WorldWideScience

Sample records for group hmg proteins

  1. Quantitative changes of high mobility group non-histone chromosomal proteins HMG1 and HMG2 during rooster spermatogenesis.

    Science.gov (United States)

    Chiva, M; Mezquita, C

    1983-10-17

    The quantitative changes of a group of non-histone chromosomal proteins identified by its solubility, electrophoretic mobility and amino acid analysis as the high mobility group proteins HMG1 and HMG2, were studied throughout rooster spermatogenesis. The ratio HMG1/HMG2 remained constant (0.66 +/- 0.04) during the transition from dividing meiotic and premeiotic cells to nondividing spermatids and from transcriptionally active cells (spermatogonia, spermatocytes and early spermatids) to transcriptionally inactive late spermatids. The ratios HMG1/nucleosomal histone and HMG2/nucleosomal histone increased markedly at the end of spermiogenesis during the transition from nucleohistone to nucleoprotamine when nucleosomes are being disassembled. The high mobility group chromosomal proteins HMG1 and HMG2 were not detectable in the nuclei of rooster spermatozoa.

  2. The active gene that encodes human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, S. [Dipartimento di Genetica e di Biologia dei Microrganismi, Milan (Italy); Finelli, P.; Rocchi, M. [Istituto di Genetica, Bari (Italy)] [and others

    1996-07-15

    The human genome contains a large number of sequences related to the cDNA for High Mobility Group 1 protein (HMG1), which so far has hampered the cloning and mapping of the active HMG1 gene. We show that the human HMG1 gene contains introns, while the HMG1-related sequences do not and most likely are retrotransposed pseudogenes. We identified eight YACs from the ICI and CEPH libraries that contain the human HMG1 gene. The HMG1 gene is similar in structure to the previously characterized murine homologue and maps to human chromosome 13 and q12, as determined by in situ hybridization. The mouse Hmg1 gene maps to the telomeric region of murine Chromosome 5, which is syntenic to the human 13q12 band. 18 refs., 3 figs.

  3. Effect of high mobility group nonhistone proteins HMG-20 (ubiquitin) and HMG-17 on histone deacetylase activity assayed in vitro.

    Science.gov (United States)

    Mezquita, J; Chiva, M; Vidal, S; Mezquita, C

    1982-03-11

    We have used a method previously described by Reeves and Candido (1) to partially release histone deacetylase from cell nuclei together with putative regulators of the enzyme. Histone deacetylase released from testis cell nuclei and its putative regulators were separated by gel filtration in Sepharose 6B. A peak of low molecular weight contains a heat-stable factor that stimulate histone deacetylase in vitro. Many of the properties of the activator coincide with those of the protein HMG-20 (ubiquitin). Ubiquitin isolated from testis cell nuclei stimulated histone deacetylase in vitro. It has been suggested that HMG-17 partially inhibits histone deacetylase in Fried cell nuclei (2). In our system, HMG-17 shows no inhibitory effect on histone deacetylase activity

  4. Interactions between HMG proteins (HMG1/2 and HMG14/17) and humanε-globin gene promoter(ε-promoter)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High mobility group (HMG) proteins are abundant non-histone proteins in the nuclei of eukaryocytes. It has been shown that HMG proteins may play important roles in the structure and function of chromatin. In the present study, thebinding of HMG proteins (HMG1/2 and HMG14/17) to the human ε-globin gene promoter (ε-promo- ter, -177-+1 bp) has been examined by using both the in vitro nucleosome reconstitution and the electrophoresis mobility shift assay (EMSA). We found that HMG1/2 proteins could bind to the naked ε-promoter DNA, however, HMG14/17 could not. Using the in vitro nucleosome recons- titution, we revealed that HMG14/17 could bind to the mononucleosome reconstituted in vitro with ε-promoter,whi- le HMG1/2 could not. Those results indicate that the binding of HMG proteins to ε-promoter is dynamic as the nucleo- some assembling and disassembling. Wespeculated that this selective binding of HMG proteins to ε-promoter might playa critical role in the regulation of ε-globin gene expression.

  5. DNA intercalators induce specific release of HMG 14, HMG 17 and other DNA-binding proteins from chicken erythrocyte chromatin.

    Science.gov (United States)

    Schröter, H; Maier, G; Ponstingl, H; Nordheim, A

    1985-01-01

    Chicken erythrocyte nuclei were incubated with DNA intercalating agents in order to isolate from chromatin specific DNA-binding proteins whose binding specificity may be determined by DNA secondary and/or tertiary structure. The intercalating agents ethidium bromide (EtBr) and propidium iodide induce the specific release of high mobility group proteins HMG 14 and HMG 17 under low ionic strength conditions. Chloroquine (CQ) intercalation also results in the selective liberation of HMG 14 and HMG 17, but, in addition, selectively releases other nuclear proteins (including histone H1A) in a pH- and ionic strength-dependent fashion. The use of this new 'elutive intercalation' technique for the isolation and purification of 'sequence-specific' and 'helix-specific' DNA-binding proteins is suggested. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:4092697

  6. High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops

    Directory of Open Access Journals (Sweden)

    Strauss François

    2000-10-01

    Full Text Available Abstract Background Proteins HMG1 and HMG2 are two of the most abundant non histone proteins in the nucleus of mammalian cells, and contain a domain of homology with many proteins implicated in the control of development, such as the sex-determination factor Sry and the Sox family of proteins. In vitro studies of interactions of HMG1/2 with DNA have shown that these proteins can bind to many unusual DNA structures, in particular to four-way junctions, with binding affinities of 107 to 109 M-1. Results Here we show that HMG1 and HMG2 bind with a much higher affinity, at least 4 orders of magnitude higher, to a new structure, Form X, which consists of a DNA loop closed at its base by a semicatenated DNA junction, forming a DNA hemicatenane. The binding constant of HMG1 to Form X is higher than 5 × 1012 M-1, and the half-life of the complex is longer than one hour in vitro. Conclusions Of all DNA structures described so far with which HMG1 and HMG2 interact, we have found that Form X, a DNA loop with a semicatenated DNA junction at its base, is the structure with the highest affinity by more than 4 orders of magnitude. This suggests that, if similar structures exist in the cell nucleus, one of the functions of these proteins might be linked to the remarkable property of DNA hemicatenanes to associate two distant regions of the genome in a stable but reversible manner.

  7. HMG I-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters

    DEFF Research Database (Denmark)

    Jacobsen, K; Laursen, N B; Jensen, Erik Østergaard

    1990-01-01

    affinity. The LAT1 and NAT1 factors were released from chromatin by extraction with a low-salt buffer and were soluble in 2% trichloroacetic acid, implying a relationship to high-mobility group (HMG) proteins. DNA binding studies further indicated a functional relationship of these factors to the human HMG...

  8. Chromosomal protein HMG-14 gene maps to the Down syndrome region of human chromosome 21 and is overexpressed in mouse trisomy 16

    Energy Technology Data Exchange (ETDEWEB)

    Pash, J.; Popescu, N.; Matocha, M.; Rapoport, S.; Bustin, M. (National Institutes of Health, Bethesda, MD (USA))

    1990-05-01

    The gene for human high-mobility-group (HMG) chromosomal protein HMG-14 is located in region 21q22.3, a region associated with the pathogenesis of Down syndrome, one of the most prevalent human birth defects. The expression of this gene is analyzed in mouse embryos that are trisomic in chromosome 16 and are considered to be an animal model for Down syndrome. RNA blot-hybridization analysis and detailed analysis of HMG-14 protein levels indicate that mouse trisomy 16 embryos have approximately 1.5 times more HMG-14 mRNA and protein than their normal littermates, suggesting a direct gene dosage effect. The HMG-14 gene may be an additional marker for the Down syndrome. Chromosomal protein HMG-14 is a nucleosomal binding protein that may confer distinct properties to the chromatin structure of transcriptionally active genes and therefore may be a contributing factor in the etiology of the syndrome.

  9. Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks.

    Science.gov (United States)

    Nagaki, S; Yamamoto, M; Yumoto, Y; Shirakawa, H; Yoshida, M; Teraoka, H

    1998-05-08

    DNA ligase IV in a complex with XRCC4 is responsible for DNA end-joining in repair of DNA double-strand breaks (DSB) and V(D)J recombination. We found that non-histone chromosomal high mobility group (HMG) proteins 1 and 2 enhanced the ligation of linearized pUC119 DNA with DNA ligase IV from rat liver nuclear extract. Intra-molecular and inter-molecular ligations of cohesive-ended and blunt-ended DNA were markedly stimulated by HMG1 and 2. Recombinant HMG2-domain A, B, and (A + B) polypeptides were similarly, but non-identically, effective for the stimulation of DSB ligation reaction. Ligation of single-strand breaks (nicks) was only slightly activated by the HMG proteins. The DNA end-binding Ku protein singly or in combination with the catalytic component of DNA-dependent protein kinase (DNA-PK) as the DNA-PK holoenzyme was ineffective for the ligation of linearized pUC119 DNA. Although the stimulatory effect of HMG1 and 2 on ligation of DSB in vitro was not specific to DNA ligase IV, these results suggest that HMG1 and 2 are involved in the final ligation step in DNA end-joining processes of DSB repair and V(D)J recombination.

  10. HMG Modifications and Nuclear Function

    OpenAIRE

    Zhang, Qingchun; Wang, Yinsheng

    2010-01-01

    High mobility group (HMG) proteins assume important roles in regulating chromatin dynamics, transcriptional activities of genes and other cellular processes. Post-translational modifications of HMG proteins can alter their interactions with DNA and proteins, and consequently, affect their biological activities. Although the mechanisms through which these modifications are involved in regulating biological processes in different cellular contexts are not fully understood, new insights into the...

  11. Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro.

    Science.gov (United States)

    Sheridan, P L; Sheline, C T; Cannon, K; Voz, M L; Pazin, M J; Kadonaga, J T; Jones, K A

    1995-09-01

    Lymphoid enhancer-binding factor 1 (LEF-1) is a regulatory high mobility group (HMG) protein that activates the T cell receptor alpha (TCR alpha) enhancer in a context-restricted manner in T cells. In this paper we demonstrate that the distal region of the human immunodeficiency virus-1 (HIV-1) enhancer, which contains DNA-binding sites for LEF-1 and Ets-1, also provides a functional context for activation by LEF-1. First, we show that mutations in the LEF-1-binding site inhibit the activity of multimerized copies of the HIV-1 enhancer in Jurkat T cells, and that LEF-1/GAL4 can activate a GAL4-substituted HIV-1 enhancer 80- to 100-fold in vivo. Second, recombinant LEF-1 is shown to activate HIV-1 transcription on chromatin-assembled DNA in vitro. By using a nucleosome-assembly system derived from Drosophila embryos, we find that the packaging of DNA into chromatin in vitro strongly represses HIV-1 transcription and that repression can be counteracted efficiently by preincubation of the DNA with LEF-1 (or LEF-1 and Ets-1) supplemented with fractions containing the promoter-binding protein, Sp1. Addition of TFE-3, which binds to an E-box motif upstream of the LEF-1 and Ets-1 sites, further augments transcription in this system. Individually or collectively, none of the three enhancer-binding proteins (LEF-1, Ets-1, and TFE-3) could activate transcription in the absence of Sp1. A truncation mutant of LEF-1 (HMG-88), which contains the HMG box but lacks the trans-activation domain, did not activate transcription from nucleosomal DNA, indicating that bending of DNA by the HMG domain is not sufficient to activate transcription in vitro. We conclude that transcription activation by LEF-1 in vitro is a chromatin-dependent process that requires a functional trans-activation domain in addition to the HMG domain.

  12. An HMG1-like protein facilitates Wnt signaling in Caenorhabditis elegans

    Science.gov (United States)

    Jiang, Lily I.; Sternberg, Paul W.

    1999-01-01

    We show that during Caenorhabditis elegans male spicule development, the specification of a glial versus neuronal cell fate in a canonical neurogenic sublineage is dependent on Wnt signaling. Inactivation of a Wnt signaling pathway mediated by the Wnt receptor LIN-17 transforms the SPD sheath cell into its sister, the SPD neuron. We discovered a new mutant, son-1, that displays this same cell fate transformation. The son-1 mutation enhances the phenotypes of reduction-of-function lin-17 mutants in several developmental processes, including vulva development, somatic gonad development, and male tail patterning. son-1 encodes an HMG1/2-like DNA-binding protein and is localized in all cell nuclei through development as revealed by a GFP reporter construct. Disruption of son-1 function by RNA-mediated interference results in the same spicule defect as caused by overexpression of POP-1, a TCF/LEF class HMG protein known to act downstream of the Wnt signaling pathway. Our results provide in vivo evidence for the functional involvement of an HMG1/2-like protein, SON-1, in Wnt signaling. The sequence nonspecific HMG protein SON-1 and the sequence specific HMG protein POP-1 might both act in the Wnt responding cells to regulate gene transcription in opposite directions. PMID:10197987

  13. The in vitro reconstitution of nucleosome and its binding patterns with HMG1/2 and HMG14/17 proteins

    Institute of Scientific and Technical Information of China (English)

    JIA HUA HU; JIE JIANG; YING HUA MA; NA YANG; MAO HU ZHANG; MIN WU; JIAN FEI; LI HE GUO

    2003-01-01

    Using atomic force microscopy (AFM), the dynamic process of the in vitro nucleosome reconstitution followed by slow dilution from high salt to low salt was visualized. Data showed that the histone octamers were dissociated from DNA at 1M NaCl. When the salt concentration was slowly reduced to 650 mMand 300 mM, the core histones bound to the naked DNA gradually. Once the salt concentration was reduced to 50 mM the classic "beads-on-a-string" structure was clearly visualized. Furthermore, using the technique of the in vitro reconstitution ofnucleosome,the mono- and di- nucleosomes were assembled in vitro with both HS2core (-10681 to -10970 bp) and NCR2 (-372to -194 bp) DNA sequences in the 5'flanking sequence of human b-globin gene. Data revealed that HMG 1/2 and HMG 14/17 proteins binding to both DNA sequences are changeable following the assembly and disassembly of nucleosomes. We suggest that the changeable binding patterns of HMG 14/17 and HMG1/2 proteins with these regulatory elements may be critical in the process of nucleosome assembly, recruitment of chromatin-modifying activities, and the regulation of human b-globin gene expression.

  14. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions.

    Science.gov (United States)

    Totsingan, Filbert; Bell, Anthony J

    2013-11-01

    The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.

  15. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  16. High Mobility Group Proteins and Their Post-Translational Modifications

    OpenAIRE

    Zhang, Qingchun; Wang, Yinsheng

    2008-01-01

    The high mobility group (HMG) proteins, including HMGA, HMGB and HMGN, are abundant and ubiquitous nuclear proteins that bind to DNA, nucleosome and other multi-protein complexes in a dynamic and reversible fashion to regulate DNA processing in the context of chromatin. All HMG proteins, like histone proteins, are subjected to extensive post-translational modifications (PTMs), such as lysine acetylation, arginine/lysine methylation and serine/threonine phosphorylation, to modulate their inter...

  17. Major Peptides from Amaranth (Amaranthus cruentus Protein Inhibit HMG-CoA Reductase Activity

    Directory of Open Access Journals (Sweden)

    Rosana Aparecida Manólio Soares

    2015-02-01

    Full Text Available The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase, a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC, and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect.

  18. DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution.

    Science.gov (United States)

    Dragan, Anatoly I; Klass, Janet; Read, Christopher; Churchill, Mair E A; Crane-Robinson, Colyn; Privalov, Peter L

    2003-08-22

    The thermal properties of two forms of the Drosophila melanogaster HMG-D protein, with and without its highly basic 26 residue C-terminal tail (D100 and D74) and the thermodynamics of their non-sequence-specific interaction with linear DNA duplexes were studied using scanning and titration microcalorimetry, spectropolarimetry, fluorescence anisotropy and FRET techniques at different temperatures and salt concentrations. It was shown that the C-terminal tail of D100 is unfolded at all temperatures, whilst the state of the globular part depends on temperature in a rather complex way, being completely folded only at temperatures close to 0 degrees C and unfolding with significant heat absorption at temperatures below those of the gross denaturational changes. The association constant and thus Gibbs energy of binding for D100 is much greater than for D74 but the enthalpies of their association are similar and are large and positive, i.e. DNA binding is a completely entropy-driven process. The positive entropy of association is due to release of counterions and dehydration upon forming the protein/DNA complex. Ionic strength variation showed that electrostatic interactions play an important but not exclusive role in the DNA binding of the globular part of this non-sequence-specific protein, whilst binding of the positively charged C-terminal tail of D100 is almost completely electrostatic in origin. This interaction with the negative charges of the DNA phosphate groups significantly enhances the DNA bending. An important feature of the non-sequence-specific association of these HMG boxes with DNA is that the binding enthalpy is significantly more positive than for the sequence-specific association of the HMG box from Sox-5, despite the fact that these proteins bend the DNA duplex to a similar extent. This difference shows that the enthalpy of dehydration of apolar groups at the HMG-D/DNA interface is not fully compensated by the energy of van der Waals interactions

  19. Interactions between HMG proteins and the core sequence of DNaseI hypersensitive site 2 in the locus control region (LCR) of the human β-like globin gene cluster

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNaseI hypersensitive site 2 (HS2core DNA sequence, -10681--10970 bp) in the locus control region (LCR) of the human b-like globin gene cluster has been examined by using both the in vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG14/17 cannot. Using the in vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG1/2 cannot bind to the nucleosomes reconstituted in vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and the HS2core DNA sequence which exists in different states (the naked DNA or the in vitro reconstituted nucleosomal DNA) are quite different. We speculate that HMG proteins might play a critical role in the regulation of the human β-like globin gene's expression.

  20. Interactions between HMG proteins and the core sequence of DNaseI hypersensitive site 2 in the locus control region (LCR) of the human b-like globin gene cluster

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNaseI hypersensitive site 2 (HS2core DNA sequence, -10681--10970 bp) in the locus control region (LCR) of the human b-like globin gene cluster has been examined by using both the in vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG14/17 cannot. Using the in vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG1/2 cannot bind to the nucleosomes reconstituted in vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and the HS2core DNA sequence which exists in different states (the naked DNA or the in vitro reconstituted nucleosomal DNA) are quite different. We speculate that HMG proteins might play a critical role in the regulation of the human b-like globin gene's expression.

  1. Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins.

    Science.gov (United States)

    Urrutia, Raul; Velez, Gabriel; Lin, Marisa; Lomberk, Gwen; Neira, Jose Luis; Iovanna, Juan

    2014-08-01

    NUPR1, a small chromatin protein, plays a critical role in cancer development, progression, and resistance to therapy. Here, using a combination of structural bioinformatics and molecular modeling methods, we report several novel findings that enhance our understanding of the biochemical function of this protein. We find that NUPR1 has been conserved throughout evolution, and over time it has undergone duplications and transpositions to form other transcriptional regulators. Using threading, homology-based molecular modeling, molecular mechanics calculations, and molecular dynamics simulations, we generated structural models for four of these proteins: NUPR1a, NUPR1b, NUPR2, and the NUPR-like domain of GTF2-I. Comparative analyses of these models combined with extensive linear motif identification reveal that these four proteins, though similar in their propensities for folding, differ in size, surface changes, and sites amenable for posttranslational modification. Lastly, taking NUPR1a as the paradigm for this family, we built models of a NUPR-DNA complex. Additional structural comparisons revealed that NUPR1 defines a new family of small-groove-binding proteins that share structural features with, yet are distinct from, helix-loop-helix AT-hook-containing HMG proteins. These models and inferences should lead to a better understanding of the function of this group of chromatin proteins, which play a critical role in the development of human malignant diseases.

  2. Interactions between HMG proteins and the core sequence of DNaseI hypersensitive site 2 in the locus control region (LCR) of the human β-Mike globin gene cluster

    Institute of Scientific and Technical Information of China (English)

    赵晖; 张树冰; 蒋俶; 钱若兰

    2000-01-01

    HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNasel hypersensitive site 2 (HS2core DNA sequence, -10681-10970 bp) in the locus control region (LCR) of the human β-like globin gene cluster has been examined by using both the in vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG 14/17 cannot. Using the in vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG 1/2 cannot bind to the nucleosomes reconstituted in vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and t

  3. HMG-box sequences from microbats homologous to the human SOX30 HMG-box.

    Science.gov (United States)

    Bullejos, M; Díaz de la Guardia, R; Barragán, M J; Sánchez, A

    2000-01-01

    SOX genes are a family of genes that encode for proteins which are characterised by the presence of a HMG-domain related to that of the mammalian sex-determining gene (SRY). By definition, the DNA binding domain of SOX genes is at least 50% identical to the 79 amino acid HMG domain of the SRY gene. We report here two HMG-box sequences from two microbat species (R. ferrumequinum and P. Pipistrellus) which were PCR amplified using a primer pair specific to the mouse Sry HMG-box. The high percentage of identity of this sequences with the human and mouse SOX30 HMG-box suggests that they are the SOX30 HMG-box for these two bat species.

  4. Recent integrations of mammalian Hmg retropseudogenes

    Indian Academy of Sciences (India)

    Eillen Tecle; Leann Zielinski; David H. Kass

    2006-12-01

    We propose that select retropseudogenes of the high mobility group nonhistone chromosomal protein genes have recently integrated into mammalian genomes on the basis of the high sequence identity of the copies to the cDNA sequences derived from the original genes. These include the Hmg1 gene family in mice and the Hmgn2 family in humans. We investigated orthologous loci of several strains and species of Mus for presence or absence of apparently young Hmg1 retropseudogenes. Three of four analysed elements were specific to Mus musculus, two of which were not fixed, indicative of recent evolutionary origins. Additionally, we datamined a presumptive subfamily (Hmgz) of mouse Hmg1, but only identified one true element in the GenBank database, which is not consistent with a separate subfamily status. Two of four analysed Hmgn2 retropseudogenes were specific for the human genome, whereas a third was identified in human, chimpanzee and gorilla genomes, and a fourth additionally found in orangutan but absent in African green monkey. Flanking target-site duplications were consistent with LINE integration sites supporting LINE machinery for their mechanism of amplification. The human Hmgn2 retropseudogenes were full length, whereas the mouse Hmg1 elements were either full length or 3′-truncated at specific positions, most plausibly the result of use of alternative polyadenylation sites. The nature of their recent amplification success in relation to other retropseudogenes is unclear, although availability of a large number of transcripts during gametogenesis may be a reason. It is apparent that retropseudogenes continue to shape mammalian genomes, and may provide insight into the process of retrotransposition, as well as offer potential use as phylogenetic markers.

  5. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

    DEFF Research Database (Denmark)

    Kjaerulff, S; Dooijes, D; Clevers, H

    1997-01-01

    The Schizosaccharomyces pombe mfm1 gene is expressed in an M cell-specific fashion. This regulation requires two HMG-box proteins: the ubiquitous Ste11 transcription factor and the M cell-controlling protein Mat1-Mc. Here we report that the mfm1 promoter contains a single, weak Stell-binding site...

  6. Dual function of Ixr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes.

    Science.gov (United States)

    Vizoso-Vázquez, A; Lamas-Maceiras, M; Fernández-Leiro, R; Rico-Díaz, A; Becerra, M; Cerdán, M E

    2017-02-01

    Ixr1 is a transcriptional factor involved in the response to hypoxia, which is also related to DNA repair. It binds to DNA through its two in-tandem high mobility group box (HMG-box) domains. Each function depends on recognition of different DNA structures, B-form DNA at specific consensus sequences for transcriptional regulation, or distorted DNA, like cisplatin-DNA adducts, for DNA repair. However, the contribution of the HMG-box domains in the Ixr1 protein to the formation of different protein-DNA complexes is poorly understood. We have biophysically and biochemically characterized these interactions with specific DNA sequences from the promoters regulated by Ixr1, or with cisplatin-DNA adducts. Both HMG-boxes are necessary for transcriptional regulation, and they are not functionally interchangeable. The in-tandem arrangement of their HMG-boxes is necessary for functional folding and causes sequential cooperative binding to specific DNA sequences, with HMG-box A showing a higher contribution to DNA binding and bending than the HMG-box B. Binding of Ixr1 HMG boxes to specific DNA sequences is entropy driven, whereas binding to platinated DNA is enthalpy driven for HMG-box A and entropy driven for HMG-box B. This is the first proof that HMG-box binding to different DNA structures is associated with predictable thermodynamic differences. Based on our study, we present a model to explain the dual function of Ixr1 in the regulation of gene expression and recognition of distorted DNA structures caused by cisplatin treatment.

  7. Comparative analysis and evolutionary significance of the HMG1 gene in crucian carp,blunt snout bream,and their polyploid progeny

    Institute of Scientific and Technical Information of China (English)

    Dong Liu; Zhen Liu; Shaojun Liu; Liangguo Liu; Cuiping You; Lin Chen; Huan Zhong; Yun Liu

    2009-01-01

    The full-length mRNA of the high mobility group protein 1 coding gene (HMG1) was obtained by RACE-PCR from red crucian carp (Carassius auratus red var.),blunt snout bream (Megalobrama amblycephala),and their triploid and tetraploid progeny.The sequence contained an open reading frame of 579 nucleotides coding for 193 amino acids.The nucleotide identity of HMG1 was higher between the tetraploid hybrid and the maternal red crucian carp (99%) than between the tetraploid hybrid and the paternal blunt snout bream (97%).The nucleotide identity between the triploid hybrids and each parent (95%) was lower than that between the parents (98%).The protein identity between the tetraploid hybrid and each parent (100%) was higher than that between the triploid hybrid and each parent (97%).Our results suggest that interspecific hybridization generates a shock to the HMG1 gene in triploid hybrids,causing divergence of nucleotides.The HMG1 protein of the tetraploid hybrids was consistent with that of its parents,which reduced the barrier of cross incompatibility between alleles,providing the basis for the bisexual fertile tetraploid hybrids forming a new polyploid species in nature.The secondary and tertiary structures of the HMG1 protein contain eight helices,three switches,two DNA-binding domains in the N-terminus,and a long acidic tail in the C-terminus.Together,these data suggest that the HMG1 protein plays a role of protein-DNA interactions,facilitating various DNA-dependent activities in the nucleus.We also investigated the phylogeny of fish,amphibian,reptilian,bird,and mammalian HMG1 proteins.Our results suggest that HMG1 is an ancestral protein that has been highly conserved.These data provide clues as to how interspecific hybridization may form polyploid hybrids.

  8. The Cholesterol-Lowering Effect of Alisol Acetates Based on HMG-CoA Reductase and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.

  9. The conserved lymphokine element-0 in the IL5 promoter binds to a high mobility group-1 protein.

    Science.gov (United States)

    Marrugo, J; Marsh, D G; Ghosh, B

    1996-10-01

    The conserved lymphokine elements-0 (CLE0) in the IL5 promoter is essential for the expression of IL-5. Here, we report the cloning and expression of a cDNA encoding a novel CLE0-binding protein, CLEBP-1 from a mouse Th2 clone, D10.G4.1. Interestingly, it was found that the CLEBP1 cDNA sequence was almost identical to the sequences of known high mobility group-1 (HMG1) cDNAs. When expressed as a recombinant fusion protein in Escherichia coli, CLEBP-1 was shown to bind to the IL5-CLE0 element in electrophoretic mobility-shift assays (EMSA) and southwestern blot analysis. The CLEBP-1 fusion protein cross-reacts with and-HMG-1/2 in Western blot analysis. It also binds to the CLE0 elements of IL4, GMCSF and GCSF genes. CLEBP-1 and closely related HMG-1 and HMG-2 proteins may play key roles in facilitating the expression of the lymphokine genes that contain CLE0 elements.

  10. Analysis of pea HMG-I/Y expression suggests a role in defence gene regulation.

    Science.gov (United States)

    Klosterman, Steven J; Choi, Jane J; Hadwiger, Lee A

    2003-07-01

    SUMMARY HMG-I/Y proteins are characterized by the presence of AT-hook motifs, DNA binding domains that recognize AT-rich tracts of DNA. By facilitating protein:protein and protein:DNA interactions in the vicinity of these AT-rich binding sites, HMG-I/Y positively or negatively regulates gene expression. Several pea defence gene promoters have AT-rich tracts of DNA that are potential targets for modulation via HMG-I/Y. In this study, a comparison of the expression of a pea defence gene (DRR206) mRNA relative to the expression of HMG-I/Y mRNA was monitored by Northern analysis following the inoculation of a fungal pathogen, Fusarium solani or treatment with chitosan and a F. solani DNase (Fsph DNase). In pea pod endocarp tissue, HMG-I/Y expression was observed at high levels in untreated tissue and at lower levels 6 h following inoculation or wounding of the tissue. Western blots with an antipea HMG-I/Y polyclonal antibody also revealed that pea HMG-I/Y is expressed at decreased levels 6 h following inoculation or elicitor treatment. HMG-I/Y extracted from pea caused alterations in the gel migration of radio-labelled AT-rich sequences from the pea DRR206 promoter, suggesting that similar interactions could exist in vivo. Agroinfiltration was utilized to express the pea HMG-I/Y gene in tobacco containing a chimeric gene fusion of a promoter from the PR gene, DRR206, and the beta-glucuronidase (GUS) reporter gene. Transient expression of pea HMG-I/Y led to a decrease in GUS reporter gene activity in the heterologous tobacco system. These data implicate pea HMG-I/Y abundance in the down-regulation of DRR206 gene expression, and possibly HMG-I/Y depletion in the expression of defence genes in pea.

  11. Cloning and analysis of an HMG gene from the lamprey Lampetra fluviatilis

    DEFF Research Database (Denmark)

    Sharman, A C; Hay-Schmidt, Anders; Holland, P W

    1997-01-01

    Evolution has shaped the organisation of vertebrate genomes, including the human genome. To shed further light on genome history, we have cloned and analysed an HMG gene from lamprey, representing one of the earliest vertebrate lineages. Genes of the HMG1/2 family encode chromosomal proteins...... that bind DNA in a non-sequence-specific manner, and have been implicated in a variety of cellular processes dependent on chromatin structure. They are characterised by two copies of a conserved motif, the HMG box, followed by an acidic C-terminal region. We report here the cloning of a cDNA clone from...

  12. A Quantitative Study on the in-vitro and in-vivo Acetylation of High Mobility Group A1 Proteins

    OpenAIRE

    Zhang, Qingchun; Zhang, Kangling; Zou, Yan; Perna, Avi; Wang, Yinsheng

    2007-01-01

    High mobility group (HMG) A1 proteins are subject to a number of post-translational modifications, which may regulate their function in gene transcription and other cellular processes. We examined, by using mass spectrometry, the acetylation of HMGA1a and HMGA1b proteins induced by histone acetyltransferases p300 and PCAF in vitro and in PC-3 human prostate cancer cells in vivo. It turned out that five lysine residues in HMGA1a, i.e., Lys-14, Lys-64, Lys-66, Lys-70, and Lys-73, could be acety...

  13. Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2007-11-01

    Full Text Available Abstract The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase and the LDL receptor (LDL-r are involved in this regulation and are also ubiquitously expressed in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The present study evaluated human mononuclear cells as a surrogate for hepatic expression of these genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells. All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly assigned to either EGG (640 mg/d additional dietary cholesterol or SUB groups [equivalent amount of egg substitute (0 dietary cholesterol contributions per day] for 12 weeks. At the end of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C compared to baseline (P > 0.10 or differences in plasma total or LDL-C between groups. The mRNA abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ± 1.26 to 1.32 ± 0.92 arbitrary units P

  14. All About the Protein Foods Group

    Science.gov (United States)

    ... Waste Food Safety Newsroom Dietary Guidelines Communicator’s Guide All about the Protein Foods Group You are here Home / MyPlate / Protein Foods All about the Protein Foods Group Print Share What ...

  15. Tumor specific HMG-CoA reductase expression in primary pre-menopausal breast cancer predicts response to tamoxifen

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2011-01-31

    Abstract Introduction We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. Methods HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. Results HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive\\/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as

  16. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer.

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2010-01-01

    BACKGROUND: Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. METHODS: HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). RESULTS: Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. CONCLUSION: HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  17. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Gallagher William M

    2010-04-01

    Full Text Available Abstract Background Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. Methods HMG-CoAR expression was assessed using immunohistochemistry (IHC on tissue microarrays (TMA consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS. Results Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46 of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012. Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93; p = 0.03 when adjusted for established prognostic factors such as residual disease, tumour stage and grade. Conclusion HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  18. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2010-04-01

    Abstract Background Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. Methods HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). Results Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. Conclusion HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  19. A Model for Dimerization of the SOX Group E Transcription Factor Family.

    Science.gov (United States)

    Ramsook, Sarah N; Ni, Joyce; Shahangian, Shokofeh; Vakiloroayaei, Ana; Khan, Naveen; Kwan, Jamie J; Donaldson, Logan W

    2016-01-01

    Group E members of the SOX transcription factor family include SOX8, SOX9, and SOX10. Preceding the high mobility group (HMG) domain in each of these proteins is a thirty-eight amino acid region that supports the formation of dimers on promoters containing tandemly inverted sites. The purpose of this study was to obtain new structural insights into how the dimerization region functions with the HMG domain. From a mutagenic scan of the dimerization region, the most essential amino acids of the dimerization region were clustered on the hydrophobic face of a single, predicted amphipathic helix. Consistent with our hypothesis that the dimerization region directly contacts the HMG domain, a peptide corresponding to the dimerization region bound a preassembled HMG-DNA complex. Sequence conservation among Group E members served as a basis to identify two surface exposed amino acids in the HMG domain of SOX9 that were necessary for dimerization. These data were combined to make a molecular model that places the dimerization region of one SOX9 protein onto the HMG domain of another SOX9 protein situated at the opposing site of a tandem promoter. The model provides a detailed foundation for assessing the impact of mutations on SOX Group E transcription factors.

  20. Vegetarian Choices in the Protein Foods Group

    Science.gov (United States)

    ... Waste Food Safety Newsroom Dietary Guidelines Communicator’s Guide Vegetarian choices You are here Home / MyPlate / Protein Foods Vegetarian choices Print Share Vegetarian choices in the Protein Foods Group Vegetarians get ...

  1. Hydrolyis of whey protein with proteases and the influence of the hydrolyzate on HMG-CoA reductase activity%乳清蛋白复合酶解条件优化及其水解产物对HMG-CoA还原酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    高学飞; 王志耕; 陆爱华

    2007-01-01

    采用胰蛋白酶、中性蛋白酶A.S1398组成复合酶联合水解乳清蛋白,建立了三因素(水解温度T℃,初始pH,胰蛋白酶活性占总活性的百分比)与乳清蛋白水解度(DH)之间的回归模型,通过模型优化了胰蛋白酶、中性蛋白酶A.S1398联合水解乳清蛋白的条件参数,并研究了在优化的水解条件下,乳清蛋白不同阶段水解产物在体外对HMG-CoA还原酶活性的影响.

  2. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... is responsible for the sequence-specific DNA binding. In this paper, we ... the conservative motif (HMG-box) of the human SRY gene. We want to .... their evolutionary relationships among the ten Sox proteins of B. maxima and ...

  3. Calmodulin-dependent nuclear import of HMG-box family nuclear factors: importance of the role of SRY in sex reversal.

    Science.gov (United States)

    Kaur, Gurpreet; Delluc-Clavieres, Aurelie; Poon, Ivan K H; Forwood, Jade K; Glover, Dominic J; Jans, David A

    2010-08-15

    The HMG (high-mobility group)-box-containing chromatin-remodelling factor SRY (sex-determining region on the Y chromosome) plays a key role in sex determination. Its role in the nucleus is critically dependent on two NLSs (nuclear localization signals) that flank its HMG domain: the C-terminally located 'beta-NLS' that mediates nuclear transport through Impbeta1 (importin beta1) and the N-terminally located 'CaM-NLS' which is known to recognize the calcium-binding protein CaM (calmodulin). In the present study, we examined a number of missense mutations in the SRY CaM-NLS from human XY sex-reversed females for the first time, showing that they result in significantly reduced nuclear localization of GFP (green fluorescent protein)-SRY fusion proteins in transfected cells compared with wild-type. The CaM antagonist CDZ (calmidazolium chloride) was found to significantly reduce wild-type SRY nuclear accumulation, indicating dependence of SRY nuclear import on CaM. Intriguingly, the CaM-NLS mutants were all resistant to CDZ's effects, implying a loss of interaction with CaM, which was confirmed by direct binding experiments. CaM-binding/resultant nuclear accumulation was the only property of SRY found to be impaired by two of the CaM-NLS mutations, implying that inhibition of CaM-dependent nuclear import is the basis of sex reversal in these cases. Importantly, the CaM-NLS is conserved in other HMG-box-domain-containing proteins such as SOX-2, -9, -10 and HMGN1, all of which were found for the first time to rely on CaM for optimal nuclear localization. CaM-dependent nuclear translocation is thus a common mechanism for this family of important transcription factors.

  4. Retinol-induced changes in the phosphorylation levels of histones and high mobility group proteins from Sertoli cells

    Directory of Open Access Journals (Sweden)

    J.C.F. Moreira

    2000-03-01

    Full Text Available Chromatin proteins play a role in the organization and functions of DNA. Covalent modifications of nuclear proteins modulate their interactions with DNA sequences and are probably one of the multiple factors involved in the process of switch on/off transcriptionally active regions of DNA. Histones and high mobility group proteins (HMG are subject to many covalent modifications that may modulate their capacity to bind to DNA. We investigated the changes induced in the phosphorylation pattern of cultured Wistar rat Sertoli cell histones and high mobility group protein subfamilies exposed to 7 µM retinol for up to 48 h. In each experiment, 6 h before the end of the retinol treatment each culture flask received 370 KBq/ml [32P]-phosphate. The histone and HMGs were isolated as previously described [Moreira et al. Medical Science Research (1994 22: 783-784]. The total protein obtained by either method was quantified and electrophoresed as described by Spiker [Analytical Biochemistry (1980 108: 263-265]. The gels were stained with Coomassie brilliant blue R-250 and the stained bands were cut and dissolved in 0.5 ml 30% H2O2 at 60oC for 12 h. The vials were chilled and 5.0 ml scintillation liquid was added. The radioactivity in each vial was determined with a liquid scintillation counter. Retinol treatment significantly changed the pattern of each subfamily of histone and high mobility group proteins.

  5. Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway.

    Science.gov (United States)

    Puisac, Beatriz; Ramos, Mónica; Arnedo, María; Menao, Sebastián; Gil-Rodríguez, María Concepción; Teresa-Rodrigo, María Esperanza; Pié, Angeles; de Karam, Juan Carlos; Wesselink, Jan-Jaap; Giménez, Ignacio; Ramos, Feliciano J; Casals, Nuria; Gómez-Puertas, Paulino; Hegardt, Fausto G; Pié, Juan

    2012-04-01

    The genes HMGCS2 and HMGCL encode the two main enzymes for ketone-body synthesis, mitochondrial HMG-CoA synthase and HMG-CoA lyase. Here, we identify and describe possible splice variants of these genes in human tissues. We detected an alternative transcript of HMGCS2 carrying a deletion of exon 4, and two alternative transcripts of HMGCL with deletions of exons 5 and 6, and exons 5, 6 and 7, respectively. All splice variants maintained the reading frame. However, Western blot studies and overexpression measurements in eukaryotic or prokaryotic cell models did not reveal HL or mHS protein variants. Both genes showed a similar distribution of the inactive variants in different tissues. Surprisingly, the highest percentages were found in tissues where almost no ketone bodies are synthesized: heart, skeletal muscle and brain. Our results suggest that alternative splicing might coordinately block the two main enzymes of ketogenesis in specific human tissues.

  6. Transcriptional regulation by Polycomb group proteins

    DEFF Research Database (Denmark)

    Di Croce, Luciano; Helin, Kristian

    2013-01-01

    Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins......) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity....

  7. Isolation and sequencing of the HMG domain of ten Sox genes from Odorrana schmackeri (Amphibia: Anura

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2009-03-01

    Full Text Available Sox (SRY-related HMG-box genes encode a family of transcriptional regulators, which are characterized by a conserved 79-amino acid domain known as HMG-box. They play essential roles in a diverse range of processes including sex determination and the development of the central nervous system (CNS, neural crest and endoderm. In this paper, the HMG domain of ten distinct Sox gene family members (os-Sox2, os-Sox3a, os-Sox3b, os-Sox4, os-Sox11a, os-Sox11b, os-Sox14a, os-Sox14b, os-Sox21a, os-Sox21b were isolated from both male and female Odorrana schmackeri (Boettger, 1892 using PCR, and no sexual differences were found. Molecular phylogenetic analysis of the HMG domain suggested that these ten Sox genes are members of the SoxB and SoxC groups. In addition, sequence analysis suggested that four Sox genes (os-Sox3, os-Sox11, os-Sox14, os-Sox21 were duplicated. The duplication-degeneration-complementation model should be implied to explain the evolution and diversity of the Sox gene family in O. schmackeri.

  8. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence and cellular fitness

    Directory of Open Access Journals (Sweden)

    Zheng eWang

    2013-12-01

    Full Text Available Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA has been demonstrated to increase stress resistance, persistence and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly repressed in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  9. Sex determination in goat by amplification of the HMG box using duplex PCR.

    Science.gov (United States)

    Shi, Lei; Yue, Wenbin; Ren, Youshe; Lei, Fulin; Zhao, Junxing

    2008-05-01

    The objective of this study was to obtain a fast, accurate and reliable method of determining the sex of goat embryos prior to implantation through amplification of the high-motility-group (HMG) box of the sex-determining region of the Y chromosome (SRY) gene of the goats. Goat specific primers were designed for duplex polymerase chain reaction (PCR). As an internal control gene, the goat beta-action gene sequence was simultaneously amplified together with the HMG box of goat SRY gene. Males showed both 1 SRY band and 1 beta-action band, but only 1 beta-action band was present in the agarose gel electrophoresis of females. The result indicated that the goat HMG-box sequence motif of SRY was male specific. Afterward, the optimized PCR procedure was applied in 30 embryo biopsies and the biopsied embryos were transferred into 30 recipient female goats. The sex of the 13 kids proved anatomically corresponded to the sex determined by PCR (100% accuracy). Thus, this study showed that this duplex PCR method can be applied to sex the goat pre-implantation embryos and to manipulate the sex ratio of offspring in goat breeding programs.

  10. Pharmacophore identification by molecular modeling and chemometrics: The case of HMG-CoA reductase inhibitors

    Science.gov (United States)

    Cosentino, U.; Moro, G.; Pitea, D.; Scolastico, S.; Todeschini, R.; Scolastico, C.

    1992-02-01

    A methodology based on molecular modeling and chemometrics is applied to identify the geometrical pharmacophore and the stereoelectronic requirements for the activity in a series of inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, an enzyme involved in cholesterol biosynthesis. These inhibitors present two common structural features—a 3,5-dihydroxy heptanoic acid which mimics the active portion of the natural substrate HMG-CoA and a lipophilic region which carries both polar and bulky groups. A total of 432 minimum energy conformations of 11 homologous compounds showing different levels of biological activity are calculated by the molecular mechanics MM2 method. Five atoms are selected as representatives of the relevant fragments of these compounds and three interatomic distances, selected among 10 by means of a Principal Component Analysis (PCA), are used to describe the three-dimensional disposition of these atoms. A cluster analysis procedure, performed on the whole set of conformations described by these three distances, allows the selection of one cluster whose centroid represents a geometrical model for the HMG-CoA reductase pharmacophore and the conformations included are candidates as binding conformations. To obtain a refinement of the geometrical model and to have a better insight into the requirements for the activity of these inhibitors, the Molecular Electrostatic Potential (MEP) distributions are determined by the MNDO semiempirical method.

  11. Trithorax group proteins: switching genes on and keeping them active.

    Science.gov (United States)

    Schuettengruber, Bernd; Martinez, Anne-Marie; Iovino, Nicola; Cavalli, Giacomo

    2011-11-23

    Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.

  12. Hypoglycaemic activity of an HMG-containing flavonoid glucoside, chamaemeloside, from Chamaemelum nobile.

    Science.gov (United States)

    König, G M; Wright, A D; Keller, W J; Judd, R L; Bates, S; Day, C

    1998-10-01

    The 3-hydroxy-3-methylglutaric acid (HMG) containing flavonoid glucoside chamaemeloside, has been determined to have in vivo hypoglycaemic activity comparable to that of free HMG. An improved isolation scheme for obtaining chamaemeloside from Chamaemelum nobile is presented.

  13. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  14. A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer

    Science.gov (United States)

    Forés, Marta; Samper, Núria; Barbacid, Mariano

    2017-01-01

    HMG-box proteins, including Sox/SRY (Sox) and TCF/LEF1 (TCF) family members, bind DNA via their HMG-box. This binding, however, is relatively weak and both Sox and TCF factors employ distinct mechanisms for enhancing their affinity and specificity for DNA. Here we report that Capicua (CIC), an HMG-box transcriptional repressor involved in Ras/MAPK signaling and cancer progression, employs an additional distinct mode of DNA binding that enables selective recognition of its targets. We find that, contrary to previous assumptions, the HMG-box of CIC does not bind DNA alone but instead requires a distant motif (referred to as C1) present at the C-terminus of all CIC proteins. The HMG-box and C1 domains are both necessary for binding specific TGAATGAA-like sites, do not function via dimerization, and are active in the absence of cofactors, suggesting that they form a bipartite structure for sequence-specific binding to DNA. We demonstrate that this binding mechanism operates throughout Drosophila development and in human cells, ensuring specific regulation of multiple CIC targets. It thus appears that HMG-box proteins generally depend on auxiliary DNA binding mechanisms for regulating their appropriate genomic targets, but that each sub-family has evolved unique strategies for this purpose. Finally, the key role of C1 in DNA binding also explains the fact that this domain is a hotspot for inactivating mutations in oligodendroglioma and other tumors, while being preserved in oncogenic CIC-DUX4 fusion chimeras associated to Ewing-like sarcomas. PMID:28278156

  15. Dimethylmaleic anhydride, a specific reagent for protein amino groups.

    Science.gov (United States)

    de la Escalera, S; Palacián, E

    1989-01-01

    The reagent dimethylmaleic anhydride does not cause a stable modification of thiol compounds under the conditions used for modification of protein amino groups, in contrast to maleic and monomethylmaleic anhydrides, which produce an irreversible modification of sulfhydryl groups. This behavior and the low reactivity toward hydroxyamino acid residues, shown in a previous work, make dimethylmaleic anhydride a specific reagent for protein amino groups.

  16. Een vergelijking tussen de HMG-CoA reductaseremmende geneesmiddelen

    NARCIS (Netherlands)

    Touw, D.J.; Schalekamp, T.; Van der Kuy, A.; Van Loenen, A.C.

    2000-01-01

    There are significant differences between the 3-hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) reductase inhibitors with regards to drug-drug interactions. The most important enzyme involved in these interactions is the cytochrome P450 isoenzyme CYP3A4. The major adverse affect due to drug-drug inter

  17. Principles of protein group SUMO modification substantiated in DNA repair

    OpenAIRE

    Psakhye, Ivan

    2013-01-01

    Posttranslational modifications (PTMs) of proteins by covalent attachment of functional groups (like phosphorylation, acetylation, methylation, glycosylation, etc.) are of key importance for the cell as they regulate various aspects of protein behavior after its synthesis, e.g., dictate protein interaction properties, change catalytic activity of enzymes, induce conformational changes, guide subcellular localization and determine protein stability. A special class of protein PTMs is the conju...

  18. A SRY-HMG box frame shift mutation inherited from a mosaic father with a mild form of testicular dysgenesis syndrome in Turner syndrome patient

    Directory of Open Access Journals (Sweden)

    Batra Swaraj

    2010-09-01

    Full Text Available Abstract Background Sex determining factor (SRY located on the short arm of the Y chromosome, plays an important role in initiating male sex determination, resulting in development of testicular tissue. Presence of the SRY gene in females results in XY sex reversal and increased risk of gonadal germ cell tumours if the karyotype also includes the so-called GonadoBlastoma on the Y chromosome (GBY region. The majority of mutations within the SRY gene are de novo affecting only a single individual in the family. The mutations within the high-mobility group (HMG region have the potential to affect its DNA binding activity. Case Presentation We performed G- and R-banding cytogenetic analysis of the patient and her family members including her father. We also performed molecular genetic analysis of SRY gene. Cytogenetic analysis in the patient (Turner Syndrome revealed the mosaic karyotype as 45, X/46, XY (79%/21% respectively while her father (milder features with testicular dysgenesis syndrome has a normal male karyotype (46, XY. Using molecular approach, we screened the patient and her father for mutations in the SRY gene. Both patient and her father showed the same deletion of cytosine within HMG box resulting in frame shift mutation (L94fsX180, the father in a mosaic pattern. Histological examination of the gonads from the patient revealed the presence of gonadoblastoma formation, while the father presented with oligoasthenozoospermia and a testicular seminoma. The frameshift mutation at this codon is novel, and may result in a mutated SRY protein. Conclusion Our results suggest that lack of a second sex chromosome in majority cells of the patient may have triggered the short stature and primary infertility, and the mutated SRY protein may be associated with the development of gonadoblastoma. It is of importance to note that mosaic patients without a SRY mutation also have a risk for malignant germ cell tumors.

  19. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work...

  20. Involvement of HMG-12 and CAR-1 in the cdc-48.1 expression of Caenorhabditis elegans.

    Science.gov (United States)

    Yamauchi, Seiji; Higashitani, Nahoko; Otani, Mieko; Higashitani, Atsushi; Ogura, Teru; Yamanaka, Kunitoshi

    2008-06-15

    Caenorhabditis elegans possesses two p97/VCP/Cdc48p homologues, named CDC-48.1 (C06A1.1) and CDC-48.2 (C41C4.8), and their expression patterns and levels are differently regulated. To clarify the regulatory mechanisms of differential expression of two p97 proteins of C. elegans, we performed detailed deletion analysis of their promoter regions. We found that the promoter of cdc-48.1 contains two regions necessary for embryonic and for post-embryonic expression, while the promoter of cdc-48.2 contains the single region necessary for embryonic expression. In particular, two elements (Element A and Element B) and three conserved boxes (Box a, Box b and Box c) were essential for cdc-48.1 expression in embryos and at post-embryonic stages, respectively. By using South-Western blotting and MALDI-TOF MS analysis, we identified HMG-12 and CAR-1 as proteins that bind to Element A and Element B, respectively, from the embryonic nuclear extract. Importantly, we found the decreased expression of p97 in embryos prepared from hmg-12(RNAi) or car-1(RNAi) worms. These results indicate that both HMG-12 and CAR-1 play important roles in embryonic expression of cdc-48.1.

  1. RNAi silencing of the HaHMG-CoA reductase gene inhibits oviposition in the Helicoverpa armigera cotton bollworm.

    Science.gov (United States)

    Wang, Zhijian; Dong, Yongcheng; Desneux, Nicolas; Niu, Changying

    2013-01-01

    RNA interference (RNAi) has considerable promise for developing novel pest control techniques, especially because of the threat of the development of resistance against current strategies. For this purpose, the key is to select pest control genes with the greatest potential for developing effective pest control treatments. The present study demonstrated that the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase; HMGR) gene is a potential target for insect control using RNAi. HMGR is a key enzyme in the mevalonate pathway in insects. A complete cDNA encoding full length HMGR (encoding an 837-aa protein) was cloned from Helicoverpa armigera (Lepidoptera: Noctuidae). The HaHMGR (H. armigera HMGR) knockdown using systemic RNAi in vivo inhibited the fecundity of the females, effectively inhibited ovipostion, and significantly reduced vitellogenin (Vg) mRNA levels. Moreover, the oviposition rate of the female moths was reduced by 98% by silencing HaHMGR compared to the control groups. One-pair experiments showed that both the proportions of valid mating and fecundity were zero. Furthermore, the HaHMGR-silenced females failed to lay eggs (approximate 99% decrease in oviposition) in the semi-field cage performance. The present study demonstrated the potential implications for developing novel pest management strategies using HaHMGR RNAi in the control of H. armigera and other insect pests.

  2. Polycomb group protein bodybuilding: working out the routines.

    Science.gov (United States)

    Sievers, Cem; Paro, Renato

    2013-09-30

    Polycomb group (PcG) proteins regulate gene expression by modifying chemical and structural properties of chromatin. Isono et al. (2013) now report in Developmental Cell a polymerization-dependent mechanism used by PcG proteins to form higher-order chromatin structures, referred to as Polycomb bodies, and demonstrate its necessity for gene silencing.

  3. Protein functional-group 3D motif and its applications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Representing and recognizing protein active sites sequence motif (1D motif) and structural motif (3D motif) is an important topic for predicting and designing protein function. Prevalent methods for extracting and searching 3D motif always consider residue as the minimal unit, which have limited sensitivity. Here we present a new spatial representation of protein active sites, called "functional-group 3D motif ", based on the fact that the functional groups inside a residue contribute mostly to its function. Relevant algorithm and computer program are developed, which could be widely used in the function prediction and the study of structural-function relationship of proteins. As a test, we defined a functional-group 3D motif of the catalytic triad and oxyanion hole with the structure of porcine trypsin (PDB code: 1mct) as the template. With our motif-searching program, we successfully found similar sub-structures in trypsins, subtilisins and a/b hydrolases, which show distinct folds but share similar catalytic mechanism. Moreover, this motif can be used to elucidate the structural basis of other proteins with variant catalytic triads by comparing it to those proteins. Finally, we scanned this motif against a non-redundant protein structure database to find its matches, and the results demonstrated the potential application of functional group 3D motif in function prediction. Above all, compared with the other 3D-motif representations on residues, the functional group 3D motif achieves better representation of protein active region, which is more sensitive for protein function prediction.

  4. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents.

    Science.gov (United States)

    Fritz, Gerhard; Henninger, Christian; Huelsenbeck, Johannes

    2011-01-01

    HMG-CoA reductase inhibitors (statins) are widely used in the therapy of hypercholesterolemia. Apart from their lipid-lowering activity, they have pleiotropic effects that are attributed to the inhibition of regulatory proteins, including Ras-homologous (Rho) GTPases. Here, we discuss the potential usefulness of statins to prevent normal tissue damage provoked by radiotherapy. Statins reduce the mRNA expression of pro-inflammatory and pro-fibrotic cytokines stimulated by ionizing radiation in vitro and alleviate IR-induced inflammation and fibrosis in vivo. The currently available data indicate that statins accelerate the rapid repair of DNA double-strand breaks and, moreover, mitigate the DNA damage response induced by IR. Furthermore, statins increase the mRNA expression of DNA repair factors in vivo. Thus, although the molecular mechanisms involved are still ambiguous, preclinical data concordantly show a promising radioprotective capacity of statins.

  5. Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.

    Science.gov (United States)

    Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene

    2011-01-01

    To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups.

  6. Controlled Ovarian Stimulation Using Medroxyprogesterone Acetate and hMG in Patients With Polycystic Ovary Syndrome Treated for IVF

    Science.gov (United States)

    Wang, Yun; Chen, Qiuju; Wang, NingLing; Chen, Hong; Lyu, Qifeng; Kuang, Yanping

    2016-01-01

    Abstract Ovarian hyperstimulation syndrome (OHSS) during ovarian stimulation is a current challenge for patients with polycystic ovarian syndrome (PCOS). Our previous studies indicated that progestin can prevent premature luteinizing hormone (LH) surge or moderate/severe OHSS in the general subfertile population, both in the follicular-phase and luteal-phase ovarian stimulation but it is unclear if this is true for patients with PCOS. The aim of the article was to analyze cycle characteristics and endocrinological profiles using human menopausal gonadotropin (hMG) in combination with medroxyprogesterone acetate (MPA) for PCOS patients who are undergoing IVF/intracytoplasmic sperm injection (ICSI) treatments and investigate the subsequently pregnancy outcomes of frozen embryo transfer (FET). In the randomized prospective controlled study, 120 PCOS patients undergoing IVF/ICSI were recruited and randomly classified into 2 groups according to the ovarian stimulation protocols: hMG and MPA (group A, n = 60) or short protocol (group B, n = 60). In the study group, hMG (150–225IU) and MPA (10 mg/d) were administered simultaneously beginning on cycle day 3. Ovulation was cotriggered by a gonadotropinreleasing hormone (GnRH) agonist (0.1 mg) and hCG (1000IU) when dominant follicles matured. A short protocol was used as a control. The primary end-point was the ongoing pregnancy rate per transfer and incidence of OHSS. Doses of hMG administrated in group A are significantly higher than those in the controls. LH suppression persisted during ovarian stimulation and no incidence of premature LH surge was seen in both groups. The fertilization rate and the ongoing pregnant rate in the study group were higher than that in the control. The number of oocytes retrieved, mature oocytes, clinical pregnancy rates per transfer, implantation rates, and cumulative pregnancy rates per patient were comparable between the 2 groups. The incidence of OHSS was low between the 2

  7. Protein profiles and immunoreactivities of Acanthamoeba morphological groups and genotypes.

    Science.gov (United States)

    Pumidonming, Wilawan; Koehsler, Martina; Leitsch, David; Walochnik, Julia

    2014-11-01

    Acanthamoeba is a free-living protozoan found in a wide variety of habitats. A classification of Acanthamoeba into currently eighteen genotypes (T1-T18) has been established, however, data on differences between genotypes on the protein level are scarce. The aim of this study was to compare protein and immunoreactivity profiles of Acanthamoeba genotypes. Thirteen strains, both clinical and non-clinical, from genotypes T4, T5, T6, T7, T9, T11 and T12, representing three morphological groups, were investigated for their protein profiles and IgG, IgM and IgA immunoreactivities. It was shown that protein and immunoreactivity profiles of Acanthamoeba genotypes T4, T5, T6, T7, T9, T11 and T12 are clearly distinct from each other, but the banding patterns correlate to the morphological groups. Normal human sera revealed anti-Acanthamoeba antibodies against isolates of all investigated genotypes, interestingly, however only very weak IgM and virtually no IgA immunoreactivity with T7 and T9, both representing morphological group I. The strongest IgG, IgM and IgA immunoreactivities were observed for genotypes T4, T5 and T6. Differences of both, protein and immunological patterns, between cytopathic and non-cytopathic strains, particularly within genotype T4, were not at the level of banding patterns, but rather in expression levels.

  8. Inhibition of HMG-CoA reductase induces the UPR pathway in C. elegans

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Hansen, Nadia Jin Storm; Pilon, Marc

    -requiring enzyme-1 (IRE-1), and activating transcription factor-6 (ATF-6). Using a transgenic GFP reporter strain of the model organism C. elegans, we have recently identified that inhibition of the enzyme HMG-CoA reductase (HMG-CoAR) with Fluvastatin and knock down of HMG-CoAR using RNA interference (RNAi) both...

  9. Xeroderma pigmentosum group A correcting protein from Calf Thymus.

    NARCIS (Netherlands)

    A.P.M. Eker (André); W. Vermeulen (Wim); N. Miura; K. Tanaka (Kiyoji); N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1992-01-01

    textabstractA proteinous factor was purified from calf thymus and HeLa cells, which specifically corrects the excision repair defect of xeroderma pigmentosum complementation group A (XP-A) cells. Recovery of UV-induced unscheduled DNA synthesis after microinjection of XP-A cells was used as a quanti

  10. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins.

    Science.gov (United States)

    Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo

    2016-11-15

    Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.

  11. Chromosomal proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Moehs, C P; McElwain, E F; Spiker, S

    1988-07-01

    In plants with large genomes, each of the classes of the histones (H1, H2A, H2B, H3 and H4) are not unique polypeptides, but rather families of closely related proteins that are called histone variants. The small genome and preponderance of single-copy DNA in Arabidopsis thaliana has led us to ask if this plant has such families of histone variants. We have thus isolated histones from Arabidopsis and analyzed them on four polyacrylamide gel electrophoretic systems: an SDS system; an acetic acid-urea system; a Triton transverse gradient system; and a two-dimensional system combining SDS and Triton-acetic acid-urea systems. This approach has allowed us to identify all four of the nucleosomal core histones in Arabidopsis and to establish the existence of a set of H2A and H2B variants. Arabidopsis has at least four H2A variants and three H2B variants of distinct molecular weights as assessed by electrophoretic mobility on SDS-polyacrylamide gels. Thus, Arabidopsis displays a diversity in these histones similar to the diversity displayed by plants with larger genomes such as wheat.The high mobility group (HMG) non-histone chromatin proteins have attracted considerable attention because of the evidence implicating them as structural proteins of transcriptionally active chromatin. We have isolated a group of non-histone chromatin proteins from Arabidopsis that meet the operational criteria to be classed as HMG proteins and that cross-react with antisera to HMG proteins of wheat.

  12. The impact of HMG-CoA reductase therapy on serum PSA.

    Science.gov (United States)

    Mener, David J; Cambio, Angelo; Stoddard, David G; Martin, Brad A; Palapattu, Ganesh S

    2010-05-01

    3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, otherwise known as statins, inhibit the enzyme that controls the conversion of HMG-CoA to mevalonate, a precursor for cholesterol. Statins may be important to prostate cancer biology by inhibiting cell growth, inflammation, and oxidative stress. The purpose of this study was to assess the influence of statin therapy on serum prostate-specific antigen (PSA) levels. The computerized medical records at the University of Rochester Medical Center were used to identify men who filled statin prescriptions between May 31st, 2008 and September 30th, 2008. Men with at least one PSA assay performed within 2 years before and at least one PSA assay performed within 1 year after starting a statin medication were included. The primary endpoint was the change in PSA concentration computed as the difference between PSA levels before and after starting a statin medication. Paired t-tests were used to analyze the mean differences in PSA values. A total of 962 patients were identified. The mean difference in serum PSA level after statin administration was -0.29 ng/ml (-8.04%). Subgroup analyses for mean PSA concentration change before and after statin administration by age group revealed: 50-59 years old (-0.1609, 95% CI: -0.2444, -0.0775, P 70 years old (-0.351, 95% CI: -0.490, -0.212, P < 0.0001). These observations suggest a statistically significant reduction in serum PSA level that is associated with the onset of statin therapy.

  13. Blood Group Antigen Recognition via the Group A Streptococcal M Protein Mediates Host Colonization

    Science.gov (United States)

    De Oliveira, David M. P.; Hartley-Tassell, Lauren; Everest-Dass, Arun; Day, Christopher J.; Dabbs, Rebecca A.; Ve, Thomas; Kobe, Bostjan; Nizet, Victor; Packer, Nicolle H.; Walker, Mark J.; Jennings, Michael P.

    2017-01-01

    ABSTRACT Streptococcus pyogenes (group A streptococcus [GAS]) is responsible for over 500,000 deaths worldwide each year. The highly virulent M1T1 GAS clone is one of the most frequently isolated serotypes from streptococcal pharyngitis and invasive disease. The oral epithelial tract is a niche highly abundant in glycosylated structures, particularly those of the ABO(H) blood group antigen family. Using a high-throughput approach, we determined that a strain representative of the globally disseminated M1T1 GAS clone 5448 interacts with numerous, structurally diverse glycans. Preeminent among GAS virulence factors is the surface-expressed M protein. M1 protein showed high affinity for several terminal galactose blood group antigen structures. Deletion mutagenesis shows that M1 protein mediates glycan binding via its B repeat domains. Association of M1T1 GAS with oral epithelial cells varied significantly as a result of phenotypic differences in blood group antigen expression, with significantly higher adherence to those cells expressing H antigen structures compared to cells expressing A, B, or AB antigen structures. These data suggest a novel mechanism for GAS attachment to host cells and propose a link between host blood group antigen expression and M1T1 GAS colonization. PMID:28119471

  14. Polycomb group proteins in hematopoietic stem cell aging and malignancies.

    Science.gov (United States)

    Klauke, Karin; de Haan, Gerald

    2011-07-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.

  15. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Lin SH

    2015-06-01

    Full Text Available Shih-Hung Lin,1 Kao-Jean Huang,1,2 Ching-Feng Weng,1 David Shiuan1 1Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China; 2Development Center of Biotechnology, Taipei, Taiwan, Republic of China Abstract: Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR. The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. Keywords: HMG-CoA reductase, virtual screening, curcumin, salvianolic acid C

  16. A high mobility group box 1 (HMGB1) gene from Chlamys farreri and the DNA-binding ability and pro-inflammatory activity of its recombinant protein.

    Science.gov (United States)

    Wang, Mengqiang; Wang, Lingling; Guo, Ying; Zhou, Zhi; Yi, Qilin; Zhang, Daoxiang; Zhang, Huan; Liu, Rui; Song, Linsheng

    2014-02-01

    High-mobility group box 1 (HMGB1) protein, a highly conserved DNA binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. In the present research, a cDNA of 1268 bp for the Zhikong scallop Chlamys farreri HMGB1 (designed as CfHMGB1) was cloned via rapid amplification of cDNA ends (RACE) technique and expression sequence tag (EST) analysis. The complete cDNA sequence of CfHMGB1 contained an open reading frame (ORF) of 648 bp, which encoded a protein of 215 amino acids. The amino acid sequence of CfHMGB1 shared 53-57% similarity with other identified HMGB1s. There were two HMG domains, two low complexity regions and a conserved acidic tail in the amino acid sequence of CfHMGB1. The mRNA transcripts of CfHMGB1 were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas, kidney and gonad, with the highest expression level in hepatopancreas. The mRNA expression profiles of CfHMGB1 in haemocytes after the stimulation with different pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (Glu), were similar with an up-regulation in the early stage and then recovered to the original level. The recombinant CfHMGB1 protein could bind double-stranded DNA and induce the release of TNF-α activity in mixed primary culture of scallop haemocytes. These results collectively indicated that CfHMGB1, with DNA-binding ability and pro-inflammatory activity, could play an important role in the immune response of scallops.

  17. Amyloid oligomer conformation in a group of natively folded proteins.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiike

    Full Text Available Recent in vitro and in vivo studies suggest that destabilized proteins with defective folding induce aggregation and toxicity in protein-misfolding diseases. One such unstable protein state is called amyloid oligomer, a precursor of fully aggregated forms of amyloid. Detection of various amyloid oligomers with A11, an anti-amyloid oligomer conformation-specific antibody, revealed that the amyloid oligomer represents a generic conformation and suggested that toxic beta-aggregation processes possess a common mechanism. By using A11 antibody as a probe in combination with mass spectrometric analysis, we identified GroEL in bacterial lysates as a protein that may potentially have an amyloid oligomer conformation. Surprisingly, A11 reacted not only with purified GroEL but also with several purified heat shock proteins, including human Hsp27, 40, 70, 90; yeast Hsp104; and bovine Hsc70. The native folds of A11-reactive proteins in purified samples were characterized by their anti-beta-aggregation activity in terms of both functionality and in contrast to the beta-aggregation promoting activity of misfolded pathogenic amyloid oligomers. The conformation-dependent binding of A11 with natively folded Hsp27 was supported by the concurrent loss of A11 reactivity and anti-beta-aggregation activity of heat-treated Hsp27 samples. Moreover, we observed consistent anti-beta-aggregation activity not only by chaperones containing an amyloid oligomer conformation but also by several A11-immunoreactive non-chaperone proteins. From these results, we suggest that the amyloid oligomer conformation is present in a group of natively folded proteins. The inhibitory effects of A11 antibody on both GroEL/ES-assisted luciferase refolding and Hsp70-mediated decelerated nucleation of Abeta aggregation suggested that the A11-binding sites on these chaperones might be functionally important. Finally, we employed a computational approach to uncover possible A11-binding sites on

  18. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis.

    Science.gov (United States)

    Chanvivattana, Yindee; Bishopp, Anthony; Schubert, Daniel; Stock, Christine; Moon, Yong-Hwan; Sung, Z Renee; Goodrich, Justin

    2004-11-01

    In Arabidopsis, the EMBYRONIC FLOWER2 (EMF2), VERNALISATION2 (VRN2) and FERTILISATION INDEPENDENT ENDOSPERM2 (FIS2) genes encode related Polycomb-group (Pc-G) proteins. Their homologues in animals act together with other Pc-G proteins as part of a multimeric complex, Polycomb Repressive Complex 2 (PRC2), which functions as a histone methyltransferase. Despite similarities between the fis2 mutant phenotype and those of some other plant Pc-G members, it has remained unclear how the FIS2/EMF2/VRN2 class Pc-G genes interact with the others. We have identified a weak emf2 allele that reveals a novel phenotype with striking similarity to that of severe mutations in another Pc-G gene, CURLY LEAF (CLF), suggesting that the two genes may act in a common pathway. Consistent with this, we demonstrate that EMF2 and CLF interact genetically and that this reflects interaction of their protein products through two conserved motifs, the VEFS domain and the C5 domain. We show that the full function of CLF is masked by partial redundancy with a closely related gene, SWINGER (SWN), so that null clf mutants have a much less severe phenotype than emf2 mutants. Analysis in yeast further indicates a potential for the CLF and SWN proteins to interact with the other VEFS domain proteins VRN2 and FIS2. The functions of individual Pc-G members may therefore be broader than single mutant phenotypes reveal. We suggest that plants have Pc-G protein complexes similar to the Polycomb Repressive Complex2 (PRC2) of animals, but the duplication and subsequent diversification of components has given rise to different complexes with partially discrete functions.

  19. DNA packaging proteins Glom and Glom2 coordinately organize the mitochondrial nucleoid of Physarum polycephalum.

    Science.gov (United States)

    Itoh, Kie; Izumi, Akiko; Mori, Toshiyuki; Dohmae, Naoshi; Yui, Ryoko; Maeda-Sano, Katsura; Shirai, Yuki; Kanaoka, Masahiro M; Kuroiwa, Tsuneyoshi; Higashiyama, Tetsuya; Sugita, Mamoru; Murakami-Murofushi, Kimiko; Kawano, Shigeyuki; Sasaki, Narie

    2011-07-01

    Mitochondrial DNA (mtDNA) is generally packaged into the mitochondrial nucleoid (mt-nucleoid) by a high-mobility group (HMG) protein. Glom is an mtDNA-packaging HMG protein in Physarum polycephalum. Here we identified a new mtDNA-packaging protein, Glom2, which had a region homologous with yeast Mgm101. Glom2 could bind to an entire mtDNA and worked synergistically with Glom for condensation of mtDNA in vitro. Down-regulation of Glom2 enhanced the alteration of mt-nucleoid morphology and the loss of mtDNA induced by down-regulation of Glom, and impaired mRNA accumulation of some mtDNA-encoded genes. These data suggest that Glom2 may organize the mt-nucleoid coordinately with Glom. © Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  20. High Mobility Group Box Protein-1 in Wound Repair

    Directory of Open Access Journals (Sweden)

    Mauro Patrone

    2012-09-01

    Full Text Available High-mobility group box 1 protein (HMGB1, a member of highly conserved non-histone DNA binding protein family, has been studied as transcription factor and growth factor. Secreted extracellularly by activated monocytes and macrophages or passively released by necrotic or damaged cells, extracellular HMGB1 is a potent mediator of inflammation. Extracellular HMGB1 has apparently contrasting biological actions: it sustains inflammation (with the possible establishment of autoimmunity or of self-maintaining tissue damage, but it also activates and recruits stem cells, boosting tissue repair. Here, we focus on the role of HMGB1 in physiological and pathological responses, the mechanisms by which it contributes to tissue repair and therapeutic strategies base on targeting HMGB1.

  1. The influence of gonadotropins on clinico-biological ICSI outcome: a retrospective comparative study rFsH vs HP-hmg.

    Science.gov (United States)

    Khlifi, Abdeljalil; Kacem, Olfa; Maroueni, Maher; Elgoul, Leila; Hidar, Samir; Fekih, Meriem; Boughizane, Sassi; Essaidi, Habib; Ben Regaya, Lassad; Bibi, Mohamed; Ajina, Mounir; Khairi, Hedi

    2016-06-01

    Objective To investigate the difference in the outcome of ICSI-ET cycles among respondents patients, taking into account the molecule inducer of controlled ovarian stimulation: HP-hMG ou rFSH. Patients and Methods A comparative retrospective study over 62 months including a total of 1005 infertile couples, divided into two groups: HP-HMG (n=125) and rFSH (n=880). Results - The average numbers of retrieved oocytes and matures oocytes were significantly higher in rFSH group rFSH (7,94 ± 2,49, HP-HMG vs 9,05 ± 3,40, rFSH, p=0.0001and  3±2,68, HP-HMG vs 6,65±3,05 , rFSH, p=0,02 respectively). There was no statistically significant difference in the endometrial thickness and estradiol level on hCG injection day, the total amount of administrated gonadotropin and the duration of stimulation. In addition, we did not find a significant difference between the two groups regarding the fertilization, the maturation, the cleavage, top quality embryo, implantation, clinical pregnancy, multiple pregnancies, live birth and miscarriage rates. There was no case of severe ovarian hyperstimulation syndrome. Conclusion - Inspite of a higher number of retrieved and mature oocytes obtained with rFSH, the latter showed no superiority over HP-hMG which seem to be equally efficient and safe for ICSI treatment cycles.

  2. Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo

    OpenAIRE

    2004-01-01

    Abstract Background HMG-CoA reductase inhibitors (statins) are commonly used in medicine to control blood lipid disorder. Large clinical trials have demonstrated that statins greatly reduces cardiovascular-related morbidity and mortality in patients with and without coronary artery disease. Also, the use of HMG-CoA reductase inhibitors has been reported to have immunosuppressive effects. Case presentation We describe an unusual case of regression of vitiligo in a patient treated with high dos...

  3. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ernst Aichinger

    2009-08-01

    Full Text Available Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG and trithorax group (trxG proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA-binding domain CHD3 proteins PICKLE (PKL and PICKLE RELATED2 (PKR2 have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3. Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote

  4. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ernst Aichinger

    2009-08-01

    Full Text Available Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG and trithorax group (trxG proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA-binding domain CHD3 proteins PICKLE (PKL and PICKLE RELATED2 (PKR2 have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3. Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote

  5. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis.

    Science.gov (United States)

    Aichinger, Ernst; Villar, Corina B R; Farrona, Sara; Reyes, José C; Hennig, Lars; Köhler, Claudia

    2009-08-01

    Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA-binding domain CHD3 proteins PICKLE (PKL) and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3). Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote cell

  6. Isolation and expression of HMG-CoA synthase and HMG-CoA reductase genes in different development stages, tissues and treatments of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae).

    Science.gov (United States)

    Yu, Jiamin; Dai, Lulu; Zhang, Ranran; Li, Zhumei; Pham, Thanh; Chen, Hui

    2015-09-01

    We isolated two full-length cDNAs encoding 3-hydroxy-3-methyl-glutaryl coenzyme A synthase (HMG-S) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R) from the Chinese white pine beetle (Dendroctonus armandi), and carried out some bioinformatic analysis on the full-length nucleic acid sequences and deduced amino acid sequences. Differential expression of the DaHMG-S and DaHMG-R genes was observed between sexes (emerged adults), and within these significant differences among development stage, tissue distribution, fed on phloem of Pinus armandi and topically applied juvenile hormone (JH) III. Increase of DaHMG-S and DaHMG-R mRNA levels in males suggested that they may play a role in mevalonate pathway. Information from the present study might contribute to understanding the relationship between D. armandi and its semiochemical production. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress.

    Science.gov (United States)

    Yasunari, K; Maeda, K; Minami, M; Yoshikawa, J

    2001-06-01

    In vitro and in vivo evidence of a decrease in vascular smooth muscle cell (SMC) migration induced by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been reported. When added to SMC cultures for 6 hours, the HMG-CoA reductase inhibitors fluvastatin, simvastatin, and pravastatin at 1 micromol/L resulted in a 48%, 50%, and 16% suppression, respectively, of human coronary SMC migration; these reductions mirrored the suppression in oxidative stress induced by 1 micromol/L lysophosphatidylcholine (lyso-PC) of 50%, 53% and 19%, respectively. The hydroxylated metabolites of fluvastatin, M(2) and M(3), at 1 micromol/L also suppressed the enhancement of SMC migration by 58% and 45% and the increase in oxidative stress induced by lyso-PC of 58% and 49%, respectively. Lyso-PC activated phospholipase D and protein kinase C (PKC), and this activation was also suppressed by HMG-CoA reductase inhibitors. The inhibition of phospholipase D and PKC was reversed by 100 micromol/L mevalonate, its isoprenoid derivative, farnesol, and geranylgeraniol but not by 10 micromol/L squalene. Antisense oligodeoxynucleotides at 5 micromol/L to PKC-alpha, but not those to the PKC-beta isoform, suppressed the lyso-PC-mediated increases in SMC migration and oxidative stress. These findings suggest that HMG-CoA reductase inhibitors have direct antimigratory effects on the vascular wall beyond their effects on plasma lipids and that they might exert such antimigratory effects via suppression of the phospholipase D- and PKC (possibly PKC-alpha)-induced increase in oxidative stress, which might in turn prevent significant coronary artery disease.

  8. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿

    OpenAIRE

    Martina L. Sanderson-Smith; Dowton, Mark; Ranson, Marie; Walker, Mark J.

    2006-01-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G strep...

  9. Identifying real differences in live birth rates between HMG and rFSH in IVF.

    Science.gov (United States)

    Afnan, Masoud

    2009-01-01

    Fertility treatment strives for the delivery of a healthy live birth. Human menopausal gonadotrophin (HMG) and recombinant FSH (rFSH) are the two types of gonadotrophin currently used for ovarian stimulation in assisted reproduction treatments. Although both HMG and rFSH have been shown to be effective, a number of studies have examined whether a potential difference in clinical benefit or outcome exists between treatments. Unlike rFSH preparations, HMG contains both FSH and LH activity (in the form of LH and human chorionic gonadotrophin, which are short- and long-acting, respectively). The beneficial effect of exogenous LH activity has been investigated in the Menotrophin versus Recombinant FSH in-vitro Fertilisation Trial (MERiT), which revealed differences in embryo quality and endometrial receptivity between rFSH and highly purified HMG. Current evidence suggests that HMG provides significantly higher live birth rates than rFSH in women undergoing ovarian stimulation for in-vitro fertilization/intracytoplasmic sperm injection cycles using long gonadotrophin-releasing hormone agonist protocol. Further studies will continue to provide data with which to expand these findings and optimize the chances of achieving a live birth following assisted reproduction treatment.

  10. Single dose testosterone increases total cholesterol levels and induces the expression of HMG CoA Reductase

    Directory of Open Access Journals (Sweden)

    Gårevik Nina

    2012-03-01

    Full Text Available Abstract Background Cholesterol is mainly synthesised in liver and the rate-limiting step is the reduction of 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA to mevalonate, a reaction catalysed by HMG-CoA reductase (HMGCR. There is a comprehensive body of evidence documenting that anabolic-androgenic steroids are associated with deleterious alterations of lipid profile. In this study we investigated whether a single dose of testosterone enanthate affects the cholesterol biosynthesis and the expression of HMGCR. Methods 39 healthy male volunteers were given 500 mg testosterone enanthate as single intramuscular dose of Testoviron®--Depot. The total cholesterol levels prior to and two days after testosterone administration were analysed. Protein expression of HMGCR in whole blood was investigated by Western blotting. In order to study whether testosterone regulates the mRNA expression of HMGCR, in vitro studies were performed in a human liver cell-line (HepG2. Results The total cholesterol level was significantly increased 15% two days after the testosterone injection (p = 0.007. This is the first time a perturbation in the lipoprotein profile is observed after only a single dose of testosterone. Moreover, the HMGCR mRNA and protein expression was induced by testosterone in vitro and in vivo, respectively. Conclusion Here we provide a molecular explanation how anabolic androgenic steroids may impact on the cholesterol homeostasis, i.e. via an increase of the HMGCR expression. Increasing knowledge and understanding of AAS induced side-effects is important in order to find measures for treatment and care of these abusers.

  11. Highly purified HMG versus recombinant FSH for ovarian stimulation in IVF cycles

    DEFF Research Database (Denmark)

    Platteau, P.; Nyboe, Andersen A.; Loft, A.;

    2008-01-01

    The objective of this study was to compare the live birth rates resulting from ovarian stimulation with highly purified human menopausal gonadotrophin (HP-HMG), which combines FSH and human chorionic gonadotrophin-driven LH activities, or recombinant FSH (rFSH) alone in women undergoing IVF cycles....... An integrated analysis was performed of the raw data from two randomized controlled trials that were highly comparable in terms of eligibility criteria and post-randomization treatment regimens with either HP-HMG or rFSH for ovarian stimulation in IVF, following a long down-regulation protocol. All randomized...... subjects who received at least one dose of gonadotrophin in an IVF cycle (HP-HMG, n = 491; rFSH, n = 495) were included in the analysis. Subjects who underwent intracytoplasmic sperm injection cycles were excluded. The superiority of one gonadotrophin preparation over the other was tested using...

  12. Controlled Ovarian Stimulation Using Medroxyprogesterone Acetate and hMG in Patients With Polycystic Ovary Syndrome Treated for IVF: A Double-Blind Randomized Crossover Clinical Trial.

    Science.gov (United States)

    Wang, Yun; Chen, Qiuju; Wang, NingLing; Chen, Hong; Lyu, Qifeng; Kuang, Yanping

    2016-03-01

    Ovarian hyperstimulation syndrome (OHSS) during ovarian stimulation is a current challenge for patients with polycystic ovarian syndrome (PCOS). Our previous studies indicated that progestin can prevent premature luteinizing hormone (LH) surge or moderate/severe OHSS in the general subfertile population, both in the follicular-phase and luteal-phase ovarian stimulation but it is unclear if this is true for patients with PCOS. The aim of the article was to analyze cycle characteristics and endocrinological profiles using human menopausal gonadotropin (hMG) in combination with medroxyprogesterone acetate (MPA) for PCOS patients who are undergoing IVF/intracytoplasmic sperm injection (ICSI) treatments and investigate the subsequently pregnancy outcomes of frozen embryo transfer (FET). In the randomized prospective controlled study, 120 PCOS patients undergoing IVF/ICSI were recruited and randomly classified into 2 groups according to the ovarian stimulation protocols: hMG and MPA (group A, n = 60) or short protocol (group B, n = 60). In the study group, hMG (150-225IU) and MPA (10 mg/d) were administered simultaneously beginning on cycle day 3. Ovulation was cotriggered by a gonadotropinreleasing hormone (GnRH) agonist (0.1 mg) and hCG (1000IU) when dominant follicles matured. A short protocol was used as a control. The primary end-point was the ongoing pregnancy rate per transfer and incidence of OHSS. Doses of hMG administrated in group A are significantly higher than those in the controls. LH suppression persisted during ovarian stimulation and no incidence of premature LH surge was seen in both groups. The fertilization rate and the ongoing pregnant rate in the study group were higher than that in the control. The number of oocytes retrieved, mature oocytes, clinical pregnancy rates per transfer, implantation rates, and cumulative pregnancy rates per patient were comparable between the 2 groups. The incidence of OHSS was low between the 2 groups, with

  13. Transcriptional regulation of mitochondrial HMG-CoA synthase in the control of ketogenesis.

    Science.gov (United States)

    Hegardt, F G

    1998-10-01

    Mitochondrial and cytosolic HMG-CoA synthases are encoded by two different genes. Control of ketogenesis is exerted by transcriptional regulation of mitochondrial HMG-CoA synthase. Fasting, cAMP, and fatty acids increase its transcriptional rate, while refeeding and insulin repress it. Fatty acids increase transcription through peroxisomal proliferator regulatory element (PPRE), to which peroxisome proliferator activated receptor (PPAR) can bind. Other transcription factors such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF-4) compete for the PPRE site, modulating the response of PPAR.

  14. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element.

    Science.gov (United States)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien; Kolatkar, Prasanna R

    2015-11-01

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domain (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG-FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mM sodium/potassium phosphate with 100 mM bis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space group P41212, with unit-cell parameters a = b = 99.49, c = 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG-FOXP2 promoter DNA complex with an estimated solvent content of 64%.

  15. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs

    DEFF Research Database (Denmark)

    van Beest, M; Dooijes, D; van De Wetering, M

    2000-01-01

    Sequence-specific high mobility group (HMG) box factors bind and bend DNA via interactions in the minor groove. Three-dimensional NMR analyses have provided the structural basis for this interaction. The cognate HMG domain DNA motif is generally believed to span 6-8 bases. However, alignment...

  16. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    Science.gov (United States)

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  17. Succination of Thiol Groups in Adipose Tissue Proteins in Diabetes

    Science.gov (United States)

    Frizzell, Norma; Rajesh, Mathur; Jepson, Matthew J.; Nagai, Ryoji; Carson, James A.; Thorpe, Suzanne R.; Baynes, John W.

    2009-01-01

    S-(2-Succinyl)cysteine (2SC) is formed by reaction of the Krebs cycle intermediate fumarate with cysteine residues in protein, a process termed succination of protein. Both fumarate and succination of proteins are increased in adipocytes cultured in high glucose medium (Nagai, R., Brock, J. W., Blatnik, M., Baatz, J. E., Bethard, J., Walla, M. D., Thorpe, S. R., Baynes, J. W., and Frizzell, N. (2007) J. Biol. Chem. 282, 34219–34228). We show here that succination of protein is also increased in epididymal, mesenteric, and subcutaneous adipose tissue of diabetic (db/db) mice and that adiponectin is a major target for succination in both adipocytes and adipose tissue. Cys-39, which is involved in cross-linking of adiponectin monomers to form trimers, was identified as a key site of succination of adiponectin in adipocytes. 2SC was detected on two of seven monomeric forms of adiponectin immunoprecipitated from adipocytes and epididymal adipose tissue. Based on densitometry, 2SC-adiponectin accounted for ∼7 and 8% of total intracellular adiponectin in cells and tissue, respectively. 2SC was found only in the intracellular, monomeric forms of adiponectin and was not detectable in polymeric forms of adiponectin in cell culture medium or plasma. We conclude that succination of adiponectin blocks its incorporation into trimeric and higher molecular weight, secreted forms of adiponectin. We propose that succination of proteins is a biomarker of mitochondrial stress and accumulation of Krebs cycle intermediates in adipose tissue in diabetes and that succination of adiponectin may contribute to the decrease in plasma adiponectin in diabetes. PMID:19592500

  18. Single methyl groups can act as toggle switches to specify transmembrane protein-protein interactions

    DEFF Research Database (Denmark)

    He, Li; Steinocher, Helena; Shelar, Ashish

    2017-01-01

    Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively ...

  19. Assessment of Sulf hydryl Group in Individual Rat Lens Protein Subunits During Galactose Cataract Development

    Institute of Scientific and Technical Information of China (English)

    HaroldI.Calvin; S.C.JosephFu

    1994-01-01

    A specific reagent DACM [N-( 7-Dimethylamino-4-methyl-3-coumarinyl) maleimide] is used to study the -SH groups in lens proteins of normal and galactose cataractous rats. DACM when reacts readily with -SH groups form strong fluorescent adducts. The two -dimensional electrophoresis with DACM pre-labeled proteins is a simple and sensitive method for detecting -SH groups of protein subunit. In the present study, based on IEF/SDS-PAGE electrophoretically characterized soluble crystallins, describes specific ...

  20. Read-through proteins of group 4 RNA bacteriophages TW19 and TW28. [Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Aoi, T.; Kaesberg, P.

    1976-10-01

    Group 4 phages TW19 and TW28 of Escherichia coli possess a read-through (IIb) protein, although group 2 phage GA does not. This may have implications concerning the evolution and classification of RNA phages.

  1. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    Science.gov (United States)

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  2. The G protein-coupled receptor, class C, group 6, subtype A (GPRC6A) receptor

    DEFF Research Database (Denmark)

    Clemmensen, C; Smajilovic, S; Wellendorph, P;

    2014-01-01

    GPRC6A (G protein-coupled receptor, class C, group 6, subtype A) is a class C G protein-coupled receptor, that has been cloned from human, mouse and rat. Several groups have shown that the receptor is activated by a range of basic and small aliphatic L-α-amino acids of which L-arginine, L...

  3. Arabidopsis CDS blastp result: AK065847 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065847 J013042H05 At1g04880.1 high mobility group (HMG1/2) family protein / ARID/BRIGHT...ein 4 (HMG-4) (High mobility group protein 2a) (HMG-2a) {Homo sapiens}; contains Pfam profiles PF00505: HMG (high mobility group) box, PF01388: ARID/BRIGHT DNA binding domain 7e-74 ...

  4. Single dose testosterone increases total cholesterol levels and induces the expression of HMG CoA Reductase

    OpenAIRE

    2012-01-01

    Abstract Background Cholesterol is mainly synthesised in liver and the rate-limiting step is the reduction of 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) to mevalonate, a reaction catalysed by HMG-CoA reductase (HMGCR). There is a comprehensive body of evidence documenting that anabolic-androgenic steroids are associated with deleterious alterations of lipid profile. In this study we investigated whether a single dose of testosterone enanthate affects the cholesterol biosynthesis and the e...

  5. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting.

    Science.gov (United States)

    Köhler, Claudia; Page, Damian R; Gagliardini, Valeria; Grossniklaus, Ueli

    2005-01-01

    The maternally expressed Arabidopsis thaliana Polycomb group protein MEDEA (MEA) controls expression of the MADS-box gene PHERES1 (PHE1). Here, we show that PHE1 is mainly paternally expressed but maternally repressed and that this maternal repression of PHE1 breaks down in seeds lacking maternal MEA activity. Because Polycomb group proteins control parental imprinting in mammals as well, the independent recruitment of similar protein machineries for the imprinting of genes is a notable example of convergent evolution.

  6. Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo

    Directory of Open Access Journals (Sweden)

    Jobin Jean

    2004-05-01

    Full Text Available Abstract Background HMG-CoA reductase inhibitors (statins are commonly used in medicine to control blood lipid disorder. Large clinical trials have demonstrated that statins greatly reduces cardiovascular-related morbidity and mortality in patients with and without coronary artery disease. Also, the use of HMG-CoA reductase inhibitors has been reported to have immunosuppressive effects. Case presentation We describe an unusual case of regression of vitiligo in a patient treated with high dose simvastatin. The relation between simvastatin and regression of vitiligo in this case report may be related to the autoimmune pathophysiology of the disease. Conclusion This unexpected beneficial impact provides another scientific credence to the hypothesis that immune mechanisms play a role in the development of vitiligo and that the use of statins as immuno-modulator could be of use not only for treatment relative to organ transplant but in other pathologies such as vitiligo.

  7. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA

    DEFF Research Database (Denmark)

    Reddy, Madhava C; Christensen, Jesper; Vasquez, Karen M

    2005-01-01

    Human high mobility group box (HMGB) 1 and -2 proteins are highly conserved and abundant chromosomal proteins that regulate chromatin structure and DNA metabolism. HMGB proteins bind preferentially to DNA that is bent or underwound and to DNA damaged by agents such as cisplatin, UVC radiation......, and benzo[a]pyrenediol epoxide (BPDE). Binding of HMGB1 to DNA adducts is thought to inhibit nucleotide excision repair (NER), leading to cell death, but the biological roles of these proteins remain obscure. We have used psoralen-modified triplex-forming oligonucleotides (TFOs) to direct a psoralen-DNA...... interstrand cross-link (ICL) to a specific site to determine the effect of HMGB proteins on recognition of these lesions. Our results reveal that human HMGB1 (but not HMGB2) binds with high affinity and specificity to psoralen ICLs, and interacts with the essential NER protein, replication protein A (RPA...

  8. The role of the thiol group in protein modification with methylglyoxal

    Directory of Open Access Journals (Sweden)

    JELENA M. AĆIMOVIĆ

    2009-08-01

    Full Text Available Methylglyoxal is a highly reactive α-oxoaldehyde with elevated production in hyperglycemia. It reacts with nucleophilic Lys and Arg side-chains and N-terminal amino groups causing protein modification. In the present study, the importance of the reaction of the Cys thiol group with methylglyoxal in protein modification, the competitiveness of this reaction with those of amino and guanidine groups, the time course of these reactions and their role and contribution to protein cross-linking were investigated. Human and bovine serum albumins were used as model systems. It was found that despite the very low levels of thiol groups on the surface of the examined protein molecules (approx. 80 times lower than those of amino and guanidino groups, a very high percentage of it reacts (25–85 %. The amount of reacted thiol groups and the rate of the reaction, the time for the reaction to reach equilibrium, the formation of a stable product and the contribution of thiol groups to protein cross-linking depend on the methylglyoxal concentration. The product formed in the reaction of thiol and an insufficient quantity of methylglyoxal (compared to the concentrations of the groups accessible for modification participates to a significant extent (4 % to protein cross-linking. Metformin applied in equimolar concentration with methylglyoxal prevents its reaction with amino and guanidino groups but, however, not with thiol groups.

  9. HMG-CoA Reductase Inhibitors from Monascus-Fermented Rice

    Directory of Open Access Journals (Sweden)

    Xuemei Li

    2013-01-01

    Full Text Available Seven compounds were isolated from Monascus-fermented rice by column chromatography with silica gel and semiprep HPLC. Their structures were elucidated by extensive spectroscopic methods. All compounds displayed HMG-CoA reductase inhibitory potential, among them compound 7 exhibited strong inhibition with IC50 value comparable with lovastatin. In this study, two compounds (1 and 2 were obtained from natural source for the first time.

  10. Developmental toxicity of the HMG-CoA reductase inhibitor (PPD10558) in rats and rabbits.

    Science.gov (United States)

    Faqi, Ali S; Prohaska, David; Lopez, Rocio; McIntyre, Gail

    2012-02-01

    PPD10558 is an orally active, lipid-lowering 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) being developed as a treatment for hypercholesterolemia in patients who have not been able to tolerate statins because of statin-associated myalgia. We have studied the potential developmental toxicity effects of PPD10558 in pregnant rats and rabbits given daily oral doses during the period of organogenesis. Rats were dosed with 0, 20, 80, or 320 mg/kg/day from Gestation Day (GD) 6 to 17 and rabbits received dose levels of 0, 12.5, 25, or 50 mg/kg/day from GD 6 to 18. Additional groups in both studies served as toxicokinetic animals and received the PPD10558 in the same manner as the main study groups at the same dose levels. Blood samples were collected from toxicokinetic animals at designated time points on GD 6 and 17 in rats and GD 6 and 18 in rabbits. Fetal exposure in rats was assessed on GD 20. Maternal and developmental parameters were evaluated in rats and rabbits on GD 20 and GD 29, respectively. No maternal and developmental toxicity was observed at any of the dose levels used in the rat study. Evidence of fetal exposure was determined in fetal plasma with mean fetal concentrations of PPD10558 and the metabolite (PPD11901) found to be between 1 and 6% of the mean maternal concentrations. In rabbits, marked maternal toxicity including mortality (eight deaths; 1 dose at 25 and 7 at 50 mg/kg/day), abortions (2 at 25 mg/kg/day and 6 at 50 mg/kg/day) and reduction in gestation body weight, gestation body weight changes and decreased food consumption were observed. In addition, fetal body weights of the combined sexes were significantly reduced at 50 mg/kg/day in comparison with the controls. Mean peak exposure (Cmax) and total exposure (AUC(0-24)) of PPD11901 in both rats and rabbits were higher than that of PPD10558 on GD 6 and GD 17 at each of the three dose levels.. Based on the results of these studies, the no observed adverse effect

  11. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family

    Directory of Open Access Journals (Sweden)

    Sonnhammer Erik L

    2008-01-01

    Full Text Available Abstract Background Parasitic protozoans possess many multicopy gene families which have central roles in parasite survival and virulence. The number and variability of members of these gene families often make it difficult to predict possible functions of the encoded proteins. The families of extra-cellular proteins that are exposed to a host immune response have been driven via immune selection to become antigenically variant, and thereby avoid immune recognition while maintaining protein function to establish a chronic infection. Results We have combined phylogenetic and function shift analyses to study the evolution of the RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family in Plasmodium falciparum. We show that this family can be subdivided into two major groups that we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently published study that showed that, despite the presence of the Plasmodium export (PEXEL motif in all RIFIN variants, proteins from each group have different cellular localizations during the intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis, a novel technique to predict functional divergence between sub-groups of a protein family, indicates that RIFINs have undergone neo- or sub-functionalization. Conclusion These results question the general trend of clustering large antigenically variant protein groups into homogenous families. Assigning functions to protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using phylogenetic and function shift analysis methods, we identify new directions for the investigation of this broad and complex group of proteins.

  12. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  13. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase

    Institute of Scientific and Technical Information of China (English)

    Russell A DeBose-Boyd

    2008-01-01

    3Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate,an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids.The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism.Here,Ⅰwill discuss recent advances that shed light on one mechanism for control of reductase,which involves rapid degradation of the enzyme.Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2.Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78,which initiates ubiquitination of reductase.This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes.Thus,sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).

  14. Effect of long-term cholesterol-lowering treatment with HMG-CoA reductase inhibitor (Simvastatin) of myocardial perfusion evaluated by thallium-201 single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Ryohei; Nohara, Ryuji; Linxue, Li; Sasayama, Shigetake [Kyoto Univ. (Japan). Graduate School of Medicine; Tamaki, Shunichi; Hashimoto, Tetsuo; Tanaka, Masahiro; Miki, Shinji

    2000-03-01

    Fifteen patients with either angina pectoris or old myocardial infarction, who had positive {sup 201}Tl single photon emission computed tomography (SPECT) imaging and coronary sclerosis of more than 50%, were treated with an HMG-CoA reductase inhibitor (simvastatin) for more than 1 year. They were compared with an untreated control group (n=25). Total cholesterol decreased 22% and high-density lipoprotein (HDL) increased 9% with simvastatin; both changes were significantly different from those in controls. Long-term simvastatin induced improvement of myocardial perfusion on {sup 201}Tl SPECT images both during exercise and at rest, which was also significantly different from controls. In addition, the improvement of myocardial perfusion on {sup 201}Tl SPECT images was clearly related to the improvements in cholesterol values, especially nonHDL cholesterol. Thus, the greater the decrease in nonHDL cholesterol, the greater the improvement in myocardial perfusion at rest or during exercise with long-term treatment using an HMG-CoA reductase inhibitor. These findings indicate that the improvements in cholesterol values caused by HMG-CoA reductase inhibitor therapy are related to improvements of myocardial perfusion seen on {sup 201}Tl SPECT images. (author)

  15. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, A.S.; Thomas, J. Jr.; Tirupati, H.K. [Univ. of Florida College of Medicine, Gainesville, FL (United States)

    1995-12-01

    This report investigates the coupling between transcription and splicing of a mitochondrial group I intron in Saccharomyces cerevisiae and the effect of the Cbp2 protein on splicing. 65 refs., 7 figs.

  16. M1 Protein Allows Group A Streptococcal Survival in Phagocyte Extracellular Traps through Cathelicidin Inhibition

    OpenAIRE

    Lauth, Xavier; von Köckritz-Blickwede, Maren; McNamara, Case W; Myskowski, Sandra; Zinkernagel, Annelies S.; Beall, Bernard; Ghosh, Partho; Richard L Gallo; Nizet, Victor

    2009-01-01

    M1 protein contributes to Group A Streptococcus (GAS) systemic virulence by interfering with phagocytosis and through proinflammatory activities when released from the cell surface. Here we identify a novel role of M1 protein in the stimulation of neutrophil and mast cell extracellular trap formation, yet also subsequent survival of the pathogen within these DNA-based innate defense structures. Targeted mutagenesis and heterologous expression studies demonstrate M1 protein promotes resistance...

  17. Polycomb group proteins: navigators of lineage pathways led astray in cancer

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Helin, Kristian

    2009-01-01

    The Polycomb group (PcG) proteins are transcriptional repressors that regulate lineage choices during development and differentiation. Recent studies have advanced our understanding of how the PcG proteins regulate cell fate decisions and how their deregulation potentially contributes to cancer. ...

  18. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R;

    2012-01-01

    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...

  19. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ∼90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

  20. Regulation of Autophagy-Related Protein and Cell Differentiation by High Mobility Group Box 1 Protein in Adipocytes

    Directory of Open Access Journals (Sweden)

    Huanhuan Feng

    2016-01-01

    Full Text Available High mobility group box 1 protein (HMGB1 is a molecule related to the development of inflammation. Autophagy is vital to maintain cellular homeostasis and protect against inflammation of adipocyte injury. Our recent work focused on the relationship of HMGB1 and autophagy in 3T3-L1 cells. In vivo experimental results showed that, compared with the normal-diet group, the high-fat diet mice displayed an increase in adipocyte size in the epididymal adipose tissues. The expression levels of HMGB1 and LC3II also increased in epididymal adipose tissues in high-fat diet group compared to the normal-diet mice. The in vitro results indicated that HMGB1 protein treatment increased LC3II formation in 3T3-L1 preadipocytes in contrast to that in the control group. Furthermore, LC3II formation was inhibited through HMGB1 knockdown by siRNA. Treatment with the HMGB1 protein enhanced LC3II expression after 2 and 4 days but decreased the expression after 8 and 10 days among various differentiation stages of adipocytes. By contrast, FABP4 expression decreased on the fourth day and increased on the eighth day. Hence, the HMGB1 protein modulated autophagy-related proteins and lipid-metabolism-related genes in adipocytes and could be a new target for treatment of obesity and related metabolic diseases.

  1. Two high-mobility group box domains act together to underwind and kink DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Malarkey, C. S. [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Saperas, N. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Churchill, M. E. A., E-mail: mair.churchill@ucdenver.edu [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Campos, J. L., E-mail: mair.churchill@ucdenver.edu [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain)

    2015-06-30

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.

  2. [Molecular characterization of a HMG-CoA reductase gene from a rare and endangered medicinal plant, Dendrobium officinale].

    Science.gov (United States)

    Zhang, Lin; Wang, Ji-Tao; Zhang, Da-Wei; Zhang, Gang; Guo, Shun-Xing

    2014-03-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate in mavalonic acid pathway, which is the first committed step for isoprenoid biosynthesis in plants. However, it still remains unclear whether HGMR gene plays a role in the isoprenoid biosynthesis in Dendrobium officinale, an endangered epiphytic orchid species. In the present study, a HMGR encoding gene, designed as DoHMGR1 (GenBank accession JX272632), was identified from D. officinale using the reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods, for the first time. The full length cDNA of DoHMGR1 was 2 071 bp in length and encoded a 562-aa protein with a molecular weight of 59.73 kD and an isoelectric point (pI) of 6.18. The deduced DoHMGR1 protein, like other HMGR proteins, constituted four conserved domains (63-561, 147-551, 268-383 and 124-541) and two transmembrane motifs (42-64 and 85-107). Multiple sequence alignment and phylogenetic analyses demonstrated that DoHMGR1 had high identity (67%-89%) to a number of HMGR genes from various plants and was closely related to Vanda hybrid cultivar, rice and maize monocots. Real time quantitative PCR (qPCR) analysis revealed that DoHMGR1 was expressed in the three included organs. The transcripts were the most abundant in the roots with 2.13 fold over that in the leaves, followed by that in the stems with 1.98 fold. Molecular characterization of DoHMGR1 will be useful for further functional elucidation of the gene involving in isoprenoid biosynthesis pathway in D. officinale.

  3. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-09-20

    Although overexpression of the tHMG1 gene is a well-known strategy for terpene synthesis in Saccharomyces cerevisiae, the optimal level for tHMG1p has not been established. In the present study, it was observed that two copies of the tHMG1 gene on a dual gene expression cassette improved squalene synthesis in laboratory strain by 16.8-fold in comparison to single-copy expression. It was also observed that tHMG1p is limited by its cofactor (NADPH), as the overexpression of NADPH regenerating genes', viz., ZWF1 and POS5 (full length and without mitochondrial presequence), has led to its increased enzyme activity. Further, it was demonstrated that overexpression of full-length POS5 has improved squalene synthesis in cytosol. Finally, when tHMG1 and full-length POS5 were co-overexpressed there was a net 27.5-fold increase in squalene when compared to control strain. These results suggest novel strategies to increase squalene accumulation in S. cerevisiae.

  4. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿

    Science.gov (United States)

    Sanderson-Smith, Martina L.; Dowton, Mark; Ranson, Marie; Walker, Mark J.

    2007-01-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 μM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (Kd = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys96 and Lys101 reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg107 and His108 to alanine. Furthermore, mutagenesis of Arg107 and His108 abolished plasminogen binding by Prp despite the presence of Lys96 and Lys101 in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins. PMID:17012384

  5. The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues.

    Science.gov (United States)

    Sanderson-Smith, Martina L; Dowton, Mark; Ranson, Marie; Walker, Mark J

    2007-02-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.

  6. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    Science.gov (United States)

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.

  7. High mobility group A-interacting proteins in cancer: focus on chromobox protein homolog 7, homeodomain interacting protein kinase 2 and PATZ

    Directory of Open Access Journals (Sweden)

    Monica Fedele

    2012-03-01

    Full Text Available The High Mobility Group A (HMGA proteins, a family of DNA architectural factors, by interacting with different proteins play crucial roles in neoplastic transformation of a wide range of tissues. Therefore, the search for HMGA-interacting partners was carried out by several laboratories in order to investigate the mechanisms underlying HMGA-dependent tumorigenesis. Three of the several HMGA-binding proteins are discussed in this review. These are the Chromobox family protein (chromobox protein homolog 7, CBX7, the homeodomain interacting protein kinase 2 (HIPK2 and the POZ/domain and Kruppel zinc finger family member, PATZ. All of them play a critical role in tumorigenesis, and may also be independent markers of cancer. Their activities are linked to cell cycle, apoptosis and senescence. In this review, we discuss the properties of each protein, including their effect on HMGA1 functions, and propose a model accounting for how their activities might be coordinated.

  8. The pregnancy rates with intrauterine insemination (IUI) in superovulated cycles employing different protocols (clomiphen citrate (CC), human menopausal gonadotropin (HMG) and HMG+CC) and in natural ovulatory cycle.

    Science.gov (United States)

    Mahani, I M; Afnan, M

    2004-10-01

    To compare the result of IUI in infertile couples with different protocols of induction ovulation. In a retrospective study, 209 infertile couples with different diagnosis (unexplained, male factor, endometriosis, tubal disease, ovulatory dysfunction and multifactorial infertility) were subjected to different protocol of induction ovulation: 50-100 mg CC in day 2-6, 50 mg CC in day 2-6 + 2 amp HMG in day 5, 7, 9, 11, and 2 amp HMG per day. Natural ovulatory cycle + IUI was used for sperm stored patients. 441 consecutive cycles of IUI was performed 36-40 hours after HCG injection. The data were analysed with student T-test and Mann-Whitney test. The significance was defined as P<0.005. Thirty one pregnancies (7% per cycle, 15% per patient) occurred. One pregnancy occurred (pregnancy per cycle was 2% and per patient was 12%) in 8 patients undergoing 37 cycles of IUI with natural ovulation. The result with CC in 27 patients undergoing 41 cycles IUI was 2 pregnancies (4% per cycle, 7% per patient). In 129 patients receiving 283 cycles of IUI with CC+HMG 21 pregnancies occurred (7% per cycle, 16% per patient). In 35 patients receiving 80 cycles of IUI with HMG 8 pregnancies occurred (9% per cycle, 23% per patient). The method chosen for ovulation induction had a critical bearing on the success of IUI. The result of IUI will be better by using induction ovulation compared to natural ovulatory cycle. In our programme the combined use of HMG+IUI yielded a higher rate of pregnancy rate compared with CC+IUI, CC+HMG+IUI and natural ovulatory cycle+IUI.

  9. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance.

    Science.gov (United States)

    Stapels, Martha; Piper, Chelsea; Yang, Tao; Li, Minghua; Stowell, Cheri; Xiong, Zhi-gang; Saugstad, Julie; Simon, Roger P; Geromanos, Scott; Langridge, James; Lan, Jing-quan; Zhou, An

    2010-03-02

    Exposing the brain to sublethal ischemia affects the response to a subsequent, otherwise injurious ischemia, resulting in transcriptional suppression and neuroprotection, a response called ischemic tolerance. Here, we show that the proteomic signature of the ischemic-tolerant brain is characterized by increased abundance of transcriptional repressors, particularly polycomb group (PcG) proteins. Knocking down PcG proteins precluded the induction of ischemic tolerance, whereas in an in vitro model, overexpressing the PcG proteins SCMH1 or BMI1 induced tolerance to ischemia without preconditioning. We found that PcG proteins are associated with the promoter regions of genes encoding two potassium channel proteins that show decreased abundance in ischemic-tolerant brains. Furthermore, PcG proteins decreased potassium currents in cultured neuronal cells, and knocking down potassium channels elicited tolerance without preconditioning. These findings reveal a previously unknown mechanism of neuroprotection that involves gene repressors of the PcG family.

  10. Aspects of Antithrombotic Effect of HMG-CoA Reductase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    贺石林

    2005-01-01

    @@ Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for the treatment of hypercholesteremia and have showed remarkable activity in preventing cardiovascular morbidity and mortality. Recent studies demonstrated that statins have significant antithrombotic effect in addition to cholesterollowering action. Although the efficacy of statins for reducing cardiovascular events has historically been ascribed to their inhibitory activity on cholesterol synthesis, the degree of low-density lipoprotein cholesterol reduction by statins generally does not correlate with the magnitude of coronary risk reduction.

  11. The Utrogestan and hMG protocol in patients with polycystic ovarian syndrome undergoing controlled ovarian hyperstimulation during IVF/ICSI treatments.

    Science.gov (United States)

    Zhu, Xiuxian; Ye, Hongjuan; Fu, Yonglun

    2016-07-01

    Poor oocyte quality is a main concern for decreased reproductive outcomes in women with polycystic ovarian syndrome (PCOS) during controlled ovarian hyperstimulation (COH). A primary way to improve oocyte quality is to optimize the COH protocol. It was demonstrated that the viable embryo rate per oocyte retrieved in the Utrogestan and hMG protocol, a novel regimen based on frozen-thawed embryo transfer (FET), is statistically higher than that in the short protocol. Thus, a retrospective study was conducted to evaluate the endocrine characteristics and clinical outcomes in PCOS patients subjected to the Utrogestan and hMG protocol compared with those subjected to the short protocol.One hundred twenty three PCOS patients enrolled in the study group and were simultaneously administered Utrogestan and human menopausal gonadotropin (hMG) from cycle day 3 until the trigger day. When the dominant follicles matured, gonadotropin-releasing hormone agonist (GnRH-a) 0.1 mg was used as the trigger. A short protocol was applied in the control group including 77 PCOS women. Viable embryos were cryopreserved for later transfer in both groups. The primary outcome was the viable embryo rate per oocyte retrieved. The secondary outcomes included the number of oocytes retrieved, fertilization rate, and clinical pregnancy outcomes from FET cycles.The pituitary luteinizing hormone (LH) level was suppressed in most patients; however, the LH level in 13 women, whose basic LH level was more than 10 IU/L, surpassed 10 IU/L on menstruation cycle day (MC)9-11 and decreased subsequently. No significant between-group differences were observed in the number of oocytes retrieved (13.27 ± 7.46 vs 13.1 ± 7.98), number of viable embryos (5.57 ± 3.27 vs 5 ± 2.79), mature oocyte rate (90.14 ± 11.81% vs 93.02 ± 8.95%), and cleavage rate (97.69 ± 6.22% vs 95.89 ± 9.57%). The fertilization rate (76.11 ± 19.04% vs 69.34 ± 21.81%; P < 0

  12. Desolvation penalty for burying hydrogen-bonded peptide groups in protein folding.

    Science.gov (United States)

    Baldwin, Robert L

    2010-12-16

    A novel analysis of the enthalpy of protein unfolding is proposed and used to test for a desolvation penalty when hydrogen-bonded peptide groups are desolvated via folding. The unfolding enthalpy has three components, (1) the change when peptide hydrogen bonds are broken and the exposed -CO and -NH groups are solvated, (2) the change when protein-protein van der Waals interactions are broken and replaced by protein-water van der Waals interactions, and (3) the change produced by the hydrophobic interaction when nonpolar groups in the protein interior (represented as a liquid hydrocarbon) are transferred to water. A key feature of the analysis is that the enthalpy change from the hydrophobic interaction goes through 0 at 22 °C according to the liquid hydrocarbon model. Protein unfolding enthalpies are smaller at 22 °C than the enthalpy change for unfolding an alanine peptide helix. Data in the literature indicate that the van der Waals contribution to the unfolding enthalpy is considerably larger than the unfolding enthalpy itself at 22 °C, and therefore, a sizable desolvation penalty is predicted. Such a desolvation penalty was predicted earlier from electrostatic calculations of a stabilizing interaction between water and the hydrogen-bonded peptide group.

  13. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    Science.gov (United States)

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  14. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins.

    Science.gov (United States)

    Kim, Jonggul; Wang, Yingjie; Li, Geoffrey; Veglia, Gianluigi

    2016-01-01

    The developments of biosynthetic specific labeling strategies for side-chain methyl groups have allowed structural and dynamic characterization of very large proteins and protein complexes. However, the assignment of the methyl-group resonances remains an Achilles' heel for NMR, as the experiments designed to correlate side chains to the protein backbone become rather insensitive with the increase of the transverse relaxation rates. In this chapter, we outline a semiempirical approach to assign the resonances of methyl-group side chains in large proteins. This method requires a crystal structure or an NMR ensemble of conformers as an input, together with NMR data sets such as nuclear Overhauser effects (NOEs) and paramagnetic relaxation enhancements (PREs), to be implemented in a computational protocol that provides a probabilistic assignment of methyl-group resonances. As an example, we report the protocol used in our laboratory to assign the side chains of the 42-kDa catalytic subunit of the cAMP-dependent protein kinase A. Although we emphasize the labeling of isoleucine, leucine, and valine residues, this method is applicable to other methyl group side chains such as those of alanine, methionine, and threonine, as well as reductively methylated cysteine side chains.

  15. A Case of Dilated Cardiomyopathy Associated with 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG CoA Lyase Deficiency

    Directory of Open Access Journals (Sweden)

    Alexander A. C. Leung

    2009-01-01

    Full Text Available 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA lyase deficiency is an inborn error of metabolism characterized by impairment of ketogenesis and leucine catabolism resulting in an organic acidopathy. In 1994, a case of dilated cardiomyopathy and fatal arrhythmia was reported in a 7-month-old infant. We report a case of dilated cardiomyopathy in association with HMG CoA lyase deficiency in a 23-year-old man with the acute presentation of heart failure. To our knowledge, this is the first case reported in an adult.

  16. High Mobility Group Box Protein-1 Correlates with Renal Function in Chronic Kidney Disease (CKD)

    OpenAIRE

    Bruchfeld, Annette; Qureshi, Abdul Rashid; Lindholm, Bengt; Barany, Peter; Yang, Lihong; Stenvinkel, Peter; Tracey, Kevin J.

    2007-01-01

    Chronic kidney disease (CKD) is associated with inflammation and malnutrition and carries a markedly increased risk of cardiovascular disease (CVD). High Mobility Group Box Protein-1 (HMGB-1) is a 30-kDa nuclear and cytosolic protein known as a transcription and growth factor, recently identified as a proinflammatory mediator of tissue injury. Recent data implicates HMGB-1 in endotoxin lethality, rheumatoid arthritis, and atherosclerosis. The aim of this post-hoc, cross-sectional study was to...

  17. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    Science.gov (United States)

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents.

  18. A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Plevin, Michael J., E-mail: michael.plevin@ibs.fr [CEA, Institut de Biologie Structurale Jean-Pierre Ebel (France); Hamelin, Olivier [CNRS, Laboratoire de Chimie et Biologie des Metaux (France); Boisbouvier, Jerome; Gans, Pierre [CEA, Institut de Biologie Structurale Jean-Pierre Ebel (France)

    2011-02-15

    A new method for stereospecific assignment of prochiral methyl groups in proteins is presented in which protein samples are produced using U-[{sup 13}C]glucose and subsaturating amounts of 2-[{sup 13}C]methyl-acetolactate. The resulting non-uniform labeling pattern allows proR and proS methyl groups to be easily distinguished by their different phases in a constant-time two-dimensional {sup 1}H-{sup 13}C correlation spectra. Protein samples are conveniently prepared using the same media composition as the main uniformly-labeled sample and contain higher levels of isotope-enrichment than fractional labeling approaches. This new strategy thus represents an economically-attractive, robust alternative for obtaining isotopically-encoded stereospecific NMR assignments of prochiral methyl groups.

  19. A randomized controlled trial comparing the efficacy and safety of two HMG preparations gaining their LH bioactivity from different HCG sources

    DEFF Research Database (Denmark)

    Lockwood, Gillian; Cometti, Barbara; Bogstad, Jeanette

    2017-01-01

    In this prospective, controlled, randomized, multicentre, non-inferiority study, efficacy and safety of two HMG preparations (Menopur(®)- Ferring and Meriofert®- IBSA Institut Biochimique SA) for ovarian stimulation were compared (270 women undergoing IVF aged between 18 and 39 years; BMI 30 kg/m(2......) or less; less than three prior completed assisted reproduction technique cycles). A standard long down-regulation with gonadotrophin-releasing hormone agonist protocol, with HCG triggering was used; primary end-point was total number of oocytes retrieved; attention was paid toovarian hyperstimulation...... syndrome (OHSS). No statistically significant differences between the treatment groups were reported for most of the clinically significant end-points, including embryo quality, fertilization rate, implantation rate, ongoing pregnancy rate and live birth rate. Total number of oocytes retrieved was higher...

  20. Kinetic characterization of an oxidative, cooperative HMG-CoA reductase from Burkholderia cenocepacia.

    Science.gov (United States)

    Schwarz, Benjamin H; Driver, Joseph; Peacock, Riley B; Dembinski, Holly E; Corson, Melissa H; Gordon, Samuel S; Watson, Jeffrey M

    2014-02-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a key enzyme in endogenous cholesterol biosynthesis in mammals and isoprenoid biosynthesis via the mevalonate pathway in other eukaryotes, archaea and some eubacteria. In most organisms that express this enzyme, it catalyzes the NAD(P)H-dependent reduction of HMG-CoA to mevalonate. We have cloned and characterized the 6x-His-tagged HMGR from the opportunistic lung pathogen Burkholderia cenocepacia. Kinetic characterization shows that the enzyme prefers NAD(H) over NADP(H) as a cofactor, suggesting an oxidative physiological role for the enzyme. This hypothesis is supported by the fact that the Burkholderia cenocepacia genome lacks the genes for the downstream enzymes of the mevalonate pathway. The enzyme exhibits positive cooperativity toward the substrates of the reductive reaction, but the oxidative reaction exhibits unusual double-saturation kinetics, distinctive among characterized HMG-CoA reductases. The unusual kinetics may arise from the presence of multiple active oligomeric states, each with different Vmax values.

  1. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    OpenAIRE

    Aidan J Peterson; Mallin, Daniel R.; Francis, Nicole J.; Ketel, Carrie S.; Stamm, Joyce; Voeller, Rochus K.; Kingston, Robert E.; Jeffrey A Simon

    2004-01-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH int...

  2. In Vivo Models to Address the Function of Polycomb Group Proteins.

    Science.gov (United States)

    Bantignies, Frédéric

    2016-01-01

    Initially discovered as repressors of homeotic gene expression in Drosophila, Polycomb group (PcG) proteins have now been shown to be involved in a plethora of biological processes. Indeed, by repressing a large number of target genes, including specific lineage genes, these chromatin factors play major roles in a multitude of cellular functions, such as pluripotency, differentiation, reprogramming, tissue regeneration, and nuclear organization. In this book chapter are presented in vivo approaches and technologies, which have been used in both mammalian and Drosophila systems to study the cellular functions of Polycomb group proteins.

  3. Extracellular effect of high mobility group box1 protein and its role in sepsis:an overview%高迁移率族蛋白B1的细胞生物学效应及其与脓毒症的关系

    Institute of Scientific and Technical Information of China (English)

    王松柏; 姚咏明

    2003-01-01

    @@ Goodwin和John早在40多年前就发现了高迁移率族蛋白(high mobility group protein,HMG),证明它是一类典型的非组蛋白(nonhistone chromatin protein,NHCP).NHCP及其他众多核内蛋白质通过与DNA的相互作用,参与了细胞核内诸如转录、复制、重组等复杂有序的功能过程.HMG在细胞核内含量非常丰富并具有广泛功能;细胞核外及血清中也存在一定量的HMGB1.近年来的研究发现,核外HMGB1可能具有"晚期"炎症介质的作用,并日益引起了人们的关注[1-3].在本文中拟重点介绍有关HMGB1的细胞生物学效应及其与脓毒症关系的研究进展.

  4. Bmi-1, a polycomb Group Protein, Plays an Essential Role in tumorigenesis and Metastasis

    Institute of Scientific and Technical Information of China (English)

    Libing SONG; Jun LI; Wenting LIAO; Yan FENG; Wanli LIU; Yixin ZENG; Musheng ZENG

    2009-01-01

    @@ Dysregulation of polycomb group protein Bmi-1 expression has been linked with an invasive phenotype of certain human cancers and poor prog-nosis of patients; however, the underlying mechanisms are poorly under-stood. Here, we demonstrate that Bmi-1 expression is inversely correlated with E-cadherin expression in various cancers.

  5. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms

    NARCIS (Netherlands)

    Radulovic, V.; de Haan, G.; Klauke, K.

    2013-01-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are

  6. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage.

    NARCIS (Netherlands)

    J. Essers (Jeroen); A.B. Houtsmuller (Adriaan); L.R. van Veelen (Lieneke); C. Paulusma (Coen); A.L. Nigg (Alex); A. Pastink (Albert); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2002-01-01

    textabstractRecombination between homologous DNA molecules is essential for the proper maintenance and duplication of the genome, and for the repair of exogenously induced DNA damage such as double-strand breaks. Homologous recombination requires the RAD52 group proteins, including Rad51, Rad52 and

  7. Characterization of a spore-specific protein of the Bacillus cereus group

    NARCIS (Netherlands)

    From, C.; Voort, van der M.; Abee, T.; Granum, P.E.

    2012-01-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function

  8. Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions

    NARCIS (Netherlands)

    S. Rademakers (Suzanne); M. Volker (Marcel); D. Hoogstraten (Deborah); A.L. Nigg (Alex); M.J. Mone; A.A. van Zeeland (Albert); A.B. Houtsmuller (Adriaan); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractNucleotide excision repair (NER) is the main DNA repair pathway in mammals for removal of UV-induced lesions. NER involves the concerted action of more than 25 polypeptides in a coordinated fashion. The xeroderma pigmentosum group A protein (XPA) has been suggested to function as a centr

  9. Characterization of a spore-specific protein of the Bacillus cereus group

    NARCIS (Netherlands)

    From, C.; Voort, van der M.; Abee, T.; Granum, P.E.

    2012-01-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function

  10. HMG-CoA reductase inhibitors, other lipid-lowering medication, antiplatelet therapy, and the risk of venous thrombosis

    NARCIS (Netherlands)

    Ramcharan, A.S.; van Stralen, K.J.; Snoep, J.D.; Mantel-Teeuwisse, A.K.; Doggen, Catharina Jacoba Maria

    2009-01-01

    Background: Statins [3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors] and antiplatelet therapy reduce the risk of atherosclerotic disease. Besides a reduction of lipid levels, statins might also have antithrombotic and anti-inflammatory properties, and anti-platelet

  11. HMG-CoA reductase inhibitors, other lipid-lowering medication, antiplatelet therapy, and the risk of venous thrombosis

    NARCIS (Netherlands)

    Ramcharan, A.S.; Stralen, van K.J.; Snoep, J.D.; Mantel-Teeuwisse, A.K.; Doggen, C.J.M.

    2009-01-01

    Background: Statins [3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors] and antiplatelet therapy reduce the risk of atherosclerotic disease. Besides a reduction of lipid levels, statins might also have antithrombotic and anti-inflammatory properties, and anti-platelet therap

  12. SRY interacts with ribosomal proteins S7 and L13a in nuclear speckles.

    Science.gov (United States)

    Sato, Youichi; Yano, Shojiro; Ewis, Ashraf A; Nakahori, Yutaka

    2011-05-01

    The SRY (sex-determining region on the Y chromosome) is essential for male development; however, the molecular mechanism by which the SRY induces testis development is still unclear. To elucidate the mechanism of testis development, we identified SRY-interacting proteins using a yeast two-hybrid system. We found two ribosomal proteins, RPS7 (ribosomal protein S7) and RPL13a (ribosomal protein L13a) that interact with the HMG (high-mobility group) box domain of SRY. Furthermore, we confirmed the intracellular distributions of RPS7, RPL13a and SRY and found that the three proteins were co-expressed in COS1 cells. SRY, RPS7 and RPL13a were co-localized in nuclear speckles. These findings suggest that SRY plays an important role in activities associated with nuclear speckles via an unknown mechanism.

  13. Conformational responses to changes in the state of ionization of titrable groups in proteins

    Science.gov (United States)

    Richman, Daniel Eric

    Electrostatic energy links the structural properties of proteins with some of their important biological functions, including catalysis, energy transduction, and binding and recognition. Accurate calculation of electrostatic energy is essential for predicting and for analyzing function from structure. All proteins have many ionizable residues at the protein-water interface. These groups tend to have ionization equilibria (pK a values) shifted slightly relative to their values in water. In contrast, groups buried in the hydrophobic interior usually have highly anomalous p Ka values. These shifts are what structure-based calculations have to reproduce to allow examination of contributions from electrostatics to stability, solubility and interactions of proteins. Electrostatic energies are challenging to calculate accurately because proteins are heterogeneous dielectric materials. Any individual ionizable group can experience very different local environments with different dielectric properties. The studies in this thesis examine the hypothesis that proteins reorganize concomitant with changes in their state of ionization. It appears that the pKa value measured experimentally reflects the average of pKa values experienced in the different electrostatic environments corresponding to different conformational microstates. Current computational models fail to sample conformational reorganization of the backbone correctly. Staphyloccocal nuclease (SNase) was used as a model protein in nuclear magnetic resonance (NMR) spectroscopy studies to characterize the conformational rearrangements of the protein coupled to changes in the ionization state of titrable groups. One set of experiments tests the hypothesis that proton binding to surface Asp and Glu side chains drives local unfolding by stabilizing less-native, more water-solvated conformations in which the side chains have normalized pKa values. Increased backbone flexibility in the ps-ns timescale, hydrogen bond (H

  14. 茶树 HMG-CoA 还原酶基因全长 cDNA 克隆及序列分析%Cloning and sequence analysis of HMG-CoA reductase full-length cDNA from tea (Camellia sinensis)

    Institute of Scientific and Technical Information of China (English)

    韩兴杰; 徐玲玲; 廖亮; 李同建; 邓辉胜; 樊启水; 徐小青

    2015-01-01

    )catalyzes the conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)to mevalonate,which is the committed step in the synthesis of isoprenoids via the MVA pathway.To help understand the molecular and genetic mechanisms underlying terpenoid synthesis of tea,a full-length cDNA encoding HMGR was cloned from tea (Camellia sinensis (L.)O.Kuntze)by using the RACE-PCR technique (designated as CsHMGR 1).It comprised 1 979 bp,with a 1 722 bp intact open read-ing frame encoding a 573-amino-acid protein.The deduced protein showed 80% to 82% similarities to homologs from rubber tree (Hevea brasiliensis ),common camptotheca fruit (Camptotheca acuminate ),ginseng (Panax ginseng ), litchis (Litchi chinensis ),American ginseng (Panax quinquefolius ),rooted salvia (Salvia miltiorrhiza ),Momordica grosvenori (Siraltia grosvenorii ),and longan (Dimocarpus longan).The phylogenetic tree,constructed with the cat-alytic domalned of CsHMGR1 and homologs from other species,indicated that CsHMGR1 belonged to the eukaryotic class I HMGR family.CsHMGR1 consisted of two transmembrane domalns,implying that it may be localized to en-doplasmic reticulum (ER)similarly to other eukaryotic homologs.It also contalned two HMG-CoA binding sites,two NADP(H)-binding sites,four conserved catalytic active residues and a phosphorylation site,indicating that phospho-rylation/dephosphorylation is likely a crucial mode of regulation of its biochemical activity.Tissue expression analysis indicated that CsHMGR 1 was expressed comparatively in the leaf buds of C .sinensis cv.Dayelong and in both leaf buds and floral buds of the mother plants.The regulation of expression and physiological activity of CsHMGR1 are likely to impact greatly on tea quality,and CsHMGR1 may provide a basis of the quality evaluation and breeding of tea given that its function is further resolved.

  15. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids

    Science.gov (United States)

    Choudhury, Pabitra Pal; Jana, Siddhartha Sankar

    2016-01-01

    Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as ‘FPKATD’ and ‘Y/FTNEKL’ without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids’ pattern in different proteins. PMID:27930687

  16. Group B Streptococcus surface proteins as major determinants for meningeal tropism.

    Science.gov (United States)

    Tazi, Asmaa; Bellais, Samuel; Tardieux, Isabelle; Dramsi, Shaynoor; Trieu-Cuot, Patrick; Poyart, Claire

    2012-02-01

    Streptococcus agalactiae (group B Streptococcus, GBS), a normal constituent of the intestinal microbiota is the major cause of human neonatal infections and a worldwide spread 'hypervirulent' clone, GBS ST-17, is strongly associated with neonatal meningitis. Adhesion to epithelial and endothelial cells constitutes a key step of the infectious process. Therefore GBS surface-anchored proteins are obvious potential adhesion mediators of barrier crossing and determinant of hypervirulence. This review addresses the most recent molecular insights gained from studies on GBS surface proteins proven to be involved in the crossing of the brain-blood barrier and emphasizes on the specificity of a hypervirulent clone that displays meningeal tropism.

  17. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins.

    Science.gov (United States)

    Ringrose, Leonie; Paro, Renato

    2004-01-01

    During the development of multicellular organisms, cells become different from one another by changing their genetic program in response to transient stimuli. Long after the stimulus is gone, "cellular memory" mechanisms enable cells to remember their chosen fate over many cell divisions. The Polycomb and Trithorax groups of proteins, respectively, work to maintain repressed or active transcription states of developmentally important genes through many rounds of cell division. Here we review current ideas on the protein and DNA components of this transcriptional memory system and how they interact dynamically with each other to orchestrate cellular memory for several hundred genes.

  18. HMG-CoA还原酶抑制剂临床应用现状

    Institute of Scientific and Technical Information of China (English)

    邵民象; 于秉新

    1999-01-01

    @@ 3-羟基-3-甲基戊二酰辅酶A(3-hydroxy-3-methylglutaryl-coenzymeA,HMG-CoA)还原酶抑制剂是一类新型降血脂药物,为临床防治动脉粥样硬化首选药.目前已用于临床有5种:洛伐他汀(lovastatin,默克公司创制);辛伐他汀(simvastatin,默克公司创制);普伐他汀(pravastatin,日本三共公司创制);氟伐他汀(flulatatin,瑞士sandoz公司创制);atorvastatin(美国Parke-Davis/PFizer Ltd创制).

  19. Role of polycomb group proteins in the DNA damage response--a reassessment.

    Directory of Open Access Journals (Sweden)

    Hollie Chandler

    Full Text Available A growing body of evidence suggests that Polycomb group (PcG proteins, key regulators of lineage specific gene expression, also participate in the repair of DNA double-strand breaks (DSBs but evidence for direct recruitment of PcG proteins at specific breaks remains limited. Here we explore the association of Polycomb repressive complex 1 (PRC1 components with DSBs generated by inducible expression of the AsiSI restriction enzyme in normal human fibroblasts. Based on immunofluorescent staining, the co-localization of PRC1 proteins with components of the DNA damage response (DDR in these primary cells is unconvincing. Moreover, using chromatin immunoprecipitation and deep sequencing (ChIP-seq, which detects PRC1 proteins at common sites throughout the genome, we did not find evidence for recruitment of PRC1 components to AsiSI-induced DSBs. In contrast, the S2056 phosphorylated form of DNA-PKcs and other DDR proteins were detected at a subset of AsiSI sites that are predominantly at the 5' ends of transcriptionally active genes. Our data question the idea that PcG protein recruitment provides a link between DSB repairs and transcriptional repression.

  20. pipsqueak Encodes a Factor Essential for Sequence-Specific Targeting of a Polycomb Group Protein Complex

    Institute of Scientific and Technical Information of China (English)

    Der-HwaHuang; Yuh-LongChang; Chih-ChaoYang; I-ChingPan; BalasKing

    2005-01-01

    The Polycomb (Pc) group (Pc-G) of repressors is essential for transcriptional silencing of homeotic genes that determine the axial development of metazoan animals. It is generally believed that the multimeric complexes formed by these proteins nucleate certain chromatin structures to silence promoter activity upon binding to Pc-G response elements (PRE). Little is known, however, about the molecular mechanism involved in sequence-specific binding of these complexes. Here, we show that an immunoa ffinity-purified Pc protein complex contains a DNA binding activity specific to the (GA), motif in a PRE from the bithoraxoid region. We found that this activity can be attributed primarily to the large protein isoform encoded by pipsqueak (psq) instead of to the well-characterized GAGA factor. The functional relevance ofpsq to the silencing mechanismis strongly supported by its synergistic interactions with a subset of Pc-G that cause misexpression of homeotic genes.

  1. Variation in stratum corneum protein content as a function of anatomical site and ethnic group.

    Science.gov (United States)

    Raj, N; Voegeli, R; Rawlings, A V; Gibbons, S; Munday, M R; Summers, B; Lane, M E

    2016-06-01

    Quantification of stratum corneum (SC) protein levels from tape strippings is frequently used to investigate skin conditions, to correct for amounts of SC protein removed in SC biomarker studies and to determine distribution of topically applied ingredients. In recent years, a rapid and convenient method for SC protein quantification from tape strippings has become available using infrared densitometry (IRD). However, standard curves have only been generated for Caucasian forearm and shoulder SC and have been assumed to be correct not only for facial SC but also for SC samples of other ethnic groups. The aim of this study was to investigate whether the use of IRD for SC protein measurement is valid for other body sites such as the cheek and for measuring SC protein content of darkly pigmented skin types. Ten Caucasian and ten Black African female subjects with self-assessed normal skin participated in the study. Tape strippings were collected from two different body sites (forearm and cheek). First from the tape strippings, the SC optical absorption was determined densitometrically. This obtained absorption (%) was compared with absolute SC protein extracted from the same tapes using a colorimetric microbicinchoninic acid (μBCA) assay. Higher amounts of SC protein were removed from the forearm compared with the cheek (P 0.05). The overall coefficient of determination (R(2) ) shows a good fit to the regression line between the two methods in both sites (forearm = 0.82, cheek = 0.77). Also, both ethnicities showed good correlation (R(2) ≥ 0.69, P = 0.01). Facial SC is morphologically distinct from the forearm, as demonstrated by the differences in amounts of SC removed. Although the data distribution in different subject groups varied, the regression was always quite similar between the two body sites and both ethnic groups. Also, the correlations were similar to previously published data on other body sites. The resultant calibration curves can be used as a rapid

  2. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease.

    Science.gov (United States)

    Kalinowska, Magdalena; Francesconi, Anna

    2016-01-01

    Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions.

  3. Polycomb-group (Pc-G) Proteins Control Seed Development in Arabidopsis thaliana L.

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xue Wang; Li-Geng Ma

    2007-01-01

    Polycomb-group (Pc-G) proteins repress their target gene expression by assemble complexes in Drosophila and mammals. Three groups of Pc-G genes, controlling seed development, flower development and vernalization response, have been identified in Arabidopsis (Arabidopsis thaliana L.). MEDEA (MEA), FERTIL IZA TION INDEPENDENT SEED2 (FIS2), and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) are Pc-G genes in Arabidopsis. Their functions in seed development have been extensively explored. The advanced findings of molecular mechanism on how MEA, FIS2 and FIE control seed development in Arabidopsis are reviewed in this paper.

  4. Human Polycomb group EED protein negatively affects HIV-1 assembly and release

    Directory of Open Access Journals (Sweden)

    Darlix Jean-Luc

    2007-06-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group (PcG proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA, the integrase enzyme (IN and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells. Results During the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm. Conclusion Our data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic

  5. High Mobility Group Protein HMGB2 Is a Critical Regulator of Plasmodium Oocyst Development*S⃞

    OpenAIRE

    Gissot, Mathieu; Ting, Li-Min; Daly, Thomas M.; Bergman, Lawrence W.; Sinnis, Photini; Kim, Kami

    2008-01-01

    The sexual cycle of Plasmodium is required for transmission of malaria from mosquitoes to mammals, but how parasites induce the expression of genes required for the sexual stages is not known. We disrupted the Plasmodium yoelii gene encoding high mobility group nuclear factor hmgb2, which encodes a DNA-binding protein potentially implicated in transcriptional regulation of malaria gene expression. We investigated its function in vivo in the vertebrate and invertebrate ...

  6. Biophysical characterization of G protein ectodomain of group B human respiratory syncytial virus from E. coli.

    Science.gov (United States)

    Khan, Wajihul Hasan; Srungaram, V L N Raghuram; Islam, Asimul; Beg, Ilyas; Haider, Md Shakir H; Ahmad, Faizan; Broor, Shobha; Parveen, Shama

    2016-07-03

    Human respiratory syncytial virus (hRSV) is an important pathogen of acute respiratory tract infection. The G protein of hRSV is a transmembrane glycoprotein that is a neutralizing antigen and is thus a vaccine candidate. In this study, synthetic codon optimized ectodomain G protein [G(ΔTM)] of BA genotype of group B hRSV was cloned, expressed, and characterized using biophysical techniques. The molar absorption coefficient and mean residue ellipticity at 222 nm ([θ]222) of G (ΔTM) was found to be 7950 M(-1) cm(-1) and -19701.7 deg cm(2) dmol(-1) respectively. It was concluded that G(ΔTM) mainly consist of α-helix (74.9%) with some amount of β-sheet (4%). The protein was stable up to 85°C without any transition curve. However, heat-induced denaturation of G(ΔTM) resulted in total loss of β-sheet whereas not much change was observed in the α-helix part of the secondary structure. It was concluded that G(ΔTM) is an α-helical protein and it is highly stable at high temperature, but could be easily denatured using high concentrations of GdmCl/urea or acidic condition. This is the first investigation of cloning, expression, and characterization of G(ΔTM) of BA viruses from India. Structural characterization of G protein will assist in drug designing and vaccine development for hRSV.

  7. High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Aida Barreiro-Alonso

    2016-01-01

    Full Text Available Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.

  8. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien; Kolatkar, Prasanna R.

    2015-10-30

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domain (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG–FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mMsodium/potassium phosphate with 100 mMbis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space groupP41212, with unit-cell parametersa=b= 99.49,c= 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG–FOXP2 promoter DNA complex with an estimated solvent content of 64%.

  9. The dynamics of polycomb group proteins in early embryonic nervous system in mouse and human.

    Science.gov (United States)

    Qi, Lu; Cao, Jing-Li; Hu, Yi; Yang, Ji-Gao; Ji, Yuan; Huang, Jing; Zhang, Yi; Sun, Da-Guang; Xia, Hong-Fei; Ma, Xu

    2013-11-01

    Polycomb group (PcG) proteins are transcription regulatory proteins that control the expression of a variety of genes and the antero-posterior neural patterning from early embryogenesis. Although expression of PcG genes in the nervous system has been noticed, but the expression pattern of PcG proteins in early embryonic nervous system is still unclear. In this study, we analyzed the expression pattern of PRC1 complex members (BMI-1 and RING1B) and PRC2 complex members (EED, SUZ12 and EZH2) in early embryonic nervous system in mouse and human by Western blot and Immunohistochemistry. The results of Western blot showed that EED protein was significantly up-regulated with the increase of the day of pregnancy during the early embryogenesis in mouse. BMI-1 protein level was significantly increased from the day 10 of pregnancy, when compared with the day 9 of pregnancy. But the SUZ12, EZH2 and RING1B protein level did not change significantly. From the results of Immunohistochemistry, we found that the four PcG proteins were all expressed in the fetal brain and fetal spinal cord in mouse. In human, the expression of EED, SUZ12, and EZH2 was not significantly different in cerebral cortex and sacral spinal cord, but BMI-1 and RING1B expression was enhanced with the development of embryos in early pregnancy. Collectively, our findings showed that PRC1 and PRC2 were spatiotemporally expressed in brain and spinal cord of early embryos.

  10. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein

    Science.gov (United States)

    Lyonnais, Sébastien; Tarrés-Soler, Aleix; Rubio-Cosials, Anna; Cuppari, Anna; Brito, Reicy; Jaumot, Joaquim; Gargallo, Raimundo; Vilaseca, Marta; Silva, Cristina; Granzhan, Anton; Teulade-Fichou, Marie-Paule; Eritja, Ramon; Solà, Maria

    2017-01-01

    The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a high-mobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4-dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria. PMID:28276514

  11. Statins: 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity

    Digital Repository Service at National Institute of Oceanography (India)

    Puttananjaiah, M.H.; Dhale, M.A.; Gaonkar, V.; Keni, S.

    Atherosclerosis is a chronic inflammatory disease of multiple etiologies. It is associated with the accumulation of oxidized lipids in arterial lesions leading to coronary heart disease. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase...

  12. Trapping of excess electrons at the microhydrated protonated amino groups in proteins

    Science.gov (United States)

    Li, Wenchao; Zhang, Zhenwei; Yang, Hongfang; Wu, Xiuxiu; Liu, Jinxiang; Bu, Yuxiang

    2012-03-01

    We present a combined first-principles calculation and molecular dynamics simulation study of an excess electron (EE) in condensed phase of a microhydrated protonated amino group in proteins in this work. The protonated amino group, -NH3+, is modeled by a CH3NH3+ and an amount of water molecules are included to form various microhydrated CH3NH3+ clusters, and the states and the dynamics of the trapped EE are analyzed. In addition to the localized and delocalized states observed, the N-H/O-H bond cleavage phenomena followed by escape of a H atom are also observed for some hydrated clusters in which the -NH3+ group exposes on the surface of the cluster and directly participates in binding an EE. The state-to-state conversion is controlled by thermal motion of molecules in the clusters, and the cleavage of the N-H or the O-H bond and the H escape are determined by the binding modes of the EE. The H-escape nature could be attributed to the dissociation of the N-H or O-H bond induced by the trapped EE which transfers to their antibonding orbitals. This work provides a microscopical picture of the EE trapping at a microhydrated hydrophilic group in proteins, long-range electron migration, and the H-evolving mechanisms relevant for the lesions or damages of proteins or DNA. This is the first step in considering increasingly larger peptide fragments for further investigation of the detailed lesion/damage or charge migration mechanisms. Further work about this topic is underway.

  13. Expression of xeroderma pigmentosum complementation group C protein predicts cisplatin resistance in lung adenocarcinoma patients.

    Science.gov (United States)

    Lai, Tan-Chen; Chow, Kuan-Chih; Fang, Hsin-Yuan; Cho, Hsin-Ching; Chen, Chih-Yi; Lin, Tze-Yi; Chiang, I-Ping; Ho, Shu-Peng

    2011-05-01

    DNA repair has been suggested to be a major cause of spontaneous drug resistance in patients with lung adenocarcinomas (LADC). Among the DNA repair-related proteins, excision repair cross-complementation group 1 (ERCC1) has been shown to be essential for repairing cisplatin-induced interstrand cross-linkage. However, the role of other DNA repair-related proteins in drug resistance has not been clearly elucidated. In this study, we used suppression subtractive hybridization and microarray analysis to identify the DNA repair-related genes associated with cisplatin resistance. We focused on the association of XPC protein expression, which plays a pivotal role in the earliest response to global genomic repair, with the survival of LADC patients. Using suppression subtractive hybridization and a microarray analysis to identify drug resistance-associated DNA repair-related genes, we found that the mRNA levels of ERCC1, MSH-3, MSH-6 and XPC were significantly increased in LADC patients. Since the results of ERCC1 mRNA expression corresponded well with those in previous reports, in this study we focused on the clinical correlation between XPC expression and patient survival. The level of XPC protein was determined by immunohistochemical and immunoblotting analyses. We detected the XPC protein in 46 (43%) of 107 pathological LADC samples. XPC protein expression correlated with tumor stage, cigarette smoking and poor survival. In the in vitro experiments with LADC cell lines, increased XPC expression was associated with elevated drug resistance, and silencing of XPC expression reduced cisplatin resistance. Our results suggest that XPC expression predicts drug resistance in LADC.

  14. Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups

    Directory of Open Access Journals (Sweden)

    Mok Amy

    2007-11-01

    Full Text Available Abstract Background Alpha proteobacteria are one of the largest and most extensively studied groups within bacteria. However, for these bacteria as a whole and for all of its major subgroups (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales, very few or no distinctive molecular or biochemical characteristics are known. Results We have carried out comprehensive phylogenomic analyses by means of Blastp and PSI-Blast searches on the open reading frames in the genomes of several α-proteobacteria (viz. Bradyrhizobium japonicum, Brucella suis, Caulobacter crescentus, Gluconobacter oxydans, Mesorhizobium loti, Nitrobacter winogradskyi, Novosphingobium aromaticivorans, Rhodobacter sphaeroides 2.4.1, Silicibacter sp. TM1040, Rhodospirillum rubrum and Wolbachia (Drosophila endosymbiont. These studies have identified several proteins that are distinctive characteristics of all α-proteobacteria, as well as numerous proteins that are unique repertoires of all of its main orders (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales and many families (viz. Rickettsiaceae, Anaplasmataceae, Rhodospirillaceae, Acetobacteraceae, Bradyrhiozobiaceae, Brucellaceae and Bartonellaceae. Many other proteins that are present at different phylogenetic depths in α-proteobacteria provide important information regarding their evolution. The evolutionary relationships among α-proteobacteria as deduced from these studies are in excellent agreement with their branching pattern in the phylogenetic trees and character compatibility cliques based on concatenated sequences for many conserved proteins. These studies provide evidence that the major groups within α-proteobacteria have diverged in the following order: (Rickettsiales(Rhodospirillales (Sphingomonadales (Rhodobacterales (Caulobacterales-Parvularculales (Rhizobiales. We also describe two conserved inserts in DNA

  15. Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts.

    Science.gov (United States)

    Asakura, Yukari; Bayraktar, Omer Ali; Barkan, Alice

    2008-11-01

    Chloroplast genomes in angiosperms encode approximately 20 group II introns, approximately half of which are classified as subgroup IIB. The splicing of all but one of the subgroup IIB introns requires a heterodimer containing the peptidyl-tRNA hydrolase homolog CRS2 and one of two closely related proteins, CAF1 or CAF2, that harbor a recently recognized RNA binding domain called the CRM domain. Two CRS2/CAF-dependent introns require, in addition, a CRM domain protein called CFM2 that is only distantly related to CAF1 and CAF2. Here, we show that CFM3, a close relative of CFM2, associates in vivo with those CRS2/CAF-dependent introns that are not CFM2 ligands. Mutant phenotypes in rice and Arabidopsis support a role for CFM3 in the splicing of most of the introns with which it associates. These results show that either CAF1 or CAF2 and either CFM2 or CFM3 simultaneously bind most chloroplast subgroup IIB introns in vivo, and that the CAF and CFM subunits play nonredundant roles in splicing. These results suggest that the expansion of the CRM protein family in plants resulted in two subfamilies that play different roles in group II intron splicing, with further diversification within a subfamily to accommodate multiple intron ligands.

  16. Anabolic Properties of High Mobility Group Box Protein-1 in Human Periodontal Ligament Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Michael Wolf

    2014-01-01

    Full Text Available High mobility group box protein-1 (HMGB1 is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement.

  17. Structure and assembly of group B streptococcus pilus 2b backbone protein.

    Science.gov (United States)

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J; Margarit, Immaculada; Maione, Domenico; Rinaudo, C Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization.

  18. Structure and assembly of group B streptococcus pilus 2b backbone protein.

    Directory of Open Access Journals (Sweden)

    Roberta Cozzi

    Full Text Available Group B Streptococcus (GBS is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468 encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization.

  19. Identification of a group of Haemophilus influenzae penicillin-binding proteins that may have complementary physiological roles

    Energy Technology Data Exchange (ETDEWEB)

    Malouin, F.; Parr, T.R. Jr.; Bryan, L.E. (Eli Lilly Company, Indianapolis, IN (USA))

    1990-02-01

    (35S)penicillin bound to different Haemophilus influenzae proteins in assays performed at 20, 37, or 42{degrees}C. Penicillin-binding proteins 3a, 3b, 4, and 4' formed a group characterized by their affinity for moxalactam, cefotaxime, and piperacillin. Penicillin-binding protein 4' showed specific properties that may reflect its complementary role in septation.

  20. Influence of DMBA-induced mammary cancer on the liver CPT I, mit HMG-CoA synthase and PPARalpha mRNA expression in rats fed a low or high corn oil diet.

    Science.gov (United States)

    Moral, Raquel; Solanas, Montserrat; Manzanares, Eva Mónica; Haro, Diego; Escrich, Eduard

    2004-08-01

    Hepatic mitochondrial outer membrane carnitine palmitoyltransferase I (CPT I) and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase) enzymes play a key role in regulation of fatty acid oxidation and in ketogenic pathways, respectively. Their expression are regulated by fatty acids mainly by the peroxisome proliferator-activated receptor alpha (PPARalpha). To investigate possible mechanisms through which cancer alters the lipid metabolism, we analyzed by Northern blot, the mRNA relative abundance of these proteins in liver from healthy and DMBA-induced mammary tumor-bearing rats fed a low or high corn oil diet. Serum levels of lipids, body weight and mass were also determined. Whereas mRNA steady-state levels of CPT I and mit HMG-CoA synthase were unaffected by the presence of the extra-hepatic tumor, the cancer state seemed to modify the regulation of the expression of these genes by high fat diet. We hypothesize that putative changes in PPARalpha mRNA levels could have contributed to such alterations. These results, together with changes in serum lipid profiles, body weight and mass, indicate fat mobilization and non-enhanced oxidation rates despite a high-fat feeding. This effect of the cancer state could be related to tumor aggressiveness and suggest a preferential redirection of long-chain fatty acids into energetic and specific pathways of the cancer cells.

  1. Transcription-independent function of Polycomb group protein PSC in cell cycle control.

    Science.gov (United States)

    Mohd-Sarip, Adone; Lagarou, Anna; Doyen, Cecile M; van der Knaap, Jan A; Aslan, Ülkü; Bezstarosti, Karel; Yassin, Yasmin; Brock, Hugh W; Demmers, Jeroen A A; Verrijzer, C Peter

    2012-05-11

    Polycomb group (PcG) proteins control development and cell proliferation through chromatin-mediated transcriptional repression. We describe a transcription-independent function for PcG protein Posterior sex combs (PSC) in regulating the destruction of cyclin B (CYC-B). A substantial portion of PSC was found outside canonical PcG complexes, instead associated with CYC-B and the anaphase-promoting complex (APC). Cell-based experiments and reconstituted reactions established that PSC and Lemming (LMG, also called APC11) associate and ubiquitylate CYC-B cooperatively, marking it for proteosomal degradation. Thus, PSC appears to mediate both developmental gene silencing and posttranslational control of mitosis. Direct regulation of cell cycle progression might be a crucial part of the PcG system's function in development and cancer.

  2. Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Miehe, Michaela; Stolt, Claus C.

    2001-01-01

    Abstract The HMG-domain transcription factor Sox10 is essential for the development of various neural crest derived lineages including glia and neurons of the peripheral nervous system (PNS). Within the PNS the most striking defect is the complete absence of glial differentiation whereas neurogen......Abstract The HMG-domain transcription factor Sox10 is essential for the development of various neural crest derived lineages including glia and neurons of the peripheral nervous system (PNS). Within the PNS the most striking defect is the complete absence of glial differentiation whereas...... neurogenesis seemed initially normal. A degeneration of motoneurons and sensory neurons occurred later in development. The mechanism that leads to the dramatic effects on the neural crest derived cell lineages in the dorsal root ganglia (DRG), however, has not been examined up to now. Here, we provide...

  3. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Concepcion, M.; Gruissem, W. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  5. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Shamala Salvamani

    2016-01-01

    Full Text Available Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH, nitric oxide (NO, and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.

  6. Thermodynamic characterization of the biocompatible ionic liquid effects on protein model compounds and their functional groups.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru

    2011-04-14

    The stability of proteins under co-solvent conditions is dependant on the nature of the co-solvent; the co-solvent can alter a protein's properties and structural effects through bimolecular interactions between its functional groups and co-solvent particles. Ionic liquids (ILs) represent a rather diverse class of co-solvents that are combinations of different ions, which are liquids at or close to room temperature. To quantify the bimolecular interactions of protein functional groups with biocompatible ILs, we report the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of a homologous series of cyclic dipeptides (CDs) from water to aqueous solutions of ILs through solubility measurements, as a function of IL concentration at 25 °C under atmospheric pressure. The materials investigated in the present work included the CDs of cyclo(Gly-Gly), cyclo(Ala-Gly), cyclo(Ala-Ala), cyclo(Leu-Ala), and cyclo(Val-Val). The ILs used such as diethylammonium acetate ([Et(2)NH][CH(3)COO], DEAA), triethylammonium acetate ([Et(3)NH][CH(3)COO], TEAA), diethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], DEAP), triethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], TEAP), diethylammonium sulfate ([Et(3)NH][HSO(4)], DEAS) and triethylammonium sulfate ([Et(3)NH][HSO(4)], TEAS). We observed positive values of ΔG'(tr) for CDs from water to ILs, indicating that interactions between ILs and CDs are unfavourable, which leads to stabilization of the native structure of CDs. The experimental results were further used for estimating the transfer free energies (Δg'(tr)) of the peptide bond (-CONH-), the peptide backbone unit (-CH(2)C=ONH-), and various functional groups from water to IL solutions. Our results explicitly elucidate that a series of all ammonium ILs act as stabilizers for tested model compounds through the exclusion of ILs from CDs surface.

  7. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    Science.gov (United States)

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level.

  8. Trivalent M-related protein as a component of next generation group A streptococcal vaccines

    Science.gov (United States)

    2017-01-01

    Purpose There is a need to broaden protective coverage of M protein–based vaccines against group A streptococci (GAS) because coverage of the current 30-valent M protein vaccine does not extend to all emm types. An additional GAS antigen and virulence factor that could potentially extend vaccine coverage is M-related protein (Mrp). Previous work indicated that there are three structurally related families of Mrp (MrpI, MrpII, and MrpIII) and peptides of all three elicited bactericidal antibodies against multiple emm types. The purpose of this study was to determine if a recombinant form containing Mrp from the three families would evoke bactericidal antiserum and to determine if this antiserum could enhance the effectiveness of antisera to the 30-valent M protein vaccine. Materials and Methods A trivalent recombinant Mrp (trMrp) protein containing N-terminal fragments from the three families (trMrp) was constructed, purified and used to immunize rabbits. Anti-trMrp sera contained high titers of antibodies against the trMrp immunogen and recombinant forms representing MrpI, MrpII, and MrpIII. Results The antisera opsonized emm types of GAS representing each Mrp family and also opsonized emm types not covered by the 30-valent M protein–based vaccine. Importantly, a combination of trMrp and 30-valent M protein antiserum resulted in higher levels of opsonization of GAS than either antiserum alone. Conclusion These findings suggest that trMrp may be an effective addition to future constructs of GAS vaccines. PMID:28168173

  9. Blood group and serum protein polymorphisms in turpu kapu population of vizianagaram district, Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    V Komal Madhavi

    2002-01-01

    Full Text Available Data on two blood group and three serum protein polymorphisms of the Turpu Kapu, an endogamous population of Vizianagaram District, Andhra Pradesh (AP is presented. The gene frequencies for the blood group systems ABO and Rh are within the ranges of distribution reported earlier among the caste populations of Andhra Pradesh. The study population shows highest frequency of Hp1 allele and the lowest frequency of Hp2 allele compared to the other populations of AP. The Cp system is monomorphic, all individuals being the BB type. The GC system exhibits polymorphism with the gene frequencies of GC1 and GC2 alleles showing the highest and lowest frequencies, respectively, as compared to the caste populations reported earlier. The c2 test suggest that this population is in Hardy-Weinberg Equilibrium.

  10. Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana.

    Science.gov (United States)

    Sharon, Michelle A; Kozarova, Anna; Clegg, James S; Vacratsis, Panayiotis O; Warner, Alden H

    2009-04-01

    Late embryogenesis abundant (LEA) proteins are hydrophilic molecules that are believed to function in desiccation and low-temperature tolerance in some plants and plant propagules, certain prokaryotes, and several animal species. The brine shrimp Artemia franciscana can produce encysted embryos (cysts) that enter diapause and are resistant to severe desiccation. This ability is based on biochemical adaptations, one of which appears to be the accumulation of the LEA protein that is the focus of this study. The studies described herein characterize a 21 kDa protein in encysted Artemia embryos as a group 1 LEA protein. The amino acid sequence of this protein and its gene have been determined and entered into the NCBI database (no. EF656614). The LEA protein consists of 182 amino acids and it is extremely hydrophilic, with glycine (23%), glutamine (17%), and glutamic acid (12.6%) being the most abundant amino acids. This protein also consists of 8 tandem repeats of a 20 amino acid sequence, which is characteristic of group 1 LEA proteins from non-animal species. The LEA protein and its gene are expressed only in encysted embryos and not in larvae or adults. Evidence is presented to show that the LEA protein functions in the prevention of drying-induced protein aggregation, which supports its functional role in desiccation tolerance. This report describes, for the first time, the purification and characterization of a group 1 LEA protein from an animal species.

  11. Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Flurina C.; Camenisch, Ulrike; Fei, Jia; Kaczmarek, Nina; Mathieu, Nadine [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland); Naegeli, Hanspeter, E-mail: naegelih@vetpharm.uzh.ch [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland)

    2010-03-01

    The recognition and subsequent repair of DNA damage are essential reactions for the maintenance of genome stability. A key general sensor of DNA lesions is xeroderma pigmentosum group C (XPC) protein, which recognizes a wide variety of helix-distorting DNA adducts arising from ultraviolet (UV) radiation, genotoxic chemicals and reactive metabolic byproducts. By detecting damaged DNA sites, this unique molecular sensor initiates the global genome repair (GGR) pathway, which allows for the removal of all the aforementioned lesions by a limited repertoire of excision factors. A faulty GGR activity causes the accumulation of DNA adducts leading to mutagenesis, carcinogenesis, neurological degeneration and other traits of premature aging. Recent findings indicate that XPC protein achieves its extraordinary substrate versatility by an entirely indirect readout strategy implemented in two clearly discernible stages. First, the XPC subunit uses a dynamic sensor interface to monitor the double helix for the presence of non-hydrogen-bonded bases. This initial screening generates a transient nucleoprotein intermediate that subsequently matures into the ultimate recognition complex by trapping undamaged nucleotides in the abnormally oscillating native strand, in a way that no direct contacts are made between XPC protein and the offending lesion itself. It remains to be elucidated how accessory factors like Rad23B, centrin-2 or the UV-damaged DNA-binding complex contribute to this dynamic two-stage quality control process.

  12. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    Science.gov (United States)

    Peterson, Aidan J; Mallin, Daniel R; Francis, Nicole J; Ketel, Carrie S; Stamm, Joyce; Voeller, Rochus K; Kingston, Robert E; Simon, Jeffrey A

    2004-07-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.

  13. The Polycomb Group Protein EZH2 Impairs DNA Repair in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Michael Zeidler

    2005-11-01

    Full Text Available The Polycomb group protein EZH2 is a transcriptional repressor involved in controlling cellular memory and has been linked to aggressive and metastatic breast cancer. Here we report that EZH2 decreased the expression of five RAD51 paralog proteins involved in homologous recombination (HR repair of DNA doublestrand breaks (RAD51B/RAD51L1, RAD51C/RAD51L2, RAD51D/RAD51L3, XRCC2, and XRCC3, but did not affect the levels of DMC1, a gene that only functions in meiosis. EZH2 overexpression impaired the formation of RAD51 repair foci at sites of DNA breaks. Overexpression of EZH2 resulted in decreased cell survival and clonogenic capacity following DNA damage induced independently by etoposide and ionizing radiation. We suggest that EZH2 may contribute to breast tumorigenesis by specific downregulation of RAD51-like proteins and by impairment of HR repair. We provide mechanistic insights into the function of EZH2 in mammalian cells and uncover a link between EZH2, a regulator of homeotic gene expression, and HR DNA repair. Our study paves the way for exploring the blockade of EZH2 overexpression as a novel approach for the prevention and treatment of breast cancer.

  14. A polycomb group protein is retained at specific sites on chromatin in mitosis.

    Directory of Open Access Journals (Sweden)

    Nicole E Follmer

    Full Text Available Epigenetic regulation of gene expression, including by Polycomb Group (PcG proteins, may depend on heritable chromatin states, but how these states can be propagated through mitosis is unclear. Using immunofluorescence and biochemical fractionation, we find PcG proteins associated with mitotic chromosomes in Drosophila S2 cells. Genome-wide sequencing of chromatin immunoprecipitations (ChIP-SEQ from mitotic cells indicates that Posterior Sex Combs (PSC is not present at well-characterized PcG targets including Hox genes in mitosis, but does remain at a subset of interphase sites. Many of these persistent sites overlap with chromatin domain borders described by Sexton et al. (2012, which are genomic regions characterized by low levels of long range contacts. Persistent PSC binding sites flank both Hox gene clusters. We hypothesize that disruption of long-range chromatin contacts in mitosis contributes to PcG protein release from most sites, while persistent binding at sites with minimal long-range contacts may nucleate re-establishment of PcG binding and chromosome organization after mitosis.

  15. A Polycomb Group Protein Is Retained at Specific Sites on Chromatin in Mitosis

    Science.gov (United States)

    Follmer, Nicole E.; Wani, Ajazul H.; Francis, Nicole J.

    2012-01-01

    Epigenetic regulation of gene expression, including by Polycomb Group (PcG) proteins, may depend on heritable chromatin states, but how these states can be propagated through mitosis is unclear. Using immunofluorescence and biochemical fractionation, we find PcG proteins associated with mitotic chromosomes in Drosophila S2 cells. Genome-wide sequencing of chromatin immunoprecipitations (ChIP–SEQ) from mitotic cells indicates that Posterior Sex Combs (PSC) is not present at well-characterized PcG targets including Hox genes in mitosis, but does remain at a subset of interphase sites. Many of these persistent sites overlap with chromatin domain borders described by Sexton et al. (2012), which are genomic regions characterized by low levels of long range contacts. Persistent PSC binding sites flank both Hox gene clusters. We hypothesize that disruption of long-range chromatin contacts in mitosis contributes to PcG protein release from most sites, while persistent binding at sites with minimal long-range contacts may nucleate re-establishment of PcG binding and chromosome organization after mitosis. PMID:23284300

  16. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    Science.gov (United States)

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.

  17. Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause.

    Science.gov (United States)

    Toxopeus, Jantina; Warner, Alden H; MacRae, Thomas H

    2014-11-01

    Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis-life without water-during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications.

  18. Lepidopteran HMG-CoA reductase is a potential selective target for pest control

    Directory of Open Access Journals (Sweden)

    Yuan-mei Li

    2017-01-01

    Full Text Available As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets.

  19. Lepidopteran HMG-CoA reductase is a potential selective target for pest control

    Science.gov (United States)

    Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.

    2017-01-01

    As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets. PMID:28133568

  20. Hydrogen exchange study on the hydroxyl groups of serine and threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M; Terauchi, Tsutomu; Kainosho, Masatsune

    2011-11-02

    We recently developed new NMR methods for monitoring the hydrogen exchange rates of tyrosine hydroxyl (Tyr-OH) and cysteine sulfhydryl (Cys-SH) groups in proteins. These methods facilitate the identification of slowly exchanging polar side-chain protons in proteins, which serve as sources of NOE restraints for protein structure refinement. Here, we have extended the methods for monitoring the hydrogen exchange rates of the OH groups of serine (Ser) and threonine (Thr) residues in an 18.2 kDa protein, EPPIb, and thus demonstrated the usefulness of NOE restraints with slowly exchanging OH protons for refining the protein structure. The slowly exchanging Ser/Thr-OH groups were readily identified by monitoring the (13)C(β)-NMR signals in an H(2)O/D(2)O (1:1) mixture, for the protein containing Ser/Thr residues with (13)C, (2)H-double labels at their β carbons. Under these circumstances, the OH groups exist in equilibrium between the protonated and deuterated isotopomers, and the (13)C(β) peaks of the two species are resolved when their exchange rate is slower than the time scale of the isotope shift effect. In the case of EPPIb dissolved in 50 mM sodium phosphate buffer (pH 7.5) at 40 °C, one Ser and four Thr residues were found to have slowly exchanging hydroxyl groups (k(ex) OH groups in hand, we could collect additional NOE restraints for EPPIb, thereby making a unique and important contribution toward defining the spatial positions of the OH protons, and thus the hydrogen-bonding acceptor atoms.

  1. Arabidopsis CDS blastp result: AK069900 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069900 J023035E20 At5g23420.1 high mobility group (HMG1/2) family protein similar to high... mobility group protein 2 HMG2 [Ipomoea nil] GI:1052956; contains Pfam profile PF00505: HMG (high mobility group) box 8e-32 ...

  2. HMG-CoA Reductase Inhibitors Bind to PPARα to Upregulate Neurotrophin Expression in the Brain and Improve Memory in Mice.

    Science.gov (United States)

    Roy, Avik; Jana, Malabendu; Kundu, Madhuchhanda; Corbett, Grant T; Rangaswamy, Suresh B; Mishra, Rama K; Luan, Chi-Hao; Gonzalez, Frank J; Pahan, Kalipada

    2015-08-01

    Neurotrophins are important for neuronal health and function. Here, statins, inhibitors of HMG-CoA reductase and cholesterol lowering drugs, were found to stimulate expression of neurotrophins in brain cells independent of the mevalonate pathway. Time-resolved fluorescence resonance energy transfer (FRET) analyses, computer-derived simulation, site-directed mutagenesis, thermal shift assay, and de novo binding followed by electrospray ionization tandem mass spectrometry (ESI-MS) demonstrates that statins serve as ligands of PPARα and that Leu331 and Tyr 334 residues of PPARα are important for statin binding. Upon binding, statins upregulate neurotrophins via PPARα-mediated transcriptional activation of cAMP-response element binding protein (CREB). Accordingly, simvastatin increases CREB and brain-derived neurotrophic factor (BDNF) in the hippocampus of Ppara null mice receiving full-length lentiviral PPARα, but not L331M/Y334D statin-binding domain-mutated lentiviral PPARα. This study identifies statins as ligands of PPARα, describes neurotrophic function of statins via the PPARα-CREB pathway, and analyzes the importance of PPARα in the therapeutic success of simvastatin in an animal model of Alzheimer's disease.

  3. High Mobility Group Box Protein-1 correlates with renal function in chronic kidney disease (CKD).

    Science.gov (United States)

    Bruchfeld, Annette; Qureshi, Abdul Rashid; Lindholm, Bengt; Barany, Peter; Yang, Lihong; Stenvinkel, Peter; Tracey, Kevin J

    2008-01-01

    Chronic kidney disease (CKD) is associated with inflammation and malnutrition and carries a markedly increased risk of cardiovascular disease (CVD). High Mobility Group Box Protein-1 (HMGB-1) is a 30-kDa nuclear and cytosolic protein known as a transcription and growth factor, recently identified as a proinflammatory mediator of tissue injury. Recent data implicates HMGB-1 in endotoxin lethality, rheumatoid arthritis, and atherosclerosis. The aim of this post-hoc, cross-sectional study was to determine whether HMGB-1 serum levels are elevated in CKD patients. The study groups were categorized as follows: 110 patients starting dialysis defined as CKD 5; 67 patients with moderately to severely reduced renal function or CKD 3-4; and 48 healthy controls. High-sensitivity C-reactive-protein (hs-CRP), interleukin-6 (IL-6), tumor necrosis factor (TNF), serum-albumin (S-albumin), hemoglobin A(1c) (HbA(1c)), hemoglobin, subjective global nutritional assessment (SGA), and glomerular filtration rate (GFR) were analyzed. Kruskal-Wallis test was used to compare groups and Spearman's rank correlation test was used for continuous variables. HMGB-1, measured by Western blot, was significantly (P < 0.001) elevated in CKD 5 (146.7 +/- 58.6 ng/mL) and CKD 3-4 (85.6 +/- 31.8) compared with controls (10.9 +/- 10.5). HMGB-1 levels were correlated positively with TNF (Rho = 0.52; P < 0.001), hs-CRP (Rho = 0.38; P < 0.001), IL-6 (Rho = 0.30; P < 0.001), HbA(1c) (Rho = 0.14; P = 0.02) and SGA (Rho = 0.21; P = 0.002) and negatively correlated with GFR (Rho = -0.69; P = 0.0001), Hb (Rho = -0.60; P < 0.001), S-albumin (Rho = -0.31; P < 0.001). The current study has revealed that HMGB-1 is elevated significantly in CKD patients and correlates with GFR as well as markers of inflammation and malnutrition. Future studies may delineate whether HMGB-1 is also a marker of disease activity and severity as well as a predictor of outcome in CKD.

  4. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR...... and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes...... with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo...

  5. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Shu Ki Tsoi

    2015-01-01

    Full Text Available Group A streptococcus (GAS is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.

  6. Successful conversion of the Bacillus subtilis BirA Group II biotin protein ligase into a Group I ligase

    National Research Council Canada - National Science Library

    Henke, Sarah K; Cronan, John E

    2014-01-01

    ...: bioWAFDBI, yuiG and yhfUTS. Moreover, unlike the paradigm Group II BPL, E. coli BirA, the N-terminal DNA binding domain can be deleted from Bacillus subtilis BirA without adverse effects on its ligase function...

  7. Protein conformational exchange measured by 1H R1ρ relaxation dispersion of methyl groups.

    Science.gov (United States)

    Weininger, Ulrich; Blissing, Annica T; Hennig, Janosch; Ahlner, Alexandra; Liu, Zhihong; Vogel, Hans J; Akke, Mikael; Lundström, Patrik

    2013-09-01

    Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for (1)H spins in methyl (13)CHD2 groups, which improves the characterization of fast exchange processes. The influence of (1)H-(1)H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R 1ρ relaxation data acquired with tilt angles of 90° and 35°, in which the ROE is maximal and minimal, respectively, and on samples containing different (1)H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any (1)H relaxation dispersion of its methyl groups at 10 or 25 °C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by (1)H and (13)C CPMG experiments. The present R 1ρ experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results.

  8. A cross-sectional study of food group intake and C-reactive protein among children

    Directory of Open Access Journals (Sweden)

    Moore Lynn L

    2009-10-01

    Full Text Available Abstract Background C-reactive protein (CRP, a marker of sub-clinical inflammation, is a predictor of future cardiovascular diseases. Dietary habits affect serum CRP level however the relationship between consumption of individual food groups and CRP levels has not been established. Methods This study was designed to explore the relation between food intake and CRP levels in children using data from the cross-sectional 1999-2002 National Health and Nutrition Examination Surveys. CRP level was classified as low, average or high (3.0 mg/L, respectively. Adjusted mean daily intakes of dairy, grains, fruit, vegetables, and meat/other proteins in each CRP category were estimated using multivariate analysis of covariance modeling. The effect modification by age (5-11 years vs. 12-16 years, gender and race/ethnicity was explored. We examined whether total or central body fat (using BMI Z-scores and waist circumference explained any of the observed associations. Results A total of 4,010 children and adolescents had complete information on diet, CRP and all covariates of interest and were included in the analyses. Individuals with high CRP levels had significantly lower intake of grains (p Conclusion Children and adolescents with higher CRP levels had significantly lower intakes of grains and vegetables. The associations between selected childhood dietary patterns and CRP levels seem largely mediated through effects on body composition.

  9. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  10. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms.

    Science.gov (United States)

    Radulović, V; de Haan, G; Klauke, K

    2013-03-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.

  11. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    Science.gov (United States)

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  12. Immunization with Streptococcal Heme Binding Protein (Shp) Protects Mice Against Group A Streptococcus Infection.

    Science.gov (United States)

    Zhang, Xiaolan; Song, Yingli; Li, Yuanmeng; Cai, Minghui; Meng, Yuan; Zhu, Hui

    2017-01-01

    Streptococcal heme binding protein (Shp) is a surface protein of the heme acquisition system that is an essential iron nutrient in Group A Streptococcus (GAS). Here, we tested whether Shp immunization protects mice from subcutaneous infection. Mice were immunized subcutaneously with recombinant Shp and then challenged with GAS. The protective effects against GAS challenge were evaluated two weeks after the last immunization. Immunization with Shp elicited a robust IgG response, resulting in high anti-Shp IgG titers in the serum. Immunized mice had a higher survival rate and smaller skin lesions than adjuvant control mice. Furthermore, immunized mice had lower GAS numbers at the skin lesions and in the liver, spleen and lung. Histological analysis with Gram staining showed that GAS invaded the surrounding area of the inoculation sites in the skin in control mice, but not in immunized mice. Thus, Shp immunization enhances GAS clearance and reduces GAS skin invasion and systemic dissemination. These findings indicate that Shp is a protective antigen.

  13. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    Institute of Scientific and Technical Information of China (English)

    William M Scovell

    2016-01-01

    High mobility group protein 1(HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome(N) in a nonenzymatic,adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor(ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes(N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed(1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and(2) knock down of HMGB1 expression by siR NA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.

  14. Blood group and protein polymorphism gene frequencies for the andalusian horse breed: a comparison with four american horse breeds

    OpenAIRE

    Aguilar Sánchez, P.; Rodríguez-Gallardo, P.P.; Andrés Cara, D.F. de; J.L Vega-Pla

    1992-01-01

    Gene frecuencies at seventeen blood group and protein polymorphism loci for the andalusian horse breed are given. Standard methods of starch and polyacrylamide gel electrophoresis were used to identify inherited variants at the following enzyme and other protein loci: albumin (Al), transferrin (Tf), carboxylesterase (Es), A1B glycoprotein (Xk), vitamin D binding protein (Gc), protease inhibitor (Pi), 6-phosphogluconate dehydrogenase (PGD), phosphoglucomutase (PGM) and glucosephosphate isomera...

  15. Both HMG boxes in Hmo1 are essential for DNA binding in vitro and in vivo.

    Science.gov (United States)

    Higashino, Ayako; Shiwa, Yuh; Yoshikawa, Hirofumi; Kokubo, Tetsuro; Kasahara, Koji

    2015-01-01

    Hmo1, a member of the high mobility group B family proteins in Saccharomyces cerevisiae, associates with the promoters of ribosomal protein genes (RPGs) to direct accurate transcriptional initiation. Here, to identify factors involved in the binding of Hmo1 to its targets and the mechanism of Hmo1-dependent transcriptional initiation, we developed a novel reporter system using the promoter of the RPG RPS5. A genetic screen did not identify any factors that influence Hmo1 binding, but did identify a number of mutations in Hmo1 that impair its DNA binding activity in vivo and in vitro. These results suggest that Hmo1 binds to its target promoters autonomously without any aid of additional factors. Furthermore, characterization of Hmo1 mutants showed that the box A domain plays a pivotal role in DNA binding and may be required for the recognition of structural properties of target promoters that occur in native chromatin.

  16. The influence of highly purified HMG on pregnancy outcome in vitro fertilization%高纯度尿促性腺激素对IVF-ET妊娠结局的影响

    Institute of Scientific and Technical Information of China (English)

    李萍

    2011-01-01

    目的:探讨体外受精-胚胎移植(IVF-ET)超促排卵周期中应用高纯度尿促性腺激素(HP-HMG,贺美奇)对妊娠结局的影响.方法:回顾性分析117个IVF-ET周期,根据超促排卵周期中是否使用HP-HMG将其分为两组,A组(n=63)应用果纳芬(r-FSH,重组卵泡刺激素),B组(n=54)加用贺美奇,比较两组妊娠率、流产率、着床率、持续妊娠率和持续着床率.结果:两组鲜胚移植周期妊娠率、流产率、着床率、持续妊娠率和持续着床率比较差异有统计学意义(P<0.05);两组冻胚移植周期妊娠率和着床率比较差异无统计学意义(P>0.05),而流产率、持续妊娠率和持续着床率比较差异有统计学意义(P<0.05).结论:长方案超促排卵适时加用HP-HMG可以改善胚胎质量和子宫内膜容受性,提高持续妊娠率和持续着床率,降低流产率.%Objective: To study the influence of highly purified HMG on pregnancy outcome in vitro fertilization. Methods: 117 patients (retrospective study) underwent IVF -ET cycles were divided into two groups. The patients of group A (n =63) were stimulated with r - FSH, the patients of group B ( n = 52 ) were stimulated with r - FSH and HP - HMG. The contrast pregnancy rate, miscarriage rate, implantation rate, ongoing pregnancy rate and ongoing implantation rate between group A and group B were compared. Results: There were statistical significant differences (P <0. 05) between group A and group B in pregnancy rate, miscarriage rate, implantation rate, ongoing pregnancy rate and ongoing implantation rate in fresh embryo transfer cycles, and there were no statistical differences ( P > 0. 05 ) in pregnancy rate and implantation rate while statistical significant differences ( P < 0.05) in miscarriage rate, ongoing pregnancy rate and ongoing implantation rate in frozen embryo transfer cycles. Conclusion: To supplement HP -HMG to r- FSH in COH (controlled ovarian hyperstimulation) is useful to improve

  17. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules.

    Science.gov (United States)

    Han, Huijong; Myllykoski, Matti; Ruskamo, Salla; Wang, Chaozhan; Kursula, Petri

    2013-01-01

    The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.

  18. A Proteomic approach to discover and compare interacting partners of Papillomavirus E2 proteins from diverse phylogenetic groups

    Science.gov (United States)

    Jang, Moon Kyoo; Anderson, D. Eric; van Doorslaer, Koenraad; McBride, Alison A.

    2015-01-01

    Papillomaviruses are a very successful group of viruses that replicate persistently in localized regions of the stratified epithelium of their specific host. Infection results in pathologies ranging from asymptomatic infection, benign warts, to malignant carcinomas. Despite this diversity, papillomavirus genomes are small (7-8 kbp) and contain at most eight genes. To sustain the complex papillomaviral life cycle, each viral protein has multiple functions and interacts with and manipulates a plethora of cellular proteins. In this study, we use tandem affinity purification and mass spectrometry to identify host factors that interact with eleven different papillomavirus E2 proteins from diverse phylogenetic groups. The E2 proteins function in viral transcription and replication and correspondingly interact with host proteins involved in transcription, chromatin remodeling and modification, replication and RNA processing. PMID:25758368

  19. Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Polycomb group protein (PcG-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1 and 2 (PRC2. Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VRN complexes suppress flowering by catalyzing the trimethylation of lysine 27 on histone H3 of FLOWER LOCUS T (FT and FLOWER LOCUS C (FLC. However, little is known about the role of PRC1 in regulating the floral transition, although AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B are believed to regulate shoot apical meristem and embryonic development as components of PRC1. Moreover, among the five RING finger PcGs in the Arabidopsis genome, four have been characterized. Here, we report that the fifth, AtBMI1C, is a novel, ubiquitously expressed nuclear PcG protein and part of PRC1, which is evolutionarily conserved with Psc and BMI1. Overexpression of AtBMI1C caused increased H2A monoubiquitination and flowering defects in Arabidopsis. Both the suppression of FLC and activation of FT were observed in AtBMI1C-overexpressing lines, resulting in early flowering. No change in the H3K27me3 level in FLC chromatin was detected in an AtBMI1C-overexpressing line. Our results suggest that AtBMI1C participates in flowering time control by regulating the expression of FLC; moreover, the repression of FLC by AtBMI1C is not due to the activity of PRC2. Instead, it is likely the result of PRC1 activity, into which AtBMI1C is integrated.

  20. High mobility group box 1 protein: possible pathogenic link to atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-rong; WANG Xiao-hong; LIU Hue-fen; ZHOU Wen-jie; JIANG Hong

    2012-01-01

    Atrial fibrillation (AF) is the most common sustained dysrhythmia in clinical practice.The bulk of evidence suggests that inflammatory processes,oxidative stress and matrix metalloproteinase are associated with development of AF.However,these agents may be involved in high mobility group box 1 protein (HMGB1).We hypothesized that HMGB1 may be a possible pathogenic link to AF.A growing body of evidence supports these hypotheses.First,the level of serum HMGB1 is significantly increased in patients with AF including paroxysmal and persistent AF.Second,HMGB1 has been identified as a new pro-inflammatory cytokine in cardiovascular diseases,along with tumor necrosis factor (TNF)-α,interleukin (IL)-6,and C-reactive protein,and there is cross-talk between HMGB1 and inflammatory cytokines.Third,oxidative stress is involved in the release of the pro-inflammatory cytokine,HMGB1,indicating there is cross-talk between oxidative stress and inflammation,and oxidative stress may reinforce the effect of inflammation on the pathogenesis of AF and inflammation may play a more important role in the pathogenesis of AF.Fourth,HMGB1 can promote matrix metalloproteinase-9 upregulation and activation.Fifth,HMGB1 receptors (receptor for advanced glycation end products,Toll-like receptor-2,4) may mediate the atrial structural remodeling or be up-regulated in patients with non-valvular AF.These results suggest that HMGB1 may participate in the pathogenesis of AF and provide a potential target for pharmacological interruption of AF.

  1. Crystal Structure of the N-terminal Domain of the Group B Streptococcus Alpha C Protein

    Energy Technology Data Exchange (ETDEWEB)

    Auperin,T.; Bolduc, G.; Baron, M.; Heroux, A.; Filman, D.; Madoff, L.; Hogle, J.

    2005-01-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-{angstrom} resolution crystal structure of NtACP comprising residues Ser{sup 52} through Leu{sup 225} of the full-length ACP. NtACP has two domains, an N-terminal {beta}-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the {beta}-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp{sup 146}, Arg{sup 110}, and Asp{sup 118}. A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.

  2. Lysine requirement of starting barrows from two genetic groups fed on low crude protein diets

    Directory of Open Access Journals (Sweden)

    Alessandro Luís Fraga

    2008-02-01

    Full Text Available A trial was carried out to determine the lysine requirement for starting barrows fed on ideal protein concept-based diets. Thirty-two pigs from a commercial crossbred genetic group (CCGG, BW=15.9 ± 1.4 kg and 32 pigs from a dam line one (DLGG, BW= 14.8 ± 1.0 kg were used. Pigs were allotted to 4 treatments with diets containing increasing levels of total lysine (0.80, 1.00, 1.20 and 1.40%. Methionine+cystine, threonine and tryptophan were adjusted according to ideal protein profile. Data from performance, plasma urea nitrogen (PUN and carcass composition were analyzed. CCGG showed higher daily feed intake, daily weight gain, PUN and protein:fat ratio in carcass, while DLGG showed higher fat carcass content and nitrogen retention. Fat content and protein:fat ratio in carcass for CCCGG and PUN and crude protein carcass content for DLGG showed quadratic response to increasing total lysine levels. Derivations of the quadratic equations indicated the total lysine requirement for CCGG starting barrows is 1.15% and for DLGG starting barrows is 1.09%.Foi realizado um trabalho com o objetivo de determinar a exigência em lisina para suínos castrados em fase inicial, alimentados com dietas formuladas de acordo com o conceito de proteína ideal. Trinta e dois suínos provenientes de cruzamento comercial (CC, PV = 15,9 kg e 32 suínos provenientes de linhagem materna (LM, PV= 14,8 kg foram alimentados com quatro dietas contendo níveis crescentes de lisina total (0,80; 1,00; 1,20 e 1,40%. Metionina + cistina, triptofano e treonina foram adicionados às dietas para manter constante o padrão de proteína ideal. Foram analisados dados de desempenho, nitrogênio da uréia plasmática (NUP e carcaça. Suínos do grupo CC apresentaram maior consumo diário de ração, ganho diário de peso, NUP e relação proteína: gordura na carcaça, enquanto que os animais do grupo LM apresentaram maiores teores de gordura na carcaça e retenção de nitrogênio. Teor de

  3. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen;

    2010-01-01

    Cockayne syndrome (CS) is a human premature aging disorder associated with severe developmental deficiencies and neurodegeneration, and phenotypically it resembles some mitochondrial DNA (mtDNA) diseases. Most patients belong to complementation group B, and the CS group B (CSB) protein plays a role...

  4. Docking molecular de derivados de 2-fenilindano-1,3-dionas inibidores da enzima HMG-CoA

    Directory of Open Access Journals (Sweden)

    R. Q. Pordeus

    2014-11-01

    Full Text Available As doenças cardiovasculares constituem uma das principais causas de mortes em todo o mundo. Estudos mostram que a enzima HMG-CoA é considerada uma precursora da via metabólica hipolipidêmica no soro sanguíneo. Na busca por uma nova classe de compostos aptos a inibir esta enzima e consequentemente reduzir os níveis de colesterol, as 2-fenilindano-1,3-dionas apresentam resultados promissores. Uma das maneiras de avaliar o poder farmacológico destes compostos e predizer análogos ainda mais potentes consiste na avaliação da interação entre fármaco (2-fenilindano-1,3-diona e enzima (HMG-CoA, em que se utiliza da técnica de modelagem molecular docking. Neste estudo, o procedimento computacional para obtenção dos resultados de docking foi feito através do software AutoDock 1.5.6. Para avaliar a interação no sítio ativo da HMG-CoA, utilizamos, dentre a série de congêneres, o composto 2-(2-clorofenilindano-1,3-diona. De acordo com os resultados obtidos, foi identificada uma interação hidrofílica importante, do tipo ligação de hidrogênio C=O∙∙∙H–N, a qual apresenta uma distância de 1.62 Å entre os grupos carbonila do anel diona e o aminoácido metionina da HMG-CoA. Outra ligação de hidrogênio p∙∙∙H–N com distância de 3.10 Å formada entre o anel aromático do grupo indano-1,3-diona e o aminoácido glicina também foi identificada.

  5. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS.

    Science.gov (United States)

    Seker, F B; Kilic, U; Caglayan, B; Ethemoglu, M S; Caglayan, A B; Ekimci, N; Demirci, S; Dogan, A; Oztezcan, S; Sahin, F; Yilmaz, B; Kilic, E

    2015-01-22

    Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20 mg/kg each for 3 days and their anti-epileptic activities were tested and compared in rats. Epileptiform activity in the brain was induced by an intracortical penicillin G injection. Among HMG-CoA reductase inhibitors, simvastatin-treatment was less effective in terms of spike frequency as compared with atorvastatin- and rosuvastatin-treated animals. Atorvastatin treatment reduced spike frequencies and amplitudes significantly throughout the experiment. However, the most pronounced anti-epileptic effect was observed in rosuvastatin-treated animals, which was associated with improved blood-brain barrier (BBB) integrity, increased expression of endothelial nitric oxide synthase (eNOS) mRNA and decreased expressions of pro-apoptotic p53, Bax and caspase-3 mRNAs. Inhibition of eNOS activity with L-NG-Nitroarginine Methyl Ester (L-NAME) reversed the anti-epileptic effect of rosuvastatin significantly. However, L-NAME did not alter the effect of rosuvastatin on the levels of p53, Bax and caspase-3 mRNA expression. Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with

  6. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins

    Directory of Open Access Journals (Sweden)

    J. M. Dick

    2006-01-01

    Full Text Available Thermodynamic calculations can be used to quantify environmental constraints on the speciation of proteins, such as the pH and temperature dependence of ionization state, and the relative chemical stabilities of proteins in different biogeochemical settings. These calculations depend in part on values of the standard molal Gibbs energies of proteins and their ionization reactions as a function of temperature and pressure. Because these values are not generally available, we calculated values of the standard molal thermodynamic properties at 25°C and 1 bar as well as the revised Helgeson-Kirkham-Flowers equations of state parameters of neutral and charged zwitterionic reference model compounds including aqueous amino acids, polypeptides, and unfolded proteins. The experimental calorimetric and volumetric data for these species taken from the literature were combined with group additivity algorithms to calculate the properties and parameters of neutral and ionized sidechain and backbone groups in unfolded proteins. The resulting set of group contributions enables the calculation of the standard molal Gibbs energy, enthalpy, entropy, isobaric heat capacity, volume, and isothermal compressibility of unfolded proteins in a range of proton ionization states to temperatures and pressures exceeding 100°C and 1000 bar. This approach provides a useful frame of reference for thermodynamic studies of protein folding and complexation reactions. It can also be used to assign provisional values of the net charge and Gibbs energy of ionized proteins as a function of temperature and pH. Using these values, an Eh-pH diagram for a reaction representing the speciation of extracellular proteins from Pyrococcus furiosus and Bacillus subtilis was generated. The predicted predominance limits of these proteins correspond with the different electrochemical conditions of hydrothermal vents and soils. More comprehensive calculations of this kind may reveal pervasive

  7. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins

    Science.gov (United States)

    Dick, J. M.; Larowe, D. E.; Helgeson, H. C.

    2006-07-01

    Thermodynamic calculations can be used to quantify environmental constraints on the speciation of proteins, such as the pH and temperature dependence of ionization state, and the relative chemical stabilities of proteins in different biogeochemical settings. These calculations depend in part on values of the standard molal Gibbs energies of proteins and their ionization reactions as a function of temperature and pressure. Because these values are not generally available, we calculated values of the standard molal thermodynamic properties at 25°C and 1 bar as well as the revised Helgeson-Kirkham-Flowers equations of state parameters of neutral and charged zwitterionic reference model compounds including aqueous amino acids, polypeptides, and unfolded proteins. The experimental calorimetric and volumetric data for these species taken from the literature were combined with group additivity algorithms to calculate the properties and parameters of neutral and ionized sidechain and backbone groups in unfolded proteins. The resulting set of group contributions enables the calculation of the standard molal Gibbs energy, enthalpy, entropy, isobaric heat capacity, volume, and isothermal compressibility of unfolded proteins in a range of proton ionization states to temperatures and pressures exceeding 100°C and 1000 bar. This approach provides a useful frame of reference for thermodynamic studies of protein folding and complexation reactions. It can also be used to assign provisional values of the net charge and Gibbs energy of ionized proteins as a function of temperature and pH. Using these values, an Eh-pH diagram for a reaction representing the speciation of extracellular proteins from Pyrococcus furiosus and Bacillus subtilis was generated. The predicted predominance limits of these proteins correspond with the different electrochemical conditions of hydrothermal vents and soils. More comprehensive calculations of this kind may reveal pervasive chemical potential

  8. Statins: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity.

    Science.gov (United States)

    Puttananjaiah, Mohan-Kumari H; Dhale, Mohan Appasaheb; Gaonkar, Vaishali; Keni, Shradha

    2011-01-01

    Atherosclerosis is a chronic inflammatory disease of multiple etiologies. It is associated with the accumulation of oxidized lipids in arterial lesions leading to coronary heart disease. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (commonly known as statins) are widely used in cardiovascular disease prevention to lower the cholesterol. The antioxidant activity of HMG-CoA reductase inhibitors was studied by lipid peroxidation inhibition assay, DPPH, and hydroxyl radical scavenging-activity methods. The lovastatin (93%) and simvastatin (96%) showed significant action of lipid peroxidation inhibition compared to other HMG-CoA reductase inhibitors. The DPPH radical and hydroxyl radical scavenging activity of simvastatin was 38% and 33%, respectively. The oxidative modification of serum lipid due to reactive oxygen species causes atherosclerosis. This study revealed the importance of lovastatin and simvastatin to prevent oxidative stress-related cardiovascular diseases.

  9. Similar Ability of FbaA with M Protein to Elicit Protective Immunity Against Group A Streptococcus Challenge in Mice

    Institute of Scientific and Technical Information of China (English)

    Cuiqing Ma; Caihong Li; Xiurong Wang; Ruihong Zeng; Xiaolin Yin; Huidong Feng; Lin Wei

    2009-01-01

    Group A streptococcus (GAS), an important human pathogen, can cause various kinds of infections including superficial infections and potentially lethal infections, and the search for an effective vaccine to prevent GAS infections has been ongoing for many years. This paper compares the immunogenicity and immunoprotection of FbaA (an Fn-binding protein expressed on the surface of GAS) with that of M protein, the best immunogen of GAS. Assay for immune response showed that FbaA, similar to M protein, could induce protein-specific high IgG titer in BALB/c mice. Furthermore, following GAS challenge, the mice immunized with FbaA showed the same protective rate as those with M protein. These results indicate that FbaA is similar in ability to M protein in inducing protective immunity against GAS challenge in mice.

  10. The Comparative Effects of HMG and FSH on Superovulation in Angus Heifers%HMG和FSH用于安格斯牛超数排卵的效果比较

    Institute of Scientific and Technical Information of China (English)

    张华林; 肖遥; 岑桂英; 陈建国; 王晓民; 付树滨; 胡道俊; 李文功; 杨利国

    2012-01-01

    超数排卵在动物胚胎工程技术的体内胚生产中起关键作用,不同品种甚至个体对超数排卵的反应不同。人绝经期促性腺激素(HMG)是从绝经期妇女尿液中提纯得到的具有促卵泡素(FSH)活性的蛋白质激素,在医学上广泛应用于诱导排卵和治疗不育不孕症。本试验以安格斯青年母牛为超排供体,采用分次肌肉注射激素方法进行超排处理,比较了HMG与FSH用于安格斯母牛超数排卵的效果。B超检查发现,HMG和FSH超排处理后牛只两侧卵巢上直径〉1cm的卵泡数分别为10.33±0.52和9.25±0.46个,二者差异不显著(P〉0.05),表明HMG与FSH同样安全有效;总剂量1400IU的HMG或FSH用于安格斯母牛超排后B超检查卵巢没有发现异常变化,说明该剂量是用于安格斯母牛超数排卵的安全有效剂量。%Superovulation plays an important role in iv vivo production of embryos in the embryo engineering techniques, and is affected by animal breeds and even individuals. Human menopausal gonadotrophin(HMG)is a protein hormone refined from urine of menopausal women, which has high follicle stimulating hormone (FSH) activity. The aim of this study is to compare the effects of HMG and FSH in superovulation regimens via multiple intramuscular injections in Angus heifers. B type ultrasonography was performed to evaluate superovulation treatment. The results showed that there was no significant difference between HMG and FSH (10.33±0.52 vs 9.25±0.46, P〉0.05, respectively) in the number of follicles on both ovaries. All animals responded well to the superovulatory stimulus by a total dose of 1400IU HMG or FSH, indicating that this dose is safe and effective for superovulation in Angus Heifers.

  11. A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro.

    Science.gov (United States)

    Lo, Stanley M; Follmer, Nicole E; Lengsfeld, Bettina M; Madamba, Egbert V; Seong, Samuel; Grau, Daniel J; Francis, Nicole J

    2012-06-29

    Epigenetic regulation may involve heritable chromatin states, but how chromatin features can be inherited through DNA replication is incompletely understood. We address this question using cell-free replication of chromatin. Previously, we showed that a Polycomb group complex, PRC1, remains continuously associated with chromatin through DNA replication. Here we investigate the mechanism of persistence. We find that a single PRC1 subunit, Posterior sex combs (PSC), can reconstitute persistence through DNA replication. PSC binds nucleosomes and self-interacts, bridging nucleosomes into a stable, oligomeric structure. Within these structures, individual PSC-chromatin contacts are dynamic. Stable association of PSC with chromatin, including through DNA replication, depends on PSC-PSC interactions. Our data suggest that labile individual PSC-chromatin contacts allow passage of the DNA replication machinery while PSC-PSC interactions prevent PSC from dissociating, allowing it to rebind to replicated chromatin. This mechanism may allow inheritance of chromatin proteins including PRC1 through DNA replication to maintain chromatin states.

  12. [Social aspects of energy and protein consumption in a group of pregnant women].

    Science.gov (United States)

    Quiroz, S E; Casanueva, E; Avila, H; García, D; Arroyo, P

    1981-03-01

    This paper presents the results of a dietary survey (weighed intake/24 hr) carried out in 64 pregnant women living in Huamantla, Tlaxcala, Mexico and its proximities, during November 1973. The primary objective of the study was to identify social indicators with predictive value in relation to food consumption patterns, in order to detect groups at risk of having an inadequate intake. A subgroup of the women (15 cases) had adequate levels of energy and protein intake (E/P intake) when compared to the recommendations established by FAO/OMS, 1973, although they consumed a diet with relatively few variations which was also low in fat content. Family organization was the socioanthropological variable which had the greatest relationship with E/P intake. The extended families presented a better E/P ratio than the nuclear families. Interestingly, the per capita expenditure did not show a significant association with nutritional indicators. These data suggest, therefore, that in the population studied the E/P ratio is more closely associated with family organization than with its income level.

  13. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    Science.gov (United States)

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Genes encoding a group of related small secreted proteins from the gut of Hessian fly larvae [Mayetiola destructor (Say)

    Institute of Scientific and Technical Information of China (English)

    MING-SHUN CHEN; XIANG LIU; YU-CHENG ZHU; JOHN C. REESE; GERALD E. WILDE

    2006-01-01

    A group of related genes has been isolated and characterized from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Members in this group appear to encode proteins with secretary signal peptides at the N-terminals. The mature putative proteins are small, acidic proteins with calculated molecular masses of 14.5 to 15.3 kDa, and isoelectric points from 4.56 to 4.88. Northern blot analysis revealed that these genes are expressed predominantly in the gut of Hessian fly larvae and pupae. Two related genes, G10K1 and G10K2, were isolated as tandem repeats. Both genes contain three exons and two introns.The intron/exon boundaries were conserved in terms of amino acid encoding, suggesting that they arose by gene duplication. The fact that the frequency of this group of clones in a gut cDNA library higher than that of total cDNA clones encoding digestive enzymes suggested that this group of proteins may perform an important function in the gut physiology of this insect. However, the exact functions of these proteins are as yet known since no sequence similarity could be identified between these proteins and any known sequences in public databases using standard methods.

  15. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure.

    Science.gov (United States)

    Soulages, Jose L; Kim, Kangmin; Arrese, Estela L; Walters, Christina; Cushman, John C

    2003-03-01

    Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic, glycine-rich proteins found in plants, algae, fungi, and bacteria known collectively as hydrophilins that are preferentially expressed in response to dehydration or hyperosmotic stress. Group 2 LEA (dehydrins or responsive to abscisic acid) proteins are postulated to stabilize macromolecules against damage by freezing, dehydration, ionic, or osmotic stress. However, the structural and physicochemical properties of group 2 LEA proteins that account for such functions remain unknown. We have analyzed the structural properties of a recombinant form of a soybean (Glycine max) group 2 LEA (rGmDHN1). Differential scanning calorimetry of purified rGmDHN1 demonstrated that the protein does not display a cooperative unfolding transition upon heating. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein is in a largely hydrated and unstructured conformation in solution. However, ultraviolet absorption and circular dichroism measurements collected at different temperatures showed that the protein exists in equilibrium between two extended conformational states: unordered and left-handed extended helical or poly (L-proline)-type II structures. It is estimated that 27% of the residues of rGmDHN1 adopt or poly (L-proline)-type II-like helical conformation at 12 degrees C. The content of extended helix gradually decreases to 15% as the temperature is increased to 80 degrees C. Studies of the conformation of the protein in solution in the presence of liposomes, trifluoroethanol, and sodium dodecyl sulfate indicated that rGmDHN1 has a very low intrinsic ability to adopt alpha-helical structure and to interact with phospholipid bilayers through amphipathic alpha-helices. The ability of the protein to remain in a highly extended conformation at low temperatures could constitute the basis of the functional role of GmDHN1 in the prevention of freezing, desiccation

  16. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors.

    Science.gov (United States)

    Chauvin, Benoit; Drouot, Sylvain; Barrail-Tran, Aurélie; Taburet, Anne-Marie

    2013-10-01

    The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the

  17. A randomized assessor-blind trial comparing highly purified hMG and recombinant FSH in a GnRH antagonist cycle with compulsory single-blastocyst transfer

    DEFF Research Database (Denmark)

    Devroey, Paul; Pellicer, Antonio; Nyboe Andersen, Anders;

    2012-01-01

    OBJECTIVE: To compare the efficacy and safety of highly purified menotropin (hphMG) and recombinant FSH (rFSH) for controlled ovarian stimulation in a GnRH antagonist cycle with compulsory single-blastocyst transfer. DESIGN: Randomized, open-label, assessor-blind, parallel groups, multicenter......, noninferiority trial. SETTING: Twenty-five infertility centers in seven countries. PATIENT(S): Seven hundred forty-nine women. INTERVENTION(S): Controlled ovarian stimulation with hphMG or rFSH in a GnRH antagonist cycle with compulsory single-blastocyst transfer on day 5 in one fresh or subsequent frozen......% and 38% for women treated with hphMG and rFSH, respectively (both PP and ITT). Significant differences in pharmacodynamic end points were found between the two gonadotropin preparations. CONCLUSION(S): Highly purified hMG is at least as effective as rFSH in GnRH antagonist cycles with compulsory single...

  18. Clinical significance of serum high mobility group box 1 protein in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    濮雪华

    2014-01-01

    Objective To detect the levels of high mobility group box 1 protein(HMGB1),tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),C-reactive protein(CRP)in order to explore the clinical significance of HMGB1 in patients with severely traumatic brain injury.Methods A total of 75 patients composed of 40 male and35 female with severely traumatic brain

  19. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  20. Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries

    Directory of Open Access Journals (Sweden)

    Tipton Aaron R

    2012-06-01

    Full Text Available Abstract Background Proteins functioning in the same biological pathway tend to be transcriptionally co-regulated or form protein-protein interactions (PPI. Multiple spatially and temporally regulated events are coordinated during mitosis to achieve faithful chromosome segregation. The molecular players participating in mitosis regulation are still being unravelled experimentally or using in silico methods. Results An extensive literature review has led to a compilation of 196 human centromere/kinetochore proteins, all with experimental evidence supporting the subcellular localization. Sixty-four were designated as “core” centromere/kinetochore components based on peak expression and/or well-characterized functions during mitosis. By interrogating and integrating online resources, we have mined for genes/proteins that display transcriptional co-expression or PPI with the core centromere/kinetochore components. Top-ranked hubs in either co-expression or PPI network are not only enriched with known mitosis regulators, but also contain candidates whose mitotic functions are not yet established. Experimental validation found that KIAA1377 is a novel centrosomal protein that also associates with microtubules and midbody; while TRIP13 is a novel kinetochore protein and directly interacts with mitotic checkpoint silencing protein p31comet. Conclusions Transcriptional co-expression and PPI network analyses with known human centromere/kinetochore proteins as a query group help identify novel potential mitosis regulators.

  1. Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein.

    Directory of Open Access Journals (Sweden)

    Marco Pedrazzi

    Full Text Available BACKGROUND: Extracellular high mobility group box 1 (HMGB1 protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca(2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown. PRINCIPAL FINDINGS: Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca(2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130-139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1((130-139 peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex. CONCLUSION: We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.

  2. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy.

    Science.gov (United States)

    Parker, Katherine H; Horn, Lucas A; Ostrand-Rosenberg, Suzanne

    2016-09-01

    Myeloid-derived suppressor cells are immune-suppressive cells that are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. As myeloid-derived suppressor cells inhibit anti-tumor immunity and promote tumor progression, we are determining how their viability is regulated. Previous studies have established that the damage-associated molecular pattern molecule high-mobility group box protein 1 drives myeloid-derived suppressor cell accumulation and suppressive potency and is ubiquitously present in the tumor microenvironment. As high-mobility group box protein 1 also facilitates tumor cell survival by inducing autophagy, we sought to determine if high-mobility group box protein 1 regulates myeloid-derived suppressor cell survival through induction of autophagy. Inhibition of autophagy increased the quantity of apoptotic myeloid-derived suppressor cells, demonstrating that autophagy extends the survival and increases the viability of myeloid-derived suppressor cells. Inhibition of high-mobility group box protein 1 similarly increased the level of apoptotic myeloid-derived suppressor cells and reduced myeloid-derived suppressor cell autophagy, demonstrating that in addition to inducing the accumulation of myeloid-derived suppressor cells, high-mobility group box protein 1 sustains myeloid-derived suppressor cell viability. Circulating myeloid-derived suppressor cells have a default autophagic phenotype, and tumor-infiltrating myeloid-derived suppressor cells are more autophagic, consistent with the concept that inflammatory and hypoxic conditions within the microenvironment of solid tumors contribute to tumor progression by enhancing immune-suppressive myeloid-derived suppressor cells. Overall, these results demonstrate that in addition to previously recognized protumor effects, high-mobility group box protein 1 contributes to tumor progression by increasing myeloid-derived suppressor cell viability by

  3. An assessment of the influence of B group vitamins on the C-reactive protein concentration and chosen indicators of protein metabolism in male rats

    Directory of Open Access Journals (Sweden)

    Zuzanna Goluch-Koniuszy

    2011-09-01

    Full Text Available   Introduction. The objective of this project was to examine on an animal model the influence of the diet composition and its supplementation with B group vitamins on the concentration of chosen protein indicators, including C-reactive protein (CRP as an inflammation marker. Material and methods. The research was done on 36 male, around 5-months-old Wistar rats. The animals were divided into 3 dietary groups: group I has received the basic food mix, which included, among others, whole grain wheat and maize; group II and III received a modified food mix, in which a part of whole corn wheat from the basic feed was replaced with wheat flour, and 50% of whole corn maize was replaced with saccharose. The animals from groups I and II were given clean, settled water from the water supply system, and group III was given water solution of vitamins B1, B2, B6 and PP. Results. It has been established that both the change of diet, as well as it supplementation with B group vitamins are conductive to a reduced consumption of feed, and as a result, a reduced consumption of proteins by the animals from these groups. In the muscles and livers of the animals fed modified unsupplemented feed a smaller amount of protein was found in comparison to the animals fed the basic feed. In the blood serum of the animals from this group a significant concentration of albumins and a significant rise in the concentration of creatinine was found in relation to the concentration observed in the animals fed the basic feed and the ones fed the modified supplemented feed. The concentration of CRP in the group of animals fed the modified unsupplemented feed was significantly higher than in the other two groups of animals. In the blood serum of the animals who received the supplement the concentrations of glucose, staple protein and its fractions: albumins, α2-globulins, β-globulins and γ-globulins, were significantly higher than in the group fed the basic feed. The

  4. Newly identified RNAs of raspberry leaf blotch virus encoding a related group of proteins.

    Science.gov (United States)

    Lu, Yuwen; McGavin, Wendy; Cock, Peter J A; Schnettler, Esther; Yan, Fei; Chen, Jianping; MacFarlane, Stuart

    2015-11-01

    Members of the genus Emaravirus, including Raspberry leaf blotch virus (RLBV), are enveloped plant viruses with segmented genomes of negative-strand RNA, although the complete genome complement for any of these viruses is not yet clear. Currently, wheat mosaic virus has the largest emaravirus genome comprising eight RNAs. Previously, we identified five genomic RNAs for RLBV; here, we identify a further three RNAs (RNA6-8). RNA6-8 encode proteins that have clear homologies to one another, but not to any other emaravirus proteins. The proteins self-interacted in yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments, and the P8 protein interacted with the virus nucleocapsid protein (P3) using BiFC. Expression of two of the proteins (P6 and P7) using potato virus X led to an increase in virus titre and symptom severity, suggesting that these proteins may play a role in RLBV pathogenicity; however, using two different tests, RNA silencing suppression activity was not detected for any of the RLBV proteins encoded by RNA2-8.

  5. Statins, HMG-CoA Reductase Inhibitors, Improve Neovascularization by Increasing the Expression Density of CXCR4 in Endothelial Progenitor Cells.

    Science.gov (United States)

    Chiang, Kuang-Hsing; Cheng, Wan-Li; Shih, Chun-Ming; Lin, Yi-Wen; Tsao, Nai-Wen; Kao, Yung-Ta; Lin, Chih-Ting; Wu, Shinn-Chih; Huang, Chun-Yao; Lin, Feng-Yen

    2015-01-01

    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, are used to reduce cholesterol biosynthesis in the liver. Accordingly, statins regulate nitric oxide (NO) and glutamate metabolism, inflammation, angiogenesis, immunity and endothelial progenitor cells (EPCs) functions. The function of EPCs are regulated by stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β), etc. Even though the pharmacologic mechanisms by which statins affect the neovasculogenesis of circulating EPCs, it is still unknown whether statins affect the EPCs function through the regulation of CXCR4, a SDF-1 receptor expression. Therefore, we desired to explore the effects of statins on CXCR4 expression in EPC-mediated neovascularization by in vitro and in vivo analyses. In animal studies, we analyzed the effects of atorvastatin or rosuvastatin treatments in recovery of capillary density and blood flow, the expression of vWF and CXCR4 at ischemia sites in hindlimb ischemia ICR mice. Additionally, we analyzed whether the atorvastatin or rosuvastatin treatments increased the mobilization, homing, and CXCR4 expression of EPCs in hindlimb ischemia ICR mice that underwent bone marrow transplantation. The results indicated that statins treatment led to significantly more CXCR4-positive endothelial progenitor cells incorporated into ischemic sites and in the blood compared with control mice. In vivo, we isolated human EPCs and analyzed the effect of statins treatment on the vasculogenic ability of EPCs and the expression of CXCR4. Compared with the control groups, the neovascularization ability of EPCs was significantly improved in the atorvastatin or rosuvastatin group; this improvement was dependent on CXCR4 up-regulation. The efficacy of statins on improving EPC neovascularization was related to the SDF-1α/CXCR4 axis and might be regulated by the NO. In conclusion, atorvastatin and rosuvastatin improved

  6. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins.

    Science.gov (United States)

    Warner, Alden H; Guo, Zhi-hao; Moshi, Sandra; Hudson, John W; Kozarova, Anna

    2016-01-01

    Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally

  7. Sry-type HMG box 18 Contributes to the differentiation of Bone Marrow-derived Mesenchymal Stem Cells to Endothelial Cells

    Science.gov (United States)

    Izuagie, Ikhapoh Attairu; Pelham, Christopher J; Agrawal, Devendra K

    2015-01-01

    Objective Mesenchymal stem cells (MSC) have shown therapeutic potential to engraft and either differentiate into or support differentiation of vascular endothelial cells (EC), smooth muscle cells and cardiomyocytes in animal models of ischemic heart disease. Following intracoronary or transendocardial delivery of MSCs, however, only a small fraction of cells engraft and the majority of those persist as an immature cell phenotype. The goal of the current study was to decipher the molecular pathways and mechanisms that control MSC differentiation into ECs. Vascular endothelial growth factor (VEGF-165) treatment is known to enhance in vitro differentiation of MSCs into ECs. We tested the possible involvement of the Sry-type HMG box (Sox) family of transcription factors in this process. Method and Results MSCs were isolated from the bone marrow of Yucatan microswine and underwent a 10 day differentiation protocol. VEGF-165 (50 ng/ml) treatment of MSCs in vitro induced a significant increase in the protein expression of VEGFR-2, Sox9 and Sox18, in addition to the EC markers PECAM-1, VE-cadherin and vWF, as determined by Western blot or flow cytometry. siRNA-mediated knockdown of Sox18, as opposed to Sox9, in MSCs prevented VEGF-165-mediated induction of EC markers and capillary tube formation. Inhibition of VEGFR-2 signaling (SC-202850) reduced Sox18 and reduced VEGF-165-induced differentiation of MSCs to ECs. Conclusion Here we demonstrate that VEGF-165 mediates MSC differentiation into ECs via VEGFR-2-dependent induction of Sox18, which ultimately coordinates the transcriptional upregulation of specific markers of the EC phenotype. PMID:25913202

  8. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection

    Science.gov (United States)

    Kuo, Chih-Feng; Tsao, Nina; Hsieh, I-Chen; Lin, Yee-Shin; Wu, Jiunn-Jong; Hung, Yu-Ting

    2017-01-01

    Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection. PMID:28355251

  9. Enzymatic-fluorometric analyses for glutamine, glutamate and free amino groups in protein-free plasma and milk

    DEFF Research Database (Denmark)

    Larsen, Torben; Fernández, Carlos J.

    2017-01-01

    This Technical Research Communication describes new analytical methods for free, unbound glutamic acid and glutamine in protein-free blood plasma and milk and introduces the use of quantitation of free amino groups in the same matrices for descriptive and analytical purposes. The present enzymatic...

  10. Tentative assignment of the potato serine protease inhibitor group as ß-II proteins based on their spectroscopic characteristics.

    NARCIS (Netherlands)

    Pouvreau, L.A.M.; Gruppen, H.; Koningsveld, van G.A.; Broek, van den L.A.M.; Voragen, A.G.J.

    2004-01-01

    Potato serine protease inhibitor (PSPI) is the most abundant protease inhibitor group in potato tuber. The investigated PSPI isoforms have a highly similar structure at both the secondary and the tertiary level. From the results described, PSPI is classified as a ß-II protein based on (1) the

  11. Cytoplasmic localization of a functionally active Fanconi anemia group A green fluorescent protein chimera in human 293 cells

    NARCIS (Netherlands)

    Kruyt, FAE; Waisfisz, Q; Dijkmans, LM; Hermsen, M.A.; Youssoufian, H; Arwert, F; Joenje, H

    1997-01-01

    Hypersensitivity to cross-linking agents and predisposition to malignancy are characteristic of the genetically heterogeneous inherited bone marrow failure syndrome, Fanconi anemia (FA). The protein encoded by the recently cloned FA complementation group A gene, FAA, has been expected to localize in

  12. Depletion of phosphatidylglycerol head-group induces changes in oxygen evolution and protein secondary structures of photosystemⅡ

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The techniques of oxygen electrode polarography and Fourier transform infrared (FT-IR) spectroscopy were employed to explore the roles of polar head-group of phosphatidylglycerol (PG) molecules in the functional and structural aspects of photosystemⅡ(PSⅡ) through enzymatic approach. It was shown that the depletion of PG by treatment of phospholipase C (PLC) on PSⅡ particles caused the inhibition of oxygen evolving activity in PSⅡ. This effect also gave rise to changes in the protein secondary structures of PSⅡ, that is, an increase in α-helical conformation which is compensated by the loss of β-strand structures. It revealed that the head-group of PG molecules plays an important structural role in the maintenance of normal structure of PSⅡ proteins, which is required to maintain the appropriate physiological activity of the PSⅡ complex such as the oxygen evolving activity. It is suggested that there most probably exist hydrogen-bonding interactions between PG molecules and PSⅡ proteins.

  13. Epigenetic regulation of Wnt signaling pathway gene SRY-related HMG-box 17 in papillary thyroid carcinoma

    Institute of Scientific and Technical Information of China (English)

    LI Jing-yi; HAN Chao; ZHENG Li-li; GUO Ming-zhou

    2012-01-01

    Background SRY-related HMG-box 17 (SOX17) encodes a member of the SOX (SRY-related HMG-box) family of transcription factors involved in the regulation of embryonic development and in the determination of the cell fate.Recently,it was considered as a tumor suppressor gene to inhibit canonical Wnt/β-catenin signaling pathway in several malignancies.However,the function of SOX17 in thyroid cancer was unknown.Therefore,we investigated the epigenetic changes and the function of SOX17 in thyroid cancer.Methods The methylation status of the promoter region of SOX17 was detected using methylation-specific PCR in 63 papillary thyroid carcinoma (PTC) tissue,10 normal thyroid tissue,and two thyroid cancer cell lines.Semi-quantitative RT-PCR was used to assess mRNA expression of SOX17 before and after 5-aza-2′-deoxycytidine treatment in thyroid cancer cell lines.Expression of SOX17 and β-catenin were detected by immunohistochemistry in PTC and adjacent tissue.Luciferase reporter assay,colony formation,transfection,and Western blotting were employed to analyze the effect of SOX17 on thyroid cancer cell proliferation and the function of SOX17 in the Wnt signal pathway.Results Loss of SOX17 expression was correlated to the promoter region hypermethylation in thyroid cancer cell lines.Re-expression of SOX17 was found in TPC-1 cell line after 5-aza-2′-deoxycytidine treatment.In primary thyroid cancer,60.3% (38/63) were methylated and 39.7% (25/63) unmethylated.But no methylation was found in noncancerous thyroid tissues.Methylation of SOX17 was associated reversely with β-catenin expression in the cytoplasm or nucleus significantly in the PTC (P <0.05).Colony formation was inhibited by re-expression of SOX17 in TPC-1 cells.SOX17 suppressed the Wnt signaling pathway and the HMG domain was essential for this effect.Conclusions SOX17 was frequently methylated in human PTC.Loss of SOX17 expression was induced by promoter region hypermethylation.SOX17 inhibited thyroid

  14. HMG-CoA Reductase Inhibition Promotes Neurological Recovery, Peri-Lesional Tissue Remodeling, and Contralesional Pyramidal Tract Plasticity after Focal Cerebral Ischemia

    Science.gov (United States)

    Kilic, Ertugrul; Reitmeir, Raluca; Kilic, Ülkan; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kelestemur, Taha; Ethemoglu, Muhsine Sinem; Ozturk, Gurkan; Hermann, Dirk M.

    2014-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery. PMID:25565957

  15. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group

    Science.gov (United States)

    Deutz, Nicolaas E. P.; Bauer, Jurgen M.; Barazzoni, Rocco; Biolo, Gianni; Boirie, Yves; Bosy-Westphal, Anja; Cederholm, Tommy; Cruz-Jentoft, Alfonso; Krznaric, Zeljko; Nair, K. Sreekumaran; Singer, Pierre; Teta, Daniel; Tipton, Kevin; Calder, Philip C.

    2014-01-01

    The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities. Protein nutrition in combination with exercise is considered optimal for maintaining muscle function. With the goal of providing recommendations for health care professionals to help older adults sustain muscle strength and function into older age, the European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly, held in Dubrovnik on November 24 and 25, 2013. Based on the evidence presented and discussed, the following recommendations are made: (1) for healthy older people, the diet should provide at least 1.0 to 1.2 g protein/kg body weight/day (2) for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness, the diet should provide 1.2 to 1.5 g protein/kg body weight/day, with even higher intake for individuals with severe illness or injury, and (3) daily physical activity or exercise (resistance training, aerobic exercise) should be undertaken by all older people, for as long as possible. PMID:24814383

  16. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation

    NARCIS (Netherlands)

    Haan, de C.A.M.; Haijema, B.J.; Schellen, P.; Wichgers Schreur, P.J.; Lintelo, te E.; Vennema, H.; Rottier, P.J.M.

    2008-01-01

    A longstanding enigmatic feature of the group 1 coronaviruses is the uncleaved phenotype of their spike protein, an exceptional property among class I fusion proteins. Here, however, we show that some group 1 coronavirus spike proteins carry a furin enzyme recognition motif and can actually be cleav

  17. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Guillaume; Crublet, Elodie [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France); Hamelin, Olivier [CNRS (France); Gans, Pierre; Boisbouvier, Jérôme, E-mail: jerome.boisbouvier@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-09-28

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D{sub 2}O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d{sub 10}. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  18. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins.

    Science.gov (United States)

    Mas, Guillaume; Crublet, Elodie; Hamelin, Olivier; Gans, Pierre; Boisbouvier, Jérôme

    2013-11-01

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D2O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d10. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  19. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics.

    Science.gov (United States)

    Neuvonen, Pertti J

    2010-03-01

    HMG-CoA reductase inhibitors (statins) can cause skeletal muscle toxicity; the risk of toxicity is elevated by drug interactions and pharmacogenetic factors that increase the concentration of statins in the plasma. Statins are substrates for several membrane transporters that may mediate drug interactions. Inhibitors of the organic anion transporting polypeptide 1B1 can decrease the hepatic uptake of many statins, as well as the therapeutic index of these agents. Potent inhibitors of cytochrome P450 (CYP)3A4 can significantly increase the plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin, which is metabolized by CYP2C9, is less prone to pharmacokinetic interactions, while pravastatin, rosuvastatin and pitavastatin are not susceptible to any CYP inhibition. An understanding of the mechanisms of statin interactions will help to minimize drug interactions and to develop statins that are less prone to adverse interactions.

  20. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections

    Science.gov (United States)

    Nuccitelli, Annalisa; Cozzi, Roberta; Gourlay, Louise J.; Donnarumma, Danilo; Necchi, Francesca; Norais, Nathalie; Telford, John L.; Rappuoli, Rino; Bolognesi, Martino; Maione, Domenico; Grandi, Guido; Rinaudo, C. Daniela

    2011-01-01

    Structural vaccinology is an emerging strategy for the rational design of vaccine candidates. We successfully applied structural vaccinology to design a fully synthetic protein with multivalent protection activity. In Group B Streptococcus, cell-surface pili have aroused great interest because of their direct roles in virulence and importance as protective antigens. The backbone subunit of type 2a pilus (BP-2a) is present in six immunogenically different but structurally similar variants. We determined the 3D structure of one of the variants, and experimentally demonstrated that protective antibodies specifically recognize one of the four domains that comprise the protein. We therefore constructed a synthetic protein constituted by the protective domain of each one of the six variants and showed that the chimeric protein protects mice against the challenge with all of the type 2a pilus-carrying strains. This work demonstrates the power of structural vaccinology and will facilitate the development of an optimized, broadly protective pilus-based vaccine against Group B Streptococcus by combining the uniquely generated chimeric protein with protective pilin subunits from two other previously identified pilus types. In addition, this work describes a template procedure that can be followed to develop vaccines against other bacterial pathogens. PMID:21593422

  1. Analysis of core–periphery organization in protein contact networks reveals groups of structurally and functionally critical residues

    Indian Academy of Sciences (India)

    Arnold Emerson Isaac; Sitabhra Sinha

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core–periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers – having higher core order– with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core–periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~ sitabhra/proteinKcore/index.html.

  2. Stimulation of V(D)J cleavage by high mobility group proteins

    NARCIS (Netherlands)

    D.C. van Gent (Dik); K. Hiom; T.T. Paull; M. Gellert

    1997-01-01

    textabstractV(D)J recombination requires a pair of signal sequences with spacer lengths of 12 and 23 bp between the conserved heptamer and nonamer elements. The RAG1 and RAG2 proteins initiate the reaction by making double-strand DNA breaks at both signals, and must thus be able to

  3. Influence of extremely low frequency magnetic field on total protein and –SH groups concentrations in liver homogenates

    Directory of Open Access Journals (Sweden)

    Elżbieta Ciejka

    2014-10-01

    Full Text Available Background: Free radicals are atoms, molecules or their fragments, whose excess leads to the development of oxidative stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, as well as aging of organisms. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic fields are the major exogenous sources of free radicals. The low frequency magnetic field is commonly applied in physiotherapy. The aim of the present study was to evaluate the effect of extremely low frequency magnetic field (ELF-MF on the concentration of sulfhydryl groups (–SH and proteins in liver tissues of experimental animals depending on the time of exposure to the field. Material and Methods: Twenty one Sprague-Dawley male rats, aged 3–4 months were randomly divided into 3 experimental groups (each containing 7 animals: controls (group I, the rats exposed to ELF-MF of 40 Hz, 7 mT (this kind of the ELF-MF is mostly used in magnetotherapy, 30 min/day for 2 weeks (group II and the rats exposed to 40 Hz, 7 mT for 60 min/day for 2 weeks (group III. The concentrations of proteins and sulfhydryl groups in the liver tissues were determined after exposure to magnetic fields. Results: Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks caused a significant increase in the concentration of –SH groups and total protein levels in the liver tissues. Conclusions: The study results suggest that exposure to magnetic fields leads to the development of adaptive mechanisms to maintain the balance in the body oxidation-reduction and in the case of the studied parameters does not depend on the time of exposure. Med Pr 2014;65(5:639–644

  4. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  5. Purificación de una actividad HMG-CoA reductasa fosfatasa tipo 1 de la fracción microsomal de hígado de rata

    OpenAIRE

    Asins Muñoz, Guillermina

    1989-01-01

    El enzima hidroxi-3-metil-glutaril coenzima A reductasa (HMG-CoA reductasa) es el principal enzima regulador de la vía de síntesis del colesterol. Al igual que otros muchos enzimas, éste intercambia sus estados inactivo o activo por fosforilación / desfosforilación reversible, dependiendo su nivel de actividad del grado de fosforilación. En estudios "in vitro" se ha demostrado que en el mecanismo de fosforilación reversible intervienen HMG-CoA reductasa quinasas y HMG-CoA reductasa fosfatasas...

  6. Synthesis of OH-group-containing, biodegradable polyurethane and protein fixation on its surface.

    Science.gov (United States)

    Yang, Lixin; Wei, Jizheng; Yan, Lesan; Huang, Yubin; Jing, Xiabin

    2011-06-13

    A series of biodegradable polyurethanes containing free side hydroxyl groups (PUOH) were synthesized successfully in two steps: (1) PLA diol as soft segment, hexamethylene diisocyanate (HDI) as hard segment, and benzalpentaerythritol (BPO) as a chain extender were used to synthesize PUs with protected OH groups; (2) CF(3)COOH was used as a deprotection agent to remove the benzal groups on PU to prepare PUOH. The properties of PU and PUOH were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), water contact angle measurement, and gel permeation chromatography (GPC). The benzal groups were removed completely in 15 min without detrimental effect on PU main chains to obtain PUOHs. 4-Azidobenzoic acid was conjugated to PUOH through its esterification with the free OH groups on PUOH. The results of immunofluorescence assay showed that the phenyl azide groups formed were capable of binding mouse IgG under UV (254 nm) irradiation in 3 min; the bound mouse IgG retained its own biological activity and could further bind the FITC-labeled anti(mouse IgG). Therefore, this material has a potential in immunofluorescence assay and related fields.

  7. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Hvitby, Christina Poulsen; Popuri, Venkateswarlu

    2014-01-01

    Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide...... excision repair and base excision repair. Here, we describe a new interaction partner for CSB, the DNA glycosylase NEIL2. Using both cell extracts and recombinant proteins, CSB and NEIL2 were found to physically interact independently of DNA. We further found that CSB is able to stimulate NEIL2 glycosylase...... in a DNA bubble structure using whole cell extracts. Taken together, our data supports a biological role for CSB and NEIL2 in transcription associated base excision repair....

  8. Phylogenetic relationships and protein modelling revealed two distinct subfamilies of group II HKT genes between crop and model grasses.

    Science.gov (United States)

    Ariyarathna, H A Chandima K; Francki, Michael G

    2016-07-01

    Molecular evolution of large protein families in closely related species can provide useful insights on structural functional relationships. Phylogenetic analysis of the grass-specific group II HKT genes identified two distinct subfamilies, I and II. Subfamily II was represented in all species, whereas subfamily I was identified only in the small grain cereals and possibly originated from an ancestral gene duplication post divergence from the coarse grain cereal lineage. The core protein structures were highly analogous despite there being no more than 58% amino acid identity between members of the two subfamilies. Distinctly variable regions in known functional domains, however, indicated functional divergence of the two subfamilies. The subsets of codons residing external to known functional domains predicted signatures of positive Darwinian selection potentially identifying new domains of functional divergence and providing new insights on the structural function and relationships between protein members of the two subfamilies.

  9. Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis.

    Science.gov (United States)

    Wang, Dongfang; Tyson, Mark D; Jackson, Shawn S; Yadegari, Ramin

    2006-08-29

    In Arabidopsis, a complex of Polycomb-group (PcG) proteins functions in the female gametophyte to control the initiation of seed development. Mutations in the PcG genes, including MEDEA (MEA) and FERTILIZATION-INDEPENDENT SEED 2 (FIS2), produce autonomous seeds where endosperm proliferation occurs in the absence of fertilization. By using a yeast two-hybrid screen, we identified MEA and a related protein, SWINGER (SWN), as SET-domain partners of FIS2. Localization data indicated that all three proteins are present in the female gametophyte. Although single-mutant swn plants did not show any defects, swn mutations enhanced the mea mutant phenotype in producing autonomous seeds. Thus, MEA and SWN perform partially redundant functions in controlling the initiation of endosperm development before fertilization in Arabidopsis.

  10. Controlled Modulation of Serum Protein Binding and Biodistribution of Asymmetric Cyanine Dyes by Variation of the Number of Sulfonate Groups

    Directory of Open Access Journals (Sweden)

    Franziska M. Hamann

    2011-07-01

    Full Text Available To assess the suitability of asymmetric cyanine dyes for in vivo fluoro-optical molecular imaging, a comprehensive study on the influence of the number of negatively charged sulfonate groups governing the hydrophilicity of the DY-67x family of asymmetric cyanines was performed. Special attention was devoted to the plasma protein binding capacity and related pharmacokinetic properties. Four members of the DY-67x cyanine family composed of the same main chromophore, but substituted with a sequentially increasing number of sulfonate groups (n = 1−4; DY-675, DY-676, DY-677, DY-678, respectively, were incubated with plasma proteins dissolved in phosphate-buffered saline. Protein binding was assessed by absorption spectroscopy, gel electrophoresis, ultrafiltration, and dialysis. Distribution of dye in organs was studied by intraveneous injection of 62 nmol dye/kg body weight into mice (n = 12; up to 180 minutes postinjection using whole-body near-infrared fluorescence imaging. Spectroscopic studies, gel electrophoresis, and dialysis demonstrated reduced protein binding with increasing number of sulfonate groups. The bovine serum albumin binding constant of the most hydrophobic dye, DY-675, is 18 times higher than that of the most hydrophilic fluorophore, DY-678. In vivo biodistribution analysis underlined a considerable influence of dye hydrophilicity on biodistribution and excretion pathways, with the more hydrophobic dyes, DY-675 and DY-676, accumulating in the liver, followed by strong fluorescence signals in bile and gut owing to accumulation in feces and comparatively hydrophilic DY-678-COOH accumulating in the bladder. Our results demonstrate the possibility of selectively controlling dye-protein interactions and, thus, biodistribution and excretion pathways via proper choice of the fluorophore's substitution pattern. This underlines the importance of structure-property relationships for fluorescent labels. Moreover, our data could provide the

  11. Grouping of amino acids and recognition of protein structurally conserved regions by reduced alphabets of amino acids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned se- quences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitu- tion matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.

  12. Grouping of amino acids and recognition of protein structurally conserved regions by reduced alphabets of amino acids

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Wei

    2007-01-01

    Sequence alignment is a common method for finding protein structurally conserved/similar regions.However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features,residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered.Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.

  13. Telomeric associated sequences of Drosophila recruit polycomb-group proteins in vivo and can induce pairing-sensitive repression.

    Science.gov (United States)

    Boivin, Antoine; Gally, Christelle; Netter, Sophie; Anxolabéhère, Dominique; Ronsseray, Stéphane

    2003-05-01

    In Drosophila, relocation of a euchromatic gene near centromeric or telomeric heterochromatin often leads to its mosaic silencing. Nevertheless, modifiers of centromeric silencing do not affect telomeric silencing, suggesting that each location requires specific factors. Previous studies suggest that a subset of Polycomb-group (PcG) proteins could be responsible for telomeric silencing. Here, we present the effect on telomeric silencing of 50 mutant alleles of the PcG genes and of their counteracting trithorax-group genes. Several combinations of two mutated PcG genes impair telomeric silencing synergistically, revealing that some of these genes are required for telomeric silencing. In situ hybridization and immunostaining experiments on polytene chromosomes revealed a strict correlation between the presence of PcG proteins and that of heterochromatic telomeric associated sequences (TASs), suggesting that TASs and PcG complexes could be associated at telomeres. Furthermore, lines harboring a transgene containing an X-linked TAS subunit and the mini-white reporter gene can exhibit pairing-sensitive repression of the white gene in an orientation-dependent manner. Finally, an additional binding site for PcG proteins was detected at the insertion site of this type of transgene. Taken together, these results demonstrate that PcG proteins bind TASs in vivo and may be major players in Drosophila telomeric position effect (TPE).

  14. The expression of high-mobility group box protein-1 in temporomandibular joint osteoarthritis with disc perforation.

    Science.gov (United States)

    Feng, Yaping; Fang, Wei; Li, Cheng; Guo, Huilin; Li, Yingjie; Long, Xing

    2016-02-01

    High-mobility group box protein-1 (HMGB-1), a potent promoter of inflammation, was believed to be a potential trigger of osteoarthritis (OA). Only a few studies have investigated the role of HMGB-1 in temporomandibular joint (TMJ) OA, especially in disc perforation cases. But in this study, not only the expression of HMGB-1 in TMJ OA with disc perforation was investigated but also the possible role of HMGB-1 in TMJ OA was discussed. Synovial membrane and disc specimens were collected from patients with TMJ OA, and the expression of HMGB-1 was detected using immunohistochemistry, real-time quantitative PCR and Western blotting. High-mobility group box protein-1 expressed strongly in cytoplasm and nucleus of lining layer cells and endothelial cells in osteoarthritic synovium. Staining of HMGB-1 was found intensive in the frontier tissue of the perforation in the perforated discs. HMGB-1 expression was also upregulated in osteoarthritic synovial cells and disc cells according to real-time quantitative PCR and Western blotting analysis. High-mobility group box protein-1 expression was upregulated in TMJ OA and might promote the progression of TMJ OA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPR-mediated bacterial immunity.

    Science.gov (United States)

    Lee, Kwang-Hoon; Lee, Seong-Gyu; Eun Lee, Kyung; Jeon, Hyesung; Robinson, Howard; Oh, Byung-Ha

    2012-11-01

    Many prokaryotic organisms acquire immunity against foreign genetic material by incorporating a short segment of foreign DNA called spacer into chromosomal loci, termed clustered regularly interspaced short palindromic repeats (CRISPRs). The encoded RNAs are processed into small fragments that guide the silencing of the invading genetic elements. The CRISPR-associated (Cas) proteins are the main executioners of these processes. Herein, we report the crystal structure of Stu0660 of Streptococcus thermophilus, a Cas protein involved in the acquisition of new spacers. By homotetramerization, Stu0660 forms a central channel which is decorated with basic amino acids and binds linear double-stranded DNA (dsDNA), but not circular dsDNA. Despite undetectably low sequence similarity, two N-terminal domains of Stu0660 are similar to the entire structure of an Enterococcus faecalis Csn2 protein, which also forms a homotetramer and binds dsDNA. Thus, this work identifies a previously unknown group of Stu0660-like Csn2 proteins (∼350 residues), which are larger than the known canonical Csn2 proteins (∼220 residues) by containing an extra C-terminal domain. The commonly present central channel in the two subgroups appears as a design to selectively interact with linear dsDNA. Copyright © 2012 Wiley Periodicals, Inc.

  16. Characterization of an Entamoeba histolytica High-Mobility-Group Box Protein Induced during Intestinal Infection ▿ †

    Science.gov (United States)

    Abhyankar, Mayuresh M.; Hochreiter, Amelia E.; Hershey, Jessica; Evans, Clive; Zhang, Yan; Crasta, Oswald; Sobral, Bruno W. S.; Mann, Barbara J.; Petri, William A.; Gilchrist, Carol A.

    2008-01-01

    The unicellular eukaryote Entamoeba histolytica is a human parasite that causes amebic dysentery and liver abscess. A genome-wide analysis of gene expression modulated by intestinal colonization and invasion identified an upregulated transcript that encoded a putative high-mobility-group box (HMGB) protein, EhHMGB1. We tested if EhHMGB1 encoded a functional HMGB protein and determined its role in control of parasite gene expression. Recombinant EhHMGB1 was able to bend DNA in vitro, a characteristic of HMGB proteins. Core conserved residues required for DNA bending activity in other HMGB proteins were demonstrated by mutational analysis to be essential for EhHMGB1 activity. EhHMGB1 was also able to enhance the binding of human p53 to its cognate DNA sequence in vitro, which is expected for an HMGB1 protein. Confocal microscopy, using antibodies against the recombinant protein, confirmed its nuclear localization. Overexpression of EhHMGB1 in HM1:IMSS trophozoites led to modulation of 33 transcripts involved in a variety of cellular functions. Of these, 20 were also modulated at either day 1 or day 29 in the mouse model of intestinal amebiasis. Notably, four transcripts with known roles in virulence, including two encoding Gal/GalNAc lectin light chains, were modulated in response to EhHMGB1 overexpression. We concluded that EhHMGB1 was a bona fide HMGB protein with the capacity to recapitulate part of the modulation of parasite gene expression seen during adaptation to the host intestine. PMID:18658254

  17. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein.

    Science.gov (United States)

    Chinpongpanich, Aumnart; Phean-O-Pas, Srivilai; Thongchuang, Mayura; Qu, Li-Jia; Buaboocha, Teerapong

    2015-11-01

    A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.

  18. Bridging of partially negative atoms by hydrogen bonds from main-chain NH groups in proteins: The crown motif.

    Science.gov (United States)

    Leader, David P; Milner-White, E James

    2015-11-01

    The backbone NH groups of proteins can form N1N3-bridges to δ-ve or anionic acceptor atoms when the tripeptide in which they occur orients them appropriately, as in the RL and LR nest motifs, which have dihedral angles 1,2-αR αL and 1,2-αL αR , respectively. We searched a protein database for structures with backbone N1N3-bridging to anionic atoms of the polypeptide chain and found that RL and LR nests together accounted for 92% of examples found (88% RL nests, 4% LR nests). Almost all the remaining 8% of N1N3-bridges were found within a third tripeptide motif which has not been described previously. We term this a "crown," because of the disposition of the tripeptide CO groups relative to the three NH groups and the acceptor oxygen anion, and the crown together with its bridged anion we term a "crown bridge." At position 2 of these structures the dihedral angles have a tight αR distribution, but at position 1 they have a wider distribution, with ϕ and ψ values generally being lower than those at position 1. Over half of crown bridges involve the backbone CO group three residues N-terminal to the tripeptide, the remainder being to other main-chain or side-chain carbonyl groups. As with nests, bridging of crowns to oxygen atoms within ligands was observed, as was bridging to the sulfur atom of an iron-sulfur cluster. This latter property may be of significance for protein evolution.

  19. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents.

    Science.gov (United States)

    Kim, Ung-Jin; Lee, Yeong Ro; Kang, Tong Ho; Choi, Joon Weon; Kimura, Satoshi; Wada, Masahisa

    2017-05-01

    Crosslinked chitosan was prepared by Schiff base formation between the aldehyde groups of dialdehyde cellulose (DAC) and the amino groups of chitosan and a subsequent reduction. DAC was obtained through periodate oxidation of cellulose and solubilization in hot water at 100°C for 1h. Three grades of DAC-crosslinked chitosan were prepared by adding various amounts DAC. The degrees of crosslinking as determined by amino group content were 3.8, 8.3, and 12.1%, respectively. DAC-crosslinked chitosan showed higher stability in the pH 2-9 range and no cytotoxicity was identified over the course of a 21-day long-term stability test. Also, DAC-crosslinked chitosan showed remarkably high bovine serum albumin (BSA) adsorption capacity at pH 5.5 as a result of the increased amino group content, due to the reaction between DAC and chitosan molecular chains occurring at multiple points even though DAC-crosslinked chitosan showed a lower degree of crosslinking.

  20. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Ramamoorthy, Mahesh; Sykora, Peter

    2012-01-01

    Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence indi...

  1. The Prognostic Value of Polycomb Group Protein BMI1 in Stage II Colon Cancer Patients

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Linnemann, Dorte; Christensen, Ib J.;

    2016-01-01

    The aim of this study was to investigate the prognostic value of B-cell-specific moloney murine leukemia virus insertion site 1 (BMI1) protein expression in primary tumors of stage II colon cancer patients. BMI1 protein expression was assessed by immunohistochemistry in a retrospective patient...... cohort consisting of 144 stage II colon cancer patients. BMI1 expression at the invasive front of the primary tumors correlated with mismatch repair status of the tumors. Furthermore, BMI1 expression at the luminal surface correlated with T-stage, tumor location, and the histological subtypes....... Likewise, there was no association between 5-year overall survival and BMI1 expression at the invasive front (HR: 1.12; 95% CI 0.80-1.56; p = 0.46) or at the luminal surface of the tumor (HR: 1.16; 95% CI 0.86-1.60; p = 0.33). In conclusion, BMI1 expression in primary tumors of stage II colon cancer...

  2. Blood and serum protein groups of the dama of South-West Africa.

    Science.gov (United States)

    Knussmann, R; Knussmann, R

    1976-01-01

    The phenotype and gene frequencies of the following polymorphisms are given for the blood samples taken from 448 adults of the South-West African Dama Negro tribe: ABO (with sub-groups), MN, Rh, K, Hp, Gc, Gm(1,2,b), InV(1). The frequencies are discussed in comparison with other African samples and a multivariate comparison between series from south-western Africa is conducted. The Dama prove to be relatively independent.

  3. Evaluation of high mobility group box 1 protein as a presurgical diagnostic marker reflecting the severity of acute appendicitis

    Directory of Open Access Journals (Sweden)

    Wu Chuanxin

    2012-09-01

    Full Text Available Abstract Objectives To validate the role of high mobility group box-1(HMGB1 in diagnosis of acute appendicitis (AA with different pathological severity. Methods According to the pathologically diagnosis, 150 patients underwent appendectomies between Jan. 2007 and Dec, 2010 were divided into acute simple, acute suppurative and acute gangrenous appendicitis as group 1, 2 and 3, respectively. Each patient group contains 50 sex and age matched cases to make comparison with 50 healthy volunteers. The mRNA and protein expression levels of serum HMGB1 were determined by real-time quantitative PCR and enzyme linked immunosorbent assay (ELISA. Serum High-sensitivity C-reactive protein (hs-CRP levels were determined by rate nephelometric immunoassay. Results In comparison with health volunteers, relative HMGB1 mRNA levels in group 1, 2 and 3 were significantly increased 3.05 ± 0.51,8.33 ± 0.75 and 13.74 ± 1.09 folds, reflecting a tendency of augmented severity. In accordance, serum protein levels of HMGB1 were 10.97 ± 1.64, 14.42 ± 1.56 and 18.08 ± 2.41 ng/ml in 3 patient groups, which are significantly higher than that of healthy volunteers’ 5.47 ± 0.73 ng/ml. hs-CRP levels were 12.85 ± 3.41, 21.04 ± 1.98 and 31.07 ± 5.46 ng/ml in 3 patients groups compared with 2.06 ± 0.77 ng/ml in controls. The concentrations of HMGB1 and hs-CRP were both positively correlated with disease severity. Conclusion Serum HMGB1 constitutes as a valuable marker in diagnosis of AA. Positively correlated with hs-CRP level, mRNA and protein expression of HMGB1 to a certain extent reflected the severity of AA.

  4. Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.

    Science.gov (United States)

    Perchellet, Jean-Pierre H; Perchellet, Elisabeth M; Crow, Kyle R; Buszek, Keith R; Brown, Neil; Ellappan, Sampathkumar; Gao, Ge; Luo, Diheng; Minatoya, Machiko; Lushington, Gerald H

    2009-11-01

    Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive. Although the correlation between the concentration-dependent inhibitions of HMG-CoA reductase activity over 10 min in the cell-free assay and L1210 tumor cell proliferation over 4 days in culture is unclear, some bioactive MRLs elicit interesting combinations of statin-like (IC50: 7.4-8.0 microM) and anti-tumor (IC50: 1.4-2.3 microM) activities. The HMG-CoA reductase-inhibiting activities of pravastatin and an MRL persist in the presence of increasing concentrations of NADPH. But increasing concentrations of HMG-CoA block the HMG-CoA reductase-inhibiting activity of pravastatin without altering that of an MRL, suggesting that MRLs and existing statins may have different mechanisms of enzyme interaction and inhibition. When tested together, suboptimal concentrations of synthetic MRLs and existing statins have additive inhibitory effects on HMG-CoA reductase activity. Preliminary molecular docking studies with MRL-based inhibitors indicate that these ligands fit sterically well into the HMG-CoA reductase statin-binding receptor model and, in contrast to mevastatin, may occupy a narrow channel housing the pyridinium moiety on NADP+.

  5. Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities.

    Science.gov (United States)

    Bonner, Carol A; Disz, Terrence; Hwang, Kaitlyn; Song, Jian; Vonstein, Veronika; Overbeek, Ross; Jensen, Roy A

    2008-03-01

    Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated.

  6. Increased adipose tissue secretion of Fetuin-A, lipopolysaccharide-binding protein and high-mobility group box protein 1 in metabolic syndrome.

    Science.gov (United States)

    Jialal, Ishwarlal; Devaraj, Sridevi; Bettaieb, Ahmed; Haj, Fawaz; Adams-Huet, Beverley

    2015-07-01

    Adipose Tissue (AT) dysregulation contributes to the pro-inflammatory state and insulin resistance of Metabolic Syndrome (MetS). We examined AT secretion of the hepatokine, Fetuin-A, LBP, sCD14 and HMGB-1, and toll-like receptor 2 and 4 protein levels in MetS and controls. Secreted levels of Fetuin-A, LBP, HMGB-1 and sCD14 and TLR2 and TLR4 protein in AT of controls and MetS patients were assayed. Also mRNA and protein for Fetuin-A, LBP, sCD14 and HMGB-1 were studied in subcutaneous fat depot of mice and during adipocyte differentiation. Secretion of Fetuin-A, LBP and HMGB-1 from AT were significantly increased in MetS (n = 28) compared to controls (n = 25), even after adjustment for adiposity. There were no significant differences in sCD14. Both LBP and Fetuin-A correlated significantly with HOMA-IR and increased significantly with increasing features of MetS. There was a significant increase in AT TLR2 and TLR4 protein in MetS compared to controls. Expression of Fetuin-A and LBP were significantly higher in subcutaneous white adipose tissue of HFD fed mice as well as in ob/ob mice compared to C57BL6/J control mice (n = 6 per group). Additionally mRNA and protein levels of FetA, LBP and HMGB-1 increased during differentiation of 3T3-L1 adipocytes. We make the novel observation of increased secretion of Fetuin A, LBP and HMGB-1 from AT and hypothesize that these engage TLRs in AT and other tissues contributing to the pro-inflammatory state and insulin resistance of MetS. Published by Elsevier Ireland Ltd.

  7. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1.

    Science.gov (United States)

    Köhler, Claudia; Hennig, Lars; Spillane, Charles; Pien, Stephane; Gruissem, Wilhelm; Grossniklaus, Ueli

    2003-06-15

    The Polycomb-group (PcG) proteins MEDEA, FERTILIZATION INDEPENDENT ENDOSPERM, and FERTILIZATION INDEPENDENT SEED2 regulate seed development in Arabidopsis by controlling embryo and endosperm proliferation. All three of these FIS-class proteins are likely subunits of a multiprotein PcG complex, which epigenetically regulates downstream target genes that were previously unknown. Here we show that the MADS-box gene PHERES1 (PHE1) is commonly deregulated in the fis-class mutants. PHE1 belongs to the evolutionarily ancient type I class of MADS-box proteins that have not yet been assigned any function in plants. Both MEDEA and FIE directly associate with the promoter region of PHE1, suggesting that PHE1 expression is epigenetically regulated by PcG proteins. PHE1 is expressed transiently after fertilization in both the embryo and the endosperm; however, it remains up-regulated in the fis mutants, consistent with the proposed function of the FIS genes as transcriptional repressors. Reduced expression levels of PHE1 in medea mutant seeds can suppress medea seed abortion, indicating a key role of PHE1 repression in seed development. PHE1 expression in a hypomethylated medea mutant background resembles the wild-type expression pattern and is associated with rescue of the medea seed-abortion phenotype. In summary, our results demonstrate that seed abortion in the medea mutant is largely mediated by deregulated expression of the type I MADS-box gene PHE1.

  8. Arabidopsis group le formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression

    NARCIS (Netherlands)

    Deeks, M.J.; Cvrcková, F.; Machesky, L.M.; Mikitová, V.; Ketelaar, T.; Zársky, V.; Davies, B.; Hussey, P.J.

    2005-01-01

    ¿ The closely related proteins AtFH4 and AtFH8 represent the group Ie clade of Arabidopsis formin homologues. The subcellular localization of these proteins and their ability to affect the actin cytoskeleton were examined. ¿ AtFH4 protein activity was identified using fluorimetric techniques. Intera

  9. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks.

    Science.gov (United States)

    Vélez-Cruz, Renier; Egly, Jean-Marc

    2013-01-01

    Cockayne syndrome (CS) is a rare genetic disorder characterized by a variety of growth and developmental defects, photosensitivity, cachectic dwarfism, hearing loss, skeletal abnormalities, progressive neurological degeneration, and premature aging. CS arises due to mutations in the CSA and CSB genes. Both gene products are required for the transcription-coupled (TC) branch of the nucleotide excision repair (NER) pathway, however, the severe phenotype of CS patients is hard to reconcile with a sole defect in TC-NER. Studies using cells from patients and mouse models have shown that the CSB protein is involved in a variety of cellular pathways and plays a major role in the cellular response to stress. CSB has been shown to regulate processes such as the transcriptional recovery after DNA damage, the p53 transcriptional response, the response to hypoxia, the response to insulin-like growth factor-1 (IGF-1), transactivation of nuclear receptors, transcription of housekeeping genes and the transcription of rDNA. Some of these processes are also affected in combined XP/CS patients. These new advances in the function(s) of CSB shed light onto the etiology of the clinical features observed in CS patients and could potentially open therapeutic avenues for these patients in the future. Moreover, the study of CS could further our knowledge of the aging process.

  10. Functional Insights into Human HMG-CoA Lyase from Structures of Acyl-CoA-containing Ternary Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zhuji; Runquist, Jennifer A.; Montgomery, Christa; Miziorko, Henry M.; Kim, Jung-Ja P. (MCW); (UMKC)

    2010-08-16

    HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.4 and 2.2 {angstrom}, respectively. Comparison of these {beta}/{alpha}-barrel structures with those of unliganded HMGCL and R41M reveals substantial differences for Mg{sup 2+} coordination and positioning of the flexible loop containing the conserved HMGCL 'signature' sequence. In the R41M-Mg{sup 2+}-substrate ternary complex, loop residue Cys{sup 266} (implicated in active-site function by mechanistic and mutagenesis observations) is more closely juxtaposed to the catalytic site than in the case of unliganded enzyme or the WT enzyme-Mg{sup 2+}-3-hydroxyglutaryl-CoA inhibitor complex. In both ternary complexes, the S-stereoisomer of substrate or inhibitor is specifically bound, in accord with the observed Mg{sup 2+} liganding of both C3 hydroxyl and C5 carboxyl oxygens. In addition to His{sup 233} and His{sup 235} imidazoles, other Mg{sup 2+} ligands are the Asp{sup 42} carboxyl oxygen and an ordered water molecule. This water, positioned between Asp{sup 42} and the C3 hydroxyl of bound substrate/inhibitor, may function as a proton shuttle. The observed interaction of Arg{sup 41} with the acyl-CoA C1 carbonyl oxygen explains the effects of Arg{sup 41} mutation on reaction product enolization and explains why human Arg{sup 41} mutations cause drastic enzyme deficiency.

  11. Tl(+) showed negligible interaction with inner membrane sulfhydryl groups of rat liver mitochondria, but formed complexes with matrix proteins.

    Science.gov (United States)

    Korotkov, Sergey M; Brailovskaya, Irina V; Kormilitsyn, Boris N; Furaev, Viktor V

    2014-04-01

    The effects of Tl(+) on protein sulfhydryl (SH) groups, swelling, and respiration of rat liver mitochondria (RLM) were studied in a medium containing TlNO3 and sucrose, or TlNO3 and KNO3 as well as glutamate plus malate, or succinate plus rotenone. Detected with Ellman's reagent, an increase in the content of the SH groups was found in the inner membrane fraction, and a simultaneous decline was found in the content of the matrix-soluble fraction for RLM, incubated and frozen in 25-75 mM TlNO3 . This increase was greater in the medium containing KNO3 regardless of the presence of Ca(2+) . It was eliminated completely for RLM injected in the medium containing TlNO3 and then washed and frozen in the medium containing KNO3 . Calcium-loaded RLM showed increased swelling and decreased respiration. These results suggest that a ligand interaction of Tl(+) with protein SH groups, regardless of the presence of calcium, may underlie the mechanism of thallium toxicity.

  12. 姜黄素对人肝L-02细胞胆固醇合成及转运蛋白表达的影响%Effects of Curcumin on Cholesterol Synthesis and Transport Protein Expression in human L- 02 hepatocyte

    Institute of Scientific and Technical Information of China (English)

    程静屏; 阳学风

    2011-01-01

    Objective To investigate the fatty changed human L -02 hepatocyte under the control of curcumin, to observe the effects of curcumin on cholesterol synthesis and transport. Methods MTF - assay was used to observe the inhibitory effect of curcumin on cell growth of fatty changed human liver L - 02 cells; observed the formation of lipid droplets in the cells under oil red 0 dye. detect the HMG - CoA reductase and caveolin - 1 mRNA's expression and protein expression of the hepatocytes of each group by reverse trancriptase polymerase chaim reaction( RT- PCR) and western blot analysis. Detect the intracellular and extracellular amount of total cholesterol(TC)、free cholesterol(FC) and cholesterol ester(CE) through high performance liquid chromatography (HPLC). Results Curcumin decreased both the formation of the intracellular lipid droplets and intracellular TC and CE of the fatty changed liver cells, while increased the amount of FC in the medium as well concentrationally and duration dependently. What's more, it decreased the HMG - CoA reductase mRNA expression, increased the caveolin - 1 both mRNA expression and protein expression concentrationally dependently at the same time. Conclusions The possible mechanisms of curcumin decreasing the intracellur cholestol are related to upregulation of caveolin - 1 and downregulation of HMG - CoA reductase.%目的 以正常人肝L-02细胞建立的脂肪变性肝细胞模型为研究对象,观察姜黄素对肝细胞胆固醇合成及转运的影响.方法 用MTT法观察姜黄素对脂肪变性人肝L-02细胞模型增殖的影响,用油红O染色定性观察细胞内脂滴形成情况;逆转录-多聚酶链反应(RT-PCR)半定量检测胆固醇合成限速酶HMG-CoA还原酶及转运蛋白Gaveolin-1在mRNA水平的表达;Western-blotting法检测细胞caveolin-1的表达;高效液相色谱法(HPLC)定量检测细胞内外胆固醇各组分含量.结果 姜黄素呈浓度和时间依赖性减少细胞内脂滴数量,降低

  13. Arabidopsis RETINOBLASTOMA-RELATED and Polycomb group proteins: cooperation during plant cell differentiation and development.

    Science.gov (United States)

    Kuwabara, Asuka; Gruissem, Wilhelm

    2014-06-01

    RETINOBLASTOMA (RB) is a tumour suppressor gene originally discovered in patients that develop eye tumours. The pRb protein is now well established as a key cell-cycle regulator which suppresses G1-S transition via interaction with E2F-DP complexes. pRb function is also required for a wide range of biological processes, including the regulation of stem-cell maintenance, cell differentiation, permanent cell-cycle exit, DNA repair, and genome stability. Such multifunctionality of pRb is thought to be facilitated through interactions with various binding partners in a context-dependent manner. Although the molecular network in which RB controls various biological processes is not fully understood, it has been found that pRb interacts with transcription factors and chromatin modifiers to either suppress or promote the expression of key genes during the switch from cell proliferation to differentiation. RETINOBLASTOMA-RELATED (RBR) is the plant orthologue of RB and is also known to negatively control the G1-S transition. Similar to its animal counterpart, plant RBR has various roles throughout plant development; however, much of its molecular functions outside of the G1-S transition are still unknown. One of the better-characterized molecular mechanisms is the cooperation of RBR with the Polycomb repressive complex 2 (PRC2) during plant-specific developmental events. This review summarizes the current understanding of this cooperation and focuses on the processes in Arabidopsis in which the RBR-PRC2 cooperation facilitates cell differentiation and developmental transitions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize.

    Science.gov (United States)

    Félix-Urquídez, Dalmira; Pérez-Urquiza, Melina; Valdez Torres, José-Benigno; León-Félix, Josefina; García-Estrada, Raymundo; Acatzi-Silva, Abraham

    2016-01-05

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%-100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio.

  15. Analysis of intron sequence variability of the conservative HMG-box of Sox9 genes in allotetraploids and their original parents

    Institute of Scientific and Technical Information of China (English)

    Liu Jifang; Liu Shaojun; Tao Min; Li Wei; Liu Yun

    2007-01-01

    The Sox genes of allotetraploids and their original maternal red crucian carp ( Carassius caassius red var. ) and original paternal common carp ( Cyprinus carpio L. ) were detected by PCR with the designed primers based on the conserved HMG-box sequence in different species. Sequencing of Sox genes indicated that two Sox9 genes (Atsox9a and Atsox9b ) existed in allotetraploids, while only one Sox9 gene existed in red crucian carp ( Rcsox9a ) and common carp ( Ccsox9b ). All of the four Sox9 genes contained an intron in the HMG-box, with the sizes of 413 bp, 703 bp, 401 bp and 714 bp, respectively. Moreover, the introns obeyed the rule of "GT-AG". A high similarity was observed between introns of Atsox9a and Rcsox9a (94.4 % ), Atsox9b and Ccsox9b (97.8 % ). Interestingly, the deduced amino acid sequences of their corresponding exons all shared 100 % identity. Thus, introns of the HMG-domain of Sox9s in allotetraploids and their original parents have not only the length polymorphism but also intron variability. Our results provide significant molecular evidence for the origin and evolution of allotetraploids.

  16. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    Directory of Open Access Journals (Sweden)

    Madeleine Zerbato

    Full Text Available Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  17. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    Science.gov (United States)

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  18. Coordinated regulation of Myc trans-activation targets by Polycomb and the Trithorax group protein Ash1

    Science.gov (United States)

    Goodliffe, Julie M; Cole, Michael D; Wieschaus, Eric

    2007-01-01

    Background The Myc oncoprotein is a transcriptional regulator whose function is essential for normal development. Myc is capable of binding to 10% of the mammalian genome, and it is unclear how a developing embryo controls the DNA binding of its abundant Myc proteins in order to avoid Myc's potential for inducing tumorigenesis. Results To identify chromatin binding proteins with a potential role in controlling Myc activity, we established a genetic assay for dMyc activity in Drosophila. We conducted a genome-wide screen using this assay, and identified the Trithorax Group protein Ash1 as a modifier of dMyc activity. Ash1 is a histone methyltransferase known for its role in opposing repression by Polycomb. Using RNAi in the embryo and Affymetrix microarrays, we show that ash1 RNAi causes the increased expression of many genes, suggesting that it is directly or indirectly required for repression in the embryo, in contrast to its known role in maintenance of activation. Many of these genes also respond similarly upon depletion of Pc and pho transcripts, as determined by concurrent microarray analysis of Pc and pho RNAi embryos, suggesting that the three are required for low levels of expression of a common set of targets. Further, many of these overlapping targets are also activated by Myc overexpression. We identify a second group of genes whose expression in the embryo requires Ash1, consistent with its previously established role in maintenance of activation. We find that this second group of Ash1 targets overlaps those activated by Myc and that ectopic Myc overcomes their requirement for Ash1. Conclusion Genetic, genomic and chromatin immunoprecipitation data suggest a model in which Pc, Ash1 and Pho are required to maintain a low level of expression of embryonic targets of activation by Myc, and that this occurs, directly or indirectly, by a combination of disparate chromatin modifications. PMID:17519021

  19. Coordinated regulation of Myc trans-activation targets by Polycomb and the Trithorax group protein Ash1

    Directory of Open Access Journals (Sweden)

    Cole Michael D

    2007-05-01

    Full Text Available Abstract Background The Myc oncoprotein is a transcriptional regulator whose function is essential for normal development. Myc is capable of binding to 10% of the mammalian genome, and it is unclear how a developing embryo controls the DNA binding of its abundant Myc proteins in order to avoid Myc's potential for inducing tumorigenesis. Results To identify chromatin binding proteins with a potential role in controlling Myc activity, we established a genetic assay for dMyc activity in Drosophila. We conducted a genome-wide screen using this assay, and identified the Trithorax Group protein Ash1 as a modifier of dMyc activity. Ash1 is a histone methyltransferase known for its role in opposing repression by Polycomb. Using RNAi in the embryo and Affymetrix microarrays, we show that ash1 RNAi causes the increased expression of many genes, suggesting that it is directly or indirectly required for repression in the embryo, in contrast to its known role in maintenance of activation. Many of these genes also respond similarly upon depletion of Pc and pho transcripts, as determined by concurrent microarray analysis of Pc and pho RNAi embryos, suggesting that the three are required for low levels of expression of a common set of targets. Further, many of these overlapping targets are also activated by Myc overexpression. We identify a second group of genes whose expression in the embryo requires Ash1, consistent with its previously established role in maintenance of activation. We find that this second group of Ash1 targets overlaps those activated by Myc and that ectopic Myc overcomes their requirement for Ash1. Conclusion Genetic, genomic and chromatin immunoprecipitation data suggest a model in which Pc, Ash1 and Pho are required to maintain a low level of expression of embryonic targets of activation by Myc, and that this occurs, directly or indirectly, by a combination of disparate chromatin modifications.

  20. Group 3 late embryogenesis abundant proteins from embryos of Artemia franciscana: structural properties and protective abilities during desiccation.

    Science.gov (United States)

    Boswell, Leaf C; Menze, Michael A; Hand, Steven C

    2014-01-01

    Group 3 late embryogenesis abundant (LEA) proteins are highly hydrophilic, and their expression is associated with desiccation tolerance in both plants and animals. Here we show that two LEA proteins from embryos of Artemia franciscana, AfrLEA2 and AfrLEA3m, are intrinsically disordered in solution but upon desiccation gain secondary structure, as measured by circular dichroism. Trifluoroethanol and sodium dodecyl sulfate are both shown to induce α-helical structure in AfrLEA2 and AfrLEA3m. Bioinformatic predictions of secondary-structure content for both proteins correspond most closely to conformations measured in the dry state. Because some LEA proteins afford protection to desiccation-sensitive proteins during drying and subsequent rehydration, we tested for this capacity in AfrLEA2 and AfrLEA3m. The protective capacities vary, depending on the target enzyme. For the cytoplasmic enzyme lactate dehydrogenase, neither AfrLEA2 nor AfrLEA3m, with or without trehalose present, was able to afford protection better than that provided by bovine serum albumin (BSA) under the same conditions. However, for another cytoplasmic enzyme, phosphofructokinase, both AfrLEA2 and AfrLEA3m in the presence of trehalose were able to afford protection far greater than that provided by BSA with trehalose. Finally, for the mitochondrial enzyme citrate synthase, 400-μg/mL AfrLEA3m without trehalose provided significantly more protection than the same concentration of either AfrLEA2 or BSA.

  1. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Sarvan, Sabina; Avdic, Vanja; Tremblay, Véronique; Chaturvedi, Chandra-Prakash; Zhang, Pamela; Lanouette, Sylvain; Blais, Alexandre; Brunzelle, Joseph S; Brand, Marjorie; Couture, Jean-François (Ottawa Hosp.); (Ottawa); (NWU)

    2012-05-02

    Absent, small or homeotic discs-like 2 (ASH2L) is a trithorax group (TrxG) protein and a regulatory subunit of the SET1 family of lysine methyltransferases. Here we report that ASH2L binds DNA using a forkhead-like helix-wing-helix (HWH) domain. In vivo, the ASH2L HWH domain is required for binding to the {beta}-globin locus control region, histone H3 Lys4 (H3K4) trimethylation and maximal expression of the {beta}-globin gene (Hbb-1), validating the functional importance of the ASH2L DNA binding domain.

  2. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Hidehiro Sawa; Takashi Ueda; Yoshifumi Takeyama; Takeo Yasuda; Makoto Shinzeki; Takahiro Nakajima; Yoshikazu Kuroda

    2006-01-01

    AIM: To examine the effects of anti-high mobility group box 1 (HMGB1) neutralizing antibody in experimental severe acute pancreatitis (SAP).METHODS: SAP was induced by creating closed duodenal loop in C3H/HeN mice. SAP was induced immediately after intraperitoneal injection of anti-HMGB1 neutralizing antibody (200 μg). Severity of pancreatitis, organ injury (liver, kidney and lung), and bacterial translocation to pancreas was examined 12 h after induction of SAP.RESULTS: Anti-HMGB1 neutralizing antibody significantly improved the elevation of the serum amylase level and the histological alterations of pancreas and lung in SAP.Anti-HMGB1 antibody also significantly ameliorated the elevations of serum alanine aminotransferase and creatinine in SAP. However, anti-HMGB1 antibody worsened the bacterial translocation to pancreas.CONCLUSION: Blockade of HMGB1 attenuated the development of SAP and associated organ dysfunction,suggesting that HMGB1 may act as a key mediator for inflammatory response and organ injury in SAP.

  3. Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Minky Son

    Full Text Available 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterolemia. In this study, ten qualitative pharmacophore models were generated based on chemical features in active inhibitors of HMGR. The generated models were validated using a test set. In a validation process, the best hypothesis was selected based on the statistical parameters and used for virtual screening of chemical databases to find novel lead candidates. The screened compounds were sorted by applying drug-like properties. The compounds that satisfied all drug-like properties were used for molecular docking study to identify their binding conformations at active site of HMGR. The final hit compounds were selected based on docking score and binding orientation. The HMGR structures in complex with the hit compounds were subjected to 10 ns molecular dynamics simulations to refine the binding orientation as well as to check the stability of the hits. After simulation, binding modes including hydrogen bonding patterns and molecular interactions with the active site residues were analyzed. In conclusion, four hit compounds with new structural scaffold were suggested as novel and potent HMGR inhibitors.

  4. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Directory of Open Access Journals (Sweden)

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  5. Short-term effect of the HMG-CoA reductase inhibitor rosuvastatin on erythrocyte nitric oxide synthase activity

    Directory of Open Access Journals (Sweden)

    Barbara Ludolph

    2008-01-01

    Full Text Available Barbara Ludolph1, Wilhelm Bloch2, Malte Kelm1, Rainer Schulz3, Petra Kleinbongard11Department of Medicine, Medical Clinic I, University Hospital RTWH Aachen, Germany; 2Department of Molecular and Cellular Sport Medicine, Sport University Cologne, Germany; 3Institute of Pathophysiology, Medical School, University of Essen, GermanyAbstract: Prevention and treatment of cardiovascular disorders by HMG-CoA reductase inhibitors (or statins, beyond their lipid-lowering properties, have been demonstrated including activation of the endothelial nitric oxide synthase (eNOS. Beside endothelial cells, red blood cells (RBCs possess NOS and produce nitric oxide (NO, which contributes to RBC deformability. The present study tested the capacity of statins to activate NOS in RBCs and subsequently to modulate RBC deformability in vitro. Blood samples of healthy young volunteers were incubated with or without rosuvastatin. Afterwards RBC-NOS activity and RBC deformability were determined. Rosuvastatin incubation significantly increased NOS phosphorylation, NOS dependent NO-formation, and RBC deformability. The NOS inhibitor NG- monomethyl-L-arginine reversed the stimulatory effect of rosuvastatin on RBC-NOS activity. This NO dependent effect of rosuvastatin might have an important influence on microcirculation and may offer new perspectives for the therapeutic use of statins.Keywords: red blood cell, nitric oxide synthase, red blood cell deformability, statin

  6. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  7. High mobility group box 1 protein (HMGB1) as an immune-modulating factor for polarization of human T lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Lifeng Huang; Yongming Yao; Haidong Meng; Xiaodong Zhao; Ning Dong; Yan Yu

    2008-01-01

    Objective This study was performed to investigate the effect of high mobility group box-1 protein (HMGB 1) on immune function of human T lymphocytes in vitro and explore its potential role in cell-mediated immune dysfunction.Methods Fresh blood was obtained from healthy adult volunteers and peripheral blood mononuclear cells (PBMCs) were isolated,then rhHMGB 1 was added to PBMCs.Four-color flow cytometric (FCM) analysis was used for the measurement of intracellular cytokine including interleukin Results (1) Different stimulating time and dosage of rhHMGB 1 did not alter the number of IFN-a positive cells (Th 1).rhHMGB 1 stimulation provoked a dose-dependent and time-dependent increase in Th2 subset and decrease in ratio of Th 1 to Th2.(2) Compared with the untreated cells,when the cells were coincubated with rhHMGB 1 (10-100ng/ml) for 12 hrs,protein release of IL-2 and sIL-2R were significantly up-regulated.At 48 hrs,in contrast,protein production was relatively lower in cells after exposure to 100-1000 ng/ml rhHMGBI.Conclusions These findings demonstrated that HMGB1 has a dual influence on immune functions of human T lymphocytes.

  8. Effects of ortho substituent groups of protocatechualdehyde derivatives on binding to the C1 domain of novel protein kinase C.

    Science.gov (United States)

    Mamidi, Narsimha; Borah, Rituparna; Sinha, Narayan; Jana, Chandramohan; Manna, Debasis

    2012-09-06

    Diacylglycerol (DAG) regulates a broad range of cellular functions including tumor promotion, apoptosis, differentiation, and growth. Thus, the DAG-responsive C1 domain of protein kinase C (PKC) isoenzymes is considered to be an attractive drug target for the treatment of cancer and other diseases. To develop effective PKC regulators, we conveniently synthesized (hydroxymethyl)phenyl ester analogues targeted to the DAG binding site within the C1 domain. Biophysical studies and molecular docking analysis showed that the hydroxymethyl group, hydrophobic side chains, and acyl group at the ortho position are essential for their interactions with the C1-domain backbone. Modifications of these groups showed diminished binding to the C1 domain. The active (hydroxymethyl)phenyl ester analogues showed more than 5-fold stronger binding affinity for the C1 domain than DAG. Therefore, our findings reveal that (hydroxymethyl)phenyl ester analogues represent an attractive group of C1-domain ligands that can be further structurally modified to improve their binding and activity.

  9. [Relationship of food groups intake and C-reactive protein in healthy adults from Mexicali, Baja California, México].

    Science.gov (United States)

    Ruiz-Esparza, Josefina; Robinson-Navarro, Octavio; Ortega-Vélez, María Isabel; Diaz-Molina, Raúl; Carrillo-Cedillo, Eugenia Gabriela; Soria-Rodriguez, Carmen G

    2013-09-01

    The high sensitivity C-reactive protein (hs-CRP) is an important biomarker in inflammatory processes. The objective was to analyze the relationship between the concentrations of hs-CRP in adults from a northern Mexico region with their typical food intake patterns. A sample of 72 university professors underwent clinical and anthropometric assessments and their hs-CRP levels were quantified with an immunoenzymometric assay. Additionally, they filled out a food intake frequency questionnaire, from which the servings of different food groups were obtained with the ESHA software. The average age of participants was 49.75 +/- 10.05 years and the average hs-CRP concentration was 1.66 (0.97, 3.52) mg/L. The value of the association between fruit consumption and hs-CRP level was protective, according to the logistic regression analysis, being the Odds Ratio (OR) 0.23 (95% CI: 0.05, 1.03); while for vegetables the OR was 0.66 (95% CI: 0.12, 3.68). Furthermore, high protein content foods, dairy products, oils and fats were associated with elevated levels of hs-CRP. In conclusion, in our study, the intake of some food groups like fruits and vegetables, and to a lesser extent cereals, were associated with low values of hs-PCR.

  10. The polycomb group protein EED varies in its ability to access the nucleus in porcine oocytes and cleavage stage embryos.

    Science.gov (United States)

    Foust, Kallie B; Li, Yanfang; Park, Kieun; Wang, Xin; Liu, Shihong; Cabot, Ryan A

    2012-08-01

    Chromatin-modifying complexes serve essential functions during mammalian embryonic development. Polycomb group proteins EED, SUZ12, and EZH2 have been shown to mediate methylation of the lysine 27 residue of histone protein H3 (H3K27), an epigenetic mark that is linked with transcriptional repression. H3K27 trimethylation has been shown to be present on chromatin in mature porcine oocytes, pronuclear and 2-cell stage embryos, with H3K27 trimethylation decreasing at the 4-cell stage and not detectable in blastocyst stage embryos. The goals of this study were to determine the intracellular localization of the polycomb group protein EED in porcine oocytes and cleavage stage porcine embryos produced by in vitro fertilization and to determine the binding abilities of karyopherin α subtypes toward EED. Our results revealed that EED had a strong nuclear localization in 4-cell and blastocyst stage embryos and a strong perinuclear staining in GV-stage oocytes; EED was not detectable in the nuclei of pronuclear or 2-cell stage embryos. An in vitro binding assay was performed to assess the ability of EED to interact with a series of karyopherin α subtypes; results from this experiment revealed that EED can interact with several karyopherin α subtypes, but with varying degrees of affinity. Together these data indicate that EED displays a dynamic change in intracellular localization in progression from immature oocyte to cleavage stage embryo and that EED possess differing in vitro binding affinities toward individual karyopherin α subtypes, which may in part regulate the nuclear access of EED during this window of development.

  11. INTERACTION BETWEEN DIFFERENT MOLECULAR FORMS OF IMMUNOGLOBULIN A AND RECOMBINANT DERIVATIVES POLYPEPTIDES OF BAC RECEPTOR PROTEINS FROM GROUP B STREPTOCOCCI

    Directory of Open Access Journals (Sweden)

    A. S. Korzhueva

    2008-01-01

    Full Text Available Abstract. The article concerns interactions between immunoglobulin A and recombinant P6, P7, P8 polypeptides, designed on the basis of externally localized Bac protein of the Group B streptococci, possessing IgA-binding activity.There is a current demand for immunochemical reagents that are strictly specific for IgA, in order to develop antigenic standards for detection of IgA levels in biological fluids, as well as for affinity purification of IgA and its fragments.To analyze an opportunity of the abovementioned application ways for these proteins, a special study was performed to assay an interaction capability of recombinant P6, P7, P8 polypeptides binding to Fc regions of different IgA forms (serum IgA, secretory IgA, subclasses of serum IgA – IgA1, IgA2. Selectivity of ligand binding was specially confirmed.It was found out that, among three presented polypeptides, the structure of recombinant P6 derivative proved to be optimal for IgA-binding ability of Bac protein.Structural features of IgA-binding fragments of Bac protein, i.e., binding site position on the IgA molecule (proximity to epitopes for three monoclonal antibodies, variability of the site structure, as well as resistance of binding site for P6, P7, P8 in IgA molecule against partial disulfide bonds reduction. (Med. Immunol., vol. 10, N 4-5, pp 327-336.

  12. 血清高迁移率蛋白B1检测在急性阑尾炎诊断中的应用%Application of serum high mobility group box protein-1 level detection in diagnosis of acute appendicitis

    Institute of Scientific and Technical Information of China (English)

    张希儒; 张广文; 杨栋文; 李成利; 杨香玲

    2012-01-01

    目的:探讨急性阑尾炎患者血清中高迁移率蛋白B1( HMGB1)水平及其对急性阑尾炎诊断的意义.方法:采用ELISA定量试剂盒检测40例健康体检者(A组)和129例拟诊为急性阑尾炎患者血清HMGB1水平,同时检测白细胞(WBC)和C反应蛋白(CRP)水平.根据手术和病理结果将129例拟诊患者分为:B组(非阑尾炎15例),C组(急性单纯性阑尾炎63例),D组(急性化脓性、坏疽性、穿孔性急性阑尾炎及阑尾周围脓肿51例),比较上述指标在各组中的差异并采用受试者工作曲线( ROC)分析各指标对急性阑尾炎的诊断效率.结果:与A,B组比较,C,D组患者WBC,血清CRP及HMGB1均明显升高,差异均有统计学意义(均P<0.05),且D组各项指标均明显高于C组(均P<0.05);ROC曲线分析显示,WBC,CRP和HMGB1的曲线下面积(AUG)分别为0.729,0.811和0.850,HMGB1的诊断效率最高(均P<0.05).结论:急性阑尾炎患者血清HMGB1水平明显升高,血清HMGB1水平可望作为评价急性阑尾炎病变和炎症反应程度的辅助指标.%The serum HMGBl levels of 40 subjects undergoing health maintenance examination (group A) and 129 suspected acute appendicitis patients were detected by using quantitative ELISA kit, and their white blood cell (WBC) count and C-reactive protein (CRP) level were also determined. According to the surgical findings and postoperative pathological results, the 129 suspected cases were distinguished into group B (15 cases without appendicitis), group C (63 cases of simple acute appendicitis) and group D (51 cases of acute suppurative , gangrenous, perforated appendicitis or periappendiceal abscess). The differences in above mentioned indexes among the groups were compared and the receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic efficiency of each index for acute appendicitis. Results: The WBC count, serum level of HMGB1 and CRP markedly increased in group C and group D compared

  13. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Olsen, Louise Cathrine Braun; Kurth, Caroline;

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  14. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4.

    Science.gov (United States)

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent.

  15. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  16. Stereospecific assignments of the isopropyl methyl groups of the membrane protein OmpX in DHPC micelles.

    Science.gov (United States)

    Hilty, Christian; Wider, Gerhard; Fernández, César; Wüthrich, Kurt

    2003-12-01

    In NMR studies of large molecular structures, the number of conformational constraints based on NOE measurements is typically limited due to the need for partial deuteration. As a consequence, when using selective protonation of peripheral methyl groups on a perdeuterated background, stereospecific assignments of the diastereotopic methyl groups of Val and Leu can have a particularly large impact on the quality of the NMR structure determination. For example, 3D 15N- and 13C-resolved [1H,1H]-NOESY spectra of the E. Coli membrane protein OmpX in mixed micelles with DHPC, which have an overall molecular weight of about 60 kDa, showed that about 50% of all obtainable NOEs involve the diastereotopic methyl groups of Val and Leu. In this paper, we used biosynthetically-directed fractional 13C labeling of OmpX and [13C,1H]-HSQC spectroscopy to obtain stereospecific methyl assignments of Val and Leu in OmpX/DHPC. For practical purposes it is of interest that this data could be obtained without use of a deuterated background, and that combinations of NMR experiments have been found for obtaining the desired information either at a 1H frequency of 500 MHz, or with significantly reduced measuring time on a high-frequency instrument.

  17. Stereospecific assignments of the isopropyl methyl groups of the membrane protein OmpX in DHPC micelles

    Energy Technology Data Exchange (ETDEWEB)

    Hilty, Christian; Wider, Gerhard; Fernandez, Cesar; Wuethrich, Kurt [Institut fuer Molekularbiologie und Biophysik, Eidgenoessische Technische Hochschule Zuerich (Switzerland)], E-mail: wuthrich@mol.biol.ethz.ch

    2003-12-15

    In NMR studies of large molecular structures, the number of conformational constraints based on NOE measurements is typically limited due to the need for partial deuteration. As a consequence, when using selective protonation of peripheral methyl groups on a perdeuterated background, stereospecific assignments of the diastereotopic methyl groups of Val and Leu can have a particularly large impact on the quality of the NMR structure determination. For example, 3D {sup 15}N- and {sup 13}C-resolved [{sup 1}H,{sup 1}H]-NOESY spectra of the E. Coli membrane protein OmpX in mixed micelles with DHPC, which have an overall molecular weight of about 60 kDa, showed that about 50% of all obtainable NOEs involve the diastereotopic methyl groups of Val and Leu. In this paper, we used biosynthetically-directed fractional {sup 13}C labeling of OmpX and [{sup 13}C,{sup 1}H]-HSQC spectroscopy to obtain stereospecific methyl assignments of Val and Leu in OmpX/DHPC. For practical purposes it is of interest that this data could be obtained without use of a deuterated background, and that combinations of NMR experiments have been found for obtaining the desired information either at a {sup 1}H frequency of 500 MHz, or with significantly reduced measuring time on a high-frequency instrument.

  18. Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response Constitutes a Pathogenic Strategy of group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Emanuel eHanski

    2014-08-01

    Full Text Available The connection between bacterial pathogens and unfolded protein response (UPR is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS induces endoplasmic reticulum (ER stress and UPR through which it captures the amino acid asparagine (ASN from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO and streptolysin S (SLS. By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.

  19. Screening of matrix metalloproteinases available from the protein data bank: insights into biological functions, domain organization, and zinc binding groups.

    Science.gov (United States)

    Nicolotti, Orazio; Miscioscia, Teresa Fabiola; Leonetti, Francesco; Muncipinto, Giovanni; Carotti, Angelo

    2007-01-01

    A total of 142 matrix metalloproteinase (MMP) X-ray crystallographic structures were retrieved from the Protein Data Bank (PDB) and analyzed by an automated and efficient routine, developed in-house, with a series of bioinformatic tools. Highly informative heat maps and hierarchical clusterograms provided a reliable and comprehensive representation of the relationships existing among MMPs, enlarging and complementing the current knowledge in the field. Multiple sequence and structural alignments permitted better location and display of key MMP motifs and quantification of the residue consensus at each amino acid position in the most critical binding subsites of MMPs. The MMP active site consensus sequences, the C-alpha root-mean-square deviation (RMSd) analysis of diverse enzymatic subsites, and the examination of the chemical nature, binding topologies, and zinc binding groups (ZBGs) of ligands extracted from crystallographic complexes provided useful insights on the structural arrangements of the most potent MMP inhibitors.

  20. Effects of high mobility group protein box 1 and toll like receptor 4 pathway on warts caused by human papillomavirus.

    Science.gov (United States)

    Weng, Hui; Liu, Hongbo; Deng, Yunhua; Xie, Yuyan; Shen, Guanxin

    2014-10-01

    Accumulative evidence has demonstrated that inflammation has an important role in human papillomavirus (HPV) oncogenicity. However, the effects of high mobility group protein box 1 (HMGB1)-toll like receptor 4 (TLR4) signaling pathway associated inflammation on epidermal warts caused by HPV remain unclear. The present study investigated the HMGB1, TLR4 and nuclear factor-κB p65 expression in condyloma acuminatum (CA) and verruca vulgaris (VV). Immunohistochemistry and western blot analysis revealed that p65 expression in epithelial nuclei in VV and CA was significantly higher than in normal skin (NS) (Pwarts caused by HPV. HMGB1-TLR4 pathway-associated inflammation may therefore have a pivotal role in CA. HMGB1, rather than TLR4, may be a vital mediator of inflammation in VV. Therapies targeting HMGB1 may be a potential strategy for the treatment of HPV-associated warts.

  1. M protein typing of Thai group A streptococcal isolates by PCR-Restriction fragment length polymorphism analysis

    Directory of Open Access Journals (Sweden)

    Good Michael F

    2005-10-01

    Full Text Available Abstract Background Group A streptococcal (GAS infections can lead to the development of severe post-infectious sequelae, such as rheumatic fever (RF and rheumatic heart disease (RHD. RF and RHD are a major health concern in developing countries, and in indigenous populations of developed nations. The majority of GAS isolates are M protein-nontypeable (MNT by standard serotyping. However, GAS typing is a necessary tool in the epidemiologically analysis of GAS and provides useful information for vaccine development. Although DNA sequencing is the most conclusive method for M protein typing, this is not a feasible approach especially in developing countries. To overcome this problem, we have developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP-based assay for molecular typing the M protein gene (emm of GAS. Results Using one pair of primers, 13 known GAS M types showed one to four bands of PCR products and after digestion with Alu I, they gave different RFLP patterns. Of 106 GAS isolates examined from the normal Thai population and from patients with GAS-associated complications including RHD, 95 isolates gave RFLP patterns that corresponded to the 13 known M types. Only 11 isolates gave RFLP patterns that differed from the 13 known M types. These were then analyzed by DNA sequencing and six additional M types were identified. In addition, we found that M93 GAS was the most common M type in the population studied, and is consistent with a previous study of Thai GAS isolates. Conclusion PCR-RFLP analysis has the potential for the rapid screening of different GAS M types and is therefore considerably advantageous as an alternative M typing approach in developing countries in which GAS is endemic.

  2. Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Alexandar L.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2011-08-15

    A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly {sup 13}C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale. Comparison of exchange parameters extracted for this folding 'reaction' using the present methodology with those obtained from more 'traditional' {sup 15}N and backbone carbonyl probes establishes the utility of the approach. The extracted excited state side-chain carbonyl chemical shifts indicate that the Asx/Glx side-chains are predominantly unstructured in the Im7 folding intermediate. However, several crucial salt-bridges that exist in the native structure appear to be already formed in the excited state, either in part or in full. This information, in concert with that obtained from existing backbone and side-chain methyl relaxation dispersion experiments, will ultimately facilitate a detailed description of the structure of the Im7 folding intermediate.

  3. EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses.

    Science.gov (United States)

    Peterson, D S; Wellems, T E

    2000-01-05

    The Duffy binding-like (DBL) superfamily of Plasmodium falciparum encompasses genes which encode ligands for host cell receptors. This superfamily includes two distinct groups of genes, the var genes which encode antigenically variant cytoadherence proteins (PfEMP1), and the eba-175 gene which encodes a glycophorin A binding protein involved in erythrocyte invasion. Here we describe another DBL superfamily member related to eba-175, the ebl-1 gene. Like the eba-175 gene, ebl-1 is a single copy gene encoding DBL domains that have sequences and an overall arrangement distinct from var genes. The inheritance of ebl-1 was found to be strongly favored in two genetic crosses in which one parental clone lacked a chromosome segment carrying the gene. A proliferation phenotype has been previously linked to the same chromosome segment in the first genetic cross. These results suggest that ebl-1 and eba-175 are related members of a multigene family involved in the invasion of erythrocytes by P. falciparum.

  4. Effects of HMG-CoA Reductase Inhibitors (Statins On Bone Mineral Density and Metabolism

    Directory of Open Access Journals (Sweden)

    Nehir Samancı

    2004-06-01

    Full Text Available Hydroxy methylglutaryl coenzyme A reductase inhibitors (statins have been shown to have effects on bone metabolism in laboratory studies. While early clinic studies have showed lower risk for osteoporotic fractures among statin users than nonusers, subsequent studies have found mixed results. The purpose of this study was to investigate the effects of statins on bone mineral density (BMD and bone metabolism. Thirty-five consecutive postmenopausal hypercholesterolemic women who were treated for at least last 6 months with statins were included in the study. Seventy-five normocholesterolemic age-matched postmenopausal women were in the control group. Subjects with a history of any diseases and used drugs that may affect calcium or bone metabolism were excluded from the study. Age, associated illness, years since menopause, and body mass index (BMI were obtained from all the patients including the control group. Besides, serum calcium, phosphate, alkaline phosphates, parathyroid hormone, 25 hydroxy D3, osteocalcin, and urinary calcium excretion were measured. BMD was measured by using dual-energy x-ray absorptiometry (DEXA at femoral neck and 3rd lomber spine. Mean duration of statin use was 28.17±21.17 months. BMI was found to be statistically higher in statin users than nonusers (27.47±3.67kg/m2 and 25.46±3.91 kg/m2, respectively. The markers of bone metabolism used in the study were found to be similar between the groups. BMD was not different in statin users and nonusers at femoral neck and lomber spine. As conclusion, statin use did not affect BMD and bone metabolism in this study. In our opinion large randomised, controlled, prospective clinical trials are needed to accurately determine the role of statins in the treatment of osteoporosis.

  5. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity

    NARCIS (Netherlands)

    Endoh, M.; Endo, T.A.; Endoh, T.; Fujimura, Y.; Ohara, O.; Toyoda, T.; Otte, A.P.; Okano, M.; Brockdorff, N.; Vidal, M.; Koseki, H.

    2008-01-01

    The Polycomb group (PcG) proteins mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes 1 (PRC1) and 2 (PRC2). Although PRC2 has been shown to share target genes with the core transcr

  6. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA.

    Science.gov (United States)

    Gessmann, Dennis; Chung, Yong Hee; Danoff, Emily J; Plummer, Ashlee M; Sandlin, Clifford W; Zaccai, Nathan R; Fleming, Karen G

    2014-04-22

    Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.

  7. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Background Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). Methodology/Principal Findings The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001), 54% of Low Density Lipoprotein (LDL)-cholesterol (p<0.001) and 34.5% of triglycerides (p<0.001). Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Conclusions Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent

  8. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (pcholesterol (ptriglycerides (pcholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent and merits further evaluation.

  9. HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis: role of RhoA/ROCK and MAPK pathways.

    Science.gov (United States)

    Rupérez, Mónica; Rodrigues-Díez, Raquel; Blanco-Colio, Luis Miguel; Sánchez-López, Elsa; Rodríguez-Vita, Juan; Esteban, Vanesa; Carvajal, Gisselle; Plaza, Juan José; Egido, Jesús; Ruiz-Ortega, Marta

    2007-08-01

    3-Hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) present beneficial effects in cardiovascular diseases. Angiotensin II (Ang II) contributes to cardiovascular damage through the production of profibrotic factors, such as connective tissue growth factor (CTGF). Our aim was to investigate whether HMG-CoA reductase inhibitors could modulate Ang II responses, evaluating CTGF expression and the mechanisms underlying this process. In cultured vascular smooth muscle cells (VSMCs) atorvastatin and simvastatin inhibited Ang II-induced CTGF production. The inhibitory effect of statins on CTGF upregulation was reversed by mevalonate and geranylgeranylpyrophosphate, suggesting that RhoA inhibition could be involved in this process. In VSMCs, statins inhibited Ang II-induced Rho membrane localization and activation. In these cells Ang II regulated CTGF via RhoA/Rho kinase activation, as shown by inhibition of Rho with C3 exoenzyme, RhoA dominant-negative overexpression, and Rho kinase inhibition. Furthermore, activation of p38MAPK and JNK, and redox process were also involved in Ang II-mediated CTGF upregulation, and were downregulated by statins. In rats infused with Ang II (100 ng/kg per minute) for 2 weeks, treatment with atorvastatin (5 mg/kg per day) diminished aortic CTGF and Rho activation without blood pressure modification. Rho kinase inhibition decreased CTGF upregulation in rat aorta, mimicking statin effect. CTGF is a vascular fibrosis mediator. Statins diminished extracellular matrix (ECM) overexpression caused by Ang II in vivo and in vitro. In summary, HMG-CoA reductase inhibitors inhibit several intracellular signaling systems activated by Ang II (RhoA/Rho kinase and MAPK pathways and redox process) involved in the regulation of CTGF. Our results may explain, at least in part, some beneficial effects of statins in cardiovascular diseases.

  10. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp. food supplements

    Directory of Open Access Journals (Sweden)

    Lachenmeier Dirk W

    2012-03-01

    Full Text Available Abstract Background Red yeast rice (i.e., rice fermented with Monascus spp., as a food supplement, is claimed to be blood cholesterol-lowering. The red yeast rice constituent monacolin K, also known as lovastatin, is an inhibitor of the hydroxymethylglutaryl-CoA (HMG-CoA reductase. This article aims to develop a sensitive nuclear magnetic resonance (NMR method to determine the total statin content of red yeast rice products. Methods The total statin content was determined by a 400 MHz 1H NMR spectroscopic method, based on the integration of the multiplet at δ 5.37-5.32 ppm of a hydrogen at the hexahydronaphthalene moiety in comparison to an external calibration with lovastatin. The activity of HMG-CoA reductase was measured by a commercial spectrophotometric assay kit. Results The NMR detection limit for total statins was 6 mg/L (equivalent to 0.3 mg/capsule, if two capsules are dissolved in 50 mL ethanol. The relative standard deviations were consistently lower than 11%. The total statin concentrations of five red yeast rice supplements were between 1.5 and 25.2 mg per specified daily dose. A dose-dependent inhibition of the HMG-CoA reductase enzyme activity by the red yeast rice products was demonstrated. Conclusion A simple and direct NMR assay was developed to determine the total statin content in red yeast rice. The assay can be applied for the determination of statin content for the regulatory control of red yeast rice products.

  11. Effects on spermatogenesis in swiss mice of a protein isolated from the roots of Ricinus communis (Linn.) (Euphorbiaceae).

    Science.gov (United States)

    Nithya, R S; Anuja, M M; Swathy, S S; Rajamanickam, C; Indira, M

    2011-03-15

    This study was aimed to evaluate the effect on spermatogenesis of a 62 kDa protein (Rp) isolated from 50% ethanolic extract of the root of Ricinus communis in mice. A dose response study in mice revealed that 25mg/kg body weight/day was the most effective dose. Swiss strain mature male mice of 30 days old were divided into two group namely control and Rp treated (25mg/kg body weight/day). The study showed that sperm motility and count were decreased significantly in the treated group as compared to the control. The fertility index of the treated groups was reduced by 100%. The activity of HMG Co A reductase and cholesterol were increased significantly in the treated group. The testicular activities of 3βHSD, 17βHSD, glucose 6-phosphate dehydrogenase and malic enzyme and the level of serum testosterone were decreased significantly in the treated group. The expression of 3βHSD and 17βHSD were decreased and the expression of StAR increased significantly in the treated group as compared to the control. Proteolytic digestion of the native protein with trypsin and chymotrypsin showed that the proteolytic cleavage did not affect the spermicidal action of Rp. Hence this study can be concluded that Rp impaired spermatogenesis in vivo by suppressing the production of testosterone. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Ensayos cristalográficos de complejos de ADN con proteínas HMG-box y fármacos

    OpenAIRE

    Gomez Jimenez, Fabiola Alejandra

    2016-01-01

    Las HMGB son proteínas nucleares que presentan el motivo “HMG-box”, con el que se unen al surco estrecho del ADN. Producen cambios estructurales en el mismo y están implicadas en diferentes enfermedades por lo que el estudio estructural de dichas proteínas unidas a ADN es de importancia en el desarrollo de estrategias terapéuticas. Por otra parte, los compuestos derivados de difenilo bisimidazolinio también se unen al surco estrecho del ADN, específicamente en zonas ricas en AT...

  13. Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin.

    Science.gov (United States)

    Duncan, Robin E; El-Sohemy, Ahmed; Archer, Michael C

    2005-06-28

    We investigated the regulation of HMG-CoA reductase in MCF-7 human breast cancer cells by genistein, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). All three compounds down-regulated reductase activity, primarily through post-transcriptional effects. In mevastatin-treated cells, only genistein and DHA abrogated the induction of reductase activity caused by this competitive inhibitor. Diets rich in soy isoflavones and fish oils, therefore, may exert anti-cancer effects through the inhibition of mevalonate synthesis in the breast. Genistein and DHA, in particular, may augment the efficacy of statins, increasing the potential for use of these drugs in adjuvant therapy for breast cancer.

  14. Nitrogen and energy partitioning in two genetic groups of pigs fed low-protein diets at 130 kg body weight

    Directory of Open Access Journals (Sweden)

    Gianluca Galassi

    2015-07-01

    Full Text Available The aim was to evaluate the effect of low-protein (LP or low-amino acid diets on digestibility, energy and nitrogen (N utilisation in 2 genetic groups (GG of pigs (129±11 kg BW. Duroc×Large White (A pigs were chosen to represent a traditional GG for ham production, and Danbred Duroc (D pigs to represent a GG with fast growing rate and high carcass lean yield. Dietary treatments: a conventional diet (CONV containing 13.2% CP, and two LP diets, one with LP (10.4% and low essential AA (LP1, the second with LP (9.7% and high essential AA (LP2. Compared to CONV, LP2 had the same essential AA content per unit feed, while LP1 the same essential AA content per unit CP. Feed was restricted (DMI=6.8% BW0.75. Four consecutive digestibility/balances periods were conducted with 24 barrows, 12 A and 12 D. Metabolic cages and respiration chambers were used. No significant difference between diets was registered for digestibility. Nitrogen excreted: 41.3, 33.4 and 29.0 g/d (P=0.009, for CONV, LP1 and LP2 diets, respectively. Nitrogen retention was similar between the diets. Heat production (HP was the lowest for LP diets. There was a tendency (P=0.079 for a lower energy digestibility in D group. The D pigs also had a higher HP and hence a lower retained energy in comparison with the A pigs. In conclusion: it is possible to reduce N excretion using very LP diets and LP-low AA diets; Danbred GG have a higher heat production and a lower energy retention than A pigs.

  15. Indirect readout of DNA sequence by p22 repressor: roles of DNA and protein functional groups in modulating DNA conformation.

    Science.gov (United States)

    Harris, Lydia-Ann; Watkins, Derrick; Williams, Loren Dean; Koudelka, Gerald B

    2013-01-09

    The repressor of bacteriophage P22 (P22R) discriminates between its various DNA binding sites by sensing the identity of non-contacted base pairs at the center of its binding site. The "indirect readout" of these non-contacted bases is apparently based on DNA's sequence-dependent conformational preferences. The structures of P22R-DNA complexes indicate that the non-contacted base pairs at the center of the binding site are in the B' state. This finding suggests that indirect readout and therefore binding site discrimination depend on P22R's ability to either sense and/or impose the B' state on the non-contacted bases of its binding sites. We show here that the affinity of binding sites for P22R depends on the tendency of the central bases to assume the B'-DNA state. Furthermore, we identify functional groups in the minor groove of the non-contacted bases as the essential modulators of indirect readout by P22R. In P22R-DNA complexes, the negatively charged E44 and E48 residues are provocatively positioned near the negatively charged DNA phosphates of the non-contacted nucleotides. The close proximity of the negatively charged groups on protein and DNA suggests that electrostatics may play a key role in the indirect readout process. Changing either of two negatively charged residues to uncharged residues eliminates the ability of P22R to impose structural changes on DNA and to recognize non-contacted base sequence. These findings suggest that these negatively charged amino acids function to force the P22R-bound DNA into the B' state and therefore play a key role in indirect readout by P22R.

  16. Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin

    DEFF Research Database (Denmark)

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    through type I processes (i.e., independent of singlet oxygen), while type II (singlet oxygen) mechanisms may play a significant role in protein carbonyl formation. Reaction of the protein hydroperoxide species with metal ion complexes is shown to produce further protein-derived radicals which...

  17. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2).

    Science.gov (United States)

    Berent-Maoz, Beata; Montecino-Rodriguez, Encarnacion; Fice, Michael; Casero, David; Seet, Christopher S; Crooks, Gay M; Lowry, William; Dorshkind, Kenneth

    2015-01-01

    Cell number in the mouse thymus increases steadily during the first two weeks after birth. It then plateaus and begins to decline by seven weeks after birth. The factors governing these dramatic changes in cell production are not well understood. The data herein correlate levels of High mobility group A 2 protein (Hmga2) expression with these temporal changes in thymopoiesis. Hmga2 is expressed at high levels in murine fetal and neonatal early T cell progenitors (ETP), which are the most immature intrathymic precursors, and becomes almost undetectable in these progenitors after 5 weeks of age. Hmga2 expression is critical for the initial, exponential expansion of thymopoiesis, as Hmga2 deficient mice have a deficit of ETPs within days after birth, and total thymocyte number is repressed compared to wild type littermates. Finally, our data raise the possibility that similar events occur in humans, because Hmga2 expression is high in human fetal thymic progenitors and falls in these cells during early infancy.

  18. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2.

    Directory of Open Access Journals (Sweden)

    Beata Berent-Maoz

    Full Text Available Cell number in the mouse thymus increases steadily during the first two weeks after birth. It then plateaus and begins to decline by seven weeks after birth. The factors governing these dramatic changes in cell production are not well understood. The data herein correlate levels of High mobility group A 2 protein (Hmga2 expression with these temporal changes in thymopoiesis. Hmga2 is expressed at high levels in murine fetal and neonatal early T cell progenitors (ETP, which are the most immature intrathymic precursors, and becomes almost undetectable in these progenitors after 5 weeks of age. Hmga2 expression is critical for the initial, exponential expansion of thymopoiesis, as Hmga2 deficient mice have a deficit of ETPs within days after birth, and total thymocyte number is repressed compared to wild type littermates. Finally, our data raise the possibility that similar events occur in humans, because Hmga2 expression is high in human fetal thymic progenitors and falls in these cells during early infancy.

  19. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway

    Science.gov (United States)

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to 125I-albumin. HMGB1 induced an increase in 125I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  20. Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice.

    Science.gov (United States)

    Yu, Jing; Lai, Yongmin; Wu, Xi; Wu, Gang; Guo, Changkui

    2016-09-16

    Drought is the greatest threat for crops, including rice. In an effort to identify rice genes responsible for drought tolerance, a drought-responsive gene OsEm1 encoding a group I LEA protein, was chosen for this study. OsEm1 was shown at vegetative stages to be responsive to various abiotic stresses, including drought, salt, cold and the hormone ABA. In this study, we generated OsEm1-overexpressing rice plants to explore the function of OsEm1 under drought conditions. Overexpression of OsEm1 increases ABA sensitivity and enhances osmotic tolerance in rice. Compared with wild type, the OsEm1-overexpressing rice plants showed enhanced plant survival ratio at the vegetative stage; moreover, over expression of OsEm1 in rice increased the expression of other LEA genes, including RAB16A, RAB16C, RAB21, and LEA3, likely protecting organ integrity against harsh environments. Interestingly, the elevated level of OsEm1 had no different phenotype compared with wild type under normal condition. Our findings suggest that OsEm1 is a positive regulator of drought tolerance and is potentially promising for engineering drought tolerance in rice.

  1. Ethyl pyruvate reduces myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein in rats.

    Science.gov (United States)

    Hu, Xiaorong; Cui, Bo; Zhou, Xiaoya; Xu, Changwu; Lu, Zhibing; Jiang, Hong

    2012-01-01

    High mobility group box 1 protein (HMGB1) plays an important role in myocardial ischemia and reperfusion (I/R) injury. Ethyl pyruvate (EP), a potent reactive oxygen species scavenger, has been reported to inhibit myocardial apoptosis and reduce myocardial I/R injury. The aim of this study was to investigate the mechanism by which EP reduces myocardial I/R injury in rats. Anesthetized male rats were once treated with EP (50 mg/kg, i.p.) before ischemia, and then subjected to ischemia for 30 min followed by reperfusion for 4 h. Lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), superoxide dismutase (SOD) activity and infarct size were measured. HMGB1 expression was assessed by immunoblotting. The results showed that pretreatment of EP (50 mg/kg) could significantly reduce the infarct size and the levels of LDH and CK after 4 h reperfusion (all PR. The present study suggested that ethyl pyruvate could attenuate myocardial I/R injury by inhibiting HMGB1 expression.

  2. Studies of blood groups and protein polymorphisms in the Brazilian horse breeds Mangalarga Marchador and Mangalarga (Equus caballus

    Directory of Open Access Journals (Sweden)

    Andréia Samaha Lippi

    2003-12-01

    Full Text Available Allelic frequencies at 12 loci (five blood groups: C, D, K, P, and U; and seven protein polymorphisms: Al, A1B, Es, Gc, Hb, PGD, and Tf, are given for two Brazilian horse breeds: Mangalarga Marchador and Mangalarga. The high genetic identity value found (96.0% is consistent with their common origin, although, at some point of the development of Mangalarga Marchador, Mangalarga separated from the original stock. The expected average heterozygosity was higher in Mangalarga Marchador. The populations presented genetic differentiation, as shown by the statistically significant value of F ST. The nonsignificant F IS values showed that there was no appreciable consanguineous mating in any of the two populations. Exclusion probability calculated for the 12 loci was 87.0% and 86.5% for Mangalarga Marchador and Mangalarga, respectively. No genetic equilibrium was observed in the A1B, Tf, and Es loci of Mangalarga Marchador. The frequencies of blood factors A, Q, and T were calculated.

  3. High Mobility Group Box-1 Protein and Outcomes in Critically Ill Surgical Patients Requiring Open Abdominal Management

    Directory of Open Access Journals (Sweden)

    Michelle S. Malig

    2017-01-01

    Full Text Available Background. Previous studies assessing various cytokines in the critically ill/injured have been uninformative in terms of translating to clinical care management. Animal abdominal sepsis work suggests that enhanced intraperitoneal (IP clearance of Damage-Associated Molecular Patterns (DAMPs improves outcome. Thus measuring the responses of DAMPs offers alternate potential insights and a representative DAMP, High Mobility Group Box-1 protein (HMGB-1, was considered. While IP biomediators are being recognized in critical illness/trauma, HMGB-1 behaviour has not been examined in open abdomen (OA management. Methods. A modified protocol for HMGB-1 detection was used to examine plasma/IP fluid samples from 44 critically ill/injured OA patients enrolled in a randomized controlled trial comparing two negative pressure peritoneal therapies (NPPT: Active NPPT (ANPPT and Barker’s Vacuum Pack NPPT (BVP. Samples were collected and analyzed at the time of laparotomy and at 24 and 48 hours after. Results. There were no statistically significant differences in survivor versus nonsurvivor HMGB-1 plasma or IP concentrations at baseline, 24 hours, or 48 hours. However, plasma HMGB-1 levels tended to increase continuously in the BVP cohort. Conclusions. HMGB-1 appeared to behave differently between NPPT cohorts. Further studies are needed to elucidate the relationship of HMGB-1 and outcomes in septic/injured patients.

  4. HMG CoA reductase inhibitors (statins for people with chronic kidney disease not requiring dialysis

    Directory of Open Access Journals (Sweden)

    Suetonia C. Palmer

    Full Text Available ABSTRACT BACKGROUND: Cardiovascular disease (CVD is the most frequent cause of death in people with early stages of chronic kidney disease (CKD, for whom the absolute risk of cardiovascular events is similar to people who have existing coronary artery disease. This is an update of a review published in 2009, and includes evidence from 27 new studies (25,068 participants in addition to the 26 studies (20,324 participants assessed previously; and excludes three previously included studies (107 participants. This updated review includes 50 studies (45,285 participants; of these 38 (37,274 participants were meta-analysed. OBJECTIVES: To evaluate the benefits (such as reductions in all-cause and cardiovascular mortality, major cardiovascular events, MI and stroke; and slow progression of CKD to end-stage kidney disease (ESKD and harms (muscle and liver dysfunction, withdrawal, and cancer of statins compared with placebo, no treatment, standard care or another statin in adults with CKD who were not on dialysis. METHODS: Search methods: We searched the Cochrane Renal Group's Specialised Register to 5 June 2012 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. Selection criteria: Randomised controlled trials (RCTs and quasi-RCTs that compared the effects of statins with placebo, no treatment, standard care, or other statins, on mortality, cardiovascular events, kidney function, toxicity, and lipid levels in adults with CKD not on dialysis were the focus of our literature searches. Data collection and analysis: Two or more authors independently extracted data and assessed study risk of bias. Treatment effects were expressed as mean difference (MD for continuous outcomes (lipids, creatinine clearance and proteinuria and risk ratio (RR for dichotomous outcomes (major cardiovascular events, all-cause mortality, cardiovascular mortality, fatal or non-fatal myocardial infarction (MI, fatal or non-fatal stroke

  5. Lanostane Triterpenes from the Tibetan Medicinal Mushroom Ganoderma leucocontextum and Their Inhibitory Effects on HMG-CoA Reductase and α-Glucosidase.

    Science.gov (United States)

    Wang, Kai; Bao, Li; Xiong, Weiping; Ma, Ke; Han, Junjie; Wang, Wenzhao; Yin, Wenbing; Liu, Hongwei

    2015-08-28

    Sixteen new lanostane triterpenes, ganoleucoins A-P (1-16), together with 10 known tripterpenes (17-26), were isolated from the cultivated fruiting bodies of Ganoderma leucocontextum, a new member of the Ganoderma lucidum complex. The structures of the new compounds were elucidated by extensive spectroscopic analysis and chemical transformation. The inhibitory effects of 1-26 on HMG-CoA reductase and α-glucosidase were tested in vitro. Compounds 1, 3, 6, 10-14, 17, 18, 23, 25, and 26 showed much stronger inhibitory activity against HMG-CoA reductase than the positive control atorvastatin. Compounds 13, 14, and 16 presented potent inhibitory activity against α-glucosidase from yeast with IC₅₀ values of 13.6, 2.5, and 5.9 μM, respectively. In addition, the cytotoxicity of 1-26 was evaluated against the K562 and PC-3 cell lines by the MTT assay. Compounds 1, 2, 6, 7, 10, 12, 16, 18, and 25 exhibited cytotoxicity against K562 cells with IC₅₀ values in the range 10-20 μM. Paclitaxel was used as the positive control with an IC₅₀ value of 0.9 μM. This is the first report of secondary metabolites from this medicinal mushroom.

  6. Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-CoA reductase inhibitors

    Directory of Open Access Journals (Sweden)

    Morgan Timothy

    2005-03-01

    Full Text Available Abstract Background Surrogate measures for cardiovascular disease events have the potential to increase greatly the efficiency of clinical trials. A leading candidate for such a surrogate is the progression of intima-media thickness (IMT of the carotid artery; much experience has been gained with this endpoint in trials of HMG-CoA reductase inhibitors (statins. Methods and Results We examine two separate systems of criteria that have been proposed to define surrogate endpoints, based on clinical and statistical arguments. We use published results and a formal meta-analysis to evaluate whether progression of carotid IMT meets these criteria for HMG-CoA reductase inhibitors (statins. IMT meets clinical-based criteria to serve as a surrogate endpoint for cardiovascular events in statin trials, based on relative efficiency, linkage to endpoints, and congruency of effects. Results from a meta-analysis and post-trial follow-up from a single published study suggest that IMT meets established statistical criteria by accounting for intervention effects in regression models. Conclusion Carotid IMT progression meets accepted definitions of a surrogate for cardiovascular disease endpoints in statin trials. This does not, however, establish that it may serve universally as a surrogate marker in trials of other agents.

  7. Phenolics from grapefruit peels inhibit HMG-CoA reductase and angiotensin-I converting enzyme and show antioxidative properties in endothelial EA.Hy 926 cells

    Directory of Open Access Journals (Sweden)

    Ayokunle O. Ademosun

    2015-06-01

    Full Text Available This study sought to investigate the possible mechanisms for the use of phenolic extracts from grapefruit peels in the management/prevention of cardiovascular complications. The effects of the phenolic extracts on key enzymes relevant to cardiovascular diseases [3-hydroxy-methyl-3-glutaryl coenzyme A reductase (HMG-CoA reductase and angiotensin-I converting enzyme (ACE], cellular antioxidant activity in human endothelial cells (EA.Hy 926 and radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS] scavenging abilities were investigated. The phenolic contents of the extracts were investigated using HPLC–DAD. There was no significant (P > 0.05 difference in the HMG-CoA reductase inhibitory ability of the two extracts, while the bound phenolic extracts had a stronger ACE inhibitory ability than the soluble free phenolics. The extracts also showed intracellular antioxidant activity in human endothelial (EA.Hy 926 cells. Furthermore, the bound phenolics had significantly higher radicals (DPPH* and ABTS* scavenging abilities than the free phenolics. The HPLC analysis revealed the presence of flavonoids (quercetin and kaempferol, phenolics acids (resveratrol, gallic acid, ellagic acid and caffeic acid and tannin (catechin. The cellular antioxidative properties and inhibition of enzymes relevant to the management of cardiovascular complications showed that grapefruit peels could be used as nutraceuticals for the management of such conditions.

  8. Proinflammatory effect of high-mobility group protein B1 on keratinocytes: an autocrine mechanism underlying psoriasis development.

    Science.gov (United States)

    Zhang, Weigang; Guo, Sen; Li, Bing; Liu, Lin; Ge, Rui; Cao, Tianyu; Wang, Huina; Gao, Tianwen; Wang, Gang; Li, Chunying

    2017-02-01

    Psoriasis is an autoimmune skin disease, in which keratinocytes play a crucial pathogenic role. High-mobility group protein B1 (HMGB1) is an inflammatory factor that can be released from keratinocyte nuclei in psoriatic lesions. We aimed to investigate the proinflammatory effect of HMGB1 on keratinocytes and the contribution of HMGB1 to psoriasis development. Normal human keratinocytes were treated with recombinant human HMGB1, and the production of inflammatory factors and the intermediary signalling pathways were examined. Furthermore, the imiquimod-induced psoriasis-like mouse model was used to investigate the role of HMGB1 in psoriasis development in vivo. A total of 11 inflammatory factors were shown to be upregulated by HMGB1 in keratinocytes, among which interleukin (IL)-18 showed the greatest change. We then found that activation of the nuclear factor-κB signalling pathway and inflammasomes accounted for HMGB1-induced IL-18 expression and secretion. Moreover, HMGB1 and downstream IL-18 contributed to the development of psoriasiform dermatitis in the imiquimod-treated mice. In addition, T-helper 17 immune response in the psoriasis-like mouse model could be inhibited by both HMGB1 and IL-18 blockade. Our findings indicate that HMGB1 secreted from keratinocytes can facilitate the production and secretion of inflammatory factors such as IL-18 in keratinocytes in an autocrine way, thus promoting the development of psoriasis. Blocking the proinflammatory function of the HMGB1-IL-18 axis may be useful for psoriasis treatment in the future. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Group additivity calculation of the standard molal thermodynamic properties of aqueous amino acids, polypeptides and unfolded proteins as a function of temperature, pressure and ionization state

    Directory of Open Access Journals (Sweden)

    J. M. Dick

    2005-10-01

    Full Text Available Thermodynamic calculation of the chemical speciation of proteins and the limits of protein metastability affords a quantitative understanding of the biogeochemical constraints on the distribution of proteins within and among different organisms and chemical environments. These calculations depend on accurate determination of the ionization states and standard molal Gibbs free energies of proteins as a function of temperature and pressure, which are not generally available. Hence, to aid predictions of the standard molal thermodynamic properties of ionized proteins as a function of temperature and pressure, calculated values are given below of the standard molal thermodynamic properties at 25°C and 1 bar and the revised Helgeson-Kirkham-Flowers equations of state parameters of the structural groups comprising amino acids, polypeptides and unfolded proteins. Group additivity and correlation algorithms were used to calculate contributions by ionized and neutral sidechain and backbone groups to the standard molal Gibbs free energy (Δ G°, enthalpy (Δ H°, entropy (S°, isobaric heat capacity (C°P, volume (V° and isothermal compressibility (κ°T of multiple reference model compounds. Experimental values of C°P, V° and κ°T at high temperature were taken from the recent literature, which ensures an internally consistent revision of the thermodynamic properties and equations of state parameters of the sidechain and backbone groups of proteins, as well as organic groups. As a result, Δ G°, Δ H°, S° C°P, V° and κ°T of unfolded proteins in any ionization state can be calculated up to T~-300°C and P~-5000 bars. In addition, the ionization states of unfolded proteins as a function of not only pH, but also temperature and pressure can be calculated by taking account of the degree of ionization of the sidechain and backbone groups present in the sequence. Calculations of this

  10. Group additivity calculation of the standard molal thermodynamic properties of aqueous amino acids, polypeptides and unfolded proteins as a function of temperature, pressure and ionization state

    Science.gov (United States)

    Dick, J. M.; Larowe, D. E.; Helgeson, H. C.

    2005-10-01

    Thermodynamic calculation of the chemical speciation of proteins and the limits of protein metastability affords a quantitative understanding of the biogeochemical constraints on the distribution of proteins within and among different organisms and chemical environments. These calculations depend on accurate determination of the ionization states and standard molal Gibbs free energies of proteins as a function of temperature and pressure, which are not generally available. Hence, to aid predictions of the standard molal thermodynamic properties of ionized proteins as a function of temperature and pressure, calculated values are given below of the standard molal thermodynamic properties at 25°C and 1 bar and the revised Helgeson-Kirkham-Flowers equations of state parameters of the structural groups comprising amino acids, polypeptides and unfolded proteins. Group additivity and correlation algorithms were used to calculate contributions by ionized and neutral sidechain and backbone groups to the standard molal Gibbs free energy (Δ G°), enthalpy (Δ H°), entropy (S°), isobaric heat capacity (C°P), volume (V°) and isothermal compressibility (κ°T) of multiple reference model compounds. Experimental values of C°P, V° and κ°T at high temperature were taken from the recent literature, which ensures an internally consistent revision of the thermodynamic properties and equations of state parameters of the sidechain and backbone groups of proteins, as well as organic groups. As a result, Δ G°, Δ H°, S° C°P, V° and κ°T of unfolded proteins in any ionization state can be calculated up to T~-300°C and P~-5000 bars. In addition, the ionization states of unfolded proteins as a function of not only pH, but also temperature and pressure can be calculated by taking account of the degree of ionization of the sidechain and backbone groups present in the sequence. Calculations of this kind represent a first step in the prediction of chemical affinities of many

  11. Determination of Carbonyl Group Content in Plasma Proteins as a Useful Marker to Assess Impairment in Antioxidant Defense in Patients with Eales′ Disease

    Directory of Open Access Journals (Sweden)

    Rajesh Mohanraj

    2004-01-01

    Full Text Available Purpose: Formation of protein carbonyl groups is considered an early biomarker for the oxidant/antioxidant barrier impairment in various inflammatory diseases. We evaluated the intensity of free radical reactions in patients with Eales′ disease, an idiopathic inflammatory condition of the retina. Methods: Twenty patients with Eales′ disease in active vasculitis stage, 15 patients with Eales′ disease in healed vasculitis stage and 20 healthy control subjects were recruited for the study. Plasma protein carbonyl groups,plasma glutathione (GSH superoxide dismutase (SOD activity and thiobarbituric acid reactive substances (TBARS were determined in erythrocytes. Results: Plasma protein carbonyl content was elevated by a factor of 3.5 and 1.8 respectively in active and healed vasculitis stages. The increase of carbonyl group content in active and healed stage of patients with Eales′ disease correlated with diminished SOD activity and GSH content. There was also increased accumulation of TBARS in active and healed vasculitis stages of Eales′ disease, and this correlated with diminished SOD activity. Conclusion: Our results showed that protein carbonyl group content increases with severity of Eales′ disease. The increase in carbonyl content correlated with diminished antioxidant status. This confirms an earlier report that free radical mediated tissue damage occurs in Eales′ disease. The determination of protein carbonyl content may be used as a simple biomarker to monitor the efficacy of antioxidant supplementation in controlling retinal vasculitis in patients with Eales′ disease.

  12. Human mitochondrial HMG CoA synthase: Liver cDNA and partial genomic cloning, chromosome mapping to 1p12-p13, and possible role in vertebrate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Boukaftane, Y.; Robert, M.F.; Mitchell, G.A. [Hopital Sainte-Justine, Montreal (Canada)] [and others

    1994-10-01

    Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase (mHS) is the first enzyme of ketogenesis, whereas the cytoplasmic HS isozyme (cHS) mediates an early step in cholersterol synthesis. We here report the sequence of human and mouse liver mHS cDNAs, the sequence of an HS-like cDNA from Caenorhabditis elegans, the structure of a partial human mHS genomic clone, and the mapping of the human mHS gene to chromosome 1p12-p13. the nucleotide sequence of the human mHS cDNA encodes a mature mHS peptide of 471 residues, with a mean amino acid identity of 66.5% with cHS from mammals and chicken. Comparative analysis of all known mHS and cHS protein and DNA sequences shows a high degree of conservation near the N-terminus that decreases progressively toward the C-terminus and suggests that the two isozymes arose from a common ancestor gene 400-900 million years ago. Comparison of the gene structure of mHS and cHS is also consistant with a recent duplication event. We hypothesize that the physiologic result of the HS gene duplication was the appearance of HS within the mitochondria around the time of emergence of early vertebrates, which linked preexisting pathways of beta oxidation and leucine catabolism and created the HMG CoA pathway of ketogenesis, thus providing a lipid-derived energy source for the vertebrate brain. 56 refs., 4 figs., 2 tabs.

  13. Arabidopsis CDS blastp result: AK242556 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242556 J090001B08 At4g35570.1 68417.m05054 high mobility group protein delta (HMGdelta) / HMG protein delt...a identical to HMG protein (HMGdelta) [Arabidopsis thaliana] GI:2832363 3e-14 ...

  14. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.

    Directory of Open Access Journals (Sweden)

    Ioanna Vallianou

    Full Text Available BACKGROUND: Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO. METHODOLOGY/PRINCIPAL FINDINGS: The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001, 54% of Low Density Lipoprotein (LDL-cholesterol (p<0.001 and 34.5% of triglycerides (p<0.001. Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. CONCLUSIONS: Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid

  15. Ants farm subterranean aphids mostly in single clone groups - an example of prudent husbandry for carbohydrates and proteins?

    Directory of Open Access Journals (Sweden)

    Ivens Aniek BF

    2012-07-01

    Full Text Available Abstract Background Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. Results The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones co-occurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. Conclusions L. flavus “husbandry” is characterized by low aphid “livestock” diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and

  16. Divergence in the plasminogen-binding group a streptococcal M protein family: functional conservation of binding site and potential role for immune selection of variants.

    Science.gov (United States)

    Sanderson-Smith, Martina; Batzloff, Michael; Sriprakash, Kabada S; Dowton, Mark; Ranson, Marie; Walker, Mark J

    2006-02-10

    Group A streptococci (GAS) display receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M protein (PAM). Characterization of PAM genes from 12 GAS isolates showed significant variation within the plasminogen-binding repeat motifs (a1/a2) of this protein. To determine the impact of sequence variation on protein function, recombinant proteins representing five naturally occurring variants of PAM, together with a recombinant M1 protein, were expressed and purified. Equilibrium dissociation constants for the interaction of PAM variants with biotinylated Glu-plasminogen ranged from 1.58 to 4.99 nm. Effective concentrations of prototype PAM required for 50% inhibition of plasminogen binding to immobilized PAM variants ranged from 0.68 to 22.06 nm. These results suggest that although variation in the a1/a2 region of the PAM protein does affect the comparative affinity of PAM variants, the functional capacity to bind plasminogen is conserved. Additionally, a potential role for the a1 region of PAM in eliciting a protective immune response was investigated by using a mouse model for GAS infection. The a1 region of PAM was found to protect immunized mice challenged with a PAM-positive GAS strain. These data suggest a link between selective immune pressure against the plasminogen-binding repeats and the functional conservation of the binding domain in PAM variants.

  17. Paying the Price of Desolvation in Solvent-Exposed Protein Pockets: Impact of Distal Solubilizing Groups on Affinity and Binding Thermodynamics in a Series of Thermolysin Inhibitors.

    Science.gov (United States)

    Cramer, Jonathan; Krimmer, Stefan G; Heine, Andreas; Klebe, Gerhard

    2017-07-13

    In lead optimization, open, solvent-exposed protein pockets are often disregarded as prospective binding sites. Because of bulk-solvent proximity, researchers are instead enticed to attach charged polar groups at inhibitor scaffolds to improve solubility and pharmacokinetic properties. It is rarely considered that solvent effects from water reorganization in the first hydration shell of protein-ligand complexes can have a significant impact on binding. We investigate the thermodynamic fingerprint of thermolysin inhibitors featuring terminal charged ammonium groups that are gradually pulled from a distal, solvent-exposed position into the flat, bowl-shaped S2' pocket. Even for the most remote attachment, costs for partial desolvation of the polar group next to the protein-solvent interface are difficult to compensate by interactions with the protein or surrounding water molecules. Through direct comparison with hydrophobic analogues, a significant 180-fold affinity loss was recorded, which questions popular strategies to attach polar ligand-solubilizing groups at the exposed terminus of substituents accommodated in flat open pockets.

  18. Characterization of the Lactobacillus casei group based on the profiling of ribosomal proteins coded in S10-spc-alpha operons as observed by MALDI-TOF MS.

    Science.gov (United States)

    Sato, Hiroaki; Torimura, Masaki; Kitahara, Maki; Ohkuma, Moriya; Hotta, Yudai; Tamura, Hiroto

    2012-10-01

    The taxonomy of the members of the Lactobacillus casei group is complicated because of their phylogenetic similarity and controversial nomenclatural status. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of ribosomal proteins coded in the S10-spc-alpha operon, termed S10-GERMS, was applied in order to classify 33 sample strains belonging to the L. casei group. A total of 14 types of ribosomal protein genes coded in the operon were first sequenced from four type strains of the L. casei group (L. casei JCM 1134(T), L. paracasei subsp. paracasei JCM 8130(T), L. paracasei subsp. tolerans JCM 1171(T), and L. rhamnosus JCM 1136(T)) together with L. casei JCM 11302, which is the former type strain of 'L. zeae'. The theoretical masses of the 14 types of ribosomal proteins used as biomarkers were classified into five types and compiled into a ribosomal protein database. The observed ribosomal proteins of each strain, identified by MALDI-TOF MS, were categorized into types based on their masses, summarized as ribosomal protein profiles, and they were used to construct a phylogenetic tree. The 33 sample strains, together with seven genome-sequenced strains, could be classified into four major clusters, which coincided precisely with the taxa of the (sub)species within the L. casei group. Three "ancient" strains, identified as L. acidophilus and L. casei, were correctly re-identified as L. paracasei subsp. paracasei by S10-GERMS. S10-GERMS would thus appear to be a powerful tool for phylogenetic characterization, with considerable potential for management of culture collections. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Urinary hMG versus recombinant FSH for controlled ovarian hyperstimulation following an agonist long down-regulation protocol in IVF or ICSI treatment: a systematic review and meta-analysis.

    Science.gov (United States)

    Coomarasamy, Arri; Afnan, Masoud; Cheema, Deepti; van der Veen, Fulco; Bossuyt, Patrick M M; van Wely, Madelon

    2008-02-01

    Since the most recent Cochrane review on hMG versus rFSH for controlled ovarian hyperstimulation following a long down-regulation protocol, several new trials have emerged. We conducted a systematic review and meta-analysis of randomized trials comparing the effectiveness of hMG versus rFSH following a long down-regulation protocol in IVF-ICSI cycles, on the primary outcome of live birth per woman randomized, as well as several other secondary outcomes. Searches were conducted in MEDLINE, EMBASE, Science Direct, Cochrane Library and databases of abstracts (last search January 2007). Seven randomized trials, consisting of a total of 2159 randomized women, were identified. A meta-analysis of these trials showed a significant increase in live birth rate with hMG when compared with rFSH (relative risk, RR = 1.18, 95% CI: 1.02-1.38, P = 0.03). The heterogeneity test was non-significant (P = 0.97), suggesting that there was no statistical inconsistency between the seven studies. The pooled risk difference (RD) for the outcome of live birth rate was 4% (95% CI: 1-7%) for these study populations. There was an increase in clinical pregnancy rates with hMG when compared with rFSH (RR = 1.17, 95% CI 1.03-1.34). No significant differences were noted for gonadotrophin use, spontaneous abortion, multiple pregnancy, cancellation and ovarian hyperstimulation syndrome rates. For the populations in the randomized trials, hMG was associated with a pooled 4% increase in live birth rate when compared with rFSH in IVF-ICSI treatment following a long down-regulation protocol.

  20. The role of high mobility group box chromosomal protein 1 expression in the differential diagnosis of hepatic actinomycosis: a case report

    Directory of Open Access Journals (Sweden)

    Wu Chuan-Xin

    2013-01-01

    Full Text Available Abstract Introduction Primary hepatic actinomycosis is a rare disease, but is important in the differential diagnosis of hepatoma in endemic areas. As high mobility group box chromosomal protein 1 plays an important role in the pathogenesis of both acute and chronic inflammatory conditions, we postulate that high mobility group box chromosomal protein 1 may have a possible pathogenic role in hepatic actinomycosis. To the best of our knowledge, our report is the first to detect an association between highly elevated high mobility group box chromosomal protein 1 expression and hepatic actinomycosis. Case presentation A 67-year-old Chinese man was admitted to our hospital with a three-month history of epigastric pain, anorexia, and subjective weight loss. Ultrasonography and computed tomography of the patient’s abdomen confirmed a hypodense mass measuring seven cm in diameter in the left lateral segment of his liver. A hepatic tumor was suspected and surgical resection was scheduled. Histopathologic examination revealed that the overall features of the hepatic tissues were consistent with hepatic actinomycosis. Whole blood and hepatic tissue samples of the patient, of patients who had hepatocellular carcinoma and of healthy donors were collected. Serum high mobility group box chromosomal protein 1 concentration in actinomycosis was 8.5ng/mL, which was higher than the hepatocellular carcinoma level of 5.2ng/mL and the normal level of Conclusion High mobility group box chromosomal protein 1 may have a potent biological effect on the pathogenesis of hepatic actinomycosis as a novel cytokine and may be a useful marker in the differential diagnosis of hepatic actinomycosis.

  1. Alterations in oxidant/antioxidant balance, high-mobility group box 1 protein and acute phase response in cross-bred suckling piglets suffering from rotaviral enteritis.

    Science.gov (United States)

    Kumar De, Ujjwal; Mukherjee, Reena; Nandi, Sukdeb; Patel, Bhimnere Hanumatnagouda Manjunatha; Dimri, Umesh; Ravishankar, Chintu; Verma, Ashok Kumar

    2014-10-01

    Rotaviral enteritis has emerged as a major cause of morbidity and mortality in piglets during their post-natal life. The present study was carried out to examine high-mobility group box 1 (HMGB1) protein, acute phase response and oxidative stress indices in the serum of suckling piglets suffering from enteritis with or without association of porcine group A rotavirus infection. The present investigation utilized 23 clinical cases with signs of acute enteritis and 12 more healthy piglets of a similar age group as control animals. Out of 23 enteritis cases, 12 cases were found to be positive for porcine group A rotavirus infection as confirmed by reverse transcription-polymerase chain reaction (RT-PCR) using specific primers for group A rotavirus, and the rest were found negative. The acute enteritis cases in piglets were associated with an elevated level of HMGB1 protein and serum haptoglobin and ceruloplasmin suggestive of an acute phase response. Among the oxidative stress indices, the concentrations of malondialdehyde (MDA) and nitric oxide (NO) in serum were significantly increased. A pronounced drop of total antioxidant capacity and the activity of antioxidant enzymes such as catalase and superoxide dismutase in the serum of piglets suffering from acute enteritis compared to healthy ones were also noticed. The alterations in HMGB1 protein, acute phase response and oxidative stress indices were more pronounced in cases with the involvement of porcine rotavirus as compared to rotavirus-negative cases. It is concluded that HMGB1 protein, markers of oxidative stress and acute phase proteins might play an important role in the aetiopathogenesis of porcine diarrhoea caused by rotavirus and might be true markers in diagnosing the conditions leading to the extension of the prompt and effective therapeutic care.

  2. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics.

    Directory of Open Access Journals (Sweden)

    Serena Nicolai

    Full Text Available The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER known as transcription coupled repair (TCR. CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.

  3. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB) Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics.

    Science.gov (United States)

    Nicolai, Serena; Filippi, Silvia; Caputo, Manuela; Cipak, Lubos; Gregan, Juraj; Ammerer, Gustav; Frontini, Mattia; Willems, Daniela; Prantera, Giorgio; Balajee, Adayabalam S; Proietti-De-Santis, Luca

    2015-01-01

    The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER) known as transcription coupled repair (TCR). CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP) technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.

  4. Single methyl group determines prion propagation and protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and Ssa2p.

    Science.gov (United States)

    Sharma, Deepak; Masison, Daniel C

    2011-08-16

    Organisms encode multiple homologous heat shock protein (Hsp)-70s, which are essential protein chaperones that play the major role in cellular protein "quality control." Although Hsp70s are functionally redundant and highly homologous, many possess distinct functions. A regulatory motif underlying such distinctions, however, is unknown. The 98% identical cytoplasmic Hsp70s Ssa1p and Ssa2p function differently with regard to propagation of yeast [URE3] prions and in the vacuolar-mediated degradation of gluconeogenesis enzymes, such as FBPase. Here, we show that the Hsp70 nucleotide binding domain (NBD) regulates these functional specificities. We find little difference in ATPase, protein refolding, and amyloid inhibiting activities of purified Ssa1p and Ssa2p, but show that interchanging NBD residue alanine 83 (Ssa1p) and glycine 83 (Ssa2p) switched functions of Ssa1p and Ssa2p in [URE3] propagation and FBPase degradation. Disrupting the degradation pathway did not affect prion propagation, however, indicating these are two distinct processes where Ssa1/2p chaperones function differently. Our results suggest that the primary evolutionary pressure for Hsp70 functional distinctions is not to specify interactions of Hsp70 with substrate, but to specify the regulation of this activity. Our data suggest a rationale for maintaining multiple Hsp70s and suggest that subtle differences among Hsp70s evolved to provide functional specificity without affecting overall enzymatic activity.

  5. The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins.

    Science.gov (United States)

    Lawton, Thomas J; Kenney, Grace E; Hurley, Joseph D; Rosenzweig, Amy C

    2016-04-19

    The CopC proteins are periplasmic copper binding proteins believed to play a role in bacterial copper homeostasis. Previous studies have focused on CopCs that are part of seven-protein Cop or Pco systems involved in copper resistance. These canonical CopCs contain distinct Cu(I) and Cu(II) binding sites. Mounting evidence suggests that CopCs are more widely distributed, often present only with the CopD inner membrane protein, frequently as a fusion protein, and that the CopC and CopD proteins together function in the uptake of copper to the cytoplasm. In the methanotroph Methylosinus trichosporium OB3b, genes encoding a CopCD pair are located adjacent to the particulate methane monooxygenase (pMMO) operon. The CopC from this organism (Mst-CopC) was expressed, purified, and structurally characterized. The 1.46 Å resolution crystal structure of Mst-CopC reveals a single Cu(II) binding site with coordination somewhat different from that in canonical CopCs, and the absence of a Cu(I) binding site. Extensive bioinformatic analyses indicate that the majority of CopCs in fact contain only a Cu(II) site, with just 10% of sequences corresponding to the canonical two-site CopC. Accordingly, a new classification scheme for CopCs was developed, and detailed analyses of the sequences and their genomic neighborhoods reveal new proteins potentially involved in copper homeostasis, providing a framework for expanded models of CopCD function.

  6. Synthesis and highly potent hypolipidemic activity of alpha-asarone- and fibrate-based 2-acyl and 2-alkyl phenols as HMG-CoA reductase inhibitors.

    Science.gov (United States)

    Mendieta, Aarón; Jiménez, Fabiola; Garduño-Siciliano, Leticia; Mojica-Villegas, Angélica; Rosales-Acosta, Blanca; Villa-Tanaca, Lourdes; Chamorro-Cevallos, Germán; Medina-Franco, José L; Meurice, Nathalie; Gutiérrez, Rsuini U; Montiel, Luisa E; Cruz, María Del Carmen; Tamariz, Joaquín

    2014-11-01

    In the search for new potential hypolipidemic agents, the present study focused on the synthesis of 2-acyl phenols (6a-c and 7a-c) and their saturated side-chain alkyl phenols (4a-c and 5a-c), and on the evaluation of their hypolipidemic activity using a murine Tyloxapol-induced hyperlipidemic protocol. The whole series of compounds 4-7 greatly and significantly reduced elevated serum levels of total cholesterol, LDL-cholesterol, and triglycerides, with series 6 and 7 showing the greatest potency ever found in our laboratory. At the minimum dose (25mg/kg/day), the latter compounds lowered cholesterol by 68-81%, LDL by 72-86%, and triglycerides by 59-80%. This represents a comparable performance than that shown by simvastatin. Experimental evidence and docking studies suggest that the activity of these derivatives is associated with the inhibition of HMG-CoA reductase.

  7. Solvation free energy of the peptide group: its model dependence and implications for the additive-transfer free-energy model of protein stability.

    Science.gov (United States)

    Tomar, Dheeraj S; Asthagiri, D; Weber, Valéry

    2013-09-17

    The group-additive decomposition of the unfolding free energy of a protein in an osmolyte solution relative to that in water poses a fundamental paradox: whereas the decomposition describes the experimental results rather well, theory suggests that a group-additive decomposition of free energies is, in general, not valid. In a step toward resolving this paradox, here we study the peptide-group transfer free energy. We calculate the vacuum-to-solvent (solvation) free energies of (Gly)n and cyclic diglycine (cGG) and analyze the data according to experimental protocol. The solvation free energies of (Gly)n are linear in n, suggesting group additivity. However, the slope interpreted as the free energy of a peptide unit differs from that for cGG scaled by a factor of half, emphasizing the context dependence of solvation. However, the water-to-osmolyte transfer free energies of the peptide unit are relatively independent of the peptide model, as observed experimentally. To understand these observations, a way to assess the contribution to the solvation free energy of solvent-mediated correlation between distinct groups is developed. We show that linearity of solvation free energy with n is a consequence of uniformity of the correlation contributions, with apparent group-additive behavior in the water-to-osmolyte transfer arising due to their cancellation. Implications for inferring molecular mechanisms of solvent effects on protein stability on the basis of the group-additive transfer model are suggested.

  8. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  9. HMG-CoA reductase inhibition aborts functional differentiation and triggers apoptosis in cultured primary human monocytes: a potential mechanism of statin-mediated vasculoprotection

    Directory of Open Access Journals (Sweden)

    Vamvakopoulos Joannis E

    2003-07-01

    Full Text Available Abstract Background Statins effectively lower blood cholesterol and the risk of cardiovascular death. Immunomodulatory actions, independent of their lipid-lowering effect, have also been ascribed to these compounds. Since macrophages participate in several vascular pathologies, we examined the effect of statin treatment on the survival and differentiation of primary human monocytes. Methods Peripheral blood mononuclear cells (PBMCs from healthy individuals were cultured in the presence or absence of mevastatin. Apoptosis was monitored by annexin V / PI staining and flow cytometry. In parallel experiments, cultures were stimulated with LPS in the presence or absence of mevastatin and the release of IL-1β and IL-1Ra was measured by ELISA. Results Among PBMCs, mevastatin-treated monocytes were particularly susceptible to apoptosis, which occurred at doses >1 microM and was already maximal at 5 microM. However, even at the highest mevastatin dose used (10 microM, apoptosis occurred only after 24 h of culture, possibly reflecting a requirement for cell commitment to differentiation. After 72 h of treatment the vast majority (>50% of monocytes were undergoing apoptosis. Stimulation with LPS revealed that mevastatin-treated monocytes retained the high IL-1β output characteristic of undifferentiated cells; conversely, IL-1Ra release was inhibited. Concurrent treatment with mevalonolactone prevented the induction of apoptosis and suppressed both IL-1β and IL-1Ra release in response to LPS, suggesting a rate-limiting role for HMG-CoA reductase in monocyte differentiation. Conclusions Our findings indicate that statins arrest the functional differentiation of monocytes into macrophages and steer these cells into apoptosis, suggesting a novel mechanism for the vasculoprotective properties of HMG-CoA reductase inhibitors.

  10. Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish.

    Science.gov (United States)

    Lee, P T; Bird, S; Zou, J; Martin, S A M

    2017-06-01

    The acute phase response (APR) is an early innate immune function that is initiated by inflammatory signals, leading to the release of acute phase proteins to the bloodstream to re-establish homeostasis following microbial infection. In this study we analysed the Atlantic salmon (Salmo salar) whole-genome database and identified five C-reactive protein (CRP)/serum amyloid P component (SAP) like molecules namely CRP/SAP-1a, CRP/SAP-1b, CRP/SAP-1c, CRP/SAP-2 and CRP/SAP-3. These CRP/SAP genes formed two distinct sub-families, a universal group (group I) present in all vertebrates and a fish/amphibian specific group (group II). Salmon CRP/SAP-1a, CRP/SAP-1b and CRP/SAP-1c and CRP/SAP-2 belong to the group I family whilst salmon CRP/SAP-3 is a member of group II. Gene expression analysis showed that the salmon CRP/SAP-1a as well as serum amyloid A-5 (SAA-5), one of the major acute phase proteins, were significantly up-regulated by recombinant cytokines (rIL-1β and rIFNγ) in primary head kidney cells whilst the other four CRP/SAPs remained refractory. Furthermore, SAA-5 was produced as the main acute phase protein (APP) in Atlantic salmon challenged with Aeromonas salmonicida (aroA(-) strain) whilst salmon CRP/SAPs remained unaltered. Overall, these data illustrate the potential different functions of expanded salmon CRP/SAPs to their mammalian homologues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A method for the separation of hybrids of chromatographically identical oligomeric proteins. Use of 3,4,5,6-tetrahydrophthaloyl groups as a reversible "chromatographic handle".

    Science.gov (United States)

    Gibbons, I; Schachman, H K

    1976-01-13

    Hybridization experiments with variants of an oligomeric protein often provide important information regarding subunit structure, function, and interactions. In some systems, however, the variants are so similar electrophoretically and chromatographically that purification of individual hybrids is not feasible. Therefore a method was developed for preparing hybrids by using 3,4,5,6-tetrahydrophthalic anhydride as a reversible acylating agent for protein amino groups. The technique involved acylating about 30% of the amino groups at pH 8 to give a derivative with a markedly altered net charge, formation of the hybrid set with unmodified and modified species, separation of the individual components by ion-exchange chromatography, and finally removal of the tetrahydrophthaloyl groups from the desired hybrid by incubation for about 1 day at pH 6 and room temperature. Experiments with model compounds and two enzymes showed that the anhydride was sepcific for amino groups. The extent of modification of proteins was measured by the spectral change at 250 nm, the loss of free amino groups, and the change in electrophoretic mobility of the polypeptide chains in polyacrylamide gels containing 8 M urea. Deacylation of modified, inactive aldolase and the catalytic subunit of aspartate transcarbamylase led to the restoration of the enzyme activity and electrophoretic mobility of the unmodified proteins. Both intra- and inter-subunit hybrids of aspartate transcarbamylase were prepared and isolated by using the tetrahydrophthaloyl groups as a reversible "chromatographic handle". Prior to deacylation the inter-subunit hybrid containing one acylated and one native catalytic subunit (and negative regulatory sub-units) exhibited no homotropic cooperativity and after deacylation the characteristic allosteric properties of the enzyme were regained. Similarly the ligand-promoted conformational changes associated with the allosteric transition were resotred upon deacylation of the intra

  12. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Emilio I.; Bueno-Alejo, Carlos J.; Noel, Christopher W.; Stamplecoskie, Kevin G. [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada); Pacioni, Natalia L. [Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, INFIQC, Departamento de Quimica Organica (Argentina); Poblete, Horacio [Center for Bioinformatics and Molecular Simulations, Universidad de Talca (Chile); Scaiano, J. C., E-mail: tito@photo.chem.uottawa.ca [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada)

    2013-01-15

    Thermally denatured human serum albumin interacts with {approx}3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH{sub 2} blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank's buffer, Tris-HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag{sup +} ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH{sub 2} in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH{sub 2} blocking, leading primarily to cubes and plates with sizes around 5-15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA-AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

  13. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    Science.gov (United States)

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  14. Quantifying additive interactions of the osmolyte proline with individual functional groups of proteins: comparisons with urea and glycine betaine, interpretation of m-values.

    Science.gov (United States)

    Diehl, Roger C; Guinn, Emily J; Capp, Michael W; Tsodikov, Oleg V; Record, M Thomas

    2013-09-03

    To quantify interactions of the osmolyte l-proline with protein functional groups and predict their effects on protein processes, we use vapor pressure osmometry to determine chemical potential derivatives dμ2/dm3 = μ23, quantifying the preferential interactions of proline (component 3) with 21 solutes (component 2) selected to display different combinations of aliphatic or aromatic C, amide, carboxylate, phosphate or hydroxyl O, and amide or cationic N surface. Solubility data yield μ23 values for four less-soluble solutes. Values of μ23 are dissected using an ASA-based analysis to test the hypothesis of additivity and obtain α-values (proline interaction potentials) for these eight surface types and three inorganic ions. Values of μ23 predicted from these α-values agree with the experiment, demonstrating additivity. Molecular interpretation of α-values using the solute partitioning model yields partition coefficients (Kp) quantifying the local accumulation or exclusion of proline in the hydration water of each functional group. Interactions of proline with native protein surfaces and effects of proline on protein unfolding are predicted from α-values and ASA information and compared with experimental data, with results for glycine betaine and urea, and with predictions from transfer free energy analysis. We conclude that proline stabilizes proteins because of its unfavorable interactions with (exclusion from) amide oxygens and aliphatic hydrocarbon surfaces exposed in unfolding and that proline is an effective in vivo osmolyte because of the osmolality increase resulting from its unfavorable interactions with anionic (carboxylate and phosphate) and amide oxygens and aliphatic hydrocarbon groups on the surface of cytoplasmic proteins and nucleic acids.

  15. Characterization of Aspergillus section Nigri group-maize interactions by a green fluorescent protein-tagging approach

    Science.gov (United States)

    Ochratoxin A, produced by some members of the Aspergillus section Nigri group, is a potent nephrotoxic and a potential carcinogenic mycotoxin. Two members of this group A. niger and A. carbonarius are notorious ochratoxin producers in plant substrates, including corn, coffee, grapes, onions, and pea...

  16. Group G streptococcal IgG binding molecules FOG and protein G have different impacts on opsonization by C1q.

    Science.gov (United States)

    Nitsche-Schmitz, D Patric; Johansson, Helena M; Sastalla, Inka; Reissmann, Silvana; Frick, Inga-Maria; Chhatwal, Gursharan S

    2007-06-15

    Recent epidemiological data on diseases caused by beta-hemolytic streptococci belonging to Lancefield group C and G (GCS, GGS) underline that they are an emerging threat to human health. Among various virulence factors expressed by GCS and GGS isolates from human infections, M and M-like proteins are considered important because of their anti-phagocytic activity. In addition, protein G has been implicated in the accumulation of IgG on the bacterial surface through non-immune binding. The function of this interaction, however, is still unknown. Using isogenic mutants lacking protein G or the M-like protein FOG (group G streptococci), respectively, we could show that FOG contributes substantially to IgG binding. A detailed characterization of the interaction between IgG and FOG revealed its ability to bind the Fc region of human IgG and its binding to the subclasses IgG1, IgG2, and IgG4. FOG was also found to bind IgG of several animal species. Surface plasmon resonance measurements indicate a high affinity to human IgG with a dissociation constant of 2.4 pm. The binding site was localized in a central motif of FOG. It has long been speculated about anti-opsonic functions of streptococcal Fc-binding proteins. The presented data for the first time provide evidence and, furthermore, indicate functional differences between protein G and FOG. By obstructing the interaction between IgG and C1q, protein G prevented recognition by the classical pathway of the complement system. In contrast, IgG that was bound to FOG remained capable of binding C1q, an effect that may have important consequences in the pathogenesis of GGS infections.

  17. High mobility group A1 protein expression reduces the sensitivity of colon and thyroid cancer cells to antineoplastic drugs.

    Science.gov (United States)

    D'Angelo, Daniela; Mussnich, Paula; Rosa, Roberta; Bianco, Roberto; Tortora, Giampaolo; Fusco, Alfredo

    2014-11-20

    Development of resistance to conventional drugs and novel biological agents often impair long-term chemotherapy. HMGA gene overexpression is often associated with antineoplastic drug resistance and reduced survival. Inhibition of HMGA expression in thyroid cancer cells reduces levels of ATM protein, the main cellular sensor of DNA damage, and enhances cellular sensitivity to DNA-damaging agents. HMGA1 overexpression promotes chemoresistance to gemcitabine in pancreatic adenocarcinoma cells through an Akt-dependent mechanism. To elucidate the role of HMGA1 proteins in chemoresistance we analyzed resistance to conventional drugs and targeted therapies of human colon carcinoma cells (GEO) that are sensitive to the epidermal growth factor receptor inhibitor cetuximab, and express minimal levels of HMGA1 and cetuximab-resistant (GEO CR) cells expressing high HMGA1 protein levels. GEO CR cells were less sensitive than GEO cells to cetuximab and 5-fluorouracil. GEO CR cells silenced for HMGA1 expression were more susceptible than empty vector-transfected cells to the drugs' cytotoxicity. Similar results were obtained with anaplastic thyroid carcinoma cells expressing or not HMGA1 proteins, treated with doxorubicin or the HDAC inhibitor LBH589. Finally, HMGA1 overexpression promoted the DNA-damage response and stimulated Akt phosphorylation and prosurvival signaling. Our findings suggest that the blockage of HMGA1 expression is a promising approach to enhance cancer cell chemosensitivity, since it could increase the sensitivity of cancer cells to antineoplastic drugs by inhibiting the survival signal and DNA damage repair pathways.

  18. UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    In Part 2 we discuss application of several different types of UV–Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  19. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  20. Cleavable ester linked magnetic nanoparticles for labeling of solvent exposed primary amine groups of peptides/proteins

    Science.gov (United States)

    In order to study the solvent exposed lysine residues of peptides/proteins, we previously reported disulfide linked N-hydrosuccinimide ester modified silica coated iron oxide magnetic nanoparticles (NHS-SS-SiO2@Fe3O4 MNPs). The presence of a disulfide bond in the linker limits the use of disulfide r...

  1. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  2. Change of caged dynamics at Tg in hydrated proteins: Trend of mean squared displacements after correcting for the methyl-group rotation contribution

    Science.gov (United States)

    Ngai, K. L.; Capaccioli, S.; Paciaroni, A.

    2013-06-01

    The question whether the dynamics of hydrated proteins changes with temperature on crossing the glass transition temperature like that found in conventional glassformers is an interesting one. Recently, we have shown that a change of temperature dependence of the mean square displacement (MSD) at Tg is present in proteins solvated with bioprotectants, such as sugars or glycerol with or without the addition of water, coexisting with the dynamic transition at a higher temperature Td. The dynamical change at Tg is similar to that in conventional glassformers at sufficiently short times and low enough temperatures, where molecules are mutually caged by the intermolecular potential. This is a general and fundamental property of glassformers which is always observed at or near Tg independent of the energy resolution of the spectrometer, and is also the basis of the dynamical change of solvated proteins at Tg. When proteins are solvated with bioprotectants they show higher Tg and Td than the proteins hydrated by water alone, due to the stabilizing action of excipients, thus the observation of the change of T-dependence of the MSD at Tg is unobstructed by the methyl-group rotation contribution at lower temperatures [S. Capaccioli, K. L. Ngai, S. Ancherbak, and A. Paciaroni, J. Phys. Chem. B 116, 1745 (2012)], 10.1021/jp2057892. On the other hand, in the case of proteins hydrated by water alone unambiguous evidence of the break at Tg is hard to find, because of their lower Tg and Td. Notwithstanding, in this paper, we provide evidence for the change at Tg of the T-dependence of proteins hydrated by pure water. This evidence turns out from (i) neutron scattering experimental investigations where the sample has been manipulated by either full or partial deuteration to suppress the methyl-group rotation contribution, and (ii) neutron scattering experimental investigations where the energy resolution is such that only motions with characteristic times shorter than 15 ps can be

  3. Succination of thiol groups in adipose tissue proteins in diabetes: succination inhibits polymerization and secretion of adiponectin.

    Science.gov (United States)

    Frizzell, Norma; Rajesh, Mathur; Jepson, Matthew J; Nagai, Ryoji; Carson, James A; Thorpe, Suzanne R; Baynes, John W

    2009-09-18

    S-(2-Succinyl)cysteine (2SC) is formed by reaction of the Krebs cycle intermediate fumarate with cysteine residues in protein, a process termed succination of protein. Both fumarate and succination of proteins are increased in adipocytes cultured in high glucose medium (Nagai, R., Brock, J. W., Blatnik, M., Baatz, J. E., Bethard, J., Walla, M. D., Thorpe, S. R., Baynes, J. W., and Frizzell, N. (2007) J. Biol. Chem. 282, 34219-34228). We show here that succination of protein is also increased in epididymal, mesenteric, and subcutaneous adipose tissue of diabetic (db/db) mice and that adiponectin is a major target for succination in both adipocytes and adipose tissue. Cys-39, which is involved in cross-linking of adiponectin monomers to form trimers, was identified as a key site of succination of adiponectin in adipocytes. 2SC was detected on two of seven monomeric forms of adiponectin immunoprecipitated from adipocytes and epididymal adipose tissue. Based on densitometry, 2SC-adiponectin accounted for approximately 7 and 8% of total intracellular adiponectin in cells and tissue, respectively. 2SC was found only in the intracellular, monomeric forms of adiponectin and was not detectable in polymeric forms of adiponectin in cell culture medium or plasma. We conclude that succination of adiponectin blocks its incorporation into trimeric and higher molecular weight, secreted forms of adiponectin. We propose that succination of proteins is a biomarker of mitochondrial stress and accumulation of Krebs cycle intermediates in adipose tissue in diabetes and that succination of adiponectin may contribute to the decrease in plasma adiponectin in diabetes.

  4. Histidine and Aspartic Acid Residues Important for Immunoglobulin G Endopeptidase Activity of the Group A Streptococcus Opsonophagocytosis-Inhibiting Mac Protein

    Science.gov (United States)

    Lei, Benfang; Liu, Mengyao; Meyers, Elishia G.; Manning, Heather M.; Nagiec, Michael J.; Musser, James M.

    2003-01-01

    The secreted Mac protein made by serotype M1 group A Streptococcus (GAS) (designated Mac5005) inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear neutrophils. This protein also has cysteine endopeptidase activity against human immunoglobulin G (IgG). Site-directed mutagenesis was used to identify histidine and aspartic acid residues important for Mac IgG endopeptidase activity. Replacement of His262 with Ala abolished Mac5005 IgG endopeptidase activity. Asp284Ala and Asp286Ala mutant proteins had compromised enzymatic activity, whereas 21 other Asp-to-Ala mutant proteins cleaved human IgG at the apparent wild-type level. The results suggest that His262 is an active-site residue and that Asp284 and Asp286 are important for the enzymatic activity or structure of Mac protein. These Mac mutants provide new information about structure-activity relationships in this protein and will assist study of the mechanism of inhibition of opsonophagocytosis and killing of GAS by Mac. PMID:12704162

  5. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    Science.gov (United States)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    Callus cultures of Arabidopsis thaliana (cv. Columbia) in Petri dishes / suspension cultures were exposed to altered g-forces by centrifugation (1 to 10 g), klinorotation, and μ g (sounding rocket flights). Using semi-quantitative RT-PCR, transcripts of genes coding for metabolic key enzymes (ADP-glucose pyrophosphorylase, ADPG-PP; ß-amylase, fructose-1,6-bisphosphatase, FBPase; glyceraldehyde-P dehydrogenase, GAPDH; hydroxymethylglutaryl-CoA reductase, HMG; phenylalanine-ammonium-lyase, PAL; PEP carboxylase, PEPC) were used to monitor threshold conditions for g-number (all) and time of exposure (ß-amylase) which led to altered amounts of the gene product. Exposure to approx. 5 g and higher for 1h resulted in altered transcript levels: transcripts of ß-amylase, PAL, and PEPC were increased, those of ADPG-PP decreased, while those of FBPase, GAPDH, and HMG were not affected. This probably indicates a shift from starch synthesis to starch degradation and increased rates of anaplerosis (PEPC: supply of ketoacids for amino acid synthesis). In order to get more information about g-related effects on gene expression, we used a 1h-exposure to 7 g for a microarray analysis. Transcripts of more than 200 genes were significantly increased in amount (ratio 7g / 1g control; 21.6 and larger). They fall into several categories. Transcripts coding for enzymes of major pathways form the largest group (25%), followed by gene products involved in cellular organisation and cell wall formation / rearrangement (17%), signalling, phosphorylation/dephosphorylation (12%), proteolysis and transport (10% each), hormone synthesis plus related events (8%), defense (4%), stress-response (2%), and gravisensing (2%). Many of the alterations are part of a general stress response, but some changes related to the synthesis / rearrangement of cell wall components could be more hyper-g-specific. Using macroarrays with selected genes according to our hypergravity study (metabolism / signalling

  6. Ants farm subterranean aphids mostly in single clone groups : An example of prudent husbandry for carbohydrates and proteins?

    NARCIS (Netherlands)

    Ivens, Aniek B. F.; Kronauer, Daniel J. C.; Pen, Ido; Weissing, Franz J.; Boomsma, Jacobus J.

    2012-01-01

    Background: Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for

  7. Ants farm subterranean aphids mostly in single clone groups : An example of prudent husbandry for carbohydrates and proteins?

    NARCIS (Netherlands)

    Ivens, Aniek B. F.; Kronauer, Daniel J. C.; Pen, Ido; Weissing, Franz J.; Boomsma, Jacobus J.

    2012-01-01

    Background: Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for

  8. Identification and characterization of a novel group of legume-specific, Golgi apparatus-localized WRKY and Exo70 proteins from soybean.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Li, Guiping; Wang, Fei; Fan, Baofang; Chen, Zhixiang

    2015-06-01

    Many plant genes belong to families that arise from extensive proliferation and diversification allowing the evolution of functionally new proteins. Here we report the characterization of a group of proteins evolved from WRKY and exocyst complex subunit Exo70 proteins through fusion with a novel transmembrane (TM) domain in soybean (Glycine max). From the soybean genome, we identified a novel WRKY-related protein (GmWRP1) that contains a WRKY domain with no binding activity for W-box sequences. GFP fusion revealed that GmWRP1 was targeted to the Golgi apparatus through its N-terminal TM domain. Similar Golgi-targeting TM domains were also identified in members of a new subfamily of Exo70J proteins involved in vesicle trafficking. The novel TM domains are structurally most similar to the endosomal cytochrome b561 from birds and close homologues of GmWRP1 and GmEx070J proteins with the novel TM domain have only been identified in legumes. Transient expression of some GmExo70J proteins or the Golgi-targeting TM domain in tobacco altered the subcellular structures labelled by a fluorescent Golgi marker. GmWRP1 transcripts were detected at high levels in roots, flowers, pods, and seeds, and the expression levels of GmWRP1 and GmExo70J genes were elevated with increased age in leaves. The legume-specific, Golgi apparatus-localized GmWRP1 and GmExo70J proteins are probably involved in Golgi-mediated vesicle trafficking of biological molecules that are uniquely important to legumes.

  9. A group of Giardia lamblia variant-specific surface protein (VSP) genes with nearly identical 5' regions.

    Science.gov (United States)

    Yang, Y; Adam, R D

    1995-12-01

    The surfaces of Giardia lamblia trophozoites contain one of a set of variant-specific surface proteins. The genes encoding these proteins are highly conserved at the 3' terminus, but frequently demonstrate little similarity in the remainder of the coding region. This report describes a family of vsp genes highly similar to a repeat-containing vsp gene (vspC5) at the 5' coding and flanking regions, but which diverge abruptly from vspC5 in the first repeat and do not themselves contain full copies of the repeat. This observation suggests the possibility that recombination among different vsp genes may have played a role in development of the vsp gene repertoire.

  10. Moderate PEGylation of the carrier protein improves the polysaccharide-specific immunogenicity of meningococcal group A polysaccharide conjugate vaccine.

    Science.gov (United States)

    Zhang, Tingting; Yu, Weili; Wang, Yanfei; Hu, Tao

    2015-06-22

    Neisseria meningitidis can cause severe and fulminant diseases such as meningitis. Meningococcal capsular polysaccharide (PS) is a key virulence determinant that is not able to induce immunological memory. Conjugation of PS to a carrier protein can significantly increase the immunogenicity of PS and induce immunological memory. Due to the classically described carrier-induced epitopic suppression (CIES) mechanisms, a strong immune response against the carrier protein could suppress the immune response to PS after coadministration of free carrier protein with the conjugate vaccine. However, it was not clear whether suppressing or enhancing the protein-specific immunogenicity could improve the PS-specific immunogenicity of the conjugate vaccine. Thus, moderate PEGylation, extensive PEGylation and oligomerization were used to regulate the immunogenicity of tetanus toxoid (TT) in the conjugate vaccine (PS-TT). Moderate PEGylation led to a 2.7-fold increase in the PS-specific IgG titers elicited by PS-TT. In contrast, extensive PEGylation and oligomerization of TT led to 1.4-fold and 1.6-fold decrease in the PS-specific IgG titers elicited by PS-TT, respectively. The PS-specific immunogenicity of PS-TT can be increased by moderate PEGylation through mild suppression of the TT-specific immunogenicity. The PS-specific immunogenicity of PS-TT was decreased through significant suppression or enhancement of the TT-specific immunogenicity. Thus, our study contributes to understand the CIES mechanisms and improve the PS-specific immunogenicity of a meningococcal PS conjugate vaccine.

  11. Combining substrate specificity analysis with support vector classifiers reveals feruloyl esterase as a phylogenetically informative protein group

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto; Sunner, Hampus; Frisvad, Jens Christian

    2010-01-01

    Background Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able t...... defined via our phylogenetic analysis not only suggests that FAEs are phylogenetically informative proteins but it is also a considerable step towards improved FAEs functional prediction....

  12. 50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems

    Directory of Open Access Journals (Sweden)

    A. M. Eleuteri

    2009-01-01

    Full Text Available Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24–72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals.

  13. Research Approaches and Methods for Evaluating the Protein Quality of Human Foods Proposed by an FAO Expert Working Group in 2014.

    Science.gov (United States)

    Lee, Warren Tk; Weisell, Robert; Albert, Janice; Tomé, Daniel; Kurpad, Anura V; Uauy, Ricardo

    2016-05-01

    The Protein Digestibility Corrected Amino Acid Score (PDCAAS) has been adopted for assessing protein quality in human foods since 1991, and the shortcomings of using the PDCAAS have been recognized since its adoption. The 2011 FAO Expert Consultation recognized that the Digestible Indispensable Amino Acid Score (DIAAS) was superior to the PDCAAS for determining protein quality. However, there were insufficient human data on amino acid digestibility before adopting the DIAAS. More human data were needed before DIAAS could be implemented. In 2014, FAO convened an expert working group to propose and agree on research protocols using both human-based assays and animal models to study ileal amino acid digestibility (metabolic availability) of human foods. The working group identified 5 research protocols for further research and development. A robust database of protein digestibility of foods commonly consumed worldwide, including those consumed in low-income countries, is needed for an informed decision on adopting the DIAAS. A review on the impacts of using the DIAAS on public health policies is necessary. It would be advantageous to have a global coordinating effort to advance research and data collection. Collaboration with international and national agriculture institutes is desirable. Opportunities should be provided for young researchers, particularly those from developing countries, to engage in protein-quality research for sustainable implementation of DIAAS. To conclude, the DIAAS is a conceptually preferable method compared with the PDCAAS for protein and amino acid quality evaluation. However, the complete value of the DIAAS and its impact on public health nutrition cannot be realized until there are sufficient accumulated ileal amino acid digestibility data on human foods that are consumed in different nutritional and environmental conditions, measured by competent authorities. A future meeting may be needed to evaluate the size and quality of the data set

  14. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from em>P. falciparum malaria

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Lusingu, John; Vestergaard, Lasse S;

    2007-01-01

    Variant surface antigens (VSA) on the surface of Plasmodium falciparum-infected red blood cells play a major role in the pathogenesis of malaria and are key targets for acquired immunity. The best-characterized VSA belong to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. In areas...... where P. falciparum is endemic, parasites causing severe malaria and malaria in young children with limited immunity tend to express semiconserved PfEMP1 molecules encoded by group A var genes. Here we investigated antibody responses of Tanzanians who were 0 to 19 years old to PF11_0008, a group A PfEMP...

  15. Identification and Classification of bcl Genes and Proteins of Bacillus cereus Group Organisms and Their Application in Bacillus anthracis Detection and Fingerprinting▿ †

    OpenAIRE

    Leski, Tomasz A.; Caswell, Clayton C.; Pawlowski, Marcin; Klinke, David J.; Bujnicki, Janusz M.; Hart, Sean J.; Lukomski, Slawomir

    2009-01-01

    The Bacillus cereus group includes three closely related species, B. anthracis, B. cereus, and B. thuringiensis, which form a highly homogeneous subdivision of the genus Bacillus. One of these species, B. anthracis, has been identified as one of the most probable bacterial biowarfare agents. Here, we evaluate the sequence and length polymorphisms of the Bacillus collagen-like protein bcl genes as a basis for B. anthracis detection and fingerprinting. Five genes, designated bclA to bclE, are p...

  16. A comparison of high-mobility group-box 1 protein, lipopolysaccharide-binding protein and procalcitonin in severe community-acquired infections and bacteraemia: a prospective study

    DEFF Research Database (Denmark)

    Gaïni, Shahin; Koldkjaer, Ole G; Møller, Holger J

    2008-01-01

    immune response when the host is challenged by bacterial pathogens. Procalcitonin (PCT) has been suggested as a marker of severe bacterial infections and sepsis. The aim of the present study was to investigate levels of HMGB1, LBP and PCT in a well-characterised sepsis cohort. The study plan included...... analysis of the levels of the inflammatory markers in relation to the severity of infection, to the prognosis and to the ability to identify patients with bacteraemia. METHODS: Patients suspected of having severe infections and admitted to a department of internal medicine were included in a prospective...... manner. Demographic data, comorbidity, routine biochemistry, microbiological data, infection focus, severity score and mortality on day 28 were recorded. Plasma and serum were sampled within 24 hours after admission. Levels of all studied markers (HMGB1, LBP, PCT, IL-6, C-reactive protein, white blood...

  17. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  18. The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH.

    Science.gov (United States)

    Thode, Anna B; Kruse, Schoen W; Nix, Jay C; Jones, David N M

    2008-03-07

    It is now generally accepted that many of the physiological effects of alcohol consumption are a direct result of binding to specific sites in neuronal proteins such as ion channels or other components of neuronal signaling cascades. Binding to these targets generally occurs in water-filled pockets and leads to alterations in protein structure and dynamics. However, the precise interactions required to confer alcohol sensitivity to a particular protein remain undefined. Using information from the previously solved crystal structures of the Drosophila melanogaster protein LUSH in complexes with short-chain alcohols, we have designed and tested the effects of specific amino acid substitutions on alcohol binding. The effects of these substitutions, specifically S52A, T57S, and T57A, were examined using a combination of molecular dynamics, X-ray crystallography, fluorescence spectroscopy, and thermal unfolding. These studies reveal that the binding of ethanol is highly sensitive to small changes in the composition of the alcohol binding site. We find that T57 is the most critical residue for binding alcohols; the T57A substitution completely abolishes binding, while the T57S substitution differentially affects ethanol binding compared to longer-chain alcohols. The additional requirement for a potential hydrogen-bond acceptor at position 52 suggests that both the presence of multiple hydrogen-bonding groups and the identity of the hydrogen-bonding residues are critical for defining an ethanol binding site. These results provide new insights into the detailed chemistry of alcohol's interactions with proteins.

  19. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Kleine-Kohlbrecher, Daniela; Dietrich, Nikolaj

    2007-01-01

    The p16INK4A and p14ARF proteins, encoded by the INK4A-ARF locus, are key regulators of cellular senescence, yet the mechanisms triggering their up-regulation are not well understood. Here, we show that the ability of the oncogene BMI1 to repress the INK4A-ARF locus requires its direct association....... These results provide a model for how the INK4A-ARF locus is activated and how Polycombs contribute to cancer....

  20. Binding the Mammalian High Mobility Group Protein AT-hook 2 to AT-Rich Deoxyoligonucleotides: Enthalpy-Entropy Compensation

    OpenAIRE

    2009-01-01

    HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)2 is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5′-CCAAAAAAAAAAAAAAAGCCCCCGCTT...

  1. Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2.

    Directory of Open Access Journals (Sweden)

    Ariel B Abraham

    Full Text Available Neural stem and progenitor cells (NSCs/NPCs are distinct groups of cells found in the mammalian central nervous system (CNS. Previously we determined that members of the High Mobility Group (HMG B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2(-/- mice exhibit SVZ hyperproliferation, increased numbers of SVZ NSCs, and a trend towards aberrant increases in newly born neurons in the olfactory bulb (OB granule cell layer. Increases in the levels of the transcription factor p21 and the Neural cell adhesion molecule (NCAM, along with down-regulation of the transcription/pluripotency factor Oct4 in the Hmgb2-/- SVZ point to a possible pathway for this increased proliferation/differentiation. Our findings suggest that HMGB2 functions as a modulator of neurogenesis in young adult mice through regulation of NSC proliferation, and identify a potential target via which CNS repair could be amplified following trauma or disease-based neuronal degeneration.

  2. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-05

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  3. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  4. Characterization of streptokinases from group A Streptococci reveals a strong functional relationship that supports the coinheritance of plasminogen-binding M protein and cluster 2b streptokinase.

    Science.gov (United States)

    Zhang, Yueling; Liang, Zhong; Hsueh, Hsing-Tse; Ploplis, Victoria A; Castellino, Francis J

    2012-12-07

    Group A streptococcus (GAS) strains secrete the protein streptokinase (SK), which functions by activating host human plasminogen (hPg) to plasmin (hPm), thus providing a proteolytic framework for invasive GAS strains. The types of SK secreted by GAS have been grouped into two clusters (SK1 and SK2) and one subcluster (SK2a and SK2b). SKs from cluster 1 (SK1) and cluster 2b (SK2b) display significant evolutionary and functional differences, and attempts to relate these properties to GAS skin or pharynx tropism and invasiveness are of great interest. In this study, using four purified SKs from each cluster, new relationships between plasminogen-binding group A streptococcal M (PAM) protein and SK2b have been revealed. All SK1 proteins efficiently activated hPg, whereas all subclass SK2b proteins only weakly activated hPg in the absence of PAM. Surface plasmon resonance studies revealed that the lower affinity of SK2b to hPg served as the basis for the attenuated activation of hPg by SK2b. Binding of hPg to either human fibrinogen (hFg) or PAM greatly enhanced activation of hPg by SK2b but minimally influenced the already effective activation of hPg by SK1. Activation of hPg in the presence of GAS cells containing PAM demonstrated that PAM is the only factor on the surface of SK2b-expressing cells that enabled the direct activation of hPg by SK2b. As the binding of hPg to PAM is necessary for hPg activation by SK2b, this dependence explains the coinherant relationship between PAM and SK2b and the ability of these particular strains to generate the proteolytic activity that disrupts the innate barriers that limit invasiveness.

  5. Yeast Interacting Proteins Database: YML075C, YOR102W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of HMG-CoA to mevalonate, which is a rate-limiting step in sterol biosynthesis; localizes to the nuclear en...two isozymes of HMG-CoA reductase that catalyzes the conversion of HMG-CoA to mevalonate, which is a rate-limit

  6. High mobility group box-1 protein in patients with suspected community-acquired infections and sepsis: a prospective study

    DEFF Research Database (Denmark)

    Gaïni, Shahin; Pedersen, Svend Stenvang; Koldkjaer, Ole Graesbøll

    2008-01-01

    chromosomal protein. Its role as a pro-inflammatory cytokine in sepsis and rheumatoid arthritis has been described recently. The aim of our study was to evaluate HMGB1 as a molecular marker in patients with community-acquired infections. METHODS: Patients suspected of having infections/sepsis and admitted......CD163. CONCLUSION: In a cohort of patients with suspected community-acquired infections and sepsis, HMGB1 levels were statistically significantly higher in patients compared to the healthy controls. There was no statistically significant difference between the infected and the non-infected patients...... to a department of internal medicine were included in the study in a prospective manner. Demographic data, comorbidity, routine biochemistry, microbiological data, infection focus, severity score, and mortality on day 28 were recorded. Plasma and serum were sampled at the time of admission. HMGB1 levels were...

  7. 高迁移率族蛋白 B1与缺血性卒中%High-mobility group protein B1 and ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    曹翔; 徐运

    2016-01-01

    High mobility group protein box 1 (HMGB1) is a typical nonhistone chromosomal protein. It has many celular functions in nucleus. Studies in recent years have showed that HMGB1 can be released to the outside of cels to exert a wide range of cytological effects. Ischemic stroke is one of the diseases with the highest morbidity and disability. More and more evidence has shown that HMGB1 plays a variety of important roles in the occurrence and development process of ischemic stroke. This article reviews the roles of HMGB1 in ischemic stroke.%高迁移率族蛋白 B1(high mobility group protein box 1, HMGB1)是一种典型的非组蛋白,在细胞核内具有多种功能。近年来的研究表明,HMGB1可释放到细胞外发挥广泛的细胞学效应。缺血性卒中是发病率和致残率最高的疾病之一。越来越多的证据表明,HMGB1在缺血性卒中的发生和发展过程中起到多种重要作用。文章就 HMGB1在缺血性卒中中的作用进行了综述。

  8. A high-fat diet reduces ceramide synthesis by decreasing adiponectin levels and decreases lipid content by modulating HMG-CoA reductase and CPT-1 mRNA expression in the skin.

    Science.gov (United States)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-09-01

    Molecules involved in skin function are greatly affected by nutritional conditions. However, the mechanism linking high-fat (HF) diets with these alterations is not well understood. This study aimed to investigate the molecular changes in skin function that result from HF diets. Sprague-Dawley rats were fed HF diets for 28 days. The skin levels of ceramide, lipids and mRNAs involved in lipid metabolism were evaluated using TLC, oil red O staining and quantitative PCR, respectively. The serum adiponectin concentration was determined by ELISA. HF diets led to reduced ceramide levels and lowered skin lipid content. They also decreased mRNA levels of serine palmitoyltransferase (SPT) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the skin and those of peroxisome proliferator-activated receptor-α -PPAR-α), which upregulates SPT and HMG-CoA reductase expression. The HF diets reduced the serum concentration of adiponectin, which acts upstream of PPAR-α. Finally, these diets led to increased mRNA levels of carnitine palmitoyltransferase-1, the rate-limiting enzyme that acts in β-oxidation. Our study suggests that HF diets reduce ceramide and lipid synthesis in the skin by reducing levels of SPT and HMG-CoA reductase through lowered adiponectin and PPAR-α activity. Additionally, they decrease lipid content by enhancing β-oxidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inhibition of HMG-CoA reductase by MFS, a purified extract from the fermentation of marine fungus Fusarium solani FG319, and optimization of MFS production using response surface methodology.

    Science.gov (United States)

    Zhou, Yu; Wu, Wen-Hui; Zhao, Qing-Bo; Wang, Xiao-Yu; Bao, Bin

    2015-05-01

    The present study was designed to isolate and characterize a purified extract from Fusarium solani FG319, termed MFS (Metabolite of Fusarium solani FG319) that showed anti-atherosclerosis activity by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Response surface methodology (RSM) was employed to achieve an improved yield from the fermentation medium. The inhibiting effect of the isolate, MFS, on HMG-CoA reductase was greater than that of the positive control, lovastatin. The average recovery of MFS and the relative standard deviation (RSD) ranged between 99.75% to 101.18%, and 0.31% to 0.74%, respectively. The RSDs intra- and inter-assay of the three samples ranged from 0.288% to 2.438%, and from 0.934% to 2.383%, respectively. From the RSM, the concentration of inducer, cultivation time, and culture temperatures had significant effects on the MFS production, with the effect of inducer concentration being more pronounced that other factors. In conclusion, the optimal conditions for the MFS production were achieved using RSM and that MFS could be explored as an anti-atherosclerosis agent based on its ability to inhibit HMG-CoA reductase. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein.

    Science.gov (United States)

    Verdaguer, Nuria; Fita, Ignacio; Reithmayer, Manuela; Moser, Rosita; Blaas, Dieter

    2004-05-01

    Although many viral receptors have been identified, the ways in which they interact with their cognate viruses are not understood at the molecular level. We have determined the X-ray structure of a complex between calcium-containing modules of the very low-density lipoprotein receptor and the minor group human rhinovirus HRV2. The receptor binds close to the icosahedral five-fold vertex, with only one module per virus protomer. The binding face of this module is defined by acidic calcium-chelating residues and, in particular, by an exposed tryptophan that is highly conserved. The attachment site on the virus involves only residues from VP1, particularly a lysine strictly conserved in all minor group HRVs. The disposition of the attached ligand-binding repeats around the five-fold axis, together with the proximity of the N- and C-terminal ends of adjacent modules, suggests that more than one repeat in a single receptor molecule might attach simultaneously.

  11. Grouping and comparison of Indian citrus tristeza virus isolates based on coat protein gene sequences and restriction analysis patterns.

    Science.gov (United States)

    Roy, A; Ramachandran, P; Brlansky, R H

    2003-04-01

    Citrus tristeza virus (CTV) is an aphid-transmitted closterovirus, which causes one of the most important citrus diseases worldwide. Isolates of CTV differ widely in their biological properties. CTV-infected samples were collected from four locations in India: Bangalore (CTV-B), Delhi (CTV-D), Nagpur (CTV-N), and Pune (CTV-P), and were maintained by grafting into Kagzi lime ( Citrus aurantifolia (Christm. Swing.). All isolates produced typical vein clearing and flecking symptoms 6-8 weeks after grafting. In addition, CTV-B and CTV-P isolates produced stem-pitting symptoms after 8-10 months. The CTV coat protein gene (CPG) was amplified by RT-PCR using CPG specific primers, yielding an amplicon of 672 bp for all the isolates. Sequence analysis of the CPG amplicon of all the four Indian isolates showed 93-94% nucleotide sequence homology to the Californian CTV severe stem pitting isolate SY568 and 92-93% homology to the Japanese seedling yellows isolate NUagA and Israeli VT p346 isolates. In phylogenetic tree analysis, Indian CTV isolates appeared far different from other isolates as they formed a separate branch. Comparison among the Indian isolates was carried out by restriction analysis and restriction fragment length polymorphism (RFLP). Specific primers to various genome segments of well-characterized CTV isolates were used to further classify the Indian CTV isolates.

  12. rs12512631 on the Group Specific Complement (Vitamin D-Binding Protein GC) Implicated in Melanoma Susceptibility

    Science.gov (United States)

    Peña-Chilet, Maria; Ibarrola-Villava, Maider; Martin-González, Manuel; Feito, Marta; Gomez-Fernandez, Cristina; Planelles, Dolores; Carretero, Gregorio; Lluch, Ana; Nagore, Eduardo; Ribas, Gloria

    2013-01-01

    Background Solar radiation should be avoided in melanoma patients. Nevertheless, this is the main means by which the body produces vitamin D. Evidence suggests a protective role against cancer for vitamin D. Since vitamin D performs its function by binding the receptor encoded by the vitamin D-receptor gene (VDR), most studies have focused on polymorphisms (SNPs) within this gene. However, the gene encoding the vitamin D-binding protein (GC) appears in recent studies as a major player in the role of a serum vitamin D level regulator and in Cutaneous Melanoma (CM) predisposition. Methods We performed a case-control study of 12 polymorphisms on GC and 9 on VDR among 530 cases and 314 controls from Spanish population. Results We found association between SNP rs12512631, located 3′downstream of GC, and risk of CM that seems to fit a dominant model (OR 1.63 95%CI 1.23–2.17 p-value 7×10−4). This association remained Bonferroni’s correction and after adjustment for potential confounders (p-value 3×10−3) and even after increasing the sample size to 1729 individuals (p-value 0.0129). Moreover, we confirmed evidence of an association between CM susceptibility and the linkage disequilibrium block marked by tag-SNP rs222016 (p-value 0.032). This block covers the GC intron 1 region, with probable regulatory functions. Conclusion To our knowledge, this is the first vitamin D pathway-related polymorphism study in melanoma risk conducted in the Spanish population. Furthermore, we show an association between polymorphisms in GC and melanoma risk, confirming recent studies in different populations. PMID:23544077

  13. rs12512631 on the group specific complement (vitamin D-binding protein GC implicated in melanoma susceptibility.

    Directory of Open Access Journals (Sweden)

    Maria Peña-Chilet

    Full Text Available BACKGROUND: Solar radiation should be avoided in melanoma patients. Nevertheless, this is the main means by which the body produces vitamin D. Evidence suggests a protective role against cancer for vitamin D. Since vitamin D performs its function by binding the receptor encoded by the vitamin D-receptor gene (VDR, most studies have focused on polymorphisms (SNPs within this gene. However, the gene encoding the vitamin D-binding protein (GC appears in recent studies as a major player in the role of a serum vitamin D level regulator and in Cutaneous Melanoma (CM predisposition. METHODS: We performed a case-control study of 12 polymorphisms on GC and 9 on VDR among 530 cases and 314 controls from Spanish population. RESULTS: We found association between SNP rs12512631, located 3'downstream of GC, and risk of CM that seems to fit a dominant model (OR 1.63 95%CI 1.23-2.17 p-value 7×10(-4. This association remained Bonferroni's correction and after adjustment for potential confounders (p-value 3×10(-3 and even after increasing the sample size to 1729 individuals (p-value 0.0129. Moreover, we confirmed evidence of an association between CM susceptibility and the linkage disequilibrium block marked by tag-SNP rs222016 (p-value 0.032. This block covers the GC intron 1 region, with probable regulatory functions. CONCLUSION: To our knowledge, this is the first vitamin D pathway-related polymorphism study in melanoma risk conducted in the Spanish population. Furthermore, we show an association between polymorphisms in GC and melanoma risk, confirming recent studies in different populations.

  14. Binding the mammalian high mobility group protein AT-hook 2 to AT-rich deoxyoligonucleotides: enthalpy-entropy compensation.

    Science.gov (United States)

    Joynt, Suzanne; Morillo, Victor; Leng, Fenfei

    2009-05-20

    HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)(2) is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5'-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3' (FL-AT-1) and 5'-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3' (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to approximately 200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar.

  15. Genetic diversity in the G protein gene of group A human respiratory syncytial viruses circulating in Riyadh, Saudi Arabia.

    Science.gov (United States)

    Almajhdi, Fahad N; Farrag, Mohamed A; Amer, Haitham M

    2014-01-01

    Human respiratory syncytial virus (HRSV) is a frequent cause of hospitalization and mortality in children worldwide. The molecular epidemiology and circulation pattern of HRSV in Saudi Arabia is mostly uncharted. In the current study, the genetic variability and phylogenetic relationships of HRSV type A strains circulating in Riyadh Province were explored. Nasopharyngeal aspirates were collected from hospitalized children with acute respiratory symptoms during the winter-spring seasons of 2007/08 and 2008/09. Among 175 samples analyzed, 39 (22.3 %) were positive for HRSV by one-step RT-PCR (59 % type A and 41 % type B). Propagation of positive samples in HEp-2 cells permitted the recovery of the first Saudi HRSV isolates. Genetic variability among Saudi HRSV-A strains was evaluated by sequence analysis of the complete attachment (G) protein gene. The nucleotide sequence was compared to representatives of the previously identified HRSV-A genotypes. Sequence and phylogenetic analysis showed that the strains examined in this study were very closely related at both the nucleotide and amino acid level, and all of them are clustered in the GA2 genotype (and mostly belonged to the NA-1 subtype). A total of 23 mutation sites, 14 of which resulted in an amino acid change, were recorded only in Saudi strains. This is the first report on genetic diversity of HRSV-A strains in Saudi Arabia. Further analysis of strains on a geographical and temporal basis is needed to fully understand HRSV-A circulation patterns in Saudi Arabia.

  16. Kicking against the PRCs - A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2.

    Directory of Open Access Journals (Sweden)

    Shih Chieh Liang

    2015-12-01

    Full Text Available The Polycomb group (PcG and trithorax group (trxG genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1 gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1. Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2, a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF, we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1, a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1

  17. CH3-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample.

    Science.gov (United States)

    Kerfah, Rime; Hamelin, Olivier; Boisbouvier, Jérôme; Marion, Dominique

    2015-12-01

    A new strategy for the NMR assignment of aliphatic side-chains in large perdeuterated proteins is proposed. It involves an alternative isotopic labeling protocol, the use of an out-and-back (13)C-(13)C TOCSY experiment ((H)C-TOCSY-C-TOCSY-(C)H) and an optimized non-uniform sampling protocol. It has long been known that the non-linearity of an aliphatic spin-system (for example Ile, Val, or Leu) substantially compromises the efficiency of the TOCSY transfers. To permit the use of this efficient pulse scheme, a series of optimized precursors were designed to yield linear (13)C perdeuterated side-chains with a single protonated CH3 group in these three residues. These precursors were added to the culture medium for incorporation into expressed proteins. For Val and Leu residues, the topologically different spin-systems introduced for the pro-R and pro-S methyl groups enable stereospecific assignment. All CH3 can be simultaneously assigned on a single sample using a TOCSY experiment. It only requires the tuning of a mixing delay and is thus more versatile than the relayed COSY experiment. Enhanced resolution and sensi-tivity can be achieved by non-uniform sampling combined with the removal of the large JCC coupling by deconvolution prior to the processing by iterative soft thresholding. This strategy has been used on malate synthase G where a large percentage of the CH3 groups could be correlated directly up to the backbone Ca. It is anticipated that this robust combined strategy can be routinely applied to large proteins.

  18. A region of the N-terminal domain of meningococcal factor H-binding protein that elicits bactericidal antibody across antigenic variant groups.

    Science.gov (United States)

    Beernink, Peter T; LoPasso, Carla; Angiolillo, Antonella; Felici, Franco; Granoff, Dan

    2009-05-01

    Meningococcal factor H-binding protein (fHbp) is a promising vaccine antigen. Previous studies described three fHbp antigenic variant groups and identified amino acid residues between 100 and 255 as important targets of variant-specific bactericidal antibodies. We investigated residues affecting expression of an epitope recognized by a murine IgG2a anti-fHbp mAb, designated JAR 4, which cross-reacted with fHbps in variant group 1 or 2 (95% of strains), and elicited human complement-mediated, cooperative bactericidal activity with other non-bactericidal anti-fHbp mAbs with epitopes involving residues between 121 and 216. From filamentous bacteriophage libraries containing random peptides that were recognized by JAR 4, we identified a consensus tripeptide, DHK that matched residues 25-27 in the N-terminal domain of fHbp. Since DHK was present in both JAR 4-reactive and non-reactive fHbps, the tripeptide was necessary but not sufficient for reactivity. Based on site-directed mutagenesis studies, the JAR 4 epitope could either be knocked out of a reactive variant 1 fHbp, or introduced into a non-reactive variant 3 protein. Collectively, the data indicated that the JAR 4 epitope was discontinuous and involved DHK residues beginning at position 25; YGN residues beginning at position 57; and a KDN tripeptide that was present in variant 3 proteins beginning at position 67 that negatively affected expression of the epitope. Thus, the region of fHbp encompassing residues 25-59 in the N-terminal domain is important for eliciting antibodies that can cooperate with other anti-fHbp antibodies for cross-reactive bactericidal activity against strains expressing fHbp from different antigenic variant groups.

  19. CH{sub 3}-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample

    Energy Technology Data Exchange (ETDEWEB)

    Kerfah, Rime [Université Grenoble Alpes, IBS (France); Hamelin, Olivier [University Grenoble Alpes, Chemistry and Biology of Metals Laboratory (France); Boisbouvier, Jérôme; Marion, Dominique, E-mail: Dominique.Marion@ibs.fr [Université Grenoble Alpes, IBS (France)

    2015-12-15

    A new strategy for the NMR assignment of aliphatic side-chains in large perdeuterated proteins is proposed. It involves an alternative isotopic labeling protocol, the use of an out-and-back {sup 13}C–{sup 13}C TOCSY experiment ((H)C-TOCSY-C-TOCSY-(C)H) and an optimized non-uniform sampling protocol. It has long been known that the non-linearity of an aliphatic spin-system (for example Ile, Val, or Leu) substantially compromises the efficiency of the TOCSY transfers. To permit the use of this efficient pulse scheme, a series of optimized precursors were designed to yield linear {sup 13}C perdeuterated side-chains with a single protonated CH{sub 3} group in these three residues. These precursors were added to the culture medium for incorporation into expressed proteins. For Val and Leu residues, the topologically different spin-systems introduced for the pro-R and pro-S methyl groups enable stereospecific assignment. All CH{sub 3} can be simultaneously assigned on a single sample using a TOCSY experiment. It only requires the tuning of a mixing delay and is thus more versatile than the relayed COSY experiment. Enhanced resolution and sensi-tivity can be achieved by non-uniform sampling combined with the removal of the large J{sub CC} coupling by deconvolution prior to the processing by iterative soft thresholding. This strategy has been used on malate synthase G where a large percentage of the CH{sub 3} groups could be correlated directly up to the backbone Ca. It is anticipated that this robust combined strategy can be routinely applied to large proteins.

  20. Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group.

    Science.gov (United States)

    Kreuze, J F; Karyeija, R F; Gibson, R W; Valkonen, J P

    2000-01-01

    Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) infects sweet potatoes (Ipomoea batatas) worldwide, but no sequence data on isolates from Africa are available. Coat protein (CP) gene sequences from eight East African isolates from Madagascar and different districts of Uganda (the second biggest sweet potato producer in the world) and two West African isolates from Nigeria and Niger were determined. They were compared by phylogenetic analysis with the previously reported sequences of ten SPFMV isolates from other continents. The East African SPFMV isolates formed a distinct cluster, whereas the other isolates were not clustered according to geographic origin. These data indicate that East African isolates of SPFMV form a genetically unique group.

  1. In vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoA reductase by T{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Lindsey R.; Niesen, Melissa I. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States); Jaroszeski, Mark [Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL (United States); Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States)

    2009-07-31

    The promoter elements and transcription factors necessary for triiodothyronine (T{sub 3}) induction of hepatic HMG-CoA reductase (HMGR) were investigated by transfecting rat livers with wild type and mutant HMGR promoter-luciferase constructs using in vivo electroporation. Mutations in the sterol response element (SRE), nuclear factor-y (NF-Y) site, and the newly identified upstream transcription factor-2 (USF-2) site essentially abolished the T{sub 3} response. Chromatin immunoprecipitation (ChIP) analysis demonstrated that T{sub 3} treatment caused a 4-fold increase in in vivo binding of USF-2 to the HMGR promoter. Co-transfection of the wild type HMGR promoter with siRNAs to USF-2, SREBP-2, or NF-Y nearly abolished the T{sub 3} induction, as measured by promoter activity. These data provide in vivo evidence for functional roles for USF-2, SREBP-2, and NF-Y in mediating the T{sub 3}-induction of hepatic HMGR transcription.

  2. Water-Soluble Compounds from Lentinula edodes Influencing the HMG-CoA Reductase Activity and the Expression of Genes Involved in the Cholesterol Metabolism.

    Science.gov (United States)

    Gil-Ramírez, Alicia; Caz, Víctor; Smiderle, Fhernanda R; Martin-Hernandez, Roberto; Largo, Carlota; Tabernero, María; Marín, Francisco R; Iacomini, Marcello; Reglero, Guillermo; Soler-Rivas, Cristina

    2016-03-09

    A water extract from Lentinula edodes (LWE) showed HMG-CoA reductase inhibitory activity but contained no statins. NMR indicated the presence of water-soluble α- and β-glucans and fucomannogalactans. Fractions containing derivatives of these polysaccharides with molecular weight down to approximately 1 kDa still retained their inhibitory activity. Once digested LWE was applied to Caco2 in transport experiments, no significant effect was noticed on the modulation of cholesterol-related gene expression. But, when the lower compartment of the Caco2 monolayer was applied to HepG2, some genes were modulated (after 24 h). LWE was also administrated to normo- and hypercholesterolemic mice, and no significant lowering of serum cholesterol levels was observed; but reduction of triglycerides in liver was observed. However, LWE supplementation modulated the transcriptional profile of some genes involved in the cholesterol metabolism similarly to simvastatin, suggesting that it could hold potential as a hypolipidemic/hypocholesterolemic extract, although further dose-dependent studies should be carried out.

  3. Use of Sandwich-Cultured Human Hepatocytes to Predict Biliary Clearance of Angiotensin II Receptor Blockers and HMG-CoA Reductase Inhibitors

    Science.gov (United States)

    Abe, Koji; Bridges, Arlene S.; Brouwer, Kim L. R.

    2009-01-01

    Previous reports have indicated that in vitro biliary clearance (Clbiliary) determined in sandwich-cultured hepatocytes correlates well with in vivo Clbiliary for limited sets of compounds. The purpose of this study was 1) to determine the in vitro Clbiliary in sandwich-cultured human hepatocytes of angiotensin II receptor blockers and HMG-CoA reductase inhibitors that undergo limited metabolism and 2) to compare the predicted Clbiliary values with estimated in vivo hepatic clearance data in humans. The average biliary excretion index and in vitro intrinsic Clbiliary values of olmesartan, valsartan, pravastatin, rosuvastatin, and pitavastatin in sandwich-cultured human hepatocytes were 35, 23, 31, 25, and 16%, respectively, and 0.943, 1.20, 0.484, 3.39, and 5.48 ml/min/kg, respectively. Clbiliary values predicted from sandwich-cultured human hepatocytes correlated with estimated in vivo hepatic clearance values based on published data (no in vivo data in humans was available for pitavastatin), and the rank order was also consistent. In conclusion, in vitro Clbiliary determined in sandwich-cultured human hepatocytes can be used to predict in vivo Clbiliary of compounds in humans. PMID:19074974

  4. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes.

    Science.gov (United States)

    Howe, Katharine; Sanat, Faizah; Thumser, Alfred E; Coleman, Tanya; Plant, Nick

    2011-07-01

    The therapeutic class of HMG-CoA reductase inhibitors, the statins are central agents in the treatment of hypercholesterolaemia and the associated conditions of cardiovascular disease, obesity and metabolic syndrome. Although statin therapy is generally considered safe, a number of known adverse effects do occur, most commonly treatment-associated muscular pain. In vitro evidence also supports the potential for drug-drug interactions involving this class of agents, and to examine this a ligand-binding assay was used to determine the ability of six clinically used statins for their ability to directly activate the nuclear receptors pregnane X-receptor (PXR), farnesoid X-receptor (FXR) and constitutive androstane receptor (CAR), demonstrating a relative activation of PXR>FXR>CAR. Using reporter gene constructs, we demonstrated that this order of activation is mirrored at the transcriptional activation level, with PXR-mediated gene activation being pre-eminent. Finally, we described a novel regulatory loop, whereby activation of FXR by statins increases PXR reporter gene expression, potentially enhancing PXR-mediated responses. Delineating the molecular interactions of statins with nuclear receptors is an important step in understanding the full biological consequences of statin exposure. This demonstration of their ability to directly activate nuclear receptors, leading to nuclear receptor cross-talk, has important potential implications for their use within a polypharmacy paradigm.

  5. Haploinsufficiency of SOX5, a member of the SOX (SRY-related HMG-box) family of transcription factors is a cause of intellectual disability.

    Science.gov (United States)

    Schanze, Ina; Schanze, Denny; Bacino, Carlos A; Douzgou, Sofia; Kerr, Bronwyn; Zenker, Martin

    2013-02-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous condition; the cause is unknown in most non-specific and sporadic cases. To establish an etiological basis in those patients represents a difficult challenge. Over the last years it has become apparent that chromosomal rearrangements below the detection level of conventional karyotyping contribute significantly to the cause of ID. We present three patients with non-specific intellectual disability who all have overlapping microdeletions in the chromosomal region 12p12.1. De novo occurrence of the deletion could be proven in the two cases from which parental samples were available. All three identified deletions have different breakpoints and range in size from 120 kb to 4.9 Mb. The smallest deletion helps to narrow down the critical region to a genomic segment (chr12:23,924,800-24,041,698, build 37/hg19) encompassing only one gene, SOX5. SOX5 is a member of the SOX (SRY-related HMG-box) family of transcription factors shown to play roles in chondroblast function, oligodendrocyte differentiation and migration, as well as ensuring proper development of specific neuronal cell types. Because of these biological functions, mutations in SOX5 are predicted to cause complex disease syndromes, as it is the case for other SOX genes, but such mutations have not yet been identified. Our findings indicate that haploinsufficiency of SOX5 is a cause of intellectual disability without any striking physical anomalies.

  6. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Frank Spaapen

    Full Text Available Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3 blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.

  7. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies.

    Science.gov (United States)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  8. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    Science.gov (United States)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  9. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    Science.gov (United States)

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  10. High-mobility group nucleosome-binding domain 2 protein inhibits the invasion of Klebsiella pneumoniae into mouse lungs in vivo.

    Science.gov (United States)

    Zheng, Shuang; Ren, Laibin; Li, Heng; Shen, Xiaofei; Yang, Xiaolong; Li, Na; Wang, Xinyuan; Guo, Xiaojuan; Wang, Xiaoying; Huang, Ning

    2015-07-01

    Since bacterial invasion into host cells is a critical step in the infection process and the predominance of multiple-antibiotic-resistant Klebsiella (K.) pneumoniae strains, using molecular agents to interfere with K. pneumoniae invasion is an attractive approach for the prevention of infection and suppress the immune inflammatory response. In previous studies by our group, high-mobility group nucleosome-binding domain 2 (HMGN2) protein was shown to exhibit anti-bacterial activity in vitro. The objective of the present study was to investigate the effects of HMGN2 protein on the invasion of K. pneumoniae 03183 in vivo. The results showed that pre-treatment with 128 µg/ml HMGN2 significantly reduced K. pneumoniae 03183 invasion into mouse lungs and increased the mRNA expression of CXCL1 and LCN2 within 2 h. Immunohistochemical staining showed that F-actin expression was significantly decreased, and fluorescence microscopy and western blot analysis further demonstrated that HMGN2 significantly blocked K. pneumoniae 03183-induced actin polymerization. These changes implied that HMGN2 may provide protection against K. pneumoniae 03183 infection in vivo.

  11. ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses.

    Science.gov (United States)

    Liu, Yang; Wang, Li; Xing, Xin; Sun, Liping; Pan, Jiaowen; Kong, Xiangpei; Zhang, Maoying; Li, Dequan

    2013-06-01

    Late embryogenesis abundant (LEA) proteins accumulate to high levels during the late stage of seed maturation and in response to water deficit, and are involved in protecting higher plants from damage caused by environmental stresses, especially drought. In the present study, a novel maize (Zea mays L.) group 3 LEA gene, ZmLEA3, was identified and later characterized using transgenic tobacco plants to investigate its functions in abiotic and biotic stresses. Transcript accumulation demonstrated that ZmLEA3 was induced in leaves by high salinity, low temperature, osmotic and oxidative stress as well as by signaling molecules such as ABA, salicylic acid (SA) and methyl jasmonate (MeJA). The transcript of ZmLEA3 could also be induced by pathogens [Pseudomonas syringae pv. tomato DC3000 (pst dc3000)]. ZmLEA3 is located in the cytosol and the nucles. Further study indicated that the ZmLEA3 protein could bind Mn(2+), Fe(3+), Cu(2+) and Zn(2+). Overexpression of ZmLEA3 in transgenic tobacco (Nicotiana tabacum) and yeast (GS115) conferred tolerance to osmotic and oxidative stresses. Interestingly, we also found that overexpression of ZmLEA3 in transgenic tobacco increased the hypersensitive cell death triggered by pst dc3000 and enhanced the expression of PR1a, PR2 and PR4 when compared with the wild type. Thus, we proposed that the ZmLEA3 protein plays a role in protecting plants from damage by protecting protein structure and binding metals under osmotic and oxidative stresses. In addition, ZmLEA3 may also enhance transgenic plant tolerance to biotic stress.

  12. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Genipin (GNP effectively inhibits uncoupling protein 2 (UCP2, which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS levels. In this study, the hydroxyls at positions C10 (10-OH and C1 (1-OH of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1 proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1 and 1-ethyl-genipin (1-GNP2 lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1 and 10-acetic acid-genipin (10-GNP2 exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  13. Comparison of the effect of two HMG CoA reductase inhibitors on LDL susceptibility to oxidation

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Portal

    2003-02-01

    Full Text Available OBJECTIVE: To study the differences between fluvastatin and pravastatin regarding LDL susceptibility to oxidation, plasma levels of total cholesterol (TC, HDL-C, LDL-C and triglycerides (TG in hypercholesterolemic patients with established coronary heart disease (CHD. METHODS: A double-blind randomized parallel study was conducted that included 41 hypercholesterolemic outpatients with CHD treated at the Instituto de Cardiologia do Rio Grande do Sul. The inclusion criteria were LDL-C above 100 mg/dL and triglycerides below 400 mg/dL based on 2 measures. After 4 weeks on a low cholesterol diet, those patients that fullfilled the inclusion criteria were randomized into 2 groups: the fluvastatin group (fluvastatin 40 mg/day and the pravastatin group (pravastatin 20 mg/day, for 24 weeks of treatment. LDL susceptibility to oxidation was analyzed with copper-induced production of conjugated dienes (Cu2+ and water-soluble free radical initiator azo-bis (2'-2'amidinopropanil HCl (AAPH. Spectroscopy nuclear magnetic resonance was used for determination of lipids. RESULTS: After 24 weeks of drug therapy, fluvastatin and pravastatin significantly reduced LDL susceptibility to oxidation as demonstrated by the reduced rate of oxidation (azo and Cu and by prolonged azo-induced lag time (azo lag. The TC, LDL-C, and TG reduced significantly and HDL-C increased significantly. No differences between the drugs were observed. CONCLUSION: In hypercholesterolemic patients with CHD, both fluvastatin and pravastatin reduced LDL susceptibility to oxidation.

  14. The HMG-box transcription factor Sox4b is required for pituitary expression of gata2a and specification of thyrotrope and gonadotrope cells in zebrafish.

    Science.gov (United States)

    Quiroz, Yobhana; Lopez, Mauricio; Mavropoulos, Anastasia; Motte, Patrick; Martial, Joseph A; Hammerschmidt, Matthias; Muller, Marc

    2012-06-01

    The pituitary is a complex gland comprising different cell types each secreting specific hormones. The extensive network of signaling molecules and transcription factors required for determination and terminal differentiation of specific cell types is still not fully understood. The SRY-like HMG-box (SOX) transcription factor Sox4 plays important roles in many developmental processes and has two homologs in zebrafish, Sox4a and Sox4b. We show that the sox4b gene is expressed in the pituitary anlagen starting at 24 h after fertilization (hpf) and later in the entire head region including the pituitary. At 48 hpf, sox4b mRNA colocalizes with that for TSH (tshβ), glycoprotein subunit α (gsuα), and the Zn finger transcription factor Gata2a. Loss of Sox4b function, using morpholino knockdown or expression of a dominant-negative Sox4 mutant, leads to a drastic decrease in tshβ and gsuα expression and reduced levels of gh, whereas other anterior pituitary gland markers including prl, slβ, pomc, and lim3 are not affected. Sox4b is also required for expression of gata2a in the pituitary. Knockdown of gata2a leads to decreased tshβ and gsuα expression at 48 hpf, similar to sox4b morphants. Injection of gata2a mRNA into sox4b morphants rescued tshβ and gsuα expression in thyrotrope cells. Finally, sox4b or gata2a knockdown causes a significant decrease of gonadotropin expression (lhβ and fshβ) at 4 d after fertilization. In summary, our results indicate that Sox4b is expressed in zebrafish during pituitary development and plays a crucial role in the differentiation of thyrotrope and gonadotrope cells through induction of gata2a expression in the developing pituitary.

  15. Optimization, validation and application of an assay for the activity of HMG-CoA reductase in vitro by LC-MS/MS

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Ji-Ye Sun; Chun-Jie Sha; Yu-Feng Shao; Yan-Hong Liu; You-Xin Li; Zhen-Wen Duan; Wan-Hui Liu

    2015-01-01

    A stable HMG-CoA reductase (HMGR) reaction in vitro was developed by a sensitive, selective and precise liquid chromatography–tandem mass spectrometry (LC–MS/MS) method. The optimized enzyme reac-tion condition contained 1.5μg of HMGR, 20 nM of NADPH with 50 min of reaction time. The method was validated by several intra-and inter-day assays. The production transitions of m/z 147.0/59.1 and m/z 154.0/59.1 were used to detect and quantify mevalonolactone (MVAL) and MVAL-D7, respectively. The accuracy and precision of the method were evaluated over the concentration range of 0.005–1.000μg/mL for MVAL and 0.010–0.500μg/mL for lovastatin acid in three validation batch runs. The lower limit of quantitation was found to be 0.005μg/mL for MVAL and 0.010μg/mL for lovastatin acid. Intra-day and inter-day precision ranged from 0.95%to 2.39%and 2.26%to 3.38%for MVAL, 1.46%to 3.89%and 0.57% to 5.10% for lovastatin acid, respectively. The results showed that the active ingredients in Xuezhikang capsules were 12.2 and 14.5 mg/g, respectively. This assay method could be successfully applied to the quality control study of Xuezhikang capsule for the first time.

  16. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans.

    Science.gov (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Maeda, Kazuya; Kanamaru, Hiroshi; Saito, Yoshikazu; Hu, Zhuohan; Sugiyama, Yuichi

    2010-02-01

    Elucidation of the rate-determining process in the overall hepatic elimination of drugs is critical for predicting their intrinsic hepatic clearance and the impact of variation of sequestration clearance on their systemic concentration. The present study investigated the rate-determining process in the overall hepatic elimination of the HMG-CoA reductase inhibitors pravastatin, pitavastatin, atorvastatin, and fluvastatin both in rats and humans. The uptake of these statins was saturable in both rat and human hepatocytes. Intrinsic hepatic clearance obtained by in vivo pharmacokinetic analysis in rats was close to the uptake clearance determined by the multiple indicator dilution method but much greater than the intrinsic metabolic clearance extrapolated from an in vitro model using liver microsomes. In vivo uptake clearance of the statins in humans (pravastatin, 1.44; pitavastatin, 30.6; atorvastatin, 12.7; and fluvastatin, 62.9 ml/min/g liver), which was obtained by multiplying in vitro uptake clearance determined in cryopreserved human hepatocytes by rat scaling factors, was within the range of overall in vivo intrinsic hepatic clearance (pravastatin, 0.84-1.2; pitavastatin, 14-35; atorvastatin, 11-19; and fluvastatin, 123-185 ml/min/g liver), whereas the intrinsic metabolic clearance of atorvastatin and fluvastatin was considerably low compared with their intrinsic hepatic clearance. Their uptake is the rate-determining process in the overall hepatic elimination of the statins in rats, and this activity likely holds true for humans. In vitro-in vivo extrapolation of the uptake clearance using a cryopreserved human hepatocytes model and rat scaling factors will be effective for predicting in vivo intrinsic hepatic clearance involving active uptake.

  17. Characterization of non-specific protein adsorption induced by triazole groups on the chromatography media using Cu (I)-catalyzed alkyne-azide cycloaddition reaction for ligand immobilization.

    Science.gov (United States)

    Gao, Ming; Ren, Jun; Tian, Kaikai; Jia, Lingyun

    2016-12-09

    As an efficient and facile reaction, click chemistry has been growingly used in the preparation of chromatography media for immobilizing varying types of ligands. For the widely used Cu (I)-catalyzed alkyne-azide click reaction, a 1, 2, 3-triazole group will be inevitably introduced in the molecular linkage, which could give rise to unexpected non-specific adsorption especially for the media employing small compound ligands or high ligand density. Triazole-induced non-specific protein adsorption on sepharose resins was evaluated systematically in this work, by considering the effects of triazole content, length of spacer arm, and solution conditions. We found that triazole content of a resin played the key role. Protein adsorption became significant when the media was coupled with triazole at a medium density (about 60μmol/mL gel), and the binding amount further increased with triazole density. The resin with triazole content of about 100μmol/mL gel could adsorb human IgG, bovine serum albumin and lysozyme at the amount of 13.6, 30.0, and 5.1mg/mL respectively. Proteins tended to be adsorbed at higher amount as the pH of solution approached their isoelectric points, and increasing salt concentration could reduce triazole-induced adsorption but only within limited extent. This study can facilitate reasonable application of click chemistry in the synthesis of chromatography media, by providing some basic principles for optimizing structural properties of separation media and choosing suitable solution conditions.

  18. Genetic diversity, haplotypes and allele groups of Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia.

    Science.gov (United States)

    Fong, Mun-Yik; Lau, Yee-Ling; Chang, Phooi-Yee; Anthony, Claudia Nisha

    2014-04-03

    The monkey malaria parasite Plasmodium knowlesi is now recognized as the fifth species of Plasmodium that can cause human malaria. Like the region II of the Duffy binding protein of P. vivax (PvDBPII), the region II of the P. knowlesi Duffy binding protein (PkDBPαII) plays an essential role in the parasite's invasion into the host's erythrocyte. Numerous polymorphism studies have been carried out on PvDBPII, but none has been reported on PkDBPαII. In this study, the genetic diversity, haplotyes and allele groups of PkDBPαII of P. knowlesi clinical isolates from Peninsular Malaysia were investigated. Blood samples from 20 knowlesi malaria patients and 2 wild monkeys (Macaca fascicularis) were used. These samples were collected between 2010 and 2012. The PkDBPαII region of the isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The genetic diversity, natural selection and haplotypes of PkDBPαII were analysed using MEGA5 and DnaSP ver. 5.10.00 programmes. Fifty-three PkDBPαII sequences from human infections and 6 from monkeys were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence showed 52 synonymous and 76 nonsynonymous mutations. Analysis on the rate of these mutations indicated that PkDBPαII was under purifying (negative) selection. At the amino acid level, 36 different PkDBPαII haplotypes were identified. Twelve of the 20 human and 1 monkey blood samples had mixed haplotype infections. These haplotypes were clustered into 2 distinct allele groups. The majority of the haplotypes clustered into the large dominant group. Our present study is the first to report the genetic diversity and natural selection of PkDBPαII. Hence, the haplotypes described in this report can be considered as novel. Although a high level of genetic diversity was observed, the PkDBPαII appeared to be under purifying selection. The distribution of the haplotypes was skewed, with one dominant major and one minor

  19. Increased plasma levels of the high mobility group box 1 protein (HMGB1) are associated with a higher score of gastrointestinal dysfunction in individuals with autism.

    Science.gov (United States)

    Babinská, K; Bucová, M; Ďurmanová, V; Lakatošová, S; Jánošíková, D; Bakoš, J; Hlavatá, A; Ostatníková, D

    2014-01-01

    Autism is a disorder of neural development characterized by impairments in communication, social interaction, restricted interests and repetitive behavior. The etiology of autism is poorly understood, the evidence indicates that inflammation may play a key role. In autism a high prevalence of gastrointestinal disturbances is reported, that are linked to a low-grade chronic inflammation of the intestinal mucosa. High mobility group box 1 protein (HMGB1) is an intranuclear protein that can be passively released from necrotic cells or actively secreted under inflammatory conditions as alarmin or late proinflammatory cytokine. The objective of this study was to measure plasma levels of HMGB1 in individuals with autism and to analyze their association with gastrointestinal symptoms. The study involved 31 subjects with low-functioning autistic disorder aged 2-22 years and 16 healthy controls. Plasma HMGB1 levels were significantly higher in individuals with autism than in controls (13.8+/-11.7 ng/ml vs. 7.90+/-4.0 ng/ml, pautism and its possible association with GI symptoms.

  20. Increased concentrations of C-reactive protein but not high-mobility group box 1 in dogs with naturally occurring sepsis.

    Science.gov (United States)

    Karlsson, I; Wernersson, S; Ambrosen, A; Kindahl, H; Södersten, F; Wang, L; Hagman, R

    2013-11-15

    Sepsis is difficult to diagnose and remains a common mortality cause worldwide in both humans and animals. The uterine infection pyometra causes sepsis in more than half of affected dogs and therefore allows the natural physiological development of sepsis to be studied. To find a sepsis-specific biochemical marker that could be combined with conventional clinical criteria for a more robust and quick diagnosis of sepsis, we measured systemic concentrations of high-mobility group box 1 (HMGB1) in 23 healthy control dogs and in 27 dogs with pyometra, 74% of which had sepsis. We also measured concentrations of the major acute phase protein C-reactive protein (CRP) and an indicator for endotoxaemia, prostaglandin F2α metabolite (PGM) to assess the relative contribution of HMGB1 to the detection of systemic inflammation and endotoxaemia. We found that HMGB1 concentrations, in line with concentrations of CRP and PGM, were significantly increased in dogs with pyometra, and that concentrations of CRP, but not HMGB1, were significantly higher in dogs with sepsis compared to dogs without sepsis. Although serum HMGB1 did not differ between dogs with or without sepsis and was not correlated with either CRP or PGM concentrations, HMGB1 was correlated with the total white blood cell counts, suggesting an independent regulation and involvement in inflammation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses

    Science.gov (United States)

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin’s bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world’s longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  2. Non-immune binding of human IgG to M-related proteins confers resistance to phagocytosis of group A streptococci in blood.

    Directory of Open Access Journals (Sweden)

    Harry S Courtney

    Full Text Available The non-immune binding of immunoglobulins by bacteria is thought to contribute to the pathogenesis of infections. M-related proteins (Mrp are group A streptococcal (GAS receptors for immunoglobulins, but it is not known if this binding has any impact on virulence. To further investigate the binding of immunoglobulins to Mrp, we engineered mutants of an M type 4 strain of GAS by inactivating the genes for mrp, emm, enn, sof, and sfbX and tested these mutants in IgG-binding assays. Inactivation of mrp dramatically decreased the binding of human IgG, whereas inactivation of emm, enn, sof, and sfbx had only minor effects, indicating that Mrp is a major IgG-binding protein. Binding of human immunoglobulins to a purified, recombinant form of Mrp indicated that it selectively binds to the Fc domain of human IgG, but not IgA or IgM and that it preferentially bound subclasses IgG₁>IgG₄>IgG₂>IgG₃. Recombinant proteins encompassing different regions of Mrp were engineered and used to map its IgG-binding domain to its A-repeat region and a recombinant protein with 3 A-repeats was a better inhibitor of IgG binding than one with a single A-repeat. A GAS mutant expressing Mrp with an in-frame deletion of DNA encoding the A-repeats had a dramatically reduced ability to bind human IgG and to grow in human blood. Mrp exhibited host specificity in binding IgG; human IgG was the best inhibitor of the binding of IgG followed by pig, horse, monkey, and rabbit IgG. IgG from goat, mouse, rat, cow, donkey, chicken, and guinea pig were poor inhibitors of binding. These findings indicate that Mrp preferentially binds human IgG and that this binding contributes to the ability of GAS to resist phagocytosis and may be a factor in the restriction of GAS infections to the human host.

  3. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  4. Mass spectrometry-based sequencing of protein C-terminal peptide using α-carboxyl group-specific derivatization and COOH capturing.

    Science.gov (United States)

    Nakajima, Chihiro; Kuyama, Hiroki; Tanaka, Koichi

    2012-09-15

    An approach to mass spectrometry (MS)-based sequence analysis of selectively enriched C-terminal peptide from protein is described. This approach employs a combination of the specific derivatization of α-carboxyl group (α-COOH), enzymatic proteolysis using endoproteinase GluC, and enrichment of C-terminal peptide through the use of COOH-capturing material. Highly selective derivatization of α-COOH was achieved by a combination of specific activation of α-COOH through oxazolone chemistry and amidation using 3-aminopropyltris-(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-propylamine). This amine component was used to simplify fragmentation in tandem mass spectrometry (MS/MS) measurement, which facilitated manual sequence interpretation. The peptides produced after GluC digestion were then treated with a COOH scavenger to enrich the C-terminal peptide that is only devoid of COOH groups, and the obtained C-terminal peptide was readily sequenced by matrix-assisted laser desorption/ionization (MALDI)-MS/MS due to the TMPP mass tag.

  5. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Science.gov (United States)

    Milano, Teresa

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  6. Comparative evaluation of HMG CoA reductase inhibitors in experimentally-induced myocardial necrosis: Biochemical, morphological and histological studies.

    Science.gov (United States)

    Variya, Bhavesh C; Patel, Snehal S; Trivedi, Jinal I; Gandhi, Hardik P; Rathod, S P

    2015-10-05

    The present study was carried out to evaluate the protective effect of different statins on isoproterenol (ISO) induced myocardial necrosis. Atorvastatin, rosuvastatin, fluvastatin, simvastatin and pravastatin (10 mg/kg/day) were administered for 12 weeks. After pretreatment of 12 weeks myocardial necrosis was induced by subsequent injection of ISO (85 mg/kg/day, s.c.) to wistar rats. Serum biochemical parameters like glucose, lipid profile, cardiac markers and transaminases were evaluated. Animals were killed and heart was excised for histopathology and antioxidant study. Statins pretreated rats showed significant protection against ISO induced elevation in serum biochemical parameters and serum level of cardiac marker enzymes and transaminase level as compared to ISO control group. Mild to moderate protection was observed in different statins treated heart in histopathology and TTC stained sections. Result from our study also revealed that statins could efficiently protect against ISO intoxicated myocardial necrosis by impairing membrane bound enzyme integrity and endogenous antioxidant enzyme levels. Amongst all statins used, rosuvastatin and pravastatin were found to have maximum cardio-protective activity against ISO induced myocardial necrosis as compared to other statins.

  7. High-Mobility Group Box-1 Protein Serum Levels Do Not Reflect Monocytic Function in Patients with Sepsis-Induced Immunosuppression

    Directory of Open Access Journals (Sweden)

    Nadine Unterwalder

    2010-01-01

    Full Text Available Background. High-mobility group box-1 (HMGB-1 protein is released during “late sepsis” by activated monocytes. We investigated whether systemic HMGB-1 levels are associated with indices of monocytic activation/function in patients with sepsis-induced immunosuppression. Methodology. 36 patients (31 male, 64±14 years with severe sepsis/septic shock and monocytic deactivation (reduced mHLA-DR expression and TNF-α release were assessed in a subanalysis of a placebo-controlled immunostimulatory trial using GM-CSF. HMGB-1 levels were assessed over a 9-day treatment interval. Data were compared to standardized biomarkers of monocytic immunity (mHLA-DR expression, TNF-α release. Principle findings. HMGB-1 levels were enhanced in sepsis but did not differ between treatment and placebo groups at baseline (14.6 ± 13.5 versus 12.5 ± 11.5 ng/ml, P=.62. When compared to controls, HMGB-1 level increased transiently in treated patients at day 5 (27.8±21.7 versus 11.0±14.9, P=.01. Between group differences were not noted at any other point of assessment. HMGB-1 levels were not associated with markers of monocytic function or clinical disease severity. Conclusions. GM-CSF treatment for sepsis-induced immunosuppression induces a moderate but only transient increase in systemic HMGB-1 levels. HMGB-1 levels should not be used for monitoring of monocytic function in immunostimulatory trials as they do not adequately portray contemporary changes in monocytic immunity.

  8. Role of plasma bactericidal/permeability-increasing protein, group IIA phospholipase A(2), C-reactive protein, and white blood cell count in the early detection of severe sepsis in the emergency department.

    Science.gov (United States)

    Uusitalo-Seppälä, Raija; Peuravuori, Heikki; Koskinen, Pertti; Vahlberg, Tero; Rintala, Esa M

    2012-09-01

    To study the diagnostic values of bactericidal/permeability-increasing protein (BPI), group IIA phospholipase A(2) (PLA(2)GIIA), white blood cell count (WBC), and C-reactive protein (CRP) in identifying severe sepsis upon admission in an emergency room. This was a single-centre prospective cohort study involving 525 adult patients admitted to the emergency room with suspected infection. Plasma samples were taken concurrently with the blood cultures. Forty-nine patients with severe sepsis and 476 other patients (58 with no systemic inflammatory response syndrome (SIRS) and no bacterial infection, 63 with bacterial infection but no SIRS, 53 with SIRS but no bacterial infection, and 302 with sepsis but no organ dysfunction) were evaluated. BPI and PLA(2)GIIA were measured by time-resolved fluoroimmunoassay, and CRP with an immunoturbidimetric assay. WBC was measured using an automatic cell counter. There was a positive correlation between the plasma levels of PLA(2)GIIA and CRP (Pearson's correlation coefficient 0.60, p sepsis from others (OR 1.37, 95% Cl 1.05-1.78, p = 0.019). After adjusting for confounders PLA(2)GIIA remained a significant independent predictor of severe sepsis. PLA(2)GIIA seemed to be superior to CRP, BPI, and WBC in differentiating patients with severe sepsis. BPI gave no additional information in this respect.

  9. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); Kim, Grace E. [UCSF School of Medicine, Department of Pathology, San Francisco, CA (United States); Lin, Lawrence; Giacomini, Kathy [UCSF School of Pharmacy, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA (United States); Naranjo, Arlene; Van Ryn, Collin [University of Florida, Children' s Oncology Group Statistics and Data Center, Gainesville, FL (United States); Yanik, Gregory A. [University of Michigan, CS Mott Children' s Hospital, Ann Arbor, MI (United States); Kreissman, Susan G. [Duke University Medical Center, Durham, NC (United States); Hogarty, Michael [University of Pennsylvania, Children' s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA (United States); DuBois, Steven G. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); UCSF School of Medicine, San Francisco, CA (United States)

    2016-03-15

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  10. Cloning of a conserved receptor-like protein kinase gene and its use as a functional marker for homoeologous group-2 chromosomes of the triticeae species.

    Directory of Open Access Journals (Sweden)

    Bi Qin

    Full Text Available Receptor-like kinases (RLKs play broad biological roles in plants. We report on a conserved receptor-like protein kinase (RPK gene from wheat and other Triticeae species. The TaRPK1 was isolated from the Triticum aestivum cv. Prins - Triticum timopheevii introgression line IGVI-465 carrying the powdery mildew resistance gene Pm6. The TaRPK1 was mapped to homoeologous chromosomes 2A (TaRPK1-2A, 2D (TaRPK1-2D and the Pm6-carrier chromosome 2G (TaRPK1-2G of IGVI-465. Under the tested conditions, only the TaRPK1-2G allele was actively transcribed, producing two distinct transcripts via alternative splicing. The predicted 424-amino acid protein of TaRPK1-2G contained a signal peptide, a transmembrane domain and an intracellular serine/threonine kinase domain, but lacked a typical extracellular domain. The expression of TaRPK1-2G gene was up-regulated upon the infection by Blumeria graminis f.sp. tritici (Bgt and treatment with methyl jasmonate (MeJA, but down-regulated in response to treatments of SA and ABA. Over-expression of TaRPK1-2G in the powdery mildew susceptible wheat variety Prins by a transient expression assay showed that it slightly reduced the haustorium index of the infected Bgt. These data indicated that TaRPK1-2G participated in the defense response to Bgt infection and in the JA signaling pathway. Phylogenetic analysis indicated that TaRPK1-2G was highly conserved among plant species, and the amino acid sequence similarity of TaRPK1-2G among grass species was more than 86%. Based on its conservation, the RPK gene-based STS primers were designed, and used to amplify the RPK orthologs from the homoeologous group-2 chromosomes of all the tested Triticeae species, such as chromosome 2G of T. timopheevii, 2R of Secale cereale, 2H of Hordeum vulgare, 2S of Aegilops speltoides, 2S(l of Ae. longissima, 2M(g of Ae. geniculata, 2S(p and 2U(p of Ae. peregrina. The developed STS markers serve as conserved functional markers for the

  11. HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage.

    Science.gov (United States)

    Pääjärvi, Gerd; Roudier, Emilie; Crisby, Milita; Högberg, Johan; Stenius, Ulla

    2005-03-01

    3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, statins, are widely used cholesterol-lowering drugs and have been shown to have anticancer effects in many models. We have investigated the effect of statins on Mdm2, a p53-specific ubiquitin ligase. It was found that pravastatin induced Mdm2 phosphorylation at Ser166 and at 2A10 antibody-specific epitopes in HepG2 cells, while mRNA levels were unchanged. Furthermore, pravastatin was found to induce phosphorylation of mTOR at Ser2448. Ser166 phosphorylation of Mdm2 was abrogated by an inhibitor of mTOR, rapamycin, but not by the PI3-kinase inhibitors LY294002 and wortmannin. Ser166 phosphorylation of Mdm2 has been associated to active Mdm2 and has been shown to increase its ubiquitin ligase activity and lead to increased p53 degradation. Our data show that statins attenuated the p53 response to DNA damage. Thus, in HepG2 cells pravastatin and simvastatin pretreatment attenuated the p53 response to DNA damage induced by 5-fluorouracil and benzo(a)pyrene. Similar attenuation was induced when p53 stabilization was induced by the inhibitor of nuclear export, leptomycin B. Furthermore, in the DNA-damaged cells, half-lives of Mdm2 and p53 were decreased by statins, indicating a more rapid formation of p53/Mdm2 complexes and facilitated p53 degradation. The induction of p53 responsive genes and apoptosis was attenuated. Mdm2 and p53 were also studied in vivo in rat liver employing immunohistochemistry, and it was found that constitutive Mdm2 expression was changed in livers of pravastatin-treated rats. We also show that the p53 response to a challenging dose of diethylnitrosamine was attenuated in hepatocytes in situ and in primary cultures of hepatocytes by pravastatin pretreatment. Taken together, these data indicate that statins induce an mTOR-dependent Ser166 phosphorylation of Mdm2, and this effect may attenuate the duration and intensity of the p53 response to DNA damage in hepatocytes.

  12. Efficacy of hCG and hMG on testicular morphology and function in male patients with multiple pituitary hormone deficiency%促性腺激素治疗对多种垂体激素缺乏症男性患者睾丸形态和功能影响的时效性

    Institute of Scientific and Technical Information of China (English)

    唐琳; 李桂梅; 王倩

    2014-01-01

    length of 54 male patients was significantly increased from (2.58 ± 0.69) cm to (4.19 ± 0.77) cm , and penis circumference was also increased from (3.71 ± 1.36) cm to (5.95 ± 1.26) cm;the testicular volume was increased from (1.76 ± 1.49) ml to (5.20±2.30) ml;height was increased from (147.01 ± 12.29) cm to (151.98 ± 11.52) cm and bone age was increased from (11.22 ± 2.71) years to (11.64 ± 2.72) years;the differences before and after treatment were statistically significant (all P<0.01). As the patients' age increased, their testicular volume and testosterone level increased slowly, and significant differences amongst each age group were found (P<0.05). The in-creased value of testicular volume, serum FSH and LH levels, and height growth tended to be negatively correlated to the initial age of therapy (r=-0.517~-0.334, P<0.05). Conclusions Early and proper treatment in male patients with multiple pituitary hormone deficiency using hCG and hMG improves testicular function and secondary sex characteristics.

  13. Conserved leucines in N-terminal heptad repeat HR1 of envelope fusion protein F of group II nucleopolyhedroviruses are important for correct processing and essential for fusogenicity

    NARCIS (Netherlands)

    Long, G.; Pan, X.; Vlak, J.M.

    2008-01-01

    The heptad repeat (HR), a conserved structural motif of class I viral fusion proteins, is responsible for the formation of a six-helix bundle structure during the envelope fusion process. The insect baculovirus F protein is a newly found budded virus envelope fusion protein which possesses common fe

  14. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.

    Science.gov (United States)

    Laird, Melissa D; Shields, Jessica S; Sukumari-Ramesh, Sangeetha; Kimbler, Donald E; Fessler, R David; Shakir, Basheer; Youssef, Patrick; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.

  15. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation

    Science.gov (United States)

    Yang, Haining; Rivera, Zeyana; Jube, Sandro; Nasu, Masaki; Bertino, Pietro; Goparaju, Chandra; Franzoso, Guido; Lotze, Michael T.; Krausz, Thomas; Pass, Harvey I.; Bianchi, Marco E.; Carbone, Michele

    2010-01-01

    Asbestos carcinogenesis has been linked to the release of cytokines and mutagenic reactive oxygen species (ROS) from inflammatory cells. Asbestos is cytotoxic to human mesothelial cells (HM), which appears counterintuitive for a carcinogen. We show that asbestos-induced HM cell death is a regulated form of necrosis that links to carcinogenesis. Asbestos-exposed HM activate poly(ADP-ribose) polymerase, secrete H2O2, deplete ATP, and translocate high-mobility group box 1 protein (HMGB1) from the nucleus to the cytoplasm, and into the extracellular space. The release of HMGB1 induces macrophages to secrete TNF-α, which protects HM from asbestos-induced cell death and triggers a chronic inflammatory response; both favor HM transformation. In both mice and hamsters injected with asbestos, HMGB1 was specifically detected in the nuclei, cytoplasm, and extracellular space of mesothelial and inflammatory cells around asbestos deposits. TNF-α was coexpressed in the same areas. HMGB1 levels in asbestos-exposed individuals were significantly higher than in nonexposed controls (P asbestos-related disease, and provide mechanistic links between asbestos-induced cell death, chronic inflammation, and carcinogenesis. Chemopreventive approaches aimed at inhibiting the chronic inflammatory response, and especially blocking HMGB1, may decrease the risk of malignant mesothelioma among asbestos-exposed cohorts. PMID:20616036

  16. Expression of a High Mobility Group Protein Isolated from Cucumis sativus Affects the Germination of Arabidopsis thaliana under Abiotic Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    Ji Young Jang; Kyung Jin Kwak; Hunseung Kang

    2008-01-01

    Although high mobility group B (HMGB) proteins have been identified from a variety of plant species, their importance and functional roles in plant responses to changing environmental conditions are largely unknown. Here, we investigated the functional roles of a CsHMGB isolated from cucumber (Cucurnis sativus L.) in plant responses to environmental stimuli. Under normal growth conditions or when subjected to cold stress, no differences in plant growth were found between the wild.type and transgenic Arabidopsis thaliana overexpressing CsHMGB. By contrast, the transgenic Arabidopsis plants displayed retarded germination compared with the wild-type plants when grown under high salt or dehydration stress conditions. Germination of the transgenic plants was delayed by the addition of abscisic acid (ABA), implying that CsHMGB affects germination through an ABA-dependent way. The expression of CsHMGB had affected only the germination stage, and CsHMGB did not affect the seedling growth of the transgenic plants under the stress conditions. The transcript levels of several germination-responsive genes were modulated by the expression of CsHMGB in Arabidopsis. Taken together, these results suggest that ectopic expression of a CsHMGB in Arabidopsis modulates the expression of several germination-responsive genes, and thereby affects the germination of Arabidopsis plants under different stress conditions.

  17. Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins.

    Science.gov (United States)

    Kawasaki, Hideya; Akira, Tarui; Watanabe, Takehiro; Nozaki, Kazuyoshi; Yonezawa, Tetsu; Arakawa, Ryuichi

    2009-11-01

    Bare FePtCu nanoparticles (NPs) are first prepared for laser desorption/ionization mass spectroscopy (LDI-MS) analysis as affinity probes to selectively trap oppositely charged analytes from a sample solution. Our present results demonstrate bare FePtCu NPs to be a potentially useful matrix for surface-assisted laser desorption/ionization mass spectroscopy (SALDI-MS), for the analysis of small proteins and peptides. The upper detectable mass range of peptides was approximately 5 kDa, and the detection limit for peptides approximately 5 fmol. Sulfonate group-modified FePtCu nanoparticles (FePtCu-SO(3)(-) NPs), with ionization being independent of the solution pH, can interact with a positively charged analyte, and the analyte-bound NPs can be separated from the reaction supernatant by centrifugation or an external magnetic field. An oligopeptide, Gly-Gly-Tyr-Arg (GGYR) from an oligopeptide mixture containing Asp-Asp-Asp-Asp (DDDD), Gly-Gly-Gly-Gly (GGGG) and GGYR, was detected using SALDI-MS with FePtCu-SO(3)(-) NPs employing electrostatic interaction. Furthermore, FePtCu-SO(3)(-) NPs can detect lysozyme (Lyz) in human serum through the electrostatic attraction between positively charged Lyz and FePtCu-SO(3)(-) NPs at pH 8, while detection of negatively charged albumin in human serum is not possible.

  18. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database

    Energy Technology Data Exchange (ETDEWEB)

    Omenn, Gilbert; States, David J.; Adamski, Marcin; Blackwell, Thomas W.; Menon, Rajasree; Hermjakob, Henning; Apweiler, Rolf; Haab, Brian B.; Simpson, Richard; Eddes, James; Kapp, Eugene; Moritz, Rod; Chan, Daniel W.; Rai, Alex J.; Admon, Arie; Aebersold, Ruedi; Eng, Jimmy K.; Hancock, William S.; Hefta, Stanley A.; Meyer, Helmut; Paik, Young-Ki; Yoo, Jong-Shin; Ping, Peipei; Pounds, Joel G.; Adkins, Joshua N.; Qian, Xiaohong; Wang, Rong; Wasinger, Valerie; Wu, Chi Yue; Zhao, Xiaohang; Zeng, Rong; Archakov, Alexander; Tsugita, Akira; Beer, Ilan; Pandey, Akhilesh; Pisano, Michael; Andrews, Philip; Tammen, Harald; Speicher, David W.; Hanash, Samir M.

    2005-08-13

    HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasets had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan

  19. High-mobility group box-1 protein (HMGB1) is increased in antineutrophilic cytoplasmatic antibody (ANCA)-associated vasculitis with renal manifestations.

    Science.gov (United States)

    Bruchfeld, Annette; Wendt, Mårten; Bratt, Johan; Qureshi, Abdul R; Chavan, Sangeeta; Tracey, Kevin J; Palmblad, Karin; Gunnarsson, Iva

    2011-01-01

    High-mobility group box 1 (HMGB1) is a nuclear and cytosolic protein that is increasingly recognized as an important proinflammatory mediator actively secreted from monocytes and macrophages and passively released from necrotic cells. In antineutrophilic cytoplasmatic antibody (ANCA)-associated vasculitis (AAV), the kidneys are commonly affected vital organs, characterized by focal necrotizing and/or crescentic pauci-immune glomerulonephritis. The aim of the study was to determine whether HMGB1 serum levels are elevated in AAV with renal manifestations. A total of 30 AAV patients (16 female and 14 male; median age 59 years, range 17-82) with Wegener granulomatosis, microscopic polyangiitis and Churg-Strauss syndrome with available renal biopsies and serum samples were included. In seven cases, serum was also obtained at rebiopsy in remission. HMGB1 was analyzed with Western blot. Birmingham Vasculitis Activity Score (BVAS, version 2003), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), urinanalysis, creatinine, estimated glomerular filtration rate, sex and age were included in the analysis. Twenty-five episodes of biopsy-proven active disease with BVAS 17.9 ± 4.6 and 13 cases with inactive biopsies and BVAS 2.3 ± 3.7 (P = 0.0001) were identified. CRP, ESR, hematuria and proteinuria were significantly higher in active cases. HMGB1 was significantly elevated (P = 0.01) comparing active with inactive cases (120 ± 48 versus 78 ± 46 ng/mL) and significantly lower in the seven control patients (P = 0.03) at rebiopsy in remission. HMGB1 remained higher in inactive cases compared with historic healthy controls (10.9 ± 10.5 ng/mL). HMGB1 levels did not differ significantly between AAV subgroups. CRP and ESR did not correlate with HMGB1. HMGB1 is significantly increased in AAV with renal involvement. Residual HMGB1 elevation in remission could possibly reflect low-grade inflammatory activity or tissue damage. Future studies may further reveal whether HMGB

  20. Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: An approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, H.S.; Chary, K.V.R. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2001-03-15

    A novel methodology for stereospecific NMR assignments of methyl (CH{sub 3}) groups of Val and Leu residues in fractionally {sup 13}C-labeled proteins is presented. The approach is based on selective 'unlabeling' of specific amino acids in proteins while fractionally {sup 13}C-labeling the rest. A 2D [{sup 13}C-{sup 1}H] HSQC spectrum recorded on such a sample is devoid of peaks belonging to the 'unlabeled' amino acid residues. Such spectral simplification aids in unambiguous stereospecific assignment of diastereotopic CH{sub 3} groups in Val and Leu residues in large proteins. This methodology has been demonstrated on a 15 kDa calcium binding protein from Entamoeba histolytica (Eh-CaBP)

  1. A chemical approach for site-specific identification of NMR signals from protein side-chain NH{sub 3}{sup +} groups forming intermolecular ion pairs in protein–nucleic acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kurtis M. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States); Gorenstein, David G. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Iwahara, Junji, E-mail: juiwahar@utmb.edu, E-mail: j.iwahara@utmb.edu [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States)

    2015-05-15

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH{sub 3}{sup +} groups forming the intermolecular ion pairs. A characteristic change in their {sup 1}H and {sup 15}N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain {sup 15}N and DNA phosphorodithiaote {sup 31}P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well.

  2. N-terminal amino acid sequences of the major outer membrane proteins from a Neisseria meningitidis group B strain isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni De Simone

    1996-02-01

    Full Text Available The four dominant outer membrane proteins (46, 38, 33 and 28 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE in a semi-purified preparation of vesicle membranes of a Neisseria meningitidis (N44/89, B:4:P1.15:P5.5,7 strain isolated in Brazil. The N-terminal amino acid sequence for the 46 kDa and 28 kDa proteins matched that reported by others for class 1 and 5 proteins respectively, whereas the sequence (25 amino acids for the 38 kDa (class 3 protein was similar to class 1 meningococcal proteins. The sequence for the 33 kDa (class 4 was unique and not homologous to any known protein.

  3. The pro-inflammatory role of high-mobility group box 1 protein (HMGB-1) in photoreceptors and retinal explants exposed to elevated pressure.

    Science.gov (United States)

    Böhm, Michael R R; Schallenberg, Maurice; Brockhaus, Katrin; Melkonyan, Harutyun; Thanos, Solon

    2016-04-01

    To determine the role of high-mobility group box 1 protein (HMGB-1) in cellular and tissue models of elevated pressure-induced neurodegeneration, regeneration, and inflammation. Mouse retinal photoreceptor-derived cells (661W) and retinal explants were incubated either under elevated pressure or in the presence of recombinant HMGB-1 (rHMGB-1) to investigate the mechanisms of response of photoreceptors. Immunohistochemistry, western blotting, and the quantitative real-time PCR were used to examine the expression levels of immunological factors (eg, HMGB-1, receptor for advanced glycation end products (RAGE)), Toll-like receptors 2 and 4 (TLR-2, TLR-4), apoptosis-related factors (eg, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad)) as well as cytokine expression (eg, tumor necrosis factor alpha (TNF-α), interleukin (IL)-4, IL-6, and vascular endothelial growth factor (VEGF)). The data revealed increased the expression of HMGB-1 and its receptors RAGE, TLR-2, and TLR-4, and TNF-α as well as pro-apoptotic factors (eg, Bad) as well as apoptosis in 661W cells exposed to elevated pressure. Co-cultivation of 661W cells with rHMGB-1 increased the expression levels of pro-apoptotic Bad and cleaved Caspase-3 resulting in apoptosis. Cytokine array studies revealed an increased release of TNF-α, IL-4, IL-6, and VEGF after incubation of 661W cells with rHMGB-1. Upregulation of HMGB-1, TLR-2, and RAGE as well as anti-apoptotic Bcl-2 expression levels was found in the retinal explants exposed to rHMGB-1 or elevated pressure. The results suggest that HMGB-1 promotes an inflammatory response and mediates apoptosis in the pathology of photoreceptors and retinal homeostasis. HMGB-1 may have a key role in ongoing damage of retinal cells under conditions of elevated intraocular pressure.

  4. 高迁移率族蛋白1与肾脏疾病%High mobility group box 1 protein and kidney diseases

    Institute of Scientific and Technical Information of China (English)

    韩蕊

    2013-01-01

    High mobility group protein B1 (HMGB1) is an important late inflammatory mediator.HMGB1 could be actively excreted by inflammatory ceils,and may also be passively released by the dying cells into the extracellular milieu,and then mediates the inflammation reaction.Recently,the role of HMGB1 in various kidney diseases is suffered much concern.Results from previous studies have demonstrated that HMGB1 played a vital role in the pathogenesis and development of lupus nephritis,ANCA-associated vasculitis with renal manifestations,acute kidney injury,interstitial nephritis,renal ischemia-reperfusion injury,and it correlated with many markers of inflammation and malnutrition in CKD and dialysis patients.This review is focused on the recent progresses of HMGB1 in kidney diseases.%高迁移率族蛋白1(HMGB1)作为一种重要的炎性介质,可通过炎症细胞的主动分泌和坏死细胞的被动释放进入胞外介导炎症反应.近年来,HMGB1在狼疮肾炎、ANCA相关性血管炎肾损害、急性肾损伤、间质性肾炎、肾脏缺血/再灌注损伤等发生发展过程中所发挥的重要作用备受关注,并对慢性肾脏病和透析患者的炎症、营养状态等有良好的指向作用,本文就相关的研究进展进行综述.

  5. Genetic Variations in the Human G Protein-coupled Receptor Class C, Group 6, Member A (GPRC6A) Control Cell Surface Expression and Function.

    Science.gov (United States)

    Jørgensen, Stine; Have, Christian Theil; Underwood, Christina Rye; Johansen, Lars Dan; Wellendorph, Petrine; Gjesing, Anette Prior; Jørgensen, Christinna V; Quan, Shi; Rui, Gao; Inoue, Asuka; Linneberg, Allan; Grarup, Niels; Jun, Wang; Pedersen, Oluf; Hansen, Torben; Bräuner-Osborne, Hans

    2017-01-27

    GPRC6A is a G protein-coupled receptor activated by l-amino acids, which, based on analyses of knock-out mice, has been suggested to have physiological functions in metabolism and testicular function. The human ortholog is, however, mostly retained intracellularly in contrast to the cell surface-expressed murine and goldfish orthologs. The latter orthologs are Gq-coupled and lead to intracellular accumulation of inositol phosphates and calcium release. In the present study we cloned the bonobo chimpanzee GPRC6A receptor, which is 99% identical to the human receptor, and show that it is cell surface-expressed and functional. By analyses of chimeric human/mouse and human/bonobo receptors, bonobo receptor mutants, and the single nucleotide polymorphism database at NCBI, we identify an insertion/deletion variation in the third intracellular loop responsible for the intracellular retention and lack of function of the human ortholog. Genetic analyses of the 1000 genome database and the Inter99 cohort of 6,000 Danes establish the distribution of genotypes among ethnic groups, showing that the cell surface-expressed and functional variant is much more prevalent in the African population than in European and Asian populations and that this variant is partly linked with a stop codon early in the receptor sequence (rs6907580, amino acid position 57). In conclusion, our data solve a more than decade-old question of why the cloned human GPRC6A receptor is not cell surface-expressed and functional and provide a genetic framework to study human phenotypic traits in large genome sequencing projects linked with physiological measurement and biomarkers.

  6. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group).

    Science.gov (United States)

    Niu, Qingli; Valentin, Charlotte; Bonsergent, Claire; Malandrin, Laurence

    2014-12-01

    Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. JTT-130, a microsomal triglyceride transfer protein (MTP inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs

    Directory of Open Access Journals (Sweden)

    Shrestha Sudeep

    2005-09-01

    Full Text Available Abstract Background Microsomal transfer protein inhibitors (MTPi have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG. However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. Methods Male guinea pigs (n = 10 per group were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control, 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. Results Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P Conclusion These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.

  8. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  9. UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV–Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  10. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  11. Circular dichroism and fluorescence spectroscopy of cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 demonstrates that group I cations are particularly effective in providing structure and stability to this halophilic protein.

    Directory of Open Access Journals (Sweden)

    Christopher J Reed

    Full Text Available Proteins from extremophiles have the ability to fold and remain stable in their extreme environment. Here, we investigate the presence of this effect in the cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 (NRC-1, which was used as a model halophilic protein. The effects of salt on the structure and stability of NRC-1 and of E. coli CysRS were investigated through far-UV circular dichroism (CD spectroscopy, fluorescence spectroscopy, and thermal denaturation melts. The CD of NRC-1 CysRS was examined in different group I and group II chloride salts to examine the effects of the metal ions. Potassium was observed to have the strongest effect on NRC-1 CysRS structure, with the other group I salts having reduced strength. The group II salts had little effect on the protein. This suggests that the halophilic adaptations in this protein are mediated by potassium. CD and fluorescence spectra showed structural changes taking place in NRC-1 CysRS over the concentration range of 0-3 M KCl, while the structure of E. coli CysRS was relatively unaffected. Salt was also shown to increase the thermal stability of NRC-1 CysRS since the melt temperature of the CysRS from NRC-1 was increased in the presence of high salt, whereas the E. coli enzyme showed a decrease. By characterizing these interactions, this study not only explains the stability of halophilic proteins in extremes of salt, but also helps us to understand why and how group I salts stabilize proteins in general.

  12. Research progress on the structural and nonstructural proteins of group A rotavirus%A组轮状病毒结构和非结构蛋白的研究进展

    Institute of Scientific and Technical Information of China (English)

    郏继航; 杨学磊

    2015-01-01

    The group A rotavirus is the most important etiological agent of grave diarrhea in children under 5 years old,mainly causing fever,vomiting,diarrhea and other clinical symptoms,even severe dehydration or death.Study on the viral proteins of rotavirus may contribute to further understanding of its pathogenesis and developing new vaccines.In this article,the progresses on research of the structure,biological functions and immunological properties of group A rotavirus are reviewed.

  13. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species

    Directory of Open Access Journals (Sweden)

    Gupta Radhey S

    2006-01-01

    Full Text Available Abstract Background Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization. Results We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected. Conclusion The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.

  14. Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2017-02-01

    We report on the radiative emission decay dynamics of a less known, γ-phase manganese selenide quantum dot system (MnSe QDs) subjected to bio-functionalization. A short-ligand thioglycolic acid (TGA), and a long-chain sodium dodecyl sulfate (SDS) surfactants were used as surface anchors prior bioconjugation with albumin proteins (BSA). Time resolved photoluminescence (TR-PL) spectra of the QDs have revealed bi-exponential decay trends with the fast (τ{sub 1}) and slow (τ{sub 2}) decay parameters assigned to the core state recombination and surface trapped excitons; respectively. The average lifetime (τ{sub avg}) was found to get shortened from a value of ∼0.87 ns–0.72 ns in unconjugated and BSA conjugated MnSe-TGA QDs; respectively. Conversely, MnSe-SDS QDs with BSA conjugation exhibited nearly four-fold enhancement of τ{sub avg} with respect to its unconjugated counterpart. Moreover, a considerable amount of Förster resonance energy transfer (FRET) was found to occur from the TGA coated MnSe QDs to BSA and with an ensuing efficiency of ∼61%. The origin of anomalous carrier life-time relaxation features has also been encountered through a simplified model as regards head group interaction experienced by the MnSe QDs with different surfactant types. Exploiting luminescence decay characteristics of a magneto-fluorescent candidate could find immense scope in diverse biological applications including assays, labeling and imaging. - Highlights: • Surface anchored manganese selenide quantum dots (MnSe QDs) have been synthesized via a physico-chemical reduction route. • Time resolved luminescence spectra of the QDs have displayed bi-exponential decay trend. • Thioglycolic acid (TGA) coated QDs exhibited shorter lifetime as compared to sodium dodecyl sulfo-succinate (SDS) coated ones. • Upon BSA conjugation, the average life time is four-fold enhanced in MnSe-SDS QDs. • An efficient FRET process has been revealed in BSA conjugated TGA coated MnSe QDs.

  15. High mobility group box-1 protein inhibits regulatory T cell immune activity in liver failure in patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Lu-WenWang; Hui Chen; Zuo-Jiong Gong

    2010-01-01

    BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4+CD25+CD127low Treg cells among CD4+cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4+CD25+CD127low Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CD4+ cells were found in liver failure patients than in CHB patients (82.6±20.1 μg/L vs. 34.2±13.7 μg/L; 4.55±1.34% vs. 9.52± 3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were sti