC contributes to the high mortality of patients diagnosed with prostate cancer (PCa, which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs. Recent studies have shown that deregulated expression of microRNAs (miRNAs contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2, a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3'UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3'-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.

  6. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Kleine-Kohlbrecher, Daniela; Dietrich, Nikolaj

    2007-01-01

    The p16INK4A and p14ARF proteins, encoded by the INK4A-ARF locus, are key regulators of cellular senescence, yet the mechanisms triggering their up-regulation are not well understood. Here, we show that the ability of the oncogene BMI1 to repress the INK4A-ARF locus requires its direct association...... and is dependent on the continued presence of the EZH2-containing Polycomb-Repressive Complex 2 (PRC2) complex. Significantly, EZH2 is down-regulated in stressed and senescing populations of cells, coinciding with decreased levels of associated H3K27me3, displacement of BMI1, and activation of transcription...

  7. The Lncrna-TUG1/EZH2 Axis Promotes Pancreatic Cancer Cell Proliferation, Migration and EMT Phenotype Formation Through Sponging Mir-382.

    Science.gov (United States)

    Zhao, Liang; Sun, Hongwei; Kong, Hongru; Chen, Zongjing; Chen, Bicheng; Zhou, Mengtao

    2017-01-01

    Pancreatic carcinoma (PC) is the one of the most common and malignant cancers worldwide. LncRNA taurine upregulated gene 1 (TUG1) was initially identified as a transcript upregulated by taurine, and the abnormal expression of TUG1 has been reported in many cancers. However, the biological role and molecular mechanism of TUG1 in PC still needs further investigation. Quantitative real-time PCR (qRT-PCR) was performed to measure the expression of TUG1 in PC cell lines and tissues. MTT and colony formation assays were used to measure the effect of TUG1 on cell proliferation. A wound healing assay, transwell assay and western blot assay were employed to determine the effect of TUG1 on cell migration and the epithelial mesenchymal transition (EMT) phenotype. RNA-binding protein immunoprecipitation (RIP) and a biotin-avidin pulldown system were performed to confirm the interaction between miR-328 and TUG1. A gene expression array analysis using clinical samples and RT-qPCR suggested that enhancer of zeste homolog 2 (EZH2) was a target of miR-382 in PC. In this study, we reported that TUG1 was overexpressed in PC tissues and cell lines, and high expression of TUG1 predicted poor prognosis. Further experiments revealed that overexpressed TUG1 promoted cell proliferation, migration and contributed to EMT formation, whereas silenced TUG1 led to opposing results. Additionally, luciferase reporter assays, an RIP assay and an RNA-pulldown assay demonstrated that TUG1 could competitively sponge miR-382 and thereby regulate EZH2. Collectively, these findings revealed that TUG1 functions as an oncogenic lncRNA that promotes tumor progression, at least partially, by functioning as an endogenous 'sponge' and competing for miR-382 binding to the miRNA target EZH2. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. The Lncrna-TUG1/EZH2 Axis Promotes Pancreatic Cancer Cell Proliferation, Migration and EMT Phenotype Formation Through Sponging Mir-382

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2017-08-01

    Full Text Available Background/Aims: Pancreatic carcinoma (PC is the one of the most common and malignant cancers worldwide. LncRNA taurine upregulated gene 1 (TUG1 was initially identified as a transcript upregulated by taurine, and the abnormal expression of TUG1 has been reported in many cancers. However, the biological role and molecular mechanism of TUG1 in PC still needs further investigation. Methods: Quantitative real-time PCR (qRT-PCR was performed to measure the expression of TUG1 in PC cell lines and tissues. MTT and colony formation assays were used to measure the effect of TUG1 on cell proliferation. A wound healing assay, transwell assay and western blot assay were employed to determine the effect of TUG1 on cell migration and the epithelial mesenchymal transition (EMT phenotype. RNA-binding protein immunoprecipitation (RIP and a biotin-avidin pulldown system were performed to confirm the interaction between miR-328 and TUG1. A gene expression array analysis using clinical samples and RT-qPCR suggested that enhancer of zeste homolog 2 (EZH2 was a target of miR-382 in PC. Results: In this study, we reported that TUG1 was overexpressed in PC tissues and cell lines, and high expression of TUG1 predicted poor prognosis. Further experiments revealed that overexpressed TUG1 promoted cell proliferation, migration and contributed to EMT formation, whereas silenced TUG1 led to opposing results. Additionally, luciferase reporter assays, an RIP assay and an RNA-pulldown assay demonstrated that TUG1 could competitively sponge miR-382 and thereby regulate EZH2. Conclusion: Collectively, these findings revealed that TUG1 functions as an oncogenic lncRNA that promotes tumor progression, at least partially, by functioning as an endogenous ‘sponge’ and competing for miR-382 binding to the miRNA target EZH2.

  9. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    International Nuclear Information System (INIS)

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash; Upadhyay, Daya S.; Sultana, Sarwat; Gupta, Krishna P.

    2014-01-01

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development

  10. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash [Carcinogenesis Laboratory, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow –226001 (India); Upadhyay, Daya S. [Laboratory Animals Services, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow (India); Sultana, Sarwat [Dept. Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi (India); Gupta, Krishna P., E-mail: krishnag522@yahoo.co.in [Carcinogenesis Laboratory, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow –226001 (India)

    2014-10-15

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development.

  11. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Göllner, Stefanie; Oellerich, Thomas; Agrawal-Singh, Shuchi

    2017-01-01

    In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction...

  12. Evidence for Alteration of EZH2, BMI1, and KDM6A and Epigenetic Reprogramming in Human Papillomavirus Type 16 E6/E7-Expressing Keratinocytes ▿

    OpenAIRE

    Hyland, Paula L.; McDade, Simon S.; McCloskey, Rachel; Dickson, Glenda J.; Arthur, Ken; McCance, Dennis J.; Patel, Daksha

    2011-01-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2...

  13. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yuxin; Li, Yan [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China); Gu, Hui [Department of Key Laboratory of Health Ministry for Congenital Malformation Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004 (China); Wang, Chunyu [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China); Liu, Funan [Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001 (China); Shao, Yangguang; Li, Jiabin; Cao, Liu [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China); Li, Feng, E-mail: fli@mail.cmu.edu.cn [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China)

    2015-11-27

    ArgBP2 is an adapter protein that plays an important role in actin-dependent processes such as cell adhesion and migration. However, its function and regulation mechanisms in gastric cancer have not yet been investigated. Here, we showed the low expression of ArgBP2 mRNA level in gastric tumor samples and its repressive function in the proliferation, migration, and invasion of gastric cancer cells. Then, we cloned and identified ArgBP2 promoter and verified that MORC2 bound to the promoter. Moreover, we demonstrated that MORC2 enhanced the recruitment of EZH2, which promoted the tri-methylation of H3K27, leading to the transcriptional repression of ArgBP2. Our results might thus contribute to understanding the molecular mechanisms of ArgBP2 regulation and suggesting ArgBP2 as a potential therapeutic target for gastric cancer. - Highlights: • ArgBP2 inhibits proliferation, migration, and invasion of gastric cancer cells. • Identification of ArgBP2 promoter and its transcription factor MORC2. • EZH2 is required in MORC2 down-regulating ArgBP2 via histone methylation.

  14. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells

    International Nuclear Information System (INIS)

    Tong, Yuxin; Li, Yan; Gu, Hui; Wang, Chunyu; Liu, Funan; Shao, Yangguang; Li, Jiabin; Cao, Liu; Li, Feng

    2015-01-01

    ArgBP2 is an adapter protein that plays an important role in actin-dependent processes such as cell adhesion and migration. However, its function and regulation mechanisms in gastric cancer have not yet been investigated. Here, we showed the low expression of ArgBP2 mRNA level in gastric tumor samples and its repressive function in the proliferation, migration, and invasion of gastric cancer cells. Then, we cloned and identified ArgBP2 promoter and verified that MORC2 bound to the promoter. Moreover, we demonstrated that MORC2 enhanced the recruitment of EZH2, which promoted the tri-methylation of H3K27, leading to the transcriptional repression of ArgBP2. Our results might thus contribute to understanding the molecular mechanisms of ArgBP2 regulation and suggesting ArgBP2 as a potential therapeutic target for gastric cancer. - Highlights: • ArgBP2 inhibits proliferation, migration, and invasion of gastric cancer cells. • Identification of ArgBP2 promoter and its transcription factor MORC2. • EZH2 is required in MORC2 down-regulating ArgBP2 via histone methylation.

  15. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2.

    Science.gov (United States)

    Niu, Yuchun; Ma, Feng; Huang, Weimei; Fang, Shun; Li, Man; Wei, Ting; Guo, Linlang

    2017-01-09

    Taurine upregulated gene1 (TUG1) as a 7.1-kb lncRNA, has been shown to play an oncogenic role in various cancers. However, the biological functions of lncRNA TUG1 in small cell lung cancer (SCLC) remain unknown. The aim of this study is to explore the roles of TUG1 in cell growth and chemoresistance of SCLC and its possible molecular mechanism. The expression of TUG1 in thirty-three cases of SCLC tissues and SCLC cell line were examined by quantitative RT-PCR (qRT-PCR). The functional roles of TUG1 in SCLC were demonstrated by CCK8 assay, colony formation assay, wound healing assay and transwell assay, flow cytometry analysis and in vivo study through siRNA or shRNA mediated knockdown. Western blot assays were used to evaluate gene and protein expression in cell lines. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular mechanism of TUG1 involved in cell growth and chemoresistance of small cell lung cancer. We found that TUG1 was overexpressed in SCLC tissues, and its expression was correlated with the clinical stage and the shorter survival time of SCLC patients. Moreover, downregulation of TUG1 expression could impair cell proliferation and increased cell sensitivity to anticancer drugs both in vitro and in vivo. We also discovered that TUG1 knockdown significantly promoted cell apoptosis and cell cycle arrest, and inhibited cell migration and invasion in vitro . We further demonstrated that TUG1 can regulate the expression of LIMK2b (a splice variant of LIM-kinase 2) via binding with enhancer of zeste homolog 2 (EZH2), and then promoted cell growth and chemoresistance of SCLC. Together, these results suggested that TUG1 mediates cell growth and chemoresistance of SCLC by regulating LIMK2b via EZH2.

  16. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  17. Long Intergenic Noncoding RNA 00511 Acts as an Oncogene in Non–small-cell Lung Cancer by Binding to EZH2 and Suppressing p57

    Directory of Open Access Journals (Sweden)

    Cheng-Cao Sun

    2016-01-01

    Full Text Available Long noncoding RNAs (lncRNAs play crucial roles in carcinogenesis. However, the function and mechanism of lncRNAs in human non–small-cell lung cancer (NSCLC are still remaining largely unknown. Long intergenic noncoding RNA 00511 (LINC00511 has been found to be upregulated and acts as an oncogene in breast cancer, but little is known about its expression pattern, biological function and underlying mechanism in NSCLC. Herein, we identified LINC00511 as an oncogenic lncRNA by driving tumorigenesis in NSCLC. We found LINC00511 was upregulated and associated with oncogenesis, tumor size, metastasis, and poor prognosis in NSCLC. Moreover, LINC00511 affected cell proliferation, invasiveness, metastasis, and apoptosis in multiple NSCLC cell lines. Mechanistically, LINC00511 bound histone methyltransferase enhancer of zeste homolog 2 ((EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3, and acted as a modular scaffold of EZH2/PRC2 complexes, coordinated their localization, and specified the histone modification pattern on the target genes, including p57, and consequently altered NSCLC cell biology. Thus, LINC00511 is mechanistically, functionally, and clinically oncogenic in NSCLC. Targeting LINC00511 and its pathway may be meaningful for treating patients with NSCLC.

  18. The Effect of Sodium Valproate on the Glioblastoma U87 Cell Line Tumor Development on the Chicken Embryo Chorioallantoic Membrane and on EZH2 and p53 Expression

    Directory of Open Access Journals (Sweden)

    Dovilė Kavaliauskaitė

    2017-01-01

    Full Text Available Literature data support evidences that glioblastoma (GBM patients experience prolonged survival due to sodium valproate (NaVP treatment. The study assessed the human GBM cell U87 xenograft studied in the chicken embryo chorioallantoic membrane (CAM model evaluating NaVP effect on tumor. Three groups of tumors (each n = 10 were studied: nontreated, treated with 4 mM, and treated with 8 mM of NaVP. The majority of tumors without NaVP treatment during tumor growth destroyed the chorionic epithelium, invaded the mesenchyme, and induced angiogenesis. Incidence of tumor formation on CAM without invasion into the mesenchyme was higher when U87 cells were treated with NaVP; the effect significantly increased with NaVP concentration. Treatment with 8 mM of NaVP did not show clear dynamics of tumor growth during 5 days; at the same time, the angiogenesis failed. With a strong staining of EZH2, p53 in tumors without NaVP treatment was found, and NaVP significantly decreased the expression of EZH2- and p53-positive cells; the effect was significantly higher at its 8 mM concentration. NaVP has a function in blocking the growth, invasion, and angiogenesis of tumor in the CAM model; tumor growth interferes with EZH2 and p53 molecular pathways, supporting the NaVP potential in GBM therapy.

  19. Tissue Microarray Assessment of Novel Prostate Cancer Biomarkers AMACR and EZH2 and Immunologic Response to Them in African-American and Caucasian Men

    National Research Council Canada - National Science Library

    Mehra, Rohit

    2007-01-01

    .... We constructed 5 tissue microarrays representing 40 African-American and 159 Caucasian prostate cancer patients and performed immunohistochemistry on these arrays using antibody to AMACR and EZH2...

  20. Tissue Microarray Assessment of Novel Prostate Cancer Biomarkers AMACR and EZH2 and Immunologic Response to them in African-American and Caucasian Men

    National Research Council Canada - National Science Library

    Mehra, Rohit

    2006-01-01

    .... We constructed 5 tissue microarrays representing 40 African-American and 159 Caucasian prostate cancer patients and performed immunohistochemistry on these arrays using antibodies to AMACR and EZH2...

  1. Enhancer of Zeste Homolog 2 Overexpression in Nasopharyngeal Carcinoma: An Independent Poor Prognosticator That Enhances Cell Growth

    International Nuclear Information System (INIS)

    Hwang, Chung-Feng; Huang, Hsuan-Ying; Chen, Chang-Han; Chien, Chih-Yen; Hsu, Yao-Chung; Li, Chien-Feng

    2012-01-01

    Purpose: As a key component of polycomb-repressive complex 2, enhancer of zeste homolog 2 (EZH2) represses target genes through histone methylation and is frequently overexpressed and associated with poor prognosis in common carcinomas. For the first time, we reported EZH2 expression and its biological and clinical significance in nasopharyngeal carcinoma (NPC). Methods and Materials: In NPC cell lines and specimens, endogenous expression of EZH2 mRNA and protein was determined by semiquantitative reverse transcription–polymerase chain reaction and immunoblotting, respectively. To analyze the effect on cell growth, stable silencing of EZH2 was established in EZH2-expressing TW02 NPC cells with RNA interference. EZH2 immunolabeling was assessable for 89 primary NPC biopsy samples and correlated with clinicopathological variables, disease-specific survival (DSS), and overall survival (OS). Results: Growth activity of TW02 cells was significantly suppressed (p < 0.001) with stable EZH2 silencing. Compared with normal nasopharyngeal tissue, expression levels of EZH2 transcript and protein were apparently upregulated in NPC specimens. As a continuous variable, higher EZH2 expression preferentially occurred in NPCs of T3 to T4 stages (p = 0.03) and significantly predicted inferior DSS (p = 0.0010) and OS (p = 0.004). The prognostic implications for DSS (p = 0.010) and OS (p = 0.006) still remained valid when using the median (≥60%) of EZH2 immunolabeling index to dichotomize the cohort. In the multivariate model, higher EZH2 expression was an independent adverse factor of both DSS (p = 0.012) and OS (p = 0.011), along with American Joint Committee on Cancer Stages III to IV (p = 0.024 for DSS, p = 0.017 for OS). Conclusion: At least partly through promoting cell growth, EZH2 implicates disease progression, confers tumor aggressiveness, and represents an independent adverse prognosticator in patients with NPC.

  2. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

    Science.gov (United States)

    Bate-Eya, Laurel T; Gierman, Hinco J; Ebus, Marli E; Koster, Jan; Caron, Huib N; Versteeg, Rogier; Dolman, M Emmy M; Molenaar, Jan J

    2017-04-01

    Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Polycomb Group Protein PHF1 Regulates p53-dependent Cell Growth Arrest and Apoptosis*

    Science.gov (United States)

    Yang, Yang; Wang, Chenji; Zhang, Pingzhao; Gao, Kun; Wang, Dejie; Yu, Hongxiu; Zhang, Ting; Jiang, Sirui; Hexige, Saiyin; Hong, Zehui; Yasui, Akira; Liu, Jun O.; Huang, Haojie; Yu, Long

    2013-01-01

    Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. PMID:23150668

  4. Interaction of a non-histone chromatin protein (high-mobility group protein 2) with DNA

    International Nuclear Information System (INIS)

    Goodwin, G.H.; Shooter, K.V.; Johns, E.W.

    1975-01-01

    The interaction with DNA of the calf thymus chromatin non-histone protein termed the high-mobility group protein 2 has been studied by sedimentation analysis in the ultracentrifuge and by measuring the binding of the 125 I-labelled protein to DNA. The results have been compared with those obtained previously by us [Eur. J. Biochem. (1974) 47, 263-270] for the interaction of high-mobility group protein 1 with DNA. Although the binding parameters are similar for these two proteins, high-mobility group protein 2 differs from high-mobility group protein 1 in that the former appears to change the shape of the DNA to a more compact form. The molecular weight of high-mobility group protein 2 has been determined by equilibrium sedimentation and a mean value of 26,000 was obtained. A low level of nuclease activity detected in one preparation of high-mobility group protein 2 has been investigated. (orig.) [de

  5. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis.

    Science.gov (United States)

    Wassef, Michel; Rodilla, Veronica; Teissandier, Aurélie; Zeitouni, Bruno; Gruel, Nadege; Sadacca, Benjamin; Irondelle, Marie; Charruel, Margaux; Ducos, Bertrand; Michaud, Audrey; Caron, Matthieu; Marangoni, Elisabetta; Chavrier, Philippe; Le Tourneau, Christophe; Kamal, Maud; Pasmant, Eric; Vidaud, Michel; Servant, Nicolas; Reyal, Fabien; Meseure, Dider; Vincent-Salomon, Anne; Fre, Silvia; Margueron, Raphaël

    2015-12-15

    Alterations of chromatin modifiers are frequent in cancer, but their functional consequences often remain unclear. Focusing on the Polycomb protein EZH2 that deposits the H3K27me3 (trimethylation of Lys27 of histone H3) mark, we showed that its high expression in solid tumors is a consequence, not a cause, of tumorigenesis. In mouse and human models, EZH2 is dispensable for prostate cancer development and restrains breast tumorigenesis. High EZH2 expression in tumors results from a tight coupling to proliferation to ensure H3K27me3 homeostasis. However, this process malfunctions in breast cancer. Low EZH2 expression relative to proliferation and mutations in Polycomb genes actually indicate poor prognosis and occur in metastases. We show that while altered EZH2 activity consistently modulates a subset of its target genes, it promotes a wider transcriptional instability. Importantly, transcriptional changes that are consequences of EZH2 loss are predominantly irreversible. Our study provides an unexpected understanding of EZH2's contribution to solid tumors with important therapeutic implications. © 2015 Wassef et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Optimization of Orally Bioavailable Enhancer of Zeste Homolog 2 (EZH2) Inhibitors Using Ligand and Property-Based Design Strategies: Identification of Development Candidate (R)-5,8-Dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497).

    Science.gov (United States)

    Kung, Pei-Pei; Bingham, Patrick; Brooun, Alexei; Collins, Michael; Deng, Ya-Li; Dinh, Dac; Fan, Connie; Gajiwala, Ketan S; Grantner, Rita; Gukasyan, Hovhannes J; Hu, Wenyue; Huang, Buwen; Kania, Robert; Kephart, Susan E; Krivacic, Cody; Kumpf, Robert A; Khamphavong, Penney; Kraus, Manfred; Liu, Wei; Maegley, Karen A; Nguyen, Lisa; Ren, Shijian; Richter, Dan; Rollins, Robert A; Sach, Neal; Sharma, Shikhar; Sherrill, John; Spangler, Jillian; Stewart, Albert E; Sutton, Scott; Uryu, Sean; Verhelle, Dominique; Wang, Hui; Wang, Shuiwang; Wythes, Martin; Xin, Shuibo; Yamazaki, Shinji; Zhu, Huichun; Zhu, JinJiang; Zehnder, Luke; Edwards, Martin

    2018-02-08

    A new series of lactam-derived EZH2 inhibitors was designed via ligand-based and physicochemical-property-based strategies to address metabolic stability and thermodynamic solubility issues associated with previous lead compound 1. The new inhibitors incorporated an sp 3 hybridized carbon atom at the 7-position of the lactam moiety present in lead compound 1 as a replacement for a dimethylisoxazole group. This transformation enabled optimization of the physicochemical properties and potency compared to compound 1. Analysis of relationships between calculated log D (clogD) values and in vitro metabolic stability and permeability parameters identified a clogD range that afforded an increased probability of achieving favorable ADME data in a single molecule. Compound 23a exhibited the best overlap of potency and pharmaceutical properties as well as robust tumor growth inhibition in vivo and was therefore advanced as a development candidate (PF-06821497). A crystal structure of 23a in complex with the three-protein PRC2 complex enabled understanding of the key structural features required for optimal binding.

  7. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    2010-08-01

    Full Text Available Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control.Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2.We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  8. Transcriptional response of polycomb group genes to status epilepticus in mice is modified by prior exposure to epileptic preconditioning

    Directory of Open Access Journals (Sweden)

    James eReynolds

    2015-03-01

    Full Text Available Exposure of the brain to brief, non-harmful seizures can activate protective mechanisms that temporarily generate a damage-refractory state. This process, termed epileptic tolerance, is associated with large-scale down-regulation of gene expression. Polycomb group proteins are master controllers of gene silencing during development that are re-activated by injury to the brain. Here we explored the transcriptional response of genes associated with polycomb repressor complex (PRC 1 (Ring1A and Ring1B and Bmi1 and PRC2 (Ezh1, Ezh2 and Suz12, as well as additional transcriptional regulators Sirt1, Yy1 and Yy2, in a mouse model of status epilepticus. Findings were contrasted to changes after status epilepticus in mice previously given brief seizures to evoke tolerance. Real-time quantitative PCR showed status epilepticus prompted an early (1 h increase in expression of several genes in PRC1 and PRC2 in the hippocampus, followed by down-regulation of many of the same genes at later times points (4 , 8 and 24 h. Spatio-temporal differences were found among PRC2 genes in epileptic tolerance, including increased expression of Ezh2, Suz12 and Yy2 relative to the normal injury response to status epilepticus. In contrast, PRC1 complex genes including Ring 1B and Bmi1 displayed differential down-regulation in epileptic tolerance. The present study characterizes polycomb group gene expression following status epilepticus and shows prior seizure exposure produces select changes to PRC1 and PRC2 composition that may influence differential gene expression in epileptic tolerance.

  9. TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy

    Science.gov (United States)

    Acharyya, Swarnali; Sharma, Sudarshana M.; Cheng, Alfred S.; Ladner, Katherine J.; He, Wei; Kline, William; Wang, Huating; Ostrowski, Michael C.; Huang, Tim H.; Guttridge, Denis C.

    2010-01-01

    Background Classical NF-κB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFα on skeletal muscle differentiation are mediated in part through sustained NF-κB activity. In dystrophic muscles, NF-κB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFα that is also under IKKβ and NF-κB control. Methodology/Principal Findings Based on these findings we speculated that in DMD, TNFα secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFα is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-κB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFα stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. Conclusions/Significance We propose that in dystrophic muscles, elevated levels of TNFα and NF-κB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene. PMID:20814569

  10. A chimeric fusion of the hASH1 and EZH2 promoters mediates high and specific reporter and suicide gene expression and cytotoxicity in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Pedersen, N.; Juel, H.

    2008-01-01

    Transcriptionally targeted gene therapy is a promising experimental modality for treatment of systemic malignancies such as small cell lung cancer (SCLC). We have identified the human achaete-scute homolog 1 (hASH1) and enhancer of zeste homolog 2 (EZH2) genes as highly upregulated in SCLC compar...

  11. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED

    Directory of Open Access Journals (Sweden)

    Gouet Patrice

    2008-02-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA, integrase (IN and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2

  12. Targeting the Enhancer of Zeste Homologue 2 in Medulloblastoma

    Science.gov (United States)

    Alimova, Irina; Venkataraman, Sujatha; Harris, Peter; Marquez, Victor E.; Northcott, Paul A; Dubuc, Adrian; Taylor, Michael D; Foreman, Nicholas K; Vibhakar, Rajeev

    2012-01-01

    Enhancer of zeste homologue 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 that catalyzes the trimethylation of histone H3 on Lys 27, and represses gene transcription. EZH2 enhances cancer-cell proliferation and regulates stem cell maintenance and differentiation. Here, we demonstrate that EZH2 is highly expressed in medulloblastoma, a highly malignant brain tumor of childhood, and this altered expression is correlated with genomic gain of chromosome 7 in a subset of medulloblastoma. Inhibition of EZH2 by RNAi suppresses medulloblastoma tumor cell growth. We show that 3-deazaneplanocin A, a chemical inhibitor of EZH2, can suppress medulloblastoma cell growth partially by inducing apoptosis. Suppression of EZH2 expression diminishes the ability of tumor cells to form spheres in culture and strongly represses the ability of known oncogenes to transform neural stem cells. These findings establish a role of EZH2 in medulloblastoma and identify EZH2 as a potential therapeutic target especially in high-risk tumors. PMID:22287205

  13. Analysis of Morphogenic Effect of hDAB2IP on Prostate Cancer and its Disease Correlation

    Science.gov (United States)

    2005-02-01

    Ezh2 protein became more prominent 96 hrs RESULTS after transfection. Under this condition , Profiling hDAB2IP and Ezh2 the elevated levels of hDAB2IP...Pirrotta, V., Poux, S., Melfi, R., S., Vessella, R., Lin, D. L., and Pilyugin, M. (2003) Genetica Pienta, K. J. (2001) In Vivo. 15, 117:191-197 163-168...performed using iCycler machine (Bio-Rad) and the reaction condition was as follow: 95’C (3 min) and 40 cycles amplification cycle (95 0C [30 sec], 55°C

  14. Prevalence of Enhancer of Zeste Homolog 2 in Patients with Resected Small Cell Lung Cancer.

    Science.gov (United States)

    Toyokawa, Gouji; Takada, Kazuki; Tagawa, Tetsuzo; Kinoshita, Fumihiko; Kozuma, Yuka; Matsubara, Taichi; Haratake, Naoki; Takamori, Shinkichi; Akamine, Takaki; Hirai, Fumihiko; Yamada, Yuichi; Hamamoto, Ryuji; Oda, Yoshinao; Maehara, Yoshihiko

    2018-06-01

    Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is deeply involved in cancer pathogenesis. Although clinicopathological significance of EZH2 in non-small cell lung cancer has been gradually elucidated, such significance in small cell lung cancer (SCLC) has yet to be fully investigated. Forty patients with resected SCLC were analyzed for EZH2. EZH2 expression was evaluated using the Allred score (0-8) and was classified into negative (0-6) and positive (7 and 8). We evaluated the association between EZH2 and the clinicopathological characteristics and postoperative survivals. Among 40 patients, 15 (37.5%) and 25 (62.5%) were classified as being negative and positive for EZH2, respectively. Fisher's exact test demonstrated no significant associations between the positivity for EZH2 and clinicopathological characteristics. No significant differences were observed in recurrence-free and overall survivals between EZH2-negative/low and EZH2-high patients. EZH2 was frequently observed in patients with resected SCLC, but no significant associations were found between its expression and the clinicopathological characteristics and postoperative survivals. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Epigenetic control of cell identity and plasticity

    KAUST Repository

    Orlando, Valerio

    2014-04-02

    The DNA centered dogma for genetic information and cell identity is now evolving into a much more complex and flexible dimension provided by the discovery of the Epigenome. This comprises those chromosome structural and topological components that complement DNA information and contribute to genome functional organization. Current concept is that the Epigenome constitutes the dynamic molecular interface allowing the Genome to interact with the Environment. Exploring how the genome interacts with the environment is a key to fully understand cellular and complex organism mechanisms of adaptation and plasticity. Our work focuses on the role of an essential, specialized group or chromatin associated proteins named Polycomb (PcG) that control maintenance of transcription programs during development and in adult life. In particular PcG proteins exert epigenetic “memory” function by modifying chromosome structures at various levels to maintain gene silencing in particular through cell division. While in the past decade substantial progress was made in understanding PcG mechanisms acting in development and partially during cell cycle, very little is known about their role in adult post-mitotic tissues and more in general the role of the epigenome in adaptation. To this, we studied the role of PcG in the context of mammalian skeletal muscle cell differentiation. We previously reported specific dynamics of PRC2 proteins in myoblasts and myotubes, in particular the dynamics of PcG Histone H3 K27 Methyl Transferases (HMT), EZH2 and EZH1, the latter apparently replacing for EZH2 in differentiated myotubes. Ezh1 protein, although almost identical to Ezh2, shows a weak H3K27 HMT activity and its primary function remains elusive. Recent ChIPseq studies performed in differentiating muscle cells revealed that Ezh1 associates with active and not repressed regulatory regions to control RNA pol II elongation. Since H3K27 tri-methylation levels are virtually steady in non

  16. Signals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation

    Science.gov (United States)

    Li, Li; Liu, Ruizao; Zhang, Li; Zhao, Fuping; Lu, Jian; Zhang, Xiaoning; Du, Lixin

    2015-01-01

    Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis. PMID:25811841

  17. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    Energy Technology Data Exchange (ETDEWEB)

    Thompson,J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered {alpha}-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an {alpha}-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.

  18. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    International Nuclear Information System (INIS)

    Thompson, J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered α-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an α-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin

  19. Chromatin-regulating proteins as targets for cancer therapy

    International Nuclear Information System (INIS)

    Oike, Takahiro; Ogiwara, Hideaki; Kohno, Takashi; Amornwichet, Napapat; Nakano, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. (author)

  20. The binding activity of Mel-18 at the Il17a promoter is regulated by the integrated signals of the TCR and polarizing cytokines.

    Science.gov (United States)

    Hod-Dvorai, Reut; Jacob, Eyal; Boyko, Yulia; Avni, Orly

    2011-08-01

    We have previously shown that in differentiated T-helper (Th)1 and Th2 cells, polycomb group (PcG) proteins are associated differentially with the promoters of the signature cytokine genes. The correlation of the binding activity of PcG proteins with gene expression is unusual, since they are well known as epigenetic regulators that maintain transcriptional silencing. Here we show that in Th17 cells, the more phenotypically flexible Th lineage, the PcG proteins Mel-18 and less strikingly Ezh2 are associated differentially with the Il17a promoter. Using the RNAi approach, we found that Mel-18 and Ezh2 positively regulate the expression of Il17a and Il17f. The inducible binding of Mel-18 and Ezh2 at the Il17a promoter was dependent on signaling pathways downstream of the TCR. However, a continuous presence of TGF-β, the cytokine that is necessary to maintain Il17a expression, was required to preserve the binding activity of Mel-18, but not of Ezh2, following restimulation. The binding of Mel-18 at the Il17a promoter was correlated with the recruitment of the lineage-specifying transcription factor RORγt. Altogether, our results suggest that in Th17 cells the TCR and polarizing cytokines synergize to modulate the binding activity of Mel-18 at the Il17a promoter, and consequently to facilitate Il17a expression. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri......The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work...... as transcriptional repressors is incompletely understood, but involves post-translational modifications of histones by two major PcG protein complexes: polycomb repressive complex 1 and polycomb repressive complex 2....

  2. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA–protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 mM, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly inhibit EZH2

  3. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA-protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 [Formula: see text]M, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly

  4. Short-Chain Fatty Acids from Periodontal Pathogens Suppress Histone Deacetylases, EZH2, and SUV39H1 To Promote Kaposi's Sarcoma-Associated Herpesvirus Replication

    Science.gov (United States)

    Yu, Xiaolan; Shahir, Abdel-Malek; Sha, Jingfeng; Feng, Zhimin; Eapen, Betty; Nithianantham, Stanley; Das, Biswajit; Karn, Jonathan; Weinberg, Aaron; Bissada, Nabil F.

    2014-01-01

    ABSTRACT Periodontal pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum produce five different short-chain fatty acids (SCFAs) as metabolic by-products. We detect significantly higher levels of SCFAs in the saliva of patients with severe periodontal disease. The different SCFAs stimulate lytic gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) dose dependently and synergistically. SCFAs inhibit class-1/2 histone deacetylases (HDACs) and downregulate expression of silent information regulator-1 (SIRT1). SCFAs also downregulate expression of enhancer of zeste homolog2 (EZH2) and suppressor of variegation 3-9 homolog1 (SUV39H1), which are two histone N-lysine methyltransferases (HLMTs). By suppressing the different components of host epigenetic regulatory machinery, SCFAs increase histone acetylation and decrease repressive histone trimethylations to transactivate the viral chromatin. These new findings provide mechanistic support that SCFAs from periodontal pathogens stimulate KSHV replication and infection in the oral cavity and are potential risk factors for development of oral Kaposi's sarcoma (KS). IMPORTANCE About 20% of KS patients develop KS lesions first in the oral cavity, while other patients never develop oral KS. It is not known if the oral microenvironment plays a role in oral KS tumor development. In this work, we demonstrate that a group of metabolic by-products, namely, short-chain fatty acids, from bacteria that cause periodontal disease promote lytic replication of KSHV, the etiological agent associated with KS. These new findings provide mechanistic support that periodontal pathogens create a unique microenvironment in the oral cavity that contributes to KSHV replication and development of oral KS. PMID:24501407

  5. Transcriptional regulation by Polycomb group proteins

    DEFF Research Database (Denmark)

    Di Croce, Luciano; Helin, Kristian

    2013-01-01

    Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins......) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity....

  6. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Group A protein phosphatases 2Cs (PP2Cs are essential components of abscisic acid (ABA signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.

  7. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    Science.gov (United States)

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  8. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth

    DEFF Research Database (Denmark)

    Jiang, Ning; Ke, Binghu; Hjort-Jensen, Kim

    2017-01-01

    Castration resistant prostate cancer (CRPC) is a stage of relapse that arises after various forms of androgen ablation therapy (ADT) and causes significant morbidity and mortality. However, the mechanism underlying progression to CRPC remains poorly understood. Here, we report that YAP1, which...... is negatively regulated by AR, influences prostate cancer (PCa) cell self-renewal and CRPC development. Specifically, we found that AR directly regulates the methylation of YAP1 gene promoter via the formation of a complex with Polycomb group protein EZH2 and DNMT3a. In normal conditions, AR recruits EZH2......-differentiation of PCa cells to stem/progenitor-like cells (PCSC), which potentially contribute to disease recurrence. Finally, the knock down of YAP1 expression or the inhibition of YAP1 function by Verteporfin in TRAMP prostate cancer mice significantly suppresses tumor recurrence following castration. In conclusion...

  9. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu).

    Science.gov (United States)

    Luan, Jinwei; Li, Xianglan; Guo, Rutao; Liu, Shanshan; Luo, Hongyu; You, Qingshan

    2016-06-01

    Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells. The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network. Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle. RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray.

  10. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu)

    International Nuclear Information System (INIS)

    Luan, Jinwei; Li, Xianglan; Guo, Rutao; Liu, Shanshan; Luo, Hongyu; You, Qingshan

    2016-01-01

    Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells. The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network. Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle. RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray

  11. The architecture of metal coordination groups in proteins.

    Science.gov (United States)

    Harding, Marjorie M

    2004-05-01

    A set of tables is presented and a survey given of the architecture of metal coordination groups in a representative set of protein structures from the Protein Data Bank [Bernstein et al. (1977), J. Mol. Biol. 112, 535-542; Berman et al. (2000), Nucleic Acids Res. 28, 235-242]. The structures have been determined to a resolution of 2.5 A or better; the metals considered are Ca, Mg, Mn, Fe, Cu, Zn, Na and K, with particular emphasis on Ca and Zn and the exclusion of haem groups and Fe/S clusters; the proteins are a representative set in which none has more than 30% sequence identity with any other. In them the metal is coordinated by several donor groups from different amino-acid residues in the protein chain and often also by water or other small molecules. The tables, for approximately 600 metal coordination groups, include information on the conformations of the protein chain in the region around the metal and reliability indicators. They illustrate the wide variety of coordination numbers, chelate-loop sizes and other properties and the different characteristics of different metals. They show that glycine has a particular significance in the position adjacent to a donor residue, especially in Ca coordination groups. They also show that metal coordination does not appear to lead to significant distortions of the torsion angles phi, psi from their normally allowed values. Very few metal coordination groups occur more than once in the representative set and when they do they are usually related in fold and function; they have similar but not necessarily identical conformations. However, individual chelate loops, for example Zn(-C-X-X'-C-), in which both cysteines are coordinated to Zn through S, and X and X' are any amino acids, are repeated frequently in many different and unrelated proteins. Not all chelate loops with the same composition have the same conformation, but for smaller loops there are usually one or two strongly preferred and well defined

  12. High expression of Polycomb group protein EZH2 predicts poor survival in salivary gland adenoid cystic carcinoma

    NARCIS (Netherlands)

    Vékony, H.; Raaphorst, F.M.; Otte, A.P.; van Lohuizen, M.; Leemans, C.R.; van der Waal, I.; Bloemena, E.

    2008-01-01

    Background: The prognosis of adenoid cystic carcinoma (ACC), a malignant salivary gland tumour, depends on clinicopathological parameters. To decipher the biological behaviour of ACC, and to identify patients at risk of developing metastases, additional markers are needed. Methods: Expression of the

  13. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.

    Science.gov (United States)

    Shaver, Scott; Casas-Mollano, J Armando; Cerny, Ronald L; Cerutti, Heriberto

    2010-05-16

    Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in unicellular model fungi and its function in the repression of genes vital for the development of higher eukaryotes led to the proposal that this complex may have evolved together with the emergence of multicellularity. However, we report here on the widespread presence of PRC2 core subunits in unicellular eukaryotes from the Opisthokonta, Chromalveolata and Archaeplastida supergroups. To gain insight on the role of PRC2 in single celled organisms, we characterized an E(z) homolog, EZH, in the green alga Chlamydomonas reinhardtii. RNAi-mediated suppression of EZH led to defects in the silencing of transgenes and retrotransposons as well as to a global increase in histone post-translational modifications associated with transcriptional activity, such as trimethylation of histone H3 lysine 4 and acetylation of histone H4. On the basis of the parsimony principle, our findings suggest that PRC2 appeared early in eukaryotic evolution, even perhaps in the last unicellular common ancestor of eukaryotes. One of the ancestral roles of PCR2 may have been in defense responses against intragenomic parasites such as transposable elements, prior to being co-opted for lineage specific functions like developmental regulation in multicellular eukaryotes.

  14. Phylogenetic continuum indicates "galaxies" in the protein universe: preliminary results on the natural group structures of proteins.

    Science.gov (United States)

    Ladunga, I

    1992-04-01

    The markedly nonuniform, even systematic distribution of sequences in the protein "universe" has been analyzed by methods of protein taxonomy. Mapping of the natural hierarchical system of proteins has revealed some dense cores, i.e., well-defined clusterings of proteins that seem to be natural structural groupings, possibly seeds for a future protein taxonomy. The aim was not to force proteins into more or less man-made categories by discriminant analysis, but to find structurally similar groups, possibly of common evolutionary origin. Single-valued distance measures between pairs of superfamilies from the Protein Identification Resource were defined by two chi 2-like methods on tripeptide frequencies and the variable-length subsequence identity method derived from dot-matrix comparisons. Distance matrices were processed by several methods of cluster analysis to detect phylogenetic continuum between highly divergent proteins. Only well-defined clusters characterized by relatively unique structural, intracellular environmental, organismal, and functional attribute states were selected as major protein groups, including subsets of viral and Escherichia coli proteins, hormones, inhibitors, plant, ribosomal, serum and structural proteins, amino acid synthases, and clusters dominated by certain oxidoreductases and apolar and DNA-associated enzymes. The limited repertoire of functional patterns due to small genome size, the high rate of recombination, specific features of the bacterial membranes, or of the virus cycle canalize certain proteins of viruses and Gram-negative bacteria, respectively, to organismal groups.

  15. Protective effect of Sestrin2 on apoptosis of dendritic cells induced by high mobility group box-1 protein

    Directory of Open Access Journals (Sweden)

    Li-xue WANG

    2018-04-01

    Full Text Available Objective To investigate the potential role of Sestrin2 (SESN2 in regulating the apoptosis of dendritic cells (DCs induced by high mobility group box-1 protein (HMGB1. Methods DCs (the murine DC cell line DC2.4 were cultured with or without HMGB1 stimulation (cultured with 10ng/ml HMGB1 for 8, 24 and 48 hours, or cultured with HMGB1 for 48 hours at different concentrations of 1, 10 and 100ng/ml, respectively, n=4. The protein level of SESN2, cleaved-caspase-3 and Bcl-2 were analyzed with Western blotting. Localization of SESN2 in cells was observed under confocal laser microscope (LSCM. Cell apoptosis was analyzed with flow cytometry. In addition, DC2.4 cells were transfected with lentivirus containing SESN2 LV-RNA, SESN2 siRNA sequence expressing plasmids or blank vector (NC, NS, n=4. These cells were then stimulated with HMGB1 (100ng/ml for 48 hours, and the apoptosis was accessed as mentioned above. Results Compared with the control group, the expression of SESN2 was obviously up-regulated after HMGB1 (10ng/ml stimulation for 24 and 48 hours (P<0.05. In a dose-dependent response, the expression of SESN2 was markedly enhanced in treatment with 1, 10, 100ng/ml HMGB1 for 48 hours (P<0.05. Compared with the control group (7.35%±1.33%, the percentage of apoptosis was significantly increased with 10, 100ng/ml HMGB1 for 48 hours [(17.02%±4.85%, 17.48%±4.04%, respectively, P<0.05 or P<0.01]. After transfection, compared with blank vector group, the apoptosis of SESN2 siRNA group obviously elevated [(65.96%±2.50% vs. (50.01%±2.07%, P<0.05], and cleaved-caspase-3 expression significantly increased while Bcl-2 expression obviously decreased. In SESN2 LV-RNA group, the apoptosis significantly decreased [(35.57%±1.69% vs. (49.04%±4.87%, P<0.05], and cleaved-caspase-3 expression decreased and Bcl-2 expression obviously increased compared with blank vector group (P<0.05. Conclusion SESN2 has a protective effect against HMGB1 induced apoptosis of DC2

  16. Vegetarian Choices in the Protein Foods Group

    Science.gov (United States)

    ... foods selected are adequate. Protein sources from the Protein Foods Group for vegetarians include eggs (for ovo-vegetarians), beans and peas, nuts, nut butters, and soy products (tofu, tempeh, ...

  17. Morphoproteomics, E6/E7 in-situ hybridization, and biomedical analytics define the etiopathogenesis of HPV-associated oropharyngeal carcinoma and provide targeted therapeutic options.

    Science.gov (United States)

    Brown, Robert E; Naqvi, Syed; McGuire, Mary F; Buryanek, Jamie; Karni, Ron J

    2017-08-17

    Human papillomavirus (HPV) has been identified as an etiopathogenetic factor in oropharyngeal squamous cell carcinoma. The HPV E6 and E7 oncogenes are instrumental in promoting proliferation and blocking differentiation leading to tumorigenesis. Although surgical intervention can remove such tumors, the potential for an etiologic field effect with recurrent disease is real. A downstream effector of E7 oncoprotein, enhancer of zeste homolog 2 (EZH2), is known to promote proliferation and to pose a block in differentiation and in turn, could lead to HPV-induced malignant transformation. However, the EZH2 pathway is amenable to low toxicity therapies designed to promote differentiation to a more benign state and prevent recurrent disease by inhibiting the incorporation of HPV into the genome. This is the first study using clinical specimens to demonstrate EZH2 protein expression in oropharyngeal carcinoma (OPC). The study included eight patients with oropharyngeal carcinoma, confirmed p16INK4a- positive by immunohistochemistry (IHC). The tissue expression of E6/E7 messenger RNA (mRNA) was measured by RNAscope® in-situ hybridization technology. Expression of EZH2, Ki-67, and mitotic indices were assessed by morphoproteomic analysis. Biomedical analytics expanded the results with data from Ingenuity Pathway Analysis (IPA) and KEGG databases to construct a molecular network pathway for further insights. Expression of E6 and E7 oncogenes in p16INK4a- positive oropharyngeal carcinoma was confirmed. EZH2 and its correlates, including elevated proliferation index (Ki-67) and mitotic progression were also present. Biomedical analytics validated the relationship between HPV- E6 and E7 and the expression of the EZH2 pathway. There is morphoproteomic and mRNA evidence of the association of p16INK4a-HPV infection with the E6 and E7 oncogenes and the expression of EZH2, Ki-67 and mitotic progression in oropharyngeal carcinoma. The molecular network biology was confirmed by

  18. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.

    Science.gov (United States)

    Rodgers, K K; Villey, I J; Ptaszek, L; Corbett, E; Schatz, D G; Coleman, J E

    1999-07-15

    RAG1 and RAG2 are the two lymphoid-specific proteins required for the cleavage of DNA sequences known as the recombination signal sequences (RSSs) flanking V, D or J regions of the antigen-binding genes. Previous studies have shown that RAG1 alone is capable of binding to the RSS, whereas RAG2 only binds as a RAG1/RAG2 complex. We have expressed recombinant core RAG1 (amino acids 384-1008) in Escherichia coli and demonstrated catalytic activity when combined with RAG2. This protein was then used to determine its oligomeric forms and the dissociation constant of binding to the RSS. Electrophoretic mobility shift assays show that up to three oligomeric complexes of core RAG1 form with a single RSS. Core RAG1 was found to exist as a dimer both when free in solution and as the minimal species bound to the RSS. Competition assays show that RAG1 recognizes both the conserved nonamer and heptamer sequences of the RSS. Zinc analysis shows the core to contain two zinc ions. The purified RAG1 protein overexpressed in E.coli exhibited the expected cleavage activity when combined with RAG2 purified from transfected 293T cells. The high mobility group protein HMG2 is stably incorporated into the recombinant RAG1/RSS complex and can increase the affinity of RAG1 for the RSS in the absence of RAG2.

  19. Enhancer of zeste homolog 2 as an independent prognostic marker for cancer: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Shuling Chen

    Full Text Available Novel biomarkers are of particular interest for predicting cancer prognosis. This study aimed to explore the associations between enhancer of zeste homolog 2 (EZH2 and patient survival in various cancers.Relevant literature was retrieved from PubMed and Web of Science databases. Pooled hazard ratios (HRs, odds ratios (ORs, and 95% confidence intervals (CIs were calculated.Forty-nine studies (8,050 patients were included. High EZH2 expression was significantly associated with shorter overall (hazard ratio [HR] 1.74, 95% CI: 1.46-2.07, disease-free (HR 1.59, 95% CI: 1.27-1.99, metastasis-free (HR 2.19, 95% CI: 1.38-3.47, progression-free (HR 2.53, 95% CI: 1.52-4.21, cancer-specific (HR 3.13, 95% CI: 1.70-5.74, and disease-specific (HR 2.29, 95% CI: 1.56-3.35 survival, but not recurrence-free survival (HR 1.38, 95% CI: 0.93-2.06. Moreover, EZH2 expression significantly correlated with distant metastasis (OR 3.25, 95% CI: 1.07-9.87 in esophageal carcinoma; differentiation (OR 3.00, 95% CI: 1.37-6.55 in non-small cell lung cancer; TNM stage (OR 3.18, 95% CI: 2.49-4.08 in renal cell carcinoma; and histological grade (OR 4.50, 95% CI: 3.33-6.09, estrogen receptor status (OR 0.15, 95% CI: 0.11-0.20 and progesterone receptor status (OR 0.30, 95% CI: 0.23-0.39 in breast cancer.Our results suggested that EZH2 might be an independent prognostic factor for multiple survival measures in different cancers.

  20. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53

    DEFF Research Database (Denmark)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice

    2016-01-01

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion...... in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically...... associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell...

  1. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Frank Spaapen

    Full Text Available Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3 blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.

  2. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    Directory of Open Access Journals (Sweden)

    Madeleine Zerbato

    Full Text Available Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  3. Comparative study and grouping of nonstructural (NS1)proteins of influenza A viruses by the method of oligopeptide mapping

    International Nuclear Information System (INIS)

    Sokolov, B.P.; Rudneva, I.A.; Zhdanov, V.M.

    1983-01-01

    Oligopeptide mapping of 35 S-methionine labeled non-stuctural (NS1) proteins of 23 influenza A virus strains showed the presence of both common and variable oligopeptides. Analysis of the oligopeptide maps revealed at least four groups of NS1 proteins. The first group includes NS1 proteins of several human H1N1 influenza viruses (that were designated as H0N1 according to the old classification). The second group is composed of NS1 proteins of H1N1 and H2N2 viruses. The third group includes NS1 proteins of H3N2 human influenza viruses. The fourth group is composed of NS1 proteins of five avian influenza viruses and an equine (H3N8) influenza virus. Two animal influenza viruses A/equi/Prague/56 (H7N7) and A/duck/England/56 (H11N6) contain NS1 proteins that belong to the second group. (Author)

  4. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells.

    Science.gov (United States)

    Lee, Ju-Kyung; Kim, Keun-Cheol

    2013-09-06

    3-Deazaneplanocin A (DZNep), an epigenetic anticancer drug, leads to the indirect suppression of S-adenosyl methionine-dependent cellular methylations by inhibiting S-adenosyl homocystein (AdoHcy) hydrolase. Although it is well known that DZNep targets the degradation of EZH2 protein, H3K27me3 HMTase, there are still uncertainties about the regulation of other types of HMTases during cell death. In this study, we describe that SETDB1 gene expression was regulated by DZNep treatment in human lung cancer cells. We confirm that DZNep induced growth inhibition and increased the dead cell population of lung cancer cells. DZNep treatment affected histone methylations, including H3K27me3 and H3K9me3, but not H3K4me3. Reduced levels of H3K27me3 and H3K9me3 were related with the decreased EZH2 and SETDB1 proteins. Real time PCR analysis showed that SETDB1 gene expression was decreased by DZNep treatment, but no effect was observed for EZH2 gene expression. We cloned the promoter region of SETDB1 and SUV39H1 genes, and performed luciferase assays. The promoter activity of SETDB1 gene was down regulated by DZNep treatment, whereas no effect on SUV39H1 promoter activity was observed. In conclusion, we suggest that DZNep regulates not only on H3K27me3 HMTase EZH2, but also H3K9 HMTase SETDB1 gene expression at the transcription level, implicating that the mechanism of action of DZNep targets multiple HMTases during the death of lung cancer cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Obtention of a prosthetic group for labelling of radioiodinated proteins

    International Nuclear Information System (INIS)

    Santos, Josefina da S.; Colturato, Maria Tereza; Araujo, Elaine B. de

    2000-01-01

    Antibodies and peptides labeled with radionuclides has been extensively used in radioimmunotherapy and radioimmunodetection. The principal problem with the use of radioiodinated proteins is the in vivo dehalogenation. The use of prosthetic groups for indirect labeling of proteins with radioiodine has showed to be useful on labeling proteins with greater in vivo stability. A procedure is described for the preparation of an radioiodinated prosthetic group (N-succinimidyl 4-radioiodine-benzoate-SIB), using procedure described by Stocklin et al, with the iodination of p-bromo-benzoic acid and subsequent reaction with TSTU. Preliminary labeling results showed that the prosthetic group can be obtained in a good yield. The coupling of the SIB to the protein will be studied using human IgG as protein model. (author)

  6. Production of radioiodinated prosthetic group for indirect protein labeling

    International Nuclear Information System (INIS)

    Santos, Josefina da Silva

    2001-01-01

    Monoclonal antibodies and their fragments and, more recently, radiolabeled peptides have been extensively studied in order to develop radiopharmaceuticals for diagnostic and therapy in Nuclear Medicine. The radioiodination of proteins can be done by a direct method, with radioiodine being incorporated in to a tyrosine residue of the protein by electrophilic substitution. The main problem in the use of radioiodinated proteins, is that they are often dehalogenated in vivo by the action of specific enzymes, probably because of the structural similarity between iodophenyl groups and thyroid hormones. Several protein radioiodination methods have been developed in order to minimize this in vivo dehalogenation using prosthetic groups for indirect labeling. In this case, the radioiodine is first incorporated in to the prosthetic group that is subsequently attached to a terminal amino group or to a ε-amino group of lysine residue. The aim of this work is to obtain a radioiodinated prosthetic group for indirect labeling of proteins. The prosthetic group selected was the N-succinimidyl-4-radioiodine benzoate (SIB), obtained by the iodination of the p-bromobenzoic acid followed by the reaction with TSTU (0-(N-succinimidyl)-N,N,N',N'-tetramethyl uronium tetrafluoroborate) The results of these studies showed that the p-radio iodobenzoic acid was obtained with a radiochemical purity greater than 92% and a labeling yield of about 65%. Some reaction parameters were studied like temperature, time and Cu Cl mass (cataliser). The SIB was quantitatively obtained from p-radio iodobenzoic acid, using basic medium and after removing the water from the reaction using an nitrogen stream. The kinetic of this reaction is very fast with complete consumption of the p-radioiodebenzoic acid after 5 minutes. The coupling of the SIB prosthetic group to the protein was studied using Human Immunoglobulin (IgG) as a protein model. In a comparative way, the same protein was used on direct labeling

  7. Combinations of Novel Histone Deacetylase and Bcr-Abl Inhibitors in the Therapy of Imatinib Mesylate-Sensitive and -Refractory Bcr-Abl Expressing Leukemia

    Science.gov (United States)

    2008-12-01

    Balasis,1Purva Bali,1Veronica Estrella ,1Sandhya Kumaraswamy,1 Rekha Rao,1Kathy Rocha,1Bryan Herger,1Francis Lee,2 Victoria Richon,3 and Kapil Bhalla1...Balasis M, Bali P, Estrella V, Kumaraswamy S, et al. Histone deacetylase inhibitors deplete EZH2 and associated Polycomb Repressive Complex 2 proteins

  8. A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins

    International Nuclear Information System (INIS)

    Plevin, Michael J.; Hamelin, Olivier; Boisbouvier, Jérôme; Gans, Pierre

    2011-01-01

    A new method for stereospecific assignment of prochiral methyl groups in proteins is presented in which protein samples are produced using U-[ 13 C]glucose and subsaturating amounts of 2-[ 13 C]methyl-acetolactate. The resulting non-uniform labeling pattern allows proR and proS methyl groups to be easily distinguished by their different phases in a constant-time two-dimensional 1 H- 13 C correlation spectra. Protein samples are conveniently prepared using the same media composition as the main uniformly-labeled sample and contain higher levels of isotope-enrichment than fractional labeling approaches. This new strategy thus represents an economically-attractive, robust alternative for obtaining isotopically-encoded stereospecific NMR assignments of prochiral methyl groups.

  9. [Study on immunogenicity of group A and group C meningococcal conjugate vaccine with coupling group B meningococcal outer membrane protein].

    Science.gov (United States)

    Ma, Fu-Bao; Tao, Hong; Wang, Hong-Jun

    2009-10-01

    To evaluate the Immunogenicity of Group A and Group C Meningococcal conjugate Vaccine with coupling Group B Meningococcal Outer Membrane Protein (Men B-OMP). 458 healthy children aged 3-5 months, 6-23 months, 2-6 years and 7-24 years were given the Groups A and C conjugate Vaccine with MenB-OMP or other vaccine as control group to measure the pre-and post-vaccination Men A and C and B by Serum Bactericidal Assay (SBA) in the double-blind randomized controlled trial. 97.65%-100% were 4 times or greater increase in SBA titer for the healthy children given the Groups A and C conjugate Vaccine with MenB-OMP, The geometric mean titer of SBA were 1:194-1:420, which significantly higber than controls. The Group A and C conjugate Vaccine with MenB-OMP was safe and well immunogenic.

  10. Identification of group specific motifs in Beta-lactamase family of proteins

    Directory of Open Access Journals (Sweden)

    Saxena Akansha

    2009-12-01

    Full Text Available Abstract Background Beta-lactamases are one of the most serious threats to public health. In order to combat this threat we need to study the molecular and functional diversity of these enzymes and identify signatures specific to these enzymes. These signatures will enable us to develop inhibitors and diagnostic probes specific to lactamases. The existing classification of beta-lactamases was developed nearly 30 years ago when few lactamases were available. DLact database contain more than 2000 beta-lactamase, which can be used to study the molecular diversity and to identify signatures specific to this family. Methods A set of 2020 beta-lactamase proteins available in the DLact database http://59.160.102.202/DLact were classified using graph-based clustering of Best Bi-Directional Hits. Non-redundant (> 90 percent identical protein sequences from each group were aligned using T-Coffee and annotated using information available in literature. Motifs specific to each group were predicted using PRATT program. Results The graph-based classification of beta-lactamase proteins resulted in the formation of six groups (Four major groups containing 191, 726, 774 and 73 proteins while two minor groups containing 50 and 8 proteins. Based on the information available in literature, we found that each of the four major groups correspond to the four classes proposed by Ambler. The two minor groups were novel and do not contain molecular signatures of beta-lactamase proteins reported in literature. The group-specific motifs showed high sensitivity (> 70% and very high specificity (> 90%. The motifs from three groups (corresponding to class A, C and D had a high level of conservation at DNA as well as protein level whereas the motifs from the fourth group (corresponding to class B showed conservation at only protein level. Conclusion The graph-based classification of beta-lactamase proteins corresponds with the classification proposed by Ambler, thus there is

  11. Concepts of epigenetics in prostate cancer development.

    Science.gov (United States)

    Cooper, C S; Foster, C S

    2009-01-27

    Substantial evidence now supports the view that epigenetic changes have a role in the development of human prostate cancer. Analyses of the patterns of epigenetic alteration are providing important insights into the origin of this disease and have identified specific alterations that may serve as useful diagnostic and prognostic biomarkers. Examination of cancer methylation patterns supports a stem cell origin of prostate cancer. It is well established that methylation of GSTpi is a marker of prostate cancer, and global patterns of histone marking appear to be linked to cancer prognosis with levels of acetylated histones H3K9, H3K18, and H4K12, and of dimethylated H4R3 and H3K4, dividing low-grade prostate cancer (Gleason 6 or less) into two prognostically separate groups. Elevated levels of several components of the polycomb group protein complex, EZH2, BMI1, and RING1, can also act as biomarkers of poor clinical outcome. Many components of the epigenetic machinery, including histone deacetylase (whose expression level is linked to the TMPRSS2:ERG translocation) and the histone methylase EZH2, are potential therapeutic targets. The recent discovery of the role of small RNAs in governing the epigenetic status of individual genes offers exciting new possibilities in therapeutics and chemoprevention.

  12. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts.

    Science.gov (United States)

    Liggins, J; Furth, A J

    1997-08-22

    Several mechanisms have been postulated for the formation of advanced glycation endproducts (AGEs) from glycated proteins; they all feature protein-bound carbonyl intermediates. Using 2,4-dinitrophenylhydrazine (DNPH), we have detected these intermediates on bovine serum albumin, lysozyme and beta-lactoglobulin after in vitro glycation by glucose or fructose. Carbonyls were formed in parallel with AGE-fluorophores, via oxidative Maillard reactions. Neither Amadori nor Heyns products contributed to the DNPH reaction. Fluorophore and carbonyl yields were much enhanced in lipid-associated proteins, but both groups could also be detected in lipid-free proteins. When pre-glycated proteins were incubated in the absence of free sugar, carbonyl groups were rapidly lost in a first-order reaction, while fluorescence continued to develop beyond the 21 days of incubation. Another unexpected finding was that not all carbonyl groups were blocked by aminoguanidine, although there was complete inhibition of reactions leading to AGE-fluorescence. It is suggested that carbonyls acting as fluorophore precursors react readily with aminoguanidine, while others are resistant to this hydrazine, possibly because they are involved in ring closure. Factors influencing the relative rates of acyclisation and hydrazone formation are discussed, together with possible implications for antiglycation therapy.

  13. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family

    Directory of Open Access Journals (Sweden)

    Sonnhammer Erik L

    2008-01-01

    Full Text Available Abstract Background Parasitic protozoans possess many multicopy gene families which have central roles in parasite survival and virulence. The number and variability of members of these gene families often make it difficult to predict possible functions of the encoded proteins. The families of extra-cellular proteins that are exposed to a host immune response have been driven via immune selection to become antigenically variant, and thereby avoid immune recognition while maintaining protein function to establish a chronic infection. Results We have combined phylogenetic and function shift analyses to study the evolution of the RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family in Plasmodium falciparum. We show that this family can be subdivided into two major groups that we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently published study that showed that, despite the presence of the Plasmodium export (PEXEL motif in all RIFIN variants, proteins from each group have different cellular localizations during the intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis, a novel technique to predict functional divergence between sub-groups of a protein family, indicates that RIFINs have undergone neo- or sub-functionalization. Conclusion These results question the general trend of clustering large antigenically variant protein groups into homogenous families. Assigning functions to protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using phylogenetic and function shift analysis methods, we identify new directions for the investigation of this broad and complex group of proteins.

  14. Thermodynamic properties of damaged DNA and its recognition by xeroderma pigmentosum group A protein and replication protein A

    Czech Academy of Sciences Publication Activity Database

    Brabec, Viktor; Stehlíková, Kristýna; Malina, Jaroslav; Vojtíšková, Marie; Kašpárková, Jana

    2006-01-01

    Roč. 446, č. 1 (2006), s. 1-10 ISSN 0003-9861 R&D Projects: GA ČR(CZ) GA305/05/2030; GA ČR(CZ) GD204/03/H016; GA MZd(CZ) NR8562; GA AV ČR(CZ) KJB400040601 Institutional research plan: CEZ:AV0Z50040507 Keywords : differential scanning calorimetry * xeroderma pigmentosum group A protein * replication protein A Subject RIV: BO - Biophysics Impact factor: 2.969, year: 2006

  15. Uncoupling protein 2 G(-866A polymorphism: a new gene polymorphism associated with C-reactive protein in type 2 diabetic patients C-reactive protein in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Cocozza Sergio

    2010-10-01

    Full Text Available Abstract Background This study evaluated the relationship between the G(-866A polymorphism of the uncoupling protein 2 (UCP2 gene and high-sensitivity C reactive protein (hs-CRP plasma levels in diabetic patients. Methods We studied 383 unrelated people with type 2 diabetes aged 40-70 years. Anthropometry, fasting lipids, glucose, HbA1c, and hs-CRP were measured. Participants were genotyped for the G (-866A polymorphism of the uncoupling protein 2 gene. Results Hs-CRP (mg/L increased progressively across the three genotype groups AA, AG, or GG, being respectively 3.0 ± 3.2, 3.6 ± 5.0, and 4.8 ± 5.3 (p for trend = 0.03. Since hs-CRP values were not significantly different between AA and AG genotype, these two groups were pooled for further analyses. Compared to participants with the AA/AG genotypes, homozygotes for the G allele (GG genotype had significantly higher hs-CRP levels (4.8 ± 5.3 vs 3.5 ± 4.7 mg/L, p = 0.01 and a larger proportion (53.9% vs 46.1%, p = 0.013 of elevated hs-CRP (> 2 mg/L. This was not explained by major confounders such as age, gender, BMI, waist circumference, HbA1c, smoking, or medications use which were comparable in the two genotype groups. Conclusions The study shows for the first time, in type 2 diabetic patients, a significant association of hs-CRP levels with the G(-866A polymorphism of UCP2 beyond the effect of major confounders.

  16. Regulation of DU145 prostate cancer cell growth by Scm-like with ...

    Indian Academy of Sciences (India)

    2012-12-08

    Dec 8, 2012 ... PhoRC components, transcriptional repressor Pleiohomeotic ... protein EZH2 is highly overexpressed in prostate carcinoma ... 2004) or its interaction with the cell cycle regulators such ... specificity of each antiserum, Western blot analysis was ..... residue of histones that play an important role in the main-.

  17. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Lu, Lu; Luo, Fei; Liu, Yi; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    Lung cancer is regarded as the leading cause of cancer-related deaths, and cigarette smoking is one of the strongest risk factors for the development of lung cancer. However, the mechanisms for cigarette smoke-induced lung carcinogenesis remain unclear. The present study investigated the effects of an miRNA (miR-217) on levels of an lncRNA (MALAT1) and examined the role of these factors in the epithelial–mesenchymal transition (EMT) induced by cigarette smoke extract (CSE) in human bronchial epithelial (HBE) cells. In these cells, CSE caused decreases of miR-217 levels and increases in lncRNA MALAT1 levels. Over-expression of miR-217 with a mimic attenuated the CSE-induced increase of MALAT1 levels, and reduction of miR-217 levels by an inhibitor enhanced expression of MALAT1. Moreover, the CSE-induced increase of MALAT1 expression was blocked by an miR-217 mimic, indicating that miR-217 negatively regulates MALAT1 expression. Knockdown of MALAT1 reversed CSE-induced increases of EZH2 (enhancer of zeste homolog 2) and H3K27me3 levels. In addition to the alteration from epithelial to spindle-like mesenchymal morphology, chronic exposure of HBE cells to CSE increased the levels of EZH2, H3K27me3, vimentin, and N-cadherin and decreased E-cadherin levels, effects that were reversed by MALAT1 siRNA or EZH2 siRNA. The results indicate that miR-217 regulation of EZH2/H3K27me3 via MALAT1 is involved in CSE-induced EMT and malignant transformation of HBE cells. The posttranscriptional silencing of MALAT1 by miR-217 provides a link, through EZH2, between ncRNAs and the EMT and establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure decreases miR-217 levels and increases MALAT1 levels. • miR-217 negatively regulates MALAT1 expression. • MALAT1, via EZH2, is involved in the EMT of CSE-transformed HBE cells.

  18. Polycomb group protein bodybuilding: working out the routines.

    Science.gov (United States)

    Sievers, Cem; Paro, Renato

    2013-09-30

    Polycomb group (PcG) proteins regulate gene expression by modifying chemical and structural properties of chromatin. Isono et al. (2013) now report in Developmental Cell a polymerization-dependent mechanism used by PcG proteins to form higher-order chromatin structures, referred to as Polycomb bodies, and demonstrate its necessity for gene silencing. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53.

    Science.gov (United States)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice; Kramer, Daniela; Najafova, Zeynab; Weiss, Miriam; Karpiuk, Oleksandra; Kassem, Moustapha; Zhang, Yanping; Lozano, Guillermina; Johnsen, Steven A; Moll, Ute M; Zhang, Xin; Dobbelstein, Matthias

    2016-01-07

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    Science.gov (United States)

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  1. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis.

    Directory of Open Access Journals (Sweden)

    Fabiola Traina

    Full Text Available We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM. SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04 and sole TET2 mutations (P<0.001. In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.

  2. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    Science.gov (United States)

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These

  3. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (Pmaxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Guillaume; Crublet, Elodie [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France); Hamelin, Olivier [CNRS (France); Gans, Pierre; Boisbouvier, Jérôme, E-mail: jerome.boisbouvier@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-09-28

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D{sub 2}O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d{sub 10}. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  5. Mathematical aspects of molecular replacement. III. Properties of space groups preferred by proteins in the Protein Data Bank.

    Science.gov (United States)

    Chirikjian, G; Sajjadi, S; Toptygin, D; Yan, Y

    2015-03-01

    The main goal of molecular replacement in macromolecular crystallography is to find the appropriate rigid-body transformations that situate identical copies of model proteins in the crystallographic unit cell. The search for such transformations can be thought of as taking place in the coset space Γ\\G where Γ is the Sohncke group of the macromolecular crystal and G is the continuous group of rigid-body motions in Euclidean space. This paper, the third in a series, is concerned with viewing nonsymmorphic Γ in a new way. These space groups, rather than symmorphic ones, are the most common ones for protein crystals. Moreover, their properties impact the structure of the space Γ\\G. In particular, nonsymmorphic space groups contain both Bieberbach subgroups and symmorphic subgroups. A number of new theorems focusing on these subgroups are proven, and it is shown that these concepts are related to the preferences that proteins have for crystallizing in different space groups, as observed in the Protein Data Bank.

  6. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Hvitby, Christina Poulsen; Popuri, Venkateswarlu

    2014-01-01

    Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide...... activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed...

  7. Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts.

    Science.gov (United States)

    Asakura, Yukari; Bayraktar, Omer Ali; Barkan, Alice

    2008-11-01

    Chloroplast genomes in angiosperms encode approximately 20 group II introns, approximately half of which are classified as subgroup IIB. The splicing of all but one of the subgroup IIB introns requires a heterodimer containing the peptidyl-tRNA hydrolase homolog CRS2 and one of two closely related proteins, CAF1 or CAF2, that harbor a recently recognized RNA binding domain called the CRM domain. Two CRS2/CAF-dependent introns require, in addition, a CRM domain protein called CFM2 that is only distantly related to CAF1 and CAF2. Here, we show that CFM3, a close relative of CFM2, associates in vivo with those CRS2/CAF-dependent introns that are not CFM2 ligands. Mutant phenotypes in rice and Arabidopsis support a role for CFM3 in the splicing of most of the introns with which it associates. These results show that either CAF1 or CAF2 and either CFM2 or CFM3 simultaneously bind most chloroplast subgroup IIB introns in vivo, and that the CAF and CFM subunits play nonredundant roles in splicing. These results suggest that the expansion of the CRM protein family in plants resulted in two subfamilies that play different roles in group II intron splicing, with further diversification within a subfamily to accommodate multiple intron ligands.

  8. Synthesis and characterization of novel 2, 2'-bipyrimidine fluorescent derivative for protein binding

    Directory of Open Access Journals (Sweden)

    Padalkar Vikas S

    2011-11-01

    Full Text Available Abstract Background Fluorescent dyes with biocompatible functional group and good fluorescence behavior are used as biosensor for monitoring different biological processes as well as detection of protein assay. All reported fluorophore used as sensors are having high selectivity and sensitivity but till there is more demand to synthesized new fluorophore which have improved fluorescence properties and good biocompatibility. Results Novel 4, 4'-(1, 1'-(5-(2-methoxyphenoxy-[2, 2'-bipyrimidine]-4, 6-diylbis(1H-pyrazol-3, 1-diyl dianiline fluorescent dye was synthesized by multistep synthesis from 2-phenylacetonitrile, 2-chloropyrimidine and 2-methoxyphenol. This dye has absorption at 379 nm with intense single emission at 497 nm having fairly good quantum yield (0.375 and Stokes shift. The intermediates and dye were characterized by FT-IR, 1H NMR, 13C NMR and Mass spectral analysis. The pyrazole bipyrimidine based fluorescent dye possessing two amino groups suitable for binding with protein is reported. Its utility as a biocompatible conjugate was explained by conjugation with bovine serum albumin. The method is based on direct fluorescence detection of fluorophore-labelled protein before and after conjugation. Purified fluorescent conjugate was subsequently analyzed by fluorimetry. The analysis showed that the tested conjugation reaction yielded fluorescent conjugates of the dye through carbodiimide chemistry. Conclusion In summery synthesized fluorophore pyrazole-bipyrimidine has very good interaction towards protein bovine serum albumin and it acts as good candidate for protein assay.

  9. Structural Isosteres of Phosphate Groups in the Protein Data Bank.

    Science.gov (United States)

    Zhang, Yuezhou; Borrel, Alexandre; Ghemtio, Leo; Regad, Leslie; Boije Af Gennäs, Gustav; Camproux, Anne-Claude; Yli-Kauhaluoma, Jari; Xhaard, Henri

    2017-03-27

    We developed a computational workflow to mine the Protein Data Bank for isosteric replacements that exist in different binding site environments but have not necessarily been identified and exploited in compound design. Taking phosphate groups as examples, the workflow was used to construct 157 data sets, each composed of a reference protein complexed with AMP, ADP, ATP, or pyrophosphate as well other ligands. Phosphate binding sites appear to have a high hydration content and large size, resulting in U-shaped bioactive conformations recurrently found across unrelated protein families. A total of 16 413 replacements were extracted, filtered for a significant structural overlap on phosphate groups, and sorted according to their SMILES codes. In addition to the classical isosteres of phosphate, such as carboxylate, sulfone, or sulfonamide, unexpected replacements that do not conserve charge or polarity, such as aryl, aliphatic, or positively charged groups, were found.

  10. Novel Epigenetic Reprogramming to Inhibit or Reverse EMT in Lung Cancer

    Science.gov (United States)

    2017-09-01

    information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this...cells were interrogated for changes in EMT markers, EZH2 and SOX4, a reported upstream regulator of EZH2, using quantitative RT-PCR. Because some...not been examined in SCLC. The fact that high concentrations of GSK126 are required to inhibit the growth of SCLC cell lines suggests that EZH1

  11. Comparison of Selected Protein Levels in Tumour and Surgical Margin in a Group of Patients with Oral Cavity Cancer.

    Science.gov (United States)

    Strzelczyk, Joanna Katarzyna; Gołąbek, Karolina; Cuber, Piotr; Krakowczyk, Łukasz; Owczarek, Aleksander Jerzy; Fronczek, Martyna; Choręża, Piotr; Hudziec, Edyta; Ostrowska, Zofia

    2017-08-01

    Oral cavity cancer belongs to head-and-neck squamous cell carcinoma group. The purpose of the study was to assess the levels of certain proteins in a tumour and surgical margin in a group of patients with oral cavity cancer. The levels of DAPK1, MGMT, CDH1, SFRP1, SFRP2, RORA, TIMP3, p16, APC and RASSF1 proteins were measured by ELISA in tissue homogenates. The protein levels of DAPK1, MGMT, CDH1, SFRP2 and RASSF1 were significantly higher in tumour tissue than in the margin, contrary to TIMP3 which was lower in the tumour itself. DAPK1 level in the tumour was significantly higher in females than in males, the MGMT and p16 levels were lower in the tumours with lymph node metastasis (N1 + N2) than in N0 samples. The CDH1 expression was higher in a group with smoking habits, whereas TIMP3 was lower in this group. Changes in the levels of proteins in tumour and surgical margin may be either reflective of tumour occurrence and development, or they might be also responsible for the progress and reoccurrence of the disease. Levels of the studied proteins might be good prognostic factors; however, further studies are required.

  12. High mobility group protein number17 cross-links primarily to histone H2A in the reconstituted HMG 17 - nucleosome core particle complex

    International Nuclear Information System (INIS)

    Cook, G.R.; Yau, P.; Yasuda, H.; Traut, R.R.; Bradbury, E.M.

    1986-01-01

    The neighbor relationship of lamb thymus High Mobility Group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. 125 I-labeled HMG 17 was cross-linking to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/SDS gel system, located by autoradiography, excised and quantified. Disulfide bonds in the cross links were then cleaved and the protein constituents were identified by SDS gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between two HMG 17 molecules bound on the same nucleosome was relatively rare. It is concluded that the same nucleosome was relatively rare. It is concluded that H2A comprises part of the HMG 17 binding site but that HMG 17 is sufficiently elongated and mobile to permit cross-linking to the other histones and to a second HMG 17 molecule. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17

  13. KDM2B overexpression correlates with poor prognosis and regulates glioma cell growth

    Directory of Open Access Journals (Sweden)

    Wang Y

    2018-01-01

    Full Text Available Yiwei Wang,1 Jin Zang,1 Dongyong Zhang,2 Zhenxiang Sun,1 Bo Qiu,2 Xiaojie Wang1 1Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City, 2Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, ChinaBackground: Gliomas are one of the most lethal cancers in the human central nervous system. Despite clinical treatment advancements, the prognosis of patients with glioma remains poor. KDM2B is a histone lysine demethylase, which has been observed in multiple tumors. But the concrete role of KDM2B in gliomas remains to be further illustrated.Methods: The KDM2B expression in gliomas was detected with immunohistochemistry and Western blot assay. Furthermore, knockdown of KDM2B in U87 and U251 glioma cell lines, the proliferation capacity was evaluated by cell viability assay, colon formation assay and flow cytometry in vitro. Western blot assay was used to analyze the p21, EZH2 and cyclinD1 changes followed by knockdown of KDM2B.Results: KDM2B was upregulated in tissues of glioma patients, and the expression was correlated to cancer progression. Downregulation of KDM2B in U87 and U251 glioma cell lines inhibited cell proliferation and arrested cell cycle in G0/G1 phase. In addition, silencing KDM2B promoted the upregulation of p21 while reduced the expression of EZH2 and cyclinD1.Conclusion: Taken together, our results revealed that KDM2B might influence gliomas growth and act as a novel therapeutic target for glioma patients.Keywords: EZH2, glioma, KDM2B, P21

  14. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    Science.gov (United States)

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased

  15. Retinol-induced changes in the phosphorylation levels of histones and high mobility group proteins from Sertoli cells

    Directory of Open Access Journals (Sweden)

    Moreira J.C.F.

    2000-01-01

    Full Text Available Chromatin proteins play a role in the organization and functions of DNA. Covalent modifications of nuclear proteins modulate their interactions with DNA sequences and are probably one of the multiple factors involved in the process of switch on/off transcriptionally active regions of DNA. Histones and high mobility group proteins (HMG are subject to many covalent modifications that may modulate their capacity to bind to DNA. We investigated the changes induced in the phosphorylation pattern of cultured Wistar rat Sertoli cell histones and high mobility group protein subfamilies exposed to 7 µM retinol for up to 48 h. In each experiment, 6 h before the end of the retinol treatment each culture flask received 370 KBq/ml [32P]-phosphate. The histone and HMGs were isolated as previously described [Moreira et al. Medical Science Research (1994 22: 783-784]. The total protein obtained by either method was quantified and electrophoresed as described by Spiker [Analytical Biochemistry (1980 108: 263-265]. The gels were stained with Coomassie brilliant blue R-250 and the stained bands were cut and dissolved in 0.5 ml 30% H2O2 at 60oC for 12 h. The vials were chilled and 5.0 ml scintillation liquid was added. The radioactivity in each vial was determined with a liquid scintillation counter. Retinol treatment significantly changed the pattern of each subfamily of histone and high mobility group proteins.

  16. [Effect of protein intervention on amino acid metabolism spectrum of Qi and Yin deficiency type 2 diabetic rats].

    Science.gov (United States)

    Ma, Li-Na; Mao, Xin-Min; Ma, Xiao-Li; Li, Lin-Lin; Wang, Ye; Tao, Yi-Cun; Wang, Jing-Wei; Guo, Jia-Jia; Lan, Yi

    2016-11-01

    To study the effect of plant protein and animal protein on amino acid metabolism spectrum of Qi and Yin deficiency type 2 diabetic rats. 110 male SD rats were randomly divided into blank group (n=10), diabetic model group (n=20), disease-symptoms group (n=80). The rats of blank group received ordinary feeding, while other groups were fed with high sugar and fat diets. During the whole process of feeding, rats of disease-symptoms group were given with Qingpi-Fuzi (15.75 g•kg⁻¹) once a day through oral administration. Five weeks later, the rats were given with a low dose of STZ (40 mg•kg⁻¹) by intraperitoneal injection to establish experimental diabetic models. Then the models were randomly divided into disease-symptoms group 1 (Qi and Yin deficiency diabetic group, 15.75 g•kg⁻¹), disease-symptoms group 2 (plant protein group, 0.5 g•kg⁻¹), disease-symptoms group 3 (animal protein group, 0.5 g•kg⁻¹), disease-symptoms group 4 (berberine group, 0.1 g•kg⁻¹). The drugs were given for 4 weeks by gavage administration. After 4 weeks of protein intervention, the abdominal aortic blood was collected and serum was isolated to analyze its free amino acid by using AQC pre-column derivatization HPLC and fluorescence detector. Four weeks after the protein intervention, plant protein, animal protein and berberine had no obvious effect on body weight and blood sugar in type 2 diabetic rats. As compared with animal protein group, histidine and proline(PYin deficiency type 2 diabetic SD rats. Symbolic differential compounds could be found through metabonomics technology, providing experimental basis for early warning of type 2 diabetes and diagnosis of Qi and Yin deficiency syndrome. Copyright© by the Chinese Pharmaceutical Association.

  17. Contribution of buried aspartic acid to the stability of the PDZ2 protein

    International Nuclear Information System (INIS)

    Jayasimha, Pruthvi; Shanmuganathan, Aranganathan; Suladze, Saba; Makhatadze, George I.

    2012-01-01

    Highlights: ► Buried Asp residues on average form 2.5 to 3 hydrogen bonds and/or 0.8 salt bridges. ► Contribution of buried Asp to stability was estimated using model protein PDZ2. ► The energetic contribution of Asp56 to PDZ2 stability estimated to be 18 kJ · mol −1 . ► Findings are discussed in terms of contribution of Asp residues to protein stability. - Abstract: Statistical analysis of protein structures shows that buried aspartic acid residues on average form 2.5 to 3 hydrogen bonds and/or 0.8 potential ionic interactions with other protein groups. To estimate the energetic contribution of such buried groups to the Gibbs free energy of proteins, we measured the effects of amino acid substitutions of D56 in a model protein PDZ2 on its stability. We used temperature-induced unfolding monitored by DSC and denaturant-induced unfolding monitored by the changes in fluorescence intensity. We find that all substitutions of D56 lead to protein unfolding, thus suggesting that this buried hydrogen bonded aspartic acid has a significant contribution to the stability. To quantify the changes in the Gibbs free energy, one of the variants, D56N was stabilized by addition of the protective osmolyte TMAO. Comparison of the stability of the D56N variant with the wild-type PDZ2 in the presence and absence of TMAO allowed us to estimate the contribution of D56 to the protein stability to be 18 kJ · mol −1 . These findings are discussed in terms of contribution of buried ionizable groups to protein stability.

  18. Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2.

    Science.gov (United States)

    Aguilar-Valles, Argel; Matta-Camacho, Edna; Khoutorsky, Arkady; Gkogkas, Christos; Nader, Karim; Lacaille, Jean-Claude; Sonenberg, Nahum

    2015-08-05

    Exacerbated mRNA translation during brain development has been linked to autism spectrum disorders (ASDs). Deletion of the eukaryotic initiation factor 4E (eIF4E)-binding protein 2 gene (Eif4ebp2), encoding the suppressor of mRNA translation initiation 4E-BP2, leads to an imbalance in excitatory-to-inhibitory neurotransmission and ASD-like behaviors. Inhibition of group I metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 reverses the autistic phenotypes in several ASD mouse models. Importantly, these receptors control synaptic physiology via activation of mRNA translation. We investigated the potential reversal of autistic-like phenotypes in Eif4ebp2(-/-) mice by using antagonists of mGluR1 (JNJ16259685) or mGluR5 (fenobam). Augmented hippocampal mGluR-induced long-term depression (LTD; or chemically induced mGluR-LTD) in Eif4ebp2(-/-) mice was rescued by mGluR1 or mGluR5 antagonists. While rescue by mGluR5 inhibition occurs through the blockade of a protein synthesis-dependent component of LTD, normalization by mGluR1 antagonists requires the activation of protein synthesis. Synaptically induced LTD was deficient in Eif4ebp2(-/-) mice, and this deficit was not rescued by group I mGluR antagonists. Furthermore, a single dose of mGluR1 (0.3 mg/kg) or mGluR5 (3 mg/kg) antagonists in vivo reversed the deficits in social interaction and repetitive behaviors (marble burying) in Eif4ebp2(-/-) mice. Our results demonstrate that Eif4ebp2(-/-) mice serve as a relevant model to test potential therapies for ASD symptoms. In addition, we provide substantive evidence that the inhibition of mGluR1/mGluR5 is an effective treatment for physiological and behavioral alterations caused by exacerbated mRNA translation initiation. Exacerbated mRNA translation during brain development is associated with several autism spectrum disorders (ASDs). We recently demonstrated that the deletion of a negative regulator of mRNA translation initiation, the eukaryotic initiation factor 4E

  19. Maintaining cell identity

    DEFF Research Database (Denmark)

    Comet, Itys; Riising, Eva M; Leblanc, Benjamin

    2016-01-01

    Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of Polycomb repressive complex 2 (PRC2), has attracted broad research attention in the past few years because of its involvement in the development and maintenance of many types of cancer and the use of specific EZH2 inhibitors in clinic...

  20. Human Polycomb group EED protein negatively affects HIV-1 assembly and release

    Directory of Open Access Journals (Sweden)

    Darlix Jean-Luc

    2007-06-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group (PcG proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA, the integrase enzyme (IN and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells. Results During the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm. Conclusion Our data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic

  1. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin.

    Science.gov (United States)

    Zhou, Zhen; Zhang, Hong-Sheng; Liu, Yang; Zhang, Zhong-Guo; Du, Guang-Yuan; Li, Hu; Yu, Xiao-Ying; Huang, Ying-Hui

    2018-02-01

    Epigenetic modifications such as histone modifications and cytosine hydroxymethylation are linked to tumorigenesis. Loss of 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation 1 (TET1) down-regulation facilitates tumor initiation and development. However, the mechanisms by which loss of TET1 knockdown promotes malignancy development remains unclear. Here, we report that TET1 knockdown induced epithelial-mesenchymal transition (EMT) and increased cancer cell growth, migration, and invasion in DLD1 cells. Loss of TET1 increased EZH2 expression and reduced UTX-1 expression, thus increasing histone H3K27 tri-methylation causing repression of the target gene E-cadherin. Ectopic expression of the H3K27 demethylase UTX-1 or EZH2 depletion both impeded EZH2 binding caused a loss of H3K27 methylation at epithelial gene E-cadherin promoter, thereby suppressing EMT and tumor invasion in shTET1 cells. Conversely, UTX-1 depletion and ectopic expression of EZH2 enhanced EMT and tumor metastasis in DLD1 cells. These findings provide insight into the regulation of TET1 and E-cadherin and identify EZH2 as a critical mediator of E-cadherin repression and tumor progression. © 2017 Wiley Periodicals, Inc.

  2. Presence of fibronectin-binding protein gene prtF2 in invasive group A streptococci in tropical Australia is associated with increased internalisation efficiency.

    Science.gov (United States)

    Gorton, Davina; Norton, Robert; Layton, Ramon; Smith, Helen; Ketheesan, Natkunam

    2005-03-01

    The fibronectin-binding proteins (FnBPs) PrtF1 and PrtF2 are considered to be major group A streptococcal virulence factors, mediating adherence to and internalisation of host cells. The present study investigated an association between the presence of prtF1 and prtF2 genes and internalisation efficiency in group A streptococci (GAS) isolated from patients with invasive disease. Of the 80 isolates tested, 58 (73%) had prtF1 and 71 (89%) possessed prtF2. Three isolates (4%) had neither gene, seven (9%) had prtF1 only, 19 (24%) had prtF2 only and 51 isolates (64%) had both prtF1 and prtF2. prtF2-positive isolates internalised up to three times more efficiently than isolates that had prtF1 alone (Pinternalisation efficiency and presence of the prtF1 gene. Analysis of the fibronectin-binding repeat domain (FBRD) of prtF2 revealed that this gene can contain 2, 3, 4 or 5 repeat regions and that five repeat regions conferred very high internalisation efficiency in invasive GAS isolates.

  3. Immunogenicity of virus-like particles containing modified goose parvovirus VP2 protein.

    Science.gov (United States)

    Chen, Zongyan; Li, Chuanfeng; Zhu, Yingqi; Wang, Binbin; Meng, Chunchun; Liu, Guangqing

    2012-10-01

    The major capsid protein VP2 of goose parvovirus (GPV) expressed using a baculovirus expression system (BES) assembles into virus-like particles (VLPs). To optimize VP2 gene expression in Sf9 cells, we converted wild-type VP2 (VP2) codons into codons that are more common in insect genes. This change greatly increased VP2 protein production in Sf9 cells. The protein generated from the codon-optimized VP2 (optVP2) was detected by immunoblotting and an indirect immunofluorescence assay (IFA). Transmission electron microscopy analysis revealed the formation of VLPs. These findings indicate that optVP2 yielded stable and high-quality VLPs. Immunogenicity assays revealed that the VLPs are highly immunogenic, elicit a high level of neutralizing antibodies and provide protection against lethal challenge. The antibody levels appeared to be directly related to the number of GP-Ag-positive hepatocytes. The variation trends for GP-Ag-positive hepatocytes were similar in the vaccine groups. In comparison with the control group, the optVP2 VLPs groups exhibited obviously better responses. These data indicate that the VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Thus, GPV optVP2 appears to be a good candidate for the vaccination of goslings. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.

    Science.gov (United States)

    Wilson, J B; Yamamoto, K; Marriott, A S; Hussain, S; Sung, P; Hoatlin, M E; Mathew, C G; Takata, M; Thompson, L H; Kupfer, G M; Jones, N J

    2008-06-12

    Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

  5. [Influence of extremely low frequency magnetic field on total protein and -sh groups concentrations in liver homogenates].

    Science.gov (United States)

    Ciejka, Elżbieta; Kowalczyk, Agata; Gorąca, Anna

    2014-01-01

    Free radicals are atoms, molecules or their fragments, whose excess leads to the development of oxidative stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, as well as aging of organisms. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic fields are the major exogenous sources of free radicals. The low frequency mag- netic field is commonly applied in physiotherapy. The aim of the present study was to evaluate the effect of extremely low frequency magnetic field (1L.F-MF) on the concentration ofsullhydryl groups (-SH) and proteins in liver tissues of experimental animals de- pending on the time of exposure to the field. Twenty one Sprague-D)awley male rats, aged 3-4 months were randomly divided into 3 experimental groups (each containing 7 animals): controls (group I), the rats exposed to IEI.F-MF of 40 Hz, 7 mT (this kind of the ELF-MF is mostly used in magnetotherapy), 30 min/day for 2 weeks (group II) and the rats exposed to 40 Hz, 7 mT for 60 min/day for 2 weeks (group III). The concentrations of proteins and sulfhydryl groups in the liver tissues were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks caused a significant increase in the concentration of-SH groups and total protein levels in the liver tissues. The study results suggest that exposure to magnetic fields leads to the development of adaptive mechanisms to maintain the balance in the body oxidation-reduction and in the case of the studied parameters does not depend on the time of exposure.

  6. Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor.

    Science.gov (United States)

    Pakhomov, Alexey A; Martynov, Vladimir I; Orsa, Alexander N; Bondarenko, Alena A; Chertkova, Rita V; Lukyanov, Konstantin A; Petrenko, Alexander G; Deyev, Igor E

    2017-12-02

    Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Deposition of lipid, protein, and secretory phospholipase A2 on hydrophilic contact lenses.

    Science.gov (United States)

    Mochizuki, Hiroshi; Yamada, Masakazu; Hatou, Shin; Kawashima, Motoko; Hata, Seiichiro

    2008-01-01

    Recent studies have shown that low tear phospholipid levels are associated with tear film instability in hydrophilic contact lens wearers. The concentration of secretory phospholipase A2 (sPLA2), the enzyme that hydrolyzes phospholipids, in tears is known to exceed the levels found in serum by four orders of magnitude. This study was performed to determine the levels of sPLA2 from the deposition on two different frequent-replacement contact lens materials. Polymacon and etafilcon A contact lenses worn for 2 weeks by 16 experienced contact lens wearers were used for the analysis. Total lipids were determined by the sulfo-phospho-vanillin reaction. Phospholipids in lipid extracts were estimated by phosphorus determination with ammonium molybdate through enzymatic digestion. Total protein was measured by bicinchoninic acid analysis. Double-antibody sandwich enzyme-linked immunosorbent assay was used to determine sPLA2 concentrations. Total lipid deposition was found to be greater in the polymacon group (66.3+/-16.3 microg/lens) than in the etafilcon A group, although phospholipids were not detected in either group. The etafilcon A group had greater deposition of protein (3.7+/-0.7 mg/lens) than the polymacon group had. The etafilcon A group deposited statistically significantly more group IIa sPLA2 (1.1+/-0.3 microg/lens) than the polymacon group (0.07+/-0.04 microg/lens) did (P<0.001). There was a significant difference in the lipid and protein deposition profiles in the two lenses tested. A significant amount of sPLA2 in the deposition on contact lenses may play a role in tear film instability in hydrophilic contact lens wearers.

  8. Bcl-2 Protein Expression in Egyptian Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    El-Shakankiry, N.; El-Sayed, Gh.M.M.; El-Maghraby, Sh.; Moneer, M.M.

    2009-01-01

    Objective: The primary cause of treatment failure in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. The bcl-2 gene encodes a 26-kDa protein that promotes cell survival by blocking programmed cell death (apoptosis). In the present study, bcl-2 protein expression was evaluated in newly diagnosed AML patients and correlated with the induction of remission and overall survival (OS), in an attempt to define patients who might benefit from modified therapeutic strategies. Patients and methods: Pretreatment cellular bcl-2 protein expression was measured in bone marrow samples obtained from 68 patients of newly diagnosed acute myeloid leukemia and 10 healthy controls by western blotting. Results: The mean bcl-2 protein expression was significantly higher in patients (0.68610.592) compared to controls (0.313±0.016) (p=0.002). The overall survival for patients with mean bcl-2 expression of less, and more than or equal to 0.315, was 67% and 56%, respectively, with no significant difference between the two groups 0»=0.86). Conclusion: Even though we did not observe a significant difference in overall survival between patients with high and low levels of bcl-2, modulation of this protein might still be considered as an option for enhancing the effectiveness of conventional chemotherapy.

  9. Characterization of binding of human alpha 2-macroglobulin to group G streptococci

    International Nuclear Information System (INIS)

    Chhatwal, G.S.; Mueller, H.P.; Blobel, H.

    1983-01-01

    An interaction was observed between human alpha 2-macroglobulin (alpha 2M) and streptococci belonging to group A, C, and G. Of 27 group C and 19 group G streptococcal cultures, 13 and 14, respectively, bound 125 I-labeled alpha 2M. Some group A streptococci also interacted with alpha 2M. A number of other bacterial species tested did not react with alpha 2M. The binding of 125 I-labeled alpha 2M to group G streptococci was time dependent, saturable, and could be inhibited by unlabeled alpha 2M. Inhibition experiments indicated that the streptococcal binding site for alpha 2M differed from the receptors for immunoglobulin G, fibrinogen, aggregated beta 2-microglobulin, albumin, and fibronectin. The alpha 2M binding activity was remarkably sensitive to trypsin and heat treatment indicating its protein nature. Kinetic analysis indicated a homogenous population of binding sites. The number of binding sites per bacterial cell was estimated to be approximately 20,000

  10. Generation of 3D templates of active sites of proteins with rigid prosthetic groups.

    Science.gov (United States)

    Nebel, Jean-Christophe

    2006-05-15

    With the increasing availability of protein structures, the generation of biologically meaningful 3D patterns from the simultaneous alignment of several protein structures is an exciting prospect: active sites could be better understood, protein functions and protein 3D structures could be predicted more accurately. Although patterns can already be generated at the fold and topological levels, no system produces high-resolution 3D patterns including atom and cavity positions. To address this challenge, our research focuses on generating patterns from proteins with rigid prosthetic groups. Since these groups are key elements of protein active sites, the generated 3D patterns are expected to be biologically meaningful. In this paper, we present a new approach which allows the generation of 3D patterns from proteins with rigid prosthetic groups. Using 237 protein chains representing proteins containing porphyrin rings, our method was validated by comparing 3D templates generated from homologues with the 3D structure of the proteins they model. Atom positions were predicted reliably: 93% of them had an accuracy of 1.00 A or less. Moreover, similar results were obtained regarding chemical group and cavity positions. Results also suggested our system could contribute to the validation of 3D protein models. Finally, a 3D template was generated for the active site of human cytochrome P450 CYP17, the 3D structure of which is unknown. Its analysis showed that it is biologically meaningful: our method detected the main patterns of the cytochrome P450 superfamily and the motifs linked to catalytic reactions. The 3D template also suggested the position of a residue, which could be involved in a hydrogen bond with CYP17 substrates and the shape and location of a cavity. Comparisons with independently generated 3D models comforted these hypotheses. Alignment software (Nestor3D) is available at http://www.kingston.ac.uk/~ku33185/Nestor3D.html

  11. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells.

    Science.gov (United States)

    Chen, Jiangzhi; Xu, Hong; Zou, Xiuqun; Wang, Jiamin; Zhu, Yi; Chen, Hao; Shen, Baiyong; Deng, Xiaxing; Zhou, Aiwu; Chin, Y Eugene; Rauscher, Frank J; Peng, Chenghong; Hou, Zhaoyuan

    2014-08-15

    Transcriptional repressor Snail is a master regulator of epithelial-mesenchymal transition (EMT), yet the epigenetic mechanism governing Snail to induce EMT is not well understood. Here, we report that in pancreatic ductal adenocarcinoma (PDAC), elevated levels of the ubiquitin E3 ligase Ring1B and Snail, along with elevated monoubiquitination of H2A at K119 (H2AK119Ub1), are highly correlated with poor survival. Mechanistic investigations identified Ring1B as a Snail-interacting protein and showed that the carboxyl zinc fingers of Snail recruit Ring1B and its paralog Ring1A to repress its target promoters. Simultaneous depletion of Ring1A and Ring1B in pancreatic cancer cells decreased Snail binding to the target chromatin, abolished H2AK119Ub1 modification, and thereby compromised Snail-mediated transcriptional repression and cell migration. We found that Ring1B and the SNAG-associated chromatin modifier EZH2 formed distinct protein complexes with Snail and that EZH2 was required for Snail-Ring1A/B recruitment to the target promoter. Collectively, our results unravel an epigenetic mechanism underlying transcriptional repression by Snail, suggest Ring1A/B as a candidate therapeutic target, and identify H2AK119Ub1 as a potential biomarker for PDAC diagnosis and prognosis. ©2014 American Association for Cancer Research.

  12. Mitis group streptococci express variable pilus islet 2 pili.

    Science.gov (United States)

    Zähner, Dorothea; Gandhi, Ashish R; Yi, Hong; Stephens, David S

    2011-01-01

    Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells. PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits

  13. Mitis group streptococci express variable pilus islet 2 pili.

    Directory of Open Access Journals (Sweden)

    Dorothea Zähner

    Full Text Available Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2-encoded pili to facilitate adhesion to eukaryotic cells.PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains.This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with

  14. Influence of extremely low frequency magnetic field on total protein and –SH groups concentrations in liver homogenates

    Directory of Open Access Journals (Sweden)

    Elżbieta Ciejka

    2014-10-01

    Full Text Available Background: Free radicals are atoms, molecules or their fragments, whose excess leads to the development of oxidative stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, as well as aging of organisms. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic fields are the major exogenous sources of free radicals. The low frequency magnetic field is commonly applied in physiotherapy. The aim of the present study was to evaluate the effect of extremely low frequency magnetic field (ELF-MF on the concentration of sulfhydryl groups (–SH and proteins in liver tissues of experimental animals depending on the time of exposure to the field. Material and Methods: Twenty one Sprague-Dawley male rats, aged 3–4 months were randomly divided into 3 experimental groups (each containing 7 animals: controls (group I, the rats exposed to ELF-MF of 40 Hz, 7 mT (this kind of the ELF-MF is mostly used in magnetotherapy, 30 min/day for 2 weeks (group II and the rats exposed to 40 Hz, 7 mT for 60 min/day for 2 weeks (group III. The concentrations of proteins and sulfhydryl groups in the liver tissues were determined after exposure to magnetic fields. Results: Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks caused a significant increase in the concentration of –SH groups and total protein levels in the liver tissues. Conclusions: The study results suggest that exposure to magnetic fields leads to the development of adaptive mechanisms to maintain the balance in the body oxidation-reduction and in the case of the studied parameters does not depend on the time of exposure. Med Pr 2014;65(5:639–644

  15. Prediction of functional sites in proteins using conserved functional group analysis.

    Science.gov (United States)

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-02

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.

  16. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Genipin (GNP effectively inhibits uncoupling protein 2 (UCP2, which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS levels. In this study, the hydroxyls at positions C10 (10-OH and C1 (1-OH of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1 proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1 and 1-ethyl-genipin (1-GNP2 lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1 and 10-acetic acid-genipin (10-GNP2 exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  17. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    Science.gov (United States)

    Yang, Yang; Yang, Yifu; Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  18. Study on expression of SH2 domain-containing protein tyrosine phosphatase SHP-1 and SHP-2 in γ-ray irradiation-induced thymus lymphoma in mice

    International Nuclear Information System (INIS)

    Huang Dingde; Chen Qi; Han Ling; Cai Jianming; Li Bailong; Huang Yuecheng; Gao Jianguo; Sun Suping

    2003-01-01

    Objective: To investigate the expression of SH2 domain containing-protein tyrosine phosphatase SHP-1 and SHP-2 in γ-ray irradiation-induced thymus lymphoma in mice. Methods: Altogether 338 BALB/c mice were randomly divided into irradiation groups and controls. Irradiation groups which were irradiated with γ-rays included canceration groups confirmed with histology and uncanceration groups. The controls were fed synchronistically with irradiation groups. The expression of SHP-1 and SHP-2 was detected with Western blot in thymus cells. Results: The expression of SHP-1 in canceration groups was much higher than that in uncanceration groups and controls significantly, while the expression of SHP-2 in canceration groups was higher than that in uncanceration groups and controls. When authors detected the expression of SHP-2 with Western blot, the authors found another protein with a molecular weight of 55x10 3 , which expression in canceration groups was higher than that in uncanceration groups and controls. Conclusion: The expression of SH2 domain-containing protein tyrosine phosphatase SHP-1 and SHP-2 is significantly increased in canceration groups, suggesting that SHP-1 and SHP-2 may be related with γ-ray induced thymus lymphoma in mice. Further research is expected on the relationship between development of cancer and SHP-1 and SHP-2

  19. Conformational responses to changes in the state of ionization of titrable groups in proteins

    Science.gov (United States)

    Richman, Daniel Eric

    Electrostatic energy links the structural properties of proteins with some of their important biological functions, including catalysis, energy transduction, and binding and recognition. Accurate calculation of electrostatic energy is essential for predicting and for analyzing function from structure. All proteins have many ionizable residues at the protein-water interface. These groups tend to have ionization equilibria (pK a values) shifted slightly relative to their values in water. In contrast, groups buried in the hydrophobic interior usually have highly anomalous p Ka values. These shifts are what structure-based calculations have to reproduce to allow examination of contributions from electrostatics to stability, solubility and interactions of proteins. Electrostatic energies are challenging to calculate accurately because proteins are heterogeneous dielectric materials. Any individual ionizable group can experience very different local environments with different dielectric properties. The studies in this thesis examine the hypothesis that proteins reorganize concomitant with changes in their state of ionization. It appears that the pKa value measured experimentally reflects the average of pKa values experienced in the different electrostatic environments corresponding to different conformational microstates. Current computational models fail to sample conformational reorganization of the backbone correctly. Staphyloccocal nuclease (SNase) was used as a model protein in nuclear magnetic resonance (NMR) spectroscopy studies to characterize the conformational rearrangements of the protein coupled to changes in the ionization state of titrable groups. One set of experiments tests the hypothesis that proton binding to surface Asp and Glu side chains drives local unfolding by stabilizing less-native, more water-solvated conformations in which the side chains have normalized pKa values. Increased backbone flexibility in the ps-ns timescale, hydrogen bond (H

  20. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins

    Directory of Open Access Journals (Sweden)

    J. M. Dick

    2006-01-01

    Full Text Available Thermodynamic calculations can be used to quantify environmental constraints on the speciation of proteins, such as the pH and temperature dependence of ionization state, and the relative chemical stabilities of proteins in different biogeochemical settings. These calculations depend in part on values of the standard molal Gibbs energies of proteins and their ionization reactions as a function of temperature and pressure. Because these values are not generally available, we calculated values of the standard molal thermodynamic properties at 25°C and 1 bar as well as the revised Helgeson-Kirkham-Flowers equations of state parameters of neutral and charged zwitterionic reference model compounds including aqueous amino acids, polypeptides, and unfolded proteins. The experimental calorimetric and volumetric data for these species taken from the literature were combined with group additivity algorithms to calculate the properties and parameters of neutral and ionized sidechain and backbone groups in unfolded proteins. The resulting set of group contributions enables the calculation of the standard molal Gibbs energy, enthalpy, entropy, isobaric heat capacity, volume, and isothermal compressibility of unfolded proteins in a range of proton ionization states to temperatures and pressures exceeding 100°C and 1000 bar. This approach provides a useful frame of reference for thermodynamic studies of protein folding and complexation reactions. It can also be used to assign provisional values of the net charge and Gibbs energy of ionized proteins as a function of temperature and pH. Using these values, an Eh-pH diagram for a reaction representing the speciation of extracellular proteins from Pyrococcus furiosus and Bacillus subtilis was generated. The predicted predominance limits of these proteins correspond with the different electrochemical conditions of hydrothermal vents and soils. More comprehensive calculations of this kind may reveal pervasive

  1. Extracellular Hsp90 as a Novel Epigenetic of EMT and Metastatic Risk in Prostate Cancer

    Science.gov (United States)

    2015-12-01

    effects of eHsp90. As expected, treatment with NPGA or UO126 restored E-cadherin expression in tan - dem with diminished P-ERK and EZH2 (Fig. 1D...co-occupy a cohort of EZH2 target sites and function as a repressive cofac- tor (43, 44). Therefore, additional studies are warranted to fur - ther

  2. Evaluation of an Immunochromatographic Assay for Rapid Detection of Penicillin-Binding Protein 2a in Human and Animal Staphylococcus intermedius Group, Staphylococcus lugdunensis, and Staphylococcus schleiferi Clinical Isolates.

    Science.gov (United States)

    Arnold, A R; Burnham, C-A D; Ford, B A; Lawhon, S D; McAllister, S K; Lonsway, D; Albrecht, V; Jerris, R C; Rasheed, J K; Limbago, B; Burd, E M; Westblade, L F

    2016-03-01

    The performance of a rapid penicillin-binding protein 2a (PBP2a) detection assay, the Alere PBP2a culture colony test, was evaluated for identification of PBP2a-mediated beta-lactam resistance in human and animal clinical isolates of Staphylococcus intermedius group, Staphylococcus lugdunensis, and Staphylococcus schleiferi. The assay was sensitive and specific, with all PBP2a-negative and PBP2a-positive strains testing negative and positive, respectively. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Effect of polysaccharides from Angelica sinensis on Bcl-2 and Bax protein expression of irradiated liver cells

    International Nuclear Information System (INIS)

    Sun Yuanlin; Tang Jian; Gu Xiaohong; Li Deyuan

    2009-01-01

    Objective: To investigate the effect of polysaccharides from Angelica sinensis (ASP3) on Bcl-2 and Bax protein expression of irradiated liver cells from mice. Methods: Bcl-2 and Bax protein expression of liver cells in vitro exposed to 2.0 Gy rays were examined by using immunohistochemistry method. Results: The expression of apoptosis-accelerating protein Bax in the irradiation group was enhanced obviously (70.83%), while apoptosis inhibiting protein Bcl-2 tended to decline (55.60%), with the statistically significant difference (P <0.01) compared with that of the control. ASP3 pretreatment could regulate Bcl-2 and Bax protein expression of liver cells, inhibiting Bax protein expression(64.14/58.37%) and increasing Bcl-2 protein expression(59.21%/ 67.45%). The differences between the high dosage (100 mg/L of ASP3) and the irradiation group were statistically significant (P<0.05). Conclusions: ASP3 pretreatment could prohibit the apoptosis of radiation- damaged liver cells due to abnormal expression of Bcl-2 and Bax, and reduce the cell apoptosis by increasing Bcl-2/Bax protein expression so as to enhance the radiation endurance of liver cells. (authors)

  4. Group additivity calculations of the thermodynamic properties of unfolded proteins in aqueous solution: a critical comparison of peptide-based and HKF models.

    Science.gov (United States)

    Hakin, A W; Hedwig, G R

    2001-02-15

    A recent paper in this journal [Amend and Helgeson, Biophys. Chem. 84 (2000) 105] presented a new group additivity model to calculate various thermodynamic properties of unfolded proteins in aqueous solution. The parameters given for the revised Helgeson-Kirkham-Flowers (HKF) equations of state for all the constituent groups of unfolded proteins can be used, in principle, to calculate the partial molar heat capacity, C(o)p.2, and volume, V2(0), at infinite dilution of any polypeptide. Calculations of the values of C(o)p.2 and V2(0) for several polypeptides have been carried out to test the predictive utility of the HKF group additivity model. The results obtained are in very poor agreement with experimental data, and also with results calculated using a peptide-based group additivity model. A critical assessment of these two additivity models is presented.

  5. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  6. SH2/SH3 signaling proteins.

    Science.gov (United States)

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  7. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions.

    Science.gov (United States)

    Yamniuk, Aaron P; Newitt, John A; Doyle, Michael L; Arisaka, Fumio; Giannetti, Anthony M; Hensley, Preston; Myszka, David G; Schwarz, Fred P; Thomson, James A; Eisenstein, Edward

    2015-12-01

    A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions.

  8. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis

    NARCIS (Netherlands)

    Luo, Mengcheng; Zhou, Jian; Leu, N. Adrian; Abreu, Carla M.; Wang, Jianle; Anguera, Montserrat C.; de Rooij, Dirk G.; Jasin, Maria; Wang, P. Jeremy

    2015-01-01

    Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically

  9. Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer.

    Science.gov (United States)

    Rhodes, Daniel R; Sanda, Martin G; Otte, Arie P; Chinnaiyan, Arul M; Rubin, Mark A

    2003-05-07

    Molecular signatures in cancer tissue may be useful for diagnosis and are associated with survival. We used results from high-density tissue microarrays (TMAs) to define combinations of candidate biomarkers associated with the rate of prostate cancer progression after radical prostatectomy that could identify patients at high risk for recurrence. Fourteen candidate biomarkers for prostate cancer for which antibodies are available included hepsin, pim-1 kinase, E-cadherin (ECAD; cell adhesion molecule), alpha-methylacyl-coenzyme A racemase, and EZH2 (enhancer of zeste homolog 2, a transcriptional repressor). TMAs containing more than 2000 tumor samples from 259 patients who underwent radical prostatectomy for localized prostate cancer were studied with these antibodies. Immunohistochemistry results were evaluated in conjunction with clinical parameters associated with prostate cancer progression, including tumor stage, Gleason score, and prostate-specific antigen (PSA) level. Recurrence was defined as a postsurgery PSA level of more than 0.2 ng/mL. All statistical tests were two-sided. Moderate or strong expression of EZH2 coupled with at most moderate expression of ECAD (i.e., a positive EZH2:ECAD status) was the biomarker combination that was most strongly associated with the recurrence of prostate cancer. EZH2:ECAD status was statistically significantly associated with prostate cancer recurrence in a training set of 103 patients (relative risk [RR] = 2.52, 95% confidence interval [CI] = 1.09 to 5.81; P =.021), in a validation set of 80 patients (RR = 3.72, 95% CI = 1.27 to 10.91; P =.009), and in the combined set of 183 patients (RR = 2.96, 95% CI = 1.56 to 5.61; P<.001). EZH2:ECAD status was statistically significantly associated with disease recurrence even after adjusting for clinical parameters, such as tumor stage, Gleason score, and PSA level (hazard ratio = 3.19, 95% CI = 1.50 to 6.77; P =.003). EZH2:ECAD status was statistically significantly associated

  10. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Junping Ren

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS. Whether M2-2 regulates the innate immunity in human dendritic cells (DC, an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2 produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT, suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88, an essential adaptor for Toll-like receptors (TLRs, plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  11. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  12. Effect of perfluorooctane sulfonate on pluripotency and differentiation factors in mouse embryoid bodies

    International Nuclear Information System (INIS)

    Xu, Bo; Ji, Xiaoli; Chen, Xiaojiao; Yao, Mengmeng; Han, Xiumei; Chen, Minjian; Tang, Wei; Xia, Yankai

    2015-01-01

    Perfluorooctane sulfonate (PFOS) poses potential risks to early development, but the molecular mechanisms how PFOS affects embryonic development are still unclear. Mouse embryoid bodies (mEBs) provide ideal models for testing safety or toxicity of chemicals in vitro. In this study, mEBs were exposed to PFOS up to 6 days and then their pluripotency and differentiation markers were evaluated. Our data showed that the mRNA and protein levels of pluripotency markers (Oct4, Sox2, Nanog) in mEBs were significantly increased following exposure to PFOS. Meanwhile, the expressions of miR-134, miR-145, miR-490-3p were decreased accordingly. PFOS reduced the mRNA levels of endodermal markers (Sox17, FOXA2), mesodermal markers (SMA, Brachyury) and ectodermal markers (Nestin, Fgf5) in mEBs. Meanwhile, PFOS increased the mRNA and protein levels of polycomb group (PcG) family members (Cbx4, Cbx7, Ezh2). Overall, our results showed that PFOS could increase the expression levels of pluripotency factors and decrease the differentiation markers

  13. Ca2+-regulatory proteins in cardiomyocytes from the right ventricle in children with congenital heart disease

    Directory of Open Access Journals (Sweden)

    Wu Yihe

    2012-04-01

    Full Text Available Abstract Background Hypoxia and hypertrophy are the most frequent pathophysiological consequence of congenital heart disease (CHD which can induce the alteration of Ca2+-regulatory proteins and inhibit cardiac contractility. Few studies have been performed to examine Ca2+-regulatory proteins in human cardiomyocytes from the hypertrophic right ventricle with or without hypoxia. Methods Right ventricle tissues were collected from children with tetralogy of Fallot [n = 25, hypoxia and hypertrophy group (HH group], pulmonary stenosis [n = 25, hypertrophy group (H group], or small isolated ventricular septal defect [n = 25, control group (C group] during open-heart surgery. Paraffin sections of tissues were stained with 3,3′-dioctadecyloxacarbocyanine perchlorate to measure cardiomyocyte size. Expression levels of Ca2+-regulatory proteins [sarcoplasmic reticulum Ca2+-ATPase (SERCA2a, ryanodine receptor (RyR2, sodiumcalcium exchanger (NCX, sarcolipin (SLN and phospholamban (PLN] were analysed by means of real-time PCR, western blot, or immunofluorescence. Additionally, phosphorylation level of RyR and PLN and activity of protein phosphatase (PP1 were evaluated using western blot. Results Mild cardiomyocyte hypertrophy of the right ventricle in H and HH groups was confirmed by comparing cardiomyocyte size. A significant reduction of SERCA2a in mRNA (P16-phosphorylated PLN was down-regulated (PP Conclusions The decreased SERCA2a mRNA may be a biomarker of the pathological process in the early stage of cyanotic CHD with the hypertrophic right ventricle. A combination of hypoxia and hypertrophy can induce the adverse effect of PLN-Ser16 dephosphorylation. Increased PP1 could result in the decreased PLN-Ser16 and inhibition of PP1 is a potential therapeutic target for heart dysfunction in pediatrics.

  14. Increase in skeletal muscle protein content by the ß-2 selective adrenergic agonist clenbuterol exacerbates hypoalbuminemia in rats fed a low-protein diet

    Directory of Open Access Journals (Sweden)

    A.L. Sawaya

    1998-06-01

    Full Text Available This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL. Males (4 weeks old from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group. CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A, were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05. Total liver protein decreased below the level seen in either pair-fed animals (group P or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05, whereas gastrocnemius muscle protein was higher than the values normally described for control (C animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05. Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05. This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05. Brown adipose tissue (BAT cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05, was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05. The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.

  15. Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein.

    Science.gov (United States)

    Gray, Steven G; Iglesias, Antonio H; Lizcano, Fernando; Villanueva, Raul; Camelo, Sandra; Jingu, Hisaka; Teh, Bin T; Koibuchi, Noriyuki; Chin, William W; Kokkotou, Efi; Dangond, Fernando

    2005-08-05

    To effectively direct targeted repression, the class I histone deacetylases (HDACs) associate with many important regulatory proteins. In this paper we describe the molecular characterization of a member of the Jumonji domain 2 (JMJD2) family of proteins, and demonstrate its binding to both class I HDACs and the retinoblastoma protein (pRb). JMJD2 proteins are characterized by the presence of two leukemia-associated protein/plant homeodomain (LAP/PHD) zinc fingers, one JmjN, one JmjC (containing an internal retinoblastoma-binding protein 2 (RBBP2)-like sequence), and two Tudor domains. The first member of this group, JMJD2A, is widely expressed in human tissues and cell lines, and high endogenous expression of JMJD2A mRNA was found in several cell types, including human T-cell lymphotropic virus 1 (HTLV-1)-infected cell lines. JMJD2A and JMJD2B exhibit cell type-specific responses to the HDAC inhibitor trichostatin A. We show that the JMJD2A protein associates in vivo with pRb and class I HDACs, and mediates repression of E2F-regulated promoters. In HTLV-1 virus-infected cells, we find that JMJD2A binds to the viral Tax protein. Antibodies to JMJD2A recognize the native protein but also a half-sized protein fragment, the latter up-regulated in THP-1 cells during the G(2)/M phase of the cell cycle. The ability of JMJD2A to associate with pRb and HDACs and potentiate pRb-mediated repression of E2F-regulated promoters implies an important role for this protein in cell proliferation and oncogenesis.

  16. Pregnancy Associated Plasma Protein-A in Type 2 Diabetic Patient with Peripheral Neuropathy

    International Nuclear Information System (INIS)

    Nosseir, N.M.

    2011-01-01

    Metabolic changes induced by hyperglycemia lead to dysregulation of cytokines control, subclinical inflammation together with oxidative stress associated with diabetes. The aim of this study is to correlate the role of type 2 diabetic neuropathy on serum pregnancy associated plasma protein-A,interleukin-6 and c-reactive protein .The results denoted that both pregnancy associated plasma protein-A and interleukin-6 were significantly increased in those patients with diabetic neuropathy compared with those without neuropathy but while c-reactive proteins showed significant differences between the three groups, the results lead to the conclusion that PAPP-A,IL-6 are useful tests in monitoring the neuropathic complications associated with type 2 diabetes

  17. Search for gene mutations affecting protein structure in children of A-bomb survivors, 2

    International Nuclear Information System (INIS)

    Satoh, Chiyoko; Fujita, Mikio; Goriki, Kazuaki; Asakawa, Jun-ichi; Takahashi, Norio; Hamilton, H.B.; Hazama, Ryuji; Neel, J.V.

    1984-01-01

    Children who were born between May 1, 1946 and April 1, 1971 to survivor(s) exposed to A-bombing within 2,000 m from the hypocenter in Hiroshima and Nagasaki were selected as exposed group; their sex- and age-matched children born to survivor(s) who were exposed at 2,500 m or farther were selected as control group. When these children were in junior high school, mutation of protein structure was examined by using electrophoresis and by determining red cell enzymes with decreased activity and heat-unstable red cell enzymes. Electrophoretic study revealed a ''rare type of protein mutation'' in 635 of 12,242 individuals in the exposed group and in 448 of 10,154 individuals in the control group. The number of locuses in all proteins examined was calculated. The number of locuses per protein was corrected using the rate of parents' mutation type, and relative number of locuses were obtained. As a result, there was no difference in the mutation frequency per locus and generation between the exposed and control groups. Among children having red cell enzymes with decreased activity, mutant in triose phosphate isomerase was detected in one child in the exposed group, in whom electrophoretic pattern was normal and red cell enzymes were stable to heat. Heat-unstable red cell enzymes were seen in 9 children and their parents. However, family survey revealed genetic mutation in all instances irrespective of A-bombing. (Namekawa, K.)

  18. Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins

    International Nuclear Information System (INIS)

    Lee, Andrew L.; Urbauer, Jeffrey L.; Wand, A. Joshua

    1997-01-01

    Selective incorporation of 13 C into the methyl groups of protein side chains is described as a means for simplifying the measurement and interpretation of 13 C relaxation parameters.High incorporation (>90%) is accomplished by using pyruvate(3- 13 C, 99%) as the sole carbon source in the growth media for protein overexpression in E. coli. This improved labeling scheme increases the sensitivity of the relaxation experiments by approximately fivefold when compared to randomly fractionally 13 C-labeled protein, allowing high-quality measurements on relatively dilute (<1 mM)protein samples at a relatively low cost

  19. Lie Group Analysis of the Photo-Induced Fluorescence of Drosophila Oogenesis with the Asymmetrically Localized Gurken Protein.

    Directory of Open Access Journals (Sweden)

    Jen-Cheng Wang

    Full Text Available Lie group analysis of the photo-induced fluorescence of Drosophila oogenesis with the asymmetrically localized Gurken protein has been performed systematically to assess the roles of ligand-receptor complexes in follicle cells. The (2×2 matrix representations resulting from the polarized tissue spectra were employed to characterize the asymmetrical Gurken distributions. It was found that the fluorescence of the wild-type egg shows the Lie point symmetry X 23 at early stages of oogenesis. However, due to the morphogen regulation by intracellular proteins and extracellular proteins, the fluorescence of the embryogenesis with asymmetrically localized Gurken expansions exhibits specific symmetry features: Lie point symmetry Z 1 and Lie point symmetry X 1. The novel approach developed herein was successfully used to validate that the invariant-theoretical characterizations are consonant with the observed asymmetric fluctuations during early embryological development.

  20. Association between uncoupling protein 2, adiponectin and resting energy expenditure in obese women with normal and low resting energy expenditure.

    Science.gov (United States)

    Taghadomi Masoumi, Zahra; Eshraghian, Mohammad Reza; Hedayati, Mahdi; Pishva, Hamideh

    2018-02-01

    Obesity is recognized as the most prevalent metabolic disease worldwide. Decreases in energy expenditure may increase risk of obesity. One of the key regulators of energy balance is uncoupling protein2 (UCP2), a transporter protein presents in mitochondrial inner membrane. Moreover, adiponectin is the most abundant adipocytokine, it may play a role in energy metabolism and gene expression of UCP2. The aim of this study was to investigate potential associations between the level of uncoupling protein 2 and adiponectin and their relationship with REE (Resting Energy Expenditure) in obese women with normal and low resting energy expenditure. A total of 49 subjects (women, 25-50 years old), were included in current study, 16 subjects with BMI > 30 and low resting energy expenditure, 17 subjects with BMI > 30 and normal resting energy expenditure and 16 non-obese subjects as a control group. Anthropometric, body composition parameters and resting energy expenditure were measured. Plasma adiponectin, UCP2 protein and total protein in PBMC were determined. Measured resting energy expenditure in obese subjects with low REE was significantly lower than other groups. Plasma adiponectin in the obese subjects with low REE was significantly lower compared to normal weight group. There was a significant relationship between 'UCP2 protein/Total protein' ratio and plasma adiponectin in obese group with low REE and in three groups when we pooled. There was a significant association between REE and plasma adiponectin in three groups when we pooled. There was a significant association between plasma adiponectin and REE. Moreover, there was a significant relationship between UCP2 and REE.

  1. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases SMURF1 KIAA1625 SMURF1 E3 ubiquitin-protein ligase SMURF1 SM...AD ubiquitination regulatory factor 1, SMAD-specific E3 ubiquitin-protein ligase 1 9606 Homo sapiens Q9HCE7 57154 2LB1, 2LAZ, 2LB0, 3PYC 57154 Q9HCE7 ...

  2. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  3. Whey protein potentiates the intestinotrophic action of glucagon-like peptide-2 in parenterally fed rats

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Murali, Sangita G; Holst, Jens J

    2009-01-01

    protein component, casein, soy, or whey protein, potentiates the intestinal growth response to GLP-2 in rats with PN-induced mucosal hypoplasia. Rats received PN and continuous intravenous infusion of GLP-2 (100 microg/kg/day) for 7 days. Six EN groups received PN+GLP-2 for days 1-3 and partial PN+GLP-2...... plus EN for days 4-7. EN was provided by ad libitum intake of a semielemental liquid diet with different protein sources: casein, hydrolyzed soy, whey protein concentrate (WPC), and hydrolyzed WPC+casein. Controls received PN+GLP-2 alone. EN induced significantly greater jejunal sucrase activity...... whey protein, and not casein or soy, potentiated the ability of GLP-2 to reverse PN-induced mucosal hypoplasia and further increase ileal villus height, crypt depth, and mucosa cellularity compared with PN+GLP-2 alone, P whey protein to induce greater mucosal surface area...

  4. Effects of Chronic Exposure to Sodium Arsenite on Expressions of VEGF and VEGFR2 Proteins in the Epididymis of Rats

    Directory of Open Access Journals (Sweden)

    Dai Yan-Ping

    2017-01-01

    Full Text Available Objective. To study the expressions of VEGF and VEGFR2 at protein level in the epididymis of rats with arsenism. Methods. Forty male Sprague-Dawley rats were randomly divided into four groups: the high dose arsenic infected group (60.0 mg/L in water, the middle dose arsenic infected group (12.0 mg/L in water, the low dose arsenic infected group (2.4 mg/L in water, and the control group (distilled water. Rats were treated with arsenic through drinking water for 6 consecutive months. At the end of the experiment, the average densitometry values of apoptotic cells in epididymis tubules were determined by TUNEL method; the protein and mRNA levels of VEGF and VEGFR2 were observed by immunohistochemistry, Western blot, and real time fluorescent quantitative PCR, respectively. Results. Compared with the control group, in each infected group, the average densitometry values of apoptotic cells in the epididymis tubules were significantly lower. Compared with control group, protein and mRNA levels of VEGF and VEGFR2 in each infected group were obviously declined. The correlations between protein and mRNA levels of VEGF and VEGFR2 were positively exhibited (r = 0.843, 0.869, p < 0.05. Conclusions. Arsenism affects the expressions of VEGF and VEGFR2 in the epididymis of rats and results in apoptosis of pathophysiology of male infertility.

  5. Interplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation.

    Science.gov (United States)

    Deng, Tao; Postnikov, Yuri; Zhang, Shaofei; Garrett, Lillian; Becker, Lore; Rácz, Ildikó; Hölter, Sabine M; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe; Bustin, Michael

    2017-04-07

    An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior. Published by Oxford University Press on behalf of Nucleic Acids Research 2016.

  6. Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations.

    Directory of Open Access Journals (Sweden)

    Lydia Chang

    Full Text Available Ubiquilin proteins facilitate delivery of ubiquitinated proteins to the proteasome for degradation. Interest in the proteins has been heightened by the discovery that gene mutations in UBQLN2 cause dominant inheritance of amyotrophic lateral sclerosis (ALS. However, the mechanisms by which the mutations cause ALS are not known. Here we report on the underlying defect of ubiquilin-2 proteins containing ALS-linked mutations in affecting proteasome-mediated degradation. We found that overexpression of ubiquilin-2 proteins containing any one of five different ALS mutations slow degradation of Myc, a prototypic proteasome substrate. Examination of coprecipitating proteins indicated that the mutant proteins are generally capable of binding polyubiquitinated proteins, but defective in binding the proteasome. GST-pulldown studies revealed that many of the mutants bind weaker to the S5a subunit of the proteasome, compared with wild type (WT ubiquilin-2 protein. The results suggest the mutant proteins are unable to deliver their captured cargo to the proteasome for degradation, which presumably leads to toxicity. Quantification of cell death is consistent with this idea. Measurement of protein turnover further indicated the mutant proteins have longer half-lives than WT ubiquilin-2. Our studies provide novel insight into the mechanism by which ALS-linked mutations in UBQLN2 interfere with protein degradation.

  7. Cartilage Acidic Protein 2 a hyperthermostable, high affinity calcium-binding protein.

    Science.gov (United States)

    Anjos, Liliana; Gomes, Ana S; Melo, Eduardo P; Canário, Adelino V; Power, Deborah M

    2013-03-01

    Cartilage Acidic Protein 2 (CRTAC2) is a novel protein present from prokaryotes to vertebrates with abundant expression in the teleost fish pituitary gland and an isoform of CRTAC1, a chondrocyte marker in humans. The two proteins are non-integrins containing N-terminal integrin-like Ca(2+)-binding motifs and their structure and function remain to be assigned. Structural studies of recombinant sea bream (sb)CRTAC2 revealed it is composed of 8.8% α-helix, 33.4% β-sheet and 57.8% unordered protein. sbCRTAC2 bound Ca(2+) with high affinity (K(d)=1.46nM) and favourable Gibbs free energy (∆G=-12.4kcal/mol). The stoichiometry for Ca(2+) bound to sbCRTAC2 at saturation indicated six Ca(2+) ligand-binding sites exist per protein molecule. No conformational change in sbCRTAC2 occurred in the presence of Ca(2+). Fluorescence emission revealed that the tertiary structure of the protein is hyperthermostable between 25°C and 95°C and the fully unfolded state is only induced by chemical denaturing (4M GndCl). sbCRTAC has a widespread tissue distribution and is present as high molecular weight aggregates, although strong reducing conditions promote formation of the monomer. sbCRTAC2 promotes epithelial cell outgrowth in vitro suggesting it may share functional homology with mammalian CRTAC1, recently implicated in cell-cell and cell-matrix interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex.

    Science.gov (United States)

    Soulez, M; Saurin, A J; Freemont, P S; Knight, J C

    1999-04-29

    Chromosome translocation t(X;18)(p11.2;q11.2) is unique to synovial sarcomas and results in an 'in frame' fusion of the SYT gene with the SSX1 or closely-related SSX2 gene. Wild-type SYT and SSX proteins, and the SYT-SSX chimaeric proteins, can modulate transcription in gene reporter assays. To help elucidate the role of these proteins in cell function and neoplasia we have performed immunolabelling experiments to determine their subcellular localization in three cell types. Transient expression of epitope-tagged proteins produced distinctive nuclear staining patterns. The punctate staining of SYT and SYT-SSX proteins showed some similarities. We immunolabelled a series of endogenous nuclear antigens and excluded the SYT and SYT-SSX focal staining from association with these domains (e.g. sites of active transcription, snRNPs). In further experiments we immunolabelled the Polycomb group (PcG) proteins RING1 or BMI-1 and showed that SSX and SYT-SSX proteins, but not SYT, co-localized with these markers. Consistent with this we show that SSX and SYT-SSX associate with chromatin, and also associate with condensed chromatin at metaphase. Noteably, SSX produced a dense signal over the surface of metaphase chromosomes whereas SYT-SSX produced discrete focal staining. Our data indicate that SSX and SYT-SSX proteins are recruited to nuclear domains occupied by PcG complexes, and this provides us with a new insight into the possible function of wild-type SSX and the mechanism by which the aberrant SYT-SSX protein might disrupt fundamental mechanisms controlling cell division and cell fate.

  9. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA

    Directory of Open Access Journals (Sweden)

    Margot Martinez-Moreno

    2017-08-01

    Full Text Available Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA. During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS biology.

  10. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Pinna, L A

    1998-01-01

    The catalytic (alpha) subunit of protein kinase CK2 (CK2alpha) was originally cloned and overexpressed in the Escherichia coli strain pT7-7/BL21(DE3). The protein has been purified to homogeneity and crystallized. The crystals belong to the monoclinic space group C2, they have unit-cell parameter...

  11. Protective effect of CSN1S2 protein of goat milk on ileum microstructure and inflmmation in rat-CFAinduced rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Rista Nikmatu Rohmah

    2015-07-01

    Full Text Available Objective: To observe the protective effect of goat milk alpha (S2-casein (CSN1S2 protein on ileum microstructure and inflammation in rat-complete Freund’s adjuvant-induced rheumatoid arthritis model. Methods: Twenty four male Wistar rats were divided into six groups of two models. The body weight, food intake and albumin level of all subjects were calculated. The ileum microstructures were analyzed by scanning electron microscopy. Histopathological analysis was observed by hematoxylin-eosin staining and the level expressions of immunoglobulin E, secretory immunoglobulin A, interleukin-17, interleukin-10, Ki-67 and caspase-9 were measured by using western blotting. Results: CSN1S2 protein of milk or yogurt could repair the ileum villi of rat arthritis group similar to the normal. The level expressions showed the immunoglobulin E, secretory immunoglobulin A, interleukin-17 and caspase-9 decreased in milk CSN1S2 protein and yogurt CSN1S2 protein rat groups. The level expression of interleukin-10 was increased, and also Ki- 67 was significantly increased in milk CSN1S2 protein and yogurt CSN1S2 protein rat groups. CSN1S2 protein of milk and yogurt could increase the body weight and albumin significantly, meanwhile food intake increased but not significantly. Conclusions: CSN1S2 protein of goat milk and yogurt could repair the ileum microstructure, suppress inflammatory process and also increase the body weight, food intake and albumin level. This result indicates that goat CSN1S2 protein may protect the ileum disorder in rheumatoid arthritis disease.

  12. Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network.

    Science.gov (United States)

    Bick, Gregory; Zhang, Fan; Meetei, A Ruhikanta; Andreassen, Paul R

    2017-06-01

    Fanconi anemia (FA) is a chromosome instability syndrome and the 20 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA)-associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner, MDC1, as well as the ubiquitin-binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin-binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.

  13. UO{sub 2}{sup 2+}/protein complexation sites screening

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, P.; Pible, O

    2004-07-01

    Uranium(VI) is likely to make strong coordination with some proteins in the plasma and in targeted cells. In the frame of a nuclear toxicology program, a biochemical strategy has been developed to identify these targets in complex biological media. The present work focuses on an approach based on the screening of 3D protein structures in order to identify proteins able to bind UO{sub 2}{sup 2+} and the corresponding complexation sites in these proteins. Our preliminary results show that indeed a few proteins display a high affinity to uranyl salt. The site of interaction may be mapped using molecular modeling, providing coherent results with the biochemical data. (authors)

  14. Vaccine potential of recombinant saposin-like protein 2 against Fasciolosis gigantica in mice.

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Riengrojpitak, Suda; Chaichanasak, Pannigan; Meemon, Krai; Chaithirayanon, Kulathida; Chantree, Pathanin; Sansri, Veerawat; Itagaki, Tadashi; Sobhon, Prasert

    2013-11-12

    Saposin-like protein 2 (SAP-2) is a protein that adult of Fasciola spp. use to lyse plasma membrane of red blood cells, so that their contents can be digested by proteases for the parasites' nutrients. Thus SAP-2 is a plausible target for vaccination against these parasites. Recombinant Fasciola gigantica saposin-like protein 2 (rFgSAP-2) was expressed in Escherichia coli BL21 (DE3). A vaccination was performed in ICR mice (n=10) by subcutaneous injection with 50μg of rFgSAP-2 combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 30 F. gigantica metacercariae by oral route. The percentages of protection of rFgSAP-2 vaccine against F. gigantica were estimated to be 76.4-78.5% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The antibodies in immune sera of vaccinated mice were shown by immuno-blotting to react with native FgSAP-2 in the extract of 2- and 4-week-old juvenile parasites. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, it was found that both Th1 and Th2 humoral immune response were significantly increased in rFgSAP-2 immunized group compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rFgSAP-2-immunized group showed no significant difference from those of the non-immunized and infected group, indicating that early juvenile parasites induced liver parenchyma damage, even though the numbers of worm recoveries were significantly different. This study indicates that rFgSAP-2 has a high potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in larger economic animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Protein metabolism in obese patients during very low-calorie mixed diets containing different amounts of proteins and carbohydrates.

    Science.gov (United States)

    Pasquali, R; Casimirri, F; Melchionda, N

    1987-12-01

    To assess long-term nitrogen sparing capacity of very low-calorie mixed diets, we administered two isoenergetic (2092KJ) liquid formula regimens of different composition for 8 weeks to two matched groups of massively obese patients (group 1: proteins 60 g, carbohydrate 54 g; group 2: proteins 41 g, carbohydrates 81 g). Weight loss was similar in both groups. Daily nitrogen balance (g) during the second month resulted more a negative in group 2 with respect to group 1. However, within the groups individual nitrogen sparing capacity varied markedly; only a few in group 1 and one in group 2 were able to attain nitrogen equilibrium throughout the study. Daily urine excretion of 3-methylhistidine fell significantly in group 1 but did not change in group 2. Unlike total proteins, albumins, and transferrin, serum levels of retinol-binding protein, thyroxin-binding globulin, and complement-C3 fell significantly in both groups but per cent variations of complement-C3 were more pronounced in the first group. Prealbumin levels fell persistently in group 1 and transiently in group 2. The results indicate that even with this type of diet an adequate amount of dietary protein represents the most important factor in minimizing whole body protein catabolism during long-term semistarvation in massively obese patients. Moreover, they confirm the possible role of dietary carbohydrates in the regulation of some visceral protein metabolism.

  16. $2^\\infty$-Selmer groups, $2^\\infty$-class groups, and Goldfeld's conjecture

    OpenAIRE

    Smith, Alexander

    2017-01-01

    We prove that the $2^\\infty$-class groups of the imaginary quadratic fields have the distribution predicted by the Cohen-Lenstra heuristic. Given an elliptic curve E/Q with full rational 2-torsion and no rational cyclic subgroup of order four, we analogously prove that the $2^\\infty$-Selmer groups of the quadratic twists of E have distribution as predicted by Delaunay's heuristic. In particular, among the twists E^d with |d| < N, the number of curves with rank at least two is $o(N)$.

  17. Detecting Protein-Protein Interactions in the Intact Cell of Bacillus subtilis (ATCC 6633)

    OpenAIRE

    Winters, Michael S.; Day, R. A.

    2003-01-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C2N2) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques a...

  18. Protective effect of bone morphogenetic protein 6 on RPE cells injury caused by H2O2

    Directory of Open Access Journals (Sweden)

    Li Chen

    2016-01-01

    Full Text Available AIM:To investigate the effect of bone morphogenetic protein 6(BMP-6on cellular morphology, proliferation and apoptosis of retinal pigment epithelial cells(ARPE-19incubated in hydrogen peroxide(H2O2. METHODS:ARPE-19 cells were cultured conventionally and divided into four groups. One group was untreated as blank group, the other three groups were incubated in 75μm/L H2O2, 150ng/mLBMP-6 or75μm/L H2O2+150ng/mL BMP-6. All the groups were incubated for 3h, 6h, 9h and 12h. We tested the cell viabilitity by MTT. We used flow cytometry to test the cell cycle and cell apoptosis.RESULTS:H2O2 significantly decreased the cell activity in time-dependent manner. The activity of cells with BMP-6+H2O2 was higher H2O2 group, and the differences between the two groups at 3h and 6h were significant(P2O2, while the cells with BMP-6 were less cell detachment and apoptosis. CONCLUSION:BMP-6 has protective effects on RPE cells from oxidative stress in certain extent.

  19. Epigenetic control of hematopoietic stem cell aging - The case of Ezh2

    NARCIS (Netherlands)

    de Haan, Gerald; Gerrits, Alice; Kanz, L; Weisel, KC; Dick, JE; Fibbe, WE

    2007-01-01

    Hematopoietic stem cells have potent, but not unlimited, selfrenewal potential. The mechanisms that restrict selfrenewal are likely to play a role during aging. Recent data suggest that the regulation of histone modifications by Polycomb group genes may be of crucial relevance to balance selfrenewal

  20. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    International Nuclear Information System (INIS)

    Gupta, Pankaj; Gaur, Vineet; Salunke, Dinakar M.

    2008-01-01

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH 2 -terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH 2 -terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Å resolution and were indexed in space group P4 1 (or P4 3 ), with unit-cell parameters a = b = 78.6, c = 135.2 Å

  1. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  2. [Distributions of H3K27me3 and its modification enzymes in different tissues of mice].

    Science.gov (United States)

    Wang, Yuying; Wang, Xinli; Zhang, Ran; Zhang, Zhiyan; Wang, Yu; Yang, Bo; Wang, Guanjie; Zhang, Xin; Ma, Fuhao; Xu, Hongye; Wu, Xiaohui; Zhang, Feng; Li, Qing

    2017-11-01

    Objective To investigate the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3) and its modification enzymes Zeste gene enhancer homolog 2 (EZH2), lysine-specific demethylase 6B (Kdm6B/JMJD3) and lysine-specific demethylase 6A (Kdm6A/UTX) in tissues and organs of 7-day and 2-month postnatal mice. Methods Immunohistochemistry was used to detect the expressions of H3K27me3 and its modification enzymes EZH2, JMJD3 and UTX in the brain, salivary glands, back fat, thymus, lung, heart, stomach, intestines, liver, testes, and skin of 7-day and 2-month mice. Real-time quantitative PCR was used to confirm the results. The relationships between H3K27me3 and its modification enzymes were analyzed statistically. Results Immunohistochemistry showed H3K27me3 persistently present in all examined tissues of 7-day and 2-month mice. EZH2 was persistently expressed in the brain, heart, liver, and skin of 7-day and 2-month mice, but only expressed in the salivary glands, adipose tissues, thymus, lung, intestines, and testes of 2-month mice. JMJD3 was expressed in the brain, salivary glands, adipose tissues, lung, heart, stomach, intestines, testes, skin of 7-day mice, but was not expressed in the lung, adipose tissues and stomach of 2-month mice. UTX was expressed in the brain, salivary glands, adipose tissues, lung, heart, testes, skin of 7-day mice, but only expressed in the testes of 2-month mice. Most mRNA of H3K27 modification enzymes were moderately or highly expressed as their immunohistochemical results were positive. Conclusion There was H3K27me3 persistently present in the all examined tissues at different stages. EZH2 was mostly expressed in the brain, salivary glands, adipose tissues, thymus, lung, heart, intestines, liver, testes and skin of 2-month-old mice. JMJD3 and UTX were mostly expressed in the brain, salivary glands, adipose tissues, lung, heart, skin and testes of 7-day-old mice. No significant association was found between the distribution of H3K

  3. Bactericidal activity of M protein conserved region antibodies against group A streptococcal isolates from the Northern Thai population

    Directory of Open Access Journals (Sweden)

    Pruksachatkunakorn Chulabhorn

    2006-08-01

    Full Text Available Abstract Background Most group A streptococcal (GAS vaccine strategies have focused on the surface M protein, a major virulence factor of GAS. The amino-terminus of the M protein elicits antibodies, that are both opsonic and protective, but which are type specific. J14, a chimeric peptide that contains 14 amino acids from the M protein conserved C-region at the carboxy-terminus, offers the possibility of a vaccine which will elicit protective opsonic antibodies against multiple different GAS strains. In this study, we searched for J14 and J14-like sequences and the number of their repeats in the C-region of the M protein from GAS strains isolated from the Northern Thai population. Then, we examined the bactericidal activity of J14, J14.1, J14-R1 and J14-R2 antisera against multiple Thai GAS strains. Results The emm genes of GAS isolates were sequenced and grouped as 14 different J14-types. The most diversity of J14-types was found in the C1-repeat. The J14.1 type was the major sequence in the C2 and C3-repeats. We have shown that antisera raised against the M protein conserved C-repeat region peptides, J14, J14.1, J14-R1 and J14-R2, commonly found in GAS isolates from the Northern Thai population, are able to kill GAS of multiple different emm types derived from an endemic area. The mean percent of bactericidal activities for all J14 and J14-like peptide antisera against GAS isolates were more than 70%. The mean percent of bactericidal activity was highest for J14 antisera followed by J14-R2, J14.1 and J14-R1 antisera. Conclusion Our study demonstrated that antisera raised against the M protein conserved C-repeat region are able to kill multiple different strains of GAS isolated from the Northern Thai population. Therefore, the four conserved "J14" peptides have the potential to be used as GAS vaccine candidates to prevent streptococcal infections in an endemic area.

  4. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  5. Identification of poly(rC) binding protein 2 (PCBP2) as a target protein of immunosuppressive agent 15-deoxyspergualin

    Energy Technology Data Exchange (ETDEWEB)

    Murahashi, Masataka; Simizu, Siro; Morioka, Masahiko [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Umezawa, Kazuo, E-mail: umezawa@aichi-med-u.ac.jp [Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 1-1 Yazako-Karimata, Nagakute 480-1195 (Japan)

    2016-08-05

    15-Deoxyspergualin (DSG) is an immunosuppressive agent being clinically used. Unlike tacrolimus and cyclosporine A, it does not inhibit the calcineurin pathway, and its mechanism of action and target molecule have not been elucidated. Therefore, we previously prepared biotinylated derivative of DSG (BDSG) to fish up the target protein. In the present research, we identified poly(rC) binding protein 2 (PCBP2) as a DSG-binding protein using this probe. DSG was confirmed to bind to PCBP2 by pull-down assay. Intracellular localization of PCBP2 was changed from the nucleus to the cytoplasm by DSG treatment. DSG inhibited the cell growth, and over-expression of PCBP2 reduced the anti-proliferative activity of DSG. PCBP2 is known to regulate various proteins including STAT1/2. Thus, we found PCBP2 as the first target protein of DSG that can explain the immunosuppressive activity. -- Highlights: •Fifteen-deoxyspergualin (DSG) is an immunosuppressive agent clinically used. •We have identified PCBP2, an RNA-binding protein, as a molecular target of DSG. •Alteration of PCBP2 activity may explain the immunosuppressive activity of DSG.

  6. A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Ioannis Anestopoulos

    2016-12-01

    Full Text Available Silibinin, extracted from milk thistle (Silybum marianum L., has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin’s pleiotropic effects may reflect its interference with epigenetic mechanisms in human prostate cancer cells. More specifically, we have demonstrated that silibinin reduces gene expression levels of the Polycomb Repressive Complex 2 (PRC2 members Enhancer of Zeste Homolog 2 (EZH2, Suppressor of Zeste Homolog 12 (SUZ12, and Embryonic Ectoderm Development (EED in DU145 and PC3 human prostate cancer cells, as evidenced by Real Time Polymerase Chain Reaction (RT-PCR. Furthermore immunoblot and immunofluorescence analysis revealed that silibinin-mediated reduction of EZH2 levels was accompanied by an increase in trimethylation of histone H3 on lysine (Κ-27 residue (H3K27me3 levels and that such response was, in part, dependent on decreased expression levels of phosphorylated Akt (ser473 (pAkt and phosphorylated EZH2 (ser21 (pEZH2. Additionally silibinin exerted other epigenetic effects involving an increase in total DNA methyltransferase (DNMT activity while it decreased histone deacetylases 1-2 (HDACs1-2 expression levels. We conclude that silibinin induces epigenetic alterations in human prostate cancer cells, suggesting that subsequent disruptions of central processes in chromatin conformation may account for some of its diverse anticancer effects.

  7. Protein-enriched familiar foods and drinks improve protein intake of hospitalized older patients: A randomized controlled trial.

    Science.gov (United States)

    Beelen, Janne; Vasse, Emmelyne; Janssen, Nancy; Janse, André; de Roos, Nicole M; de Groot, Lisette C P G M

    2017-05-18

    Adequate protein intake is important in preventing and treating undernutrition. Hospitalized older patients are recommended to consume 1.2-1.5 g of protein per kg body weight per day (g/kg/d) but most of them fail to do so. Therefore, we investigated whether a range of newly developed protein-enriched familiar foods and drinks were effective in increasing protein intake of hospitalized older patients. This randomized controlled trial involved 147 patients of ≥65 years (mean age: 78.5 ± 7.4 years). The control group (n = 80) received the standard energy and protein rich hospital menu. The intervention group (n = 67) received the same menu with various protein-enriched intervention products replacing regular products or added to the menu. Macronutrient intake on the fourth day of hospitalization, based on food ordering data, was compared between the two groups by using Independent T-tests and Mann Whitney U-tests. In the intervention group 30% of total protein was provided by the intervention products. The intervention group consumed 105.7 ± 34.2 g protein compared to 88.2 ± 24.4 g in the control group (p intervention group than in the control group reached a protein intake of 1.2 g/kg/d (79.1% vs 47.5%). Protein intake was significantly higher in the intervention group at breakfast, during the morning between breakfast and lunch, and at dinner. This study shows that providing protein-enriched familiar foods and drinks, as replacement of regular products or as additions to the hospital menu, better enables hospitalized older patients to reach protein intake recommendations. This trial is registered on ClinicalTrials.gov, Identifier: NCT02213393. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Functional role of the cytoplasmic tail domain of the major envelope fusion protein of group II baculoviruses

    NARCIS (Netherlands)

    Long, G.; Pan, M.; Westenberg, M.; Vlak, J.M.

    2006-01-01

    F proteins from baculovirus nucleopolyhedrovirus (NPV) group II members are the major budded virus (BV) viral envelope fusion proteins. They undergo furin-like proteolysis processing in order to be functional. F proteins from different baculovirus species have a long cytoplasmic tail domain (CTD),

  9. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    Science.gov (United States)

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  10. Protein blend ingestion before allogeneic stem cell transplantation improves protein-energy malnutrition in patients with leukemia.

    Science.gov (United States)

    Ren, Guangxu; Zhang, Jianping; Li, Minghua; Yi, Suqin; Xie, Jin; Zhang, Hongru; Wang, Jing

    2017-10-01

    Severe protein-energy malnutrition (PEM) and skeletal muscle wasting are commonly observed in patients with acute leukemia. Recently, the ingestion of a soy-whey protein blend has been shown to promote muscle protein synthesis (MPS). Thus, we tested the hypothesis that the ingestion of a soy-whey blended protein (BP) may improve the PEM status and muscle mass in acute leukemia patients. In total, 24 patients from the same treatment group were randomly assigned to the natural diet plus soy-whey blended protein (BP) group and the natural diet only (ND) group. Our data showed that protein and energy intake decreased significantly (P protein) were observed in the majority (>50%) of the patients. However, 66% of the patients who ingested the BP before transplantation showed obvious increases in arm muscle area. The gripping power value (△ post-pre or △ post-baseline ) was significantly higher in the BP group than in the ND group (P protein to different extents. Notably, the average time to stem cell engraftment was significantly shorter for patients in the BP group (12.2 ± 2.0 days) than for patients in the ND group (15.1 ± 2.9 days). Collectively, our data supported that soy-whey protein can improve PEM status and muscle mass in leukemia patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. MiR302 regulates SNAI1 expression to control mesangial cell plasticity

    DEFF Research Database (Denmark)

    De Chiara, L.; Andrews, D.; Watson, A.

    2017-01-01

    Cell fate decisions are controlled by the interplay of transcription factors and epigenetic modifiers, which together determine cellular identity. Here we elaborate on the role of miR302 in the regulation of cell plasticity. Overexpression of miR302 effected silencing of the TGFβ type II receptor...... and facilitated plasticity in a manner distinct from pluripotency, characterized by increased expression of Snail. miR302 overexpressing mesangial cells also exhibited enhanced expression of EZH2 coincident with Snail upregulation. esiRNA silencing of each component suggest that Smad3 and EZH2 are part...... of a complex that regulates plasticity and that miR302 regulates EZH2 and Snail independently. Subsequent manipulation of miR302 overexpressing cells demonstrated the potential of using this approach for reprogramming as evidenced by de novo expression of the tight junction components ZO-1 and E...

  12. Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633).

    Science.gov (United States)

    Winters, Michael S; Day, R A

    2003-07-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C(2)N(2)) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques applied to peptides derived from them. The cyanogen-linked proteins were isolated by polyacrylamide gel electrophoresis. Digestion of the isolated proteins with proteases of known specificity afforded sets of peptides that could be analyzed by mass spectrometry. These data were compared with those derived theoretically from the Swiss Protein Database by computer-based comparisons (Protein Prospector; http://prospector.ucsf.edu). Identification of associated proteins in the ribosome of Bacillus subtilis strain ATCC 6633 showed that there is an association homology with the association patterns of the ribosomal proteins of Haloarcula marismortui and Thermus thermophilus. In addition, other proteins involved in protein biosynthesis were shown to be associated with ribosomal proteins.

  13. Identification of a group of Haemophilus influenzae penicillin-binding proteins that may have complementary physiological roles

    International Nuclear Information System (INIS)

    Malouin, F.; Parr, T.R. Jr.; Bryan, L.E.

    1990-01-01

    [35S]penicillin bound to different Haemophilus influenzae proteins in assays performed at 20, 37, or 42 degrees C. Penicillin-binding proteins 3a, 3b, 4, and 4' formed a group characterized by their affinity for moxalactam, cefotaxime, and piperacillin. Penicillin-binding protein 4' showed specific properties that may reflect its complementary role in septation

  14. Polycomb Group Proteins RING1A and RING1B Regulate the Vegetative Phase Transition in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-05-01

    Full Text Available Polycomb group (PcG protein-mediated gene silencing is a major regulatory mechanism in higher eukaryotes that affects gene expression at the transcriptional level. Here, we report that two conserved homologous PcG proteins, RING1A and RING1B (RING1A/B, are required for global H2A monoubiquitination (H2Aub in Arabidopsis. The mutation of RING1A/B increased the expression of members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene family and caused an early vegetative phase transition. The early vegetative phase transition observed in ring1a ring1b double mutant plants was dependent on an SPL family gene, and the H2Aub status of the chromatin at SPL locus was dependent on RING1A/B. Moreover, mutation in RING1A/B affected the miRNA156a-mediated vegetative phase transition, and RING1A/B and the AGO7-miR390-TAS3 pathway were found to additively regulate this transition in Arabidopsis. Together, our results demonstrate that RING1A/B regulates the vegetative phase transition in Arabidopsis through the repression of SPL family genes.

  15. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases STUB1 CHIP STUB1 E3 ubiquitin-protein ligase CHIP Antigen NY...-CO-7, CLL-associated antigen KW-8, Carboxy terminus of Hsp70-interacting protein, STIP1 homology and U box-containing pr

  16. The complexity of interpreting genomic data in patients with acute myeloid leukemia.

    Science.gov (United States)

    Nazha, A; Zarzour, A; Al-Issa, K; Radivoyevitch, T; Carraway, H E; Hirsch, C M; Przychodzen, B; Patel, B J; Clemente, M; Sanikommu, S R; Kalaycio, M; Maciejewski, J P; Sekeres, M A

    2016-12-16

    Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML.

  17. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.

    Science.gov (United States)

    Li, Congmin; Lim, Sunghyuk; Braunewell, Karl H; Ames, James B

    2016-01-01

    Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.

  18. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    International Nuclear Information System (INIS)

    Thysseril, T.J.; Hegazy, M.G.; Schlender, K.K.

    1987-01-01

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to β-adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of [ 32 P]C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of 32 [P]. Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein

  19. Molecular cloning and protein structure of a human blood group Rh polypeptide

    International Nuclear Information System (INIS)

    Cherif-Zahar, B.; Bloy, C.; Le Van Kim, C.; Blanchard, D.; Bailly, P.; Hermand, P.; Salmon, C.; Cartron, J.P.; Colin, Y.

    1990-01-01

    cDNA clones encoding a human blood group Rh polypeptide were isolated from a human bone marrow cDNA library by using a polymerase chain reaction-amplified DNA fragment encoding the known common N-terminal region of the Rh proteins. The entire primary structure of the Rh polypeptide has been deduced from the nucleotide sequence of a 1384-base-pair-long cDNA clone. Translation of the open reading frame indicates that the Rh protein is composed of 417 amino acids, including the initiator methionine, which is removed in the mature protein, lacks a cleavable N-terminal sequence, and has no consensus site for potential N-glycosylation. The predicted molecular mass of the protein is 45,500, while that estimated for the Rh protein analyzed in NaDodSO 4 /polyacrylamide gels is in the range of 30,000-32,000. These findings suggest either that the hydrophobic Rh protein behaves abnormally on NaDodSO 4 gels or that the Rh mRNA may encode a precursor protein, which is further matured by a proteolytic cleavage of the C-terminal region of the polypeptide. Hydropathy analysis and secondary structure predictions suggest the presence of 13 membrane-spanning domains, indicating that the Rh polypeptide is highly hydrophobic and deeply buried within the phospholipid bilayer. These results suggest that the expression of the Rh gene(s) might be restricted to tissues or cell lines expressing erythroid characters

  20. Differential protein expression using proteomics from a crustacean brine shrimp (Artemia sinica) under CO2-driven seawater acidification.

    Science.gov (United States)

    Chang, Xue-Jiao; Zheng, Chao-Qun; Wang, Yu-Wei; Meng, Chuang; Xie, Xiao-Lu; Liu, Hai-Peng

    2016-11-01

    Gradually increasing atmospheric CO 2 partial pressure (pCO 2 ) has caused an imbalance in carbonate chemistry and resulted in decreased seawater pH in marine ecosystems, termed seawater acidification. Anthropogenic seawater acidification is postulated to affect the physiology of many marine calcifying organisms. To understand the possible effects of seawater acidification on the proteomic responses of a marine crustacean brine shrimp (Artemia sinica) three groups of cysts were hatched and further raised in seawater at different pH levels (8.2 as control and 7.8 and 7.6 as acidification stress levels according to the predicted levels at the end of this century and next century, respectively) for 1, 7 and 14 days followed by examination of the protein expression changes via two-dimensional gel electrophoresis. Searches of protein databases revealed that 67 differential protein spots were altered due to lower pH level (7.6 and 7.8) stress in comparison to control groups (pH 8.2) by mass spectrometry. Generally, these differentially expressed proteins included the following: 1) metabolic process-related proteins involved in glycolysis and glucogenesis, nucleotide/amino acid/fatty acid metabolism, protein biosynthesis, DNA replication and apoptosis; 2) stress response-related proteins, such as peroxiredoxin, thioredoxin peroxidase, 70-kDa heat shock protein, Na/K ATPase, and ubiquinol-cytochrome c reductase; 3) immune defence-related proteins, such as prophenoloxidase and ferritin; 4) cytoskeletal-related proteins, such as myosin light chain, TCP1 subunit 2, tropomyosin and tubulin alpha chain; and 5) signal transduction-related proteins, such as phospholipase C-like protein, 14-3-3 zeta, translationally controlled tumour protein and RNA binding motif protein. Taken together, these data support the idea that CO 2 -driven seawater acidification may affect protein expression in the crustacean A. sinica and possibly also in other species that feed on brine shrimp in the

  1. Contrasting evolutionary patterns of spore coat proteins in two Bacillus species groups are linked to a difference in cellular structure

    Science.gov (United States)

    2013-01-01

    Background The Bacillus subtilis-group and the Bacillus cereus-group are two well-studied groups of species in the genus Bacillus. Bacteria in this genus can produce a highly resistant cell type, the spore, which is encased in a complex protective protein shell called the coat. Spores in the B. cereus-group contain an additional outer layer, the exosporium, which encircles the coat. The coat in B. subtilis spores possesses inner and outer layers. The aim of this study is to investigate whether differences in the spore structures influenced the divergence of the coat protein genes during the evolution of these two Bacillus species groups. Results We designed and implemented a computational framework to compare the evolutionary histories of coat proteins. We curated a list of B. subtilis coat proteins and identified their orthologs in 11 Bacillus species based on phylogenetic congruence. Phylogenetic profiles of these coat proteins show that they can be divided into conserved and labile ones. Coat proteins comprising the B. subtilis inner coat are significantly more conserved than those comprising the outer coat. We then performed genome-wide comparisons of the nonsynonymous/synonymous substitution rate ratio, dN/dS, and found contrasting patterns: Coat proteins have significantly higher dN/dS in the B. subtilis-group genomes, but not in the B. cereus-group genomes. We further corroborated this contrast by examining changes of dN/dS within gene trees, and found that some coat protein gene trees have significantly different dN/dS between the B subtilis-clade and the B. cereus-clade. Conclusions Coat proteins in the B. subtilis- and B. cereus-group species are under contrasting selective pressures. We speculate that the absence of the exosporium in the B. subtilis spore coat effectively lifted a structural constraint that has led to relaxed negative selection pressure on the outer coat. PMID:24283940

  2. Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals.

    Science.gov (United States)

    Sirtori, Cesare R; Triolo, Michela; Bosisio, Raffaella; Bondioli, Alighiero; Calabresi, Laura; De Vergori, Viviana; Gomaraschi, Monica; Mombelli, Giuliana; Pazzucconi, Franco; Zacherl, Christian; Arnoldi, Anna

    2012-04-01

    The present study was aimed to evaluate the effect of plant proteins (lupin protein or pea protein) and their combinations with soluble fibres (oat fibre or apple pectin) on plasma total and LDL-cholesterol levels. A randomised, double-blind, parallel group design was followed: after a 4-week run-in period, participants were randomised into seven treatment groups, each consisting of twenty-five participants. Each group consumed two bars containing specific protein/fibre combinations: the reference group consumed casein+cellulose; the second and third groups consumed bars containing lupin or pea proteins+cellulose; the fourth and fifth groups consumed bars containing casein and oat fibre or apple pectin; the sixth group and seventh group received bars containing combinations of pea protein and oat fibre or apple pectin, respectively. Bars containing lupin protein+cellulose ( - 116 mg/l, - 4·2%), casein+apple pectin ( - 152 mg/l, - 5·3%), pea protein+oat fibre ( - 135 mg/l, - 4·7%) or pea protein+apple pectin ( - 168 mg/l, - 6·4%) resulted in significant reductions of total cholesterol levels (Ppea protein+cellulose. The present study shows the hypocholesterolaemic activity and potential clinical benefits of consuming lupin protein or combinations of pea protein and a soluble fibre, such as oat fibre or apple pectin.

  3. Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Takuro Kameda

    2015-06-01

    Full Text Available Myeloproliferative neoplasms (MPNs are clinically characterized by the chronic overproduction of differentiated peripheral blood cells and the gradual expansion of malignant intramedullary/extramedullary hematopoiesis. In MPNs mutations in JAK2 MPL or CALR are detected mutually exclusive in more than 90% of cases [1,2]. Mutations in them lead to the abnormal activation of JAK/STAT signaling and the autonomous growth of differentiated cells therefore they are considered as “driver” gene mutations. In addition to the above driver gene mutations mutations in epigenetic regulators such as TET2 DNMT3A ASXL1 EZH2 or IDH1/2 are detected in about 5%–30% of cases respectively [3]. Mutations in TET2 DNMT3A EZH2 or IDH1/2 commonly confer the increased self-renewal capacity on normal hematopoietic stem cells (HSCs but they do not lead to the autonomous growth of differentiated cells and only exhibit subtle clinical phenotypes [4,6–8,5]. It was unclear how mutations in such epigenetic regulators influenced abnormal HSCs with driver gene mutations how they influenced the disease phenotype or whether a single driver gene mutation was sufficient for the initiation of human MPNs. Therefore we focused on JAK2V617F and loss of TET2—the former as a representative of driver gene mutations and the latter as a representative of mutations in epigenetic regulators—and examined the influence of single or double mutations on HSCs (Lineage−Sca-1+c-Kit+ cells (LSKs by functional analyses and microarray whole-genome expression analyses [9]. Gene expression profiling showed that the HSC fingerprint genes [10] was statistically equally enriched in TET2-knockdown-LSKs but negatively enriched in JAK2V617F–LSKs compared to that in wild-type-LSKs. Double-mutant-LSKs showed the same tendency as JAK2V617F–LSKs in terms of their HSC fingerprint genes but the expression of individual genes differed between the two groups. Among 245 HSC fingerprint genes 100 were more

  4. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    International Nuclear Information System (INIS)

    Liu, Xin; Zhu, Yanming; Zhai, Hong; Cai, Hua; Ji, Wei; Luo, Xiao; Li, Jing; Bai, Xi

    2012-01-01

    Highlights: ► AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. ► AtPP2CG1 up-regulates the expression of marker genes in different pathways. ► AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2–3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter–GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  5. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  6. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  7. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP......Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...

  8. Protein Corona Prevents TiO2 Phototoxicity.

    Directory of Open Access Journals (Sweden)

    Maja Garvas

    Full Text Available TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations.Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface.These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  9. Novel bacterial gas sensor proteins with transition metal-containing prosthetic groups as active sites.

    Science.gov (United States)

    Aono, Shigetoshi

    2012-04-01

    Gas molecules function as signaling molecules in many biological regulatory systems responsible for transcription, chemotaxis, and other complex physiological processes. Gas sensor proteins play a crucial role in regulating such biological systems in response to gas molecules. New sensor proteins that sense oxygen or nitric oxide have recently been found, and they have been characterized by X-ray crystallographic and/or spectroscopic analysis. It has become clear that the interaction between a prosthetic group and gas molecules triggers dynamic structural changes in the protein backbone when a gas sensor protein senses gas molecules. Gas sensor proteins employ novel mechanisms to trigger conformational changes in the presence of a gas. In gas sensor proteins that have iron-sulfur clusters as active sites, the iron-sulfur clusters undergo structural changes, which trigger a conformational change. Heme-based gas sensor proteins reconstruct hydrogen-bonding networks around the heme and heme-bound ligand. Gas sensor proteins have two functional states, on and off, which are active and inactive, respectively, for subsequent signal transduction in response to their physiological effector molecules. To fully understand the structure-function relationships of gas sensor proteins, it is vital to perform X-ray crystal structure analyses of full-length proteins in both the on and off states.

  10. [Effects of exogenous high mobility group protein box 1 on angiogenesis in ischemic zone of early scald wounds of rats].

    Science.gov (United States)

    Dai, L; Guo, X; Huang, H J; Liao, X M; Luo, X Q; Li, D; Zhou, H; Gao, X C; Tan, M Y

    2018-04-20

    Objective: To observe effects of exogenous high mobility group protein box 1 (HMGB1) on angiogenesis in ischemic zone of early scald wounds of rats. Methods: Thirty-six Sprague-Dawley rats were divided into HMGB1 group and simple scald (SS) group according to the random number table, with 18 rats in each group. Comb-like copper mould was placed on the back of rats for 20 s after being immersed in 100 ℃ hot water for 3 to 5 min to make three ischemic zones of wound. Immediately after scald, rats in HMGB1 group were subcutaneously injected with 0.4 μg HMGB1 and 0.1 mL phosphate buffer solution (PBS), and rats in SS group were subcutaneously injected with 0.1 mL PBS from boarders of ischemic zone of scald wound. At post scald hour (PSH) 24, 48, and 72, 6 rats in each group were collected. Protein expressions of vascular endothelial growth factor (VEGF) in ischemic zone of wound at PSH 24, 48, and 72 and protein expressions of CD31 in ischemic zone of wound at PSH 48 and 72 were detected by immunohistochemistry. The number of microvessel in CD31 immunohistochemical sections of ischemic zone of wound at PSH 48 and 72 was calculated after observing by the microscope. The mRNA expressions of VEGF and CD31 in ischemic zone of wound were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction at PSH 24, 48, and 72. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) At PSH 24, 48, and 72, protein expressions of VEGF in ischemic zone of wound of rats in HMGB1 group were significantly higher than those of rats in SS group ( t =7.496, 4.437, 5.402, P zone of wound of rats in HMGB1 group were 0.038 8±0.007 9 and 0.057 7±0.001 2 respectively, significantly higher than 0.013 4±0.004 9 and 0.030 3±0.004 0 of rats in SS group ( t =10.257, 15.055, P zone of wound of rats in HMGB1 group was obviously more than that of rats in SS group ( t =3.536, 4.000, P zone of wound of

  11. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    Science.gov (United States)

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  12. Fanconi anemia group A and C double-mutant mice: functional evidence for a multi-protein Fanconi anemia complex.

    Science.gov (United States)

    Noll, Meenakshi; Battaile, Kevin P; Bateman, Raynard; Lax, Timothy P; Rathbun, Keany; Reifsteck, Carol; Bagby, Grover; Finegold, Milton; Olson, Susan; Grompe, Markus

    2002-07-01

    Fanconi anemia (FA) is a genetically heterogeneous disorder associated with defects in at least eight genes. The biochemical function(s) of the FA proteins are unknown, but together they define the FA pathway, which is involved in cellular responses to DNA damage and in other cellular processes. It is currently unknown whether all FA proteins are involved in controlling a single function or whether some of the FA proteins have additional roles. The aim of this study was 1) to determine whether the FA group A and group C genes have identical or partially distinct functions, and 2) to have a better model for human FA. We generated mice with a targeted mutation in fanca and crossed them with fancc disrupted animals. Several phenotypes including sensitivity to DNA cross linkers and ionizing radiation, hematopoietic colony growth, and germ cell loss were analyzed in fanca-/-, fancc-/-, fanca/fancc double -/-, and controls. Fibroblast cells and hematopoietic precursors from fanca/fancc double-mutant mice were not more sensitive to MMC than those of either single mutant. fanca/fancc double mutants had no evidence for an additive phenotype at the cellular or organismal level. These results support a model where both FANCA and FANCC are part of a multi-protein nuclear FA complex with identical function in cellular responses to DNA damage and germ cell survival.

  13. Amidolysis of Oxirane: Effect of Protein Type, Oils, and ZnCl2 on the Rheological Properties of Cross-Linked Protein and Oxirane

    Directory of Open Access Journals (Sweden)

    A. A. Mohamed

    2018-01-01

    Full Text Available Amidolysis of oxirane group of epoxidized sesame, sunflower, and cottonseed oils was achieved by reaction with primary amide of millet and gluten proteins. Gluten is a coproduct of wheat starch industry and available commercially. Millet is a major part of the staple food of the semiarid region of the tropics. Gluten is a mixture of glutenins and gliadins rich in glutamine residues; however, millet is rich in glutamine and leucine. We have taken advantage of the available primary amide of glutamine for cross-linking with the oxirane of sunflower, sesame, and cottonseed oils under controlled conditions to give a resin of amidohydroxy of gluten and millet proteins. Cross-linking gave a resin with a wide range of textural properties. The texture of the resin was dependent on the source of the oxirane, the amide group, and the amount of the catalyst (ZnCl2. The thermal properties, textural, solubility, and rheological properties were determined as well as the reaction time. The data showed direct relationships between the ZnCl2, nature of oil, and protein type and the properties of the final resin. Consistently, the results pointed to similarity among the outcome of the reactions between sesame and sunflower oils. Depending on the amount of ZnCl2, the texture of the resin can range from viscose to rubbery. The reaction time was influenced by oxirane source, protein type, and catalyst and ranged from 30 min to 4 hr.

  14. Adaptor proteins intersectin 1 and 2 bind similar proline-rich ligands but are differentially recognized by SH2 domain-containing proteins.

    Directory of Open Access Journals (Sweden)

    Olga Novokhatska

    Full Text Available BACKGROUND: Scaffolding proteins of the intersectin (ITSN family, ITSN1 and ITSN2, are crucial for the initiation stage of clathrin-mediated endocytosis. These proteins are closely related but have implications in distinct pathologies. To determine how these proteins could be separated in certain cell pathways we performed a comparative study of ITSNs. METHODOLOGY/PRINCIPAL FINDINGS: We have shown that endogenous ITSN1 and ITSN2 colocalize and form a complex in cells. A structural comparison of five SH3 domains, which mediated most ITSNs protein-protein interactions, demonstrated a similarity of their ligand-binding sites. We showed that the SH3 domains of ITSN2 bound well-established interactors of ITSN1 as well as newly identified ITSNs protein partners. A search for a novel interacting interface revealed multiple tyrosines that could be phosphorylated in ITSN2. Phosphorylation of ITSN2 isoforms but not ITSN1 short isoform was observed in various cell lines. EGF stimulation of HeLa cells enhanced tyrosine phosphorylation of ITSN2 isoforms and enabled their recognition by the SH2 domains of the Fyn, Fgr and Abl1 kinases, the regulatory subunit of PI3K, the adaptor proteins Grb2 and Crk, and phospholipase C gamma. The SH2 domains mentioned were unable to bind ITSN1 short isoform. CONCLUSIONS/SIGNIFICANCE: Our results indicate that during evolution of vertebrates ITSN2 acquired a novel protein-interaction interface that allows its specific recognition by the SH2 domains of signaling proteins. We propose that these data could be important to understand the functional diversity of paralogous ITSN proteins.

  15. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty.

    Science.gov (United States)

    Tian, Xiao-bin; Sun, Li; Yang, Shu-hua; Zhang, Yu-kun; Hu, Ru-yin; Fu, De-hao

    2008-04-20

    Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2 (hBMP2) gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putty on repairing bone defects. Twenty four Kunming mice were randomly divided into two groups. The nanobone putty + hBMP2 plasmid was injected into the right thigh muscle pouches of the mice (experiment side). The nanobone putty + blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1 (control side 1) or group 2 (control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty + hBMP2 plasmid; Group B, putty + blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level. The new bone

  16. Radioassays for quantitation of intact complement proteins C2 and B in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, T J; Ueda, A; Volanakis, J E

    1988-05-25

    Availability of polyclonal and monoclonal antibodies recognizing determinants on the major cleavage fragments of complement proteins C2 and B enabled development of sensitive radioassays which can be used to quantitate the intact proteins in human sera. Changes in C2 and B concentrations indicative of classical or alternative pathway activation, or both, were seen in normal serum after incubation with complement activators. The authors determined the normal range of C2 concentration to be 11-35 ..mu..g/ml in 32 healthy individuals, and that of protein B to be 74-286 ..mu..g/ml. Sera from patients with systemic lupus erythematosus (SLE), septic shock, infections, and following orthopedic surgery were then assayed. Mean protein B concentration was significantly higher in SLE sera and in the infected and post-operative sera, and the mean C2 concentration in the septic shock group was significantly lower than the mean of healthy individuals. Intact C2 was not detected in known C2-deficient individuals. These assays allow parallel quantitation of the structurally and functionally homologous proteins of the classical (C2) and alternative (B) pathways, which is of interest in patients with genetic and acquired hypocomplementemia. 22 refs.; 3 figs.

  17. Effects of SIRT1 gene knock-out via activation of SREBP2 protein-mediated PI3K/AKT signaling on osteoarthritis in mice.

    Science.gov (United States)

    Yu, Fei; Zeng, Hui; Lei, Ming; Xiao, De-Ming; Li, Wei; Yuan, Hao; Lin, Jian-Jing

    2016-10-01

    This study investigated the effects of SIRT1 gene knock-out on osteoarthritis in mice, and the possible roles of SREBP2 protein and the PI3K/AKT signaling pathway in the effects. Mice were randomly divided into a normal group and a SIRT1 gene knock-out group (6 mice in each group). In these groups, one side of the knee anterior cruciate ligament was traversed, and the ipsilateral medial meniscus was cut to establish an osteoarthritis model of knee joint. The countralateral synovial bursa was cut out, serving as controls. The knee joint specimens were then divided into four groups: SIRT1 +/+ control group (group A, n=6); SIRT1 +/+ osteoarthritis group (group B, n=6); SIRT1 -/- control group (group C, n=6); SIRT1 -/- osteoarthritis group (group D, n=6). HE staining, Masson staining, Safranin O-Fast Green staining and Van Gieson staining were used to observe the morphological changes in the articular cartilage of the knee. Immunohistochemical staining was employed to detect the expression of SIRT1, SREBP2, VEGF, AKT, HMGCR and type II collagen proteins. SA-β-gal staining was utilized to evaluate chondrocyte aging. The results showed clear knee joint cartilage destruction and degeneration in the SIRT1 -/- osteoarthritis group. The tidal line was twisted and displaced anteriorly. Type II collagen was destroyed and distributed unevenly. Compared with the SIRT1 +/+ osteoarthritis group and SIRT1 -/- control group, SIRT1 protein expression was not obviously changed in the SIRT1 -/- osteoarthritis group (P>0.05), while the expression levels of the SREBP2, VEGF and HMGCR proteins were significantly increased (Pknock-out may aggravate cartilage degeneration in osteoarthritis by activating the SREBP2 protein-mediated PI3K/AKT signalling pathway, suggesting that SIRT1 gene may play a protective role against osteoarthritis.

  18. EBV-Negative Monomorphic B-Cell Posttransplant Lymphoproliferative Disorder with Marked Morphologic Pleomorphism and Pathogenic Mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53.

    Science.gov (United States)

    Bogusz, Agata M

    2017-01-01

    Posttransplant lymphoproliferative disorders (PTLDs) are a diverse group of lymphoid or plasmacytic proliferations frequently driven by Epstein-Barr virus (EBV). EBV-negative PTLDs appear to represent a distinct entity. This report describes an unusual case of a 33-year-old woman that developed a monomorphic EBV-negative PTLD consistent with diffuse large B-cell lymphoma (DLBCL) 13 years after heart-lung transplant. Histological examination revealed marked pleomorphism of the malignant cells including nodular areas reminiscent of classical Hodgkin lymphoma (cHL) with abundant large, bizarre Hodgkin-like cells. By immunostaining, the malignant cells were immunoreactive for CD45, CD20, CD79a, PAX5, BCL6, MUM1, and p53 and negative for CD15, CD30, latent membrane protein 1 (LMP1), and EBV-encoded RNA (EBER). Flow cytometry demonstrated lambda light chain restricted CD5 and CD10 negative B-cells. Fluorescence in situ hybridization studies (FISH) were negative for cMYC , BCL2, and BCL6 rearrangements but showed deletion of TP53 and monosomy of chromosome 17. Next-generation sequencing studies (NGS) revealed numerous genetic alterations including 6 pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53 (x2) genes and 30 variants of unknown significance (VOUS) in ABL1, ASXL1, ATM, BCOR, BCORL1, BRNIP3, CDH2, CDKN2A, DNMT3A, ETV6, EZH2, FBXW7, KIT, NF1, RUNX1, SETPB1, SF1, SMC1A, STAG2, TET2, TP53, and U2AF2.

  19. EBV-Negative Monomorphic B-Cell Posttransplant Lymphoproliferative Disorder with Marked Morphologic Pleomorphism and Pathogenic Mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53

    Directory of Open Access Journals (Sweden)

    Agata M. Bogusz

    2017-01-01

    Full Text Available Posttransplant lymphoproliferative disorders (PTLDs are a diverse group of lymphoid or plasmacytic proliferations frequently driven by Epstein-Barr virus (EBV. EBV-negative PTLDs appear to represent a distinct entity. This report describes an unusual case of a 33-year-old woman that developed a monomorphic EBV-negative PTLD consistent with diffuse large B-cell lymphoma (DLBCL 13 years after heart-lung transplant. Histological examination revealed marked pleomorphism of the malignant cells including nodular areas reminiscent of classical Hodgkin lymphoma (cHL with abundant large, bizarre Hodgkin-like cells. By immunostaining, the malignant cells were immunoreactive for CD45, CD20, CD79a, PAX5, BCL6, MUM1, and p53 and negative for CD15, CD30, latent membrane protein 1 (LMP1, and EBV-encoded RNA (EBER. Flow cytometry demonstrated lambda light chain restricted CD5 and CD10 negative B-cells. Fluorescence in situ hybridization studies (FISH were negative for cMYC, BCL2, and BCL6 rearrangements but showed deletion of TP53 and monosomy of chromosome 17. Next-generation sequencing studies (NGS revealed numerous genetic alterations including 6 pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53(x2 genes and 30 variants of unknown significance (VOUS in ABL1, ASXL1, ATM, BCOR, BCORL1, BRNIP3, CDH2, CDKN2A, DNMT3A, ETV6, EZH2, FBXW7, KIT, NF1, RUNX1, SETPB1, SF1, SMC1A, STAG2, TET2, TP53, and U2AF2.

  20. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R

    2012-01-01

    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...... that the new amphiphile, "glyco-diosgenin" (GDN; see figure), confers enhanced stability to a variety of membrane proteins in solution relative to popular conventional detergents, such as dodecylmaltoside (DDM)....

  1. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  2. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation

    NARCIS (Netherlands)

    Haan, de C.A.M.; Haijema, B.J.; Schellen, P.; Wichgers Schreur, P.J.; Lintelo, te E.; Vennema, H.; Rottier, P.J.M.

    2008-01-01

    A longstanding enigmatic feature of the group 1 coronaviruses is the uncleaved phenotype of their spike protein, an exceptional property among class I fusion proteins. Here, however, we show that some group 1 coronavirus spike proteins carry a furin enzyme recognition motif and can actually be

  3. PROTEIN FRACTIONS AND IN VITRO FERMENTATION OF PROTEIN FEEDS FOR RUMINANTS

    Directory of Open Access Journals (Sweden)

    Angel L. Guevara-Mesa

    2011-05-01

    Full Text Available The objective of this study was to evaluate 20 protein feeds grouped in forages, vegetal by- products and animal by-products used for ruminant diets. Protein fractions (PF: A, non-protein nitrogen (NPN; B1, buffer-soluble protein; B2, buffer-insoluble, NDF-soluble protein; B3, NDF-insoluble, ADF-soluble protein; and C, ADF-insoluble protein, were determined for each ingredient.  Protein composition was correlated with total gas production in vitro (GP, gas production rate (S, lag time (L, DM disappearance (DMDIV and residual protein (RPIV. The completely randomised designed was analysed using mixed proc. and Tukey contrasts. Forages contained 18.29, 7.86, 66.00, 2.96, 4.89% of fractions A, B1, B2, B3 and C, respectively. Vegetable by-products contained 22.55, 4.55, 59.51, 8.84, 4.55% of each fraction, in the same order. Animal by-products contained 19.13, 4.52, 70.24, 3.74, 2.37% of each fraction, in the same order. Vetch, wheat bran and poultry litter had the greatest Vmax in each group. Vmax was correlated (P≤0.01 with total protein (r = -0.45, ADF (r = 0.27 and DMDIV (r = 0.61. In conclusion, there were differences in protein composition and kinetics of in vitro gas production among ingredients.

  4. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  5. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    International Nuclear Information System (INIS)

    Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2008-01-01

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way

  6. Biological Evaluation of Single Cell Protein

    International Nuclear Information System (INIS)

    Hasan, I.A.; Mohamed, N.E.; El-Sayed, E.A.; Younis, N.A.

    2011-01-01

    In this study, the nutritional value of single cell protein (SCP) was evaluated as a non conventional protein source produced by fermenting fungal local strains of Trichoderma longibrachiatum, Aspergillus niger, Aspergillus terreus and Penicillium funiculosum with alkali treated sugar cane bagasse. Amino acid analysis revealed that the produced SCP contains essential and non essential amino acids. Male mice were fed on normal (basal) diet which contains 18% conventional protein and served as control group. In the second (T1) and the third (T2) group, the animals were fed on a diet in which 15% and 30% of conventional protein source were replaced by SCP, respectively. At intervals of 15, 30, 45 and 60 days, mice were sacrificed and the blood samples were collected for the biochemical evaluation. The daily averages of body weight were significantly higher with group T2 than group T1. Where as, the kidney weights in groups (T1) and (T2) were significantly increased as compared with control. A non significant difference between the tested groups in the enzyme activities of AST, ALT and GSH content of liver tissue were recorded. While, cholesterol and triglycerides contents showed a significant decrease in both (T1) and (T2) groups as compared with control. The recorded values of the serum hormone (T4), ALP activities, albumin and A/G ratio did not changed by the previous treatments. Serum levels of total protein, urea, creatinine and uric acid were higher for groups (T1) and (T2) than the control group. In conclusion, partial substitution of soy bean protein in mice diet with single cell protein (15%) improved the mice growth without any adverse effects on some of the physiological functions tested

  7. Evaluation of outer dense fiber-1 and -2 protein expression in asthenozoospermic infertile men

    Directory of Open Access Journals (Sweden)

    Silvia W. Lestari

    2015-07-01

    Full Text Available Background: Most of male infertility are caused by defect in sperm motility (asthenozoospermia. The molecular mechanism of low sperm motility in asthenozoospermic patients has not been fully understood. Sperm motility is strongly related to the axoneme structure which is composed of microtubules and supported by outer dense fiber (ODF and fibrous sheath (FS protein. The objective of this study was to characterize the ODF (ODF1 and ODF2 expression in asthenozoospermic infertile male and control normozoospermic fertile male.Methods: Asthenozoospermic samples (n=18 were collected from infertile patients at Andrology Lab, Cipto Mangunkusumo Hospital Jakarta and control were taken from normozoospermic fertile donor (n=18. After motility analyses by computer-assisted sperm analysis (CASA, semen were divided into two parts, for Western blot and for immunocytochemistry analysis. Antibody against ODF1 and ODF2 protein were used in both analyses.Results: Analysis of ODF1 protein expression showed bands with molecular weight of ~30 kDa and ODF2 ~85 kDa. The mean band intensity of ODF1 and ODF2 protein were lower in the asthenozoospermic group (AG compared to normozoospermic group (NG. Moreover, both ODF proteins were less intense and less localized in the AG than NG. Sperm motility was lower in AG, compared to control NG, i.e. average path velocity (VAP = 32.07 ± 7.03 vs 37.58 ± 8.73 µm/s, p = 0.455; straight line velocity (VSL = 24.17 ± 6.90 vs 27.61 ± 4.50 µm/s, p = 0.317 and curvilinear velocity (VCL = 45.68 ± 7.91 vs 55.55 ± 16.40 µm/s, p = 0.099.Conclusion: There is down-regulation of ODF1 and ODF2 protein expression and less-compact localization in AG sperm compared to the NG. These changes might have caused disturbances in the sperm motility as observed in this study.

  8. Correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2017-04-01

    Full Text Available Objective: To study the correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion. Methods: A total of 128 patients with thyroid papillary carcinoma who received surgical treatment in the hospital between May 2013 and May 2016 were collected, CEUS was used to make clear the peak intensity (PI and area under the curve (AUC of tumor tissue and surrounding normal tissue, and the median of PI and AUC was referred to further divide the patients into high PI group and low PI group as well as high AUC group and low AUC group, 64 cases in each group. Fluorescent quantitative PCR was used to determine proliferation and invasion gene mRNA expression in tumor tissues. Results: PI and AUC levels in tumor tissue were lower than those in surrounding normal tissue; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low PI group were higher than those of high PI group, and invasion gene Ki-67 mRNA expression was higher than that of high PI group while P53 and MRP-1 mRNA expression were lower than those of high PI group; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low AUC group were higher than those of high AUC group, and invasion gene Ki-67 mRNA expression was higher than that of high AUC group while P53 and MRP-1 mRNA expression were lower than those of high AUC group. Conclusion: Thyroid papillary carcinoma CEUS parameters PI and AUC levels can quantifiably reflect the cancer cell proliferation and invasion activity.

  9. Influence of endurance training on skeletal muscle mitophagy regulatory proteins in type 2 diabetic men.

    Science.gov (United States)

    Brinkmann, Christian; Przyklenk, Axel; Metten, Alexander; Schiffer, Thorsten; Bloch, Wilhelm; Brixius, Klara; Gehlert, Sebastian

    2017-11-01

    Mitophagy is a form of autophagy for the elimination of mitochondria. Mitochondrial content and function are reduced in the skeletal muscle of patients with type 2 diabetes mellitus (T2DM). Physical training has been shown to restore mitochondrial capacity in T2DM patients, but the role of mitophagy has not been examined in this context. This study analyzes the impact of a 3-month endurance training on important skeletal muscle mitophagy regulatory proteins and oxidative phosphorylation (OXPHOS) complexes in T2DM patients. Muscle biopsies were obtained from eight overweight/obese T2DM men (61±10 years) at T1 (6 weeks pre-training), T2 (1 week pre-training), and T3 (3 to 4 days post-training). Protein contents were determined by Western blotting. The training increased mitochondrial complex II significantly (T2-T3: +29%, p = 0.037). The protein contents of mitophagy regulatory proteins (phosphorylated form of forkhead box O3A (pFOXO3A), mitochondrial E3 ubiquitin protein ligase-1 (MUL1), Bcl-2/adenovirus E1B 19-kD interacting protein-3 (BNIP3), microtubule-associated protein 1 light chain-3B (the ratio LC3B-II/LC3B-I was determined)) did not differ significantly between T1, T2, and T3. The results imply that training-induced changes in OXPHOS subunits (significant increase in complex II) are not accompanied by changes in mitophagy regulatory proteins in T2DM men. Future studies should elucidate whether acute exercise might affect mitophagic processes in T2DM patients (and whether a transient regulation of mitophagy regulatory proteins is evident) to fully clarify the role of physical activity and mitophagy for mitochondrial health in this particular patient group.

  10. Expression, tissue localization and serodiagnostic potential of Taenia multiceps acidic ribosomal protein P2.

    Science.gov (United States)

    Huang, Xing; Chen, Lin; Yang, Yingdong; Gu, Xiaobin; Wang, Yu; Lai, Weimin; Peng, Xuerong; Yang, Guangyou

    2015-12-01

    The larval stage of Taenia multiceps, also known as coenurus, is the causative agent of coenurosis, which results in severe health problems in sheep, goats, cattle and other animals that negatively impact on animal husbandry. There is no reliable method to identify coenurus infected goats in the early period of infection. We identified a full-length cDNA that encodes acidic ribosomal protein P2 from the transcriptome of T. multiceps (TmP2). Following cloning, sequencing and structural analyses were performed using bioinformatics tools. Recombinant TmP2 (rTmP2) was prokaryotically expressed and then used to test immunoreactivity and immunogenicity in immunoblotting assays. The native proteins in adult stage and coenurus were located via immunofluorescence assays, while the potential of rTmP2 for indirect ELISA-based serodiagnostics was assessed using native goat sera. In addition, 20 goats were randomly divided into a drug treatment group and a control group. Each goat was orally given mature, viable T. multiceps eggs. The drug treatment group was given 10% praziquantel by intramuscular injection 45 days post-infection (p.i), and all goats were screened for anti-TmP2 antibodies with the indirect ELISA method established here, once a week for 17 weeks p.i. The open reading frame (366 bp) of the target gene encodes a 12.62 kDa protein, which showed high homology to that from Taenia solium (93% identity) and lacked a signal peptide. Immunofluorescence staining showed that TmP2 was highly localized to the parenchymatous zone of both the adult parasite and the coenurus; besides, it was widely distributed in cystic wall of coenurus. Building on good immunogenic properties, rTmP2-based ELISA exhibited a sensitivity of 95.0% (19/20) and a specificity of 96.3% (26/27) in detecting anti-P2 antibodies in the sera of naturally infected goats and sheep. In goats experimentally infected with T. multiceps, anti-TmP2 antibody was detectable in the control group from 3 to 10 weeks

  11. Photobiomodulation on Bax and Bcl-2 Proteins and SIRT1/PGC-1α Axis mRNA Expression Levels of Aging Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2014-01-01

    Full Text Available Objective. This study aimed to analyze the effects of low level laser irradiation (LLLI on Bax and IGF-1 and Bcl-2 protein contents and SIRT1/PGC-1α axis mRNA expression levels to prevent sarcopenia in aged rats. Material and Methods. Twenty female Sprague Dawley rats (18 months old were randomly divided into two groups (n=10 per group: control (CON and LLLI groups. The gallium-aluminum-arsenium (GaAlAs laser irradiation at 810 nm was used in the single point contact mode (3.75 J/cm2; 0.4 cm2; 125 mW/cm2; 30 s. Bax, Bcl-2, and IGF-1 proteins and SIRT1/PGC-1α axis mRNA expression were assessed 24 h after LLLI on gastrocnemius in aged rat. Results. Gastrocnemius muscle weights, gastrocnemius mass/body mass, Bcl-2/BAX ratio, Bcl-2 protein, IGF-1 protein, and the mRNA contents in SIRT1, PGC-1α, NRF1, TMF, and SOD2 were significantly (P<0.05 increased by LLLI compared to CON group without LLLI. However, levels of BAX protein and caspase 3 mRNA were significantly attenuated by LLLI compared to CON group (P<0.05. Conclusion. LLLI at 810 nm inhibits sarcopenia associated with upregulation of Bcl-2/BAX ratio and IGF-1 and SIRT1/PGC-1α axis mRNA expression in aged rats. This indicates that LLLI has potential to decrease progression of myocyte apoptosis in sarcopenic muscles.

  12. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.

    Science.gov (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan

    2011-09-13

    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  13. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  14. Effect of levofloxacin, pazufloxacin, enrofloxacin, and meloxicam on the immunolocalization of ABCG-2 transporter protein in rabbit retina.

    Science.gov (United States)

    Khan, Adil Mehraj; Rampal, Satyavan; Sood, Naresh Kumar

    2018-03-01

    Adenosine triphosphate-binding cassette (ABC) sub-family G member-2 (ABCG-2) is a transporter protein, implicated for multi-drug efflux from tissues. This study evaluated the effect of fluoroquinolones; levofloxacin, pazufloxacin and enrofloxacin, and non-steroidal anti-inflammatory drug, meloxicam; on the immunolocalization of ABCG-2 transporter protein of rabbit retinas. Thirty-two male rabbits were randomly divided in to eight groups. Control group was gavaged, 2% benzyl alcohol in 5% dextrose since these chemicals are excipients of the drug preparations used in the treatment groups of this study. Four groups were exclusively gavaged, levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), pazufloxacin mesylate (10 mg/kg body weight b.i.d 12 h), enrofloxacin (20 mg/kg body weight o.d.), and meloxicam (0.2 mg/kg body weight o.d.), respectively. Three other groups were co-gavaged meloxicam with above fluoroquinolones, respectively. These drugs were administered for 21 days. ABCG-2 immunolocalization was mild in the retinas of control and levofloxacin-alone-treated groups. The immunolocalization intensity was significantly higher in meloxicam-alone-treated group when compared to control and levofloxacin-alone-treated groups. Immunolocalization of this transporter increased in the levofloxacin-meloxicam co-treated group when compared to the levofloxacin-alone-treated group. Highest immunolocalization was observed in the enrofloxacin-meloxicam co-treated group although the immunolocalization of all treatment groups, except the levofloxacin-alone-treated group, was significantly higher than the control and levofloxacin-alone-treated groups.

  15. Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1.

    Science.gov (United States)

    Hussain, Shobbir; Witt, Emily; Huber, Pia A J; Medhurst, Annette L; Ashworth, Alan; Mathew, Christopher G

    2003-10-01

    Fanconi anaemia (FA) is an autosomal recessive genetic disorder characterized by progressive bone marrow failure, multiple congenital abnormalities, and an increased risk of cancer. FA cells are characterized by chromosomal instability and hypersensitivity to DNA interstrand crosslinking agents. At least eight complementation groups exist (FA-A to G), and the genes for all of these except FA-B have been cloned. Functional linkage between the FA pathway and genes involved in susceptibility to breast cancer has been demonstrated by the interaction of the FANCA and FANCD2 proteins with BRCA1, and the discovery that the FANCD1 gene is identical to BRCA2. Here we have used the yeast two-hybrid system to test for direct interaction between BRCA2 or its effector RAD51 and the FANCA, FANCC and FANCG proteins. We found that FANCG was capable of binding to two separate sites in the BRCA2 protein, located either side of the BRC repeats. Furthermore, FANCG could be co-immunoprecipitated with BRCA2 from human cells, and FANCG co-localized in nuclear foci with both BRCA2 and RAD51 following DNA damage with mitomycin C. These results demonstrate that BRCA2 is directly connected to a pathway that is deficient in interstrand crosslink repair, and that at least one other FA protein is closely associated with the homologous recombination DNA repair machinery.

  16. Effects of simulated weightlessness on the kinase activity of MEK1 induced by bone morphogenetic protein-2 in rat osteosarcoma cells

    Science.gov (United States)

    Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.

    Objective The mRNA expression of alpha 1 chain of type I collagen COL-I alpha 1 in rat osteosarcoma ROS17 2 8 cells induced by bone morphogenetic protein-2 BMP-2 was reduced under simulated microgravity The protein kinase MEK1 of MAPK signal pathway plays an important role in the expression of COL-I alpha 1 mRNA The purpose of this study is to investigate the effects of simulated weightlessness on the activity of MEK1 induced by BMP-2 in ROS17 2 8 cells Methods ROS17 2 8 cells were cultured in 1G control and rotating clinostat simulated weightlessness for 24 h 48 h and 72 h BMP-2 500 ng ml was added into the medium 1 h before the culture ended There was a control group in which ROS17 2 8 cells were cultured in 1G condition without BMP-2 Then the total protein of cells was extracted and the expression of phosphated-ERK1 2 p-ERK1 2 protein was detected by means of Western Blotting to show the kinase activity of MEK1 Results There were no significant differences in the expression of total ERK1 2 among all groups The expression of p-ERK1 2 was unconspicuous in the control group without BMP-2 but increased significantly when BMP-2 was added P 0 01 The level of p-ERK1 2 in simulated weightlessness group was much more lower than that in 1G group in every time point P 0 01 The expression of p-ERK1 2 gradually decreased along with the time of weightlessness simulation P 0 01 Conclusions The kinase activity of MEK1 induced by BMP-2 in rat osteosarcoma cells was reduced under simulated weightlessness

  17. Comparative proteomics analysis of proteins expressed in the I-1 and I-2 internodes of strawberry stolons

    Directory of Open Access Journals (Sweden)

    Lai Wenguo

    2011-05-01

    Full Text Available Abstract Background Strawberries (Fragaria ananassa reproduce asexually through stolons, which have strong tendencies to form adventitious roots at their second node. Understanding how the development of the proximal (I-1 and distal (I-2 internodes of stolons differ should facilitate nursery cultivation of strawberries. Results Herein, we compared the proteomic profiles of the strawberry stolon I-1 and I-2 internodes. Proteins extracted from the internodes were separated by two-dimensional gel electrophoresis, and 164 I-1 protein spots and 200 I-2 protein spots were examined further. Using mass spectrometry and database searches, 38 I-1 and 52 I-2 proteins were identified and categorized (8 and 10 groups, respectively according to their cellular compartmentalization and functionality. Many of the identified proteins are enzymes necessary for carbohydrate metabolism and photosynthesis. Furthermore, identification of proteins that interact revealed that many of the I-2 proteins form a dynamic network during development. Finally, given our results, we present a mechanistic scheme for adventitious root formation of new clonal plants at the second node. Conclusions Comparative proteomic analysis of I-1 and I-2 proteins revealed that the ubiquitin-proteasome pathway and sugar-hormone pathways might be important during adventitious root formation at the second node of new clonal plants.

  18. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    Science.gov (United States)

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  20. Production of low-affinity penicillin-binding protein by low- and high-resistance groups of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Murakami, K; Nomura, K; Doi, M; Yoshida, T

    1987-01-01

    Methicillin- and cephem-resistant Staphylococcus aureus (137 strains) for which the cefazolin MICs are at least 25 micrograms/ml could be classified into low-resistance (83% of strains) and high-resistance (the remaining 17%) groups by the MIC of flomoxef (6315-S), a 1-oxacephalosporin. The MICs were less than 6.3 micrograms/ml and more than 12.5 micrograms/ml in the low- and high-resistance groups, respectively. All strains produced penicillin-binding protein 2' (PBP 2'), which has been associated with methicillin resistance and which has very low affinity for beta-lactam antibiotics. Production of PBP 2' was regulated differently in low- and high-resistance strains. With penicillinase-producing strains of the low-resistance group, cefazolin, cefamandole, and cefmetazole induced PBP 2' production about 5-fold, while flomoxef induced production 2.4-fold or less. In contrast, penicillinase-negative variants of low-resistance strains produced PBP 2' constitutively in large amounts and induction did not occur. With high-resistance strains, flomoxef induced PBP 2' to an extent similar to that of cefazolin in both penicillinase-producing and -negative strains, except for one strain in which the induction did not occur. The amount of PBP 2' induced by beta-lactam antibiotics in penicillinase-producing strains of the low-resistance group correlated well with resistance to each antibiotic. Large amounts of PBP 2' in penicillinase-negative variants of the low-resistance group did not raise the MICs of beta-lactam compounds, although these strains were more resistant when challenged with flomoxef for 2 h. Different regulation of PBP 2' production was demonstrated in the high- and low-resistance groups, and factor(s) other than PBP 2' were suggested to be involved in the methicillin resistance of high-resistance strains. Images PMID:3499861

  1. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA

    DEFF Research Database (Denmark)

    Reddy, Madhava C; Christensen, Jesper; Vasquez, Karen M

    2005-01-01

    -DNA interstrand cross-link (ICL) to a specific site to determine the effect of HMGB proteins on recognition of these lesions. Our results reveal that human HMGB1 (but not HMGB2) binds with high affinity and specificity to psoralen ICLs, and interacts with the essential NER protein, replication protein A (RPA......), at these lesions. RPA, shown previously to bind tightly to these lesions, also binds in the presence of HMGB1, without displacing HMGB1. A discrete ternary complex is formed, containing HMGB1, RPA, and psoralen-damaged DNA. Thus, HMGB1 has the ability to recognize ICLs, can cooperate with RPA in doing so...

  2. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Emilio I.; Bueno-Alejo, Carlos J.; Noel, Christopher W.; Stamplecoskie, Kevin G. [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada); Pacioni, Natalia L. [Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, INFIQC, Departamento de Quimica Organica (Argentina); Poblete, Horacio [Center for Bioinformatics and Molecular Simulations, Universidad de Talca (Chile); Scaiano, J. C., E-mail: tito@photo.chem.uottawa.ca [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada)

    2013-01-15

    Thermally denatured human serum albumin interacts with {approx}3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH{sub 2} blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank's buffer, Tris-HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag{sup +} ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH{sub 2} in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH{sub 2} blocking, leading primarily to cubes and plates with sizes around 5-15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA-AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

  3. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

    International Nuclear Information System (INIS)

    Alarcon, Emilio I.; Bueno-Alejo, Carlos J.; Noel, Christopher W.; Stamplecoskie, Kevin G.; Pacioni, Natalia L.; Poblete, Horacio; Scaiano, J. C.

    2013-01-01

    Thermally denatured human serum albumin interacts with ∼3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH 2 blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank’s buffer, Tris–HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag + ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH 2 in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH 2 blocking, leading primarily to cubes and plates with sizes around 5–15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA-AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

  4. Permutation 2-groups I: structure and splitness

    OpenAIRE

    Elgueta, Josep

    2013-01-01

    By a 2-group we mean a groupoid equipped with a weakened group structure. It is called split when it is equivalent to the semidirect product of a discrete 2-group and a one-object 2-group. By a permutation 2-group we mean the 2-group $\\mathbb{S}ym(\\mathcal{G})$ of self-equivalences of a groupoid $\\mathcal{G}$ and natural isomorphisms between them, with the product given by composition of self-equivalences. These generalize the symmetric groups $\\mathsf{S}_n$, $n\\geq 1$, obtained when $\\mathca...

  5. Cloning, purification and preliminary crystallographic studies of the 2AB protein from hepatitis A virus

    International Nuclear Information System (INIS)

    Garriga, Damià; Vives-Adrián, Laia; Buxaderas, Mònica; Ferreira-da-Silva, Frederico; Almeida, Bruno; Macedo-Ribeiro, Sandra; Pereira, Pedro José Barbosa; Verdaguer, Núria

    2011-01-01

    The 2AB protein derived from the nonstructural P2 region of hepatitis A virus has been cloned, purified and crystallized. The preliminary characterization of native and selenomethionine-derivative crystals is reported. The Picornaviridae family contains a large number of human pathogens such as rhinovirus, poliovirus and hepatitis A virus (HAV). Hepatitis A is an infectious disease that causes liver inflammation. It is highly endemic in developing countries with poor sanitation, where infections often occur in children. As in other picornaviruses, the genome of HAV contains one open reading frame encoding a single polyprotein that is subsequently processed by viral proteinases to originate mature viral proteins during and after the translation process. In the polyprotein, the N-terminal P1 region generates the four capsid proteins, while the C-terminal P2 and P3 regions contain the enzymes, precursors and accessory proteins essential for polyprotein processing and virus replication. Here, the first crystals of protein 2AB of HAV are reported. The crystals belonged to space group P4 1 or P4 3 , with unit-cell parameters a = b = 90.42, c = 73.43 Å, and contained two molecules in the asymmetric unit. Native and selenomethionine-derivative crystals diffracted to 2.7 and 3.2 Å resolution, respectively

  6. Chinese mitten crab (Eriocheir sinensis) iron-sulphur cluster assembly protein 2 (EsIscA2) is differentially regulated after immune and oxidative stress challenges.

    Science.gov (United States)

    Zhang, Peng; Liu, Yu; Wang, Min; Dong, Miren; Liu, Zhaoqun; Jia, Zhihao; Wang, Weilin; Zhang, Anguo; Wang, Lingling; Song, Linsheng

    2018-07-01

    Iron-sulphur clusters (ISCs), one of the oldest and most versatile cofactors of proteins, are involved in catalysis reactions, electron transport reactions, regulation processes as well as sensing of ambient conditions. Iron-sulphur cluster assembly protein (IscA) is a scaffold protein member of ISC formation system, which plays a significant role in the assembly and maturation process of ISC proteins. In the present study, the cDNA sequence of iron-sulphur cluster assembly protein 2 (designated as EsIscA2) was cloned from Eriocheir sinensis. The open reading frame (ORF) of EsIscA2 was of 507 bp, encoding a peptide of 168 amino acids with a typically conserved Fe-S domain. A tetrameric form was predicated by the SWISS-MODEL prediction algorithm, and three conserved cysteine residues (Cys-93, Cys-158, Cys-160) from each IscA monomer were predicted to form a 'cysteine pocket'. The deduced amino acid sequence of EsIscA2 shared over 50% similarity with that of other IscAs. EsIscA2 was clustered with IscA2 proteins from invertebrates and vertebrates, indicating that the protein was highly conservative in the evolution. rEsIscA2 exhibited a high iron binding affinity in the concentration ranging from 2 to 200 μM. EsIscA2 transcripts were detected in all the tested tissues including gonad, hemocytes, gill, muscle, heart, hepatopancreas and eyestalk, and EsIscA2 protein was detected in the mitochondria of hemocytes. The highest mRNA expression level of EsIscA2 was detected in muscle and hepatopancreas, which was about 34.66-fold (p < 0.05) and 27.07-fold (p < 0.05) of that in hemocytes, respectively. After Aeromonas hydrophila and lipopolysaccharide (LPS) stimulations, the mRNA expression of EsIscA2 in hemocytes was down-regulated and reached the lowest level at 24 h (0.31-fold, p < 0.05) and 48 h (0.29-fold, p < 0.05) compared to control group, respectively. And the expression of EsIscA2 mRNA in hepatopancreas was repressed from 6 h to 48 h post

  7. Reduction of disulfide bonds in peptides and proteins. Reduction des groupes disulfure dans les peptides et proteines

    Energy Technology Data Exchange (ETDEWEB)

    Conte, D [Institut Curie, 75 - Paris (France); Houee-Levin, C [Paris-5 Univ., 75 (France)

    1993-04-01

    We have re-examined the mechanism of disulfide bond reduction in oxidized glutathione by C0[sub 2][sup .-] free radicals. The process appears to be a chain reaction whose initial yield depends on pH and on both peptide and formate ion concentrations, but remains independent on the radiation dose rate. Kinetic schemes drawn from studies on dithiothreitol are unable to account for the results obtained with glutathione and proteins, although the disulfide radical anion is the primary intermediate found with all compounds. The rate constant for its formation from C0[sub 2][sup .-] and glutathione is in the same range as those found using proteins, while decay pathways are somewhat different. Hypotheses are proposed to account for these differences. 6 figs., 2 tabs.

  8. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics

    Directory of Open Access Journals (Sweden)

    Yuping Ren

    2017-12-01

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF and mitochondrial antiviral-signaling (MAVS proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s. Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s. This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.

  9. Carvacrol attenuates serum levels of total protein, phospholipase A2 and histamine in asthmatic guinea pig

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Boskabady

    2016-11-01

    Full Text Available Objective: Pharmacological effects of carvacrol such as its anti-inflammatory activities have been shows. In this study the effects of carvacrol on serum levels of total protein (TP, phospholipase A2 (PLA2 and histamine in sensitized guinea pigs was evaluated. Materials and Methods: Sensitized guinea pigs were given drinking water alone (group S, drinking water containing three concentrations of carvacrol (40, 80 and 160 µg/ml or dexamethasone. Serum levels of TP, PLA2 and histamine were examined I all sensitized groups as well as a non-sensitized control group (n=6 for each group. Results: In sensitized animals, serum levels of TP, PLA2 and histamine were significantly increased compared to control animals (p

  10. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure...

  11. Levels of protein hydroperoxides and carbonyl groups in guinea pigs native of high altitudes (Huancavelica, 3660 m)

    OpenAIRE

    Huayta, Roxana; Zúñiga, Haydée; Esquerre, Cynthia; Hernández, Luz; Carranza, Elizabeth

    2014-01-01

    The influence of hypobaric hypoxia on protein oxidation in lungs, heart, liver, kidneys and testicles of high altitude native guinea pigs (Huancavelica, 3660 m) in comparison to sea level (Lima, 150 m) native guinea pigs was evaluated. The concentration of protein hydroperoxides (POOH) and carbonyl groups (GC) as markers of protein oxidation, as well as total thiols (TT) concentration, powerful reducing agents that act as live antioxidants were determined. The results showed low concentration...

  12. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation.

    Science.gov (United States)

    Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko

    2017-08-01

    The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  13. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  14. Local Backbone Flexibility as a Determinant of the Apparent pKa Values of Buried Ionizable Groups in Proteins.

    Science.gov (United States)

    Peck, Meredith T; Ortega, Gabriel; De Luca-Johnson, Javier N; Schlessman, Jamie L; Robinson, Aaron C; García-Moreno E, Bertrand

    2017-10-10

    Ionizable groups buried in the hydrophobic interior of proteins are essential for energy transduction. These groups can have highly anomalous pK a values that reflect the incompatibility between charges and dehydrated environments. A systematic study of pK a values of buried ionizable groups in staphylococcal nuclease (SNase) suggests that these pK a values are determined in part by conformational reorganization of the protein. Lys-66 is one of the most deeply buried residues in SNase. We show that its apparent pK a of 5.7 reflects the average of the pK a values of Lys-66 in different conformational states of the protein. In the fully folded state, Lys-66 is deeply buried in the hydrophobic core of SNase and must titrate with a pK a of ≪5.7. In other states, the side chain of Lys-66 is fully solvent-exposed and has a normal pK a of ≈10.4. We show that the pK a of Lys-66 can be shifted from 5.7 toward a more normal value of 7.1 via the insertion of flanking Gly residues at positions 64 and 67 to promote an "open" conformation of SNase. Crystal structures and nuclear magnetic resonance spectroscopy show that in these Gly-containing variants Lys-66 can access bulk water as a consequence of overwinding of the C-terminal end of helix 1. These data illustrate that the apparent pK a values of buried groups in proteins are governed in part by the difference in free energy between different conformational states of the protein and by differences in the pK a values of the buried groups in the different conformations.

  15. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice.

    Directory of Open Access Journals (Sweden)

    Xianbo Liu

    Full Text Available Polycomb group (PcG proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2 protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice.

  16. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  17. [Changing laws of serum high mobility group box 1 protein in septic rats and the intervention effect of xuebijing].

    Science.gov (United States)

    Zhao, Shi-bing; He, Xian-di; Wang, Hua-xue; Zheng, Sheng-yong; Deng, Xi-ming; Duan, Li-bin

    2014-06-01

    To investigate the changing laws of serum high mobility group box 1 protein (HMGB1) in septic rats and intervention effect of Xuebijing on it. Lipopolysaccharide (LPS) (5 mg/kg BW) was intravenously injected into the tail vein of healthy male Wistar rats to prepare the sepsis rat model. In Experiment 1: 50 Wistar rats were randomly divided into three groups, i.e., the normal group (A, n=10); the LPS model group (B, n=10), the LPS +Xuebijing treatment group (C, n=30). Rats in the C group were further divided into three subgroups, i.e., 2 h before LPS injection (group C1), 2 h after LPS injection (group C2), and 8 h after LPS injection (group C3), 10 in each group. Blood samples were collected from the caudal vein to detect serum HMGB1 levels by Western blot at 4, 12, 24, 48, and 72 h after LPS injection. Experiment 2: 30 Wistar rats were equally divided into the LPS model group (D) and the LPS + Xuebijing treatment group (E), 15 in each group. They were treated as rats in the B group and the C1 group respectively. Five rats were sacrificed at 12, 24, and 48 h after LPS injection in the two groups. Blood as well as the tissue samples were harvested to measure such indices as ALT, AST, Cr, and BUN, as well as pathological changes of liver, lung, and kidney. (1) Compared with the A group, serum HMGB1 levels were higher at various time points in the B group (P decrement in the C3 group was less than that in the C1 and C2 groups (P multiple organ dysfunction. Xuebijing could reduce the serum levels of HMGB1, improve biochemical parameters, and attenuate severe inflammatory response of liver, lung, and kidney tissues in septic rats. Besides, the earlier use, the better effect obtained.

  18. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  19. The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking.

    Directory of Open Access Journals (Sweden)

    Ruxandra Bachmann-Gagescu

    2015-10-01

    Full Text Available Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary

  20. Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2$

    Directory of Open Access Journals (Sweden)

    Ayoub Basheer Mohammed Basheer

    2012-12-01

    Full Text Available In cite{Demp2} Dempwolff proved the existence of a group of theform $2^{5}{^{cdot}}GL(5,2$ (a non split extension of theelementary abelian group $2^{5}$ by the general linear group$GL(5,2$. This group is the second largest maximal subgroup of thesporadic Thompson simple group $mathrm{Th}.$ In this paper wecalculate the Fischer matrices of Dempwolff group $overline{G} =2^{5}{^{cdot}}GL(5,2.$ The theory of projective characters isinvolved and we have computed the Schur multiplier together with aprojective character table of an inertia factor group. The fullcharacter table of $overline{G}$ is then can be calculated easily.

  1. [Distribution of Pathogenic Bacteria and Its Influence on Expression of BCL-2 and BAX Protein after HSCT in the Patients with Hematological Malignancies].

    Science.gov (United States)

    Su, Gui-Ping; Dai, Yan; Huang, Lai-Quan; Jiang, Yi-Zhi; Geng, Liang-Quan; Ding, Kai-Yang; Huang, Dong-Ping

    2016-06-01

    To investigate the distribution of pathogenic bacteria in the patients with hematologic malignancies received hematopoietic stem cell transplantation (HSCT) and its influence on the expression of BCL-2 and BAX proteins. The clinical data of 64 patients with malignant lymphoma (ML) received auto-HSCT from January 2011 to December 2015 in our hospital were analyzed. On basis of post-treansplant infection, the patients were divided into infection group (36 cases) and non-infection group (28 cases). The distribution of pathogenic bacteria in 2 groups was identified, the T lymphocyte subsets of peripheral blood, expression level of apoptotic proteins and C-reaction protein (CRP) in 2 group were detected. Thirty-six strains of pathogenic bacteria were isolated from 36 case of hematological malignancy after HSCT, including 24 strains of Gram-negative bacteria (66.67%) with predominamce of klebsiella pneumoniae (19.44%). The periperal blood CD4+ (t=2.637, Ppathogenic bacteria infecting ML patients after HSCT were mainly Gram-negative bacteria. The post-transplant infection can promote the expression up-regulation of related inflammatory factors and apoptotic proteins. The pathogens may be involved in cell apoptisis that provides a new strategy to treat the hematologic malignancies.

  2. Evolution of high mobility group nucleosome-binding proteins and its implications for vertebrate chromatin specialization.

    Science.gov (United States)

    González-Romero, Rodrigo; Eirín-López, José M; Ausió, Juan

    2015-01-01

    High mobility group (HMG)-N proteins are a family of small nonhistone proteins that bind to nucleosomes (N). Despite the amount of information available on their structure and function, there is an almost complete lack of information on the molecular evolutionary mechanisms leading to their exclusive differentiation. In the present work, we provide evidence suggesting that HMGN lineages constitute independent monophyletic groups derived from a common ancestor prior to the diversification of vertebrates. Based on observations of the functional diversification across vertebrate HMGN proteins and on the extensive silent nucleotide divergence, our results suggest that the long-term evolution of HMGNs occurs under strong purifying selection, resulting from the lineage-specific functional constraints of their different protein domains. Selection analyses on independent lineages suggest that their functional specialization was mediated by bursts of adaptive selection at specific evolutionary times, in a small subset of codons with functional relevance-most notably in HMGN1, and in the rapidly evolving HMGN5. This work provides useful information to our understanding of the specialization imparted on chromatin metabolism by HMGNs, especially on the evolutionary mechanisms underlying their functional differentiation in vertebrates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana.

    Science.gov (United States)

    Bythell-Douglas, Rohan; Waters, Mark T; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Bond, Charles S

    2013-01-01

    KARRIKIN INSENSITIVE 2 (KAI2) is an α/β hydrolase involved in seed germination and seedling development. It is essential for plant responses to karrikins, a class of butenolide compounds derived from burnt plant material that are structurally similar to strigolactone plant hormones. The mechanistic basis for the function of KAI2 in plant development remains unclear. We have determined the crystal structure of Arabidopsis thaliana KAI2 in space groups P2(1) 2(1) 2(1) (a =63.57 Å, b =66.26 Å, c =78.25 Å) and P2(1) (a =50.20 Å, b =56.04 Å, c =52.43 Å, β =116.12°) to 1.55 and 2.11 Å respectively. The catalytic residues are positioned within a large hydrophobic pocket similar to that of DAD2, a protein required for strigolactone response in Petunia hybrida. KAI2 possesses a second solvent-accessible pocket, adjacent to the active site cavity, which offers the possibility of allosteric regulation. The structure of KAI2 is consistent with its designation as a serine hydrolase, as well as previous data implicating the protein in karrikin and strigolactone signalling.

  4. The structure of the karrikin-insensitive protein (KAI2 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rohan Bythell-Douglas

    Full Text Available KARRIKIN INSENSITIVE 2 (KAI2 is an α/β hydrolase involved in seed germination and seedling development. It is essential for plant responses to karrikins, a class of butenolide compounds derived from burnt plant material that are structurally similar to strigolactone plant hormones. The mechanistic basis for the function of KAI2 in plant development remains unclear. We have determined the crystal structure of Arabidopsis thaliana KAI2 in space groups P2(1 2(1 2(1 (a =63.57 Å, b =66.26 Å, c =78.25 Å and P2(1 (a =50.20 Å, b =56.04 Å, c =52.43 Å, β =116.12° to 1.55 and 2.11 Å respectively. The catalytic residues are positioned within a large hydrophobic pocket similar to that of DAD2, a protein required for strigolactone response in Petunia hybrida. KAI2 possesses a second solvent-accessible pocket, adjacent to the active site cavity, which offers the possibility of allosteric regulation. The structure of KAI2 is consistent with its designation as a serine hydrolase, as well as previous data implicating the protein in karrikin and strigolactone signalling.

  5. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state

  6. Epigenetic regulation of HIV-1 latency: focus on polycomb group (PcG) proteins.

    Science.gov (United States)

    Khan, Sheraz; Iqbal, Mazhar; Tariq, Muhammad; Baig, Shahid M; Abbas, Wasim

    2018-01-01

    HIV-1 latency allows the virus to persist until reactivation, in a transcriptionally silent form in its cellular reservoirs despite the presence of effective cART. Such viral persistence represents a major barrier to HIV eradication since treatment interruption leads to rebound plasma viremia. Polycomb group (PcG) proteins have recently got a considerable attention in regulating HIV-1 post-integration latency as they are involved in the repression of proviral gene expression through the methylation of histones. This epigenetic regulation plays an important role in the establishment and maintenance of HIV-1 latency. In fact, PcG proteins act in complexes and modulate the epigenetic signatures of integrated HIV-1 promoter. Key role played by PcG proteins in the molecular control of HIV-1 latency has led to hypothesize that PcG proteins may represent a valuable target for future HIV-1 therapy in purging HIV-1 reservoirs. In this regard, various small molecules have been synthesized or explored to specifically block the epigenetic activity of PcG. In this review, we will highlight the possible therapeutic approaches to achieve either a functional or sterilizing cure of HIV-1 infection with special focus on histone methylation by PcG proteins together with current and novel pharmacological approaches to reactivate HIV-1 from latency that could ultimately lead towards a better clearance of viral latent reservoirs.

  7. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  8. The influence of protein on the change in taurine concentration and on the SH-groups in the trhombocytes of irradiated rats

    International Nuclear Information System (INIS)

    Bezkrovnaya, L.A.; Polozhij, E.A.; Dokshina, G.A.

    1980-01-01

    The role of proteins in the increase of taurine content and of SH-groups in thrombocytes of irradiated rats were studied. Actinomycin D, an inhibitor of the protein synthesis de novo, decreased the protein level and the protein thiols by 25% and caused a 15fold increase of the taurine content in the cells after irradiation. An analysis of protein fractions in the thrombocytes of control and irradiated animals emphasizes that the increased protein content is essentially due to an increased adsorption. Washing of the cells with trypsine and physiological saline decreased the content of protein, protein SH-groups and taurine in the cells of control animals to 1/3, in the irradiated animals to 1/10. This points to a loose binding of the adsorbed protein to the outer membrane of the thrombocytes. From that a correlation of the changes of the investigated criteria in the terminal period of radiation sickness is concluded. (author)

  9. Methodical investigation of the protein metabolism and of the bioenergetics of protein retention in growing animals. 1

    International Nuclear Information System (INIS)

    Schiemann, R.; Bock, H.D.; Keller, J.; Hoffmann, L.; Krawielitzki, K.; Klein, M.

    1983-01-01

    The influence of different protein levels in the feed (group R1 20%, R2 38% crude protein) and of different energy levels (group J1 low, J2 high energy level) on the composition of the carcass and the apparent half-life periods of the body proteins were determined in 4 groups of 15 male broiler chickens labelled with 15 NH 4 acetate. In all slaughtering phases the higher protein level resulted in a higher weight of the feathers, breast and leg muscles, higher amounts of N in all parts of the body and a higher percentage of feathers, breast and leg muscles of the total carcass than the lower protein level. Between 13 and 19% of the N in the carcass contributed to the feathers, 24-31% to the breast and leg muscles and 50-63% to the rest of the carcass. The relative quotas of the sum of breast and leg muscles in the carcass were higher for the low energy level than for the high energy level. There were no remarkable differences as to the protein content of the muscles in dependence on the energy level, the quota of sarcoplasmatic proteins, however, was higher on the high level in contrast to the low energy level, that of the myofibrillar proteins was lower. The apparent half-life period of the total body protein after normal protein supply was 22 days (group R1) and 14 after high protein supply. The energy levels in groups J1 and J2 had no significant influence on the half-life period of the total body protein. In the body fractions examined the apparent half-life periods were highest in the breast muscle and lowest in the rest of the carcass. The protein stored in the feathers did not undergo decomposition. The protein fractions 'sarcoplasmatic protein' and 'myofibrillar protein' of breast and leg muscle neither differed from one another nor from the respective total muscle fractions as regards their half-life period. (author)

  10. Expression and Production of SH2 Domain Proteins.

    Science.gov (United States)

    Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

  11. Protein: FBA2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA2 19S regulatory particles(RP) Rpn11 yip5 26S proteasome non-ATPase regulatory subunit 14 26S pr...oteasome regulatory complex subunit p37B, 26S proteasome regulatory subunit rpn11, Yippee-interacting protein 5 7227 Drosophila melanogaster Q9V3H2 Q9V3H2 19075009 ...

  12. Urea utilization in protein deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N [Hyogo College of Medicine, Nishinomiya, Hyogo (Japan)

    1982-06-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The /sup 15/N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of /sup 15/N-urea (10 mg/100gB.W.) and higher level of /sup 15/N concentration in plasma protein in LPD group was maintained thereafter. The /sup 15/N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The /sup 15/N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of /sup 15/N-urea (10mg/100gB.W.). However, the /sup 15/N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis.

  13. Urea utilization in protein deficient rats

    International Nuclear Information System (INIS)

    Tanaka, Noriko

    1982-01-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The 15 N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of 15 N-urea (10 mg/100gB.W.) and higher level of 15 N concentration in plasma protein in LPD group was maintained thereafter. The 15 N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The 15 N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of 15 N-urea (10mg/100gB.W.). However, the 15 N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis. (J.P.N.)

  14. [Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone].

    Science.gov (United States)

    Luo, Ya-ping; Ma, Hui-Rong; Chen, Jing-Wei; Li, Jing-Jing; Li, Chun-xiang

    2014-05-01

    To observe the effect of American Ginseng Capsule (AGC) on the liver oxidative injury and the Nrf2 protein expression in the liver tissue of rats exposed by 900 MHz cell phone electromagnetic radiation. Totally 40 male SD rats were randomly divided into the normal control group, the model group, the Shuifei Jibin Capsule (SJC) group, and the AGC group,10 in each group. Rats in the normal control group were not irradiated. Rats in the rest three groups were exposed by imitated 900 MHz cellular phone for 4 h in 12 consecutive days. Meanwhile, rats in the SJC group and the AGC group were intragastrically administrated with suspension of SJC and AGC (1 mL/200 g body weight) respectively. Normal saline was administered to rats in the normal control group and the model group. The histolomorphological changes of the liver tissue were observed by HE staining. Contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX)were detected by colorimetry. The Nrf2 protein expression of hepatocytes was detected by immunohistochemical assay and Western blot. Compared with the normal control group, hepatocyte nucleus was atrophied or partially disappeared, the contents of liver MDA and Nrf2 protein obviously increased (P electromagnetic radiation induced by 900 MHz cell phone could affect the expression of Nrf2 protein, induce oxidative injury, and induce abnormal morphology of liver cells. SJC and AGC could promote the morphological recovery of the liver cells. Its mechanism might be related to affecting the expression of Nrf2 protein and attenuating oxidative damage of liver cells.

  15. Programmed cell death 4 protein (Pdcd4) and homeodomain-interacting protein kinase 2 (Hipk2) antagonistically control translation of Hipk2 mRNA.

    Science.gov (United States)

    Ohnheiser, Johanna; Ferlemann, Eva; Haas, Astrid; Müller, Jan P; Werwein, Eugen; Fehler, Olesja; Biyanee, Abhiruchi; Klempnauer, Karl-Heinz

    2015-07-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Fusion protein based on Grb2-SH2 domain for cancer therapy

    International Nuclear Information System (INIS)

    Saito, Yuriko; Furukawa, Takako; Arano, Yasushi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2010-01-01

    Research highlights: → Grb2 mediates EGFR signaling through binding to phosphorylate EGFR with SH2 domain. → We generated fusion proteins containing 1 or 2 SH2 domains of Grb2 added with TAT. → The one with 2 SH2 domains (TSSF) interfered ERK phosphorylation. → TSSF significantly delayed the growth of EGFR overexpressing tumor in a mouse model. -- Abstract: Epidermal growth factor receptor (EGFR) is one of the very attractive targets for cancer therapy. In this study, we generated fusion proteins containing one or two Src-homology 2 (SH2) domains of growth factor receptor bound protein 2 (Grb2), which bind to phosphorylated EGFR, added with HIV-1 transactivating transcription for cell membrane penetration (termed TSF and TSSF, respectively). We examined if they can interfere Grb2-mediated signaling pathway and suppress tumor growth as expected from the lack of SH3 domain, which is necessary to intermediate EGFR-Grb2 cell signaling, in the fusion proteins. The transduction efficiency of TSSF was similar to that of TSF, but the binding activity of TSSF to EGFR was higher than that of TSF. Treatment of EGFR-overexpressing cells showed that TSSF decreased p42-ERK phosphorylation, while TSF did not. Both the proteins delayed cell growth but did not induce cell death in culture. TSSF also significantly suppressed tumor growth in vivo under consecutive administration. In conclusion, TSSF showed an ability to inhibit EGFR-Grb2 signaling and could have a potential to treat EGFR-activated cancer.

  17. Evaluation of recombinant porin (rOmp2a) protein as a potential antigen candidate for serodiagnosis of Human Brucellosis.

    Science.gov (United States)

    Pathak, Prachi; Kumar, Ashu; Thavaselvam, Duraipandian

    2017-07-11

    Brucellosis is an important zoonotic disease caused by different Brucella species and human brucellosis is commonly prevalent in different states of India. Among various Brucella species, B. melitensis is most pathogenic to human and included as category B biothreat which can cause infection through aerosol, cut, wounds in skin and contact with infected animals. The diagnosis of human brucellosis is very important for proper treatment and management of disease as there is no vaccine available for human use. The present study was designed to clone, express and purify immunodominant recombinant omp2a (rOmp2a) porin protein of B. melitensis and to evaluate this new antigen candidate for specific serodiagnosis of human brucellosis by highly sensitive iELISA (indirect enzyme linked immunosorbent assay). Omp2a gene of B. melitensis 16 M strain was cloned and expressed in pET-SUMO expression system. The recombinant protein was purified under denaturing conditions using 8 M urea. The purified recombinant protein was confirmed by western blotting by reacting with anti-HIS antibody. The sero-reactivity of the recombinant protein was also checked by reacting with antisera of experimentally infected mice with B. melitensis 16 M at different time points. Serodiagnostic potential of recombinant porin antigen was tested against 185 clinical serum samples collected from regions endemic to brucellosis in southern part of India by iELISA. The samples were grouped into five groups. Group 1 contained cultured confirmed positive serum samples of brucellosis (n = 15), group 2 contained sera samples from positive cases of brucellosis previously tested by conventional methods of RBPT (n = 28) and STAT (n = 26), group 3 contained sera samples negative by RBPT(n = 36) and STAT (n = 32), group 4 contained sera samples of other febrile illness and PUO case (n = 35) and group 5 contained confirmed negative sera samples from healthy donors (n = 23). The rOmp2a was found to be

  18. Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Flurina C.; Camenisch, Ulrike; Fei, Jia; Kaczmarek, Nina; Mathieu, Nadine [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland); Naegeli, Hanspeter, E-mail: naegelih@vetpharm.uzh.ch [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland)

    2010-03-01

    The recognition and subsequent repair of DNA damage are essential reactions for the maintenance of genome stability. A key general sensor of DNA lesions is xeroderma pigmentosum group C (XPC) protein, which recognizes a wide variety of helix-distorting DNA adducts arising from ultraviolet (UV) radiation, genotoxic chemicals and reactive metabolic byproducts. By detecting damaged DNA sites, this unique molecular sensor initiates the global genome repair (GGR) pathway, which allows for the removal of all the aforementioned lesions by a limited repertoire of excision factors. A faulty GGR activity causes the accumulation of DNA adducts leading to mutagenesis, carcinogenesis, neurological degeneration and other traits of premature aging. Recent findings indicate that XPC protein achieves its extraordinary substrate versatility by an entirely indirect readout strategy implemented in two clearly discernible stages. First, the XPC subunit uses a dynamic sensor interface to monitor the double helix for the presence of non-hydrogen-bonded bases. This initial screening generates a transient nucleoprotein intermediate that subsequently matures into the ultimate recognition complex by trapping undamaged nucleotides in the abnormally oscillating native strand, in a way that no direct contacts are made between XPC protein and the offending lesion itself. It remains to be elucidated how accessory factors like Rad23B, centrin-2 or the UV-damaged DNA-binding complex contribute to this dynamic two-stage quality control process.

  19. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  20. Kaempferol modulates Angiopoietin-like protein 2 expression to lessen the mastitis in mice.

    Science.gov (United States)

    Xiao, Hong-Bo; Sui, Guo-Guang; Lu, Xiang-Yang; Sun, Zhi-Liang

    2017-11-22

    Mastitis is inflammation of a breast (or udder). Angiopoietin-like protein 2 (ANGPTL2) has been found as a key inflammatory mediator in mastitis. Purpose of this research was to investigate the mechanisms about repressing effect of kaempferol on mastitis. Forty mice were randomly divided into 4 groups (n = 10): C57BL/6J control mice, untreated murine mastitis, 10 mg/kg kaempferol treated murine mastitis (ip), and 30 mg/kg kaempferol treated murine mastitis (ip). Primary cultured mouse mammary epithelial cells (MMEC) were indiscriminately divided into seven groups including control group, 10 mmol/L vehicle of kaempferol group, 10 μmol/L kaempferol treated group, 20 μg/mL LPS treated group, 1 μmol/L kaempferol plus LPS treated group, 3 μmol/L kaempferol plus LPS treated group, and 10 μmol/L kaempferol plus LPS treated group. In murine mastitis, kaempferol (10 or 30 mg/kg) treatment prevented mastitis development, decreased myeloperoxidase (MPO) production, interleukin (IL)-6 level, tumour necrosis factor-α (TNF-α) concentration, and ANGPTL2 expression. In MMEC, kaempferol (1, 3, or 10 μM) reduced MPO production, TNF-α concentration, IL-6 level, and ANGPTL2 expression. The results in present study show that kaempferol modulates the expression of ANGPTL2 to lessen the mastitis in mice. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. Antimicrobial actions of the human epididymis 2 (HE2 protein isoforms, HE2alpha, HE2beta1 and HE2beta2

    Directory of Open Access Journals (Sweden)

    French Frank S

    2004-08-01

    Full Text Available Abstract Background The HE2 gene encodes a group of isoforms with similarities to the antimicrobial beta-defensins. We demonstrated earlier that the antimicrobial activity of HE2 proteins and peptides is salt resistant and structure dependent and involves permeabilization of bacterial membranes. In this study, we further characterize the antimicrobial properties of HE2 peptides in terms of the structural changes induced in E. coli and the inhibition of macromolecular synthesis. Methods E. coli treated with 50 micro g/ml of HE2alpha, HE2beta1 or HE2beta2 peptides for 30 and 60 min were visualized using transmission and scanning electron microscopy to investigate the impact of these peptides on bacterial internal and external structure. The effects of HE2alpha, HE2beta1 and HE2beta2 on E. coli macromolecular synthesis was assayed by incubating the bacteria with 2, 10 and 25 micro g/ml of the individual peptides for 0–60 min and measuring the incorporation of the radioactive precursors [methyl-3H]thymidine, [5-3H]uridine and L-[4,5-3H(N]leucine into DNA, RNA and protein. Statistical analyses using Student's t-test were performed using Sigma Plot software. Values shown are Mean ± S.D. Results E. coli treated with HE2alpha, HE2beta1 and HE2beta2 peptides as visualized by transmission electron microscopy showed extensive damage characterized by membrane blebbing, thickening of the membrane, highly granulated cytoplasm and appearance of vacuoles in contrast to the smooth and continuous membrane structure of the untreated bacteria. Similarly, bacteria observed by scanning electron microscopy after treating with HE2alpha, HE2beta1 or HE2beta2 peptides exhibited membrane blebbing and wrinkling, leakage of cellular contents, especially at the dividing septa, and external accumulation of fibrous materials. In addition, HE2alpha, HE2beta1 and HE2beta2 peptides inhibited E. coli DNA, RNA and protein synthesis. Conclusions The morphological changes observed

  2. EST2Prot: Mapping EST sequences to proteins

    Directory of Open Access Journals (Sweden)

    Lin David M

    2006-03-01

    Full Text Available Abstract Background EST libraries are used in various biological studies, from microarray experiments to proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are possibly overlooked. Results We describe a system (EST2Prot that uses multiple elements to map EST sequences to their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis, information about protein coding regions in existing DNA sequences and protein database searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors. Conclusion EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing multiple relations between known biological entities. It produces a mapping between ESTs and proteins in real-time through a simple web-interface. The system is part of the Biozon database and is accessible at http://biozon.org/tools/est/.

  3. PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Varagnolo, Linda; Lin, Qiong; Obier, Nadine; Plass, Christoph; Dietl, Johannes; Zenke, Martin; Claus, Rainer; Müller, Albrecht M

    2015-07-22

    Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different H3K4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs.

  4. Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties

    International Nuclear Information System (INIS)

    Hoshi, Toru; Matsuno, Ryosuke; Sawaguchi, Takashi; Konno, Tomohiro; Takai, Madoka; Ishihara, Kazuhiko

    2008-01-01

    To prepare the biocompatible surface, a phosphorylcholine (PC) group was introduced on this hydroxyl group generated by surface hydrolysis on the polymer composite composed of polyethylene (PE) and poly (vinyl acetate) (PVAc) prepared by supercritical carbon dioxide. Two different procedures such as two-dimensional (2D) modification and three-dimensional (3D) modification were applied to obtain the steady biocompatible surface. 2D modification was that PC groups were directly anchored on the surface of the polymer composite. 3D modification was that phospholipid polymer was grafted from the surface of the polymer composite by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC). The surfaces were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle measurements, and atomic force microscope. The effects of the poly(MPC) chain length on the protein adsorption resistivity were investigated. The protein adsorption on the polymer composite surface with PC groups modified by 2D or 3D modification was significantly reduced as compared with that on the unmodified PE. Further, the amount of protein adsorbed on the 3D modified surface that is poly(MPC)-grafted surface decreased with an increase in the chain length of the poly(MPC). The surface with an arbitrary structure and the characteristic can be constructed by using 2D and 3D modification. We conclude that the polymer composites of PE/PVAc with PC groups on the surface are useful for fabricating biomedical devices due to their good mechanical and surface properties

  5. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  6. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    International Nuclear Information System (INIS)

    Paulin, Sarah; Rosado, Helena; Taylor, Peter W; Jamshad, Mohammed; Dafforn, Timothy R; Garcia-Lara, Jorge; Foster, Simon J; Galley, Nicola F; Roper, David I

    2014-01-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function. (paper)

  7. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    Science.gov (United States)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  8. Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging.

    Science.gov (United States)

    Pabba, Mohan; Scifo, Enzo; Kapadia, Fenika; Nikolova, Yuliya S; Ma, Tianzhou; Mechawar, Naguib; Tseng, George C; Sibille, Etienne

    2017-10-01

    The orbitofrontal cortex (OFC) is vulnerable to normal and pathologic aging. Currently, layer resolution large-scale proteomic studies describing "normal" age-related alterations at OFC are not available. Here, we performed a large-scale exploratory high-throughput mass spectrometry-based protein analysis on OFC layer 2/3 from 15 "young" (15-43 years) and 18 "old" (62-88 years) human male subjects. We detected 4193 proteins and identified 127 differentially expressed (DE) proteins (p-value ≤0.05; effect size >20%), including 65 up- and 62 downregulated proteins (e.g., GFAP, CALB1). Using a previously described categorization of biological aging based on somatic tissues, that is, peripheral "hallmarks of aging," and considering overlap in protein function, we show the highest representation of altered cell-cell communication (54%), deregulated nutrient sensing (39%), and loss of proteostasis (35%) in the set of OFC layer 2/3 DE proteins. DE proteins also showed a significant association with several neurologic disorders; for example, Alzheimer's disease and schizophrenia. Notably, despite age-related changes in individual protein levels, protein co-expression modules were remarkably conserved across age groups, suggesting robust functional homeostasis. Collectively, these results provide biological insight into aging and associated homeostatic mechanisms that maintain normal brain function with advancing age. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Protein replacement by receptor-mediated endocytosis corrects the sensitivity of Fanconi anemia group C cells to mitomycin C

    NARCIS (Netherlands)

    Youssoufian, H; Kruyt, FAE; Li, XT

    1999-01-01

    Current methods for direct gene transfer into hematopoietic cells are inefficient. Here we show that functional complementation of Fanconi anemia (FA) group C cells by protein replacement can be as efficacious as by transfection with wild-type FAC cDNA, We expressed a chimeric protein (called

  10. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector

    KAUST Repository

    He, Zhijian

    2015-04-02

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.

  11. Correlation between quantitative HER-2 protein expression and risk for brain metastases in HER-2+ advanced breast cancer patients receiving trastuzumab-containing therapy.

    Science.gov (United States)

    Duchnowska, Renata; Biernat, Wojciech; Szostakiewicz, Barbara; Sperinde, Jeff; Piette, Fanny; Haddad, Mojgan; Paquet, Agnes; Lie, Yolanda; Czartoryska-Arłukowicz, Bogumiła; Wysocki, Piotr; Jankowski, Tomasz; Radecka, Barbara; Foszczynska-Kłoda, Małgorzata; Litwiniuk, Maria; Debska, Sylwia; Weidler, Jodi; Huang, Weidong; Buyse, Marc; Bates, Michael; Jassem, Jacek

    2012-01-01

    Patients with human epidermal growth factor receptor (HER)-2+ breast cancer are at particularly high risk for brain metastases; however, the biological basis is not fully understood. Using a novel HER-2 assay, we investigated the correlation between quantitative HER-2 expression in primary breast cancers and the time to brain metastasis (TTBM) in HER-2+ advanced breast cancer patients treated with trastuzumab. The study group included 142 consecutive patients who were administered trastuzumab-based therapy for HER-2+ metastatic breast cancer. HER-2/neu gene copy number was quantified as the HER-2/centromeric probe for chromosome 17 (CEP17) ratio by central laboratory fluorescence in situ hybridization (FISH). HER-2 protein was quantified as total HER-2 protein expression (H2T) by the HERmark® assay (Monogram Biosciences, Inc., South San Francisco, CA) in formalin-fixed, paraffin-embedded tumor samples. HER-2 variables were correlated with clinical features and TTBM was measured from the initiation of trastuzumab-containing therapy. A higher H2T level (continuous variable) was correlated with shorter TTBM, whereas HER-2 amplification by FISH and a continuous HER-2/CEP17 ratio were not predictive (p = .013, .28, and .25, respectively). In the subset of patients that was centrally determined by FISH to be HER-2+, an above-the-median H2T level was significantly associated with a shorter TTBM (hazard ratio, [HR], 2.4; p = .005), whereas this was not true for the median HER-2/CEP17 ratio by FISH (p = .4). Correlation between a continuous H2T level and TTBM was confirmed on multivariate analysis (HR, 3.3; p = .024). These data reveal a strong relationship between the quantitative HER-2 protein expression level and the risk for brain relapse in HER-2+ advanced breast cancer patients. Consequently, quantitative assessment of HER-2 protein expression may inform and facilitate refinements in therapeutic treatment strategies for selected subpopulations of patients in this

  12. Cloning, recombinant production, crystallization and preliminary X-ray diffraction analysis of SDF2-like protein from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Radzimanowski, Jens; Ravaud, Stephanie; Schott, Andrea; Strahl, Sabine; Sinning, Irmgard

    2009-01-01

    Overexpression, purification, crystallization and preliminary X-ray diffraction of the stromal-cell-derived factor 2-like protein of Arabidopsis thaliana are reported. The crystals belonged to the space group P6 1 and diffracted to 1.95 Å resolution. The stromal-cell-derived factor 2-like protein of Arabidopsis thaliana (AtSDL) has been shown to be highly up-regulated in response to unfolded protein response (UPR) inducing reagents, suggesting that it plays a crucial role in the plant UPR pathway. AtSDL has been cloned, overexpressed, purified and crystallized using the vapour-diffusion method. Two crystal forms have been obtained under very similar conditions. The needle-shaped crystals did not diffract X-rays, while the other form diffracted to 1.95 Å resolution using a synchrotron-radiation source and belonged to the hexagonal space group P6 1 , with unit-cell parameters a = b = 96.1, c = 69.3 Å

  13. IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes

    DEFF Research Database (Denmark)

    Christiansen, J.; Kolte, A.M.; Hansen, T.O.

    2009-01-01

    Recent genome-wide association (GWA) studies of type 2 diabetes (T2D) have implicated IGF2 mRNA-binding protein 2 (IMP2/IGF2BP2) as one of the several factors in the etiology of late onset diabetes. IMP2 belongs to a family of oncofetal mRNA-binding proteins implicated in RNA localization...... and T2D Udgivelsesdato: 2009/11......, stability, and translation that are essential for normal embryonic growth and development. This review provides a background to the IMP protein family with an emphasis on human IMP2, followed by a closer look at the GWA studies to evaluate the significance, if any, of the proposed correlation between IMP2...

  14. Type 2 diabetes mellitus with early phase acute inflammatory protein on serum protein electrophoresis

    Directory of Open Access Journals (Sweden)

    ET Tuladhar

    2012-03-01

    Full Text Available Background: The onset of Type 2 diabetes has been associated with low grade systemic inflammation. The inflammatory status has been studied by measuring acute phase reactant proteins like hsCRP, α1- antitrypsin, α1-acid glycoprotein, ceruloplasmin, fibrinogen. Most of these acute phase reactants form α1 and α2 bands on electropherogram of serum proteins. The aim of this study was to evaluate inflammatory status in controlled and uncontrolled type 2 diabetes using cellulose acetate electrophoresis and to find the impact of glycemic status as indicated by HbA1c on inflammation process. Materials and Methods: Serum protein electrophoresis was done on serum samples of 60 cases of Diabetes [controlled and uncontrolled] using cellulose acetate paper technique. The electropherogram obtained was stained with Ponseu S and then quantitated using densitometer. Glycemic status was studied by HbA1c analysis. The density of α1and α2 bands in electropherogram were correlated with HbA1c level. Result: A significant increase in the percentage of α1 and α2 band proteins (0.765 and 0.716, p<0.001 were found with the increasing level of HbA1c. With cutoff of HbA1c 7% (American Diabetic Association recommended, the α1 and α2 serum proteins concentration are significantly higher (p<0.001 in uncontrolled diabetes mellitus compared to controlled diabetes mellitus Conclusion: Cellulose acetate electrophoresis of serum proteins show early phase acute inflammatory status in uncontrolled type 2 diabetes mellitus. The process of systemic inflammation worsens with uncontrolled glycemia as indicated by HbA1c. Inflammatory status should be studied adjunct to glycemic status. DOI: http://dx.doi.org/10.3126/jpn.v2i3.6024 JPN 2012; 2(3: 211-214

  15. Disruption of Intracellular ATP Generation and Tight Junction Protein Expression during the Course of Brain Edema Induced by Subacute Poisoning of 1,2-Dichloroethane

    Directory of Open Access Journals (Sweden)

    Gaoyang Wang

    2018-01-01

    Full Text Available The aim of this study was to explore changes in intracellular ATP generation and tight junction protein expression during the course of brain edema induced by subacute poisoning of 1,2-dichloroethane (1,2-DCE. Mice were exposed to 1.2 g/m3 1,2-DCE for 3.5 h per day for 1, 2, or 3 days, namely group A, B, and C. Na+-K+-ATPase and Ca2+-ATPase activity, ATP and lactic acid content, intracellular free Ca2+ concentration and ZO-1 and occludin expression in the brain were measured. Results of present study disclosed that Ca2+-ATPase activities in group B and C, and Na+/K+-ATPase activity in group C decreased, whereas intracellular free Ca2+ concentrations in group B and C increased significantly compared with control. Moreover, ATP content decreased, whereas lactic acid content increased significantly in group C compared with control. On the other hand, expressions of ZO-1 and occludin at both the protein and gene levels in group B and C decreased significantly compared with control. In conclusion, findings from this study suggest that calcium overload and depressed expression of tight junction associated proteins, such as ZO-1 and occludin might play an important role in the early phase of brain edema formation induced by subacute poisoning of 1,2-DCE.

  16. The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ

    Directory of Open Access Journals (Sweden)

    Brann Jessica H

    2010-05-01

    Full Text Available Abstract Background The signal transduction cascade operational in the vomeronasal organ (VNO of the olfactory system detects odorants important for prey localization, mating, and social recognition. While the protein machinery transducing these external cues has been individually well characterized, little attention has been paid to the role of protein-protein interactions among these molecules. Development of an in vitro expression system for the transient receptor potential 2 channel (TRPC2, which establishes the first electrical signal in the pheromone transduction pathway, led to the discovery of two protein partners that couple with the channel in the native VNO. Results Homer family proteins were expressed in both male and female adult VNO, particularly Homer 1b/c and Homer 3. In addition to this family of scaffolding proteins, the chaperones receptor transporting protein 1 (RTP1 and receptor expression enhancing protein 1 (REEP1 were also expressed. RTP1 was localized broadly across the VNO sensory epithelium, goblet cells, and the soft palate. Both Homer and RTP1 formed protein-protein interactions with TRPC2 in native reciprocal pull-down assays and RTP1 increased surface expression of TRPC2 in in vitro assays. The RTP1-dependent TRPC2 surface expression was paralleled with an increase in ATP-stimulated whole-cell current in an in vitro patch-clamp electrophysiological assay. Conclusions TRPC2 expression and channel activity is regulated by chaperone- and scaffolding-associated proteins, which could modulate the transduction of chemosignals. The developed in vitro expression system, as described here, will be advantageous for detailed investigations into TRPC2 channel activity and cell signalling, for a channel protein that was traditionally difficult to physiologically assess.

  17. Expression and mechanism of high mobility group box protein-1 in retinal tissue of diabetic rats

    Directory of Open Access Journals (Sweden)

    Shuang Jiang

    2016-05-01

    Full Text Available AIM:To investigate the expression and mechanism of high mobility group box protein-1(HMGB1in the retina of diabetic rats. METHODS:Sixty SD rats were randomly divided into diabetic group and control group. Diabetic rat model was produced by intraperitioneal injection of 1% STZ with 60mg/Kg weight. The rats in control group received intraperitioneal injection of normal saline with same dosage. After injection, the rats were sacrificed and eyeballs were enucleated for HE staining, the retina fluorescence angiography, TUNEL and Western Blot detection at 1, 2 and 4mo for the expressions of HMGB1 and NF-κB. RESULTS:Compared with the control group, the retinal cells disorder, cell densities decreases, microvasculars occlusion were founded with inner and outer nuclear layer thinning and ganglion cell apoptosis. The fluorescence angiography showed that peripheral capillaries became circuitous and vascular occlusion and non-perfusion area could be seen. The expressions of HMGB1 and NF-κB were higher than those of control with time dependence and they had significant positive correlations(PCONCLUSION:The expression of HMGB1 increases in diabetic rat retina, which may involve in the occurrence of diabetic retinopathy through the NF- κB pathway.

  18. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  19. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Krantz, James; Barker, Natalie

    2017-01-01

    . The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and also revealed MARK2 can co-IP SOGA1......, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and also with tubulin, which identifies SOGA1 as a new microtubule-associated protein....... These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology....

  1. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  2. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  3. Production of radioiodinated prosthetic group for indirect protein labeling; Obtencao de grupamento prostetico radioiodado para marcacao de proteinas por via indireta

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Josefina da Silva

    2001-07-01

    Monoclonal antibodies and their fragments and, more recently, radiolabeled peptides have been extensively studied in order to develop radiopharmaceuticals for diagnostic and therapy in Nuclear Medicine. The radioiodination of proteins can be done by a direct method, with radioiodine being incorporated in to a tyrosine residue of the protein by electrophilic substitution. The main problem in the use of radioiodinated proteins, is that they are often dehalogenated in vivo by the action of specific enzymes, probably because of the structural similarity between iodophenyl groups and thyroid hormones. Several protein radioiodination methods have been developed in order to minimize this in vivo dehalogenation using prosthetic groups for indirect labeling. In this case, the radioiodine is first incorporated in to the prosthetic group that is subsequently attached to a terminal amino group or to a {epsilon}-amino group of lysine residue. The aim of this work is to obtain a radioiodinated prosthetic group for indirect labeling of proteins. The prosthetic group selected was the N-succinimidyl-4-radioiodine benzoate (SIB), obtained by the iodination of the p-bromobenzoic acid followed by the reaction with TSTU (0-(N-succinimidyl)-N,N,N',N'-tetramethyl uronium tetrafluoroborate) The results of these studies showed that the p-radio iodobenzoic acid was obtained with a radiochemical purity greater than 92% and a labeling yield of about 65%. Some reaction parameters were studied like temperature, time and Cu Cl mass (cataliser). The SIB was quantitatively obtained from p-radio iodobenzoic acid, using basic medium and after removing the water from the reaction using an nitrogen stream. The kinetic of this reaction is very fast with complete consumption of the p-radioiodebenzoic acid after 5 minutes. The coupling of the SIB prosthetic group to the protein was studied using Human Immunoglobulin (IgG) as a protein model. In a comparative way, the same protein was used on

  4. Metaproteomics of Colonic Microbiota Unveils Discrete Protein Functions among Colitic Mice and Control Groups.

    Science.gov (United States)

    Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W

    2018-02-01

    Metaproteomics can greatly assist established high-throughput sequencing methodologies to provide systems biological insights into the alterations of microbial protein functionalities correlated with disease-associated dysbiosis of the intestinal microbiota. Here, the authors utilize the well-characterized murine T cell transfer model of colitis to find specific changes within the intestinal luminal proteome associated with inflammation. MS proteomic analysis of colonic samples permitted the identification of ≈10 000-12 000 unique peptides that corresponded to 5610 protein clusters identified across three groups, including the colitic Rag1 -/- T cell recipients, isogenic Rag1 -/- controls, and wild-type mice. The authors demonstrate that the colitic mice exhibited a significant increase in Proteobacteria and Verrucomicrobia and show that such alterations in the microbial communities contributed to the enrichment of specific proteins with transcription and translation gene ontology terms. In combination with 16S sequencing, the authors' metaproteomics-based microbiome studies provide a foundation for assessing alterations in intestinal luminal protein functionalities in a robust and well-characterized mouse model of colitis, and set the stage for future studies to further explore the functional mechanisms of altered protein functionalities associated with dysbiosis and inflammation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  6. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Bone Morphogenetic Protein-2/4 during Early Tooth Development

    International Nuclear Information System (INIS)

    Park, Dai Hee; Hwang, Eui Hwan; Lee, Sang Rae

    2000-01-01

    To investigate the expression of bone morphogenetic protein (BMP)-2/4 during early tooth development after irradiation and calcium-deficient diet. The pregnant three-week-old Sprague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group (Group 1), and the experimental groups were irradiation/normal diet group (Group 2) and irradiation/calcium-diet group (Group 3). The abdomen of the rats at the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed at embryonic 18 days, 3 days and 14 days after delivery and the maxillae tooth germs were taken. The tissue sections of specimen were stained immunohistochemically with anti-BMP-2/4 antibody. At embryo-18 days, immunoreacivity for BMP-2/4 of the Group 1 was modetate in stratum intermedium of dental organ and weak in dental papilla and dental follicle, but that of Group 2 was weak in cell layer of dental organ, and no immunoreacivity was shown in dental papilla and dental follice of Group 2 and in all tissue components of the Group 3. At postnatal-3 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in cell layer of dental organ, odontoblasts and developing alveolar bone, but that of Group of 2 and Group 3 was weak in odontoblasts and developing alveolar bone. At postnatal-14 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in newly formed cementum, alveolar bone and odontoblasts, but that of Group 2 was weaker than that of Group 1. In the Group 3, tooth forming cell layer showed weak immunoreactivity, but other cell layers showed no immunoreactivity. The expression of bone morphogenetic protein (BMP)-2/4 during early tooth development was disturbed after irradiation and calcium-deficient diet.

  7. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Bone Morphogenetic Protein-2/4 during Early Tooth Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dai Hee; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kyunghee University, Seoul (Korea, Republic of)

    2000-09-15

    To investigate the expression of bone morphogenetic protein (BMP)-2/4 during early tooth development after irradiation and calcium-deficient diet. The pregnant three-week-old Sprague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group (Group 1), and the experimental groups were irradiation/normal diet group (Group 2) and irradiation/calcium-diet group (Group 3). The abdomen of the rats at the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed at embryonic 18 days, 3 days and 14 days after delivery and the maxillae tooth germs were taken. The tissue sections of specimen were stained immunohistochemically with anti-BMP-2/4 antibody. At embryo-18 days, immunoreacivity for BMP-2/4 of the Group 1 was modetate in stratum intermedium of dental organ and weak in dental papilla and dental follicle, but that of Group 2 was weak in cell layer of dental organ, and no immunoreacivity was shown in dental papilla and dental follice of Group 2 and in all tissue components of the Group 3. At postnatal-3 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in cell layer of dental organ, odontoblasts and developing alveolar bone, but that of Group of 2 and Group 3 was weak in odontoblasts and developing alveolar bone. At postnatal-14 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in newly formed cementum, alveolar bone and odontoblasts, but that of Group 2 was weaker than that of Group 1. In the Group 3, tooth forming cell layer showed weak immunoreactivity, but other cell layers showed no immunoreactivity. The expression of bone morphogenetic protein (BMP)-2/4 during early tooth development was disturbed after irradiation and calcium-deficient diet.

  8. Serum Angiopoietin-Like Protein 2 Concentrations Are Independently Associated with Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chi-Lun Huang

    Full Text Available Angiopoietin-like protein 2 (ANGPTL2, which is mainly expressed from adipose tissue, is demonstrated to be involved in obesity, metabolic syndrome, and atherosclerosis. Because several adipocytokines are known to be associated with heart failure (HF, here we investigated the association of ANGPTL2 and HF in Taiwanese subjects.A total of 170 symptomatic HF patients and 130 age- and sex-matched controls were enrolled from clinic. The echocardiography was analyzed in each patient, and stress myocardial perfusion study was performed for clinical suspicion of coronary artery disease. Detailed demographic information, medications, and biochemical data were recorded. Circulating adipocytokines, including tumor necrosis factor-alpha (TNF-α, adiponectin, adipocyte fatty acid-binding protein (A-FABP and ANGPTL2, were analyzed. Compared with the control group subjects, serum ANGPTL2 concentrations were significantly higher in HF group patients. In correlation analyses, ANGPTL2 level was positively correlated to creatinine, fasting glucose, triglyceride, hsCRP, TNF-α, NT-proBNP and A-FABP levels, and negatively correlated with HDL-C and left ventricular ejection fraction. In multiple regression analysis, A-FABP, hsCRP, and HDL-C levels remained as independent predictors for ANGPTL2 level. To determine the association between serum ANGPTL2 concentrations and HF, multivariate logistic regression analyses were performed with subjects divided into tertiles by ANGPTL2 levels. For the subjects with ANGPTL2 levels in the highest tertile, their risk of HF was about 2.97 fold (95% CI = 1.24-7.08, P = 0.01 higher than those in the lowest tertile.Our results demonstrate a higher circulating ANGPTL2 level in patients with HF, and the upregulating ANGPTL2 levels might be associated with metabolic derangements and inflammation.

  9. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Wiegant, Wouter W. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Waisfisz, Quinten [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Medhurst, Annette L. [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N. Copernicus University, Bydgoszcz (Poland)]. E-mail: m.z.zdzienicka@lumc.nl

    2006-02-22

    Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the 'Rad51 foci phenotype' provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination.

  10. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2

    International Nuclear Information System (INIS)

    Godthelp, Barbara C.; Wiegant, Wouter W.; Waisfisz, Quinten; Medhurst, Annette L.; Arwert, Fre; Joenje, Hans; Zdzienicka, Malgorzata Z.

    2006-01-01

    Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the 'Rad51 foci phenotype' provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination

  11. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Directory of Open Access Journals (Sweden)

    Laulumaa Saara

    2015-01-01

    Full Text Available Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  12. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  13. Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-10-01

    Full Text Available Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs. Among them, the dopamine D2 receptor (D2R is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR and the short isoform (D2SR, which differ in a 29-amino acid (AA insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities. Keywords: Dopamine D2L receptor, Antipsychotic drugs, DRD2 polymorphisms, Alternatively spliced isoforms, D2LR-interacting proteins

  14. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    Science.gov (United States)

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  15. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  16. Carboxyl group reactivity in actin

    International Nuclear Information System (INIS)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs

  17. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    Science.gov (United States)

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  18. 7 CFR 932.7 - Variety group 2.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Variety group 2. 932.7 Section 932.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 932.7 Variety group 2. Variety group 2 means the following varieties and...

  19. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Anjali; McKnight, Thomas D; Mandadi, Kranthi K

    2018-03-01

    Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.

  20. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    Science.gov (United States)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  1. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  2. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  3. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    Science.gov (United States)

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  4. Protein-protein docking with F(2Dock 2.0 and GB-rerank.

    Directory of Open Access Journals (Sweden)

    Rezaul Chowdhury

    Full Text Available Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F(2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error.The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F(2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F(2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F(2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F(2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other.The docking protocol has been implemented as a server with a graphical client (TexMol which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  5. Protein-Protein Docking with F2Dock 2.0 and GB-Rerank

    Science.gov (United States)

    Chowdhury, Rezaul; Rasheed, Muhibur; Keidel, Donald; Moussalem, Maysam; Olson, Arthur; Sanner, Michel; Bajaj, Chandrajit

    2013-01-01

    Motivation Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. Results The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. Availability The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  6. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    Science.gov (United States)

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  7. Crystallization and preliminary crystallographic analysis of the transpeptidase domain of penicillin-binding protein 2B from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mototsugu, E-mail: mototsugu-yamada@meiji.co.jp; Watanabe, Takashi; Baba, Nobuyoshi; Miyara, Takako; Saito, Jun; Takeuchi, Yasuo [Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567 (Japan)

    2008-04-01

    The selenomethionyl-substituted transpeptidase domain of penicillin-binding protein (PBP) 2B from S. pneumoniae was isolated from a limited proteolysis digest of the soluble form of recombinant PBP 2B and then crystallized. MAD data were collected to 2.4 Å resolution. Penicillin-binding protein (PBP) 2B from Streptococcus pneumoniae catalyzes the cross-linking of peptidoglycan precursors that occurs during bacterial cell-wall biosynthesis. A selenomethionyl (SeMet) substituted PBP 2B transpeptidase domain was isolated from a limited proteolysis digest of a soluble form of recombinant PBP 2B and then crystallized. The crystals belonged to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 86.39, c = 143.27 Å. Diffraction data were collected to 2.4 Å resolution using the BL32B2 beamline at SPring-8. The asymmetric unit contains one protein molecule and 63.7% solvent.

  8. Crystallization and preliminary crystallographic analysis of the transpeptidase domain of penicillin-binding protein 2B from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Yamada, Mototsugu; Watanabe, Takashi; Baba, Nobuyoshi; Miyara, Takako; Saito, Jun; Takeuchi, Yasuo

    2008-01-01

    The selenomethionyl-substituted transpeptidase domain of penicillin-binding protein (PBP) 2B from S. pneumoniae was isolated from a limited proteolysis digest of the soluble form of recombinant PBP 2B and then crystallized. MAD data were collected to 2.4 Å resolution. Penicillin-binding protein (PBP) 2B from Streptococcus pneumoniae catalyzes the cross-linking of peptidoglycan precursors that occurs during bacterial cell-wall biosynthesis. A selenomethionyl (SeMet) substituted PBP 2B transpeptidase domain was isolated from a limited proteolysis digest of a soluble form of recombinant PBP 2B and then crystallized. The crystals belonged to space group P4 3 2 1 2, with unit-cell parameters a = b = 86.39, c = 143.27 Å. Diffraction data were collected to 2.4 Å resolution using the BL32B2 beamline at SPring-8. The asymmetric unit contains one protein molecule and 63.7% solvent

  9. Effects of sources of protein and enzyme supplementation on protein digestibility and chyme characteristics in broilers.

    Science.gov (United States)

    Yu, B; Lee, T T T; Chiou, P W S

    2002-07-01

    1. The purpose of this study was to evaluate the effects of protein source and enzyme supplementation on protein digestibility and chyme characteristics in broilers. 2. One hundred and twenty growing (13 d old) and 60 finishing (34 d old) Arbor Acre strain commercial male broilers were selected and placed into individual metabolic cages. 3. The experiment was a 5 x 2 factorial arrangement with 5 different sources of protein: casein, fish meal, soybean meal (SBM), soy protein concentrate (SPC), maize gluten meal (MGM) and two levels of protease (bromelain), 0 and 65 CDU/kg diets. 4. The diets were iso-nitrogenous and semi-purified, with Cr2O3 as an indicator for determination of ileal digestibility and chyme characteristics. 5. Apparent ileal protein digestibility (AIPD) in both growing and finishing chickens was highest on the casein diet, followed by fish meal, SBM, SPC and MGM. 6. Enzyme inclusion did not improve protein digestibility, but significantly decreased the digesta pH value in the gizzard and increased pH in the ileum in the 3-week-old broilers. 7. The digesta pH values in the gizzard and duodenum were significantly lower in the SBM and fish meal groups compared with the other protein groups. The molecular weight distribution pattern of the soluble protein in the chyme of the gastrointestinal (GI) segments showed a similar trend, regardless of the enzyme inclusion or the stage of growth. 8. The molecular weight profile of soluble protein changed dynamically in the casein fed broilers from the gizzard to ileum and the low molecular weight proteins, < 7 kDa, reached maximum levels at the ileum. The molecular weight profile of the soluble protein in the SBM and SPC changed between the jejunum and the ileum and in the intermediate molecular soluble protein weight (7 to 10 kDa) was significantly decreased. This indicated that the hydrolysis process began from the middle to the posterior end of the small intestine. 9. Similar profiles were also shown with

  10. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  11. Structural characterization and comparative analysis of human and piscine cartilage acidic protein (CRTAC1/CRTAC2)

    OpenAIRE

    Guerreiro, Marta Lúcia Amaro

    2014-01-01

    Dissertação de mestrado, Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014 CRTAC (Cartilage Acidic Protein) firstly identified as a chondrocyte marker in humans and implicated in a number of diseases. This ancient protein is present from prokaryotes to vertebrates and the teleost are the only group that contain duplicates (CRTAC1/CRTAC2). The structure of CRTACs is poorly characterized and was the starting point of the present study. To establi...

  12. Uncoupling protein-2 mRNA expression in mice subjected to intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Vieira

    2015-04-01

    Full Text Available Objective: To investigate the effect of intermittent hypoxia-a model of obstructive sleep apnea (OSA-on pancreatic expression of uncoupling protein-2 (UCP2, as well as on glycemic and lipid profiles, in C57BL mice. Methods: For 8 h/day over a 35-day period, male C57BL mice were exposed to intermittent hypoxia (hypoxia group or to a sham procedure (normoxia group. The intermittent hypoxia condition involved exposing mice to an atmosphere of 92% N and 8% CO2 for 30 s, progressively reducing the fraction of inspired oxygen to 8 ± 1%, after which they were exposed to room air for 30 s and the cycle was repeated (480 cycles over the 8-h experimental period. Pancreases were dissected to isolate the islets. Real-time PCR was performed with TaqMan assays. Results: Expression of UCP2 mRNA in pancreatic islets was 20% higher in the normoxia group than in the hypoxia group (p = 0.11. Fasting serum insulin was higher in the hypoxia group than in the normoxia group (p = 0.01. The homeostasis model assessment of insulin resistance indicated that, in comparison with the control mice, the mice exposed to intermittent hypoxia showed 15% lower insulin resistance (p = 0.09 and 21% higher pancreatic β-cell function (p = 0.01. Immunohistochemical staining of the islets showed no significant differences between the two groups in terms of the area or intensity of α- and β-cell staining for insulin and glucagon. Conclusions: To our knowledge, this is the first report of the effect of intermittent hypoxia on UCP2 expression. Our findings suggest that UCP2 regulates insulin production in OSA. Further study of the role that UCP2 plays in the glycemic control of OSA patients is warranted.

  13. Stability of globular proteins in H2O and in D2O

    NARCIS (Netherlands)

    Efimova, Y.M.; Haemers, S.; Wierczinsky, B.; Norde, W.; Well, van A.A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  14. Physicochemical properties of 2S Albumins and the corresponding protein isolate from Sunflower (Helianthus annuus)

    NARCIS (Netherlands)

    Gonzalez-Perez, S.; Vereijken, J.M.; Koningsveld, van G.A.; Gruppen, H.; Voragen, A.G.J.

    2005-01-01

    Sunflower albumins (SFAs) are a diverse group of proteins present in sunflower isolates, with a sedimentation coefficient of approximately 2S. This research presents a detailed study of the influence of pH on the structure and solubility of SFAs. The effect of temperature on the structure of SFAs

  15. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  16. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The unit group of group algebra $F_qSL(2;Z_3$

    Directory of Open Access Journals (Sweden)

    Swati Maheshwari

    2016-01-01

    Full Text Available Let $\\F_q$ be a finite field of characteristic $p$ having $q$ elements, where $q = p^k$ and $p\\ge 5$. Let $ SL(2,\\Z_3$ be the special linear group of $2\\times2$ matrices with determinant $1$ over $\\Z_3$. In this note we establish the structure of the unit group of $\\F_q SL(2,\\Z_3$.

  18. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. MK3 modulation affects BMI1-dependent and independent cell cycle check-points.

    Directory of Open Access Journals (Sweden)

    Peggy Prickaerts

    Full Text Available Although the MK3 gene was originally found deleted in some cancers, it is highly expressed in others. The relevance of MK3 for oncogenesis is currently not clear. We recently reported that MK3 controls ERK activity via a negative feedback mechanism. This prompted us to investigate a potential role for MK3 in cell proliferation. We here show that overexpression of MK3 induces a proliferative arrest in normal diploid human fibroblasts, characterized by enhanced expression of replication stress- and senescence-associated markers. Surprisingly, MK3 depletion evokes similar senescence characteristics in the fibroblast model. We previously identified MK3 as a binding partner of Polycomb Repressive Complex 1 (PRC1 proteins. In the current study we show that MK3 overexpression results in reduced cellular EZH2 levels and concomitant loss of epigenetic H3K27me3-marking and PRC1/chromatin-occupation at the CDKN2A/INK4A locus. In agreement with this, the PRC1 oncoprotein BMI1, but not the PCR2 protein EZH2, bypasses MK3-induced senescence in fibroblasts and suppresses P16INK4A expression. In contrast, BMI1 does not rescue the MK3 loss-of-function phenotype, suggesting the involvement of multiple different checkpoints in gain and loss of MK3 function. Notably, MK3 ablation enhances proliferation in two different cancer cells. Finally, the fibroblast model was used to evaluate the effect of potential tumorigenic MK3 driver-mutations on cell proliferation and M/SAPK signaling imbalance. Taken together, our findings support a role for MK3 in control of proliferation and replicative life-span, in part through concerted action with BMI1, and suggest that the effect of MK3 modulation or mutation on M/SAPK signaling and, ultimately, proliferation, is cell context-dependent.

  20. The classification of finite simple groups groups of characteristic 2 type

    CERN Document Server

    Aschbacher, Michael; Smith, Stephen D; Solomon, Ronald

    2011-01-01

    The book provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the "even case", where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of "noncharacteristic 2 type". However, this book provides much more. Chapter 0 is a modern overview of the logical structure of the entire classification. Chapter 1 is a concise but complete outline of the "odd case" with updated references, while Chapter 2 sets the stage for the remainder of the book with a similar outline of the "even case". The remaining six chapters describe in detail the fundamental results whose union completes the proof of the classification theorem. Several important subsidiary results are also discussed. In addition, there is a comprehensive listing of the large number of papers referenced from the literature. Appendices provide a brief but ...

  1. 2BC Non-Structural Protein of Enterovirus A71 Interacts with SNARE Proteins to Trigger Autolysosome Formation.

    Science.gov (United States)

    Lai, Jeffrey K F; Sam, I-Ching; Verlhac, Pauline; Baguet, Joël; Eskelinen, Eeva-Liisa; Faure, Mathias; Chan, Yoke Fun

    2017-07-04

    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N -ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.

  2. [Analysis of the mRNA expression of the S100β protein in adipocytes of patients with diabetes mellitus, type 2].

    Science.gov (United States)

    Hamasaki, Mike Yoshio; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo; Himelfarb, Silvia Tchernin; Campos, Leila Maria Guissoni; Nogueira, Maria Inês

    2012-10-01

    This study aims to explore the possible relationship between the expression level of S100β protein mRNA with diabetes mellitus type 2 in adipocytes from patients with this disease in comparison with normoglycemic individuals. Samples of adipose tissue of eight patients from the coronary section of the Institute Dante Pazzanese of Cardiology (IDPC), four in Group Diabetes and four of Normoglycemic group, were evaluated by RT-PCR real time. An increase around 15 times values, between the threshold cycle (ΔCt), of mRNA expression of S100β protein in adipocytes of the diabetes group was observed in comparison to the control group (p = 0.015). Our results indicate, for the first time, that there is coexistence of increased expression of the S100β and the type 2 diabetes mellitus gene.

  3. Increased Protein Stability and Decreased Protein Turnover in the Caenorhabditis elegans Ins/IGF-1 daf-2 Mutant.

    Science.gov (United States)

    Depuydt, Geert; Shanmugam, Nilesh; Rasulova, Madina; Dhondt, Ineke; Braeckman, Bart P

    2016-12-01

    In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35 S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

  4. Feature-Based Classification of Amino Acid Substitutions outside Conserved Functional Protein Domains

    Directory of Open Access Journals (Sweden)

    Branislava Gemovic

    2013-01-01

    Full Text Available There are more than 500 amino acid substitutions in each human genome, and bioinformatics tools irreplaceably contribute to determination of their functional effects. We have developed feature-based algorithm for the detection of mutations outside conserved functional domains (CFDs and compared its classification efficacy with the most commonly used phylogeny-based tools, PolyPhen-2 and SIFT. The new algorithm is based on the informational spectrum method (ISM, a feature-based technique, and statistical analysis. Our dataset contained neutral polymorphisms and mutations associated with myeloid malignancies from epigenetic regulators ASXL1, DNMT3A, EZH2, and TET2. PolyPhen-2 and SIFT had significantly lower accuracies in predicting the effects of amino acid substitutions outside CFDs than expected, with especially low sensitivity. On the other hand, only ISM algorithm showed statistically significant classification of these sequences. It outperformed PolyPhen-2 and SIFT by 15% and 13%, respectively. These results suggest that feature-based methods, like ISM, are more suitable for the classification of amino acid substitutions outside CFDs than phylogeny-based tools.

  5. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy.

    Science.gov (United States)

    Falik Zaccai, Tzipora C; Savitzki, David; Zivony-Elboum, Yifat; Vilboux, Thierry; Fitts, Eric C; Shoval, Yishay; Kalfon, Limor; Samra, Nadra; Keren, Zohar; Gross, Bella; Chasnyk, Natalia; Straussberg, Rachel; Mullikin, James C; Teer, Jamie K; Geiger, Dan; Kornitzer, Daniel; Bitterman-Deutsch, Ora; Samson, Abraham O; Wakamiya, Maki; Peterson, Johnny W; Kirtley, Michelle L; Pinchuk, Iryna V; Baze, Wallace B; Gahl, William A; Kleta, Robert; Anikster, Yair; Chopra, Ashok K

    2017-02-01

    Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A 2 -activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E 2 and cytosolic phospholipase A 2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E 2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E 2 and cytosolic phospholipase A 2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E 2 The non-functional phospholipase A 2 -activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email

  6. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis

    OpenAIRE

    Hong, Kyung Uk; Choi, Yong-Bock; Lee, Jung-Hwa; Kim, Hyun-Jun; Kwon, Hye-Rim; Seong, Yeon-Sun; Kim, Heung Tae; Park, Joobae; Bae, Chang-Dae; Hong, Kyeong-Man

    2008-01-01

    Tumor associated microtubule associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2) is a mitotic spindle-associated protein whose expression is cell cycle-regulated and also frequently deregulated in cancer cells. Two monoclonal antibodies (mAbs) against TMAP/CKAP2 were produced: B-1-13 and D-12-3. Interestingly, the reactivity of mAb D-12-3 to TMAP/CKAP2 was markedly decreased specifically in mitotic cell lysate. The epitope mapping study showed that mAb D-12-3 re...

  7. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  8. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  9. ANTI-INFLAMMATORY EFFECTS OF LOW PROTEIN DIET SUPPLEMENTED WITH KETO-AMINO ACID IN THE TREATMENT OF TYPE 2 DIABETIC NEPHROPATHY

    Directory of Open Access Journals (Sweden)

    Nan Chen

    2012-06-01

    Full Text Available Recent clinical research strongly approves that low-protein diet supplemented with keto-amino acid can effectively delay progression of type 2 diabetic nephropathy (DN. Anti-inflammation is one of these effects, but the mechanism is still controversial. This study is designed to further explore roles of ketogenic diets in regulation of inflammation status of type 2 DN. Twenty-one patients with type 2 DN (mean age at 65.14±7.34 years, were followed-up for 52 weeks in this study. All patients were in CKD stages 3–4 with glomerular filtration rates 26–55 ml/min/1.73 m2 and were all on a low-protein diet containing 0.8 g protein/kg BW per day and 30–35 Kcal /kg BW per day. The diet was randomly supplemented with keto-amino acids at a dosage of 100 mg/kg BW per day in 10 patients, who were assigned into Group II. Other 11 patients were assigned into Group I. At the end of this study, related clinical data showed there was a significant increase in the serum level of TNF-α which could mediate inflammation systemically in Group I (from 230.25±54.34 to 332.11 pg/ml, P 0.05. The level of CRP, which is produced in response to inflammation, rose greatly in Group I (from 7.5±1.07 to 20.4±3.72 ug/ml, P 0.05. Nutritional markers including serum albumin, hemoglobin and basal metabolic index showed no malnutrition happened during the follow-up period. In conclusion, low-protein diet supplemented with keto-amino acids contribute to ameliorate inflammation in the progression of type 2 diabetic nephropathy through regulating inflammatory factors production, including TNF-α, CRP and adiponectin.

  10. Structural optimization and structure-functional selectivity relationship studies of G protein-biased EP2 receptor agonists.

    Science.gov (United States)

    Ogawa, Seiji; Watanabe, Toshihide; Moriyuki, Kazumi; Goto, Yoshikazu; Yamane, Shinsaku; Watanabe, Akio; Tsuboi, Kazuma; Kinoshita, Atsushi; Okada, Takuya; Takeda, Hiroyuki; Tani, Kousuke; Maruyama, Toru

    2016-05-15

    The modification of the novel G protein-biased EP2 agonist 1 has been investigated to improve its G protein activity and develop a better understanding of its structure-functional selectivity relationship (SFSR). The optimization of the substituents on the phenyl ring of 1, followed by the inversion of the hydroxyl group on the cyclopentane moiety led to compound 9, which showed a 100-fold increase in its G protein activity compared with 1 without any increase in β-arrestin recruitment. Furthermore, SFSR studies revealed that the combination of meta and para substituents on the phenyl moiety was crucial to the functional selectivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2.

    Science.gov (United States)

    Lin, Pei-Chin; Huang, Hsien-Da; Chang, Chun-Chi; Chang, Ya-Sian; Yen, Ju-Chen; Lee, Chien-Chih; Chang, Wen-Hsin; Liu, Ta-Chih; Chang, Jan-Gowth

    2016-08-02

    Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, and lncRNA taurine-upregulated gene 1 (TUG1) has been proven to be associated with several human cancers. However, the mechanisms of TUG1-involved regulation remain largely unknown. We examined the expressions of TUG1 in a cohort of 89 patients with non-small cell lung cancer (NSCLC) to determine the association between TUG1 expression and clinical parameters. We used circular chromosome conformation capture (4C) coupled with next-generation sequencing to explore the genome regions that interact with TUG1 and the TUG1-mediated regulation. TUG1 was significantly downregulated, and the TUG1 downregulation correlated with sex (p = 0.006), smoking status (p = 0.016), and tumor differentiation grade (p = 0.001). Knockdown of TUG1 significantly promoted the proliferation of NSCLC cells. According to the bioinformatic analysis result of TUG1 4C sequencing data, 83 candidate genes and their interaction regions were identified. Among these candidate genes, CUGBP and Elav-like family member 1 (CELF1) are potential targets of TUG1 in-trans regulation. To confirm the interaction between TUG1 and CELF1, relative expressions of CELF1 were examined in TUG1 knockdown H520 cells; results showed that CELF1 was significantly upregulated in TUG1 knockdown H520 cells. RNA immunoprecipitation was then performed to examine whether TUG1 RNA was bound to PRC2, a TUG1-involved regulation mechanism reported in previous studies. The results demonstrated that TUG1 RNA was bound to enhancer of zeste protein 2/embryonic ectoderm development (EZH2/EED), which is essential for PRC2. Finally, our designed ChIP assay revealed that the EZH2/EED was bound to the promotor region of CELF1 within 992 bp upstream of the transcript start site. TUG1 is downregulated in NSCLC. Using TUG1 4C sequencing and bioinformatic analysis, we found CELF1 to be a potential target of TUG1 RNA in in-trans regulation. Moreover, subsequent

  12. Protein surface labeling reactivity of N-hydroxysuccinimide esters conjugated to Fe{sub 3}O{sub 4}@SiO{sub 2} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pirani, Parisa; Patil, Ujwal S.; Apsunde, Tushar Dattu; Trudell, Mark L.; Cai, Yang, E-mail: ycai@chnola-research.org; Tarr, Matthew A., E-mail: mtarr@uno.edu [University of New Orleans, Department of Chemistry (United States)

    2015-09-15

    The N-hydroxysuccinimide (NHS) ester moiety is one of the most widely used amine reactive groups for covalent conjugation of proteins/peptides to other functional targets. In this study, a cleave-analyze approach was developed to quantify NHS ester groups conjugated to silica-coated iron oxide magnetic nanoparticles (Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs). The fluorophore dansylcadaverine was attached to Fe{sub 3}O{sub 4}@SiO{sub 2} magnetic nanoparticles (MNPs) via reaction with NHS ester groups, and then released from the MNPs by cleavage of the disulfide bond in the linker between the fluorophore and the MNPs moiety. The fluorophore released from Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs was fluorometrically measured, and the amount of fluorophore should be equivalent to the quantity of the NHS ester groups on the surface of Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs that participated in the fluorophore conjugation reaction. Another sensitive and semiquantitative fluorescence microscopic test was also developed to confirm the presence of NHS ester groups on the surface of Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs. Surface-conjugated NHS ester group measurements were primarily performed on Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs of 100–150 nm in diameter and also on 20-nm nanoparticles of the same type but prepared by a different method. The efficiency of labeling native proteins by NHS ester-coated Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs was explored in terms of maximizing the number of MNPs conjugated per BSA molecule or maximizing the number of BSA molecules conjugated per each nanoparticle. Maintaining the amount of fresh NHS ester moieties in the labeling reaction system was essential especially when maximizing the number of MNPs conjugated per protein molecule. The methodology demonstrated in this study can serve as a guide in labeling the exposed portions of proteins by bulky multivalent labeling reagents.

  13. Deletion of Repeats in the Alpha C Protein Enhances the Pathogenicity of Group B Streptococci in Immune Mice

    OpenAIRE

    Gravekamp, C.; Rosner, Bernard; Madoff, L. C.

    1998-01-01

    The alpha C protein is a protective surface-associated antigen of group B streptococci (GBS). The prototype alpha C protein of GBS (strain A909) contains nine identical tandem repeats, each comprising 82 amino acids, flanked by N- and C-terminal domains. Clinical isolates of GBS show variable numbers of repeats with a normal distribution and a median of 9 to 10 repeats. Here, we show that escape mutants of GBS expressing one-repeat alpha C protein were 100-fold more pathogenic than GBS expres...

  14. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Structure of the Na,K-ATPase regulatory protein FXYD2b in micelles: implications for membrane-water interfacial arginines.

    Science.gov (United States)

    Gong, Xiao-Min; Ding, Yi; Yu, Jinghua; Yao, Yong; Marassi, Francesca M

    2015-01-01

    FXYD2 is a membrane protein responsible for regulating the function of the Na,K-ATPase in mammalian kidney epithelial cells. Here we report the structure of FXYD2b, one of two splice variants of the protein, determined by NMR spectroscopy in detergent micelles. Solid-state NMR characterization of the protein embedded in phospholipid bilayers indicates that several arginine side chains may be involved in hydrogen bond interactions with the phospholipid polar head groups. The structure and the NMR data suggest that FXYD2b could regulate the Na,K-ATPase by modulating the effective membrane surface electrostatics near the ion binding sites of the pump. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Identification of target genes of transcription factor activator protein 2 gamma in breast cancer cells

    International Nuclear Information System (INIS)

    Ailan, He; Shuanglin, Xiang; Xiangwen, Xiao; Daolong, Ren; Lu, Gan; Xiaofeng, Ding; Xi, Qiao; Xingwang, Hu; Rushi, Liu; Jian, Zhang

    2009-01-01

    Activator protein 2 gamma (AP-2γ) is a member of the transcription factor activator protein-2 (AP-2) family, which is developmentally regulated and plays a role in human neoplasia. AP-2γ has been found to be overexpressed in most breast cancers, and have a dual role to inhibit tumor initiation and promote tumor progression afterwards during mammary tumorigensis. To identify the gene targets that mediate its effects, we performed chromatin immunoprecipitation (ChIP) to isolate AP-2γ binding sites on genomic DNA from human breast cancer cell line MDA-MB-453. 20 novel DNA fragments proximal to potential AP-2γ targets were obtained. They are categorized into functional groups of carcinogenesis, metabolism and others. A combination of sequence analysis, reporter gene assays, quantitative real-time PCR, electrophoretic gel mobility shift assays and immunoblot analysis further confirmed the four AP-2γ target genes in carcinogenesis group: ErbB2, CDH2, HPSE and IGSF11. Our results were consistent with the previous reports that ErbB2 was the target gene of AP-2γ. Decreased expression and overexpression of AP-2γ in human breast cancer cells significantly altered the expression of these four genes, indicating that AP-2γ directly regulates them. This suggested that AP-2γ can coordinate the expression of a network of genes, involving in carcinogenesis, especially in breast cancer. They could serve as therapeutic targets against breast cancers in the future

  17. Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways.

    Directory of Open Access Journals (Sweden)

    Senthil K Chinnakannan

    Full Text Available Morbilliviruses form a closely related group of pathogenic viruses which encode three non-structural proteins V, W and C in their P gene. Previous studies with rinderpest virus (RPV and measles virus (MeV have demonstrated that these non-structural proteins play a crucial role in blocking type I (IFNα/β and type II (IFNγ interferon action, and various mechanisms have been proposed for these effects. We have directly compared four important morbilliviruses, rinderpest (RPV, measles virus (MeV, peste des petits ruminants virus (PPRV and canine distemper virus (CDV. These viruses and their V proteins could all block type I IFN action. However, the viruses and their V proteins had varying abilities to block type II IFN action. The ability to block type II IFN-induced gene transcription correlated with co-precipitation of STAT1 with the respective V protein, but there was no correlation between co-precipitation of either STAT1 or STAT2 and the abilities of the V proteins to block type I IFN-induced gene transcription or the creation of the antiviral state. Further study revealed that the V proteins of RPV, MeV, PPRV and CDV could all interfere with phosphorylation of the interferon-receptor-associated kinase Tyk2, and the V protein of highly virulent RPV could also block the phosphorylation of another such kinase, Jak1. Co-precipitation studies showed that morbillivirus V proteins all form a complex containing Tyk2 and Jak1. This study highlights the ability of morbillivirus V proteins to target multiple components of the IFN signalling pathways to control both type I and type II IFN action.

  18. High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Aida Barreiro-Alonso

    2016-01-01

    Full Text Available Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.

  19. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    Science.gov (United States)

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise.

    Science.gov (United States)

    Messina, Mark; Lynch, Heidi; Dickinson, Jared M; Reed, Katharine E

    2018-05-03

    Much attention has been given to determining the influence of total protein intake and protein source on gains in lean body mass (LBM) and strength in response to resistance exercise training (RET). Acute studies indicate that whey protein, likely related to its higher leucine content, stimulates muscle protein synthesis (MPS) to a greater extent than proteins such as soy and casein. Less clear is the extent to which the type of protein supplemented impacts strength and LBM in longer term studies (≥6 weeks). Therefore, a meta-analysis was conducted to compare the effect of supplementation with soy protein to animal protein supplementation on strength and LBM in response to RET. Nine studies involving 266 participants suitable for inclusion in the meta-analysis were identified. Five studies compared whey with soy protein and four compared soy protein with other proteins (beef, milk or dairy protein). Meta-analysis showed that supplementing RET with whey or soy protein resulted in significant increases in strength but found no difference between groups (bench press Chi 2 = 0.02, p=0.90; squat Chi 2 =0.22, p =0.64). There was no significant effect of whey or soy alone (n=5) on LBM change, and no differences between groups (Chi 2 =0.00, p=0.96). Strength and LBM both increased significantly in the 'other protein' and the soy groups (n=9), but there were no between group differences (bench Chi 2 =0.02, p=0.88; squat Chi 2 =0.78, p=0.38 and LBM Chi 2 =0.06, p=0.80). The results of this meta-analysis indicate that soy protein supplementation produces similar gains in strength and LBM in response to RET as whey protein.

  1. A study on the effect of the internal exposure to "2"1"0Po on the excretion of urinary proteins in rats

    International Nuclear Information System (INIS)

    Sadi, Baki; Li, Chunsheng; Ko, Raymond; Daka, Joseph; Yusuf, Hamdi; Wyatt, Heather; Surette, Joel; Priest, Nick; Hamada, Nobuyuki

    2016-01-01

    This study was designed to assess the feasibility of a noninvasive urine specimen for the detection of proteins as indicators of internal exposure to ionizing radiation. Three groups of rats (five in each group) were intravenously injected with 1601 ± 376, 10,846 ± 591 and 48,467 ± 2812 Bq of "2"1"0Po in citrate form. A sham-exposed control group of five rats was intravenously injected with sterile physiological saline. Daily urine samples were collected over 4 days following injection. Purification and pre-concentration of urinary proteins were carried out by ultrafiltration using a 3000 Da molecular weight cutoff membrane filter. The concentration of common urinary proteins, namely albumin, alpha-1-acid glycoprotein, immunoglobulins IgA and IgG, was measured by an enzyme-linked immunosorbent assay. Urinary excretion of albumin decreased dose-dependently (p < 0.05) 96 h post-injection relative to the control group. In contrast, no statistically significant effects were observed for other proteins tested. The dose-dependent decrease in urinary excretion of albumin observed in this study underscores the need for further research, which may lead to the discovery of new biomarkers that would reflect the changes in the primary target organs for deposition of "2"1"0Po. (orig.)

  2. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  3. Increased serum levels of high mobility group box 1 protein in patients with autistic disorder.

    Science.gov (United States)

    Emanuele, Enzo; Boso, Marianna; Brondino, Natascia; Pietra, Stefania; Barale, Francesco; Ucelli di Nemi, Stefania; Politi, Pierluigi

    2010-05-30

    High mobility group box 1 (HMGB1) is a highly conserved, ubiquitous protein that functions as an activator for inducing the immune response and can be released from neurons after glutamate excitotoxicity. The objective of the present study was to measure serum levels of HMGB1 in patients with autistic disorder and to study their relationship with clinical characteristics. We enrolled 22 adult patients with autistic disorder (mean age: 28.1+/-7.7 years) and 28 age- and gender-matched healthy controls (mean age: 28.7+/-8.1 years). Serum levels of HMGB1 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with healthy subjects, serum levels of HMGB1 were significantly higher in patients with autistic disorder (10.8+/-2.6 ng/mL versus 5.6+/-2.5 ng/mL, respectively, Pautistic disorder. Increased HMGB1 may be a biological correlate of the impaired reciprocal social interactions in this neurodevelopmental disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  4. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    Science.gov (United States)

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  5. The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.

    Science.gov (United States)

    Iacovache, Ioan; Biasini, Marco; Kowal, Julia; Kukulski, Wanda; Chami, Mohamed; van der Goot, F Gisou; Engel, Andreas; Rémigy, Hervé-W

    2010-03-01

    Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution. (c) 2009 Elsevier Inc. All rights reserved.

  6. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles.

    Science.gov (United States)

    Wise, Michael J

    2003-10-29

    The late embryogenesis abundant (LEA) proteins cover a number of loosely related groups of proteins, originally found in plants but now being found in non-plant species. Their precise function is unknown, though considerable evidence suggests that LEA proteins are involved in desiccation resistance. Using a number of statistically-based bioinformatics tools the classification of a large set of LEA proteins, covering all Groups, is reexamined together with some previous findings. Searches based on peptide composition return proteins with similar composition to different LEA Groups; keyword clustering is then applied to reveal keywords and phrases suggestive of the Groups' properties. Previous research has suggested that glycine is characteristic of LEA proteins, but it is only highly over-represented in Groups 1 and 2, while alanine, thought characteristic of Group 2, is over-represented in Group 3, 4 and 6 but under-represented in Groups 1 and 2. However, for LEA Groups 1 2 and 3 it is shown that glutamine is very significantly over-represented, while cysteine, phenylalanine, isoleucine, leucine and tryptophan are significantly under-represented. There is also evidence that the Group 4 LEA proteins are more appropriately redistributed to Group 2 and Group 3. Similarly, Group 5 is better found among the Group 3 LEA proteins. There is evidence that Group 2 and Group 3 LEA proteins, though distinct, might be related. This relationship is also evident in the overlapping sets of keywords for the two Groups, emphasising alpha-helical structure and, at a larger scale, filaments, all of which fits well with experimental evidence that proteins from both Groups are natively unstructured, but become structured under stress conditions. The keywords support localisation of LEA proteins both in the nucleus and associated with the cytoskeleton, and a mode of action similar to chaperones, perhaps the cold shock chaperones, via a role in DNA-binding. In general, non-globular and

  7. LEAping to conclusions: A computational reanalysis of late embryogenesis abundant proteins and their possible roles

    Directory of Open Access Journals (Sweden)

    Wise Michael J

    2003-10-01

    Full Text Available Abstract Background The late embryogenesis abundant (LEA proteins cover a number of loosely related groups of proteins, originally found in plants but now being found in non-plant species. Their precise function is unknown, though considerable evidence suggests that LEA proteins are involved in desiccation resistance. Using a number of statistically-based bioinformatics tools the classification of a large set of LEA proteins, covering all Groups, is reexamined together with some previous findings. Searches based on peptide composition return proteins with similar composition to different LEA Groups; keyword clustering is then applied to reveal keywords and phrases suggestive of the Groups' properties. Results Previous research has suggested that glycine is characteristic of LEA proteins, but it is only highly over-represented in Groups 1 and 2, while alanine, thought characteristic of Group 2, is over-represented in Group 3, 4 and 6 but under-represented in Groups 1 and 2. However, for LEA Groups 1 2 and 3 it is shown that glutamine is very significantly over-represented, while cysteine, phenylalanine, isoleucine, leucine and tryptophan are significantly under-represented. There is also evidence that the Group 4 LEA proteins are more appropriately redistributed to Group 2 and Group 3. Similarly, Group 5 is better found among the Group 3 LEA proteins. Conclusions There is evidence that Group 2 and Group 3 LEA proteins, though distinct, might be related. This relationship is also evident in the overlapping sets of keywords for the two Groups, emphasising alpha-helical structure and, at a larger scale, filaments, all of which fits well with experimental evidence that proteins from both Groups are natively unstructured, but become structured under stress conditions. The keywords support localisation of LEA proteins both in the nucleus and associated with the cytoskeleton, and a mode of action similar to chaperones, perhaps the cold shock chaperones

  8. Engineering Synthetic Proteins to Generate Ca2+ Signals in Mammalian Cells.

    Science.gov (United States)

    Qudrat, Anam; Truong, Kevin

    2017-03-17

    The versatility of Ca 2+ signals allows it to regulate diverse cellular processes such as migration, apoptosis, motility and exocytosis. In some receptors (e.g., VEGFR2), Ca 2+ signals are generated upon binding their ligand(s) (e.g., VEGF-A). Here, we employed a design strategy to engineer proteins that generate a Ca 2+ signal upon binding various extracellular stimuli by creating fusions of protein domains that oligomerize to the transmembrane domain and the cytoplasmic tail of the VEGFR2. To test the strategy, we created chimeric proteins that generate Ca 2+ signals upon stimulation with various extracellular stimuli (e.g., rapamycin, EDTA or extracellular free Ca 2+ ). By coupling these chimeric proteins that generate Ca 2+ signals with proteins that respond to Ca 2+ signals, we rewired, for example, dynamic cellular blebbing to increases in extracellular free Ca 2+ . Thus, using this design strategy, it is possible to engineer proteins to generate a Ca 2+ signal to rewire a wide range of extracellular stimuli to a wide range of Ca 2+ -activated processes.

  9. Receptor-interacting Protein 140 Overexpression Promotes Neuro-2a Neuronal Differentiation by ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Xiao Feng

    2015-01-01

    Full Text Available Background: Abnormal neuronal differentiation plays an important role in central nervous system (CNS development abnormalities such as Down syndrome (DS, a disorder that results directly from overexpression of genes in trisomic cells. Receptor-interacting protein 140 (RIP140 is significantly upregulated in DS brains, suggesting its involvement in DS CNS development abnormalities. However, the role of RIP140 in neuronal differentiation is still not clear. The current study aimed to investigate the effect of RIP140 overexpression on the differentiation of neuro-2a (N2a neuroblastoma cells, in vitro. Methods: Stably RIP140-overexpressing N2a (N2a-RIP140 cells were used as a neurodevelopmental model, and were constructed by lipofection and overexpression validated by real-time polymerase chain reaction and Western blot. Retinoic acid (RA was used to stimulate N2a differentiation. Combining the expression of Tuj1 at the mRNA and protein levels, the percentage of cells baring neurites, and the number of neurites per cell body was semi-quantified to determine the effect of RIP140 on differentiation of N2a cells. Furthermore, western blot and the ERK1/2 inhibitor U0126 were used to identify the specific signaling pathway by which RIP140 induces differentiation of N2a cells. Statistical significance of the differences between groups was determined by one-way analysis of variance followed by the Dunnett test. Results: Compared to untransfected N2a cells RIPl40 expression in N2a-RIP140 cells was remarkably upregulated at both the mRNA and protein levels. N2a-RIP140 cells had a significantly increased percentage of cells baring neurites, and numbers of neurites per cell, as compared to N2a cells, in the absence and presence of RA (P < 0.05. In addition, Tuj1, a neuronal biomarker, was strongly upregulated in N2a-RIP140 cells (P < 0.05 and phosphorylated ERK1/2 (p-ERK1/2 levels in N2a-RIP140 cells were dramatically increased, while differentiation was

  10. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  11. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  12. α-Actinin-2, a cytoskeletal protein, binds to angiogenin

    International Nuclear Information System (INIS)

    Hu Huajun; Gao Xiangwei; Sun Yishan; Zhou Jiliang; Yang Min; Xu Zhengping

    2005-01-01

    Angiogenin is an angiogenic factor which is involved in tumorigenesis. However, no particular intracellular protein is known to interact directly with angiogenin. In the present study, we reported the identification of α-actinin-2, an actin-crosslinking protein, as a potential angiogenin-interacting partner by yeast two-hybrid screening. This interaction was confirmed by different approaches. First, angiogenin was pulled down together with His-tagged α-actinin-2 by Ni 2+ -agarose resins. Second, α-actinin-2 was coimmunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody. Third, the in vivo interaction of these two proteins was revealed by fluorescence resonance energy transfer analysis. Since members of α-actinin family play pivotal roles in cell proliferation, migration, and invasion, the interaction between α-actinin-2 and angiogenin may underline one possible mechanism of angiogenin in angiogenesis. Our finding presents the first evidence of an interaction of a cytosolic protein with angiogenin, which might be a novel interference target for anti-angiogenesis and anti-tumor therapy

  13. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. Qizhuang Lv Kangkang Guo Tao Wang ... Keywords. Cellular protein; FHC; ORF4 protein; porcine circovirus type 2 (PCV2); yeast two-hybrid ... Journal of Biosciences | News ...

  14. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2