WorldWideScience

Sample records for group gene expression

  1. Altered expression of polycomb group genes in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available The Polycomb group (PcG proteins play a critical role in histone mediated epigenetics which has been implicated in the malignant evolution of glioblastoma multiforme (GBM. By systematically interrogating The Cancer Genome Atlas (TCGA, we discovered widespread aberrant expression of the PcG members in GBM samples compared to normal brain. The most striking differences were upregulation of EZH2, PHF19, CBX8 and PHC2 and downregulation of CBX7, CBX6, EZH1 and RYBP. Interestingly, changes in EZH2, PHF19, CBX7, CBX6 and EZH1 occurred progressively as astrocytoma grade increased. We validated the aberrant expression of CBX6, CBX7, CBX8 and EZH2 in GBM cell lines by Western blotting and qRT-PCR, and further the aberrant expression of CBX6 in GBM tissue samples by immunohistochemical staining. To determine if there was functional significance to the diminished CBX6 levels in GBM, CBX6 was overexpressed in GBM cells resulting in decreased proliferative capacity. In conclusion, aberrant expression of PcG proteins in GBMs may play a role in the development or maintenance of the malignancy.

  2. Group A Streptococcus Gene Expression in Humans and Cynomolgus Macaques with Acute Pharyngitis

    OpenAIRE

    2003-01-01

    The molecular mechanisms used by group A Streptococcus (GAS) to survive on the host mucosal surface and cause acute pharyngitis are poorly understood. To provide new information about GAS host-pathogen interactions, we used real-time reverse transcription-PCR (RT-PCR) to analyze transcripts of 17 GAS genes in throat swab specimens taken from 18 pediatric patients with pharyngitis. The expression of known and putative virulence genes and regulatory genes (including genes in seven two-component...

  3. A phase synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data

    Directory of Open Access Journals (Sweden)

    Tcha Hong

    2008-01-01

    Full Text Available Abstract Background The previous studies of genome-wide expression patterns show that a certain percentage of genes are cell cycle regulated. The expression data has been analyzed in a number of different ways to identify cell cycle dependent genes. In this study, we pose the hypothesis that cell cycle dependent genes are considered as oscillating systems with a rhythm, i.e. systems producing response signals with period and frequency. Therefore, we are motivated to apply the theory of multivariate phase synchronization for clustering cell cycle specific genome-wide expression data. Results We propose the strategy to find groups of genes according to the specific biological process by analyzing cell cycle specific gene expression data. To evaluate the propose method, we use the modified Kuramoto model, which is a phase governing equation that provides the long-term dynamics of globally coupled oscillators. With this equation, we simulate two groups of expression signals, and the simulated signals from each group shares their own common rhythm. Then, the simulated expression data are mixed with randomly generated expression data to be used as input data set to the algorithm. Using these simulated expression data, it is shown that the algorithm is able to identify expression signals that are involved in the same oscillating process. We also evaluate the method with yeast cell cycle expression data. It is shown that the output clusters by the proposed algorithm include genes, which are closely associated with each other by sharing significant Gene Ontology terms of biological process and/or having relatively many known biological interactions. Therefore, the evaluation analysis indicates that the method is able to identify expression signals according to the specific biological process. Our evaluation analysis also indicates that some portion of output by the proposed algorithm is not obtainable by the traditional clustering algorithm with

  4. Expression,Imprinting,and Evolution of Rice Homologs of the Polycomb Group Genes

    Institute of Scientific and Technical Information of China (English)

    Ming Luo; Damien Platten; Abed Chaudhury; W.J.Peacock; Elizabeth S.Dennis

    2009-01-01

    Polycomb group proteins (PcG) play important roles in epigenetic regulation of gene expression.Some core PcG proteins,such as Enhancer of Zeste (E(z)),Suppressor of Zeste (12) (Su(z)12),and Extra Sex Combs (ESC),are conserved in plants.The rice genome contains two E(z)-like genes,OsiEZ1 and OsCLF,two homologs of Su(z)12,OsEMF2a and OsEMF2b,and two ESC-like genes,OsFIE1 and OsFIE2.OsFIE1 is expressed only in endosperm;the maternal copy is expressed while the paternal copy is not active.Other rice PcG genes are expressed in a wide range of tissues and are not imprinted in the endosperm.The two E(z)-like genes appear to have duplicated before the separation of the dicots and monocots;the two homologs of Su(z)12 possibly duplicated during the evolution of the Gramineae and the two ESC-like genes are likely to have duplicated in the ancestor of the grasses.No homologs of the Arabidopsis seed-expressed PeG genes MEA and FIS2 were identified in the rice genome.We have isolated T-DNA insertion lines in the rice homologs of three PcG genes.There is no autonomous endosperm development in these T-DNA insertion lines.One line with a T-DNA insertion in OsEMF2b displays pleiotropic phenotypes including altered flowering time and abnormal flower organs,suggesting important roles in rice development for this gene.

  5. Group A Streptococcus gene expression in humans and cynomolgus macaques with acute pharyngitis.

    Science.gov (United States)

    Virtaneva, Kimmo; Graham, Morag R; Porcella, Stephen F; Hoe, Nancy P; Su, Hua; Graviss, Edward A; Gardner, Tracie J; Allison, James E; Lemon, William J; Bailey, John R; Parnell, Michael J; Musser, James M

    2003-04-01

    The molecular mechanisms used by group A Streptococcus (GAS) to survive on the host mucosal surface and cause acute pharyngitis are poorly understood. To provide new information about GAS host-pathogen interactions, we used real-time reverse transcription-PCR (RT-PCR) to analyze transcripts of 17 GAS genes in throat swab specimens taken from 18 pediatric patients with pharyngitis. The expression of known and putative virulence genes and regulatory genes (including genes in seven two-component regulatory systems) was studied. Several known and previously uncharacterized GAS virulence gene regulators were highly expressed compared to the constitutively expressed control gene proS. To examine in vivo gene transcription in a controlled setting, three cynomolgus macaques were infected with strain MGAS5005, an organism that is genetically representative of most serotype M1 strains recovered from pharyngitis and invasive disease episodes in North America and Western Europe. These three animals developed clinical signs and symptoms of GAS pharyngitis and seroconverted to several GAS extracellular proteins. Real-time RT-PCR analysis of throat swab material collected at intervals throughout a 12-day infection protocol indicated that expression profiles of a subset of GAS genes accurately reflected the profiles observed in the human pediatric patients. The results of our study demonstrate that analysis of in vivo GAS gene expression is feasible in throat swab specimens obtained from infected human and nonhuman primates. In addition, we conclude that the cynomolgus macaque is a useful nonhuman primate model for the study of molecular events contributing to acute pharyngitis caused by GAS.

  6. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes.

    Science.gov (United States)

    Burton, Rachel A; Shirley, Neil J; King, Brendon J; Harvey, Andrew J; Fincher, Geoffrey B

    2004-01-01

    Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis.

  7. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis.

    Science.gov (United States)

    Baroux, Célia; Gagliardini, Valeria; Page, Damian R; Grossniklaus, Ueli

    2006-05-01

    The imprinted Arabidopsis Polycomb group (PcG) gene MEDEA (MEA), which is homologous to Enhancer of Zeste [E(Z)], is maternally required for normal seed development. Here we show that, unlike known mammalian imprinted genes, MEA regulates its own imprinted expression: It down-regulates the maternal allele around fertilization and maintains the paternal allele silent later during seed development. Autorepression of the maternal MEA allele is direct and independent of the MEA-FIE (FERTILIZATION-INDEPENDENT ENDOSPERM) PcG complex, which is similar to the E(Z)-ESC (Extra sex combs) complex of animals, suggesting a novel mechanism. A complex network of cross-regulatory interactions among the other known members of the MEA-FIE PcG complex implies distinct functions that are dynamically regulated during reproduction.

  8. A group of type I keratin genes on human chromosome 17: Characterization and expression

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M.; Chaudhury, A.R.; Shows, T.B.; LeBeau, M.M.; Fuchs, E.

    1988-02-01

    The human type I keratins K16 and K14 are coexpressed in a number of epithelial tissues, including esophagus, tongue, and hair follicles. The authors determined that two genes encoding K16 and three genes encoding K14 were clustered in two distinct segments of chromosome 17. The genes within each cluster were tightly linked, and large parts of the genome containing these genes have been recently duplicated. The sequences of the two K16 genes showed striking homology not only within the coding sequences, but also within the intron positions and sequences and extending at least 400 base pairs 5' upstream and 850 base pairs 3' downstream from these genes. Despite the strong homologies between these two genes, only one of the genes encoded a protein which assembled into keratin filaments when introduced into simple epithelial cells. While there were no obvious abnormalities in the sequence of the other gene, its promoter seemed to be significantly weaker, and even a hybrid gene with the other gene's promoter gave rise to a much reduced mRNA level after gene transfection. To demonstrate that the functional K16 gene that they identified was in fact responsible for the K16 expressed in human tissues, we made a polyclonal antiserum which recognized our functional K16 gene product in both denatured and filamentous form and which was specific for bona fide human K16.

  9. Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: A Children's Oncology Group study

    NARCIS (Netherlands)

    H. Kang; C.S. Wilson (Carla); R. Harvey (R.); I.-M. Chen (I.-Ming); M.H. Murphy (Maurice); S.R. Atlas (Susan); E.J. Bedrick (Edward); M. Devidas (Meenakshi); A.J. Carroll; B.W. Robinson (Blaine); R.W. Stam (Ronald); M.G. Valsecchi (Maria Grazia); R. Pieters (Rob); N.A. Heerema (Nyla); J.M. Hilden (Joanne); C.A. Felix (Carolyn); G.H. Reaman (Gregory); B. Camitta (Bruce); N.J. Winick (Naomi); W.L. Carroll (William); S.D. Dreyer; S.P. Hunger (Stephen); S.F. Willman (Sami )

    2012-01-01

    textabstractGene expression profiling was performed on 97 cases of infant ALL from Children's Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expressio

  10. Expression of bcl-2 gene family during resection induced liver regeneration:Comparison between hepatectomized and sham groups

    Institute of Scientific and Technical Information of China (English)

    Kamil Can Akcali; Aydin Dalgic; Ahmet Ucar; Khemaeis Ben Haj; Dilek Guvenc

    2004-01-01

    AIM: During liver regeneration cellular proliferation and apoptosis result in tissue remodeling to restore normal hepatic mass and structure. Main regulators of the apoptotic machinery are the Bcl-2 family proteins but their roles are not well defined throughout the liver regeneration. We aimed to analyze the expression levels of bcl-2gene family members during resection induced liver regeneration.METHODS: We performed semi-quantitative RT-PCR to examine the expression level of bak, bax, bcl-2 and bcl-xL in 70% hepatectomized rat livers during the whole regeneration process and compared to that of the sham and normal groups.RESULTS: The expression of bakand baxwas decreased whereas that of bcl-2and bcl-XL was increased in hepatectomized animals compared to normal liver at most time points. We also reported for the first time that sham group of animals had statistically significant higher expression of bakand bax than hepatectomized animals. In addition, the area under the curve (AUC) values of these genes was larger in sham groups than the hepatectomized groups.CONCLUSION: The expression changes of bak, bax, bcl-2 and bcl-,XL genes are altered not only due to regeneration,but also due to effects of surgical operations.

  11. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Joshi NV

    2009-01-01

    Full Text Available Abstract Background Regulation of gene expression in Plasmodium falciparum (Pf remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS; this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.

  12. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1.

    Science.gov (United States)

    Köhler, Claudia; Hennig, Lars; Spillane, Charles; Pien, Stephane; Gruissem, Wilhelm; Grossniklaus, Ueli

    2003-06-15

    The Polycomb-group (PcG) proteins MEDEA, FERTILIZATION INDEPENDENT ENDOSPERM, and FERTILIZATION INDEPENDENT SEED2 regulate seed development in Arabidopsis by controlling embryo and endosperm proliferation. All three of these FIS-class proteins are likely subunits of a multiprotein PcG complex, which epigenetically regulates downstream target genes that were previously unknown. Here we show that the MADS-box gene PHERES1 (PHE1) is commonly deregulated in the fis-class mutants. PHE1 belongs to the evolutionarily ancient type I class of MADS-box proteins that have not yet been assigned any function in plants. Both MEDEA and FIE directly associate with the promoter region of PHE1, suggesting that PHE1 expression is epigenetically regulated by PcG proteins. PHE1 is expressed transiently after fertilization in both the embryo and the endosperm; however, it remains up-regulated in the fis mutants, consistent with the proposed function of the FIS genes as transcriptional repressors. Reduced expression levels of PHE1 in medea mutant seeds can suppress medea seed abortion, indicating a key role of PHE1 repression in seed development. PHE1 expression in a hypomethylated medea mutant background resembles the wild-type expression pattern and is associated with rescue of the medea seed-abortion phenotype. In summary, our results demonstrate that seed abortion in the medea mutant is largely mediated by deregulated expression of the type I MADS-box gene PHE1.

  13. Hierarchy in the home cage affects behaviour and gene expression in group-housed C57BL/6 male mice.

    Science.gov (United States)

    Horii, Yasuyuki; Nagasawa, Tatsuhiro; Sakakibara, Hiroyuki; Takahashi, Aki; Tanave, Akira; Matsumoto, Yuki; Nagayama, Hiromichi; Yoshimi, Kazuto; Yasuda, Michiko T; Shimoi, Kayoko; Koide, Tsuyoshi

    2017-08-01

    Group-housed male mice exhibit aggressive behaviour towards their cage mates and form a social hierarchy. Here, we describe how social hierarchy in standard group-housed conditions affects behaviour and gene expression in male mice. Four male C57BL/6 mice were kept in each cage used in the study, and the social hierarchy was determined from observation of video recordings of aggressive behaviour. After formation of a social hierarchy, the behaviour and hippocampal gene expression were analysed in the mice. Higher anxiety- and depression-like behaviours and elevated gene expression of hypothalamic corticotropin-releasing hormone and hippocampal serotonin receptor subtypes were observed in subordinate mice compared with those of dominant mice. These differences were alleviated by orally administering fluoxetine, which is an antidepressant of the selective serotonin reuptake inhibitor class. We concluded that hierarchy in the home cage affects behaviour and gene expression in male mice, resulting in anxiety- and depression-like behaviours being regulated differently in dominant and subordinate mice.

  14. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    Institute of Scientific and Technical Information of China (English)

    William M Scovell

    2016-01-01

    High mobility group protein 1(HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome(N) in a nonenzymatic,adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor(ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes(N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed(1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and(2) knock down of HMGB1 expression by siR NA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.

  15. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.

    Science.gov (United States)

    Li, Hua; Wang, Lei; Yang, Zhi Min

    2015-01-01

    Iron (Fe) is an essential element for plant growth and development. Iron deficiency results in abnormal metabolisms from respiration to photosynthesis. Exploration of Fe-deficient responsive genes and their networks is critically important to understand molecular mechanisms leading to the plant adaptation to soil Fe-limitation. Co-expression genes are a cluster of genes that have a similar expression pattern to execute relatively biological functions at a stage of development or under a certain environmental condition. They may share a common regulatory mechanism. In this study, we investigated Fe-starved-related co-expression genes from Arabidopsis. From the biological process GO annotation of TAIR (The Arabidopsis Information Resource), 180 iron-deficient responsive genes were detected. Using ATTED-II database, we generated six gene co-expression networks. Among these, two modules of PYE and IRT1 were successfully constructed. There are 30 co-expression genes that are incorporated in the two modules (12 in PYE-module and 18 in IRT1-module). Sixteen of the co-expression genes were well characterized. The remaining genes (14) are poorly or not functionally identified with iron stress. Validation of the 14 genes using real-time PCR showed differential expression under iron-deficiency. Most of the co-expression genes (23/30) could be validated in pye and fit mutant plants with iron-deficiency. We further identified iron-responsive cis-elements upstream of the co-expression genes and found that 22 out of 30 genes contain the iron-responsive motif IDE1. Furthermore, some auxin and ethylene-responsive elements were detected in the promoters of the co-expression genes. These results suggest that some of the genes can be also involved in iron stress response through the phytohormone-responsive pathways.

  16. Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nicola Horstmann

    2014-05-01

    Full Text Available Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR protein from the major human pathogen group A Streptococcus (GAS influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53 in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65 as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk. Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A or had functional constitutive phosphorylation at T65 (CovR-T65E had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data

  17. Site-specific expression of Polycomb-group genes encoding the HPC-HPH complex in clinically defined primary nodal and cutaneous large B cells lymphomas

    NARCIS (Netherlands)

    Raaphorst, F.M.; Vermeer, M.; Fieret, E.; Blokzijl, T.; Dukers, N.H.T.M.; Sewalt, R.G.A.B.; Otte, A.P.; Willemze, R.; Meijer, C.J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and

  18. Conserved and muscle-group-specific gene expression patterns shape postnatal development of the novel extraocular muscle phenotype.

    Science.gov (United States)

    Cheng, Georgiana; Merriam, Anita P; Gong, Bendi; Leahy, Patrick; Khanna, Sangeeta; Porter, John D

    2004-07-08

    Current models in skeletal muscle biology do not fully account for the breadth, causes, and consequences of phenotypic variation among skeletal muscle groups. The muscle allotype concept arose to explain frank differences between limb, masticatory, and extraocular (EOM) muscles, but there is little understanding of the developmental regulation of the skeletal muscle phenotypic range. Here, we used morphological and DNA microarray analyses to generate a comprehensive temporal profile for rat EOM development. Based upon coordinate regulation of morphologic/gene expression traits with key events in visual, vestibular, and oculomotor system development, we propose a model that the EOM phenotype is a consequence of extrinsic factors that are unique to its local environment and sensory-motor control system, acting upon a novel myoblast lineage. We identified a broad spectrum of differences between the postnatal transcriptional patterns of EOM and limb muscle allotypes, including numerous transcripts not traditionally associated with muscle fiber/group differences. Several transcription factors were differentially regulated and may be responsible for signaling muscle allotype specificity. Significant differences in cellular energetic mechanisms defined the EOM and limb allotypes. The allotypes were divergent in many other functional transcript classes that remain to be further explored. Taken together, we suggest that the EOM allotype is the consequence of tissue-specific mechanisms that direct expression of a limited number of EOM-specific transcripts and broader, incremental differences in transcripts that are conserved by the two allotypes. This represents an important first step in dissecting allotype-specific regulatory mechanisms that may, in turn, explain differential muscle group sensitivity to a variety of metabolic and neuromuscular diseases.

  19. Japanese medaka Hox paralog group 2: insights into the evolution of Hox PG2 gene composition and expression in the Osteichthyes.

    Science.gov (United States)

    Davis, Adam; Scemama, Jean-Luc; Stellwag, Edmund J

    2008-12-15

    Hox paralog group 2 (PG2) genes function to specify the development of the hindbrain and pharyngeal arch-derived structures in the Osteichthyes. In this article, we describe the cDNA cloning and embryonic expression analysis of Japanese medaka (Oryzias latipes) Hox PG2 genes. We show that there are only two functional canonical Hox genes, hoxa2a and b2a, and that a previously identified hoxa2b gene is a transcribed pseudogene, psihoxa2b. The functional genes, hoxa2a and b2a, were expressed in developing rhombomeres and pharyngeal arches in a manner that was relatively well conserved compared with zebrafish (Danio rerio) but differed significantly from orthologous striped bass (Morone saxatilis) and Nile tilapia (Oreochromis niloticus) genes, which, we suggest, may be owing to effects of post-genome duplication loss of a Hox PG2 gene in the medaka and zebrafish lineages. psihoxa2b was expressed at readily detectable levels in several noncanonical Hox expression domains, including the ventral aspect of the neural tube, the pectoral fin buds and caudal-most region of the embryonic trunk, indicative that regulatory control elements needed for spatio-temporal expression have diverged from their ancestral counterparts. Comparative expression analyses showed medaka hoxa2a and b2a expression in the 2nd pharyngeal arch (PA2) beyond the onset of chondrogenesis, which, according to previous hypotheses, suggests these genes function redundantly as selector genes of PA2 identity. We conclude that Hox PG2 gene composition and expression have diverged significantly during osteichthyan evolution and that this divergence in teleosts may be related to lineage-dependent differential gene loss following an actinopterygian-specific whole genome duplication.

  20. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    Directory of Open Access Journals (Sweden)

    Ana Barat

    2015-11-01

    Full Text Available Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  1. The fate of tandemly duplicated genes assessed by the expression analysis of a group of Arabidopsis thaliana RING-H2 ubiquitin ligase genes of the ATL family.

    Science.gov (United States)

    Aguilar-Hernández, Victor; Guzmán, Plinio

    2014-03-01

    Gene duplication events exert key functions on gene innovations during the evolution of the eukaryotic genomes. A large portion of the total gene content in plants arose from tandem duplications events, which often result in paralog genes with high sequence identity. Ubiquitin ligases or E3 enzymes are components of the ubiquitin proteasome system that function during the transfer of the ubiquitin molecule to the substrate. In plants, several E3s have expanded in their genomes as multigene families. To gain insight into the consequences of gene duplications on the expansion and diversification of E3s, we examined the evolutionary basis of a cluster of six genes, duplC-ATLs, which arose from segmental and tandem duplication events in Brassicaceae. The assessment of the expression suggested two patterns that are supported by lineage. While retention of expression domains was observed, an apparent absence or reduction of expression was also inferred. We found that two duplC-ATL genes underwent pseudogenization and that, in one case, gene expression is probably regained. Our findings provide insights into the evolution of gene families in plants, defining key events on the expansion of the Arabidopsis Tóxicos en Levadura family of E3 ligases.

  2. Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values.

    Science.gov (United States)

    Bhattacharya, Anindya; De, Rajat K

    2010-08-01

    Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to

  3. Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression

    Directory of Open Access Journals (Sweden)

    Konu Ozlen

    2008-12-01

    Full Text Available Abstract Background SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of SLIT-ROBO genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC is missing. Hence, we quantified SLIT-ROBO transcripts in HCC cell lines, and in normal and tumor tissues from liver. Methods Expression of SLIT-ROBO family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test. Results Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: ROBO1, ROBO2, SLIT1 in one cluster, and ROBO4, SLIT2, SLIT3 in the other, respectively. Moreover, SLIT-ROBO expression predicted AFP-dependent subgrouping of HCC cell lines, but not that of liver tissues. ROBO1 and ROBO2 were significantly up-regulated, whereas SLIT3 was significantly down-regulated in cell lines with high-AFP background. When compared to normal liver tissue, ROBO1 was found to be significantly overexpressed, while ROBO4 was down-regulated in HCC. We also observed that ROBO1 and SLIT2 differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, ROBO4 could discriminate poorly differentiated HCC from other subgroups. Conclusion The present study is the first in comprehensive and quantitative evaluation of SLIT-ROBO family gene expression in HCC, and suggests that the expression of SLIT-ROBO genes is regulated in hepatocarcinogenesis. Our results implicate that SLIT-ROBO transcription profile is bi-modular in nature, and

  4. In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles

    Science.gov (United States)

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc

    2014-01-01

    ABSTRACT mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. PMID:25096872

  5. Differential expression of immune-related cytokine genes in response to J group avian leukosis virus infection in vivo.

    Science.gov (United States)

    Gao, Yanni; Liu, Yongzhen; Guan, Xiaolu; Li, Xiaofei; Yun, Bingling; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Wang, Xiaomei; Gao, Yulong

    2015-03-01

    Infection with J group avian leukosis virus (ALV-J) can result in immunosuppression and subsequently increased susceptibility to secondary infection. The innate immune system is the first line defense system in prevention of further bacterial and viral infections. Cytokines play key roles in the innate immune system. In this study, we used RT-qPCR technology to test the cytokine mRNA expression levels in various immune tissues, including the spleen, bursa of fabricius and cecal tonsil, in the days following ALV-J infection. The results indicated that in the infected group, the expression levels of interleukin-6 (IL-6), IL-18, interferon-α (IFN-α) and IFN-γ significantly increased in the spleen and reached peak levels that were thousandfolds higher than baselines at 9-12 days post-infection (d.p.i.). The levels in the bursa of fabricius slightly increased, and the levels in the cecal tonsil were not significantly altered. Moreover, the pattern of the expression of these three cytokines in the spleens of the infected group was similar to the pattern of viremia of this group. These results suggest that the spleen plays an important role in the interaction between ALV-J infection and the innate immune system. This study contributes to the understanding of innate immune responses to ALV-J infection and also elucidates the mechanisms of the pathogenicity of ALV-J in chickens.

  6. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection.

    Directory of Open Access Journals (Sweden)

    Philipp Rausch

    2015-07-01

    Full Text Available Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2 are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.

  7. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection.

    Science.gov (United States)

    Rausch, Philipp; Steck, Natalie; Suwandi, Abdulhadi; Seidel, Janice A; Künzel, Sven; Bhullar, Kirandeep; Basic, Marijana; Bleich, Andre; Johnsen, Jill M; Vallance, Bruce A; Baines, John F; Grassl, Guntram A

    2015-07-01

    Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.

  8. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  9. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL gene family

    Directory of Open Access Journals (Sweden)

    Schmid Ralf

    2008-02-01

    Full Text Available Abstract Background The Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS domain is found across phyla and is a major structural feature of insect allergens, mammalian sperm proteins and parasitic nematode secreted molecules. Proteins containing this domain are implicated in diverse biological activities and may be important for chronic host/parasite interactions. Results We report the first description of an SCP/TAPS gene family (Schistosoma mansoni venom allergen-like (SmVALs in the medically important Platyhelminthes (class Trematoda and describe individual members' phylogenetic relationships, genomic organization and life cycle expression profiles. Twenty-eight SmVALs with complete SCP/TAPS domains were identified and comparison of their predicted protein features and gene structures indicated the presence of two distinct sub-families (group 1 & group 2. Phylogenetic analysis demonstrated that this group 1/group 2 split is zoologically widespread as it exists across the metazoan sub-kingdom. Chromosomal localisation and PCR analysis, coupled to inspection of the current S. mansoni genomic assembly, revealed that many of the SmVAL genes are spatially linked throughout the genome. Quantitative lifecycle expression profiling demonstrated distinct SmVAL expression patterns, including transcripts specifically associated with lifestages involved in definitive host invasion, transcripts restricted to lifestages involved in the invasion of the intermediate host and transcripts ubiquitously expressed. Analysis of SmVAL6 transcript diversity demonstrated statistically significant, developmentally regulated, alternative splicing. Conclusion Our results highlight the existence of two distinct SCP/TAPS protein types within the Platyhelminthes and across taxa. The extensive lifecycle expression analysis indicates several SmVAL transcripts are upregulated in infective stages of the parasite, suggesting that these particular protein products may be linked

  10. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  11. Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish.

    Science.gov (United States)

    Lee, P T; Bird, S; Zou, J; Martin, S A M

    2017-06-01

    The acute phase response (APR) is an early innate immune function that is initiated by inflammatory signals, leading to the release of acute phase proteins to the bloodstream to re-establish homeostasis following microbial infection. In this study we analysed the Atlantic salmon (Salmo salar) whole-genome database and identified five C-reactive protein (CRP)/serum amyloid P component (SAP) like molecules namely CRP/SAP-1a, CRP/SAP-1b, CRP/SAP-1c, CRP/SAP-2 and CRP/SAP-3. These CRP/SAP genes formed two distinct sub-families, a universal group (group I) present in all vertebrates and a fish/amphibian specific group (group II). Salmon CRP/SAP-1a, CRP/SAP-1b and CRP/SAP-1c and CRP/SAP-2 belong to the group I family whilst salmon CRP/SAP-3 is a member of group II. Gene expression analysis showed that the salmon CRP/SAP-1a as well as serum amyloid A-5 (SAA-5), one of the major acute phase proteins, were significantly up-regulated by recombinant cytokines (rIL-1β and rIFNγ) in primary head kidney cells whilst the other four CRP/SAPs remained refractory. Furthermore, SAA-5 was produced as the main acute phase protein (APP) in Atlantic salmon challenged with Aeromonas salmonicida (aroA(-) strain) whilst salmon CRP/SAPs remained unaltered. Overall, these data illustrate the potential different functions of expanded salmon CRP/SAPs to their mammalian homologues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  13. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    Science.gov (United States)

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  14. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  15. PROKARYOTIC EXPRESSION AND BIOACTIVITY EVALUATION OF THE CHIMERIC GENE DERIVED FROM THE GROUP 1 ALLERGENS OF DUST MITES.

    Science.gov (United States)

    Zhan, Xiaodong; Li, Chaopin; Guo, Wei; Jiang, Yuxin

    2015-12-01

    Antecedentes: se reconstituyó con éxito el gen del grupo 1 alérgenos de los ácaros del polvo, y obtuvo un conjunto de genes barajadas. Con el fin de verificar la predicción en el gen quimérico, hemos clonado tentativamente R8 en el vector que se expresó prokaryoticly, purificó y se evaluó por sus actividades-bio. Métodos: el producto expresado se detectó por SDS-PAGE y la proteína diana se purificó. La proteína purificada R8 se detectó por ELISA. Setenta y cinco ratones BALB/ c se dividieron en 5 grupos, a saber: PBS, rDer f1, rDer p1, R8 y el grupo de asma. Los ratones fueron tratados con alérgenos de ácaros del polvo a los 0, 7, 14 días mediante inyección intraperitoneal y inhaladas desafío como aerosol en día 21 durante 7 días. La inmunoterapia específica para el alérgeno se realizó utilizando rDer f1, rDer p1 y alérgenos R8, respectivamente. El nivel de IFN e IL-4 en BALF se detectó por ELISA. Resultados: el gen quimérico R8 se expresó con una banda de aproximadamente Mr 35000. En comparación con los grupos de rDer f 1 y rDer p 1 [(80,44 ± 15,50) y (90,79 ± 10,38) μg/ml, respectivamente], la capacidad de unión a IgE de la proteína R8 (37,03 ± 12,46) μg/ml fue estadísticamente inferior (P.

  16. A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns.

    Science.gov (United States)

    Wagstaff, Carol; Bramke, Irene; Breeze, Emily; Thornber, Sarah; Harrison, Elizabeth; Thomas, Brian; Buchanan-Wollaston, Vicky; Stead, Tony; Rogers, Hilary

    2010-06-01

    Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses.

  17. Gene Expression Patterns in Ovarian Carcinomas

    Science.gov (United States)

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  18. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  19. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    Science.gov (United States)

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  20. The flow of gene expression.

    Science.gov (United States)

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  1. Clinically Relevant Subsets Identified by Gene Expression Patterns Support a Revised Ontogenic Model of Wilms Tumor: A Children's Oncology Group Study

    Directory of Open Access Journals (Sweden)

    Samantha Gadd

    2012-08-01

    Full Text Available Wilms tumors (WT have provided broad insights into the interface between development and tumorigenesis. Further understanding is confounded by their genetic, histologic, and clinical heterogeneity, the basis of which remains largely unknown. We evaluated 224 WT for global gene expression patterns; WT1, CTNNB1, and WTX mutation; and 11p15 copy number and methylation patterns. Five subsets were identified showing distinct differences in their pathologic and clinical features: these findings were validated in 100 additional WT. The gene expression pattern of each subset was compared with published gene expression profiles during normal renal development. A novel subset of epithelial WT in infants lacked WT1, CTNNB1, and WTX mutations and nephrogenic rests and displayed a gene expression pattern of the postinduction nephron, and none recurred. Three subsets were characterized by a low expression of WT1 and intralobar nephrogenic rests. These differed in their frequency of WT1 and CTNNB1 mutations, in their age, in their relapse rate, and in their expression similarities with the intermediate mesoderm versus the metanephric mesenchyme. The largest subset was characterized by biallelic methylation of the imprint control region 1, a gene expression profile of the metanephric mesenchyme, and both interlunar and perilobar nephrogenic rests. These data provide a biologic explanation for the clinical and pathologic heterogeneity seen within WT and enable the future development of subset-specific therapeutic strategies. Further, these data support a revision of the current model of WT ontogeny, which allows for an interplay between the type of initiating event and the developmental stage in which it occurs.

  2. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  3. Cloning and expression of the xynA1 gene encoding a xylanase of the GH10 group in Caulobacter crescentus.

    Science.gov (United States)

    Graciano, Luciana; Corrêa, Juliana Moço; Vieira, Fabíola Giovanna Nesello; Bosetto, Adilson; Loth, Eduardo Alexandre; Kadowaki, Marina Kimiko; Gandra, Rinaldo Ferreira; Simão, Rita de Cássia Garcia

    2015-04-01

    Caulobacter crescentus (NA1000 strain) are aquatic bacteria that can live in environments of low nutritional quality and present numerous genes that encode enzymes involved in plant cell wall deconstruction, including five genes for β-xylosidases (xynB1-xynB5) and three genes for xylanases (xynA1-xynA3). The overall activity of xylanases in the presence of different agro-industrial residues was evaluated, and it was found that the residues from the processing of corn were the most efficient in inducing bacterial xylanases. The xynA1 gene (CCNA_02894) encoding a predicted xylanase of group 10 of glyco-hydrolases (GH10) that was efficiently overexpressed in Escherichia coli LMG194 using 0.02 % arabinose, after cloning into the vector pJet1.2blunt and subcloning into the expression vector pBAD/gIII, provided a fusion protein that contained carboxy-terminal His-tags, named XynA1. The characterization of pure XynA1 showed an enzymatic activity of 18.26 U mL(-1) and a specific activity of 2.22 U mg-(1) in the presence of xylan from beechwood as a substrate. XynA1 activity was inhibited by EDTA and metal ions such as Cu(2+) and Mg(2+). By contrast, β-mercaptoethanol, dithiothreitol (DTT), and Ca(2+) induced recombinant enzyme activity. Kinetic data for XynA1 revealed K M and V max values of 3.77 mg mL-(1) and 10.20 μM min-(1), respectively. Finally, the enzyme presented an optimum pH of 6 and an optimum temperature of 50 °C. In addition, 80 % of the activity of XynA1 was maintained at 50 °C for 4 h of incubation, suggesting a thermal stability for the biotechnological processes. This work is the first study concerning the cloning, overexpression, and enzymatic characterization of C. crescentus xylanase.

  4. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  5. Gene for ataxia-telangiectasia complementation group D (ATDC)

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P. (San Francisco, CA); Painter, Robert B. (Burlingame, CA); Kapp, Leon N. (San Rafael, CA); Yu, Loh-Chung (Redwood City, CA)

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.

  6. Gene for ataxia-telangiectasia complementation group D (ATDC)

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.

  7. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  8. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  9. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern.

    Science.gov (United States)

    Hollink, Iris H I M; van den Heuvel-Eibrink, Marry M; Arentsen-Peters, Susan T C J M; Pratcorona, Marta; Abbas, Saman; Kuipers, Jenny E; van Galen, Janneke F; Beverloo, H Berna; Sonneveld, Edwin; Kaspers, Gert-Jan J L; Trka, Jan; Baruchel, Andre; Zimmermann, Martin; Creutzig, Ursula; Reinhardt, Dirk; Pieters, Rob; Valk, Peter J M; Zwaan, C Michel

    2011-09-29

    Translocations involving nucleoporin 98kD (NUP98) on chromosome 11p15 occur at relatively low frequency in acute myeloid leukemia (AML) but can be missed with routine karyotyping. In this study, high-resolution genome-wide copy number analyses revealed cryptic NUP98/NSD1 translocations in 3 of 92 cytogenetically normal (CN)-AML cases. To determine their exact frequency, we screened > 1000 well-characterized pediatric and adult AML cases using a NUP98/NSD1-specific RT-PCR. Twenty-three cases harbored the NUP98/NSD1 fusion, representing 16.1% of pediatric and 2.3% of adult CN-AML patients. NUP98/NSD1-positive AML cases had significantly higher white blood cell counts (median, 147 × 10⁹/L), more frequent FAB-M4/M5 morphology (in 63%), and more CN-AML (in 78%), FLT3/internal tandem duplication (in 91%) and WT1 mutations (in 45%) than NUP98/NSD1-negative cases. NUP98/NSD1 was mutually exclusive with all recurrent type-II aberrations. Importantly, NUP98/NSD1 was an independent predictor for poor prognosis; 4-year event-free survival was < 10% for both pediatric and adult NUP98/NSD1-positive AML patients. NUP98/NSD1-positive AML showed a characteristic HOX-gene expression pattern, distinct from, for example, MLL-rearranged AML, and the fusion protein was aberrantly localized in nuclear aggregates, providing insight into the leukemogenic pathways of these AMLs. Taken together, NUP98/NSD1 identifies a previously unrecognized group of young AML patients, with distinct characteristics and dismal prognosis, for whom new treatment strategies are urgently needed.

  10. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  11. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each p...... with a high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC.......Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  12. HPV status, cancer stem cell marker expression, hypoxia gene signatures and tumour volume identify good prognosis subgroups in patients with HNSCC after primary radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG)

    DEFF Research Database (Denmark)

    Linge, Annett; Lohaus, Fabian; Löck, Steffen

    2016-01-01

    carcinoma (HNSCC), who received primary radiochemotherapy (RCTx). MATERIALS AND METHODS: For 158 patients with locally advanced HNSCC of the oral cavity, oropharynx or hypopharynx who were treated at six DKTK partner sites, the impact of tumour volume, HPV DNA, p16 overexpression, p53 expression, CSC marker...... expression and hypoxia-associated gene signatures on outcome of primary RCTx was retrospectively analyzed. The primary endpoint of this study was loco-regional control (LRC). RESULTS: Univariate Cox regression revealed a significant impact of tumour volume, p16 overexpression, and SLC3A2 and CD44 protein......-negative group). Logistic modelling showed that inclusion of CD44 protein expression and p16 overexpression significantly improved the performance to predict LRC at 2years compared to the model with tumour volume alone. CONCLUSIONS: Tumour volume, HPV status, CSC marker expression and hypoxia gene...

  13. Gene-Transformation-Induced Changes in Chemical Functional Group Features and Molecular Structure Conformation in Alfalfa Plants Co-Expressing Lc-bHLH and C1-MYB Transcriptive Flavanoid Regulatory Genes: Effects of Single-Gene and Two-Gene Insertion

    Directory of Open Access Journals (Sweden)

    Ravindra G. Heendeniya

    2017-03-01

    Full Text Available Alfalfa (Medicago sativa L. genotypes transformed with Lc-bHLH and Lc transcription genes were developed with the intention of stimulating proanthocyanidin synthesis in the aerial parts of the plant. To our knowledge, there are no studies on the effect of single-gene and two-gene transformation on chemical functional groups and molecular structure changes in these plants. The objective of this study was to use advanced molecular spectroscopy with multivariate chemometrics to determine chemical functional group intensity and molecular structure changes in alfalfa plants when co-expressing Lc-bHLH and C1-MYB transcriptive flavanoid regulatory genes in comparison with non-transgenic (NT and AC Grazeland (ACGL genotypes. The results showed that compared to NT genotype, the presence of double genes (Lc and C1 increased ratios of both the area and peak height of protein structural Amide I/II and the height ratio of α-helix to β-sheet. In carbohydrate-related spectral analysis, the double gene-transformed alfalfa genotypes exhibited lower peak heights at 1370, 1240, 1153, and 1020 cm−1 compared to the NT genotype. Furthermore, the effect of double gene transformation on carbohydrate molecular structure was clearly revealed in the principal component analysis of the spectra. In conclusion, single or double transformation of Lc and C1 genes resulted in changing functional groups and molecular structure related to proteins and carbohydrates compared to the NT alfalfa genotype. The current study provided molecular structural information on the transgenic alfalfa plants and provided an insight into the impact of transgenes on protein and carbohydrate properties and their molecular structure’s changes.

  14. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  15. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  16. Zipf's Law in Gene Expression

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  17. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies...... an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies...

  18. Paternally expressed genes predominate in the placenta.

    Science.gov (United States)

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.

  19. Prognostic significance of ESR1 gene amplification, mRNA/protein expression and functional profiles in high-risk early breast cancer: a translational study of the Hellenic Cooperative Oncology Group (HeCOG.

    Directory of Open Access Journals (Sweden)

    George Pentheroudakis

    Full Text Available BACKGROUND: Discrepant data have been published on the incidence and prognostic significance of ESR1 gene amplification in early breast cancer. PATIENTS AND METHODS: Formalin-fixed paraffin-embedded tumor blocks were collected from women with early breast cancer participating in two HeCOG adjuvant trials. Messenger RNA was studied by quantitative PCR, ER protein expression was centrally assessed using immunohistochemistry (IHC and ESR1 gene copy number by dual fluorescent in situ hybridization probes. RESULTS: In a total of 1010 women with resected node-positive early breast adenocarcinoma, the tumoral ESR1/CEP6 gene ratio was suggestive of deletion in 159 (15.7%, gene gain in 551 (54.6% and amplification in 42 cases (4.2%, with only 30 tumors (3% harboring five or more ESR1 copies. Gene copy number ratio showed a significant, though weak correlation to mRNA and protein expression (Spearman's Rho <0.23, p = 0.01. ESR1 clusters were observed in 9.5% (57 gain, 38 amplification of cases. In contrast to mRNA and protein expression, which were favorable prognosticators, gene copy number changes did not obtain prognostic significance. When ESR1/CEP6 gene ratio was combined with function (as defined by ER protein and mRNA expression in a molecular classifier, the Gene Functional profile, it was functional status that impacted on prognosis. In univariate analysis, patients with functional tumors (positive ER protein expression and gene ratio normal or gain/amplification fared better than those with non-functional tumors with ESR1 gain (HR for relapse or death 0.49-0.64, p = 0.003. Significant interactions were observed between gene gain/amplification and paclitaxel therapy (trend for DFS benefit from paclitaxel only in patients with ESR1 gain/amplification, p = 0.066 and Gene Functional profile with HER2 amplification (Gene Functional profile prognostic only in HER2-normal cases, p = 0.029. CONCLUSIONS: ESR1 gene deletion and

  20. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  1. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns...... that encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed....... Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns...

  2. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  3. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  4. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene ...

  5. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  6. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well.

  7. Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients--a systems biology approach to clinical categorization.

    Science.gov (United States)

    Vanhoutte, Kurt; de Asmundis, Carlo; Francesconi, Anna; Figysl, Jurgen; Steurs, Griet; Boussy, Tim; Roos, Markus; Mueller, Andreas; Massimo, Lucio; Paparella, Gaetano; Van Caelenberg, Kristien; Chierchia, Gian Battista; Sarkozy, Andrea; Terradellas, Pedro Brugada Y; Zizi, Martin

    2009-01-01

    Atrial fibrillation (AF) is a frequent chronic dysrythmia with an incidence that increases with age (>40). Because of its medical and socio-economic impacts it is expected to become an increasing burden on most health care systems. AF is a multi-factorial disease for which the identification of subtypes is warranted. Novel approaches based on the broad concepts of systems biology may overcome the blurred notion of normal and pathological phenotype, which is inherent to high throughput molecular arrays analysis. Here we apply an internal contrast algorithm on AF patient data with an analytical focus on potential entry pathways into the disease. We used a RMA (Robust Multichip Average) normalized Affymetrix micro-array data set from 10 AF patients (geo_accession #GSE2240). Four series of probes were selected based on physiopathogenic links with AF entryways: apoptosis (remodeling), MAP kinase (cell remodeling), OXPHOS (ability to sustain hemodynamic workload) and glycolysis (ischemia). Annotated probe lists were polled with Bioconductor packages in R (version 2.7.1). Genetic profile contrasts were analysed with hierarchical clustering and principal component analysis. The analysis revealed distinct patient groups for all probe sets. A substantial part (54% till 67%) of the variance is explained in the first 2 principal components. Genes in PC1/2 with high discriminatory value were selected and analyzed in detail. We aim for reliable molecular stratification of AF. We show that stratification is possible based on physiologically relevant gene sets. Genes with high contrast value are likely to give pathophysiological insight into permanent AF subtypes.

  8. Classification with binary gene expressions

    OpenAIRE

    Tuna, Salih; Niranjan, Mahesan

    2009-01-01

    Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how p...

  9. The Gene Expression Omnibus database

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  10. Predicting metastasized seminoma using gene expression.

    Science.gov (United States)

    Ruf, Christian G; Linbecker, Michael; Port, Matthias; Riecke, Armin; Schmelz, Hans U; Wagner, Walter; Meineke, Victor; Abend, Michael

    2012-07-01

    Treatment options for testis cancer depend on the histological subtype as well as on the clinical stage. An accurate staging is essential for correct treatment. The 'golden standard' for staging purposes is CT, but occult metastasis cannot be detected with this method. Currently, parameters such as primary tumour size, vessel invasion or invasion of the rete testis are used for predicting occult metastasis. Last year the association of these parameters with metastasis could not be validated in a new independent cohort. Gene expression analysis in testis cancer allowed discrimination between the different histological subtypes (seminoma and non-seminoma) as well as testis cancer and normal testis tissue. In a two-stage study design we (i) screened the whole genome (using human whole genome microarrays) for candidate genes associated with the metastatic stage in seminoma and (ii) validated and quantified gene expression of our candidate genes (real-time quantitative polymerase chain reaction) on another independent group. Gene expression measurements of two of our candidate genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2]) examined in primary testis cancers made it possible to discriminate the metastasis status in seminoma. The discriminative ability of the genes exceeded the predictive significance of currently used histological/pathological parameters. Based on gene expression analysis the present study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance. To evaluate the usefulness of gene expression profiling for predicting metastatic status in testicular seminoma at the time of first diagnosis compared with established clinical and pathological parameters. Total RNA was isolated from testicular tumours of metastasized patients (12 patients, clinical stage IIa-III), non-metastasized patients (40, clinical stage I) and adjacent 'normal' tissue

  11. Gene expression throughout a vertebrate's embryogenesis

    Directory of Open Access Journals (Sweden)

    Hinton David E

    2011-02-01

    Full Text Available Abstract Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases. Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development.

  12. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  13. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  14. Extracting expression modules from perturbational gene expression compendia

    Directory of Open Access Journals (Sweden)

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  15. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  16. The Low Noise Limit in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Roy D Dar

    Full Text Available Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1 a global noise floor uniformly imposed on all genes by expression bursting; and (2 high noise distributed to only a select group of genes.

  17. Topological features in cancer gene expression data.

    Science.gov (United States)

    Lockwood, S; Krishnamoorthy, B

    2015-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topological structures that capture persistent, i.e., topologically significant, features of the data set in its first homology group. Furthermore, we demonstrate that many members of these loops have been implicated for cancer biogenesis in scientific literature. We illustrate our method on five different data sets belonging to brain, breast, leukemia, and ovarian cancers.

  18. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  19. Noise in eukaryotic gene expression

    Science.gov (United States)

    Blake, William J.; KÆrn, Mads; Cantor, Charles R.; Collins, J. J.

    2003-04-01

    Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

  20. Identification of four soybean reference genes for gene expression normalization

    Science.gov (United States)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  1. Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data.

    Science.gov (United States)

    Lewin, Alex; Grieve, Ian C

    2006-10-03

    Gene Ontology (GO) terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult. We propose testing groups of GO terms rather than individual terms, to increase statistical power, reduce dependence between tests and improve the interpretation of results. We use the publicly available package POSOC to group the terms. Our method finds groups of GO terms significantly over-represented amongst differentially expressed genes which are not found by Fisher's tests on individual GO terms. Grouping Gene Ontology terms improves the interpretation of gene set enrichment for microarray data.

  2. Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data

    Directory of Open Access Journals (Sweden)

    Grieve Ian C

    2006-10-01

    Full Text Available Abstract Background Gene Ontology (GO terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult. Results We propose testing groups of GO terms rather than individual terms, to increase statistical power, reduce dependence between tests and improve the interpretation of results. We use the publicly available package POSOC to group the terms. Our method finds groups of GO terms significantly over-represented amongst differentially expressed genes which are not found by Fisher's tests on individual GO terms. Conclusion Grouping Gene Ontology terms improves the interpretation of gene set enrichment for microarray data.

  3. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  4. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  5. BPH gene expression profile associated to prostate gland volume.

    Science.gov (United States)

    Descazeaud, Aurelien; Rubin, Mark A; Hofer, Matthias; Setlur, Sunita; Nikolaief, Nathalie; Vacherot, Francis; Soyeux, Pascale; Kheuang, Laurence; Abbou, Claude C; Allory, Yves; de la Taille, Alexandre

    2008-12-01

    The aim of the current study was to analyze gene expression profiles in benign prostatic hyperplasia and to compare them with phenotypic properties. Thirty-seven specimens of benign prostatic hyperplasia were obtained from symptomatic patients undergoing surgery. RNA was extracted and hybridized to Affymetrix Chips containing 54,000 gene expression probes. Gene expression profiles were analyzed using cluster, TreeView, and significance analysis of microarrays softwares. In an initial unsupervised analysis, our 37 samples clustered hierarchically in 2 groups of 18 and 19 samples, respectively. Five clinical parameters were statistically different between the 2 groups: in group 1 compared with group 2, patients had larger prostate glands, had higher prostate specific antigen levels, were more likely to be treated by alpha blockers, to be operated by prostatectomy, and to have major irritative symptoms. The sole independent parameter associated with this dichotome clustering, however, was the prostate gland volume. Therefore, the role of prostate volume was explored in a supervised analysis. Gene expression of prostate glands 60 mL were compared using significance analysis of microarrays and 227 genes were found differentially expressed between the 2 groups (>2 change and false discovery rate of <5%). Several specific pathways including growth factors genes, cell cycle genes, apoptose genes, inflammation genes, and androgen regulated genes, displayed major differences between small and large prostate glands.

  6. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  7. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  8. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  9. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Magistrado, Pamela; Sharp, Sarah;

    2004-01-01

    Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria...... genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria....

  10. Gene ordering in partitive clustering using microarray expressions.

    Science.gov (United States)

    Ray, Shubhra Sankar; Bandyopadhyay, Sanghamitra; Pal, Sankar K

    2007-08-01

    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarray gene expressions.Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution.

  11. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    Shubhra Sankar Ray; Sanghamitra Bandyopadhyay; Sankar K Pal

    2007-08-01

    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution.

  12. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    Science.gov (United States)

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], pgenes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  14. Molecular subsets in the gene expression signatures of scleroderma skin.

    Directory of Open Access Journals (Sweden)

    Ausra Milano

    Full Text Available BACKGROUND: Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production. METHODOLOGY AND FINDINGS: We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc with diffuse scleroderma (dSSc, 7 patients with SSc with limited scleroderma (lSSc, 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of 'intrinsic' genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001 and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc. CONCLUSIONS AND SIGNIFICANCE: Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs

  15. Gravity-Induced Gene Expression in Plants.

    Science.gov (United States)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  16. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  17. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  18. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  19. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  20. Amplification of kinetic oscillations in gene expression

    Science.gov (United States)

    Zhdanov, V. P.

    2008-10-01

    Because of the feedbacks between the DNA transcription and mRNA translation, the gene expression in cells may exhibit bistability and oscillations. The deterministic and stochastic calculations presented illustrate how the bistable kinetics of expression of one gene in a cell can be influenced by the kinetic oscillations in the expression of another gene. Due to stability of the states of the bistable kinetics of gene 1 and the relatively small difference between the maximum and minimum protein amounts during the oscillations of gene 2, the induced oscillations of gene 1 are found to typically be related either to the low-or high-reactive state of this gene. The quality of the induced oscillations may be appreciably better than that of the inducing oscillations. This means that gene 1 can serve as an amplifier of the kinetic oscillations of gene 2.

  1. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  2. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  3. Identification of the Fanconi Anemia Complementation Group I Gene, FANCI

    Directory of Open Access Journals (Sweden)

    Josephine C. Dorsman

    2007-01-01

    Full Text Available To identify the gene underlying Fanconi anemia (FA complementation group I we studied informative FA-I families by a genome-wide linkage analysis, which resulted in 4 candidate regions together encompassing 351 genes. Candidates were selected via bioinformatics and data mining on the basis of their resemblance to other FA genes/proteins acting in the FA pathway, such as: degree of evolutionary conservation, presence of nuclear localization signals and pattern of tissue-dependent expression. We found a candidate, KIAA1794 on chromosome 15q25-26, to be mutated in 8 affected individuals previously assigned to complementation group I. Western blots of endogenous FANCI indicated that functionally active KIAA1794 protein is lacking in FA-I individuals. Knock-down of KIAA1794 expression by siRNA in HeLa cells caused excessive chromosomal breakage induced by mitomycin C, a hallmark of FA cells. Furthermore, phenotypic reversion of a patient-derived cell line was associated with a secondary genetic alteration at the KIAA1794 locus. These data add up to two conclusions. First, KIAA1794 is a FA gene. Second, this gene is identical to FANCI, since the patient cell lines found mutated in this study included the reference cell line for group I, EUFA592.

  4. Gene expression-targeted isoflavone therapy.

    Science.gov (United States)

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  5. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  6. Gene Expression Profiling of Gastric Cancer

    Science.gov (United States)

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  7. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  8. Expression Patterns of Glucose Transporter-1 Gene and Thyroid Specific Genes in Human Papillary Thyroid Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungeun; Chung, Junekey; Min Haesook and others

    2014-06-15

    The expression of glucose transporter-1 (Glut-1) gene and those of major thyroid-specific genes were examined in papillary carcinoma tissues, and the expressions of these genes were compared with cancer differentiation grades. Twenty-four human papillary carcinoma tissues were included in this study. The expressions of Glut-1- and thyroid-specific genes [sodium/iodide symporter (NIS), thyroid peroxidase, thyroglobulin, TSH receptor and pendrin] were analyzed by RT-PCR. Expression levels were expressed as ratios versus the expression of beta-actin. Pathologic differentiation of papillary carcinoma was classified into a relatively well-differentiated group (n=13) and relatively less differentiated group (n=11). Glut-1 gene expression was significantly higher in the less differentiated group (0.66±0.04) than in the well-differentiated group (0.59±0.07). The expression levels of the NIS, PD and TG genes were significantly higher in the well-differentiated group (NIS: 0.67±0.20, PD: 0.65±0.21, TG: 0.74±0.16) than in the less differentiated group (NIS: 0.36±0.05, PD: 0.49±0.08, TG: 0.60±0.11), respectively. A significant negative correlation was found between Glut-1 and NIS expression, and positive correlations were found between NIS and TG, and between NIS and PD. The NIS, PD and TG genes were highly expressed in well-differentiated thyroid carcinomas, whereas the Glut-1 gene was highly expressed in less differentiated thyroid carcinomas. These findings provide a molecular rationale for the management of papillary carcinoma, especially in the selection of FDG PET or radioiodine whole-body scan and I-131-based therapy.

  9. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  10. Apopotic gene Bax expression in carotid plaque

    Institute of Scientific and Technical Information of China (English)

    Bao-Zhong MEN; Ding-Biao ZHOU; Huai-Yin SHI; Xiao-Ming ZHANG

    2006-01-01

    The expression of BAX in carotid atherosclerosis and its regulation is far from defined. Objectives To investigate BAX expression in stable/fibrous and instable/vulnerable carotid plaque and its clinical significance. Methods 25 cases of carotid plaque specimens obtained from endarterectomy were divided into two groups, stable/fibrous 14 cases, vulnerable/instable 11 cases; aortic artery and its branches from hepatic transplantation donors 6 case as control. The expression of proapoptotic BAX was detected by immunohistochemistry(IHC), in situ hybridization(ISH) and in situ TdT dUTP nick end labeling (TUNEL). Results 5 cases of BAX ( + ) were detected by ICH and ISH, 4 case of TUNEL ( + ) were detected by TUNEL in stable/fibrous carotid plaque , while 10 cases were BAX ( + )by IHC(P < 0.05) , 11case by ISH and 9 case by TUNEL were detected in instable/vulnerable carotid plaque ( P < 0.01 ), respectively. The intensity of BAX ( + ) cells by IHC and ISH was 8.63 ± 2.62 and 10.32 ± 3.12 in fibrous plaques, whereas 122 ± 21.64and 152 ± 23.35 in vulnerable plaques, respectively. No expression of BAX was found in controlled group. Conclusion The higher expression of Bax in vulnerable carotid plaque may be one mechanisms in molecular pathogenesis of carotid atherosclerosis which affect plaque stability and be the cause of higher incidence of stroke than fibrous carotid plaques, the regulation of BAX expression in different stage of atherosclerosis may provide targets in gene therapy for carotid atherosclerosis.

  11. Gene expression profiling during murine tooth development

    Directory of Open Access Journals (Sweden)

    Maria A dos Santos silva Landin

    2012-07-01

    Full Text Available The aim of this study was to describe the expression of genes, including ameloblastin (Ambn, amelogenin X chromosome (Amelx and enamelin (Enam during early (pre-secretory tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24h intervals, starting at the eleventh embryonic day (E11.5 and up to the seventh day after birth (P7. The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx and Enam. Microarray results where validated using real-time Reverse Transcription-Polymerase Chain Reaction (real-time RT-PCR, and translated proteins identified by Western blotting. In situ localisation of the Ambn, Amelx and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially (p ≤0.05 expressed (DE genes.Microarray results showed a total of 4362 genes including Ambn, Amelx and Enam to be significant differentially expressed throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0 increasing after birth (P1-P7. Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. The mRNAs expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around thirty-five genes were associated with fifteen transcription factors.

  12. Microanalysis of gene expression in cultured cells

    NARCIS (Netherlands)

    E. van der Veer (Eveliene)

    1982-01-01

    textabstractIn this thesis two aspects of gene expression in cultured cells have been studied: the heterogeneity in gene expression in relation with the development and application of microchemical techniques for the prenatal diagnosis of inborn errors of metabolism and the possibility of inducing g

  13. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  14. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  15. Expression of Sox genes in tooth development

    Science.gov (United States)

    KAWASAKI, KATSUSHIGE; KAWASAKI, MAIKO; WATANABE, MOMOKO; IDRUS, ERIK; NAGAI, TAKAHIRO; OOMMEN, SHELLY; MAEDA, TAKEYASU; HAGIWARA, NOBUKO; QUE, JIANWEN; SHARPE, PAUL T.; OHAZAMA, ATSUSHI

    2017-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development. PMID:26864488

  16. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  17. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    Science.gov (United States)

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  18. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  19. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...

  20. Analysis of Gene Expression Responses to a Infection in Rugao Chicken Intestine Using GeneChips

    Directory of Open Access Journals (Sweden)

    D. Q. Luan

    2012-02-01

    Full Text Available Poultry products are an important source of Salmonella enterica. An effective way to reduce food poisoning due to Salmonella would be to breed chickens more resistant to infection. Unfortunately host responses to Salmonella are complex with many factors involved. To learn more about responses to Salmonella in young chickens of 2 wk old, a cDNA Microarray containing 13,319 probes was performed to compare gene expression profiles between two chicken groups under control and Salmonella infected conditions. Newly hatched chickens were orally infected with S. enterica serovar Enteritidis. Since the intestine is one of the important barriers the bacteria encounter after oral inoculation, intestine gene expression was investigated at 2 wk old. There were 588 differentially expressed genes detected, of which 276 were known genes, and of the total number 266 were up-regulated and 322 were down-regulated. Differences in gene expression between the two chicken groups were found in control as well as Salmonella infected conditions indicating a difference in the intestine development between the two chicken groups which might be linked to the difference in Salmonella susceptibility. The differential expressions of 4 genes were confirmed by quantitative real-time PCR and the results indicated that the expression changes of these genes were generally consistent with the results of GeneChips. The findings in this study have lead to the identification of novel genes and possible cellular pathways, which are host dependent.

  1. Gene expression changes after hypoxic preconditioning in rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Jiang-Feng Qiu; Zhi-Qi Zhang; Hai-Feng Luo; Joan Rosello-Catafau; Zhi-Yong Wu

    2006-01-01

    BACKGROUND: Hypoxic preconditioning can protect hepatocytes against hypoxic injury, but its mechanism has not been elucidated. The aim of this study was to proifle gene expression patterns involved in hypoxic preconditioning and probable mechanism at the level of gene expression. METHODS: Hepatocytes were divided into 2 groups:control group and hypoxic preconditioning group. Biotin-labeled cRNA from the control group and the hypoxic preconditioning group was hybridized by oligonucleotide microarray. Genes that were signiifcantly associated with hypoxic preconditioning were ifltered, and validated at the level of transcript expression. RESULTS: Forty-three genes with signiifcantly altered expression patterns were discovered and most of them had not been previously reported. Among these genes, genes encoding superoxide dismutase 2 (SOD2)and interleukin 10 (IL-10) in the hypoxic preconditioning group were conifrmed to be up-regulated with real-time quantitative PCR. CONCLUSIONS:Many cytokines are involved in hypoxic preconditioning and protect hepatocytes from hypoxia-reoxygenation injury, and the increase of oxygen free-radical scavengers and anti-inlfammatory factors may play a key role in this phenomenon. Diverse signal pathways are probably involved.

  2. Ontology-Driven Co-clustering of Gene Expression Data

    Science.gov (United States)

    Cordero, Francesca; Pensa, Ruggero G.; Visconti, Alessia; Ienco, Dino; Botta, Marco

    The huge volume of gene expression data produced by microarrays and other high-throughput techniques has encouraged the development of new computational techniques to evaluate the data and to formulate new biological hypotheses. To this purpose, co-clustering techniques are widely used: these identify groups of genes that show similar activity patterns under a specific subset of the experimental conditions by measuring the similarity in expression within these groups. However, in many applications, distance metrics based only on expression levels fail in capturing biologically meaningful clusters.

  3. Adipose tissue resistin gene expression in DIO and DR rats

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Zhao; Yuhui Ni; Xirong Guo; Haixia Gong; Xia Chi; Ronghua Chen

    2006-01-01

    Objective: To investigate the expression of resistin gene in diet-induced obesity (DIO) and diet resistance (DR)rats. Methods: DIO and DR models were prepared with male SD rats after 6 weeks feeding by a diet of relatively high fat, sucrose, and caloric content (HE diet). Body-weight, fat mass, and the concentration of serum insulin were measured, and the expression of resistin and Peroxisome proliferator-activated receptory-γ(PPAR-γ) gene in whit adipose tissue (WAT) was also detected by RT-PCR. Results: ①Body weight, fat mass and the concentration of serum insulin were significantly increased in DIO rats and decreased in DR rats. ② The expression of resistin and PPARγ gene was upregulated in DIO group and supressed in DR group, but the expression of resistin was not detectable in all samples within three groups. Conclusion: Resistin may serve as a link between obesity and insulin resistance, but the individual difference is enormous.

  4. Lab-specific gene expression signatures in pluripotent stem cells.

    Science.gov (United States)

    Newman, Aaron M; Cooper, James B

    2010-08-06

    Pluripotent stem cells derived from both embryonic and reprogrammed somatic cells have significant potential for human regenerative medicine. Despite similarities in developmental potential, however, several groups have found fundamental differences between embryonic stem cell (ESC) and induced-pluripotent stem cell (iPSC) lines that may have important implications for iPSC-based medical therapies. Using an unsupervised clustering algorithm, we further studied the genetic homogeneity of iPSC and ESC lines by reanalyzing microarray gene expression data from seven different laboratories. Unexpectedly, this analysis revealed a strong correlation between gene expression signatures and specific laboratories in both ESC and iPSC lines. Nearly one-third of the genes with lab-specific expression signatures are also differentially expressed between ESCs and iPSCs. These data are consistent with the hypothesis that in vitro microenvironmental context differentially impacts the gene expression signatures of both iPSCs and ESCs.

  5. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting.

    Science.gov (United States)

    Köhler, Claudia; Page, Damian R; Gagliardini, Valeria; Grossniklaus, Ueli

    2005-01-01

    The maternally expressed Arabidopsis thaliana Polycomb group protein MEDEA (MEA) controls expression of the MADS-box gene PHERES1 (PHE1). Here, we show that PHE1 is mainly paternally expressed but maternally repressed and that this maternal repression of PHE1 breaks down in seeds lacking maternal MEA activity. Because Polycomb group proteins control parental imprinting in mammals as well, the independent recruitment of similar protein machineries for the imprinting of genes is a notable example of convergent evolution.

  6. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  7. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  8. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  9. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  10. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  11. Nucleosome repositioning underlies dynamic gene expression.

    Science.gov (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  12. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  13. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  14. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  15. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Science.gov (United States)

    Yao, Zizhen; Jaeger, Jochen C; Ruzzo, Walter L; Morale, Cecile Z; Emond, Mary; Francke, Uta; Milewicz, Dianna M; Schwartz, Stephen M; Mulvihill, Eileen R

    2007-01-01

    Background Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value < 3 × 10-6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status). An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater. PMID:17850668

  16. [Maintenance of cellular memory by Polycomb group genes].

    Science.gov (United States)

    Netter, S; Boivin, A

    2001-07-01

    The Polycomb-group genes (PcG) encode a group of repressors well known for their function in stably maintaining the inactive expression patterns of key developmental regulators, including homeotic genes. PcG genes are structurally and functionally conserved in Drosophila and Mammalians, and some homologues have been found in worms, yeast and plants. Their products act through different complexes and at least one of these complexes seems to induce histone deacetylation. In Drosophila, building of PcG complexes depends on both protein-protein interactions and recognition near target genes of specific DNA sequences called Polycomb-group response element (PRE). Together with the counteracting trithorax-group proteins, PcG products establish a form of cellular memory by faithfully maintaining transcription states determined early in embryogenesis. Here, we discuss several aspects of PcG functions: the composition of the different complexes, the establishment and the transmission of silencing to subsequent cell generations as well as the subnuclear localisation of the PcG products.

  17. Digital gene expression signatures for maize development.

    Science.gov (United States)

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  18. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  19. Clinicopathologic and gene expression parameters predict liver cancer prognosis

    Directory of Open Access Journals (Sweden)

    Hao Ke

    2011-11-01

    Full Text Available Abstract Background The prognosis of hepatocellular carcinoma (HCC varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. Methods Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. Results HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. Conclusion When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome.

  20. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  1. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  2. Super-paramagnetic clustering of yeast gene expression profiles

    Science.gov (United States)

    Getz, G.; Levine, E.; Domany, E.; Zhang, M. Q.

    2000-04-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, super-paramagnetic clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  3. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  4. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  5. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  6. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  7. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  8. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  9. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  10. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    2007-01-01

    Full Text Available Background: Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently.Results: We have developed (gene set matrix analysis GSMA as a useful method for the rapid testing of group-wise up- or downregulation of gene expression simultaneously for multiple lists of genes (gene sets against entire distributions of gene expression changes (datasets for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously.Conclusions: GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.

  11. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  12. Bayesian modeling of differential gene expression.

    Science.gov (United States)

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  13. Gene Expression Profiles of Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available The simultaneous expression of 10,000 genes was measured, using Affymetrix GeneChip microarrays, in muscle specimens from 45 patients with various myopathies (dystrophy, congenital myopathy, and inflammatory myopathy examined at Brigham and Women’s Hospital, and Children’s Hospital, Harvard Medical School, Boston, MA.

  14. Translational control of gene expression and disease

    NARCIS (Netherlands)

    Calkhoven, Cornelis F; Müller, Christine; Leutz, Achim

    2002-01-01

    In the past decade, translational control has been shown to be crucial in the regulation of gene expression. Research in this field has progressed rapidly, revealing new control mechanisms and adding constantly to the list of translationally regulated genes. There is accumulating evidence that trans

  15. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  16. EXPRESSION OF ras GENE IN EXPERIMENTAL HEPATOCARCINOGENESIS IN TREE SHREWS

    Institute of Scientific and Technical Information of China (English)

    BAN Ke-chen; SU Jian-jia; YANG Chun; QIN Liu-liang; LI Yuan; HUANG Guo-hua; LUO Xiao-ling; DUAN Xiao-xian; YAN Rui-qi

    1999-01-01

    Objective: In order to investigate the relationship between the expression of ras gene and the development of hepatocellular carcinoma (HCC). Materials and Methods: The experimental tree shrews were divided into four groups: group A, infected human hepatitis B virus (HBV) and exposed to aflatoxin B1 (AFB1); group B, infected human HBV alone; group C, only exposed to AFB1; group D, use as controls. The serial bioptic liver tissues were detected for ras p21 protein using immunohistochemical method. Results: The total p21protein positive rates in group A, B, C and D were 35.3%, 5.3%, 13.3%, 0, respectively, thus the significant difference were showed between group A and group B (P<0.05); The HCC incidences in group A, B, C and D were 47.1%, 0, 13.3%, 0, respectively, and there was a significant difference between group A and C (P<0.05).The incidences of HCC in the animals with and without p21 protein positive in group A were 100% and 18.2%,respectively, and there was a significant difference among them (P<0.01). Conclusion: HBV and AFB1 play a remarkable synergistic role in the development of HCC; they can enhance the expression of ras gene. The over-expression of ras gene is closely related to pathogenesis of HCC in tree shrews.

  17. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  18. Gene expression studies using microarrays

    NARCIS (Netherlands)

    Burgess, Janette

    2001-01-01

    1. The rapid progression of the collaborative sequencing programmes that are unravelling the complete genome sequences of many organisms are opening pathways for new approaches to gene analysis. As the sequence data become available, the bottleneck in biological research will shift to understanding

  19. Heavy alcohol drinking downregulates ALDH2 gene expression but heavy smoking up-regulates SOD2 gene expression in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Lee, Dong Jin; Lee, Hyung Min; Kim, Jin Hwan; Park, Ii Seok; Rho, Young Soo

    2017-08-25

    This study aims to determine the relationship between expression levels of ALDH2 and SOD2 genes and clinical parameters such as alcohol drinking, tobacco smoking, primary site of HNSCC, and human papilloma virus (HPV) state. Gene expression data were obtained from gene expression omnibus (GEO accession number: GSE65858). Clinical data (N = 270) including survival result, gender, age, TNM stage, primary site of HNSCC, HPV status, alcohol drinking, and tobacco smoking habit were analyzed according to gene expression pattern. ALDH2 gene was expressed in low levels in patients with heavy alcohol consumption. It was expressed in high (p = 0.01) levels in patients with no or light alcohol consumption. ALDH2 gene was also expressed in low levels in patients with oral cavity cancers or hypopharynx cancers. However, ALDH2 gene was expressed in high (p = 0.03) levels in patients with oropharyngeal cancers or laryngeal cancers. HPV-positive patients were found to have high (p = 0.02) expression levels of ALDH2. SOD2 gene was expressed in high (p = 0.005) levels in patients who had greater mean pack-year of tobacco smoking. Based on log rank test, the group of patients with high expression of ALDH2 showed better (p = 0.002) clinical results than those with low expression of ALDH2. Difference of survival results between ALDH2 high-expressed group and ALDH2 low-expressed group was validated in another cohort (GSE39368, N = 138). Heavy alcohol drinking downregulates ALDH2 gene expression level. Heavy smoking up-regulates SOD2 gene expression level in patients with head and neck squamous cell carcinoma. The group of patients with low expression levels of ALDH2 showed significantly poorer survival results compared to those with high expression levels of ALDH2.

  20. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  1. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Science.gov (United States)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  2. Gene expression profiling of soft and firm Atlantic salmon fillet.

    Directory of Open Access Journals (Sweden)

    Thomas Larsson

    Full Text Available Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes and mitochondrial proteins (129 genes, proteins involved in stress responses (12 genes, and lipid metabolism (30 genes. Coefficients of determination (R(2 were in the range of 0.64-0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R(2 = 0.66 and myofiber proteins (42 genes, R(2 = 0.54. Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation, immune genes, and intracellular proteases (positive correlation. Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15 though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role.

  3. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  4. Regulation of immunoglobulin gene rearrangement and expression.

    Science.gov (United States)

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching.

  5. Vitamin D-mediated gene expression.

    Science.gov (United States)

    Lowe, K E; Maiyar, A C; Norman, A W

    1992-01-01

    The steroid hormone 1,25(OH)2D3 modulates the expression of a wide variety of genes in a tissue- and developmentally specific manner. It is well established that 1,25(OH)2D3 can up- or downregulate the expression of genes involved in cell proliferation, differentiation, and mineral homeostasis. The hormone exerts its genomic effects via interactions with the vitamin D receptor or VDR, a member of the superfamily of hormone-activated nuclear receptors which can regulate eukaryotic gene expression. The ligand-bound receptor acts as a transcription factor that binds to specific DNA sequences, HREs, in target gene promoters. The DNA-binding domains of the steroid hormone receptors are highly conserved and contain two zinc-finger motifs that recognize the HREs. The spacing and orientation of the HRE half-sites, as well as the HRE sequence, are critical for proper discrimination by the various receptors. Other nuclear factors such as fos and jun can influence vitamin D-mediated gene expression. A wide range of experimental techniques has been used to increase our understanding of how 1,25(OH)2D3 and its receptor play a central role in gene expression.

  6. Modulation of imprinted gene expression following superovulation.

    Science.gov (United States)

    Fortier, Amanda L; McGraw, Serge; Lopes, Flavia L; Niles, Kirsten M; Landry, Mylène; Trasler, Jacquetta M

    2014-05-05

    Although assisted reproductive technologies increase the risk of low birth weight and genomic imprinting disorders, the precise underlying causes remain unclear. Using a mouse model, we previously showed that superovulation alters the expression of imprinted genes in the placenta at 9.5days (E9.5) of gestation. Here, we investigate whether effects of superovulation on genomic imprinting persisted at later stages of development and assess the surviving fetuses for growth and morphological abnormalities. Superovulation, followed by embryo transfer at E3.5, as compared to spontaneous ovulation (controls), resulted in embryos of normal size and weight at 14.5 and 18.5days of gestation. The normal monoallelic expression of the imprinted genes H19, Snrpn and Kcnq1ot1 was unaffected in either the placentae or the embryos from the superovulated females at E14.5 or E18.5. However, for the paternally expressed imprinted gene Igf2, superovulation generated placentae with reduced production of the mature protein at E9.5 and significantly more variable mRNA levels at E14.5. We propose that superovulation results in the ovulation of abnormal oocytes with altered expression of imprinted genes, but that the coregulated genes of the imprinted gene network result in modulated expression. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Gene expression of the endolymphatic sac.

    Science.gov (United States)

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart; Winther, Ole; Henao, Ricardo; Sørensen, Mads Sølvsten; Qvortrup, Klaus

    2011-12-01

    The endolymphatic sac is part of the membranous inner ear and is thought to play a role in the fluid homeostasis and immune defense of the inner ear; however, the exact function of the endolymphatic sac is not fully known. Many of the detected mRNAs in this study suggest that the endolymphatic sac has multiple and diverse functions in the inner ear. The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Microarray technology was used to investigate the gene expression of the endolymphatic sac with the surrounding dura. Characteristic and novel endolymphatic sac genes were determined by comparing with expressions in pure dura. In all, 463 genes were identified specific for the endolymphatic sac. Functional annotation clustering revealed 29 functional clusters.

  8. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  9. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  10. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  11. A prognostic gene expression signature in infratentorial ependymoma.

    Science.gov (United States)

    Wani, Khalida; Armstrong, Terri S; Vera-Bolanos, Elizabeth; Raghunathan, Aditya; Ellison, David; Gilbertson, Richard; Vaillant, Brian; Goldman, Stewart; Packer, Roger J; Fouladi, Maryam; Pollack, Ian; Mikkelsen, Tom; Prados, Michael; Omuro, Antonio; Soffietti, Riccardo; Ledoux, Alicia; Wilson, Charmaine; Long, Lihong; Gilbert, Mark R; Aldape, Ken

    2012-05-01

    Patients with ependymoma exhibit a wide range of clinical outcomes that are currently unexplained by clinical or histological factors. Little is known regarding molecular biomarkers that could predict clinical behavior. Since recent data suggest that these tumors display biological characteristics according to their location (cerebral vs. infratentorial vs. spinal cord), rather than explore a broad spectrum of ependymoma, we focused on molecular alterations in ependymomas arising in the infratentorial compartment. Unsupervised clustering of available gene expression microarray data revealed two major subgroups of infratentorial ependymoma. Group 1 tumors over expressed genes that were associated with mesenchyme, Group 2 tumors showed no distinct gene ontologies. To assess the prognostic significance of these gene expression subgroups, real-time reverse transcriptase polymerase chain reaction assays were performed on genes defining the subgroups in a training set. This resulted in a 10-gene prognostic signature. Multivariate analysis showed that the 10-gene signature was an independent predictor of recurrence-free survival after adjusting for clinical factors. Evaluation of an external dataset describing subgroups of infratentorial ependymomas showed concordance of subgroup definition, including validation of the mesenchymal subclass. Importantly, the 10-gene signature was validated as a predictor of recurrence-free survival in this dataset. Taken together, the results indicate a link between clinical outcome and biologically identified subsets of infratentorial ependymoma and offer the potential for prognostic testing to estimate clinical aggressiveness in these tumors.

  12. Gene expression profiling of solitary fibrous tumors.

    Directory of Open Access Journals (Sweden)

    François Bertucci

    Full Text Available BACKGROUND: Solitary fibrous tumors (SFTs are rare spindle-cell tumors. Their cell-of-origin and molecular basis are poorly known. They raise several clinical problems. Differential diagnosis may be difficult, prognosis is poorly apprehended by histoclinical features, and no effective therapy exists for advanced stages. METHODS: We profiled 16 SFT samples using whole-genome DNA microarrays and analyzed their expression profiles with publicly available profiles of 36 additional SFTs and 212 soft tissue sarcomas (STSs. Immunohistochemistry was applied to validate the expression of some discriminating genes. RESULTS: SFTs displayed whole-genome expression profiles more homogeneous and different from STSs, but closer to genetically-simple than genetically-complex STSs. The SFTs/STSs comparison identified a high percentage (∼30% of genes as differentially expressed, most of them without any DNA copy number alteration. One of the genes most overexpressed in SFTs encoded the ALDH1 stem cell marker. Several upregulated genes and associated ontologies were also related to progenitor/stem cells. SFTs also overexpressed genes encoding therapeutic targets such as kinases (EGFR, ERBB2, FGFR1, JAK2, histone deacetylases, or retinoic acid receptors. Their overexpression was found in all SFTs, regardless the anatomical location. Finally, we identified a 31-gene signature associated with the mitotic count, containing many genes related to cell cycle/mitosis, including AURKA. CONCLUSION: We established a robust repertoire of genes differentially expressed in SFTs. Certain overexpressed genes could provide new diagnostic (ALDH1A1, prognostic (AURKA and/or therapeutic targets.

  13. A Rough Set based Gene Expression Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    J. J. Emilyn

    2011-01-01

    Full Text Available Problem statement: Microarray technology helps in monitoring the expression levels of thousands of genes across collections of related samples. Approach: The main goal in the analysis of large and heterogeneous gene expression datasets was to identify groups of genes that get expressed in a set of experimental conditions. Results: Several clustering techniques have been proposed for identifying gene signatures and to understand their role and many of them have been applied to gene expression data, but with partial success. The main aim of this work was to develop a clustering algorithm that would successfully indentify gene patterns. The proposed novel clustering technique (RCGED provides an efficient way of finding the hidden and unique gene expression patterns. It overcomes the restriction of one object being placed in only one cluster. Conclusion/Recommendations: The proposed algorithm is termed intelligent because it automatically determines the optimum number of clusters. The proposed algorithm was experimented with colon cancer dataset and the results were compared with Rough Fuzzy K Means algorithm.

  14. Soybean physiology and gene expression during drought.

    Science.gov (United States)

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  15. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses.

    Science.gov (United States)

    Jia, Yujie; Nie, Kun; Li, Jing; Liang, Xinyue; Zhang, Xuezhu

    2016-11-01

    In order to investigate the pathogenic targets and associated biological process of Alzheimer's disease in the present study, mRNA expression profiles (GSE28146) and microRNA (miRNA) expression profiles (GSE16759) were downloaded from the Gene Expression Omnibus database. In GSE28146, eight control samples, and Alzheimer's disease samples comprising seven incipient, eight moderate, seven severe Alzheimer's disease samples, were included. The Affy package in R was used for background correction and normalization of the raw microarray data. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified using the Limma package. In addition, mRNAs were clustered using weighted gene correlation network analysis, and modules found to be significantly associated with the stages of Alzheimer's disease were screened out. The Database for Annotation, Visualization, and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The target genes of the differentially expressed miRNAs were identified using the miRWalk database. Compared with the control samples, 175,59 genes and 90 DEGs were identified in the incipient, moderate and severe Alzheimer's disease samples, respectively. A module, which contained 1,592 genes was found to be closely associated with the stage of Alzheimer's disease and biological processes. In addition, pathways associated with Alzheimer's disease and other neurological diseases were found to be enriched in those genes. A total of 139 overlapped genes were identified between those genes and the DEGs in the three groups. From the miRNA expression profiles, 189 miRNAs were found differentially expressed in the samples from patients with Alzheimer's disease and 1,647 target genes were obtained. In addition, five overlapped genes were identified between those 1,647 target genes and the 139 genes, and these genes may be important pathogenic targets for Alzheimer

  16. Early gene expression changes with rush immunotherapy

    Directory of Open Access Journals (Sweden)

    Barnett Sherry

    2011-09-01

    Full Text Available Abstract Background To examine whether whole genome expression profiling could reveal changes in mRNA expression of peripheral blood mononuclear cells (PBMC from allergic patients undergoing rush immunotherapy (RIT that might be manifest within the first few months of treatment. Methods For this study, PBMC from three allergic patients undergoing RIT were assessed at four timepoints: prior to RIT, at 1 week and 7 week post-RIT, during build-up and at 4 months, after establishment of a maintenance dose. PBMC mRNA gene expression changes over time were determined by oligonucleotide microarrays using the Illumina Human-6 BeadChip Platform, which simultaneously interrogates expression profiles of > 47,000 transcripts. Differentially expressed genes were identified using well-established statistical analysis for microarrays. In addition, we analyzed peripheral blood basophil high-affinity IgE receptor (Fc epsilon RI expression and T-regulatory cell frequency as detected by expression of CD3+CD4+CD25bright cells at each timepoint using flow cytometry. Results In comparing the initial 2 timepoints with the final 2 timepoints and analyzing for genes with ≥1.5-fold expression change (p less than or equal to 0.05, BH-FDR, we identified 507 transcripts. At a 2-fold change (p less than or equal to 0.05, BH-FDR, we found 44 transcripts. Of these, 28 were up-regulated and 16 were down-regulated genes. From these datasets, we have identified changes in immunologically relevant genes from both the innate and adaptive response with upregulation of expressed genes for molecules including IL-1β, IL-8, CD40L, BTK and BCL6. At the 4 month timepoint, we noted a downward trend in Fc epsilon RI expression in each of the three patients and increased allergen-specific IgG4 levels. No change was seen in the frequency of peripheral T-regulatory cells expressed over the four timepoints. Conclusions We observed significant changes in gene expression early in peripheral

  17. Functional Analysis, Grouping and Expression Pattern Study of the Cotton Fiber Development-related Genes%棉纤维发育基因的功能分析、分类和表达形式

    Institute of Scientific and Technical Information of China (English)

    Sheng-jian JI; Yong-hui SHI; Xiu-juan LIANG; Qiang FU; Yu-xian ZHU

    2002-01-01

    @@ Cotton fiber growth consists of four overlapping developmental stages: fiber initiation, cell elongation, secondary wall deposition and maturation. To date, great progresses have been made on cellulose synthesis and deposition. The iniation and elongation requires rapid cell division, differentiation, growth and elongation,which undoubtedly includes expression of large amounts of genes.

  18. Computing gene expression data with a knowledge-based gene clustering approach.

    Science.gov (United States)

    Rosa, Bruce A; Oh, Sookyung; Montgomery, Beronda L; Chen, Jin; Qin, Wensheng

    2010-01-01

    Computational analysis methods for gene expression data gathered in microarray experiments can be used to identify the functions of previously unstudied genes. While obtaining the expression data is not a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, a knowledge-based approach which identifies and saves important functional genes before filtering based on variability and fold change differences was utilized to study light regulation. Two clustering methods were used to cluster the filtered datasets, and clusters containing a key light regulatory gene were located. The common genes to both of these clusters were identified, and the genes in the common cluster were ranked based on their coexpression to the key gene. This process was repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two individual clustering methods. In addition, the filtering method increased the proportion of light responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 18.4%. The relatively short length of these common cluster lists compared to gene groups generated through typical clustering methods or coexpression networks narrows the search for novel functional genes while increasing the likelihood that they are biologically relevant.

  19. Some statistical properties of gene expression clustering for array data

    DEFF Research Database (Denmark)

    Abreu, G C G; Pinheiro, A; Drummond, R D;

    2010-01-01

    DNA array data without a corresponding statistical error measure. We propose an easy-to-implement and simple-to-use technique that uses bootstrap re-sampling to evaluate the statistical error of the nodes provided by SOM-based clustering. Comparisons between SOM and parametric clustering are presented......DNA arrays have been a rich source of data for the study of genomic expression of a wide variety of biological systems. Gene clustering is one of the paradigms quite used to assess the significance of a gene (or group of genes). However, most of the gene clustering techniques are applied to c...... for simulated as well as for two real data sets. We also implement a bootstrap-based pre-processing procedure for SOM, that improves the false discovery ratio of differentially expressed genes. Code in Matlab is freely available, as well as some supplementary material, at the following address: https...

  20. Plant microRNAs: master regulator of gene expression mechanism.

    Science.gov (United States)

    Datta, Riddhi; Paul, Soumitra

    2015-11-01

    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.

  1. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  2. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  3. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  4. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  5. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  6. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Boris P Hejblum

    2015-06-01

    Full Text Available Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial, and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.

  7. Polyandry and sex-specific gene expression.

    Science.gov (United States)

    Mank, Judith E; Wedell, Nina; Hosken, David J

    2013-03-05

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association.

  8. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  9. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  10. Gene expression profiles in irradiated cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C. [IBFM CNR - LATO, Cefalù, Segrate (Italy)

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  11. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...... of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura...... mater as control. Immunohistochemistry was used for verification of translation of selected genes, as well as localization of the specific protein within the sac. RESULTS: An extensive representation of the SLC family genes were upregulated in the human endolymphatic sac, including SLC26a4 Pendrin, SLC4...

  12. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Directory of Open Access Journals (Sweden)

    Nour Hammoudeh

    2014-12-01

    Full Text Available Leishmania Homologue of receptors for Activated C Kinase (LACK antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR technique.The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  13. Molecular Cloning and Expression of MaNPR1E Gene from Banana (Musa acuminata L. AAA group, cv. Cavendish)%香蕉NPR 1E 基因的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    王卓; 徐碧玉; 贾彩红; 李健平; 刘菊华; 张建斌; 苗红霞; 金志强

    2015-01-01

    NPR1基因可参与调节植物对病原菌的广谱抗性,在植物系统抗性中起着关键的调控作用。通过RACE (rapid-amplification of cDNA ends)方法从香蕉根系中获得NPR1E基因,命名为MaNPR1E(GenBank登录号分别为: KF582550)。 MaNPR1E是香蕉NPR1基因编码框全长cDNA,包含一个1755 bp的最大开放阅读框,编码一个含584个氨基酸的蛋白质。经蛋白质序列同源比对发现,其含有完整的BTB/POZ结构域、锚蛋白重复ANK序列和NPR1-like-C结构域,属于典型的NPR1蛋白。系统进化树比对分析表明, MaNPR1E与海枣PdNPR3(XP_008808341.1)和油棕EgNPR3(XP_010914123.1)的亲缘关系较近。组织特异性研究表明,该基因组成型表达于香蕉各组织。实时荧光定量PCR分析表明,接种枯萎病菌后MaNPR1E的表达在感病品种中被抑制,而在抗病品种中被激活; MaNPR1E的表达受乙烯利和水杨酸的诱导。上述结果表明, MaNPR1E可能在香蕉抗枯萎病过程中扮演重要的调控角色。%NPR1(nonexpressor of PR gene 1), involved in regulating plant broad-spectrum resistance, plays important roles in plant system resistance. In this study, we report the molecular characteristics of NPR1E gene cloned from banana(Musa acuminate L. AAA group, cv. Cavendish)using a RACE-PCR-based strategy. MaNPR1E(accession number: KF582550) contained an open reading frame of 1 755 bp which encoded a polypeptide of 584 amino acids. Protein alignment showed that they contain the complete typical conserved BTB/POZ (BR-C, ttk and bab/Pox virus and Zinc finger)domain, ankyrin repeats and NPR1/NIM1 like defence protein C terminal, which belongs to a typical NPR1 protein. Phylogenetic analysis showed that the deduced amino acid sequences of MaNPR1E also have high similarity to PdNPR3 (XP_008808341.1) and EgNPR3 (XP_010914123.1) from Phoenix dactylifera and Elaeis guineensis, respectively. Tissue-specific studies showed that the expression of MaNPR1E was constitutive

  14. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  15. Gene expression disparity in giant cell tumor of bone

    Institute of Scientific and Technical Information of China (English)

    Xiaohua PAN; Shuhua YANG; Deming XIAO; Yong DAI; Lili REN

    2009-01-01

    The aim of this paper was to study the differential gene expression of giant cell tumor of bone (GCTB) by gene chip technology. Total RNA of 8 fresh GCTB specimens (Jaffe Ⅰ:6 cases, Ⅱ: 1 case, Ⅲ: 1 case; Campanacci Ⅰ:6 cases, Ⅱ:1 case, Ⅲ:1 case; Enneking Staging G0T1-2M0, 5 cases, G1T1-2M0: 2 cases, G1T2M0: 1 case) and 4 normal bony callus specimens (the control group) were extracted and purified to get mRNA and then reverse transcribed to complementary DNA, respectively. Microarray screening with a set of 8064 human cDNA genes was conducted to analyze the difference among the samples and the control. The hybridization signals were scanned. The gene expression disparity between the GCTB samples and normal bony callus was significantly different (P<0.01), and the disparity of over 5-fold was found in 47 genes in the GCTB specimens, with 25 genes up-regulated and 22 down-regulated including the extracellular matrix and transforming-related genes, oncogene and its homolog genes, cytokine and its receptor genes. Specific gene spectrum associated with GCTB can be identified by cDNA microarray, which will be the foundation of progressive etiology elucidation, diagnosis and treatment of GCTB.

  16. Mechanical Feedback and Arrest in Gene Expression

    Science.gov (United States)

    Sevier, Stuart; Levine, Herbert

    The ability to watch biochemical events at the single-molecule level has increasingly revealed that stochasticity plays a leading role in many biological phenomena. One important and well know example is the noisy, ``bursty'' manner of transcription. Recent experiments have revealed relationships between the level and noise in gene expression hinting at deeper stochastic connections. In this talk we will discuss how the mechanical nature of transcription can explain this relationship and examine the limits that the physical aspects of transcription place on gene expression.

  17. Argudas: arguing with gene expression information

    CERN Document Server

    McLeod, Kenneth; Burger, Albert

    2010-01-01

    In situ hybridisation gene expression information helps biologists identify where a gene is expressed. However, the databases that republish the experimental information are often both incomplete and inconsistent. This paper examines a system, Argudas, designed to help tackle these issues. Argudas is an evolution of an existing system, and so that system is reviewed as a means of both explaining and justifying the behaviour of Argudas. Throughout the discussion of Argudas a number of issues will be raised including the appropriateness of argumentation in biology and the challenges faced when integrating apparently similar online biological databases.

  18. Optogenetics for gene expression in mammalian cells.

    Science.gov (United States)

    Müller, Konrad; Naumann, Sebastian; Weber, Wilfried; Zurbriggen, Matias D

    2015-02-01

    Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.

  19. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  20. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  1. Designing genes for successful protein expression.

    Science.gov (United States)

    Welch, Mark; Villalobos, Alan; Gustafsson, Claes; Minshull, Jeremy

    2011-01-01

    DNA sequences are now far more readily available in silico than as physical DNA. De novo gene synthesis is an increasingly cost-effective method for building genetic constructs, and effectively removes the constraint of basing constructs on extant sequences. This allows scientists and engineers to experimentally test their hypotheses relating sequence to function. Molecular biologists, and now synthetic biologists, are characterizing and cataloging genetic elements with specific functions, aiming to combine them to perform complex functions. However, the most common purpose of synthetic genes is for the expression of an encoded protein. The huge number of different proteins makes it impossible to characterize and catalog each functional gene. Instead, it is necessary to abstract design principles from experimental data: data that can be generated by making predictions followed by synthesizing sequences to test those predictions. Because of the degeneracy of the genetic code, design of gene sequences to encode proteins is a high-dimensional problem, so there is no single simple formula to guarantee success. Nevertheless, there are several straightforward steps that can be taken to greatly increase the probability that a designed sequence will result in expression of the encoded protein. In this chapter, we discuss gene sequence parameters that are important for protein expression. We also describe algorithms for optimizing these parameters, and troubleshooting procedures that can be helpful when initial attempts fail. Finally, we show how many of these methods can be accomplished using the synthetic biology software tool Gene Designer.

  2. Genes of periodontopathogens expressed during human disease.

    Science.gov (United States)

    Song, Yo-Han; Kozarov, Emil V; Walters, Sheila M; Cao, Sam Linsen; Handfield, Martin; Hillman, Jeffrey D; Progulske-Fox, Ann

    2002-12-01

    Since many bacterial genes are environmentally regulated, the screening for virulence-associated factors using classical genetic and molecular biology approaches can be biased under laboratory growth conditions of a given pathogen, because the required conditions for expression of many virulence factors may not occur during in vitro growth. Thus, technologies have been developed during the past several years to identify genes that are expressed during disease using animal models of human disease. However, animal models are not always truly representative of human disease, and with many pathogens, there is no appropriate animal model. A new technology, in vivo-induced antigen technology (IVIAT) was thus engineered and tested in our laboratory to screen for genes of pathogenic organisms induced specifically in humans, without the use of animal or artificial models of infection. This technology uses pooled sera from patients to probe for genes expressed exclusively in vivo (or ivi, in vivo-induced genes). IVIAT was originally designed for the study of Actinobacillus actinomycetemcomitans pathogenesis, but we have now extended it to other oral pathogens including Porphyromonas gingivalis. One hundred seventy-one thousand (171,000) clones from P. gingivalis strain W83 were screened and 144 were confirmed positive. Over 300,000 A. actinomycetemcomitans clones were probed, and 116 were confirmed positive using a quantitative blot assay. MAT has proven useful in identifying previously unknown in vivo-induced genes that are likely involved in virulence and are thus excellent candidates for use in diagnostic : and therapeutic strategies, including vaccine design.

  3. PROGNOSTIC IMPACT OF WT-1 GENE EXPRESSION IN EGYPTIAN CHILDREN WITH ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Adel Abd Elhaleim Hagag

    2016-01-01

    Full Text Available Background: Acute lymphoblastic leukemia (ALL is the most common childhood cancer representing 23% of pediatric cancers. Wilms' tumor -1 gene has is a novel prognostic factor, minimal residual disease marker and therapeutic target in acute leukemia. Aim of the work: The aim of this work was to study the impact of WT-1 gene expression in prognosis of Egyptian children with ALL. Patients and methods: This study was conducted on 40 children with newly diagnosed ALL who were subjected to full history taking, thorough clinical examination and laboratory investigations including; complete blood count, LDH, BM aspiration, cytochemistry, immunophenotyping, assessment of WT-1 Gene by real time PCR in BM samples at time of diagnosis. Results: Positive WT-1 gene expression was found in 22 cases (55% and negative expression in 18 cases (45%. Positive WT-1 gene expression group (n=22 includes 14 males and 8 females with mean age at presentation of 5.261 ± 0.811 while negative WT-1 gene expression group (n=18 includes 12 males and 6 females with mean age at diagnosis of 9.669 ± 3.731 with significantly older age in negative WT-1 gene expression group but no significant differences between positive and negative WT-1 gene expression groups regarding sex and clinical presentations. There were no significant differences in platelets and WBCs counts, hemoglobin and LDH levels and number of peripheral blood and BM blast cells at diagnosis between positive and negative WT-1 gene expression groups but after induction therapy there were significantly lower BM blast cells in positive WT-1 gene expression group. There were no statistically significant differences between positive and negative WT-1 gene expression groups regarding immunophenotyping. There were significantly higher relapse and death rates and lower rates of CR, DFS and OAS in negativeWT-1 gene expression group.MRD at end of induction therapy was found in 14 cases out of 40 patients. There was

  4. Sequence and gene expression evolution of paralogous genes in willows.

    Science.gov (United States)

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  5. Reshaping of global gene expression networks and sex‐biased gene expression by integration of a young gene

    National Research Council Canada - National Science Library

    Chen, Sidi; Ni, Xiaochun; Krinsky, Benjamin H; Zhang, Yong E; Vibranovski, Maria D; White, Kevin P; Long, Manyuan

    2012-01-01

    ...‐biased gene expression in Drosophila . This 4–6 million‐year‐old factor, named Zeus for its role in male fecundity, originated through retroposition of a highly conserved housekeeping gene, Caf40...

  6. Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays

    DEFF Research Database (Denmark)

    Francis, C.A.; Jackson, G.A.; Ward, B.B.

    2008-01-01

    total RNA extracts) targets were hybridized to the same array to compare the profiles of community composition at the DNA (relative abundance) and mRNA (gene expression) levels. Only the three dominant denitrifying groups (in terms of relative strength of DNA hybridization signal) were detected at the m......A functional gene microarray was used to investigate denitrifier community composition and nitrite reductase (nirS) gene expression in sediments along the estuarine gradient in Chesapeake Bay, USA. The nirS oligonucleotide probe set was designed to represent a sequence database containing 539...

  7. The TRANSFAC system on gene expression regulation.

    Science.gov (United States)

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  8. Biclustering methods: biological relevance and application in gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Ali Oghabian

    Full Text Available DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering methods where genes (or respectively samples are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes. An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1 we examine how well the considered (biclustering methods differentiate various sample types; (2 we evaluate how well the groups of genes discovered by the (biclustering methods are annotated with similar Gene Ontology categories; (3 we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4 we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.

  9. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser

    2004-01-01

    In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume...... was gradually extinguished in the later spermatid stages but was followed by another cluster of genes expressed in spermatids. Finally, a group of genes was downregulated during spermatogenesis and probably expressed in nongerm cells. We believe that expression of most genes can be described by a combination...

  10. Some combinatorial models for reduced expressions in Coxeter groups

    CERN Document Server

    Denoncourt, Hugh

    2011-01-01

    Stanley's formula for the number of reduced expressions of a permutation regarded as a Coxeter group element raises the question of how to enumerate the reduced expressions of an arbitrary Coxeter group element. We provide a framework for answering this question by constructing combinatorial objects that represent the inversion set and the reduced expressions for an arbitrary Coxeter group element. The framework also provides a formula for the length of an element formed by deleting a generator from a Coxeter group element. Fan and Hagiwara, et al$.$ showed that for certain Coxeter groups, the short-braid avoiding elements characterize those elements that give reduced expressions when any generator is deleted from a reduced expression. We provide a characterization that holds in all Coxeter groups. Lastly, we give applications to the freely braided elements introduced by Green and Losonczy, generalizing some of their results that hold in simply-laced Coxeter groups to the arbitrary Coxeter group setting.

  11. The frustrated gene: origins of eukaryotic gene expression

    OpenAIRE

    Madhani, Hiten D.

    2013-01-01

    Eukarytotic gene expression is frustrated by a series of steps that are generally not observed in prokaryotes and are therefore not essential for the basic chemistry of transcription and translation. Their evolution may have been driven by the need to defend against parasitic nucleic acids.

  12. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  13. Functional clustering of time series gene expression data by Granger causality

    Science.gov (United States)

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  14. Functional clustering of time series gene expression data by Granger causality

    Directory of Open Access Journals (Sweden)

    Fujita André

    2012-10-01

    Full Text Available Abstract Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them.

  15. Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis.

    Science.gov (United States)

    Jullien, Pauline E; Katz, Aviva; Oliva, Moran; Ohad, Nir; Berger, Frédéric

    2006-03-07

    Fertilization in flowering plants initiates the development of the embryo and endosperm, which nurtures the embryo. A few genes subjected to imprinting are expressed in endosperm from their maternal allele, while their paternal allele remains silenced. Imprinting of the FWA gene involves DNA methylation. Mechanisms controlling imprinting of the Polycomb group (Pc-G) gene MEDEA (MEA) are not yet fully understood. Here we report that MEA imprinting is regulated by histone methylation. This epigenetic chromatin modification is mediated by several Pc-G activities during the entire plant life cycle. We show that Pc-G complexes maintain MEA transcription silenced throughout vegetative life and male gametogenesis. In endosperm, the maternal allele of MEA encodes an essential component of a Pc-G complex, which maintains silencing of the paternal MEA allele. Hence, we conclude that a feedback loop controls MEA imprinting. This feedback loop ensures a complete maternal control of MEA expression from both parental alleles and might have provided a template for evolution of imprinting in plants.

  16. Identification of genes expressed during myocardial development

    Institute of Scientific and Technical Information of China (English)

    陈小圆; 陈健宏; 张碧琪; 梁瑛; 梁平

    2003-01-01

    Objective To identify genes expressed in the fetal heart that are potentially important for myocardial development and cardiomyocyte proliferation.Methods mRNAs from fetal (29 weeks) and adult cardiomyocytes were use for suppression subtractive hybridization (SSH). Both forward (fetal as tester) and reverse (adult as driver) subtractions were performed. Clones confirmed by dot-blot analysis to be differentially expressed were sequenced and analyzed.Results Differential expressions were detected for 39 out of 96 (41%) clones on forward subtraction and 24 out of 80 (30%) clones on reverse. For fetal dominating genes, 28 clones matched to 10 known genes (COL1A2, COL3A1, endomucin, HBG1, HBG2, PCBP2, LOC51144, TGFBI, vinculin and PND), 9 clones to 5 cDNAs of unknown functions (accession AK021715, AF085867, AB040948, AB051460 and AB051512) and 2 clones had homology to hEST sequences. For the reverse subtraction, all clones showed homology to mitochondrial transcripts.Conclusions We successfully applied SSH to detect those genes differentially expressed in fetal cardiac myocytes, some of which have not been shown relative to myocardial development.

  17. Stochastic gene expression conditioned on large deviations

    Science.gov (United States)

    Horowitz, Jordan M.; Kulkarni, Rahul V.

    2017-06-01

    The intrinsic stochasticity of gene expression can give rise to large fluctuations and rare events that drive phenotypic variation in a population of genetically identical cells. Characterizing the fluctuations that give rise to such rare events motivates the analysis of large deviations in stochastic models of gene expression. Recent developments in non-equilibrium statistical mechanics have led to a framework for analyzing Markovian processes conditioned on rare events and for representing such processes by conditioning-free driven Markovian processes. We use this framework, in combination with approaches based on queueing theory, to analyze a general class of stochastic models of gene expression. Modeling gene expression as a Batch Markovian Arrival Process (BMAP), we derive exact analytical results quantifying large deviations of time-integrated random variables such as promoter activity fluctuations. We find that the conditioning-free driven process can also be represented by a BMAP that has the same form as the original process, but with renormalized parameters. The results obtained can be used to quantify the likelihood of large deviations, to characterize system fluctuations conditional on rare events and to identify combinations of model parameters that can give rise to dynamical phase transitions in system dynamics.

  18. Trigger finger, tendinosis, and intratendinous gene expression.

    Science.gov (United States)

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Cluster Analysis of Gene Expression Data

    CERN Document Server

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  20. Annotation of gene function in citrus using gene expression information and co-expression networks.

    Science.gov (United States)

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  1. Differentially Expressed Genes for Aggressive Pecking Behaviour in Laying Hens

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Hedegaard, Jakob; Janss, Luc

    2009-01-01

    Background Aggressive behaviour is an important aspect in the daily lives of animals living in groups. Aggressive animals have advantages, such as better access to food or territories, and they produce more offspring than low ranking animals. The social hierarchy in chickens is measured using the...... expressed genes may elucidate how the pecking order forms in laying hens at a molecular level....... the 'pecking order' concept, which counts the number of aggressive pecks given and received. To date, little is known about the underlying genetics of the 'pecking order'. Results A total of 60 hens from a high feather pecking selection line were divided into three groups: only receivers (R), only peckers (P...... binding (GO:0035254). Conclusion In conclusion, our study provides new insights into which genes are involved in aggressive behaviours in chickens. Pecking and receiving hens exhibited different gene expression profiles in their brains. Following confirmation, the identification of differentially...

  2. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    Science.gov (United States)

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  3. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  4. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula

    Directory of Open Access Journals (Sweden)

    Beilin Zhang

    2016-01-01

    Full Text Available Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1 in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR. We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  5. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  6. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Science.gov (United States)

    Seita, Jun; Sahoo, Debashis; Rossi, Derrick J; Bhattacharya, Deepta; Serwold, Thomas; Inlay, Matthew A; Ehrlich, Lauren I R; Fathman, John W; Dill, David L; Weissman, Irving L

    2012-01-01

    Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  7. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  8. Regulation of noise in gene expression.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-01-01

    The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.

  9. Fluid Mechanics, Arterial Disease, and Gene Expression.

    Science.gov (United States)

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  10. Biosynthetic basis of incompatible histo-blood group A antigen expression

    DEFF Research Database (Denmark)

    David, L; Leitao, D; Sobrinho-Simoes, M

    1993-01-01

    , we have screened 31 cases of gastric tumors of phenotype O for the expression of blood group A gene-defined glycosyltransferase by immunohistology on frozen sections using newly developed monoclonal antibodies to the transferases. Three cases were positive, and transferase expression was confirmed...

  11. Expression and evolution of functionally distinct haemoglobin genes in plants.

    Science.gov (United States)

    Hunt, P W; Watts, R A; Trevaskis, B; Llewelyn, D J; Burnell, J; Dennis, E S; Peacock, W J

    2001-11-01

    Haemoglobin genes have been found in a number of plant species, but the number of genes known has been too small to allow effective evolutionary inferences. We present nine new non-symbiotic haemoglobin sequences from a range of plants, including class 1 haemoglobins from cotton, Citrus and tomato, class 2 haemoglobins from cotton, tomato, sugar beet and canola and two haemoglobins from the non-vascular plants, Marchantia polymorpha (a liverwort) and Physcomitrella patens (a moss). Our molecular phylogenetic analysis of all currently known non-symbiotic haemoglobin genes and a selection of symbiotic haemoglobins have confirmed the existence of two distinct classes of haemoglobin genes in the dicots. It is likely that all dicots have both class 1 and class 2 non-symbiotic haemoglobin genes whereas in monocots we have detected only class 1 genes. The symbiotic haemoglobins from legumes and Casuarina are related to the class 2 non-symbiotic haemoglobins, whilst the symbiotic haemoglobin from Parasponia groups with the class 1 non-symbiotic genes. Probably, there have been two independent recruitments of symbiotic haemoglobins. Although the functions of the two non-symbiotic haemoglobins remain unknown, their patterns of expression within plants suggest different functions. We examined the expression in transgenic plants of the two non-symbiotic haemoglobins from Arabidopsis using promoter fusions to a GUS reporter gene. The Arabidopsis GLB1 and GLB2 genes are likely to be functionally distinct. The class 2 haemoglobin gene (GLB2) is expressed in the roots, leaves and inflorescence and can be induced in young plants by cytokinin treatment in contrast to the class 1 gene (GLB1) which is active in germinating seedlings and can be induced by hypoxia and increased sucrose supply, but not by cytokinin treatment.

  12. Effects of Titanium Dioxide Nanoparticle Aggregate Size on Gene Expression

    Directory of Open Access Journals (Sweden)

    Junko Okuda-Shimazaki

    2010-06-01

    Full Text Available Titanium dioxide (titania nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis. The aggregate particle sizes of small and large aggregated titania were 166 nm (PDI = 0.291 and 596 nm (PDI = 0.417, respectively. These two size groups were separated by centrifugation from the same initial nanoparticle sample. We analyzed the gene expression of biomarkers focused on stress, inflammation, and cytotoxicity. Large titania aggregates show a larger effect on cell viability and gene expression when compared with the small aggregates. This suggests that particle aggregate size is related to cellular effects.

  13. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  14. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.

    Science.gov (United States)

    Guelke, Eileen; Bucan, Vesna; Liebsch, Christina; Lazaridis, Andrea; Radtke, Christine; Vogt, Peter M; Reimers, Kerstin

    2015-04-10

    For the precise quantitative RT-PCR normalization a set of valid reference genes is obligatory. Moreover have to be taken into concern the experimental conditions as they bias the regulation of reference genes. Up till now, no reference targets have been described for the axolotl (Ambystoma mexicanum). In a search in the public database SalSite for genetic information of the axolotl we identified fourteen presumptive reference genes, eleven of which were further tested for their gene expression stability. This study characterizes the expressional patterns of 11 putative endogenous control genes during axolotl limb regeneration and in an axolotl tissue panel. All 11 reference genes showed variable expression. Strikingly, ACTB was to be found most stable expressed in all comparative tissue groups, so we reason it to be suitable for all different kinds of axolotl tissue-type investigations. Moreover do we suggest GAPDH and RPLP0 as suitable for certain axolotl tissue analysis. When it comes to axolotl limb regeneration, a validated pair of reference genes is ODC and RPLP0. With these findings, new insights into axolotl gene expression profiling might be gained.

  15. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  16. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution

    Science.gov (United States)

    Erickson, Keesha E.; Otoupal, Peter B.

    2017-01-01

    ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment

  17. Gene expression in cortex and hippocampus during acute pneumococcal meningitis

    Directory of Open Access Journals (Sweden)

    Wittwer Matthias

    2006-06-01

    Full Text Available Abstract Background Pneumococcal meningitis is associated with high mortality (~30% and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown. We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI and (ii the self-organizing map (SOM, a clustering technique based on covariance in gene expression kinetics. Results Among 598 genes differentially regulated (change factor ≥ 1.5; p ≤ 0.05, 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. Conclusion Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential

  18. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  19. Predicting gene expression from sequence: a reexamination.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    2007-11-01

    Full Text Available Although much of the information regarding genes' expressions is encoded in the genome, deciphering such information has been very challenging. We reexamined Beer and Tavazoie's (BT approach to predict mRNA expression patterns of 2,587 genes in Saccharomyces cerevisiae from the information in their respective promoter sequences. Instead of fitting complex Bayesian network models, we trained naïve Bayes classifiers using only the sequence-motif matching scores provided by BT. Our simple models correctly predict expression patterns for 79% of the genes, based on the same criterion and the same cross-validation (CV procedure as BT, which compares favorably to the 73% accuracy of BT. The fact that our approach did not use position and orientation information of the predicted binding sites but achieved a higher prediction accuracy, motivated us to investigate a few biological predictions made by BT. We found that some of their predictions, especially those related to motif orientations and positions, are at best circumstantial. For example, the combinatorial rules suggested by BT for the PAC and RRPE motifs are not unique to the cluster of genes from which the predictive model was inferred, and there are simpler rules that are statistically more significant than BT's ones. We also show that CV procedure used by BT to estimate their method's prediction accuracy is inappropriate and may have overestimated the prediction accuracy by about 10%.

  20. [Influence of spv plasmid genes group in Salmonella Enteritidis virulence for chickens. I. Occurrence of spv plasmid genes group in Salmonella Enteritidis large virulence plasmid].

    Science.gov (United States)

    Madajczak, Grzegorz; Binek, Marian

    2005-01-01

    Many Salmonella Enteritidis virulence factors are encoded by genes localized on plasmids, especially large virulence plasmid, in highly conserved fragment, they create spv plasmid gene group. The aims of realized researches were spv genes occurrence evaluation and composition analysis among Salmonella Enteritidis strains caused infection in chickens. Researches were realized on 107 isolates, where in every cases large virulence plasmid 59 kbp size were detected. Specific nucleotides sequences of spv genes (spvRABCD) were detected in 47.7% of isolates. In the rest of examined bacteria spv genes occurred variably. Most often extreme genes of spv group, like spvR and spvD were absent, what could indicate that factors encoded by them are not most important for Salmonella Enteritidis live and their expressed virulence.

  1. Increased expression of PIN1 gene in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Lewiński Andrzej

    2011-01-01

    Full Text Available Abstract Background Peptidyl-prolyl cis/trans isomerase (Pin1, encoded by PIN1 gene with locus in chromosome 19p13, is an enzyme that catalytically induces conformational changes in proteins after phosphorylation on serine or threonine residues preceding proline (pSer/Thr-Pro motifs; in this way, it has an influence on protein interactions and intracellular localizations of proteins. The aim of the study were: 1 an assessment of PIN1 gene expression level in benign and malignant thyroid lesions; 2 the evaluation of possible correlations between gene expression and histopathological variants of papillary thyroid carcinoma (PTC or tumour size, classified according to TNM classification of primary tumours (in case of PTC only; 3 the estimation of possible relationships between expression of the gene in question and patients' sex or age. Methods Seventy (70 tissue samples were analyzed: 32 cases of PTC, 7 cases of medullary thyroid carcinoma (MTC, 7 cases of follicular adenoma (FA, and 24 cases of nodular goitre (NG. In real-time polymerase chain reaction (real-time PCR, two-step RT-PCR (reverse transcriptase-polymerase chain reaction in an ABI PRISM 7500 Sequence Detection System was employed. The PIN1 gene expression level was assessed, calculating the mean relative quantification rate (RQ rate increase for each sample. Results The level of PIN1 gene expression (compared to that in macroscopically unchanged thyroid tissue was higher in PTC group than those in FA, MTC and/or NG groups, but the statistical significance was noted for difference between PTC and NG groups only. On the other hand, the differences of RQ rate value between different PTC variants were statistically insignificant. No correlations were found between RQ values and tumour size, as well as between RQ values and patients' sex or age in PTC group. Conclusions The PIN1 gene expression may have - in future - an important meaning in the diagnostics of PTC and in understanding its

  2. Gene Expression Divergence and Evolutionary Analysis of the Drosomycin Gene Family in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Deng

    2009-01-01

    Full Text Available Drosomycin (Drs encoding an inducible 44-residue antifungal peptide is clustered with six additional genes, Dro1, Dro2, Dro3, Dro4, Dro5, and Dro6, forming a multigene family on the 3L chromosome arm in Drosophila melanogaster. To get further insight into the regulation of each member of the drosomycin gene family, here we investigated gene expression patterns of this family by either microbe-free injury or microbial challenges using real time RT-PCR. The results indicated that among the seven drosomycin genes, Drs, Dro2, Dro3, Dro4, and Dro5 showed constitutive expressions. Three out of five, Dro2, Dro3, and Dro5, were able to be upregulated by simple injury. Interestingly, Drs is an only gene strongly upregulated when Drosophila was infected with microbes. In contrast to these five genes, Dro1 and Dro6 were not transcribed at all in either noninfected or infected flies. Furthermore, by 5′ rapid amplification of cDNA ends, two transcription start sites were identified in Drs and Dro2, and one in Dro3, Dro4, and Dro5. In addition, NF-κB binding sites were found in promoter regions of Drs, Dro2, Dro3, and Dro5, indicating the importance of NF-κB binding sites for the inducibility of drosomycin genes. Based on the analyses of flanking sequences of each gene in D. melanogaster and phylogenetic relationship of drosomycins in D. melanogaster species-group, we concluded that gene duplications were involved in the formation of the drosomycin gene family. The possible evolutionary fates of drosomycin genes were discussed according to the combining analysis of gene expression pattern, gene structure, and functional divergence of these genes.

  3. Expression of MTLC gene in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Guang-Bin Qiu; Li-Guo Gong; Dong-Mei Hao; Zhi-Hong Zhen; Kai-Lai Sun

    2003-01-01

    AIM: To investigate the expression of c-myc target from laryngeal cancer cells (MTLC) gene in gastric carcinoma (GC)tissues and the effect of MTLC over-expression on gastric carcinoma cell line BGC823.METHODS: RT-PCR was performed to determine the expression of MTLC mRNA in GC and matched control tissues.BGC823 cells were transfected with an expression vector pcDNA3.1-MTLC by liposome and screened by G418. Growth of cells expressing MTLC was observed daily by manual counting. Apoptotic cells were determined by TdT-mediated dUTP nick-end labeling (TUNEL) assay.RESULTS: The expression of MTLC mRNAs was downregulated in 9(60%) of 15 cases of GC tissues. The growth rates of the BGC823 cells expressing MTLC were indistinguishable from that of control cells. A marked acceleration of apoptosis was observed in MTLC-expressing cells.CONCLUSION: MTLC was down-regulated in the majority of GC tissues and could promote apoptosis of GC cell lines,which suggests that MTLC may play an important role in the carcinogenesis of gastric carcinoma.

  4. Mural granulosa cell gene expression associated with oocyte developmental competence

    Directory of Open Access Journals (Sweden)

    Jiang Jin-Yi

    2010-03-01

    Full Text Available Abstract Background Ovarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte. Methods Immature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC. Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array. Results The result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox and nerve growth factor receptor associated protein 1 (Ngfrap1, which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2, which is involved in the regulation of extracellular matrix organization and biogenesis. Conclusions The data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and

  5. Muscle Gene Expression Patterns in Human Rotator Cuff Pathology

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J.; Lieber, Richard L.; Schenk, Simon; Lane, John G.; Ward, Samuel R.

    2014-01-01

    Background: Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Methods: Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Results: Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Conclusions: Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of

  6. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression.

    Science.gov (United States)

    Sun, R; Lin, S F; Staskus, K; Gradoville, L; Grogan, E; Haase, A; Miller, G

    1999-03-01

    Herpesvirus gene expression can be classified into four distinct kinetic stages: latent, immediate early, early, and late. Here we characterize the kinetic class of a group of 16 Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 genes in a cultured primary effusion cell line and examine the expression of a subset of these genes in KS biopsies. Expression of two latent genes, LANA and vFLIP, was constitutive and was not induced by chemicals that induce the lytic cycle in primary effusion lymphoma (PEL) cell lines. An immediate-early gene, Rta (open reading frame 50 [ORF50]), was induced within 4 h of the addition of n-butyrate, and its 3.6-kb mRNA was resistant to inhibition by cycloheximide. Early genes, including K3 and K5 that are homologues of the "immediate-early" gene of bovine herpesvirus 4, K8 that is a positional homologue of Epstein-Barr virus BZLF1, vMIP II, vIL-6, and polyadenylated nuclear (PAN) RNA, appeared 8 to 13 h after chemical induction. A second group of early genes that were slightly delayed in their appearance included viral DHFR, thymidylate synthase, vMIP I, G protein-coupled receptor, K12, vBcl2, and a lytic transcript that overlapped LANA. The transcript of sVCA (ORF65), a late gene whose expression was abolished by Phosphonoacetic acid, an inhibitor of KSHV DNA replication, did not appear until 30 h after induction. Single-cell assays indicated that the induction of lytic cycle transcripts resulted from the recruitment of additional cells into the lytic cycle. In situ hybridization of KS biopsies showed that about 3% of spindle-shaped tumor cells expressed Rta, ORF K8, vIL-6, vMIP I, vBcl-2, PAN RNA, and sVCA. Our study shows that several KSHV-encoded homologues of cellular cytokines, chemokines, and antiapoptotic factors are expressed during the viral lytic cycle in PEL cell lines and in KS biopsies. The lytic cycle of KSHV, probably under the initial control of the KSHV/Rta gene, may directly contribute to tumor

  7. Profiling of differentially expressed genes in haemophilia A with inhibitor.

    Science.gov (United States)

    Hwang, S H; Lim, J A; Kim, M J; Kim, H C; Lee, H W; Yoo, K Y; You, C W; Lee, K S; Kim, H S

    2012-05-01

    Inhibitor development is the most significant complication in the therapy of haemophilia A (HA) patients. In spite of many studies, not much is known regarding the mechanism underlying inhibitor development. To understand the mechanism, we analysed profiles of differentially expressed genes (DEGs) between inhibitor and non-inhibitor HA via a microarray technique. Twenty unrelated Korean HAs were studied: 11 were non-inhibitor and nine were HA with inhibitor (≥5 BU mL(-1)). Microarray analysis was conducted using a Human Ref-8 expression Beadchip system (Illumina) and the data were analysed using Beadstudio software. We identified 545 DEGs in inhibitor HA as compared with the non-inhibitor patients; 384 genes were up-regulated and 161 genes were down-regulated. Among them, 75 genes whose expressions were altered by at least two-fold (>+2 or genes differed significantly in the two groups. For validation of the DEGs, semi-quantitative RT-PCR (semi-qRT-PCR) was conducted with the six selected DEGs. The results corresponded to the microarray data, with the exception of one gene. We also examined the expression of the genes associated with the antigen presentation process via real-time PCR. The average levels of IL10, CTLA4 and TNFα slightly reduced, whereas that of IFNγ increased in the inhibitor HA group. We are currently unable to explain whether this phenomenon is a function of the inhibitor-inducing factor or is an epiphenomenon of antibody production. Nevertheless, our results provide a possible explanation for inhibitor development. © 2011 Blackwell Publishing Ltd.

  8. Toward stable gene expression in CHO cells

    Science.gov (United States)

    Mariati; Koh, Esther YC; Yeo, Jessna HM; Ho, Steven CL; Yang, Yuansheng

    2014-01-01

    Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific. PMID:25482237

  9. Genome engineering and gene expression control for bacterial strain development.

    Science.gov (United States)

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen.

  10. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    Science.gov (United States)

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  11. Engineering genes for predictable protein expression.

    Science.gov (United States)

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2012-05-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.

  12. Identification of suitable reference genes for gene expression studies of shoulder instability.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available Shoulder instability is a common shoulder injury, and patients present with plastic deformation of the glenohumeral capsule. Gene expression analysis may be a useful tool for increasing the general understanding of capsule deformation, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR has become an effective method for such studies. Although RT-qPCR is highly sensitive and specific, it requires the use of suitable reference genes for data normalization to guarantee meaningful and reproducible results. In the present study, we evaluated the suitability of a set of reference genes using samples from the glenohumeral capsules of individuals with and without shoulder instability. We analyzed the expression of six commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, TBP and TFRC in the antero-inferior, antero-superior and posterior portions of the glenohumeral capsules of cases and controls. The stability of the candidate reference gene expression was determined using four software packages: NormFinder, geNorm, BestKeeper and DataAssist. Overall, HPRT1 was the best single reference gene, and HPRT1 and B2M composed the best pair of reference genes from different analysis groups, including simultaneous analysis of all tissue samples. GenEx software was used to identify the optimal number of reference genes to be used for normalization and demonstrated that the accumulated standard deviation resulting from the use of 2 reference genes was similar to that resulting from the use of 3 or more reference genes. To identify the optimal combination of reference genes, we evaluated the expression of COL1A1. Although the use of different reference gene combinations yielded variable normalized quantities, the relative quantities within sample groups were similar and confirmed that no obvious differences were observed when using 2, 3 or 4 reference genes. Consequently, the use of 2 stable reference genes for normalization, especially

  13. Yin Yang gene expression ratio signature for lung cancer prognosis.

    Directory of Open Access Journals (Sweden)

    Wayne Xu

    Full Text Available Many studies have established gene expression-based prognostic signatures for lung cancer. All of these signatures were built from training data sets by learning the correlation of gene expression with the patients' survival time. They require all new sample data to be normalized to the training data, ultimately resulting in common problems of low reproducibility and impracticality. To overcome these problems, we propose a new signature model which does not involve data training. We hypothesize that the imbalance of two opposing effects in lung cancer cells, represented by Yin and Yang genes, determines a patient's prognosis. We selected the Yin and Yang genes by comparing expression data from normal lung and lung cancer tissue samples using both unsupervised clustering and pathways analyses. We calculated the Yin and Yang gene expression mean ratio (YMR as patient risk scores. Thirty-one Yin and thirty-two Yang genes were identified and selected for the signature development. In normal lung tissues, the YMR is less than 1.0; in lung cancer cases, the YMR is greater than 1.0. The YMR was tested for lung cancer prognosis prediction in four independent data sets and it significantly stratified patients into high- and low-risk survival groups (p = 0.02, HR = 2.72; p = 0.01, HR = 2.70; p = 0.007, HR = 2.73; p = 0.005, HR = 2.63. It also showed prediction of the chemotherapy outcomes for stage II & III. In multivariate analysis, the YMR risk factor was more successful at predicting clinical outcomes than other commonly used clinical factors, with the exception of tumor stage. The YMR can be measured in an individual patient in the clinic independent of gene expression platform. This study provided a novel insight into the biology of lung cancer and shed light on the clinical applicability.

  14. Gene expression of LOX-1, VCAM-1, and ICAM-1 in pre-atherosclerotic mice

    DEFF Research Database (Denmark)

    Fisker Hag, Anne Mette; Pedersen, Sune Folke; Kjaer, Andreas

    2008-01-01

    -atherosclerotic mice. Furthermore, the plasma levels of the soluble VCAM-1 and ICAM-1 were compared to the gene expression profiles. Gene expressions of LOX-1 and VCAM-1 were up-regulated in young apoE(-/-) mice, and thus, it seems probable that these genes play a role in pre-atherosclerosis. Contrarily, the gene...... expression profile of ICAM-1 did not show any apparent differences between the groups, questioning the involvement of this molecule in the early development of atherosclerosis. Plasma levels of sVCAM-1 and sICAM-1 were similar in all mice and did not correlate with the vascular gene expression...

  15. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M.

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  16. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M.

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  17. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces.......It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  18. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    model to investigate the role of telomerase in AML, we were able to translate the observed effect into human AML patients and identify specific genes involved, which also predict survival patterns in AML patients. During these studies we have applied methods for investigating differentially expressed......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  19. Combinatorial engineering for heterologous gene expression.

    Science.gov (United States)

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype.

  20. Structure, expression and functions of MTA genes.

    Science.gov (United States)

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.

  1. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xue-Nong Li; Yan-Qing Ding; Guo-Bing Liu

    2003-01-01

    AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L)for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reversetranscription. The probes were mixed and hybridized on the microarray at 60 ℃ for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semiquantitative RT-PCR.RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000.Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22 % of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52 % of the investigated genes) and 68 genes were down-regulated (holding 1.70 % of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.

  2. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Gao, Shan; Worm, Jesper; Guldberg, Per

    2004-01-01

    Loss of histo-blood group A and B antigen expression is a frequent event in oral carcinomas and is associated with decreased activity of glycosyltransferases encoded by the ABO gene. We examined 30 oral squamous cell carcinomas for expression of A and B antigens and glycosyltransferases. We also ...

  3. Noise-plasticity correlations of gene expression in the multicellular organism Arabidopsis thaliana.

    Science.gov (United States)

    Hirao, Koudai; Nagano, Atsushi J; Awazu, Akinori

    2015-12-21

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions (called gene expression "noise" or phenotype "fluctuation"). In yeast and Escherichia coli, positive correlations have been found between such gene expression noise and "plasticity" with environmental variations. To determine the universality of such correlations in both unicellular and multicellular organisms, we focused on the relationships between gene expression "noise" and "plasticity" in Arabidopsis thaliana, a multicellular model organism. In recent studies on yeast and E. coli, only some gene groups with specific properties of promoter architecture, average expression levels, and functions exhibited strong noise-plasticity correlations. However, we found strong noise-plasticity correlations for most gene groups in Arabidopsis; additionally, promoter architecture, functional essentiality of genes, and circadian rhythm appeared to have only a weak influence on the correlation strength. The differences in the characteristics of noise-plasticity correlations may result from three-dimensional chromosomal structures and/or circadian rhythm.

  4. Corresponding erdosteine changes autophagy genes expression in hippocampus on Rhinitis medicamentosa model

    Directory of Open Access Journals (Sweden)

    Dokuyucu Recep

    2015-01-01

    Full Text Available In our study, rats were subjected to Oxymetazoline hydrochloride treatment and Rhinitis medicamentosa (RM was formed and then autophagy gene expression levels were determined after the application of an antioxidant agent erdosteine (ED. The rats were divided into three groups; Group 1 was the control group. Group 2 (RM and group 3 (RM+ED rats received two spray puffs of 0.05% oxymetazoline into the nasal cavities three times daily for eight weeks. After determination of RM in the rats, the RM group were killed. The ED+RM group received 10 mg/kg of an ED suspension. At the end of seven days, these rats were also killed. All groups’ hippocampus tissues were obtained for the measurement of autophagy gene expressions. In rhinitis medicamentosa group Atg5, Atg7 and Atg10 gene expressions in the left hippocampus were reduced as compared to control group (p=0.01, p>0.05, p=0.01, respectively. Also, erdosteine treatments were restored mRNA expression of autophagy genes. In right hippocampus of rhinitis medicamentosa group, Atg5 and Atg10 gene expressions was found to be down-regulated as compared to control group (p>0.05, p<0.05, respectively. Both BECN1 and ULK genes expression were found to be reduced in left hippocampus of rhinitis medicamentosa group. Erdosteine applications was restored the expression of these genes (p=0.03, p=0.03, respectively. Additionally, in right hippocampus, Erdosteine application was restored the expression of ULK gene (p=0.01. This is the first report that evaluated the expression autophagy genes in RM rat models and the changes observed after erdosteine applications.

  5. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  6. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  7. Database of queryable gene expression patterns for Xenopus.

    Science.gov (United States)

    Gilchrist, Michael J; Christensen, Mikkel B; Bronchain, Odile; Brunet, Frédéric; Chesneau, Albert; Fenger, Ursula; Geach, Timothy J; Ironfield, Holly V; Kaya, Ferdinand; Kricha, Sadia; Lea, Robert; Massé, Karine; Néant, Isabelle; Paillard, Elodie; Parain, Karine; Perron, Muriel; Sinzelle, Ludivine; Souopgui, Jacob; Thuret, Raphaël; Ymlahi-Ouazzani, Qods; Pollet, Nicolas

    2009-06-01

    The precise localization of gene expression within the developing embryo, and how it changes over time, is one of the most important sources of information for elucidating gene function. As a searchable resource, this information has up until now been largely inaccessible to the Xenopus community. Here, we present a new database of Xenopus gene expression patterns, queryable by specific location or region in the embryo. Pattern matching can be driven either from an existing in situ image, or from a user-defined pattern based on development stage schematic diagrams. The data are derived from the work of a group of 21 Xenopus researchers over a period of 4 days. We used a novel, rapid manual annotation tool, XenMARK, which exploits the ability of the human brain to make the necessary distortions in transferring data from the in situ images to the standard schematic geometry. Developmental Dynamics 238:1379-1388, 2009. (c) 2009 Wiley-Liss, Inc.

  8. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  9. Gene Expression Profile Differences in Gastric Cancer and Normal Gastric Mucosa by Oligonucleotide Microarrays

    Institute of Scientific and Technical Information of China (English)

    Chuanding Yu; Shenhua Xu; HangZhou Mou; Zhiming Jiang; Chihong Zhu; Xianglin Liu

    2006-01-01

    OBJECTIVE To study the difference of gene expression in gastric cancer (T) and normal tissue of gastric mucosa (C), and to screen for associated novel genes in gastric cancers by oligonucleotide microarrays.METHODS U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T and C. Bioinformatics was used to analyze the detected results.RESULTS When gastric cancers were compared with normal gastric mucosa, a total of 270 genes were found with a difference of more than 9times in expression levels. Of the 270 genes, 157 were up-regulated (Signal Log Ratio [SLR] ≥3), and 113 were down-regulated (SLR ≤-3).Using a classification of function, the highest number of gene expression differences related to enzymes and their regulatory genes (67, 24.8%),followed by signal-transduction genes (43,15.9%). The third were nucleic acid binding genes (17, 6.3%), fourth were transporter genes (15, 5.5%)and fifth were protein binding genes (12, 4.4%). In addition there were 50genes of unknown function, accounting for 18.5%. The five above mentioned groups made up 56.9% of the total gene number.CONCLUSION The 5 gene groups (enzymes and their regulatory proteins, signal transduction proteins, nucleic acid binding proteins, transporter and protein binding) were abnormally expressed and are important genes for further study in gastric cancers.

  10. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  11. Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium

    Directory of Open Access Journals (Sweden)

    Mitchell Murray D

    2009-11-01

    Full Text Available Abstract Background Quantitative real-time PCR gene expression results are generally normalised using endogenous control genes. These reference genes should be expressed at a constant level across all sample groups in a study, and should not be influenced by study treatments or conditions. There has been no systematic investigation of endogenous control genes for bovine endometrium to date. The suitability of both commonly used and novel endogenous control genes was evaluated in this study, with the latter being selected from stably expressed transcripts identified through microarray analysis of bovine endometrium. Fifteen candidate endogenous control genes were assessed across different tissue subtypes in pregnant and cycling Holstein-Friesian dairy cows from two divergent genetic backgrounds. Results The expression profiles of five commonly used endogenous control genes (GAPDH, PPIA, RPS9, RPS15A, and UXT and 10 experimentally derived candidate endogenous control genes (SUZ12, C2ORF29, ZNF131, ACTR1A, HDAC1, SLC30A6, CNOT7, DNAJC17, BBS2, and RANBP10 were analysed across 44 samples to determine the most stably expressed gene. Gene stability was assessed using the statistical algorithms GeNorm and Normfinder. All genes presented with low overall variability (0.87 to 1.48% CV of Cq. However, when used to normalise a differentially expressed gene (oxytocin receptor - OXTR in the samples, the reported relative gene expression levels were significantly affected by the control gene chosen. Based on the results of this analysis, SUZ12 is proposed as the most appropriate control gene for use in bovine endometrium during early pregnancy or the oestrus cycle. Conclusion This study establishes the suitability of novel endogenous control genes for comparing expression levels in endometrial tissues of pregnant and cycling bovines, and demonstrates the utility of microarray analysis as a method for identifying endogenous control gene candidates.

  12. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    Science.gov (United States)

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  13. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Directory of Open Access Journals (Sweden)

    Jun Yao

    Full Text Available Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT, recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  14. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Science.gov (United States)

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  15. Immune response gene expression in colorectal cancer carries distinct prognostic implications according to tissue, stage and site: a prospective retrospective translational study in the context of a hellenic cooperative oncology group randomised trial.

    Directory of Open Access Journals (Sweden)

    George Pentheroudakis

    Full Text Available Although host immune response is an emerging prognostic factor for colorectal cancer, there is no consensus on the optimal methodology, surrogate markers or tissue for study.Tumour blocks were prospectively collected from 344 patients with stage II/III colorectal cancer (CRC treated with adjuvant chemotherapy. Whole section lymphocytic infiltration was studied along with mRNA expression of CD3Z, CD8, CD4, CXCL9, CXCL13, IGHM, FOXP3, SNAI2 and ESR1 by qRT-qPCR in tissue microarray (TMA cores from the centre of tumour, invasive margin and adjacent normal mucosa.Lymphocytic infiltration, deficient MMR (10.9%, KRAS (40.7% and BRAF (4.9% mutations or single mRNA gene expression were not prognostic. Tumour ESR1 gene expression (Hazard Ratio [HR] for relapse 2.33, 95% CI 1.35-4.02; HR for death 1.74, 95% CI 1.02-2.97 and absence of necrosis (HR for relapse 1.71, 95% CI 1.05-2.71; HR for death 1.98, 95% CI 1.14-3.43 were adverse prognostic features. We used CD3Z and CD8 expression in order to devise the mRNA-based Immune Score (mIS and proceeded to partitioning analysis in 267 patients, with age, stage, tumour site (Right vs Left CRC, KRAS mutation and tumour mIS as input factors. Only in patients with stage III right-sided colon cancer, a low immune response was associated with inferior disease-free survival (mIS-low, HR for relapse 2.28, 95% CI 1.05-8.02. No prognostic significance was seen for tumour mIS in any other stage or site of CRC, or for a similar mIS score derived from adjacent normal mucosa. Independent adverse prognostic significance was retained in multivariable analysis for absence of necrosis, tumour ESR1 expression in all patients and low tumour mIS in stage III right-sided CRC.In localised CRC, mRNA-based CD3Z/CD8 profiling of tumour immune response may have stage, site and tissue-specific prognostic significance, along with ESR1 expression.ANZCTR.org.au ACTRN12610000509066.

  16. Cocoa polyphenols and fiber modify colonic gene expression in rats.

    Science.gov (United States)

    Massot-Cladera, Malen; Franch, Àngels; Castell, Margarida; Pérez-Cano, Francisco J

    2017-08-01

    Cocoa intake has been associated with health benefits, improving cardiovascular function and metabolism, as well as modulating intestinal immune function. The aim of this study was to take an in-depth look into the mechanisms affected by the cocoa intake by evaluating the colonic gene expression after nutritional intervention, and to ascertain the role of the fiber of cocoa in these effects. To achieve this, Wistar rats were fed for 3 weeks with either a reference diet, a diet containing 10 % cocoa (C10), a diet based on cocoa fiber (CF) or a diet containing inulin (I). At the end of the study, colon was excised to obtain the RNA to evaluate the differential gene expression by microarray. Results were validated by RT-PCR. The C10 group was the group with most changes in colonic gene expression, most of them down-regulated but a few in common with the CF diet. The C10 diet significantly up-regulated the expression of Scgb1a1 and Scnn1 g and down-regulated Tac4, Mcpt2, Fcer1a and Fabp1 by twofold, most of them related to lipid metabolism and immune function. The CF and I diets down-regulated the expression of Serpina10 and Apoa4 by twofold. Similar patterns of expression were found by PCR. Most of the effects attributed to cocoa consumption on genes related to the immune system (B cell and mast cell functionality) and lipid metabolism in the colon tissue were due not only to its fiber content, but also to the possible contribution of polyphenols and other compounds.

  17. Classification and expression analyses of homeobox genes from Dictyostelium discoideum

    Indian Academy of Sciences (India)

    Himanshu Mishra; Shweta Saran

    2015-06-01

    Homeobox genes are compared between genomes in an attempt to understand the evolution of animal development. The ability of the protist, Dictyostelium discoideum, to shift between uni- and multicellularity makes this group ideal for studying the genetic changes that may have occurred during this transition. We present here the first genome-wide classification and comparative genomic analysis of the 14 homeobox genes present in D. discoideum. Based on the structural alignment of the homeodomains, they can be broadly divided into TALE and non-TALE classes. When individual homeobox genes were compared with members of known class or family, we could further classify them into 3 groups, namely, TALE, OTHER and NOVEL classes, but no HOX family was found. The 5 members of TALE class could be further divided into PBX, PKNOX, IRX and CUP families; 4 homeobox genes classified as NOVEL did not show any similarity to any known homeobox genes; while the remaining 5 were classified as OTHERS as they did show certain degree of similarity to few known homeobox genes. No unique RNA expression pattern during development of D. discoideum emerged for members of an individual group. Putative promoter analysis revealed binding sites for few homeobox transcription factors among many probable factors.

  18. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  19. Differential and correlation analyses of microarray gene expression data in the CEPH Utah families

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jinghua; Li, Shuxia;

    2008-01-01

    The widespread microarray technology capable of analyzing global gene expression at the level of transcription is expanding its application not only in medicine but also in studies on basic biology. This paper presents our analysis on microarray gene expression data in the CEPH Utah families...... focusing on the demographic characteristics such as age and sex on differential gene expression patterns. Our results show that the differential gene expression pattern between age groups is dominated by down-regulated transcriptional activities in the old subjects. Functional analysis on age......-regulated genes identifies cell-cell signaling as an important functional category implicated in human aging. Sex-dependent gene expression is characterized by genes that may escape X-inactivation and, most interestingly, such a pattern is not affected by the aging process. Analysis on sibship correlation on gene...

  20. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher;

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... from all fourteen RA patients and healthy controls identified a subset of discriminative genes. These results were validated by real time reverse transcription polymerase chain reaction (RT-PCR) on another group of RA patients and healthy controls. This confirmed that the following genes had...

  1. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  2. Regulation of cry Gene Expression in Bacillus thuringiensis

    OpenAIRE

    Chao Deng; Qi Peng; Fuping Song; Didier Lereclus

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcr...

  3. Regulation of cry Gene Expression in Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Chao Deng

    2014-07-01

    Full Text Available Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels.

  4. X chromosome regulation of autosomal gene expression in bovine blastocysts

    Science.gov (United States)

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male to female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient. PMID:24817096

  5. Reference genes for quantitative gene expression studies in multiple avian species.

    Directory of Open Access Journals (Sweden)

    Philipp Olias

    Full Text Available Quantitative real-time PCR (qPCR rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM, YWHAZ on different tissues of the mallard (Anas platyrhynchos, domestic chicken (Gallus gallus domesticus, common crane (Grus grus, white-tailed eagle (Haliaeetus albicilla, domestic turkey (Meleagris gallopavo f. domestica, cockatiel (Nymphicus hollandicus, Humboldt penguin (Sphenicus humboldti, ostrich (Struthio camelus and zebra finch (Taeniopygia guttata, spanning a broad range of the phylogenetic tree of birds. Primer pairs for six to 11 genes were successfully established for each of the nine species. As a proof of principle, we analyzed expression levels of 10 candidate reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different statistical algorithms, we identified five genes (18S, PGK1, RPS7, TFRC, YWHAZ that were stably expressed within each group and also between the singing and silent conditions, establishing them as suitable reference genes. In conclusion, the newly developed pan-avian primer set allows accurate normalization and quantification of gene expression levels in multiple avian species.

  6. Reference genes for quantitative gene expression studies in multiple avian species.

    Science.gov (United States)

    Olias, Philipp; Adam, Iris; Meyer, Anne; Scharff, Constance; Gruber, Achim D

    2014-01-01

    Quantitative real-time PCR (qPCR) rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM, YWHAZ) on different tissues of the mallard (Anas platyrhynchos), domestic chicken (Gallus gallus domesticus), common crane (Grus grus), white-tailed eagle (Haliaeetus albicilla), domestic turkey (Meleagris gallopavo f. domestica), cockatiel (Nymphicus hollandicus), Humboldt penguin (Sphenicus humboldti), ostrich (Struthio camelus) and zebra finch (Taeniopygia guttata), spanning a broad range of the phylogenetic tree of birds. Primer pairs for six to 11 genes were successfully established for each of the nine species. As a proof of principle, we analyzed expression levels of 10 candidate reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different statistical algorithms, we identified five genes (18S, PGK1, RPS7, TFRC, YWHAZ) that were stably expressed within each group and also between the singing and silent conditions, establishing them as suitable reference genes. In conclusion, the newly developed pan-avian primer set allows accurate normalization and quantification of gene expression levels in multiple avian species.

  7. GOAL: A software tool for assessing biological significance of genes groups

    Directory of Open Access Journals (Sweden)

    Famili Fazel

    2010-05-01

    Full Text Available Abstract Background Modern high throughput experimental techniques such as DNA microarrays often result in large lists of genes. Computational biology tools such as clustering are then used to group together genes based on their similarity in expression profiles. Genes in each group are probably functionally related. The functional relevance among the genes in each group is usually characterized by utilizing available biological knowledge in public databases such as Gene Ontology (GO, KEGG pathways, association between a transcription factor (TF and its target genes, and/or gene networks. Results We developed GOAL: Gene Ontology AnaLyzer, a software tool specifically designed for the functional evaluation of gene groups. GOAL implements and supports efficient and statistically rigorous functional interpretations of gene groups through its integration with available GO, TF-gene association data, and association with KEGG pathways. In order to facilitate more specific functional characterization of a gene group, we implement three GO-tree search strategies rather than one as in most existing GO analysis tools. Furthermore, GOAL offers flexibility in deployment. It can be used as a standalone tool, a plug-in to other computational biology tools, or a web server application. Conclusion We developed a functional evaluation software tool, GOAL, to perform functional characterization of a gene group. GOAL offers three GO-tree search strategies and combines its strength in function integration, portability and visualization, and its flexibility in deployment. Furthermore, GOAL can be used to evaluate and compare gene groups as the output from computational biology tools such as clustering algorithms.

  8. Evaluation of clustering algorithms for gene expression data using gene ontology annotations

    Institute of Scientific and Technical Information of China (English)

    MA Ning; ZHANG Zheng-guo

    2012-01-01

    Background Clustering is a useful exploratory technique for interpreting gene expression data to reveal groups of genes sharing common functional attributes.Biologists frequently face the problem of choosing an appropriate algorithm.We aimed to provide a standalone,easily accessible and biologically oriented criterion for expression data clustering evaluation.Methods An external criterion utilizing annotation based similarities between genes is proposed in this work.Gene ontology information is employed as the annotation source.Comparisons among six widely used clustering algorithms over various types of gene expression data sets were carried out based on the criterion proposed.Results The rank of these algorithms given by the criterion coincides with our common knowledge.Single-linkage has significantly poorer performance,even worse than the random algorithm.Ward's method archives the best performance in most cases.Conclusions The criterion proposed has a strong ability to distinguish among different clustering algorithms with different distance measurements.It is also demonstrated that analyzing main contributors of the criterion may offer some guidelines in finding local compact clusters.As an addition,we suggest using Ward's algorithm for gene expression data analysis.

  9. Muscle Biological Characteristics of Differentially Expressed Genes in Wujin and Landrace Pigs

    Institute of Scientific and Technical Information of China (English)

    XU Hong; HUANG Ying; LI Wei-zhen; YANG Ming-hua; GE Chang-rong; ZHANG Xi; LI Liu-an; GAO Shi-zheng; ZHAO Su-mei

    2014-01-01

    The biological chemistry would be responsible for the meat quality. This study tried to investigate the transcript expression proifle and explain the characteristics of differentially expressed genes between the Wujin and Landrace pigs. The results showed that 526 differentially expressed genes were found by comparing the transcript expression proifle of muscle tissue between Wujin and Landrace pigs. Among them, 335 genes showed up-regulations and 191 genes showed down-regulations in Wujin pigs compared with the Landrace pigs. Gene ontology (GO) analysis indicated that the differentially expressed genes were clustered into three groups involving in protein synthesis, energy metabolism and immune response. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis found that these differentially expressed genes participated in protein synthesis metabolism, energy metabolism and immune response pathway. The Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of protein function and protein domains function also conifrmed that differentially expressed genes belonged to protein synthesis, energy metabolism and immune response. Genes related protein synthesis metabolism pathway in Landrace was higher than in Wujin pigs. However, differentially expressed genes related energy metabolism and immune response was up-regulated in Wujin pigs compared with Landrace pigs. Quantitative real-time RT-PCR on selected genes was used to conifrm the results from the microarray. These suggested that the genes related to protein synthesis, energy metabolism and immune response would contribute to the growth performance, meat quality as well as anti-disease capacity.

  10. A gene expression atlas of the domestic pig

    Directory of Open Access Journals (Sweden)

    Freeman Tom C

    2012-11-01

    Full Text Available Abstract Background This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering. Results The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development. Conclusions As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites http://biogps.org and http://www.macrophages.com/pig-atlas.

  11. Gene expression profile after cardiopulmonary bypass and cardioplegic arrest.

    Science.gov (United States)

    Ruel, Marc; Bianchi, Cesario; Khan, Tanveer A; Xu, Shu; Liddicoat, John R; Voisine, Pierre; Araujo, Eugenio; Lyon, Helen; Kohane, Isaac S; Libermann, Towia A; Sellke, Frank W

    2003-11-01

    This study examines the cardiac and peripheral gene expression responses to cardiopulmonary bypass and cardioplegic arrest. Atrial myocardium and skeletal muscle were harvested from 16 patients who underwent coronary artery bypass grafting before and after cardiopulmonary bypass and cardioplegic arrest. Ten sample pairs were selected for patient similarity, and oligonucleotide microarray analyses of 12,625 genes were performed using matched precardiopulmonary bypass tissues as controls. Array results were validated with Northern blotting, real-time polymerase chain reaction, in situ hybridization, and immunoblotting. Statistical analyses were nonparametric. Median durations of cardiopulmonary bypass and cardioplegic arrest were 74 and 60 minutes, respectively. Compared with precardiopulmonary bypass, postcardiopulmonary bypass myocardial tissues revealed 480 up-regulated and 626 down-regulated genes with a threshold P value of.025 or less (signal-to-noise ratio: 3.46); skeletal muscle tissues showed 560 and 348 such genes, respectively (signal-to-noise ratio: 3.04). Up-regulated genes in cardiac tissues included inflammatory and transcription activators FOS; jun B proto-oncogene; nuclear receptor subfamily 4, group A, member 3; MYC; transcription factor-8; endothelial leukocyte adhesion molecule-1; and cysteine-rich 61; apoptotic genes nuclear receptor subfamily 4, group A, member 1 and cyclin-dependent kinase inhibitor 1A; and stress genes dual-specificity phosphatase-1, dual-specificity phosphatase-5, and B-cell translocation gene 2. Up-regulated skeletal muscle genes included interleukin 6; interleukin 8; tumor necrosis factor receptor superfamily, member 11B; nuclear receptor subfamily 4, group A, member 3; transcription factor-8; interleukin 13; jun B proto-oncogene; interleukin 1B; glycoprotein Ib, platelet, alpha polypeptide; and Ras-associated protein RAB27A. Down-regulated genes included haptoglobin and numerous immunoglobulins in the heart, and factor H

  12. Meta Analysis of Gene Expression Data within and Across Species.

    Science.gov (United States)

    Fierro, Ana C; Vandenbussche, Filip; Engelen, Kristof; Van de Peer, Yves; Marchal, Kathleen

    2008-12-01

    Since the second half of the 1990s, a large number of genome-wide analyses have been described that study gene expression at the transcript level. To this end, two major strategies have been adopted, a first one relying on hybridization techniques such as microarrays, and a second one based on sequencing techniques such as serial analysis of gene expression (SAGE), cDNA-AFLP, and analysis based on expressed sequence tags (ESTs). Despite both types of profiling experiments becoming routine techniques in many research groups, their application remains costly and laborious. As a result, the number of conditions profiled in individual studies is still relatively small and usually varies from only two to few hundreds of samples for the largest experiments. More and more, scientific journals require the deposit of these high throughput experiments in public databases upon publication. Mining the information present in these databases offers molecular biologists the possibility to view their own small-scale analysis in the light of what is already available. However, so far, the richness of the public information remains largely unexploited. Several obstacles such as the correct association between ESTs and microarray probes with the corresponding gene transcript, the incompleteness and inconsistency in the annotation of experimental conditions, and the lack of standardized experimental protocols to generate gene expression data, all impede the successful mining of these data. Here, we review the potential and difficulties of combining publicly available expression data from respectively EST analyses and microarray experiments. With examples from literature, we show how meta-analysis of expression profiling experiments can be used to study expression behavior in a single organism or between organisms, across a wide range of experimental conditions. We also provide an overview of the methods and tools that can aid molecular biologists in exploiting these public data.

  13. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    Science.gov (United States)

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  14. Identification of genes differentially expressed during ripening of banana.

    Science.gov (United States)

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  15. Gene expression in developing watermelon fruit

    Science.gov (United States)

    Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova

    2008-01-01

    Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar

  16. Gene expression in developing watermelon fruit

    Directory of Open Access Journals (Sweden)

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  17. Gene Expression Profile Changes in Germinating Rice

    Institute of Scientific and Technical Information of China (English)

    Dongli He; Chao Han; Pingfang Yang

    2011-01-01

    Water absorption is a prerequisite for seed germination.During imbibition,water influx causes the resumption of many physiological and metabolic processes in growing seed.In order to obtain more complete knowledge about the mechanism of seed germination,two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition.Thirtynine differentially expressed proteins were identified,including 19 down-regulated and 20 up-regulated proteins.Storage proteins and some seed development- and desiccation-associated proteins were down regulated.The changed patterns of these proteins indicated extensive mobilization of seed reserves.By contrast,catabolism-associated proteins were up regulated upon imbibition.Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level.The expression of these genes was largely consistent at mRNA and protein levels.In providing additional information concerning gene regulation in early plant life,this study will facilitate understanding of the molecular mechanisms of seed germination.

  18. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  19. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  20. Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration.

    Directory of Open Access Journals (Sweden)

    Joel K Wise

    Full Text Available Enhanced understanding of differential gene expression and biological pathways associated with distinct phases of intramembranous bone regeneration following femoral marrow ablation surgery will improve future advancements regarding osseointegration of joint replacement implants, biomaterials design, and bone tissue engineering. A rat femoral marrow ablation model was performed and genome-wide microarray data were obtained from samples at 1, 3, 5, 7, 10, 14, 28, and 56 days post-ablation, with intact bones serving as controls at Day 0. Bayesian model-based clustering produced eight distinct groups amongst 9,062 significant gene probe sets based on similar temporal expression profiles, which were further categorized into three major temporal classes of increased, variable, and decreased expression. Osteoblastic- and osteoclastic-associated genes were found to be significantly expressed within the increased expression groups. Chondrogenesis was not detected histologically. Adipogenic marker genes were found within variable/decreased expression groups, emphasizing that adipogenesis was inhibited during osteogenesis. Differential biological processes and pathways associated with each major temporal group were identified, and significantly expressed genes involved were visually represented by heat maps. It was determined that the increased expression group exclusively contains genes involved in pathways for matrix metalloproteinases (MMPs, Wnt signaling, TGF-β signaling, and inflammatory pathways. Only the variable expression group contains genes associated with glycolysis and gluconeogenesis, the notch signaling pathway, natural killer cell mediated cytotoxicity, and the B cell receptor signaling pathway. The decreased group exclusively consists of genes involved in heme biosynthesis, the p53 signaling pathway, and the hematopoietic cell lineage. Significant biological pathways and transcription factors expressed at each time point post

  1. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  2. TRAUCO, a Trithorax-group gene homologue, is required for early embryogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Aquea, Felipe; Johnston, Amal J; Cañon, Paola; Grossniklaus, Ueli; Arce-Johnson, Patricio

    2010-02-01

    Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants that is required for early embryogenesis.

  3. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  4. Mining gene expression data by interpreting principal components

    Directory of Open Access Journals (Sweden)

    Mortazavi Ali

    2006-04-01

    Full Text Available Abstract Background There are many methods for analyzing microarray data that group together genes having similar patterns of expression over all conditions tested. However, in many instances the biologically important goal is to identify relatively small sets of genes that share coherent expression across only some conditions, rather than all or most conditions as required in traditional clustering; e.g. genes that are highly up-regulated and/or down-regulated similarly across only a subset of conditions. Equally important is the need to learn which conditions are the decisive ones in forming such gene sets of interest, and how they relate to diverse conditional covariates, such as disease diagnosis or prognosis. Results We present a method for automatically identifying such candidate sets of biologically relevant genes using a combination of principal components analysis and information theoretic metrics. To enable easy use of our methods, we have developed a data analysis package that facilitates visualization and subsequent data mining of the independent sources of significant variation present in gene microarray expression datasets (or in any other similarly structured high-dimensional dataset. We applied these tools to two public datasets, and highlight sets of genes most affected by specific subsets of conditions (e.g. tissues, treatments, samples, etc.. Statistically significant associations for highlighted gene sets were shown via global analysis for Gene Ontology term enrichment. Together with covariate associations, the tool provides a basis for building testable hypotheses about the biological or experimental causes of observed variation. Conclusion We provide an unsupervised data mining technique for diverse microarray expression datasets that is distinct from major methods now in routine use. In test uses, this method, based on publicly available gene annotations, appears to identify numerous sets of biologically relevant genes. It

  5. Expressing exogenous genes in newts by transgenesis.

    Science.gov (United States)

    Casco-Robles, Martin Miguel; Yamada, Shouta; Miura, Tomoya; Nakamura, Kenta; Haynes, Tracy; Maki, Nobuyasu; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A; Chiba, Chikafumi

    2011-05-01

    The great regenerative abilities of newts provide the impetus for studies at the molecular level. However, efficient methods for gene regulation have historically been quite limited. Here we describe a protocol for transgenically expressing exogenous genes in the newt Cynops pyrrhogaster. This method is simple: a reaction mixture of I-SceI meganuclease and a plasmid DNA carrying a transgene cassette flanked by the enzyme recognition sites is directly injected into fertilized eggs. The protocol achieves a high efficiency of transgenesis, comparable to protocols used in other animal systems, and it provides a practical number of transgenic newts (∼20% of injected embryos) that survive beyond metamorphosis and that can be applied to regenerative studies. The entire protocol for obtaining transgenic adult newts takes 4-5 months.

  6. Altered gene expression in human placenta after suspected preterm labour.

    Science.gov (United States)

    Oros, D; Strunk, M; Breton, P; Paules, C; Benito, R; Moreno, E; Garcés, M; Godino, J; Schoorlemmer, J

    2017-07-01

    Suspected preterm labour occurs in around 9% of pregnancies. However, almost two-thirds of women admitted for threatened preterm labour ultimately deliver at term and are considered risk-free for fetal development. We examined placental and umbilical cord blood samples from preterm or term deliveries after threatened preterm labour as well as term deliveries without threatened preterm labour. We quantitatively analysed the mRNA expression of inflammatory markers (IL6, IFNγ, and TNFα) and modulators of angiogenesis (FGF2, PGF, VEGFA, VEGFB, and VEGFR1). A total of 132 deliveries were analysed. Preterm delivery and term delivery after suspected preterm labour groups showed similar increases in TNFα expression compared with the term delivery control group in umbilical cord blood samples. Placental samples from preterm and term deliveries after suspected preterm labour exhibited significantly increased expression of TNFα and IL6 and decreased expression of IFNγ. Suspected preterm labour was also associated with altered expression of angiogenic factors, although not all differences reached statistical significance. We found gene expression patterns indicative of inflammation in human placentas after suspected preterm labour regardless of whether the deliveries occurred preterm or at term. Similarly, a trend towards altered expression of angiogeneic factors was not limited to preterm birth. These findings suggest that the biological mechanisms underlying threatened preterm labour affect pregnancies independently of gestational age at birth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Gene expression changes in phosphorus deficient potato (Solanum tuberosum L. leaves and the potential for diagnostic gene expression markers.

    Directory of Open Access Journals (Sweden)

    John P Hammond

    Full Text Available BACKGROUND: There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. RESULTS: We grew potato (Solanum tuberosum L. plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. CONCLUSIONS: This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management

  8. Diversity of human and mouse homeobox gene expression in development and adult tissues.

    Science.gov (United States)

    Dunwell, Thomas L; Holland, Peter W H

    2016-11-03

    Homeobox genes encode a diverse set of transcription factors implicated in a vast range of biological processes including, but not limited to, embryonic cell fate specification and patterning. Although numerous studies report expression of particular sets of homeobox genes, a systematic analysis of the tissue specificity of homeobox genes is lacking. Here we analyse publicly-available transcriptome data from human and mouse developmental stages, and adult human tissues, to identify groups of homeobox genes with similar expression patterns. We calculate expression profiles for 242 human and 278 mouse homeobox loci across a combination of 59 human and 12 mouse adult tissues, early and late developmental stages. This revealed 20 human homeobox genes with widespread expression, primarily from the TALE, CERS and ZF classes. Most homeobox genes, however, have greater tissue-specificity, allowing us to compile homeobox gene expression lists for neural tissues, immune tissues, reproductive and developmental samples, and for numerous organ systems. In mouse development, we propose four distinct phases of homeobox gene expression: oocyte to zygote; 2-cell; 4-cell to blastocyst; early to mid post-implantation. The final phase change is marked by expression of ANTP class genes. We also use these data to compare expression specificity between evolutionarily-based gene classes, revealing that ANTP, PRD, LIM and POU homeobox gene classes have highest tissue specificity while HNF, TALE, CUT and CERS are most widely expressed. The homeobox genes comprise a large superclass and their expression patterns are correspondingly diverse, although in a broad sense related to an evolutionarily-based classification. The ubiquitous expression of some genes suggests roles in general cellular processes; in contrast, most human homeobox genes have greater tissue specificity and we compile useful homeobox datasets for particular tissues, organs and developmental stages. The identification of a

  9. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  10. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  11. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  12. Expression of genes related to mitochondrial function in Nellore cattle divergently ranked on residual feed intake.

    Science.gov (United States)

    Fonseca, Larissa Fernanda Simielli; Gimenez, Daniele Fernanda Jovino; Mercadante, Maria Eugênia Zerlotti; Bonilha, Sarah Figueiredo Martins; Ferro, Jesus Aparecido; Baldi, Fernando; de Souza, Fábio Ricardo Pablos; de Albuquerque, Lucia Galvão

    2015-02-01

    Several measures have been proposed to investigate and improve feed efficiency in cattle. One of the most commonly used measure of feed efficiency is residual feed intake (RFI), which is estimated as the difference between actual feed intake and expected feed intake based on the animal's average live weight. This measure permits to identify and select the most efficient animals without selecting for higher mature weight. Mitochondrial function has been indicated as a major factor that influences RFI. The analysis of genes involved in mitochondrial function is therefore an alternative to identify molecular markers associated with higher feed efficiency. This study analyzed the expression of PGC1α, TFAM, UCP2 and UCP3 genes by quantitative real-time PCR in liver and muscle tissues of two groups of Nellore cattle divergently ranked on RFI values in order to evaluate the relationship of these genes with RFI. In liver tissue, higher expression of TFAM and UCP2 genes was observed in the negative RFI group. Expression of PGC1α gene did not differ significantly between the two groups, whereas UCP3 gene was not expressed in liver tissue. In muscle tissue, higher expression of TFAM gene was observed in the positive RFI group. Expression of PGC1α, UCP2 and UCP3 genes did not differ significantly between the two groups. These results suggest the use of TFAM and UCP2 as possible candidate gene markers in breeding programs designed to increase the feed efficiency of Nellore cattle.

  13. Tumor necrosis factor gene expression in regular hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Hemmat E El Haddad

    2015-01-01

    Full Text Available This study evaluates tumor necrosis factor (TNF-alfa gene expression in patients with end-stage renal disease (ESRD on regular hemodialysis as an expression of cardiovascular disease (CVD risk even on a sub-clinical level and its relation to some of the parameters incriminated in the pathogenesis and the establishment of uremic arteriopathy. A total of 51 patients with ESRD on regular hemodialysis and 20 healthy subjects matching in age and gender as a control group were recruited. All selected cases were subjected to serum lipid profile, Creactive protein (CRP, TNF-alfa gene expression and Doppler study of carotid arteries to estimate carotid intimal media thickness (cIMT. Serum triglycerides (TGS level (P <0.001, CRP positivity (P = 0.002, relative quantification (RQ of TNF-alfa gene expression (P = 0.007 and cIMT (P = 0.02 were significantly higher while high-density lipoprotein (HDL level (P <0.001 was significantly lower among cases compared with controls. RQ showed a significant positive correlation with CRP titer (rho = 0.583, P = 0.011. Results also showed a significant strong negative correlation between with CRP titer and cIMT (rho = -0.590, P = 0.010. CRP titer showed only a significant strong negative correlation with age (rho = -0.589, P = 0.01 and positive correlation with HDL (rho = 0.51, P = 0.031. Patients with ESRD have increased gene expression of TNF-alfa and CRP titer together with increased atherosclerosis as expressed by increased cIMT.

  14. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2015-08-01

    Full Text Available In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM. During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E and the Ecdysone-Receptor (EcR. Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH and its receptor Methoprene-Tolerant (Met are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the

  15. Gene expression profiling in glomeruli of diabetic nephropathy rat.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Sun, Xiaofang; Mao, Lili; Xiang, Hongding

    2012-08-01

    Diabetic nephropathy (DN) remains the most common cause of end-stage renal disease (ESRD) as the burden of diabetes increases worldwide. To find improved intervention strategies for this disease, it is necessary to investigate the molecular mechanisms involved. To obtain more insight into processes that lead to DN, mRNA expression profiles of diabetic and normal glomeruli from rat kidneys were compared. Rats were divided into a control group and a DN group randomly. The DN group was injected with streptozotocin. Fasting blood glucose (FBG) and weight were measured monthly. On the 12th week, blood samples were collected and analyzed for plasma creatinine and blood urea nitrogen (BUN). Glomeruli were isolated and Illumina Rat Ref-12 V1.0 Expression Beadchip gene array was performed. Quantitative realtime polymerase chain reaction (Q-RT-PCR) was used to confirm the results of gene array for a selected number of genes. We found FBG, 24-h urinary albumin, serum creatinine and BUN were significantly increased, while urinary creatinine and body weight were significantly decreased in the DN group. Glomeruli from the DN group had 624 genes with differential expression. DAVID (Database for Annotation, Visualization and integrated Discovery) analysis showed that the three most enriched terms were 'cytosol' (GO:0005829), 'translational elongation' (GO:0006414) and 'mitochondion' (GO:0005739). Those genes could be mapped to eight pathways. The most common type of enriched pathway was related to 'extracellular matrix (ECM)-receptor interaction'. Other pathways included those for 'ribosome', 'focal adhesion', 'oxidative phosphorylation', 'transforming growth factor (TGF)-beta signaling pathway', 'Parkinson's disease', 'Alzheimer's disease' and 'renin-angiotensin system'. Q-RT-PCR verified that Atp5b (F1-ATPase beta subunit), Col1a1 (collagen type 1 alpha 1), Cox6c (cytochrome c oxidase subunit VIc), Ndufs3 (NADH dehydrogenase [ubiquinone] Fe-S protein 3) and Tgfb1 (transforming

  16. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  17. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  18. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both...

  19. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  20. Exploring Differentially Expressed Genes and Natural Antisense Transcripts in Sheep (Ovis aries Skin with Different Wool Fiber Diameters by Digital Gene Expression Profiling.

    Directory of Open Access Journals (Sweden)

    Yaojing Yue

    Full Text Available Wool fiber diameter (WFD is the most important economic trait of wool. However, the genes specifically controlling WFD remain elusive. In this study, the expression profiles of skin from two groups of Gansu Alpine merino sheep with different WFD (a super-fine wool group [FD = 18.0 ± 0.5 μm, n=3] and a fine wool group [FD=23.0 ± 0.5 μm, n=3] were analyzed using next-generation sequencing-based digital gene expression profiling. A total of 40 significant differentially expressed genes (DEGs were detected, including 9 up-regulated genes and 31 down-regulated genes. Further expression profile analysis of natural antisense transcripts (NATs showed that more than 30% of the genes presented in sheep skin expression profiles had NATs. A total of 7 NATs with significant differential expression were detected, and all were down-regulated. Among of 40 DEGs, 3 DEGs (AQP8, Bos d2, and SPRR had significant NATs which were all significantly down-regulated in the super-fine wool group. In total of DEGs and NATs were summarized as 3 main GO categories and 38 subcategories. Among the molecular functions, cellular components and biological processes categories, binding, cell part and metabolic process were the most dominant subcategories, respectively. However, no significant enrichment of GO terms was found (corrected P-value >0.05. The pathways that were significantly enriched with significant DEGs and NATs were mainly the lipoic acid metabolism, bile secretion, salivary secretion and ribosome and phenylalanine metabolism pathways (P < 0.05. The results indicated that expression of NATs and gene transcripts were correlated, suggesting a role in gene regulation. The discovery of these DEGs and NATs could facilitate enhanced selection for super-fine wool sheep through gene-assisted selection or targeted gene manipulation in the future.

  1. Spatiotemporal patterns of gene expression during fetal monkey brain development.

    Science.gov (United States)

    Redmond, D Eugene; Zhao, Ji-Liang; Randall, Jeffry D; Eklund, Aron C; Eusebi, Leonard O V; Roth, Robert H; Gullans, Steven R; Jensen, Roderick V

    2003-12-19

    Human DNA microarrays are used to study the spatiotemporal patterns of gene expression during the course of fetal monkey brain development. The 444 most dynamically expressed genes in four major brain areas are reported at five different fetal ages. The spatiotemporal profiles of gene expression show both regional specificity as well as waves of gene expression across the developing brain. These patterns of expression are used to identify statistically significant clusters of co-regulated genes. This study demonstrates for the first time in the primate the relevance, timing, and spatial locations of expression for many developmental genes identified in other animals and provides clues to the functions of many unknowns. Two different microarray platforms are used to provide high-throughput cross validation of the most important gene expression changes. These results may lead to new understanding of brain development and new strategies for treating and repairing disorders of brain function.

  2. The Effects of Hallucinogens on Gene Expression.

    Science.gov (United States)

    Martin, David A; Nichols, Charles D

    2017-07-05

    The classic serotonergic hallucinogens, or psychedelics, have the ability to profoundly alter perception and behavior. These can include visual distortions, hallucinations, detachment from reality, and mystical experiences. Some psychedelics, like LSD, are able to produce these effects with remarkably low doses of drug. Others, like psilocybin, have recently been demonstrated to have significant clinical efficacy in the treatment of depression, anxiety, and addiction that persist for at least several months after only a single therapeutic session. How does this occur? Much work has recently been published from imaging studies showing that psychedelics alter brain network connectivity. They facilitate a disintegration of the default mode network, producing a hyperconnectivity between brain regions that allow centers that do not normally communicate with each other to do so. The immediate and acute effects on both behaviors and network connectivity are likely mediated by effector pathways downstream of serotonin 5-HT2A receptor activation. These acute molecular processes also influence gene expression changes, which likely influence synaptic plasticity and facilitate more long-term changes in brain neurochemistry ultimately underlying the therapeutic efficacy of a single administration to achieve long-lasting effects. In this review, we summarize what is currently known about the molecular genetic responses to psychedelics within the brain and discuss how gene expression changes may contribute to altered cellular physiology and behaviors.

  3. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 童斌辉

    2003-01-01

    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  4. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  5. Grouping and classifying electrophysiologically-defined classes of neocortical neurons by single cell, whole-genome expression profiling

    Directory of Open Access Journals (Sweden)

    Tatiana Subkhankulova

    2010-04-01

    Full Text Available The diversity of neuronal cell types and how to classify them are perennial questions in neuroscience. The advent of global gene expression analysis raised the possibility that comprehensive transcription profiling will resolve neuronal cell types into groups that reflect some or all aspects of their phenotype. This approach has been successfully used to compare gene expression between groups of neurons defined by a common property. Here we extend this approach to ask whether single neuron gene expression profiling can prospectively resolve neuronal subtypes into groups, independent of any phenotypic information, and whether those groups reflect meaningful biological properties of those neurons. We applied methods we have developed to compare gene expression among single neural stem cells to study global gene expression in 18 randomly picked neurons from layer II/III of the early postnatal mouse neocortex. Cells were selected by morphology and by firing characteristics and electrical properties, enabling the definition of each cell as either fast- or regular-spiking, corresponding to a class of inhibitory interneurons or excitatory pyramidal cells. Unsupervised clustering of young neurons by global gene expression resolved the cells into two groups and those broadly corresponded with the two groups of fast- and regular-spiking neurons. Clustering of the entire, diverse group of 18 neurons of different developmental stages also successfully grouped neurons in accordance with the electrophysiological phenotypes, but with more cells misassigned among groups. Genes specifically enriched in regular spiking neurons were identified from the young neuron expression dataset. These results provide a proof of principle that single-cell gene expression profiling may be used to group and classify neurons in a manner reflecting their known biological properties and may be used to identify cell-specific transcripts.

  6. Gene expression profiling of mouse embryos with microarrays

    OpenAIRE

    Sharov, Alexei A; Piao, Yulan; Minoru S.H. Ko

    2010-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing s...

  7. Identification of Expressed Resistance Gene Analogs from Peanut (Arachis hypogaea L.) Expressed Sequence Tags

    Institute of Scientific and Technical Information of China (English)

    Zhanji Liu; Suping Feng; Manish K.Pandey; Xiaoping Chen; Albert K.Culbreath; Rajeev K.Varshney; Baozhu Guo

    2013-01-01

    Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens,causing severe yield loss and reduced seed quality.Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified,but a small portion with expressed transcripts has been found.We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers.The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases.A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered,and assembled 156 contigs and 229 singletons as peanut-expressed RGAs.There were 69 that encoded for NBS-LRR proteins,191 that encoded for protein kinases,82 that encoded for LRR-PK/transmembrane proteins,28 that encoded for Toxin reductases,11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins.Twenty-eight simple sequence repeats (SSRs)were identified from 25 peanut expressed RGAs.One SSR polymorphic marker (RGA121) was identified.Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene.All three markers were mapped on the same linkage group AhlV.These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.

  8. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  9. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  10. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban;

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...

  11. Gene expression profile of renal cell carcinoma clear cell type

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall’Oglio

    2010-08-01

    Full Text Available PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT. MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1 low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2 high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3 metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.

  12. Group II intron-anchored gene deletion in Clostridium.

    Directory of Open Access Journals (Sweden)

    Kaizhi Jia

    Full Text Available Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron "ClosTron" system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493-1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established.

  13. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells

    Science.gov (United States)

    Tahira, Kazunobu; Fukuda, Noboru; Aoyama, Takahiko; Tsunemi, Akiko; Matsumoto, Siroh; Nagura, Chinami; Matsumoto, Taro; Soma, Masayoshi; Shimba, Shigeki; Matsumoto, Yoshiaki

    2011-01-01

    Introduction The aim of this study was to investigate the association between the variation in expression profile of clock genes and obesity using peripheral blood mononuclear (PMN) cells. Material and methods The subjects comprised 10 obese patients and 10 healthy volunteers. Blood was collected at different time-points during the day and levels of blood sugar, IRI, adiponectin and leptin were determined. Peripheral blood mononuclear cells were sampled, and expression levels of brain and muscle Arnt-like protein-1 (BMAL1), Period (PER)1, PER2, Cryptochrome (CRY)1, CRY2, and REV-ERBα mRNA were quantified. Results During the day, the expression levels of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells of the obese group were all significantly higher compared to those in the non-obese group. In addition, expression of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells increased between 12:00 and 21:00 in the obese group. In PMN cells of both groups, PER1 gene expression showed a bimodal pattern, with high expression at 9:00 and 18:00. Conclusions Differences were observed in the expression profile variation of clock genes between the obese and non-obese groups. This study reveals the differences in clock gene expression profiles between obese and non-obese subjects, with evidence for two distinct chronotypes, and suggests a contribution of these chronotypes to fat accumulation in humans. PMID:22328874

  14. Changes in gene expression MEDIA- 4 in ovarian tissue of rats with polycystic ovary experimental

    Directory of Open Access Journals (Sweden)

    Shahrzad Moradi

    2016-03-01

    Full Text Available MEDIA-4 is a new hormonethat has recently been identifiedby microarray technique in rat and human fat tissue. The highest expression of this hormone is in fat tissue and then respectively in the tissues of the pancreas, heart muscle and the brain. MEDA-4 hormone expressions in these tissues in females are more than males. The aim of this study suggests polycystic ovary induction effect on the fluctuation of MEDA-4 gene expression and its relation to metabolic factors changing. Due to identify new genes involved in the development of polycystic syndrome,new treatment programs have been proposed based on changes in expression of these genes or their receptors that have helped to treat this metabolic disorder. Therefore, newly discovered gene expression changes of MEDA-4 can be effective in designing treatment protocols based on variations of this gene in ovarian tissue. The evaluation results of the correlation between gene expression of overian MEDA-4 and measured factors in the group with PCOS shows there is a positive relation between changes in gene expression MEDA-4 and factors of glucose, insulin and BMI at the level of p≤0.05 and has a significant positive relation with the amount of plasma progesterone at the level of p.≥0.01. Moreover, MEDA-4 expression changes in patients with PCOS compared with healthy people are more and PCOS-induced lead to more gene expression of MEDA-4 and significantly increased the blood glucose. In comparing the fasting insulin between groups, the insulin in PCOS group was higher than the healthy group with a significant difference (p <0.05. Insulin resistance to HOMA-IR, the insulin resistance in PCOS group was significantly higher compared with the healthy group (p <0.05. Unlike total testosterone, Plasma progesterone level of PCOS group has not a significant difference compared with the healthy group (p <0.05.(

  15. The Effect of Genetic and Environmental Variation on Metabolic Gene Expression

    Science.gov (United States)

    Scott, Cinda P.; Williams, Dean A.; Crawford, Douglas L.

    2009-01-01

    What is the relationship between genetic or environmental variation and the variation in mRNA expression? To address this, microarrays were used to examine the effect of genetic and environmental variation on cardiac mRNA expression for metabolic genes in three groups of Fundulus heteroclitus: (1) individuals sampled in the field (field), (2) field individuals acclimated for six months to laboratory conditions (acclimated) or (3) individuals bred for ten successive generations in a laboratory environment (G10). The G10 individuals have significantly less genetic variation than individuals obtained in the field and had a significantly lower variation in mRNA expression across all genes in comparison to the other two groups (p ≤ 0.001). When examining the gene specific variation, twenty-two genes had variation in expression that was significantly different among groups with lower variation in G10 individuals than in acclimated individuals. Additionally, there were fewer genes with significant differences in expression among G10 individuals versus either acclimated or field individuals: 66 genes have statistically different levels of expression versus 107 or 97 for Acclimated or Field groups. Based on the permutation of the data, these differences in the number of genes with significant differences among individuals within a group are unlikely to occur by chance (p < 0.01). Surprisingly, variation in mRNA expression in field individuals is lower than in acclimated individuals. Relative to the variation among individual within a group, few genes have significant differences in expression among groups (seven, 2.3%) and none of these are different between acclimated and field individuals. The results support the concept that genetic variation affects variation in mRNA expression and also suggests that temporal environmental variation associated with estuarine environments does not increase the variation among individuals or add to the differences among groups. PMID

  16. Hypothalamic gene expression underlying pre-hibernation satiety.

    Science.gov (United States)

    Schwartz, C; Hampton, M; Andrews, M T

    2015-03-01

    Prior to hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) enter a hypophagic period where food consumption drops by an average of 55% in 3 weeks. This occurs naturally, while the ground squirrels are in constant environmental conditions and have free access to food. Importantly, this transition occurs before exposure to hibernation conditions (5°C and constant darkness), so the ground squirrels are still maintaining a moderate level of activity. In this study, we used the Illumina HiSeq 2000 system to sequence the hypothalamic transcriptomes of ground squirrels before and after the autumn feeding transition to examine the genes underlying this extreme change in feeding behavior. The hypothalamus was chosen because it is known to play a role in the control and regulation of food intake and satiety. Overall, our analysis identified 143 genes that are significantly differentially expressed between the two groups. Specifically, we found five genes associated with feeding behavior and obesity (VGF, TRH, LEPR, ADIPOR2, IRS2) that are all upregulated during the hypophagic period, after the feeding transition has occurred. We also found that serum leptin significantly increases in the hypophagic group. Several of the genes associated with the natural autumnal feeding decline in 13-lined ground squirrels show parallels to signaling pathways known to be disrupted in human metabolic diseases, like obesity and diabetes. In addition, many other genes were identified that could be important for the control of food consumption in other animals, including humans.

  17. Effect of Long-Term Intake of Y3+ in Drinking Water on Gene Expression in Brains of Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rats were fed with water dissolved Y3 + at different levels (0, 53.4, 5340 mg· L- 1 ) for 7 months. The gene expression in brain tissue was detected with oligonucleotide microarray. The results show that, compared to the control,789 genes express differentially, 507 over-expressed genes and 282 under-expressed genes in the high-dose group (5340found to express differentially including 32 over-expressed genes and 12 under-expressed genes in the low-dose group (53.sults suggest that Y3 + can change the expression of some genes, which may be responsible for the toxicity of rare earths on learning and memory.

  18. Modeling of gap gene expression in Drosophila Kruppel mutants.

    Directory of Open Access Journals (Sweden)

    Konstantin Kozlov

    Full Text Available The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments. The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level approach to investigate the regulatory effect of gap gene Kruppel (Kr on segmentation gene expression. We acquired a large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations.

  19. SPECT imaging of cardiac reporter gene expression in living rabbits

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; LAN Xiaoli; ZHANG Liang; WU Tao; JIANG Rifeng; ZHANG Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine ki-nase (HSV1-tk) reporter gene in rabbits myocardium by using the reporter probe 131I-2'-fluoro-2'-deoxy-1-β-D- arabi-nofuranosyl-5-iodouracil (131I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1×109, 5×108, 1×108, 5×107 and 1×107 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1×109, 5×108, 1×108, 5×107, 1×107 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse tran-scription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSV1-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images qual-ity was obtained at 24~48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5×107 pfu of virus titer. The result could be set better in 1~5×108 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSV1-tk/131I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter gene imaging

  20. Bioinformatics analysis of the gene expression profile in Bladder carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Xiao

    2013-01-01

    Full Text Available Bladder carcinoma, which has the ninth highest incidence among malignant tumors in the world, is a complex, multifactorial disease. The malignant transformation of bladder cells results from DNA mutations and alterations in gene expression levels. In this work, we used a bioinformatics approach to investigate the molecular mechanisms of bladder carcinoma. Biochips downloaded from the Gene Expression Omnibus (GEO were used to analyze the gene expression profile in urinary bladder cells from individuals with carcinoma. The gene expression profile of normal genomes was used as a control. The analysis of gene expression revealed important alterations in genes involved in biological processes and metabolic pathways. We also identified some small molecules capable of reversing the altered gene expression in bladder carcinoma; these molecules could provide a basis for future therapies for the treatment of this disease.

  1. PREDICTION OF THE COURSE OF OSTEOARTHROSIS FROM mTOR (MAMMALIAN TARGET OF RAPAMYCIN GENE EXPRESSION

    Directory of Open Access Journals (Sweden)

    E V Chetina

    2012-01-01

    Results. Analysis of gene expression in the outpatients with OA identified two subgroups: in one subgroup (n = 13 mTOR expression was considerably much less than that in the control group; the expression of ATG1 and p21 did not differ greatly from the control and that of caspase 3 and TNF-α was significantly higher. The other outpatients (n = 20 and all the examined patients needing endoprosthetic replacement were ascertained to have a higher gene expression of mTOR, ATG1, p21, caspase 3, and TNF-α than in the control group. Before endoprosthetic replacement, severe joint destruction in patients with OA was associated with enhanced gene expression of mTOR, ATG1, p21, and caspase 3. Conclusion. In early-stage disease, increased mTOR gene expression may serve as a prognostic marker of the severity of the disease and articular cartilage destruction.

  2. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    Science.gov (United States)

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  3. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  4. A novel multiplex polymerase chain reaction assay for profile analyses of gene expression in peripheral blood

    Directory of Open Access Journals (Sweden)

    Jia Xingwang

    2012-07-01

    Full Text Available Abstract Background Studies have demonstrated that inflammation has a key role in the pathogenesis of atherosclerosis due to the abnormal gene expressions of multiple cytokines. We established an accurate and precise method to observe gene expression in whole blood that might provide specific diagnostic information for coronary artery disease (CAD and other related diseases. Methods The fifteen selected CAD-related genes (IL1B, IL6, IL8, IFNG, MCP-1, VWF, MTHFR, SELL, TNFalpha, ubiquitin, MCSF, ICAM1, ID2, HMOX1 and LDLR and two housekeeping genes (ACTB and GK as internal references have been measured simultaneously with a newly developed multiplex polymerase chain reaction (multi-PCR method. Moreover, the precision was evaluated, and a procedure for distinguishing patients from the normal population has been developed based upon analyses of peripheral blood. A total of 148 subjects were divided into group A (control group without plaques, group B (calcified plaques and group C (non-calcified plaques, and combination group according dual-source CT criteria. Gene expression in blood was analyzed by multi-PCR, and levels of glucose and lipids measured in 50 subjects to explore the relationship among them. Results The precision results of the multi-PCR system revealed within-run and between-run CV values of 3.695–12.537% and 4.405–13.405%, respectively. The profiles of cytokine gene expression in peripheral blood were set: a positive correlation between glucose and MCSF, HMOX1 or TNFalpha were found. We also found that triglyceride levels were negatively correlated with SELL gene expression in 50 subjects. Compared with controls, gene expression levels of IL1B, IL6, IL8 and MCP-1 increased significantly in group C. Conclusions A new multiple gene expression analysis system has been developed. The primary data suggested that gene expression was related to CAD. This system might be used for risk assessment of CVDs and other related diseases.

  5. Gene Expression Changes in Venous Segment of Overflow Arteriovenous Fistula

    Directory of Open Access Journals (Sweden)

    Yasuhiro Hashimoto

    2013-01-01

    Full Text Available Aim. The objective of this study was to characterize coordinated molecular changes in the structure and composition of the walls of venous segments of arteriovenous (AV fistulas evoked by overflow. Methods. Venous tissue samples were collected from 6 hemodialysis patients with AV fistulas exposed to overflow and from the normal cephalic veins of 4 other hemodialysis patients. Total RNA was extracted from the venous tissue samples, and gene expression between the 2 groups was compared using Whole Human Genome DNA microarray 44 K. Microarray data were analyzed by GeneSpring GX software and Ingenuity Pathway Analysis. Results. The cDNA microarray analysis identified 397 upregulated genes and 456 downregulated genes. Gene ontology analysis with GeneSpring GX software revealed that biological developmental processes and glycosaminoglycan binding were the most upregulated. In addition, most upregulation occurred extracellularly. In the pathway analysis, the TGF beta signaling pathway, cytokines and inflammatory response pathway, hypertrophy model, and the myometrial relaxation and contraction pathway were significantly upregulated compared with the control cephalic vein. Conclusion. Combining microarray results and pathway information available via the Internet provided biological insight into the structure and composition of the venous wall of overflow AV fistulas.

  6. Are Gene Expression Microarray Analyses Reliable? A Review of Studies of Retinoic Acid Responsive Genes

    Institute of Scientific and Technical Information of China (English)

    PeterJ.vanderSpek; AndreasKremer; LynnMurry; MichaelG.Walker

    2003-01-01

    Microarray analyses of gene expression are widely used,but reports of the same analyses by different groups give widely divergent results,and raise questions regarding reproducibility and reliability.We take as an example recent published reports on microarray experiments that were designed to identify retinoic acid responsive genes.These reports show substantial differences in their results.In this article,we review the methodology,results,and potential causes of differences in these applications of microarrays.Finally,we suggest practices to improve the reliability and reproducibility of microarray experiments.

  7. Are Gene Expression Microarray Analyses Reliable? A Review of Studies of Retinoic Acid Responsive Genes

    Institute of Scientific and Technical Information of China (English)

    Peter J. van der Spek; Andreas Kremer; Lynn Murry; Michael G. Walker

    2003-01-01

    Microarray analyses of gene expression are widely used, but reports of the same analyses by different groups give widely divergent results, and raise questions regarding reproducibility and reliability. We take as an example recent published reports on microarray experiments that were designed to identify retinoic acid responsive genes. These reports show substantial differences in their results. In this article, we review the methodology, results, and potential causes of differences in these applications of microarrays. Finally, we suggest practices to improve the reliability and reproducibility of microarray experiments.

  8. GeneChaser: Identifying all biological and clinical conditions in which genes of interest are differentially expressed

    Directory of Open Access Journals (Sweden)

    Venkatasubrahmanyam Shivkumar

    2008-12-01

    Full Text Available Abstract Background The amount of gene expression data in the public repositories, such as NCBI Gene Expression Omnibus (GEO has grown exponentially, and provides a gold mine for bioinformaticians, but has not been easily accessible by biologists and clinicians. Results We developed an automated approach to annotate and analyze all GEO data sets, including 1,515 GEO data sets from 231 microarray types across 42 species, and performed 12,658 group versus group comparisons of 24 GEO-specified types. We then built GeneChaser, a web server that enables biologists and clinicians without bioinformatics skills to easily identify biological and clinical conditions in which a gene or set of genes was differentially expressed. GeneChaser displays these conditions in graphs, gives statistical comparisons, allows sort/filter functions and provides access to the original studies. We performed a single gene search for Nanog and a multiple gene search for Nanog, Oct4, Sox2 and LIN28, confirmed their roles in embryonic stem cell development, identified several drugs that regulate their expression, and suggested their potential roles in sex determination, abnormal sperm morphology, malaria infection, and cancer. Conclusion We demonstrated that GeneChaser is a powerful tool to elucidate information on function, transcriptional regulation, drug-response and clinical implications for genes of interest.

  9. Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available BACKGROUND: High-throughput gene expression data can predict gene function through the "guilt by association" principle: coexpressed genes are likely to be functionally associated. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG, small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. CONCLUSIONS/SIGNIFICANCE: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several genetic diseases of unknown molecular basis.

  10. Life cycle analysis of kidney gene expression in male F344 rats.

    Directory of Open Access Journals (Sweden)

    Joshua C Kwekel

    Full Text Available Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs. Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

  11. Life cycle analysis of kidney gene expression in male F344 rats.

    Science.gov (United States)

    Kwekel, Joshua C; Desai, Varsha G; Moland, Carrie L; Vijay, Vikrant; Fuscoe, James C

    2013-01-01

    Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs). Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

  12. Multimodal probabilistic generative models for time-course gene expression data and Gene Ontology (GO) tags.

    Science.gov (United States)

    Gabbur, Prasad; Hoying, James; Barnard, Kobus

    2015-10-01

    We propose four probabilistic generative models for simultaneously modeling gene expression levels and Gene Ontology (GO) tags. Unlike previous approaches for using GO tags, the joint modeling framework allows the two sources of information to complement and reinforce each other. We fit our models to three time-course datasets collected to study biological processes, specifically blood vessel growth (angiogenesis) and mitotic cell cycles. The proposed models result in a joint clustering of genes and GO annotations. Different models group genes based on GO tags and their behavior over the entire time-course, within biological stages, or even individual time points. We show how such models can be used for biological stage boundary estimation de novo. We also evaluate our models on biological stage prediction accuracy of held out samples. Our results suggest that the models usually perform better when GO tag information is included. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Gene expression during fruit ripening in avocado.

    Science.gov (United States)

    Christoffersen, R E; Warm, E; Laties, G G

    1982-06-01

    The poly(A) (+)RNA populations from avocado fruit (Persea americana Mill cv. Hass) at four stages of ripening were isolated by two cycles of oligo-dT-cellulose chromatography and examined by invitro translation, using the rabbit reticulocyte lysate system, followed by two-dimensional gel electrophoresis (isoelectric focusing followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis) of the resulting translation products. Three mRNAs increased dramatically with the climacteric rise in respiration and ethylene production. The molecular weights of the corresponding translation products from the ripening-related mRNAs are 80,000, 36,000, and 16,500. These results indicate that ripening may be linked to the expression of specific genes.

  14. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2007-05-01

    Full Text Available Abstract Background Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS, a recent method for similarity-preserving data embedding, is substantially refined and used for (a assessing the quality and reliability of centroid gene expression patterns, and for (b derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering. Results Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a correlation-based similarity measure. As a main result, by using power transformation of correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is inherently connected to expression patterns of pre-storage, intermediate and storage phase of endosperm development. Conclusion The new HiT-MDS-2 method helps to create global views of expression patterns and to validate centroids obtained from clustering programs. Furthermore, functional gene annotation for developing endosperm barley tissue is successfully mapped to the visualization, making easy localization of major centroids of enriched functional categories possible.

  15. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids

    Directory of Open Access Journals (Sweden)

    Jasdeep S. Mutti

    2017-04-01

    Full Text Available Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76–87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14% in the anthers and the smallest (7% in the pistils. The highest number (1.72/3 of homeologs/gene expression was in the roots and the lowest (1.03/3 in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  16. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids.

    Science.gov (United States)

    Mutti, Jasdeep S; Bhullar, Ramanjot K; Gill, Kulvinder S

    2017-04-03

    Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76-87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  17. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  18. Phenotypic plasticity and divergence in gene expression.

    Science.gov (United States)

    Healy, Timothy M; Schulte, Patricia M

    2015-07-01

    The extent to which phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in different environments, impedes or promotes genetic divergence has been a matter of debate within evolutionary biology for many decades (see, for example, Ghalambor et al. ; Pfennig et al. ). Similarly, the role of evolution in shaping phenotypic plasticity remains poorly understood (Pigliucci ). In this issue of Molecular Ecology, Dayan et al. () provide empirical data relevant to these questions by assessing the extent of plasticity and divergence in the expression levels of 2272 genes in muscle tissue from killifish (genus Fundulus) exposed to different temperatures. F. heteroclitus (Fig. A) and F. grandis are minnows that inhabit estuarine marshes (Fig. B) along the coasts of the Atlantic Ocean and Gulf of Mexico in North America. These habitats undergo large variations in temperature both daily and seasonally, and these fish are known to demonstrate substantial phenotypic plasticity in response to temperature change (e.g. Fangue et al. ). Furthermore, the range of F. heteroclitus spans a large latitudinal gradient of temperatures, such that northern populations experience temperatures that are on average ~10°C colder than do southern populations (Schulte ). By comparing gene expression patterns between populations of these fish from different thermal habitats held in the laboratory at three different temperatures, Dayan et al. () address two important questions regarding the interacting effects of plasticity and evolution: (i) How does phenotypic plasticity affect adaptive divergence? and (ii) How does adaptive divergence affect plasticity?

  19. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation.

    Science.gov (United States)

    Moskalev, Alexey; Shaposhnikov, Mikhail; Snezhkina, Anastasia; Kogan, Valeria; Plyusnina, Ekaterina; Peregudova, Darya; Melnikova, Nataliya; Uroshlev, Leonid; Mylnikov, Sergey; Dmitriev, Alexey; Plusnin, Sergey; Fedichev, Peter; Kudryavtseva, Anna

    2014-01-01

    General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants

  20. Trichloroethylene effects on gene expression during cardiac development

    Energy Technology Data Exchange (ETDEWEB)

    Collier, John Michael; Selmin, Ornella; Johnson, Paula D.; Runyan, Raymond B.

    2003-05-09

    Background: Halogenated hydrocarbon exposure is associated with changes in gene expression in adult and embryonic tissue. The present study was undertaken to identify differentially expressed mRNA transcripts in embryonic hearts from Sprague-Dawley rats exposed to trichloroethylene (TCE) or potential bio-transformation products of TCE, Dichloroethylene (DCE) and Trichloroacetic acid (TCAA). Methods: cDNA subtractive hybridization was used to selectively amplify expressed mRNA in either control or day 11 embryonic rat hearts exposed to one of these halogenated hydrocarbons from day 0 to 11. The doses used were 1100 and 110 ppm (8300 and 830 mu M) TCE, 110 and 11 ppm (1100 and 110 mu M) DCE, 27.3 and 2.75 mg/ml (100 and 10 mM) TCAA. Control animals were given distilled drinking water throughout the period of experiments. Results: Sequencing of over 100 clones derived from halogenated hydrocarbon exposed groups=resulted in identification of numerous differentially regulate gene sequences. Up-regulated transcripts identified include genes associated with stress response (Hsp 70) and homeostasis (several ribosomal proteins). Down-regulated transcripts include extracellular matrix components (GPI-p137 and vimentin) and Ca2 + responsive proteins (Serca-2 Ca2+-ATPase and beta-catenin). Two possible markers for fetal TCE exposure were identified: Serca-2 and GPI-p137, a GPI-linked protein of unknown function. Both markers show a dose-related decrease in mRNA transcript levels associated with fetal exposure to TCE. Differential regulation of expression of both markers by TCE was confirmed by dot blot analysis and semi-quantitative RT-PCR. Levels of exposure between 100 and 250 ppb (0.76 and 1.9 mu M) TCE are sufficient to decrease expression of both the Ca2+-AT Pase and GPI-p137. Conclusion: Sequences down-regulated with TCE exposure appear to be those associated with cellular=housekeeping, cell adhesion and developmental processes, while TCE=exposure up-regulates expression

  1. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed......To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  2. EVALUATION OF THE PROGNOSTIC VALUE OF nm23 GENE EXPRESSION IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    刘红; 毛慧生; 傅西林; 方志沂; 冯玉梅; 范宇; 李树玲

    2002-01-01

    Objective: To investigate the expression of nm23 gene and evaluate its prognostic value in breast cancer. Methods: nm23 expressions were detected in 101 breast cancer patients (group 1) by immunohistochemistry. RT-PCR and immunohistochemistry were used to measure expressions of nm23 gene in another 68 patients with breast cancer (group 2). Results: nm23 gene expression in group 1 was inversely associated with distant metastasis and lymph node metastasis (P<0.05). In 44 patients with negative lymph node, 9 cases progressed to distant metastasis, 7 of them (77.8%) showed low expression of nm23 gene (P<0.05). In 57 patients with positive lymph node, 24 our of 29 patients who had no distant metastasis (82.8%) expressed nm23 gene at high level (P<0.05). Meanwhile, there were 6 patients with distant metastasis in the group 2, all of thenm expressed nm23 gene mRNA at low level. Conclusion: The results showed that nm23 gene might play an independent role in predicting prognosis of breast cancer.

  3. ADAMTS-13 gene expression in antiphospholipid syndrome

    Directory of Open Access Journals (Sweden)

    Veysel Sabri Hançer

    2011-09-01

    Full Text Available Antiphospholipid syndrome (APS is an autoimmune disorder characterized by recurrent thrombosis and fetal mortality. Thrombotic microangiopathy (TMA is an important histological finding in catastrophic APS (CAPS and in APS patients with nephropathy. Analysis of familial thrombotic thrombocytopenic purpura patients showed that there are mutations in the ADAMTS-13 gene that lead to functional defects in the ADAMTS-13 enzyme. The aim of this study was to investigate the prevalence of the aforementioned mutations in APS, as well as to evaluate the level and activity of the ADAMTS-13 enzyme in patients with APS. C365del, Q449stop codon, P475S, and C508Y mutations were analyzed in APS patients. Transcriptions were analyzed using real-time PCR, and the level and activity of ADAMTS-13 were analyzed via fluorogenic assay. None of the mutations tested were present in the patient or control groups. The level of ADAMTS-13 mRNA in the patient group was 50% lower than that in the control group. Although a significant difference in ADAMTS-13 activity was not observed between the patient and control groups, a significant association was observed with the level of ADAMTS-13 (p<0.0001. The level and activity of ADAMTS-13 were not associated with thrombotic complications, thrombocytopenia, or pregnancy complications in the patients with APS.

  4. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  5. Kinetics of Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression

    OpenAIRE

    Sun, Ren; Lin, Su-Fang; Staskus, Katherine; Gradoville, Lyndle; Grogan, Elizabeth; Haase, Ashley; Miller, George

    1999-01-01

    Herpesvirus gene expression can be classified into four distinct kinetic stages: latent, immediate early, early, and late. Here we characterize the kinetic class of a group of 16 Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 genes in a cultured primary effusion cell line and examine the expression of a subset of these genes in KS biopsies. Expression of two latent genes, LANA and vFLIP, was constitutive and was not induced by chemicals that induce the lytic cycle in prima...

  6. Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes.

    Science.gov (United States)

    Michalopoulos, Ioannis; Pavlopoulos, Georgios A; Malatras, Apostolos; Karelas, Alexandros; Kostadima, Myrto-Areti; Schneider, Reinhard; Kossida, Sophia

    2012-06-06

    Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell. We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster. Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/.

  7. Individual variation of adipose gene expression and identification of covariated genes by cDNA microarrays

    NARCIS (Netherlands)

    Boeuf, S.; Keijer, J.; Franssen-Hal, van N.L.W.; Klaus, S.

    2002-01-01

    Gene expression profiling through the application of microarrays provides comprehensive assessment of gene expression levels in a given tissue or cell population, as well as information on changes of gene expression in altered physiological or pathological situations. Microarrays are particularly su

  8. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+ breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.

  9. Modulation of R-gene expression across environments.

    Science.gov (United States)

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments.

  10. Computational annotation of genes differentially expressed along olive fruit development

    Directory of Open Access Journals (Sweden)

    Martinelli Federico

    2009-10-01

    Full Text Available Abstract Background Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. Results mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1, completed pit hardening (stage 2 and veraison (stage 3] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B, and 2 and 3 (libraries C and D. All sequenced clones (1,132 in total were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO: cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was

  11. Radiolabeled PNAs for imaging gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Wickstrom, Eric; Sauter, Edward; Tian, Xianben; Rao, Sampath; Quin, Weyng; Thakur, Mathew [Thomas Jefferson Univ., PA (United States)

    2002-09-01

    Scintigraphic imaging of gene expression in vivo by non-invasive means could precisely direct physicians to appropriate intervention at the onset of disease and could contribute extensively to the management of patients. However no method is currently available to image specific over expressed oncogene mRNAs in vivo by scintigraphic imaging. Nevertheless, we have observed that Tc 99 m peptides can delineate tumors, and that PNA-peptides are specific for receptors on malignant cells and are taken up specifically and concentrated in nuclei. We hypothesize that antisense Tc 99 m PNA peptides will be taken up by human breast cancer cells, hybridize to complementary mRNA targets, and permit imaging of oncogene mRNAs in human breast cancer xenografts in a mouse model, providing a proof-of-principle for non-invasive detection of precancerous and invasive breast cancer. Oncogenes cyclin D1, erB-2, c-MYC and tumor suppressor p53 will be probed. If successful, this technique will be useful for diagnostic imaging of other solid tumors as well. (author)

  12. Screening and expression of genes from metagenomes.

    Science.gov (United States)

    Leis, Benedikt; Angelov, Angel; Liebl, Wolfgang

    2013-01-01

    Microorganisms are the most abundant and widely spread organisms on earth. They colonize a huge variety of natural and anthropogenic environments, including very specialized ecological niches and even extreme habitats, which are made possible by the immense metabolic diversity and genetic adaptability of microbes. As most of the organisms from environmental samples defy cultivation, cultivation-independent metagenomics approaches have been applied since more than one decade to access and characterize the phylogenetic diversity in microbial communities as well as their metabolic potential and ecological functions. Thereby, metagenomics has fully emerged as an own scientific field for mining new biocatalysts for many industrially relevant processes in biotechnology and pharmaceutics. This review summarizes common metagenomic approaches ranging from sampling, isolation of nucleic acids, construction of metagenomic libraries and their evaluation. Sequence-based screenings implement next-generation sequencing platforms, microarrays or PCR-based methods, while function-based analysis covers heterologous expression of metagenomic libraries in diverse screening setups. Major constraints and advantages of each strategy are described. The importance of alternative host-vector systems is discussed, and in order to underline the role of phylogenetic and physiological distance from the gene donor and the expression host employed, a case study is presented that describes the screening of a genomic library from an extreme thermophilic bacterium in both Escherichia coli and Thermus thermophilus. Metatranscriptomics, metaproteomics and single-cell-based methods are expected to complement metagenomic screening efforts to identify novel biocatalysts from environmental samples.

  13. Integrated analysis of gene expression by association rules discovery

    Directory of Open Access Journals (Sweden)

    Carazo Jose M

    2006-02-01

    Full Text Available Abstract Background Microarray technology is generating huge amounts of data about the expression level of thousands of genes, or even whole genomes, across different experimental conditions. To extract biological knowledge, and to fully understand such datasets, it is essential to include external biological information about genes and gene products to the analysis of expression data. However, most of the current approaches to analyze microarray datasets are mainly focused on the analysis of experimental data, and external biological information is incorporated as a posterior process. Results In this study we present a method for the integrative analysis of microarray data based on the Association Rules Discovery data mining technique. The approach integrates gene annotations and expression data to discover intrinsic associations among both data sources based on co-occurrence patterns. We applied the proposed methodology to the analysis of gene expression datasets in which genes were annotated with metabolic pathways, transcriptional regulators and Gene Ontology categories. Automatically extracted associations revealed significant relationships among these gene attributes and expression patterns, where many of them are clearly supported by recently reported work. Conclusion The integration of external biological information and gene expression data can provide insights about the biological processes associated to gene expression programs. In this paper we show that the proposed methodology is able to integrate multiple gene annotations and expression data in the same analytic framework and extract meaningful associations among heterogeneous sources of data. An implementation of the method is included in the Engene software package.

  14. Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots

    Science.gov (United States)

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...

  15. Expression of olfactory signaling genes in the eye.

    Directory of Open Access Journals (Sweden)

    Alexey Pronin

    Full Text Available PURPOSE: To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. METHODS: Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. RESULTS: We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. CONCLUSIONS: Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.

  16. CDX2 gene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Hanaa H. Arnaoaut

    2014-06-01

    Full Text Available CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  17. Expression of androgen receptor target genes in skeletal muscle.

    Science.gov (United States)

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  18. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  19. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  20. TXTGate: profiling gene groups with text-based information

    DEFF Research Database (Denmark)

    Glenisson, P.; Coessens, B.; Van Vooren, S.

    2004-01-01

    We implemented a framework called TXTGate that combines literature indices of selected public biological resources in a flexible text-mining system designed towards the analysis of groups of genes. By means of tailored vocabularies, term-as well as gene-centric views are offered on selected textual...... fields and MEDLINE abstracts used in LocusLink and the Saccharomyces Genome Database. Subclustering and links to external resources allow for in-depth analysis of the resulting term profiles....

  1. Gene Expression Profile of Human Skeletal Muscle and Adipose Tissue of Chinese Han Patients with Type 2 Diabetes Mellitus

    Institute of Scientific and Technical Information of China (English)

    YAN-LI YANG; RUO-LAN XIANG; CHANG YANG; XIAO-JUN LIU; WEN-JUN SHEN; JIN ZUO; YONG-SHENG CHANG; FU-DE FANG

    2009-01-01

    Objective To study the differential patterns of gene expression in skeletal muscle and adipose tissue between type 2 diabetes mellitus (T2DM) patients and healthy subjects using DNA microarray analysis. Methods T2DM patiens were divided into female group, young male group and old male group. DNA microarray analysis and quantitative real-time PCR were carried out to analyze the relation between gene expressions and T2DM. Results The mRNA expression of 298, 578, and 350 genes was changed in the skeletal muscle of diabetes mellitus patients compared with control subjects. The 1320, 1143, and 2847 genes were modified in adipose tissue of the three groups. Among the genes surveyed, the change of 25 and 39 gene transcripts in skeletal muscle and adipose tissue was ≥2 folds. These differentially expressed genes were classified into 15 categories according to their functions. Conclusion New genes are found and T2DM can be prevented or cured.

  2. Serial Analysis of Gene Expression: Applications in Human Studies

    OpenAIRE

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE r...

  3. NANOPARTICLE AS A NEW GENE TRANSFERRING VECTOR IN SPECIFIC EXPRESSION GENE

    Institute of Scientific and Technical Information of China (English)

    管珩; 李拥军; 郑曰宏; 刘昌伟; 杨菁; 宋存先; 王彭延; 赵三妹; 王宗立; 佘铭鹏

    2002-01-01

    Objective. To evaluate the possibility and efficiency of nanoparticle as a new vector in specific gene transference.Methods. Nanoparticle-DNA complex was prepared with Poly- dl-lactic-co-glycolic acid (PLGA) beating antisense monocyte chemotactic protein-1 (A-MCP-1), a specific expression gene, and the package efficiency, release progress in vitro, and the size of the complex were determined. The possibility of the new vector was evaluated with genomic DNA PCR by transferring gene into cultured smooth muscle cells (SMC), cationic lipids as a control. For study in vivo, jugular vein-to-artery bypass grafting procedures were performed on 20 New Zealand white rabbits, of which 6 grafts were transferred with nanoparticle-A-MCP-1 (200 μg), 6 with A - MCP - 1(200 μ g) by cationic liposome, 4 with LNCX plasmid, and 4 as control. Fourteen days after the grafts were harvested, the expression of A-MCP-1 and its effect on MCP-1 in vein grafts were detected by dot blot, and the morphologic evaluation of grafts was performed.Results. The package efficiency of the nanoparticle-DNA complex was 0. 9%, release progress in vitro lasted 2 weeks, and the size ranged from 150 to 300nm. SMC genomic DNA PCR showed that A-MCP-1 gene could be successfully transfected into cells by nanoparticle. The study in vivo indicated that A-MCP-1 mRNA was expressed in both local gene delivery groups, nanoparticle and liposome, meanwhile, MCP-1 expression in vein grafts was significantly inhibited and neointimal hyperplasia was notably reduced.Conclusion. Nanoparticle can act as a vector to transfect specific gene.

  4. Motif-guided sparse decomposition of gene expression data for regulatory module identification

    Directory of Open Access Journals (Sweden)

    Hoffman Eric P

    2011-03-01

    Full Text Available Abstract Background Genes work coordinately as gene modules or gene networks. Various computational approaches have been proposed to find gene modules based on gene expression data; for example, gene clustering is a popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-expressed but not necessarily co-regulated. Results We propose a novel approach, motif-guided sparse decomposition (mSD, to identify gene regulatory modules by integrating gene expression data and DNA sequence motif information. The mSD approach is implemented as a two-step algorithm comprising estimates of (1 transcription factor activity and (2 the strength of the predicted gene regulation event(s. Specifically, a motif-guided clustering method is first developed to estimate the transcription factor activity of a gene module; sparse component analysis is then applied to estimate the regulation strength, and so predict the target genes of the transcription factors. The mSD approach was first tested for its improved performance in finding regulatory modules using simulated and real yeast data, revealing functionally distinct gene modules enriched with biologically validated transcription factors. We then demonstrated the efficacy of the mSD approach on breast cancer cell line data and uncovered several important gene regulatory modules related to endocrine therapy of breast cancer. Conclusion We have developed a new integrated strategy, namely motif-guided sparse decomposition (mSD of gene expression data, for regulatory module identification. The mSD method features a novel motif-guided clustering method for transcription factor activity estimation by finding a balance between co-regulation and co-expression. The mSD method further utilizes a sparse decomposition method for regulation strength estimation. The

  5. Sex hormones and gene expression signatures in peripheral blood from postmenopausal women - the NOWAC postgenome study

    Directory of Open Access Journals (Sweden)

    Rylander Charlotta

    2011-03-01

    Full Text Available Abstract Background Postmenopausal hormone therapy (HT influences endogenous hormone concentrations and increases the risk of breast cancer. Gene expression profiling may reveal the mechanisms behind this relationship. Our objective was to explore potential associations between sex hormones and gene expression in whole blood from a population-based, random sample of postmenopausal women Methods Gene expression, as measured by the Applied Biosystems microarray platform, was compared between hormone therapy (HT users and non-users and between high and low hormone plasma concentrations using both gene-wise analysis and gene set analysis. Gene sets found to be associated with HT use were further analysed for enrichment in functional clusters and network predictions. The gene expression matrix included 285 samples and 16185 probes and was adjusted for significant technical variables. Results Gene-wise analysis revealed several genes significantly associated with different types of HT use. The functional cluster analyses provided limited information on these genes. Gene set analysis revealed 22 gene sets that were enriched between high and low estradiol concentration (HT-users excluded. Among these were seven oestrogen related gene sets, including our gene list associated with systemic estradiol use, which thereby represents a novel oestrogen signature. Seven gene sets were related to immune response. Among the 15 gene sets enriched for progesterone, 11 overlapped with estradiol. No significant gene expression patterns were found for testosterone, follicle stimulating hormone (FSH or sex hormone binding globulin (SHBG. Conclusions Distinct gene expression patterns associated with sex hormones are detectable in a random group of postmenopausal women, as demonstrated by the finding of a novel oestrogen signature.

  6. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  7. Variance of gene expression identifies altered network constraints in neurological disease.

    Directory of Open Access Journals (Sweden)

    Jessica C Mar

    2011-08-01

    Full Text Available Gene expression analysis has become a ubiquitous tool for studying a wide range of human diseases. In a typical analysis we compare distinct phenotypic groups and attempt to identify genes that are, on average, significantly different between them. Here we describe an innovative approach to the analysis of gene expression data, one that identifies differences in expression variance between groups as an informative metric of the group phenotype. We find that genes with different expression variance profiles are not randomly distributed across cell signaling networks. Genes with low-expression variance, or higher constraint, are significantly more connected to other network members and tend to function as core members of signal transduction pathways. Genes with higher expression variance have fewer network connections and also tend to sit on the periphery of the cell. Using neural stem cells derived from patients suffering from Schizophrenia (SZ, Parkinson's disease (PD, and a healthy control group, we find marked differences in expression variance in cell signaling pathways that shed new light on potential mechanisms associated with these diverse neurological disorders. In particular, we find that expression variance of core networks in the SZ patient group was considerably constrained, while in contrast the PD patient group demonstrated much greater variance than expected. One hypothesis is that diminished variance in SZ patients corresponds to an increased degree of constraint in these pathways and a corresponding reduction in robustness of the stem cell networks. These results underscore the role that variation plays in biological systems and suggest that analysis of expression variance is far more important in disease than previously recognized. Furthermore, modeling patterns of variability in gene expression could fundamentally alter the way in which we think about how cellular networks are affected by disease processes.

  8. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms

    Directory of Open Access Journals (Sweden)

    Argraves W Scott

    2010-04-01

    Full Text Available Abstract Background An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Results Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc. or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.. Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. Conclusions GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies

  9. Network-based group variable selection for detecting expression quantitative trait loci (eQTL

    Directory of Open Access Journals (Sweden)

    Zhang Xuegong

    2011-06-01

    Full Text Available Abstract Background Analysis of expression quantitative trait loci (eQTL aims to identify the genetic loci associated with the expression level of genes. Penalized regression with a proper penalty is suitable for the high-dimensional biological data. Its performance should be enhanced when we incorporate biological knowledge of gene expression network and linkage disequilibrium (LD structure between loci in high-noise background. Results We propose a network-based group variable selection (NGVS method for QTL detection. Our method simultaneously maps highly correlated expression traits sharing the same biological function to marker sets formed by LD. By grouping markers, complex joint activity of multiple SNPs can be considered and the dimensionality of eQTL problem is reduced dramatically. In order to demonstrate the power and flexibility of our method, we used it to analyze two simulations and a mouse obesity and diabetes dataset. We considered the gene co-expression network, grouped markers into marker sets and treated the additive and dominant effect of each locus as a group: as a consequence, we were able to replicate results previously obtained on the mouse linkage dataset. Furthermore, we observed several possible sex-dependent loci and interactions of multiple SNPs. Conclusions The proposed NGVS method is appropriate for problems with high-dimensional data and high-noise background. On eQTL problem it outperforms the classical Lasso method, which does not consider biological knowledge. Introduction of proper gene expression and loci correlation information makes detecting causal markers more accurate. With reasonable model settings, NGVS can lead to novel biological findings.

  10. Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis

    Directory of Open Access Journals (Sweden)

    Gordish-Dressman Heather

    2008-07-01

    Full Text Available Abstract Background To evaluate the impact of the duration of chronic inflammation on gene expression in skeletal muscle biopsies (MBx from untreated children with juvenile dermatomyositis (JDM and identify genes and biological processes associated with the disease progression, expression profiling data from 16 girls with active symptoms of JDM greater than or equal to 2 months were compared with 3 girls with active symptoms less than 2 months. Results Seventy-nine genes were differentially expressed between the groups with long or short duration of untreated disease. Genes involved in immune responses and vasculature remodelling were expressed at a higher level in muscle biopsies from children with greater or equal to 2 months of symptoms, while genes involved in stress responses and protein turnover were expressed at a lower level. Among the 79 genes, expression of 9 genes showed a significant linear regression relationship with the duration of untreated disease. Five differentially expressed genes – HLA-DQA1, smooth muscle myosin heavy chain, clusterin, plexin D1 and tenomodulin – were verified by quantitative RT-PCR. The chronic inflammation of longer disease duration was also associated with increased DC-LAMP+ and BDCA2+ mature dendritic cells, identified by immunohistochemistry. Conclusion We conclude that chronic inflammation alters the gene expression patterns in muscle of untreated children with JDM. Symptoms lasting greater or equal to 2 months were associated with dendritic cell maturation and anti-angiogenic vascular remodelling, directly contributing to disease pathophysiology.

  11. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues.

    Science.gov (United States)

    Zhu, Yizhang; Wang, Likun; Yin, Yuxin; Yang, Ence

    2017-07-14

    Postmortem mRNA degradation is considered to be the major concern in gene expression research utilizing human postmortem tissues. A key factor in this process is the postmortem interval (PMI), which is defined as the interval between death and sample collection. However, global patterns of postmortem mRNA degradation at individual gene levels across diverse human tissues remain largely unknown. In this study, we performed a systematic analysis of alteration of gene expression associated with PMI in human tissues. From the Genotype-Tissue Expression (GTEx) database, we evaluated gene expression levels of 2,016 high-quality postmortem samples from 316 donors of European descent, with PMI ranging from 1 to 27 hours. We found that PMI-related mRNA degradation is tissue-specific, gene-specific, and even genotype-dependent, thus drawing a more comprehensive picture of PMI-associated gene expression across diverse human tissues. Additionally, we also identified 266 differentially variable (DV) genes, such as DEFB4B and IFNG, whose expression is significantly dispersed between short PMI (S-PMI) and long PMI (L-PMI) groups. In summary, our analyses provide a comprehensive profile of PMI-associated gene expression, which will help interpret gene expression patterns in the evaluation of postmortem tissues.

  12. Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens.

    Science.gov (United States)

    Abu-Asab, Mones S; Chaouchi, Mohamed; Amri, Hakima

    2008-09-01

    The qualitative dimension of gene expression data and its heterogeneous nature in cancerous specimens can be accounted for by phylogenetic modeling that incorporates the directionality of altered gene expressions, complex patterns of expressions among a group of specimens, and data-based rather than specimen-based gene linkage. Our phylogenetic modeling approach is a double algorithmic technique that includes polarity assessment that brings out the qualitative value of the data, followed by maximum parsimony analysis that is most suitable for the data heterogeneity of cancer gene expression. We demonstrate that polarity assessment of expression values into derived and ancestral states, via outgroup comparison, reduces experimental noise; reveals dichotomously expressed asynchronous genes; and allows data pooling as well as comparability of intra- and interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional classification of specimens into clades that reveal shared derived gene expressions (the synapomorphies); provides better assessment of ontogenic pathways and phyletic relatedness of specimens; efficiently utilizes dichotomously expressed genes; produces highly predictive class recognition; illustrates gene linkage and multiple developmental pathways; provides higher concordance between gene lists; and projects the direction of change among specimens. Further implication of this phylogenetic approach is that it may transform microarray into diagnostic, prognostic, and predictive tool.

  13. Identification of optimal reference genes for gene expression normalization in a wide cohort of endometrioid endometrial carcinoma tissues.

    Directory of Open Access Journals (Sweden)

    Chiara Romani

    Full Text Available Accurate normalization is a primary component of a reliable gene expression analysis based on qRT-PCR technique. While the use of one or more reference genes as internal controls is commonly accepted as the most appropriate normalization strategy, many qPCR-based published studies still contain data poorly normalized and reference genes arbitrarily chosen irrespective of the particular tissue and the specific experimental design. To date, no validated reference genes have been identified for endometrial cancer tissues. In this study, 10 normalization genes (GAPDH, B2M, ACTB, POLR2A, UBC, PPIA, HPRT1, GUSB, TBP, H3F3A belonging to different functional and abundance classes in various tissues and used in different studies, were analyzed to determine their applicability. In total, 100 endometrioid endometrial cancer samples, which were carefully balanced according to their tumor grade, and 29 normal endometrial tissues were examined using SYBR Green Real-Time RT-PCR. The expression stability of candidate reference genes was determined and compared by means of geNorm and NormFinder softwares. Both algorithms were in agreement in identifying GAPDH, H3F3A, PPIA, and HPRT1 as the most stably expressed genes, only differing in their ranking order. Analysis performed on the expression levels of all candidate genes confirm HPRT1 and PPIA as the most stably expressed in the study groups regardless of sample type, to be used alone or better in combination. As the stable expression of HPRT1 and PPIA between normal and tumor endometrial samples fulfill the basic requirement of a reference gene to be used for normalization purposes, HPRT1 expression showed significant differences between samples from low-grade and high-grade tumors. In conclusion, our results recommend the use of PPIA as a single reference gene to be considered for improved reliability of normalization in gene expression studies involving endometrial tumor samples at different tumor degrees.

  14. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  15. Expressed satisfaction with the nominal group technique among change agents

    NARCIS (Netherlands)

    Gresham, J.N.

    2006-01-01

    Expressed Satisfaction with the Nominal Group Technique Among Change Agents. Jon Neal Gresham The purpose of this study was to determine whether or not policymakers and change agents with differing professional backgrounds and responsibilities, who participated in the structured process of a nomi

  16. Expressed satisfaction with the nominal group technique among change agents

    NARCIS (Netherlands)

    Gresham, J.N.

    1986-01-01

    Expressed Satisfaction with the Nominal Group Technique Among Change Agents. Jon Neal Gresham The purpose of this study was to determine whether or not policymakers and change agents with differing professional backgrounds and responsibilities, who participated in the structured process of a

  17. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    YE Wu-wei; YU Shu-xun

    2008-01-01

    @@ Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on the cotton production.The salinityresisted genes and their differential expression were studied under the stress of NaCI on cotton.There were found,under the NaCI stress,1644 genes differentially expressed from the salinity-sensitive cotton and only 817 genes differentially expressed from the salinityresisted cotton.

  18. Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer.

    Directory of Open Access Journals (Sweden)

    Carolina Habermann Macabelli

    Full Text Available Oocytes from dairy cattle and buffaloes have severely compromised developmental competence during summer. While analysis of gene expression is a powerful technique for understanding the factors affecting developmental hindrance in oocytes, analysis by real-time reverse transcription PCR (RT-PCR relies on the correct normalization by reference genes showing stable expression. Furthermore, several studies have found that genes commonly used as reference standards do not behave as expected depending on cell type and experimental design. Hence, it is recommended to evaluate expression stability of candidate reference genes for a specific experimental condition before employing them as internal controls. In acknowledgment of the importance of seasonal effects on oocyte gene expression, the aim of this study was to evaluate the stability of expression levels of ten well-known reference genes (ACTB, GAPDH, GUSB, HIST1H2AG, HPRT1, PPIA, RPL15, SDHA, TBP and YWHAZ using oocytes collected from different categories of dairy cattle and buffaloes during winter and summer. A normalization factor was provided for cattle (RPL15, PPIA and GUSB and buffaloes (YWHAZ, GUSB and GAPDH based on the expression of the three most stable reference genes in each species. Normalization of non-reference target genes by these reference genes was shown to be considerably different from normalization by less stable reference genes, further highlighting the need for careful selection of internal controls. Therefore, due to the high variability of reference genes among experimental groups, we conclude that data normalized by internal controls can be misleading and should be compared to not normalized data or to data normalized by an external control in order to better interpret the biological relevance of gene expression analysis.

  19. Reference Gene Selection for Gene Expression Analysis of Oocytes Collected from Dairy Cattle and Buffaloes during Winter and Summer

    Science.gov (United States)

    Gimenes, Lindsay Unno; de Carvalho, Nelcio Antonio Tonizza; Soares, Júlia Gleyci; Ayres, Henderson; Ferraz, Márcio Leão; Watanabe, Yeda Fumie; Watanabe, Osnir Yoshime; Sangalli, Juliano Rodrigues; Smith, Lawrence Charles; Baruselli, Pietro Sampaio; Meirelles, Flávio Vieira; Chiaratti, Marcos Roberto

    2014-01-01

    Oocytes from dairy cattle and buffaloes have severely compromised developmental competence during summer. While analysis of gene expression is a powerful technique for understanding the factors affecting developmental hindrance in oocytes, analysis by real-time reverse transcription PCR (RT-PCR) relies on the correct normalization by reference genes showing stable expression. Furthermore, several studies have found that genes commonly used as reference standards do not behave as expected depending on cell type and experimental design. Hence, it is recommended to evaluate expression stability of candidate reference genes for a specific experimental condition before employing them as internal controls. In acknowledgment of the importance of seasonal effects on oocyte gene expression, the aim of this study was to evaluate the stability of expression levels of ten well-known reference genes (ACTB, GAPDH, GUSB, HIST1H2AG, HPRT1, PPIA, RPL15, SDHA, TBP and YWHAZ) using oocytes collected from different categories of dairy cattle and buffaloes during winter and summer. A normalization factor was provided for cattle (RPL15, PPIA and GUSB) and buffaloes (YWHAZ, GUSB and GAPDH) based on the expression of the three most stable reference genes in each species. Normalization of non-reference target genes by these reference genes was shown to be considerably different from normalization by less stable reference genes, further highlighting the need for careful selection of internal controls. Therefore, due to the high variability of reference genes among experimental groups, we conclude that data normalized by internal controls can be misleading and should be compared to not normalized data or to data normalized by an external control in order to better interpret the biological relevance of gene expression analysis. PMID:24676354

  20. Visualization and analysis of 3D gene expression patterns in zebrafish using web services

    Science.gov (United States)

    Potikanond, D.; Verbeek, F. J.

    2012-01-01

    The analysis of patterns of gene expression patterns analysis plays an important role in developmental biology and molecular genetics. Visualizing both quantitative and spatio-temporal aspects of gene expression patterns together with referenced anatomical structures of a model-organism in 3D can help identifying how a group of genes are expressed at a certain location at a particular developmental stage of an organism. In this paper, we present an approach to provide an online visualization of gene expression data in zebrafish (Danio rerio) within 3D reconstruction model of zebrafish in different developmental stages. We developed web services that provide programmable access to the 3D reconstruction data and spatial-temporal gene expression data maintained in our local repositories. To demonstrate this work, we develop a web application that uses these web services to retrieve data from our local information systems. The web application also retrieve relevant analysis of microarray gene expression data from an external community resource; i.e. the ArrayExpress Atlas. All the relevant gene expression patterns data are subsequently integrated with the reconstruction data of the zebrafish atlas using ontology based mapping. The resulting visualization provides quantitative and spatial information on patterns of gene expression in a 3D graphical representation of the zebrafish atlas in a certain developmental stage. To deliver the visualization to the user, we developed a Java based 3D viewer client that can be integrated in a web interface allowing the user to visualize the integrated information over the Internet.

  1. Analysis of the Influence of Hormone Replacement Therapy on Osteocalcin Gene Expression in Postmenopausal Women.

    Science.gov (United States)

    Rahnama, Mansur; Jastrzębska-Jamrogiewicz, Izabela; Jamrogiewicz, Rafał; Trybek, Grzegorz

    2015-01-01

    Osteocalcin (OC) contributes to the process of bone mineralization. Present study was designed to investigate the changes in OC gene expression of postmenopausal women treated with hormone replacement therapy (HRT). Study was also designed to evaluate OC gene expression in cells which are not part of connective tissue. Research was carried out on 30 postmenopausal women not treated and 30 treated with HRT. Examination of OC gene expression was conducted on peripheral blood lymphocytes (PBL) and buccal epithelial lining (BEL). Densitometry was conducted on femur and mandible. Tests revealed OC gene expression in BEL and PBL. BMD was higher in groups treated with HRT. Assessment of correlation between the OC gene expression in BEL and BMD of mandible revealed significant positive relation. OC gene expression can be stated BEL and PBL. Analysis of correlation between OC gene expression in oral cavity and mandible BMD showed significant correlation between local OC expression and local bone metabolism. The relation between OC gene expression and bone metabolism is complex and further research is needed to clear all of the uncertainties.

  2. Probiotic bacteria change Echherichia coli-induced gene expression in cultured colonocytes: Implications in intestinal pathophysiology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the change in eukaryotic gene expression profile in Caco-2 cells after infection with strains of Escherichia coli and commensal probiotic bacteria.METHODS: A 19200 gene/expressed sequence tag gene chip was used to examine expression of genes after infection of Caco-2 cells with strains of normal flora E.coli, Lactobacillus plantarum, and a combination of the two.RESULTS: The cDNA microarray revealed up-regulation of 155 and down-regulation of 177 genes by E. coli. L. plantarum up-regulated 45 and down-regulated 36 genes. During mixed infection, 27 genes were upregulated and 59 were down-regulated, with nullification of stimulatory/inhibitory effects on most of the genes. Expression of several new genes was noted in this group.CONCLUSION: The commensal bacterial strains used in this study induced the expression of a large number of genes in colonocyte-like cultured cells and changed the expression of several genes involved in important cellular processes such as regulation of transcription, protein biosynthesis, metabolism, cell adhesion, ubiquitination,and apoptosis. Such changes induced by the presence of probiotic bacteria may shape the physiologic and pathologic responses they trigger in the host.

  3. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers.

    Science.gov (United States)

    Mexal, S; Frank, M; Berger, R; Adams, C E; Ross, R G; Freedman, R; Leonard, S

    2005-10-03

    Nicotine is known to induce the release of multiple neurotransmitters, including glutamate and dopamine, through activation of nicotinic receptors. Gene expression in the N-methyl-d-aspartate postsynaptic density (NMDA-PSD), as well as other functional groups, was compared in postmortem hippocampus of schizophrenic and nonmentally ill smokers and nonsmokers utilizing a microarray and quantitative RT-PCR approach. The expression of 277 genes was significantly changed between all smokers and nonsmokers. Specific gene groups, most notably genes expressed in the NMDA-PSD, were prevalent among these transcripts. Analysis of the interaction between smoking and schizophrenia identified several genes in the NMDA-PSD that were differentially affected by smoking in patients. The present findings suggest that smoking may differentially modulate glutamatergic function in schizophrenic patients and control subjects. The biological mechanisms underlying chronic tobacco use are likely to differ substantially between these two groups.

  4. Evidence for mitochondrial genetic control of autosomal gene expression.

    Science.gov (United States)

    Kassam, Irfahan; Qi, Tuan; Lloyd-Jones, Luke; Holloway, Alexander; Jan Bonder, Marc; Henders, Anjali K; Martin, Nicholas G; Powell, Joseph E; Franke, Lude; Montgomery, Grant W; Visscher, Peter M; McRae, Allan F

    2016-10-18

    The mitochondrial and nuclear genomes coordinate and co-evolve in eukaryotes in order to adapt to environmental changes. Variation in the mitochondrial genome is capable of affecting expression of genes on the nuclear genome. Sex-specific mitochondrial genetic control of gene expression has been demonstrated in Drosophila melanogaster, where males were found to drive most of the total variation in gene expression. This has potential implications for male-related health and disease resulting from variation in mtDNA solely inherited from the mother. We used a family-based study comprised of 47,323 gene expression probes and 78 mitochondrial SNPs (mtSNPs) from n = 846 individuals to examine the extent of mitochondrial genetic control of gene expression in humans. This identified 15 significant probe-mtSNP associations (P[Formula: see text]) corresponding to 5 unique genes on the mitochondrial and nuclear genomes, with three of these genes corresponding to mitochondrial genetic control of gene expression in the nuclear genome. The associated mtSNPs for three genes (one cis and two trans associations) were replicated (P expression in any of these five probes. Sex-specific effects were examined by applying our analysis to males and females separately and testing for differences in effect size. The MEST gene was identified as having the most significantly different effect sizes across the sexes (P [Formula: see text]). MEST was similarly expressed in males and females with the G allele; however, males with the C allele are highly expressed for MEST, while females show no expression of the gene. This study provides evidence for the mitochondrial genetic control of expression of several genes in humans, with little evidence found for sex-specific effects.

  5. Quantitative modeling of a gene's expression from its intergenic sequence.

    Directory of Open Access Journals (Sweden)

    Md Abul Hassan Samee

    2014-03-01

    Full Text Available Modeling a gene's expression from its intergenic locus and trans-regulatory context is a fundamental goal in computational biology. Owing to the distributed nature of cis-regulatory information and the poorly understood mechanisms that integrate such information, gene locus modeling is a more challenging task than modeling individual enhancers. Here we report the first quantitative model of a gene's expression pattern as a function of its locus. We model the expression readout of a locus in two tiers: 1 combinatorial regulation by transcription factors bound to each enhancer is predicted by a thermodynamics-based model and 2 independent contributions from multiple enhancers are linearly combined to fit the gene expression pattern. The model does not require any prior knowledge about enhancers contributing toward a gene's expression. We demonstrate that the model captures the complex multi-domain expression patterns of anterior-posterior patterning genes in the early Drosophila embryo. Altogether, we model the expression patterns of 27 genes; these include several gap genes, pair-rule genes, and anterior, posterior, trunk, and terminal genes. We find that the model-selected enhancers for each gene overlap strongly with its experimentally characterized enhancers. Our findings also suggest the presence of sequence-segments in the locus that would contribute ectopic expression patterns and hence were "shut down" by the model. We applied our model to identify the transcription factors responsible for forming the stripe boundaries of the studied genes. The resulting network of regulatory interactions exhibits a high level of agreement with known regulatory influences on the target genes. Finally, we analyzed whether and why our assumption of enhancer independence was necessary for the genes we studied. We found a deterioration of expression when binding sites in one enhancer were allowed to influence the readout of another enhancer. Thus, interference

  6. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ryszard Braczkowski

    2016-06-01

    Full Text Available Aim of the study : Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC, diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods : Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results : Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group

  7. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Expressed genes in regenerating rat liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Cun-Shuan Xu; Salman Rahrnan; Jing-Bo Zhang; Cui-Fang Chang; Jin-Yun Yuan; Wen-Qiang Li; Hong-Peng Han; Ke-Jin Yang; Li-Feng Zhao; Yu-Chang Li; Hui-Yong Zhang

    2005-01-01

    AIM: To reveal the liver regeneration (LR) and its controlas well as the occurrence of liver disease and to study the gene expression profiles of 551 genes after partial hepatectomy (PH) in regenerating rat livers.METHODS: Five hundred and fifty-one expressed sequence tags screened by suppression subtractive hybridization were made into an in-house cDNA microarray, and the expressive genes and their expressive profiles in regenerating rat livers were analyzed by microarray and bioinformatics. RESULTS: Three hundred of the analyzed 551 genes were up- or downregulated more than twofolds at one or more time points during LR. Most of the genes were up- or downregulated 2-5 folds, but the highest reached 90 folds of the control. One hundred and thirty-nine of themshowed upregulation, 135 displayed downregulation, and up or down expression of 26 genes revealed a dependence on regenerating livers. The genes expressedin 24-h regenerating livers were much more than those in the others. Cluster analysis and generalization analysis showed that there were at least six distinct temporal patterns of gene expression in the regenerating livers, that is, genes were expressed in the immediate early phase, early phase, intermediate phase, early-late phase, late phase, terminal phase. CONCLUSION: In LR, the number of down-regulated genes was almost similar to that of the upregulated genes; the successively altered genes were more than the rapidly transient genes. The temporal patterns of gene expression were similar 2 and 4 h, 12 and 16 h, 48 and 96 h, 72 and 144 h after PH. Microarray combined with suppressive subtractive hybridization can effectively identify the genes related to LR.

  9. Exploring Differentially Expressed Genes and Natural Antisense Transcripts in Sheep (Ovis aries) Skin with Different Wool Fiber Diameters by Digital Gene Expression Profiling.

    Science.gov (United States)

    Yue, Yaojing; Guo, Tingting; Liu, Jianbin; Guo, Jian; Yuan, Chao; Feng, Ruilin; Niu, Chune; Sun, Xiaoping; Yang, Bohui

    2015-01-01

    Wool fiber diameter (WFD) is the most important economic trait of wool. However, the genes specifically controlling WFD remain elusive. In this study, the expression profiles of skin from two groups of Gansu Alpine merino sheep with different WFD (a super-fine wool group [FD = 18.0 ± 0.5 μm, n=3] and a fine wool group [FD=23.0 ± 0.5 μm, n=3]) were analyzed using next-generation sequencing-based digital gene expression profiling. A total of 40 significant differentially expressed genes (DEGs) were detected, including 9 up-regulated genes and 31 down-regulated genes. Further expression profile analysis of natural antisense transcripts (NATs) showed that more than 30% of the genes presented in sheep skin expression profiles had NATs. A total of 7 NATs with significant differential expression were detected, and all were down-regulated. Among of 40 DEGs, 3 DEGs (AQP8, Bos d2, and SPRR) had significant NATs which were all significantly down-regulated in the super-fine wool group. In total of DEGs and NATs were summarized as 3 main GO categories and 38 subcategories. Among the molecular functions, cellular components and biological processes categories, binding, cell part and metabolic process were the most dominant subcategories, respectively. However, no significant enrichment of GO terms was found (corrected P-value >0.05). The pathways that were significantly enriched with significant DEGs and NATs were mainly the lipoic acid metabolism, bile secretion, salivary secretion and ribosome and phenylalanine metabolism pathways (P sheep through gene-assisted selection or targeted gene manipulation in the future.

  10. Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.)

    Indian Academy of Sciences (India)

    Lei Su; Chuan-Zhi Zhao; Yu-Ping Bi; Shu-Bo Wan; Han Xia; Xing-Jun Wang

    2011-06-01

    Late embryogenesis abundant (LEA) protein family is a large protein family that includes proteins accumulated at late stages of seed development or in vegetative tissues in response to drought, salinity, cold stress and exogenous application of abscisic acid. In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in various peanut tissues was analysed by semi-quantitative RT-PCR. The results showed that expression levels of LEA genes were generally high in seeds. Some LEA protein genes were expressed at a high level in non-seed tissues such as root, stem, leaf, flower and gynophore. These results provided valuable information for the functional and regulatory studies on peanut LEA genes.

  11. Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Larsen, M. H.; Gram, Lone

    2010-01-01

    Listeria monocytogenes is a food-borne human pathogen that causes listeriosis, a relatively rare infection with a high fatality rate. The regulation of virulence gene expression is influenced by several environmental factors, and the aim of the present study was to determine how disinfectants used...... routinely in the food industry affect the expression of different virulence genes in L. monocytogenes when added at sublethal concentrations. An agar-based assay was developed to screen the effect of disinfectants on virulence gene promoter expression and was validated at the transcriptional level...... by Northern blot analysis. Eleven disinfectants representing four different groups of active components were evaluated in this study. Disinfectants with the same active ingredients had a similar effect on gene expression. Peroxy and chlorine compounds reduced the expression of the virulence genes...

  12. Stochastic fluctuations in gene expression in aging hippocampal neurons could be exacerbated by traumatic brain injury.

    Science.gov (United States)

    Shearer, Joseph; Boone, Deborah; Weisz, Harris; Jennings, Kristofer; Uchida, Tatsuo; Parsley, Margaret; DeWitt, Douglas; Prough, Donald; Hellmich, Helen

    2016-04-01

    Traumatic brain injury (TBI) is a risk factor for age-related dementia and development of neurodegenerative disorders such as Alzheimer's disease that are associated with cognitive decline. The exact mechanism for this risk is unknown but we hypothesized that TBI is exacerbating age-related changes in gene expression. Here, we present evidence in an animal model that experimental TBI increases age-related stochastic gene expression. We compared the variability in expression of several genes associated with cell survival or death, among three groups of laser capture microdissected hippocampal neurons from aging rat brains. TBI increased stochastic fluctuations in gene expression in both dying and surviving neurons compared to the naïve neurons. Increases in random, stochastic fluctuations in prosurvival or prodeath gene expression could potentially alter cell survival or cell death pathways in aging neurons after TBI which may lead to age-related cognitive decline.

  13. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Brøns, Charlotte; Friedrichsen, Martin

    2009-01-01

    BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing...... type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression...... downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin). LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS...

  14. Faster-X Evolution of Gene Expression in Drosophila

    Science.gov (United States)

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459

  15. Differentially expressed genes in human peripheral blood as potential markers for statin response.

    Science.gov (United States)

    Won, Hong-Hee; Kim, Suk Ran; Bang, Oh Young; Lee, Sang-Chol; Huh, Wooseong; Ko, Jae-Wook; Kim, Hyung-Gun; McLeod, Howard L; O'Connell, Thomas M; Kim, Jong-Won; Lee, Soo-Youn

    2012-02-01

    There is a considerable inter-individual variation in response to statin therapy and one third of patients do not meet their treatment goals. We aimed to identify differentially expressed genes that might be involved in the effects of statin treatment and to suggest potential markers to guide statin therapy. Forty-six healthy Korean subjects received atorvastatin; their whole-genome expression profiles in peripheral blood were analyzed before and after atorvastatin administration in relation with changes in lipid profiles. The expression patterns of the differentially expressed genes were also compared with the data of familial hypercholesterolemia (FH) patients and controls. Pairwise comparison analyses revealed differentially expressed genes involved in diverse biological processes and molecular functions related with immune responses. Atorvastain mainly affected antigen binding, immune or inflammatory response including interleukin pathways. Similar expression patterns of the genes were observed in patients with FH and controls. The Charcol-Leyden crystal (CLC), CCR2, CX3CR1, LRRN3, FOS, LDLR, HLA-DRB1, ERMN, and TCN1 genes were significantly associated with cholesterol levels or statin response. Interestingly, the CLC gene, which was significantly altered by atorvastatin administration and differentially expressed between FH patients and controls, showed much bigger change in high-responsive group than in low-responsive group. We identified differentially expressed genes that might be involved in mechanisms underlying the known pleiotropic effects of atorvastatin, baseline cholesterol levels, and drug response. Our findings suggest CLC as a new candidate marker for statin response, and further validation is needed.

  16. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia; Callister, Stephen J.; Wright, Aaron T.; Westbye, Alexander; Beatty, J. T.; Lang, Andrew S.

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional

  17. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  18. Gene expression profiling and endothelin in acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Helieh S Oz; Ying Lu; Louis P Vera-Portocarrero; Pei Ge; Ada Silos-Santiago; Karin N Westlund

    2012-01-01

    AIM:To analyze gene expression profiles in an experimental pancreatitis and provide functional reversal of hypersensitivity with candidate gene endothelin-1 antagonists.METHODS:Dibutyltin dichloride (DBTC) is a chemical used as a polyvinyl carbonate stabilizer/catalyzer,biocide in agriculture,antifouling agent in paint and fabric.DBTC induces an acute pancreatitis flare through generation of reactive oxygen species.Lewis-inbred rats received a single i.v.injection with either DBTC or vehicle.Spinal cord and dorsal root ganglia (DRG) were taken at the peak of inflammation and processed for transcriptional profiling with a cDNA microarray biased for rat brain-specific genes.In a second study,groups of animals with DBTC-induced pancreatitis were treated with endothelin (ET) receptor antagonists [ET-A (BQ123) and ET-B BQ788)].Spontaneous pain related mechanical and thermal hypersensitivity were measured.Immunohistochemical analysis was performed using anti-ET-A and ET-B antibodies on sections from pancreatic tissues and DRG of the T10-12 spinal segments.RESULTS:Animals developed acute pancreatic inflammation persisting 7-10 d as confirmed by pathological studies (edema in parenchyma,loss of pancreatic architecture and islets,infiltration of inflammatory cells,neutrophil and mononuclear cells,degeneration,vacuolization and necrosis of acinar cells) and the painrelated behaviors (cutaneous secondary mechanical and thermal hypersensitivity).Gene expression profile was different in the spinal cord from animals with pancreatitis compared to the vehicle control group.Over 260 up-regulated and 60 down-regulated unique genes could be classified into 8 functional gene families:circulatory/acute phase/immunomodulatory; extracellular matrix; structural; channel/receptor/transporter; signaling transduction; transcription/translation-related; antioxidants/chaperones/heat shock; pancreatic and other enzymes.ET-1 was among the 52 candidate genes upregulated greater than 2-fold in

  19. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    KAUST Repository

    Pogoreutz, Claudia

    2017-06-28

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.

  20. Selection for the compactness of highly expressed genes in Gallus gallus

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2010-05-01

    Full Text Available Abstract Background Coding sequence (CDS length, gene size, and intron length vary within a genome and among genomes. Previous studies in diverse organisms, including human, D. Melanogaster, C. elegans, S. cerevisiae, and Arabidopsis thaliana, indicated that there are negative relationships between expression level and gene size, CDS length as well as intron length. Different models such as selection for economy model, genomic design model, and mutational bias hypotheses have been proposed to explain such observation. The debate of which model is a superior one to explain the observation has not been settled down. The chicken (Gallus gallus is an important model organism that bridges the evolutionary gap between mammals and other vertebrates. As D. Melanogaster, chicken has a larger effective population size, selection for chicken genome is expected to be more effective in increasing protein synthesis efficiency. Therefore, in this study the chicken was used as a model organism to elucidate the interaction between gene features and expression pattern upon selection pressure. Results Based on different technologies, we gathered expression data for nuclear protein coding, single-splicing genes from Gallus gallus genome and compared them with gene parameters. We found that gene size, CDS length, first intron length, average intron length, and total intron length are negatively correlated with expression level and expression breadth significantly. The tissue specificity is positively correlated with the first intron length but negatively correlated with the average intron length, and not correlated with the CDS length and protein domain numbers. Comparison analyses showed that ubiquitously expressed genes and narrowly expressed genes with the similar expression levels do not differ in compactness. Our data provided evidence that the genomic design model can not, at least in part, explain our observations. We grouped all somatic-tissue-specific genes

  1. Gene Expression Pattern of Signal Transduction in Chronic Myeloid Leukemia

    Institute of Scientific and Technical Information of China (English)

    LI Huiyu; JIE Shenghua; GUO Tiannan; HUANG Shi'ang

    2006-01-01

    To explore the transcriptional gene expression profiles of signaling pathway in Chronic myeloid leukemia (CML), a series of cDNA microarray chips were tested. The results showed that differentially expressed genes related to singal transduction in CML were screened out and the genes involved in Phosphoinositide 3-kinases (PI3K), Ras-MAPK (mitogen-activated protein kinase) and other signaling pathway genes simultaneously. The results also showed that most of these genes were up-expression genes , which suggested that signal transduction be overactivated in CML. Further analysis of these differentially expressed signal transduction genes will be helpful to understand the molecular mechanism of CML and find new targets of treatment.

  2. Effect of electro-acupuncture on gene expression in heart of rats with stress-induced pre-hypertension based on gene chip technology.

    Science.gov (United States)

    Guo, Yan; Xie, Xiaojia; Guo, Changqing; Wang, Zhaoyang; Liu, Qingguo

    2015-06-01

    To explore electro-acupuncture's (EA's) effect on gene expression in heart of rats with stress-induced pre-hypertension and try to reveal its biological mechanism based on gene chip technology. Twenty-seven Wistar male rats were randomly divided into 3 groups. The stress-induced hypertensive rat model was prepared by electric foot-shocks combined with generated noise. Molding cycle lasted for 14 days and EA intervene was applied,on rats in model + EA group during model preparation. Rat Gene 2.0 Sense Target Array technology was used for the determination of gene expression profiles and the screened key genes were verified by real-time quantitative polymerase chain reaction (RT-PCR) method. Compared with blank control group, 390 genes were changed in model group; compared with model control group, 330 genes were changed in model+EA group. Significance analysis of gene function showed that the differentially expressed genes are those involved in biological process, molecular function and cellular components. RT-PCR result of the screened key genes is consistent with that of gene chip test. EA could significantly lower blood pressure of stress-induced pre-hypertension rats and affect its gene expression profile in heart. Genes that related to the contraction of vascular smooth muscle may be involved in EA's anti-hypertensive mechanism.

  3. Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple.

    Science.gov (United States)

    Xu, Ruirui; Liu, Caiyun; Li, Ning; Zhang, Shizhong

    2016-12-01

    Argonaute (AGO) proteins, which are found in yeast, animals, and plants, are the core molecules of the RNA-induced silencing complex. These proteins play important roles in plant growth, development, and responses to biotic stresses. The complete analysis and classification of the AGO gene family have been recently reported in different plants. Nevertheless, systematic analysis and expression profiling of these genes have not been performed in apple (Malus domestica). Approximately 15 AGO genes were identified in the apple genome. The phylogenetic tree, chromosome location, conserved protein motifs, gene structure, and expression of the AGO gene family in apple were analyzed for gene prediction. All AGO genes were phylogenetically clustered into four groups (i.e., AGO1, AGO4, MEL1/AGO5, and ZIPPY/AGO7) with the AGO genes of Arabidopsis. These groups of the AGO gene family were statistically analyzed and compared among 31 plant species. The predicted apple AGO genes are distributed across nine chromosomes at different densities and include three segment duplications. Expression studies indicated that 15 AGO genes exhibit different expression patterns in at least one of the tissues tested. Additionally, analysis of gene expression levels indicated that the genes are mostly involved in responses to NaCl, PEG, heat, and low-temperature stresses. Hence, several candidate AGO genes are involved in different aspects of physiological and developmental processes and may play an important role in abiotic stress responses in apple. To the best of our knowledge, this study is the first to report a comprehensive analysis of the apple AGO gene family. Our results provide useful information to understand the classification and putative functions of these proteins, especially for gene members that may play important roles in abiotic stress responses in M. hupehensis.

  4. Actinomyces spp. gene expression in root caries lesions

    Science.gov (United States)

    Dame-Teixeira, Naile; Parolo, Clarissa Cavalcanti Fatturi; Maltz, Marisa; Tugnait, Aradhna; Devine, Deirdre; Do, Thuy

    2016-01-01

    Background The studies of the distribution of Actinomyces spp. on carious and non-carious root surfaces have not been able to confirm the association of these bacteria with root caries, although they were extensively implicated as a prime suspect in root caries. Objective The aim of this study was to observe the gene expression of Actinomyces spp. in the microbiota of root surfaces with and without caries. Design The oral biofilms from exposed sound root surface (SRS; n=10) and active root caries (RC; n=30) samples were collected. The total bacterial RNA was extracted, and the mRNA was isolated. Samples with low RNA concentration were pooled, yielding a final sample size of SRS=10 and RC=9. Complementary DNA (cDNA) libraries were prepared and sequenced on an Illumina® HiSeq 2500 system. Sequence reads were mapped to eight Actinomyces genomes. Count data were normalized using DESeq2 to analyse differential gene expression applying the Benjamini-Hochberg correction (false discovery rate [FDR]0.05), except for Actinomyces OT178 (p=0.001) and Actinomyces gerencseriae (p=0.004), which had higher read counts in the SRS. Genes that code for stress proteins (clp, dnaK, and groEL), enzymes of glycolysis pathways (including enolase and phosphoenolpyruvate carboxykinase), adhesion (Type-2 fimbrial and collagen-binding protein), and cell growth (EF-Tu) were highly – but not differentially (p>0.001) – expressed in both groups. Genes with the most significant upregulation in RC were those coding for hypothetical proteins and uracil DNA glycosylase (p=2.61E-17). The gene with the most significant upregulation in SRS was a peptide ABC transporter substrate-binding protein (log2FC=−6.00, FDR=2.37E-05). Conclusion There were similar levels of Actinomyces gene expression in both sound and carious root biofilms. These bacteria can be commensal in root surface sites but may be cariogenic due to survival mechanisms that allow them to exist in acid environments and to

  5. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system.

    Science.gov (United States)

    Hutlet, Bertrand; Theys, Nicolas; Coste, Cécile; Ahn, Marie-Thérèse; Doshishti-Agolli, Konstantin; Lizen, Benoît; Gofflot, Françoise

    2016-04-01

    Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5