WorldWideScience

Sample records for group constructed 3d

  1. Constructing Arguments with 3-D Printed Models

    Science.gov (United States)

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  2. HAPE3D-a new constructive algorithm for the 3D irregular packing problem

    Institute of Scientific and Technical Information of China (English)

    Xiao LIU; Jia-min LIU; An-xi CAO; Zhuang-le YAO

    2015-01-01

    We propose a new constructive algorithm, called HAPE3D, which is a heuristic algorithm based on the principle of minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped polyhedrons, which can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3D does not need to calculate no-fit polyhedron (NFP), which is a huge obstacle for the 3D packing problem. HAPE3D can also be hybridized with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good perfor-mance of HAPE3D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing quality.

  3. An Algorithm for Constructing 3D Struts

    Institute of Scientific and Technical Information of China (English)

    George W. Hart

    2009-01-01

    A simple robust "strut algorithm" is presented which, when given a graph embedded in 3D space, thickens its edges into solid struts. Various applications, crystallographic and sculptural, are shown in which smooth high-genus forms are the output. A toolbox of algorithmic techniques allow for a variety of novel, visually engaging forms that express a mathematical aesthetic. In sculptural examples, hyperbolic tessellations in the Poincare plane are transformed in several ways to three-dimensional networks of edges embodied within a plausibly organic organization. By the use of different transformations and adjustable parameters in the algorithms, a variety of attractive forms result. The techniques produce watertight boundary representations that can be built with solid freeform fabrication equipment. The final physical output satisfies the "coolness criterion," that passers by will pick them up and say "Wow, that's cool!"

  4. The Depth Map Construction from a 3D Point Cloud

    OpenAIRE

    Chmelar Pavel; Beran Ladislav; Rejfek Lubos

    2016-01-01

    A depth map transforms 3D points into a 2D image and gives a different view of an observed scene. This paper deals with a depth map construction. It describes the whole process, how to transform any 3D point cloud into a 2D depth map. The described method uses 3D rotation matrixes and the line equation. This process allows to create the desired view from arbitrary point and rotation in an exploration space. Using of a depth map allows to apply image processing methods on depth data to get add...

  5. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.

    Science.gov (United States)

    Li, Moxiao; Yang, Qingzhen; Liu, Hao; Qiu, Mushu; Lu, Tian Jian; Xu, Feng

    2016-09-01

    Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number Ce ), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery.

  6. Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs

    NARCIS (Netherlands)

    Zhu, K.; Shin, S.R.; Kempen, van T.; Li, Y.-C.; Ponraj, V.; Nasajpour, A.; Mandla, S.; Hu, N.; Liu, X.; Leijten, J.C.H.; Lin, Y.-D.; Hussain, M.A.; Zhang, Y.S.; Tamayol, A.; Khademhosseini, A.

    2017-01-01

    Bioprinting is the most convenient microfabrication method to create biomimetic three-dimensional (3D) cardiac tissue constructs, that can be used to regenerate damaged tissue and provide platforms for drug screening. However, existing bioinks, which are usually composed of polymeric biomaterials, a

  7. Hydrogel-based reinforcement of 3D bioprinted constructs

    NARCIS (Netherlands)

    Melchels, Ferry P W; Blokzijl, Maarten M; Levato, Riccardo; Peiffer, Quentin C; Ruijter, Mylène de; Hennink, Wim E; Vermonden, Tina; Malda, Jos

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support

  8. Influence of scaffold design on 3D printed cell constructs.

    Science.gov (United States)

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  9. Protein functional-group 3D motif and its applications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Representing and recognizing protein active sites sequence motif (1D motif) and structural motif (3D motif) is an important topic for predicting and designing protein function. Prevalent methods for extracting and searching 3D motif always consider residue as the minimal unit, which have limited sensitivity. Here we present a new spatial representation of protein active sites, called "functional-group 3D motif ", based on the fact that the functional groups inside a residue contribute mostly to its function. Relevant algorithm and computer program are developed, which could be widely used in the function prediction and the study of structural-function relationship of proteins. As a test, we defined a functional-group 3D motif of the catalytic triad and oxyanion hole with the structure of porcine trypsin (PDB code: 1mct) as the template. With our motif-searching program, we successfully found similar sub-structures in trypsins, subtilisins and a/b hydrolases, which show distinct folds but share similar catalytic mechanism. Moreover, this motif can be used to elucidate the structural basis of other proteins with variant catalytic triads by comparing it to those proteins. Finally, we scanned this motif against a non-redundant protein structure database to find its matches, and the results demonstrated the potential application of functional group 3D motif in function prediction. Above all, compared with the other 3D-motif representations on residues, the functional group 3D motif achieves better representation of protein active region, which is more sensitive for protein function prediction.

  10. 3D Additive Construction with Regolith for Surface Systems

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  11. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices.

    Science.gov (United States)

    Kalish, Brent; Tsutsui, Hideaki

    2016-04-01

    We demonstrate the use of patterned aerosol adhesives to construct both planar and nonplanar 3D paper microfluidic devices. By spraying an aerosol adhesive through a metal stencil, the overall amount of adhesive used in assembling paper microfluidic devices can be significantly reduced. We show on a simple 4-layer planar paper microfluidic device that the optimal adhesive application technique and device construction style depends heavily on desired performance characteristics. By moderately increasing the overall area of a device, it is possible to dramatically decrease the wicking time and increase device success rates while also reducing the amount of adhesive required to keep the device together. Such adhesive application also causes the adhesive to form semi-permanent bonds instead of permanent bonds between paper layers, enabling single-use devices to be non-destructively disassembled after use. Nonplanar 3D origami devices also benefit from the semi-permanent bonds during folding, as it reduces the likelihood that unrelated faces may accidently stick together. Like planar devices, nonplanar structures see reduced wicking times with patterned adhesive application vs uniformly applied adhesive.

  12. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  13. Hydrogel-based reinforcement of 3D bioprinted constructs

    Science.gov (United States)

    Levato, R; Peiffer, Q C; de Ruijter, M; Hennink, W E; Vermonden, T; Malda, J

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as є-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year. PMID:27431861

  14. Hydrogel-based reinforcement of 3D bioprinted constructs.

    Science.gov (United States)

    Melchels, Ferry P W; Blokzijl, Maarten M; Levato, Riccardo; Peiffer, Quentin C; Ruijter, Mylène de; Hennink, Wim E; Vermonden, Tina; Malda, Jos

    2016-07-19

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as [Formula: see text]-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year.

  15. Common atlas format and 3D brain atlas reconstructor: infrastructure for constructing 3D brain atlases.

    Science.gov (United States)

    Majka, Piotr; Kublik, Ewa; Furga, Grzegorz; Wójcik, Daniel Krzysztof

    2012-04-01

    One of the challenges of modern neuroscience is integrating voluminous data of diferent modalities derived from a variety of specimens. This task requires a common spatial framework that can be provided by brain atlases. The first atlases were limited to two-dimentional presentation of structural data. Recently, attempts at creating 3D atlases have been made to offer navigation within non-standard anatomical planes and improve capability of localization of different types of data within the brain volume. The 3D atlases available so far have been created using frameworks which make it difficult for other researchers to replicate the results. To facilitate reproducible research and data sharing in the field we propose an SVG-based Common Atlas Format (CAF) to store 2D atlas delineations or other compatible data and 3D Brain Atlas Reconstructor (3dBAR), software dedicated to automated reconstruction of three-dimensional brain structures from 2D atlas data. The basic functionality is provided by (1) a set of parsers which translate various atlases from a number of formats into the CAF, and (2) a module generating 3D models from CAF datasets. The whole reconstruction process is reproducible and can easily be configured, tracked and reviewed, which facilitates fixing errors. Manual corrections can be made when automatic reconstruction is not sufficient. The software was designed to simplify interoperability with other neuroinformatics tools by using open file formats. The content can easily be exchanged at any stage of data processing. The framework allows for the addition of new public or proprietary content.

  16. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

    Science.gov (United States)

    Möller, Thomas; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul

    2017-01-01

    Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow–derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. Results: The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. Conclusions: In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery. PMID:28280669

  17. (In)tangible Arguments about Play, Creativity, and the Political Economy of 3D Printing: The Free Universal Construction Kit

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Stephensen, Jan Løhmann

    2015-01-01

    With the increasing economic accessibility of 3D printers, the lessons learned and the logics cultivated on digital Web 2.0 now seem applicable to the world of material things. Released in early 2012 by the artist groups F.A.T. and Sy-lab, the Free Universal Construction Kit is a set of 3D drawin...

  18. Three-Dimensional (3D) Additive Construction: Printing with Regolith

    Science.gov (United States)

    Tsoras, Alexandra

    2013-01-01

    Three dimensional (3D) printing is a new and booming topic in many realms of research and engineering technology. When it comes to space science and aerospace engineering, it can be useful in numerous ways. As humans travel deeper into space and farther from Earth, sending large quantities of needed supplies from Earth for a mission becomes astronomically expensive and less plausible. In order to reach further to new places, In Situ Resource Utilization (ISRU), a project that pushes for technologies to use materials already present in the destination's environment, is necessary. By using materials already available in space such as regolith from the Moon, Mars, or an asteroid's surface, fewer materials need to be brought into space on a launched vehicle. This allows a vehicle to be filled with more necessary supplies for a deep space mission that may not be found in space, like food and fuel. This project's main objective was to develop a 3D printer that uses regolith to "print" large structures, such as a dome, to be used as a heat shield upon a vehicle's reentry into the atmosphere or even a habitat. 3D printing is a growing technology that uses many different methods to mix, heat, and mold a material into a specific shape. In order to heat the regolith enough to stick together into a solid shape, it must be sintered at each layer of material that is laid. Sintering is a process that heats and compresses a powdered material until it fuses into a solid, which requires a lot of energy input. As an alternative, a polymer can be mixed with the regolith before or as it is sent to the 3D printer head to be placed in the specific shape. The addition of the polymer, which melts and binds at much lower temperatures than sintering temperatures, greatly decreases the required heating temperature and energy input. The main task of the project was to identify a functional material for the printer. The first step was to find a miscible. polymer/solvent solution. This solution

  19. Constructing stable 3D hydrodynamical models of giant stars

    CERN Document Server

    Ohlmann, Sebastian T; Pakmor, Rüdiger; Springel, Volker

    2016-01-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the 1D stellar evolution code MESA. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code AREPO. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Differen...

  20. Biofabrication of cell-loaded 3D spider silk constructs.

    Science.gov (United States)

    Schacht, Kristin; Jüngst, Tomasz; Schweinlin, Matthias; Ewald, Andrea; Groll, Jürgen; Scheibel, Thomas

    2015-02-23

    Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell-material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Constructing stable 3D hydrodynamical models of giant stars

    Science.gov (United States)

    Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker

    2017-02-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.

  2. Research and Technology Development for Construction of 3d Video Scenes

    Science.gov (United States)

    Khlebnikova, Tatyana A.

    2016-06-01

    For the last two decades surface information in the form of conventional digital and analogue topographic maps has been being supplemented by new digital geospatial products, also known as 3D models of real objects. It is shown that currently there are no defined standards for 3D scenes construction technologies that could be used by Russian surveying and cartographic enterprises. The issues regarding source data requirements, their capture and transferring to create 3D scenes have not been defined yet. The accuracy issues for 3D video scenes used for measuring purposes can hardly ever be found in publications. Practicability of development, research and implementation of technology for construction of 3D video scenes is substantiated by 3D video scene capability to expand the field of data analysis application for environmental monitoring, urban planning, and managerial decision problems. The technology for construction of 3D video scenes with regard to the specified metric requirements is offered. Technique and methodological background are recommended for this technology used to construct 3D video scenes based on DTM, which were created by satellite and aerial survey data. The results of accuracy estimation of 3D video scenes are presented.

  3. Assesment of Market Potential of 3D Body Scanners within the Target Group of 3D Print Stores

    OpenAIRE

    Martini, Julian

    2013-01-01

    The world has recently witnessed the widespread of 3D printing technology. In the shadow of this development a new means of freezing time was born: 3D figurines. A 3D figurine is a mini version of oneself; a little sculpture manufactured by 3D Printers. These 3D figurines are sold for a profit by so called 3D Print Stores to consumers. For the production of such a 3D figurine one needs 3D Body Scanners. It is from the perspective of a producer of 3D Body Scanners that this master thesis was w...

  4. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    Science.gov (United States)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  5. Study on the Construction and Application of 3D Geographic Information Services for the Smart City

    Science.gov (United States)

    Mao, W.-Q.

    2014-04-01

    Smart City, whose main characteristics are intelligence and interconnection capability, has become an important goal of some cities' development. This paper, based on urban three-dimensional geographic information characteristics, analyses 3D geographic information requirements in the Smart City construction and development process, proposes construction and management methods for 3D geographic information. Furthermore, this paper takes Shanghai Geographic Information Public Service Platform as an example, discusses 3D geographic information application in multiple fields, and proves that it is an effective ways to promote Intelligent City construction.

  6. (In)tangible Arguments about Play, Creativity, and the Political Economy of 3D Printing: The Free Universal Construction Kit

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Stephensen, Jan Løhmann

    2015-01-01

    With the increasing economic accessibility of 3D printers, the lessons learned and the logics cultivated on digital Web 2.0 now seem applicable to the world of material things. Released in early 2012 by the artist groups F.A.T. and Sy-lab, the Free Universal Construction Kit is a set of 3D drawings...... that enable everyone with access to a 3D printer to make connectors between intellectual property restricted toys like LEGO, Tinkertoys, and Fischertechnik. However, when describing this project as “reverse engineering as a civic activity”, it becomes obvious that the Kit’s greater agenda is not just...

  7. (In)tangible Arguments about Play, Creativity, and the Political Economy of 3D Printing: The Free Universal Construction Kit

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Stephensen, Jan Løhmann

    2015-01-01

    With the increasing economic accessibility of 3D printers, the lessons learned and the logics cultivated on digital Web 2.0 now seem applicable to the world of material things. Released in early 2012 by the artist groups F.A.T. and Sy-lab, the Free Universal Construction Kit is a set of 3D drawings...... that enable everyone with access to a 3D printer to make connectors between intellectual property restricted toys like LEGO, Tinkertoys, and Fischertechnik. However, when describing this project as “reverse engineering as a civic activity”, it becomes obvious that the Kit’s greater agenda is not just...

  8. Research on construction of Web 3D-GIS based on Skyline

    Science.gov (United States)

    Wang, Tingting; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    This paper further studies the construction, publishing and display of three-dimensional (3D) scenes and their implementation based on Skyline family of software, combining remote sensing images and DEM data. Among them, the SketchUp software is used to build landscape models and the JavaScript programming language is adopted to achieve web browsing of 3D scenes. The study provides a useful exploration for the establishment of Web 3D-GIS combining Web GIS technology and 3D visualization technology.

  9. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Science.gov (United States)

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  10. 3D Assembly Group Analysis for Cognitive Automation

    Directory of Open Access Journals (Sweden)

    Christian Brecher

    2012-01-01

    Full Text Available A concept that allows the cognitive automation of robotic assembly processes is introduced. An assembly cell comprised of two robots was designed to verify the concept. For the purpose of validation a customer-defined part group consisting of Hubelino bricks is assembled. One of the key aspects for this process is the verification of the assembly group. Hence a software component was designed that utilizes the Microsoft Kinect to perceive both depth and color data in the assembly area. This information is used to determine the current state of the assembly group and is compared to a CAD model for validation purposes. In order to efficiently resolve erroneous situations, the results are interactively accessible to a human expert. The implications for an industrial application are demonstrated by transferring the developed concepts to an assembly scenario for switch-cabinet systems.

  11. Hypoxia Created Human Mesenchymal Stem Cell Sheet for Prevascularized 3D Tissue Construction.

    Science.gov (United States)

    Zhang, Lijun; Xing, Qi; Qian, Zichen; Tahtinen, Mitchell; Zhang, Zhaoqiang; Shearier, Emily; Qi, Shaohai; Zhao, Feng

    2016-02-01

    3D tissue based on human mesenchymal stem cell (hMSC) sheets offers many interesting opportunities for regenerating multiple types of connective tissues. Prevascularizing hMSC sheets with endothelial cells (ECs) will improve 3D tissue performance by supporting cell survival and accelerating integration with host tissue. It is hypothesized that hypoxia cultured hMSC sheets can promote microvessel network formation and preserve stemness of hMSCs. This study investigates the vascularization of hMSC sheets under different oxygen tensions. It is found that the HN condition, in which hMSC sheets formed under physiological hypoxia (2% O2 ) and then cocultured with ECs under normoxia (20% O2 ), enables longer and more branched microvessel network formation. The observation is corroborated by higher levels of angiogenic factors in coculture medium. Additionally, the hypoxic hMSC sheet is more uniform and less defective, which facilitates fabrication of 3D prevascularized tissue construct by layering the prevascularized hMSC sheets and maturing in rotating wall vessel bioreactor. The hMSCs in the 3D construct still maintain multilineage differentiation ability, which indicates the possible application of the 3D construct for various connective tissues regeneration. These results demonstrate that hypoxia created hMSC sheets benefit the microvessel growth and it is feasible to construct 3D prevascularized tissue construct using the prevascularized hMSC sheets.

  12. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    Science.gov (United States)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  13. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.

    Science.gov (United States)

    Kolesky, David B; Truby, Ryan L; Gladman, A Sydney; Busbee, Travis A; Homan, Kimberly A; Lewis, Jennifer A

    2014-05-21

    A new bioprinting method is reported for fabricating 3D tissue constructs replete with vasculature, multiple types of cells, and extracellular matrix. These intricate, heterogeneous structures are created by precisely co-printing multiple materials, known as bioinks, in three dimensions. These 3D micro-engineered environments open new -avenues for drug screening and fundamental studies of wound healing, angiogenesis, and stem-cell niches.

  14. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    Science.gov (United States)

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.

  15. 3D-Web-GIS RFID location sensing system for construction objects.

    Science.gov (United States)

    Ko, Chien-Ho

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.

  16. Web-based 3-D GIS and its applications for pipeline planning and construction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, V.; Wang, T.Q.K. [Calgary Univ., Calgary, AB (Canada). Dept. of Geomatics Engineering

    2000-07-01

    The many benefits that web-based 3D geographical information system (GIS) technology can bring to pipeline planning and construction was discussed. GIS can effectively integrate and manage a variety of data sources including geological, geographical, environmental, engineering and socioeconomic data. The third dimension of geospatial data is also very significant for pipeline planning, construction and maintenance which explains the increased demand for the development of a 3D GIS for pipeline applications. The Internet has made it possible to integrate GIS, visualization and distributed object computing technologies for a web-based 3D GIS. While this offers many advantages, it also poses several technical challenges. The technology allows users to access, manipulate and analyze geospatial objects remotely. This has positive implications for pipeline operating companies in their collaborative decision making for large pipeline projects that cover large areas with multiple landowners and different government sections. The technology will enhance their capability and productivity by making it possible to run their operations more efficiently. The Department of Geomatics Engineering at the University of Calgary has developed a web-based 3D GIS, GeoEye 3D prototype using a pure Java solution. The system is based on an advanced client/server model for visualization, manipulation and analysis of spatial data such as 3D terrain, wells, linear objects such as roads or pipelines and solid objects such as buildings. The system can be linked to other databases for spatial inquiry. 7 refs., 3 figs.

  17. APPROACH TO CONSTRUCTING 3D VIRTUAL SCENE OF IRRIGATION AREA USING MULTI-SOURCE DATA

    Directory of Open Access Journals (Sweden)

    S. Cheng

    2015-10-01

    Full Text Available For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS, remote sensing (RS technology. Based on multi-source data such as Google Earth (GE high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  18. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules.

    Science.gov (United States)

    Ahn, Geunseon; Min, Kyung-Hyun; Kim, Changhwan; Lee, Jeong-Seok; Kang, Donggu; Won, Joo-Yun; Cho, Dong-Woo; Kim, Jun-Young; Jin, Songwan; Yun, Won-Soo; Shim, Jin-Hyung

    2017-08-17

    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 °C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.

  19. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.

    Science.gov (United States)

    Jia, Weitao; Gungor-Ozkerim, P Selcan; Zhang, Yu Shrike; Yue, Kan; Zhu, Kai; Liu, Wanjun; Pi, Qingment; Byambaa, Batzaya; Dokmeci, Mehmet Remzi; Shin, Su Ryon; Khademhosseini, Ali

    2016-11-01

    Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also

  20. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink

    Science.gov (United States)

    Jia, Weitao; Gungor-Ozkerim, P. Selcan; Zhang, Yu Shrike; Yue, Kan; Zhu, Kai; Liu, Wanjun; Pi, Qingment; Byambaa, Batzaya; Dokmeci, Mehmet Remzi; Shin, Su Ryon; Khademhosseini, Ali

    2017-01-01

    Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(-ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also

  1. Assembly of a functional 3D primary cardiac construct using magnetic levitation

    Directory of Open Access Journals (Sweden)

    Glauco Souza

    2016-07-01

    Full Text Available Easily assembled organotypic co-cultures have long been sought in medical research. In vitro tissue constructs with faithful representation of in vivo tissue characteristics are highly desirable for screening and characteristic assessment of a variety of tissue types. Cardiac tissue analogs are particularly sought after due to the phenotypic degradation and difficulty of culture of primary cardiac myocytes. This study utilized magnetic nanoparticles and primary cardiac myocytes in order to levitate and culture multicellular cardiac aggregates (MCAs. Cells were isolated from 2 day old Sprague Dawley rat hearts and subsequently two groups were incubated with either C1: 33 µL nanoshell/million cells or C2: 50 µL nanoshell/million cells. Varying numbers of cells for each concentration were cultured in a magnetic field in a 24 well plate and observed over a period of 12 days. Constructs generally formed spherical structures. Masson’s trichrome staining of a construct shows the presence of extracellular matrix protein, indicating the presence of functional fibroblasts. Many constructs exhibited noticeable contraction after 4 days of culture and continued contracting noticeably past day 9 of culture. Noticeable contractility indicates the presence of functional primary cardiac myocytes in culture. Phenotypic conservation of cardiac cells was ascertained using IHC staining by α-actinin and collagen. CD31 and fibrinogen were probed in order to assess localization of fibroblasts and endothelial cells. The study verifies a protocol for the use of magnetic levitation in order to rapidly assemble 3D cardiac like tissue with phenotypic and functional stability.

  2. Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami

    DEFF Research Database (Denmark)

    Zadegan, Reza Mohammad; Jepsen, Mette DE; Thomsen, Karen E

    2012-01-01

    The DNA origami technique is a recently developed self-assembly method that allows construction of 3D objects at the nanoscale for various applications. In the current study we report the production of a 18 × 18 × 24 nm3 hollow DNA box origami structure with a switchable lid. The structure was ef...

  3. 3D printing cement based ink, and it’s application within the construction industry

    Directory of Open Access Journals (Sweden)

    Jianchao Zhu

    2017-01-01

    Full Text Available The 3D printing technology is the engine key of the third industrial revolution, after introduction of the automation in the eighteenth century and the concept of mass production in early of twentieth century. 3D printing technology now offers the magic solution to balance both the benefits, and overcome the major associated problem with the previous concept which was the need of repetition. The 3D printing technology has two main critical success factors: the printing machine and the printing material (ink. This paper focusses on cementitious-based materials and the ability to utilize the technology in the construction industry. The research took a qualitative approach based on previous literature reviews as well as in-house research results carried out by the authors’ employer Research and Development Center. The paper summarizes the approach towards to an appropriate mix design which can achieve the requirement of the printing process, and overcome the current constraints which are hindering the wide application of 3D print in construction industry. The authors believe that the research topic and result will have great impact on pushing the construction industry forward towards achieving the UAE Government’s strategy and target to achieve twenty-five percent (25% of the buildings in Dubai by the year of 2030 relying on the 3D printing methodology. The research also concluded that even though the technology is adding a great value to the construction industry, it must be remembered that the technology is still in its infancy, and further research is required to achieve even higher strength printing materials that would be workable in multi-story buildings without the need of additional steel reinforcement.

  4. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  5. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

    Science.gov (United States)

    Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo

    2016-01-12

    Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering.

  6. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Science.gov (United States)

    Silva, Joana M.; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L.; Van Blitterswijk, Clemens A.; Karperien, Marcel; Mano, João F.

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs. PMID:23437056

  7. Intelligent 3D packing using a grouping algorithm for automotive container engineering

    Directory of Open Access Journals (Sweden)

    Youn-Kyoung Joung

    2014-04-01

    Full Text Available Storing, and the loading and unloading of materials at production sites in the manufacturing sector for mass production is a critical problem that affects various aspects: the layout of the factory, line-side space, logistics, workers’ work paths and ease of work, automatic procurement of components, and transfer and supply. Traditionally, the nesting problem has been an issue to improve the efficiency of raw materials; further, research into mainly 2D optimization has progressed. Also, recently, research into the expanded usage of 3D models to implement packing optimization has been actively carried out. Nevertheless, packing algorithms using 3D models are not widely used in practice, due to the large decrease in efficiency, owing to the complexity and excessive computational time. In this paper, the problem of efficiently loading and unloading freeform 3D objects into a given container has been solved, by considering the 3D form, ease of loading and unloading, and packing density. For this reason, a Group Packing Approach for workers has been developed, by using analyzed truck packing work patterns and Group Technology, which is to enhance the efficiency of storage in the manufacturing sector. Also, an algorithm for 3D packing has been developed, and implemented in a commercial 3D CAD modeling system. The 3D packing method consists of a grouping algorithm, a sequencing algorithm, an orientating algorithm, and a loading algorithm. These algorithms concern the respective aspects: the packing order, orientation decisions of parts, collision checking among parts and processing, position decisions of parts, efficiency verification, and loading and unloading simulation. Storage optimization and examination of the ease of loading and unloading are possible, and various kinds of engineering analysis, such as work performance analysis, are facilitated through the intelligent 3D packing method developed in this paper, by using the results of the 3D

  8. A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct

    Science.gov (United States)

    Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.

    2017-01-01

    Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397

  9. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends.

    Science.gov (United States)

    Oliveira, Sara M; Reis, Rui L; Mano, João F

    2015-11-01

    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Geological, isothermal, and isobaric 3-D model construction in early stage of geothermal exploration

    Science.gov (United States)

    Saputra, M. P.; Suryantini; Catigtig, D.; Regandara, R.; Asnin, S. N.; Pratama, A. B.

    2016-09-01

    Construction of geology, thermal anomaly and pressure distribution of a geothermal system in the early stage of exploration where data is limited is described using a 3-D software, Leapfrog Geothermal. The geological 3-D model was developed from a topographic map (derived from DEM data), geological map and literature studies reported in an early geological survey. The isothermal 3-D model was constructed using reservoir temperature estimation from geothermometry calculated from chemical analyses on surface manifestations, available shallow gradient temperature hole data and the normal gradient temperature (3°C/100m) for a nonthermal area. The isobaric 3-D model was built using hydrostatic pressure where the hydrostatic pressure is determined by the product of the fluid density, acceleration due to gravity, and depth. Fluid density is given by saturated liquid density as a function of temperature. There are some constraints on the modelling result such as (1) within the predicted reservoir, the geothermal gradient is not constant but continues to increase, thus, creating an anomalously high temperature at depth, and (2) the lithology model is made by interpolating and extrapolating cross-sections whereas usually only two to three geology sections were available for this study. Hence, the modeller must understand the geology. An additional cross section was developed by the modeller which may not be as suitable as the geologist constructed sections. The results of this study can be combined with geophysical data such as gravity, geomagnetic, micro-tremor and resistivity data. The combination of geological, geochemical, isothermal, isobaric and geophysical data could be used in (1) estimating the geometry and size of the geothermal reservoir, (2) predicting the depth of top reservoir, and (3) creating well prognosis for exploration and production wells.

  11. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    Science.gov (United States)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  12. 3-D Structure of the Slave and Rae Cratons Provides Clues to Their Construction

    Science.gov (United States)

    Snyder, D. B.

    2013-12-01

    Deep geologic structures within cratons that make up continental cores were long neglected. Recently acquired geophysical data from large observational arrays and geochemical data resulting from exploration for diamond has now made possible co-registration of large-scale (400-km depth), truly 3-dimensional data sets. P-waves, surface waves and magnetotelluric observations provide 3-D wavespeed and conductivity models. Multi-azimuthal receiver functions map seismic discontinuity surfaces in 3-D. Xenolith suites erupted in kimberlites provide rock samples at key lithospheric depths, albeit at sparsely distributed locations. These multi-disciplinary models are becoming available for several key cratons worldwide; here the deep structure of the Slave and Rae cratons of the Canadian Shield is described. Lithospheric layers with tapered, wedge-shaped margins are common. Slave craton layers are sub-horizontal and indicate construction of the craton core at 2.7 Ga by underthrusting and flat stacking of lithosphere. The central Rae craton has predominantly dipping discontinuities that indicate construction at 1.9 Ga by thrusting similar to that observed in crustal ';thick-skinned' fold-and-thrust belts. 3-D mapping of conductivity and metasomatism, the latter via mineral recrystallization and resetting of isotopic ages, overprints primary structures in both cratons. Distribution of more conductivitve mantle suggests that assumed causative pervasive metasomatism occurs at 100-200 km depths with ';chimneys' reaching to shallower depths, typically in locations where kimberlites or mineralization has occurred.

  13. Construction of an extended library of adult male 3D models: rationale and results

    Science.gov (United States)

    Broggio, D.; Beurrier, J.; Bremaud, M.; Desbrée, A.; Farah, J.; Huet, C.; Franck, D.

    2011-12-01

    In order to best cover the possible extent of heights and weights of male adults the construction of 25 whole body 3D models has been undertaken. Such a library is thought to be useful to specify the uncertainties and relevance of dosimetry calculations carried out with models representing individuals of average body heights and weights. Representative 3D models of Caucasian body types are selected in a commercial database according to their height and weight, and 3D models of the skeleton and internal organs are designed using another commercial dataset. A review of the literature enabled one to fix volume or mass target values for the skeleton, soft organs, skin and fat content of the selected individuals. The composition of the remainder tissue is fixed so that the weight of the voxel models equals the weight of the selected individuals. After mesh and NURBS modelling, volume adjustment of the selected body shapes and additional voxel-based work, 25 voxel models with 109 identified organs or tissue are obtained. Radiation transport calculations are carried out with some of the developed models to illustrate potential uses. The following points are discussed throughout this paper: justification of the fixed or obtained models' features regarding available and relevant literature data; workflow and strategy for major modelling steps; advantages and drawbacks of the obtained library as compared with other works. The construction hypotheses are explained and justified in detail since future calculation results obtained with this library will depend on them.

  14. 3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel

    Institute of Scientific and Technical Information of China (English)

    ZHONG Denghua; TONG Dawei

    2009-01-01

    Applying stiffness migration method, a 3D finite element mechanical model is established to simulate the excavation and advance processes. By using 3D nonlinear finite element method, the tunnel boring machine (TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment. The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution. The stress increases slightly and limitedly in the course of excavation. The maxi-mum and minimum displacements of segment, manifesting as zonal distribution, distribute in arch bottom and vault respectively. The displacements slightly increase with the advance of TBM and gradually tend to stability.

  15. Integrated assembly of 3D graphene networks for construction of all-in-one supercapacitor electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    intrinsic resistance and high ion conductance is still a challenging issue. I n this work, we have undertaken the challenge and used electrochemically generated copper foams (CuF) as an effective template to directly integrate reduced graphene oxide (rGO) 3D networks . This has led to the construction...... of all - in - one supercapacitor ele ctrodes (3DrGO@CuF) [1] . The overall procedure in clude s two step s : self - assembly of graphene oxide (GO) on Cu F and electrochemical reduction of GO into rGO. The resulting electrodes are capable of delivering a specific capacitance as high as 623 F g - 1...... efficient and cost - effective n ovel materials. Because of their ultrahigh specific surface areas and excellent conductivity , t hree - dimensional (3D) graphene materials hold great promises for supercapacitors. However, the assembly of graphene building blocks into the supercapacitor electrodes with low...

  16. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    Science.gov (United States)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  17. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  18. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    Science.gov (United States)

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  19. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  20. Constructing Isosurfaces from 3D Data Sets Taking Account of Depth Sorting of Polyhedra

    Institute of Scientific and Technical Information of China (English)

    周勇; 唐泽圣

    1994-01-01

    Creating and rendering intermediate geometric primitives is one of the approaches to visualisze data sets in 3D space.Some algorithms have been developed to construct isosurface from uniformly distributed 3D data sets.These algorithms assume that the function value varies linearly along edges of each cell.But to irregular 3D data sets,this assumption is inapplicable.Moreover,the detth sorting of cells is more complicated for irregular data sets,which is indispensable for generating isosurface images or semitransparent isosurface images,if Z-buffer method is not adopted.In this paper,isosurface models based on the assumption that the function value has nonlinear distribution within a tetrahedron are proposed.The depth sorting algorithm and data structures are developed for the irregular data sets in which cells may be subdivided into tetrahedra.The implementation issues of this algorithm are discussed and experimental results are shown to illustrate potentials of this technique.

  1. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    Science.gov (United States)

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.

  2. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.

    Science.gov (United States)

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Huang, Yong; Chrisey, Douglas B

    2015-12-22

    Laser printing is an orifice-free printing approach and has been investigated for the printing of two-dimensional patterns and simple three-dimensional (3D) constructs. To demonstrate the potential of laser printing as an effective bioprinting technique, both straight and Y-shaped tubes have been freeform printed using two different bioinks: 8% alginate solution and 2% alginate-based mouse fibroblast suspension. It has been demonstrated that 3D cellular tubes, including constructs with bifurcated overhang structures, can be adequately fabricated under optimal printing conditions. The post-printing cell viabilities immediately after printing as well as after 24 h incubation are above 60% for printed straight and Y-shaped fibroblast tubes. During fabrication, overhang and spanning structures can be printed using a dual-purpose crosslinking solution, which also functions as a support material. The advancement distance of gelation reaction front after a cycle time of the receiving platform downward motion should be estimated for experimental planning. The optimal downward movement step size of receiving platform should be chosen to be equal to the height of ungelled portion of a previously printed layer.

  3. Generalization of the tensor renormalization group approach to 3-D or higher dimensions

    Science.gov (United States)

    Teng, Peiyuan

    2017-04-01

    In this paper, a way of generalizing the tensor renormalization group (TRG) is proposed. Mathematically, the connection between patterns of tensor renormalization group and the concept of truncation sequence in polytope geometry is discovered. A theoretical contraction framework is therefore proposed. Furthermore, the canonical polyadic decomposition is introduced to tensor network theory. A numerical verification of this method on the 3-D Ising model is carried out.

  4. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    Science.gov (United States)

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

  5. About Hebei Jianxin Construction Group

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Hebei Jianxin Construction (Group) Ltd. was incorporated in August 1984. As the holding company, Hebei Jianxin Construction (Group)Ltd. along with five companies under its holding, such as Baoding New Generation Real Estate Development Co., Ltd. and Baoding New Generation Property Management Co., Ltd., formed Hebei Jianxin Architectural Group (hereafter, the Group).

  6. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells.

    Science.gov (United States)

    Kucukgul, Can; Ozler, S Burce; Inci, Ilyas; Karakas, Ezgi; Irmak, Ster; Gozuacik, Devrim; Taralp, Alpay; Koc, Bahattin

    2015-04-01

    Cardiovascular diseases are the leading cause of deaths throughout the world. Vascular diseases are mostly treated with autografts and blood vessel transplantations. However, traditional grafting methods have several problems including lack of suitable harvest sites, additional surgical costs for harvesting procedure, pain, infection, lack of donors, and even no substitutes at all. Recently, tissue engineering and regenerative medicine approaches are used to regenerate damaged or diseased tissues. Most of the tissue engineering investigations have been based on the cell seeding into scaffolds by providing a suitable environment for cell attachment, proliferation, and differentiation. Because of the challenges such as difficulties in seeding cells spatially, rejection, and inflammation of biomaterials used, the recent tissue engineering studies focus on scaffold-free techniques. In this paper, the development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold-free biomimetic macrovascular structures. Computer model mimicking a real human aorta is generated using imaging techniques and the proposed computational algorithms. An optimized three-dimensional bioprinting path planning are developed with the proposed self-supported model. Mouse embryonic fibroblast (MEF) cell aggregates and support structures (hydrogels) are 3D bioprinted layer-by-layer according to the proposed self-supported method to form an aortic tissue construct.

  7. Construction of 3D multicellular microfluidic chip for an in vitro skin model.

    Science.gov (United States)

    Lee, Sojin; Jin, Seon-Pil; Kim, Yeon Kyung; Sung, Gun Yong; Chung, Jin Ho; Sung, Jong Hwan

    2017-06-01

    Current in vitro skin models do not recapitulate the complex architecture and functions of the skin tissue. In particular, on-chip construction of an in vitro model comprising the epidermis and dermis layer with vascular structure for mass transport has not been reported yet. In this study, we aim to develop a microfluidic, three-dimensional (3D) skin chip with fluidic channels using PDMS and hydrogels. Mass transport within the collagen hydrogel matrix was verified with fluorescent model molecules, and a transport-reaction model of oxygen and glucose inside the skin chip was developed to aid the design of the microfluidic skin chip. Comparison of viabilities of dermal fibroblasts and HaCaT cultured in the chip with various culture conditions revealed that the presence of flow plays a crucial role in maintaining the viability, and both cells were viable after 10 days of air exposure culture. Our 3D skin chip with vascular structures can be a valuable in vitro model for reproducing the interaction between different components of the skin tissue, and thus work as a more physiologically realistic platform for testing skin reaction to cosmetic products and drugs.

  8. Generation of (3 + d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures.

    Science.gov (United States)

    Stokes, Harold T; Campbell, Branton J; van Smaalen, Sander

    2011-01-01

    A complete table of (3 + 1)D, (3 + 2)D and (3 + 3)D superspace groups (SSGs) has been enumerated that corrects omissions and duplicate entries in previous tables of superspace groups and Bravais classes. The theoretical methods employed are not new, though the implementation is both novel and robust. The paper also describes conventions for assigning a unique one-line symbol for each group in the table. Finally, a new online data repository is introduced that delivers more complete information about each SSG than has been presented previously.

  9. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    Science.gov (United States)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  10. Constructing and Representing: a New Project for 3d Surveying of Yazilikaya - HATTUŠA

    Science.gov (United States)

    Repola, L.; Marazzi, M.; Tilia, S.

    2017-05-01

    Within the cooperation project between the University Suor Orsola Benincasa of Naples and the archaeological mission in Hattuša of the German Archaeological Institute of Istanbul, directed by Andreas Schachner, in agreement with the Turkish Ministry of Culture and Tourism, the workgroup of the University of Naples, has carried out, in September 2015, a first survey campaign of the whole rocky site of Yazılıkaya. The experimentation has been finalized at constructing a global 3D territorial and monumental model of the site, capable that is, through the application of differing scanning procedures, according to the different components (topography, rocky complex, the cultural spaces therein, complex of sculptural reliefs, inscriptions accompanying the divine representations), of virtually reproducing in detail, for safegaurd, exhibition and study purposes (in particular from an epigraphical and historic-artistic point of view) all the aspects characterizing the artefact and not completely visible to the naked eye today.

  11. 3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer.

    Science.gov (United States)

    Herrmann, Karl-Heinz; Gärtner, Clemens; Güllmar, Daniel; Krämer, Martin; Reichenbach, Jürgen R

    2014-10-01

    To evaluate low budget 3D printing technology to create MRI compatible components. A 3D printer is used to create customized MRI compatible components, a loop-coil platform and a multipart mouse fixation. The mouse fixation is custom fit for a dedicated coil and facilitates head fixation with bite bar, anesthetic gas supply and biomonitoring sensors. The mouse fixation was tested in a clinical 3T scanner. All parts were successfully printed and proved MR compatible. Both design and printing were accomplished within a few days and the final print results were functional with well defined details and accurate dimensions (Δ3D printer can be used to quickly progress from a concept to a functional device at very low production cost. While 3D printing technology does impose some restrictions on model geometry, additive printing technology can create objects with complex internal structures that can otherwise not be created by using lathe technology. Thus, we consider a 3D printer a valuable asset for MRI research groups. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. A group of facial normal descriptors for recognizing 3D identical twins

    KAUST Repository

    Li, Huibin

    2012-09-01

    In this paper, to characterize and distinguish identical twins, three popular texture descriptors: i.e. local binary patterns (LBPs), gabor filters (GFs) and local gabor binary patterns (LGBPs) are employed to encode the normal components (x, y and z) of the 3D facial surfaces of identical twins respectively. A group of facial normal descriptors are thus achieved, including Normal Local Binary Patterns descriptor (N-LBPs), Normal Gabor Filters descriptor (N-GFs) and Normal Local Gabor Binary Patterns descriptor (N-LGBPs). All these normal encoding based descriptors are further fed into sparse representation classifier (SRC) for identification. Experimental results on the 3D TEC database demonstrate that these proposed normal encoding based descriptors are very discriminative and efficient, achieving comparable performance to the best of state-of-the-art algorithms. © 2012 IEEE.

  13. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  14. Efficient construction of unified continuous and discontinuous Galerkin formulations for the 3D Euler equations

    Science.gov (United States)

    Abdi, Daniel S.; Giraldo, Francis X.

    2016-09-01

    A unified approach for the numerical solution of the 3D hyperbolic Euler equations using high order methods, namely continuous Galerkin (CG) and discontinuous Galerkin (DG) methods, is presented. First, we examine how classical CG that uses a global storage scheme can be constructed within the DG framework using constraint imposition techniques commonly used in the finite element literature. Then, we implement and test a simplified version in the Non-hydrostatic Unified Model of the Atmosphere (NUMA) for the case of explicit time integration and a diagonal mass matrix. Constructing CG within the DG framework allows CG to benefit from the desirable properties of DG such as, easier hp-refinement, better stability etc. Moreover, this representation allows for regional mixing of CG and DG depending on the flow regime in an area. The different flavors of CG and DG in the unified implementation are then tested for accuracy and performance using a suite of benchmark problems representative of cloud-resolving scale, meso-scale and global-scale atmospheric dynamics. The value of our unified approach is that we are able to show how to carry both CG and DG methods within the same code and also offer a simple recipe for modifying an existing CG code to DG and vice versa.

  15. Construction of a 3D model of cytochrome P450 2B4.

    Science.gov (United States)

    Chang, Y T; Stiffelman, O B; Vakser, I A; Loew, G H; Bridges, A; Waskell, L

    1997-02-01

    A three-dimensional structural model of rabbit phenobarbital-inducible cytochrome P450 2B4 (LM2) was constructed by homology modeling techniques previously developed for building and evaluating a 3D model of the cytochrome P450choP isozyme. Four templates with known crystal structures including cytochrome P450cam, terp, BM-3 and eryF were used in multiple sequence alignments and construction of the cytochrome P450 2B4 coordinates. The model was evaluated for its overall quality using available protein analysis programs and found to be satisfactory. The model structure was stable at room temperature during a 140 ps unconstrained full protein molecular dynamics simulation. A putative substrate access channel and binding site were identified. Two different substrates, benzphetamine and androstenedione, that are metabolized by cytochrome P450 2B4 with pronounced product specificity were docked into the putative binding site. Two orientations were found for each substrate that could lead to the observed preferred products. Using a geometric fit method three regions on the surface of the model cytochrome P450 structure were identified as possible sites for interaction with cytochrome b5, a redox partner of P450 2B4. Residues that may interact with the substrates and with cytochrome b5 have been identified and mutagenesis studies are currently in progress.

  16. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Science.gov (United States)

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  17. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Science.gov (United States)

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  18. Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept

    Science.gov (United States)

    Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles

    2016-09-01

    3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.

  19. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening.

    Science.gov (United States)

    Vanderburgh, Joseph; Sterling, Julie A; Guelcher, Scott A

    2017-01-01

    2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D vs. 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs.

  20. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    Science.gov (United States)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  1. Construction of 3D micropatterned surfaces with wormlike and superhydrophilic PEG brushes to detect dysfunctional cells.

    Science.gov (United States)

    Hou, Jianwen; Shi, Qiang; Ye, Wei; Fan, Qunfu; Shi, Hengchong; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2014-12-10

    Detection of dysfunctional and apoptotic cells plays an important role in clinical diagnosis and therapy. To develop a portable and user-friendly platform for dysfunctional and aging cell detection, we present a facile method to construct 3D patterns on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene glycol) brushes. Normal red blood cells (RBCs) and lysed RBCs (dysfunctional cells) are used as model cells. The strategy is based on the fact that poly(ethylene glycol) brushes tend to interact with phosphatidylserine, which is in the inner leaflet of normal cell membranes but becomes exposed in abnormal or apoptotic cell membranes. We demonstrate that varied patterned surfaces can be obtained by selectively patterning atom transfer radical polymerization (ATRP) initiators on the SEBS surface via an aqueous-based method and growing PEG brushes through surface-initiated atom transfer radical polymerization. The relatively high initiator density and polymerization temperature facilitate formation of PEG brushes in high density, which gives brushes worm-like morphology and superhydrophilic property; the tendency of dysfunctional cells adhered on the patterned surfaces is completely different from well-defined arrays of normal cells on the patterned surfaces, providing a facile method to detect dysfunctional cells effectively. The PEG-patterned surfaces are also applicable to detect apoptotic HeLa cells. The simplicity and easy handling of the described technique shows the potential application in microdiagnostic devices.

  2. Manipulating Living Cells to Construct a 3D Single-Cell Assembly without an Artificial Scaffold

    Directory of Open Access Journals (Sweden)

    Aoi Yoshida

    2017-07-01

    Full Text Available Artificial scaffolds such as synthetic gels or chemically-modified glass surfaces that have often been used to achieve cell adhesion are xenobiotic and may harm cells. To enhance the value of cell studies in the fields of regenerative medicine and tissue engineering, it is becoming increasingly important to create a cell-friendly technique to promote cell–cell contact. In the present study, we developed a novel method for constructing stable cellular assemblies by using optical tweezers in a solution of a natural hydrophilic polymer, dextran. In this method, a target cell is transferred to another target cell to make cell–cell contact by optical tweezers in a culture medium containing dextran. When originally non-cohesive cells are held in contact with each other for a few minutes under laser trapping, stable cell–cell adhesion is accomplished. This method for creating cellular assemblies in the presence of a natural hydrophilic polymer may serve as a novel next-generation 3D single-cell assembly system with future applications in the growing field of regenerative medicine.

  3. A Bio-Acoustic Levitational (BAL) Assembly Method for Engineering of Multilayered, 3D Brain-Like Constructs, Using Human Embryonic Stem Cell Derived Neuro-Progenitors.

    Science.gov (United States)

    Bouyer, Charlène; Chen, Pu; Güven, Sinan; Demirtaş, Tuğrul Tolga; Nieland, Thomas J F; Padilla, Frédéric; Demirci, Utkan

    2016-01-06

    A bio-acoustic levitational assembly method for engineering of multilayered, 3D brainlike constructs is presented. Acoustic radiation forces are used to levitate neuroprogenitors derived from human embryonic stem cells in 3D multilayered fibrin tissue constructs. The neuro-progenitor cells are subsequently differentiated in neural cells, resulting in a 3D neuronal construct with inter and intralayer neurite elongations.

  4. Simulation of Flow Pattern around Inclined Bridge Group Pier using FLOW-3D Software

    Directory of Open Access Journals (Sweden)

    Malihesadat Jafari

    2017-03-01

    Full Text Available Introduction: Bridges are certainly one of the most important structures but costly service elements in a transport system. The bridges are very required to access the damaged areas in emergency situations such as floods and earthquakes. Scour around the foundations of bridge piers exposed to the flowing water than can destroy the bridge itself is a subject of major concern. Flow pattern is known as responsible for all changes in stream bed. Any obstacle in the channel can form new flow patterns causing additional shear stress exerted on the bed than the equilibrium condition of the absence of the obstacle. Appropriate shaping of flow pattern and proper selecting of pier geometry and the location of bridge piers can be one of the proper methods in reduction of scour amount which is the main subject of the present study. Materials and Methods: Inclined bridge group pier is a type of bridges with modern geometry based on development in building technology of structures. Many of these bridges have been built all around the world and the 8th bridge built crossing the Karun River in Ahvaz is a sample of the Iranian ones considered in this research. Hydrodynamic behavior of flow is investigated around the inclined bridge group pier settled on foundation using the FLOW-3D numerical model. Inclined bridge group pier investigated in this study, includes two rectangular piers which are 2.5 cm long and 3.5 cm wide and set in an angle of 28 degree on rectangular foundation which is 16 cm long and 10 cm wide and installed in three different foundation levels namely at, above and below the bed levels. The physical model of prototype pier considered in this study was constructed to the scale of 1:190 of the Ahvaz 8th bridge. In order to verify the accuracy of the numerical model, velocity data obtained from image processing technique were used. Results and Discussion: Due to non- linearity and interactions between various phenomena involved, flow pattern

  5. Seiberg-like Dualities for 3d N=2 Theories with SU(N) gauge group

    CERN Document Server

    Park, Jaemo

    2013-01-01

    We work out Seiberg-like dualities for 3d $\\cN=2$ theories with SU(N) gauge group. We use the $SL(2,\\IZ)$ action on 3d conformal field theories with U(1) global symmetry. One of generator S of $SL(2,\\IZ)$ acts as gauging of the U(1) global symmetry. Utilizing $S=S^{-1}$ up to charge conjugation, we obtain Seiberg-like dual of SU(N) theories by gauging topological U(1) symmetry of the Seiberg-like dual of U(N) theories with the same matter content. We work out the Aharony dualities for SU(N) gauge theory with $N_f$ fundamental/anti-fundamnetal flavors, with/without one adjoint matter with the superpotential. We also work out the Giveon-Kutasov dualities for SU(N) gauge theory with Chern-Simons term and with $N_f$ fundamental/anti-fundamental flavors. For all the proposed dualities, we give various evidences such as chiral ring matching and the superconformal index computations. For all dualities proposed, we find the perfect matchings.

  6. - and Graph-Based Point Cloud Segmentation of 3d Scenes Using Perceptual Grouping Laws

    Science.gov (United States)

    Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U.

    2017-05-01

    Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.

  7. 3-D Modelling of Megaloolithid Clutches: Insights about Nest Construction and Dinosaur Behaviour

    Science.gov (United States)

    Vila, Bernat; Jackson, Frankie D.; Fortuny, Josep; Sellés, Albert G.; Galobart, Àngel

    2010-01-01

    Background Megaloolithid eggs have long been associated with sauropod dinosaurs. Despite their extensive and worldwide fossil record, interpretations of egg size and shape, clutch morphology, and incubation strategy vary. The Pinyes locality in the Upper Cretaceous Tremp Formation in the southern Pyrenees, Catalonia provides new information for addressing these issues. Nine horizons containing Megaloolithus siruguei clutches are exposed near the village of Coll de Nargó. Tectonic deformation in the study area strongly influenced egg size and shape, which could potentially lead to misinterpretation of reproductive biology if 2D and 3D maps are not corrected for bed dip that results from tectonism. Methodology/Findings Detailed taphonomic study and three-dimensional modelling of fossil eggs show that intact M. siruguei clutches contained 20–28 eggs, which is substantially larger than commonly reported from Europe and India. Linear and grouped eggs occur in three superimposed levels and form an asymmetric, elongate, bowl-shaped profile in lateral view. Computed tomography data support previous interpretations that the eggs hatched within the substrate. Megaloolithid clutch sizes reported from other European and Indian localities are typically less than 15 eggs; however, these clutches often include linear or grouped eggs that resemble those of the larger Pinyes clutches and may reflect preservation of incomplete clutches. Conclusions/Significance We propose that 25 eggs represent a typical megaloolithid clutch size and smaller egg clusters that display linear or grouped egg arrangements reported at Pinyes and other localities may represent eroded remnants of larger clutches. The similarity of megaloolithid clutch morphology from localities worldwide strongly suggests common reproductive behaviour. The distinct clutch geometry at Pinyes and other localities likely resulted from the asymmetrical, inclined, and laterally compressed titanosaur pes unguals of the female

  8. Statistical 3D prostate imaging atlas construction via anatomically constrained registration

    Science.gov (United States)

    Rusu, Mirabela; Bloch, B. Nicolas; Jaffe, Carl C.; Rofsky, Neil M.; Genega, Elizabeth M.; Feleppa, Ernest; Lenkinski, Robert E.; Madabhushi, Anant

    2013-03-01

    Statistical imaging atlases allow for integration of information from multiple patient studies collected across different image scales and modalities, such as multi-parametric (MP) MRI and histology, providing population statistics regarding a specific pathology within a single canonical representation. Such atlases are particularly valuable in the identification and validation of meaningful imaging signatures for disease characterization in vivo within a population. Despite the high incidence of prostate cancer, an imaging atlas focused on different anatomic structures of the prostate, i.e. an anatomic atlas, has yet to be constructed. In this work we introduce a novel framework for MRI atlas construction that uses an iterative, anatomically constrained registration (AnCoR) scheme to enable the proper alignment of the prostate (Pr) and central gland (CG) boundaries. Our current implementation uses endorectal, 1.5T or 3T, T2-weighted MRI from 51 patients with biopsy confirmed cancer; however, the prostate atlas is seamlessly extensible to include additional MRI parameters. In our cohort, radical prostatectomy is performed following MP-MR image acquisition; thus ground truth annotations for prostate cancer are available from the histological specimens. Once mapped onto MP-MRI through elastic registration of histological slices to corresponding T2-w MRI slices, the annotations are utilized by the AnCoR framework to characterize the 3D statistical distribution of cancer per anatomic structure. Such distributions are useful for guiding biopsies toward regions of higher cancer likelihood and understanding imaging profiles for disease extent in vivo. We evaluate our approach via the Dice similarity coefficient (DSC) for different anatomic structures (delineated by expert radiologists): Pr, CG and peripheral zone (PZ). The AnCoR-based atlas had a CG DSC of 90.36%, and Pr DSC of 89.37%. Moreover, we evaluated the deviation of anatomic landmarks, the urethra and

  9. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink.

    Science.gov (United States)

    Colosi, Cristina; Shin, Su Ryon; Manoharan, Vijayan; Massa, Solange; Costantini, Marco; Barbetta, Andrea; Dokmeci, Mehmet Remzi; Dentini, Mariella; Khademhosseini, Ali

    2016-01-27

    A novel bioink and a dispensing technique for 3D tissue-engineering applications are presented. The technique incorporates a coaxial extrusion needle using a low-viscosity cell-laden bioink to produce highly defined 3D biostructures. The extrusion system is then coupled to a microfluidic device to control the bioink arrangement deposition, demonstrating the versatility of the bioprinting technique. This low-viscosity cell-responsive bioink promotes cell migration and alignment within each fiber organizing the encapsulated cells.

  10. Construction of nitronyl nitroxide-based 3d-4f clusters: structure and magnetism.

    Science.gov (United States)

    Wang, Xiu-Feng; Hu, Peng; Li, Yun-Gai; Li, Li-Cun

    2015-02-01

    Three unprecedented nitronyl nitroxide radical-bridged 3d-4f clusters, [Ln2 Cu2 (hfac)10 (NIT-3py)2 (H2 O)2 ](Ln(III) =Y, Gd, Dy), have been obtained from the self-assembly of Ln(hfac)3 , Cu(hfac)2 , and the radical ligand. The Dy complex shows a slow relaxation of magnetization, representing the first nitronyl nitroxide radical-based 3d-4f cluster with single-molecule magnet behavior.

  11. An impedance method for spatial sensing of 3D cell constructs – towards applications in tissue engineering

    DEFF Research Database (Denmark)

    Canali, Chiara; Mazzoni, Chiara; Larsen, Layla Bashir

    2015-01-01

    ) cells were encapsulated in gelatin to form artificial 3D cell constructs and detected when placed in different positions inside large gelatin scaffolds. Taken together, these results open new perspectives for impedance-based sensing technologies for non-invasive monitoring in tissue engineering...

  12. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design.

    Science.gov (United States)

    Cui, Haitao; Zhu, Wei; Nowicki, Margaret; Zhou, Xuan; Khademhosseini, Ali; Zhang, Lijie Grace

    2016-09-01

    A biphasic artificial vascularized bone construct with regional bioactive factors is presented using dual 3D bioprinting platform technique, thereby forming a large functional bone grafts with organized vascular networks. Biocompatible mussel-inspired chemistry and "thiol-ene" click reaction are used to regionally immobilize bioactive factors during construct fabrication for modulating or improving cellular events. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.

    Science.gov (United States)

    Izadifar, Zohreh; Chang, Tuanjie; Kulyk, William; Chen, Xiongbiao; Eames, B Frank

    2016-03-01

    Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted with primary cells from embryonic chick cartilage. During initial two-dimensional culture expansion of these primary cells, two morphologically and molecularly distinct cell populations ("rounded" and "fibroblastic") were isolated. The biological performance of each population was evaluated in 3D hybrid constructs separately. The cell viability, proliferation, and cartilage differentiation were observed at high levels in hybrid constructs of both cell populations, confirming the validity of these 3D bioprinting parameters for effective cartilage tissue engineering. Statistically significant performance variations were observed, however, between the rounded and fibroblastic cell populations. Molecular and morphological data support the notion that such performance differences may be attributed to the relative differentiation state of rounded versus fibroblastic cells (i.e., differentiated chondrocytes vs. chondroprogenitors, respectively), which is a relevant issue for cell-based tissue engineering strategies. Taken together, our study demonstrates that bioprinting 3D hybrid constructs of PCL and cell-impregnated alginate hydrogel is a promising approach for

  14. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, Krzysztof

    2012-01-01

    Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal...

  15. 3D overlapped grouping Ga for optimum 2D guillotine cutting stock problem

    Directory of Open Access Journals (Sweden)

    Maged R. Rostom

    2014-09-01

    Full Text Available The cutting stock problem (CSP is one of the significant optimization problems in operations research and has gained a lot of attention for increasing efficiency in industrial engineering, logistics and manufacturing. In this paper, new methodologies for optimally solving the cutting stock problem are presented. A modification is proposed to the existing heuristic methods with a hybrid new 3-D overlapped grouping Genetic Algorithm (GA for nesting of two-dimensional rectangular shapes. The objective is the minimization of the wastage of the sheet material which leads to maximizing material utilization and the minimization of the setup time. The model and its results are compared with real life case study from a steel workshop in a bus manufacturing factory. The effectiveness of the proposed approach is shown by comparing and shop testing of the optimized cutting schedules. The results reveal its superiority in terms of waste minimization comparing to the current cutting schedules. The whole procedure can be completed in a reasonable amount of time by the developed optimization program.

  16. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Silva, J.M.; Georgi, Nicole; Costa, R.; Sher, P.; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; Mano, J.F.

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and

  17. Molecular Gastronomy Meets 3D Printing: Layered Construction via Reverse Spherification

    DEFF Research Database (Denmark)

    D'Angelo, Greta; Hansen, Hans Nørgaard; Hart, A. John

    2016-01-01

    studies on the deposition precision are required to optimize the process of creating a full 3D geometry. This study shows that 3D printing via reverse spherification can bridge the gap between culinary art and AM technology, and enable new capabilities for creation of dining experiences. This is a step......The potential use of additive manufacturing (AM) techniques for processing of food can span from satisfaction of basic necessities to high-end cuisine and fine dining. The purpose of this study was to explore how AM, specifically extrusion-based layer-wise deposition, can be combined...... toward the digital design and manufacturing of unique edible objects with complex flavors, textures, and geometries....

  18. VITASCOPE: Extensible and Scalable 3D Visualization of Simulated Construction Operations

    OpenAIRE

    Kamat, Vineet Rajendra

    2003-01-01

    In the domain of operations design and analysis, the ability to see a 3D animation of processes that have been simulated allows for three very important things: 1) The developer of a simulation model can ascertain that there are no errors in the coding (Verification); 2) The experts, field personnel, and decision makers can discover differences between the way they understand the operation and the way the model developer understands it (Validation); and 3) A model can be communicated effectiv...

  19. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  20. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.

    Science.gov (United States)

    Yan, Zheng; Zhang, Fan; Wang, Jiechen; Liu, Fei; Guo, Xuelin; Nan, Kewang; Lin, Qing; Gao, Mingye; Xiao, Dongqing; Shi, Yan; Qiu, Yitao; Luan, Haiwen; Kim, Jung Hwan; Wang, Yiqi; Luo, Hongying; Han, Mengdi; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-04-25

    Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.

  1. Alkynes as a versatile platform for construction of chemical molecular complexity and realization of molecular 3D printing

    Science.gov (United States)

    Galkin, K. I.; Ananikov, V. P.

    2016-03-01

    The current level of scientific and technological development requires the formation of general tools and techniques. One of the most versatile technologies is 3D printing, which allows fast and efficient creation of materials and biological objects of desired shape and composition. Today, methods have been developed for 3D printing of macro- and nano-sized objects and for production of films and deposited materials with molecular precision but the most promising technology is printing at the molecular level (molecular 3D printing) for the purpose of direct construction of molecular complexity. This process is currently at the initial stage concerning selection of simple molecules to be used as building blocks possessing flexibility, availability and ease of modification. In this review, we examine the possible versatile synthons suitable for preparation of the main types of organic compounds using molecular 3D printing. The surveyed data strongly indicate that alkyne molecules may be used as a building material in a molecular 3D printer working on hydrocarbons. The bibliography includes 428 references.

  2. Construction of a 3D meso-structure and analysis of mechanical properties for deposit body medium

    Institute of Scientific and Technical Information of China (English)

    石崇; 陈凯华; 徐卫亚; 张海龙; 王海礼; 王盛年

    2015-01-01

    For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.

  3. Principal component analysis in construction of 3D human knee joint models using a statistical shape model method.

    Science.gov (United States)

    Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan

    2015-01-01

    The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the three-dimensional (3D) joint surface model has been reported in the literature. In this study, we constructed a SSM database using 152 human computed tomography (CT) knee joint models, including the femur, tibia and patella and analysed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 s using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus, it may have a broad application in computer-assisted knee surgeries that require 3D surface models of the knee.

  4. [Construction of 3D tissue-like structure using functional magnetite nanoparticles].

    Science.gov (United States)

    Ito, Akira; Honda, Hiroyuki; Kamihira, Masamichi

    2008-01-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Since these nanoparticles have unique magnetic features not present in other materials, they can be applied to special medical techniques. Magnetite cationic liposomes (MCLs), one group of the cationic magnetic particles, can be used as carriers to introduce magnetite nanoparticles into target cells since their positively charged surface interacts with the negatively charged cell surface. Magnetite nanoparticles conjugated with antibodies (antibody-conjugated magnetoliposomes, AMLs) are applicable to introduce magnetite nanoparticles specifically into target cells, even when target cells coexist with other kinds of cells. Since the cells labeled with magnetite nanoparticles could be manipulated using magnets, we applied this technique to tissue engineering and termed it ;magnetic force-based tissue engineering (Mag-TE)'. Both magnetic force and functionalized magnetite nanoparticles were used in a process of tissue engineering: construction of multilayered cell sheet-like structures and tubular structures. Thus, the applications of these functionalized magnetite nanoparticles with their unique features will further improve tissue engineering techniques.

  5. 3D construction and repair from welding and material science perspectives

    Science.gov (United States)

    Marya, Surendar; Hascoet, Jean-Yves

    2016-10-01

    Additive manufacturing, based on layer-by-layer deposition of a feedstock material from a 3D data, can be mechanistically associated to welding. With feedstock fusion based processes, both additive manufacturing and welding implement similar heat sources, feedstock materials and translation mechanisms. From material science perspectives, additive manufacturing can take clue from lessons learned by millennium old welding technology to rapidly advance in its quest to generate fit for service metallic parts. This paper illustrates material science highlights extracted from the fabrication of a 316 L air vent and the functional repair of a Monel K500 (UNS N0500) with Inconel 625.

  6. 4D reconstruction of the past: the image retrieval and 3D model construction pipeline

    Science.gov (United States)

    Hadjiprocopis, Andreas; Ioannides, Marinos; Wenzel, Konrad; Rothermel, Mathias; Johnsons, Paul S.; Fritsch, Dieter; Doulamis, Anastasios; Protopapadakis, Eftychios; Kyriakaki, Georgia; Makantasis, Kostas; Weinlinger, Guenther; Klein, Michael; Fellner, Dieter; Stork, Andre; Santos, Pedro

    2014-08-01

    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Our main goal is to enable historians, architects, archaeolo- gists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web. This paper aims to provide an update of our progress in designing and imple- menting a pipeline for searching, filtering and retrieving photographs from Open Access Image Repositories and social media sites and using these images to build accurate 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EU- ROPEANA. We provide details of how our implemented software searches and retrieves images of archaeological sites from Flickr and Picasa repositories as well as strategies on how to filter the results, on two levels; a) based on their built-in metadata including geo-location information and b) based on image processing and clustering techniques. We also describe our implementation of a Structure from Motion pipeline designed for producing 3D models using the large collection of 2D input images (>1000) retrieved from Internet Repositories.

  7. Development and characterization of 3D, nano-confined multicellular constructs for advanced biohybrid devices.

    Energy Technology Data Exchange (ETDEWEB)

    Kaehr, Bryan James

    2011-09-01

    This is the final report for the President Harry S. Truman Fellowship in National Security Science and Engineering (LDRD project 130813) awarded to Dr. Bryan Kaehr from 2008-2011. Biological chemistries, cells, and integrated systems (e.g., organisms, ecologies, etc.) offer important lessons for the design of synthetic strategies and materials. The desire to both understand and ultimately improve upon biological processes has been a driving force for considerable scientific efforts worldwide. However, to impart the useful properties of biological systems into modern devices and materials requires new ideas and technologies. The research herein addresses aspects of these issues through the development of (1) a rapid-prototyping methodology to build 3D bio-interfaces and catalytic architectures, (2) a quantitative method to measure cell/material mechanical interactions in situ and at the microscale, and (3) a breakthrough approach to generate functional biocomposites from bacteria and cultured cells.

  8. Dense 3D Map Construction for Indoor Search and Rescue

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Huang, Shoudong; Miró, Jaime Valls

    2007-01-01

    The main contribution of this paper is a new simultaneous localization and mapping  SLAM algorithm for building dense three-dimensional maps using information ac- quired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challen...... invariant feature transformation SIFT feature detection and matching, random sampling consensus RANSAC , and least square 3D point sets ?tting. Experimental results are provided to demonstrate the effectiveness of the techniques developed.......The main contribution of this paper is a new simultaneous localization and mapping  SLAM algorithm for building dense three-dimensional maps using information ac- quired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challenge...

  9. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh; Li, Tingwen; Sun, Xin; Sundaresan, Sankaran

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functional differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.

  10. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    Science.gov (United States)

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-07-02

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.

  11. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.

    Science.gov (United States)

    Levato, Riccardo; Visser, Jetze; Planell, Josep A; Engel, Elisabeth; Malda, Jos; Mateos-Timoneda, Miguel A

    2014-09-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the underlying subchondral bone. Challenges in fabricating functional grafts of clinically relevant size include the incorporation of cues to guide specific cell differentiation and the generation of sufficient cells, which is hard to obtain with conventional cell culture techniques. A novel strategy to address these demands is to combine bioprinting with microcarrier technology. This technology allows for the extensive expansion of cells, while they form multi-cellular aggregates, and their phenotype can be controlled. In this work, living constructs were fabricated via bioprinting of cell-laden microcarriers. Mesenchymal stromal cell (MSC)-laden polylactic acid microcarriers, obtained via static culture or spinner flask expansion, were encapsulated in gelatin methacrylamide-gellan gum bioinks, and the printability of the composite material was studied. This bioprinting approach allowed for the fabrication of constructs with high cell concentration and viability. Microcarrier encapsulation improved the compressive modulus of the hydrogel constructs, facilitated cell adhesion, and supported osteogenic differentiation and bone matrix deposition by MSCs. Bilayered osteochondral models were fabricated using microcarrier-laden bioink for the bone compartment. These findings underscore the potential of this new microcarrier-based biofabrication approach for bone and osteochondral constructs.

  12. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.

    Science.gov (United States)

    Shi, Pujiang; Laude, Augustinus; Yeong, Wai Yee

    2017-04-01

    In this article, mouse fibroblast cells (L929) were seeded on 2%, 5%, and 10% alginate hydrogels, and they were also bio-printed with 2%, 5%, and 10% alginate solutions individually to form constructs. The elastic and viscous moduli of alginate solutions, their interior structure and stiffness, interactions of cells and alginate, cell viability, migration and morphology were investigated by rheometer, MTT assay, scanning electron microscope (SEM), and fluorescent microscopy. The three types of bio-printed scaffolds of distinctive stiffness were prepared, and the seeded cells showed robust viability either on the alginate hydrogel surfaces or in the 3D bio-printed constructs. Majority of the proliferated cells in the 3D bio-printed constructs weakly attached to the surrounding alginate matrix. The concentration of alginate solution and hydrogel stiffness influenced cell migration and morphology, moreover the cells formed spheroids in the bio-printed 10% alginate hydrogel construct. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1009-1018, 2017.

  13. Automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners and RFID sensors.

    Science.gov (United States)

    Valero, Enrique; Adan, Antonio; Cerrada, Carlos

    2012-01-01

    This paper is focused on the automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners with the help of RFID technologies. This is an innovative approach, in whose field scarce publications exist. The general strategy consists of carrying out a selective and sequential segmentation from the cloud of points by means of different algorithms which depend on the information that the RFID tags provide. The identification of basic elements of the scene, such as walls, floor, ceiling, windows, doors, tables, chairs and cabinets, and the positioning of their corresponding models can then be calculated. The fusion of both technologies thus allows a simplified 3D semantic indoor model to be obtained. This method has been tested in real scenes under difficult clutter and occlusion conditions, and has yielded promising results.

  14. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.

    NARCIS (Netherlands)

    Levato, Riccardo; Visser, Jetze; Planell, Josep a; Engel, Elisabeth; Malda, Jos; Mateos-Timoneda, Miguel a

    2014-01-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the und

  15. Layer Construction of 3D Topological States and String Braiding Statistics

    Directory of Open Access Journals (Sweden)

    Chao-Ming Jian

    2014-12-01

    Full Text Available While the topological order in two dimensions has been studied extensively since the discovery of the integer and fractional quantum Hall systems, topological states in three spatial dimensions are much less understood. In this paper, we propose a general formalism for constructing a large class of three-dimensional topological states by stacking layers of 2D topological states and introducing coupling between them. Using this construction, different types of topological states can be obtained, including those with only surface topological order and no bulk topological quasiparticles, and those with topological order both in the bulk and at the surface. For both classes of states, we study its generic properties and present several explicit examples. As an interesting consequence of this construction, we obtain example systems with nontrivial braiding statistics between string excitations. In addition to studying the string-string braiding in the example system, we propose a topological field-theory description for the layer-constructed systems, which captures not only the string-particle braiding statistics but also the string-string braiding statistics when the coupling is twisted. Last, we provide a proof of a general identity for Abelian string statistics and discuss an example system with non-Abelian strings.

  16. Design and Validation of Equiaxial Mechanical Strain Platform, EQUicycler, for 3D Tissue Engineered Constructs.

    Science.gov (United States)

    Elsaadany, Mostafa; Harris, Matthew; Yildirim-Ayan, Eda

    2017-01-01

    It is crucial to replicate the micromechanical milieu of native tissues to achieve efficacious tissue engineering and regenerative therapy. In this study, we introduced an innovative loading platform, EQUicycler, that utilizes a simple, yet effective, and well-controlled mechanism to apply physiologically relevant homogenous mechanical equiaxial strain on three-dimensional cell-embedded tissue scaffolds. The design of EQUicycler ensured elimination of gripping effects through the use of biologically compatible silicone posts for direct transfer of the mechanical load to the scaffolds. Finite Element Modeling (FEM) was created to understand and to quantify how much applied global strain was transferred from the loading mechanism to the tissue constructs. In vitro studies were conducted on various cell lines associated with tissues exposed to equiaxial mechanical loading in their native environment. In vitro results demonstrated that EQUicycler was effective in maintaining and promoting the viability of different musculoskeletal cell lines and upregulating early differentiation of osteoprogenitor cells. By utilizing EQUicycler, collagen fibers of the constructs were actively remodeled. Residing cells within the collagen construct elongated and aligned with strain direction upon mechanical loading. EQUicycler can provide an efficient and cost-effective tool to conduct mechanistic studies for tissue engineered constructs designed for tissue systems under mechanical loading in vivo.

  17. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications.

    Science.gov (United States)

    Rees, Adam; Powell, Lydia C; Chinga-Carrasco, Gary; Gethin, David T; Syverud, Kristin; Hill, Katja E; Thomas, David W

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.

  18. Design of a 3D aligned myocardial tissue construct from biodegradable polyesters.

    Science.gov (United States)

    Kenar, H; Kose, G T; Hasirci, V

    2010-03-01

    The heart does not regenerate new functional tissue when myocardium dies following coronary artery occlusion, or if it is defective. Ventricular restoration involves excising the infarct and replacing it with a cardiac patch to restore the heart to a more healthy condition. The goal of this study was to design and develop a clinically applicable myocardial patch to replace myocardial infarcts and improve long-term heart function. A basic design composed of 3D microfibrous mats that house mesenchymal stem cells (MSCs) was developed from human umbilical cord matrix (Wharton's Jelly) cells aligned in parallel to each other mimicking the native myocardium. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(L-D,L-lactic acid) (P(L-D,L)LA) and poly(glycerol sebacate) (PGS) were blended and electrospun into aligned fiber mats with fiber diameter ranging between 1.10 and 1.25 microm. The micron-sized parallel fibers of the polymer blend were effective in cell alignment and cells have penetrated deep within the mat through the fiber interstices, occupying the whole structure; 8-9 cell layers were obtained. Biodegradable macroporous tubings were introduced to serve as nutrient delivery route. It was possible to create a thick myocardial patch with structure similar to the native tissue and with a capability to grow.

  19. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Adam Rees

    2015-01-01

    Full Text Available Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.

  20. 2D→3D polycatenated and 3D→3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    Energy Technology Data Exchange (ETDEWEB)

    Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2014-02-15

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D→3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of

  1. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    Science.gov (United States)

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  2. Novel Compound-Forming Technology Using Bioprinting and Electrospinning for Patterning a 3D Scaffold Construct with Multiscale Channels

    Directory of Open Access Journals (Sweden)

    Yuanshao Sun

    2016-12-01

    Full Text Available One of the biggest challenges for tissue engineering is to efficiently provide oxygen and nutrients to cells on a three-dimensional (3D engineered scaffold structure. Thus, achieving sufficient vascularization of the structure is a critical problem in tissue engineering. This facilitates the need to develop novel methods to enhance vascularization. Use of patterned hydrogel structures with multiscale channels can be used to achieve the required vascularization. Patterned structures need to be biocompatible and biodegradable. In this study, gelatin was used as the main part of a hydrogel to prepare a biological structure with 3D multiscale channels using bioprinting combined with selection of suitable materials and electrostatic spinning. Human umbilical vein endothelial cells (HUVECs were then used to confirm efficacy of the structure, inferred from cell viability on different engineered construct designs. HUVECs were seeded on the surface of channels and cultured in vitro. HUVECs showed high viability and diffusion within the construct. This method can be used as a practical platform for the fabrication of engineered construct for vascularization.

  3. How Perceived Distractor Distance Influences Reference Production : Effects of Perceptual Grouping in 2D and 3D Scenes

    NARCIS (Netherlands)

    Koolen, R.M.F.; Houben, E.; Huntjens, J.; Krahmer, E.J.; Bello, Paul; Guarini, Marcello; McShane, Marjorie; Scassellati, Brian

    2014-01-01

    This study explored two factors that might have an impact on how participants perceive distance between objects in a visual scene: perceptual grouping and presentation mode (2D versus 3D). More specifically, we examined how these factors affect language production, asking if they cause speakers to i

  4. 2D→3D polycatenated and 3D→3D interpenetrated metal-organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    Science.gov (United States)

    Erer, Hakan; Yeşilel, Okan Zafer; Arıcı, Mürsel; Keskin, Seda; Büyükgüngör, Orhan

    2014-02-01

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H2tdc) in the presence of Zn(II) and Cd(II) salts in H2O produced three new metal-organic frameworks, namely, [Zn(μ-tdc)(H2O)(μ-dib)]n (1), [Cd(μ-tdc)(H2O)(μ-dib)]n (2), and {[Cd2(μ3-tdc)2(μ-dimb)2]·(H2O)}n(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 66. Molecular simulations were used to assess the potentials of the complexes for H2 storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature.

  5. Almost simple groups with socle 3D4(q) act on finite linear spaces

    Institute of Scientific and Technical Information of China (English)

    LIU; Weijun; DAI; Shaojun

    2006-01-01

    After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is usually easy by the theorem of Delandtsheer and Doyen.The primitive ones are now subdivided,according to the O'Nan-Scotte theorem and some further work by Camina,into the socles which are an elementary abelian or non-abelian simple.In this paper,we consider the latter.Namely,T ≤ G ≤ Aut(T) and G acts line-transitively on finite linear spaces,where T is a non-abelian simple.We obtain some useful lemmas.In particular,we prove that when T is isomorphic to 3D4(q),then T is line-transitive,where q is a power of the prime p.

  6. Construction and tests of demonstrator modules for a 3-D axial PET system for brain or small animal imaging

    CERN Document Server

    Chesi, E; Clinthorne, N; Pauss, P; Meddi, F; Beltrame, P; Kagan, H; Braem, A; Casella, C; Djambazov, G; Smith, S; Johnson, I; Lustermann, W; Weilhammer, P; Nessi-Tedaldi, F; Dissertori, G; Renker, D; Schneider, T; Schinzel, D; Honscheid, K; De Leo, R; Bolle, E; Fanti, V; Rafecas, M; Cochran, E; Rudge, A; Stapnes, S; Huh, S; Seguinot, J; Solevi, P; Joram, C; Oliver, J F

    2011-01-01

    The design and construction of a PET camera module with high sensitivity, full 3-D spatial reconstruction and very good energy resolution is presented. The basic principle consists of an axial arrangement of long scintillation crystals around the Field Of View (FOV), providing a measurement of the transverse coordinates of the interacting 511 keV gamma ray. On top of each layer of crystals, an array of Wave-Length Shifter (WLS) strips, which collect the light leaving the crystals sideways, is positioned orthogonal to the crystal direction. The signals in the WLS strips allow a precise measurement of the z (axial) co-ordinate of the 511 keV gamma-ray gamma impact. The construction of two modules used for demonstration of the concept is described. First preliminary results on spatial and energy resolution from one full module will be shown. (C) 2010 Elsevier B.V. All rights reserved.

  7. WE-D-18A-05: Construction of Realistic Liver Phantoms From Patient Images and a Commercial 3D Printer

    Energy Technology Data Exchange (ETDEWEB)

    Leng, S; Vrieze, T; Kuhlmann, J; Yu, L; Matsumoto, J; Morris, J; McCollough, C [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    Purpose: To assess image quality and radiation dose reduction in abdominal CT imaging, physical phantoms having realistic background textures and lesions are highly desirable. The purpose of this work was to construct a liver phantom with realistic background and lesions using patient CT images and a 3D printer. Methods: Patient CT images containing liver lesions were segmented into liver tissue, contrast-enhanced vessels, and liver lesions using commercial software (Mimics, Materialise, Belgium). Stereolithography (STL) files of each segmented object were created and imported to a 3D printer (Object350 Connex, Stratasys, MN). After test scans were performed to map the eight available printing materials into CT numbers, printing materials were assigned to each object and a physical liver phantom printed. The printed phantom was scanned on a clinical CT scanner and resulting images were compared with the original patient CT images. Results: The eight available materials used to print the liver phantom had CT number ranging from 62 to 117 HU. In scans of the liver phantom, the liver lesions and veins represented in the STL files were all visible. Although the absolute value of the CT number in the background liver material (approx. 85 HU) was higher than in patients (approx. 40 HU), the difference in CT numbers between lesions and background were representative of the low contrast values needed for optimization tasks. Future work will investigate materials with contrast sufficient to emulate contrast-enhanced arteries. Conclusion: Realistic liver phantoms can be constructed from patient CT images using a commercial 3D printer. This technique may provide phantoms able to determine the effect of radiation dose reduction and noise reduction techniques on the ability to detect subtle liver lesions in the context of realistic background textures.

  8. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy

    Science.gov (United States)

    Tan, Yu Jun; Tan, Xipeng; Yeong, Wai Yee; Tor, Shu Beng

    2016-01-01

    A hybrid 3D bioprinting approach using porous microscaffolds and extrusion-based printing method is presented. Bioink constitutes of cell-laden poly(D,L-lactic-co-glycolic acid) (PLGA) porous microspheres with thin encapsulation of agarose-collagen composite hydrogel (AC hydrogel). Highly porous microspheres enable cells to adhere and proliferate before printing. Meanwhile, AC hydrogel allows a smooth delivery of cell-laden microspheres (CLMs), with immediate gelation of construct upon printing on cold build platform. Collagen fibrils were formed in the AC hydrogel during culture at body temperature, improving the cell affinity and spreading compared to pure agarose hydrogel. Cells were proven to proliferate in the bioink and the bioprinted construct. High cell viability up to 14 days was observed. The compressive strength of the bioink is more than 100 times superior to those of pure AC hydrogel. A potential alternative in tissue engineering of tissue replacements and biological models is made possible by combining the advantages of the conventional solid scaffolds with the new 3D bioprinting technology. PMID:27966623

  9. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Science.gov (United States)

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  10. Construction of realistic liver phantoms from patient images using 3D printer and its application in CT image quality assessment

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H.

    2015-03-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered back-projection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered back-projection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  11. Construction of Realistic Liver Phantoms from Patient Images using 3D Printer and Its Application in CT Image Quality Assessment.

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H

    2015-01-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered backprojection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered backprojection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  12. Coulomb branches for rank 2 gauge groups in 3d N=4 gauge theories

    CERN Document Server

    Hanany, Amihay

    2016-01-01

    The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.

  13. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Sperling, Marcus [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany)

    2016-08-02

    The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.

  14. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    Science.gov (United States)

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  15. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu; Ballard, David H; Bruno, Todd; Israel, Marissa R; Vemula, Harika; Meacham, J Mark; Mills, David K; Woodard, Pamela K; Weisman, Jeffery A

    2017-01-01

    3D printing has the potential to deliver personalized implants and devices for obstetric and gynecologic applications. The aim of this study is to engineer customizable and biodegradable 3D printed implant materials that can elute estrogen and/or progesterone. All 3D constructs were printed using polycaprolactone (PCL) biodegradable polymer laden with estrogen or progesterone and were subjected to hormone-release profile studies using ELISA kits. Material thermal properties were tested using thermogravimetric analysis and differential scanning calorimetry. The 3D printed constructs showed extended hormonal release over a one week period. Cytocompatibility and bioactivity were assessed using a luciferase assay. The hormone-laden 3D printed constructs demonstrated an increase in luciferase activity and without any deleterious effects. Thermal properties of the PCL and hormones showed degradation temperatures above that of the temperature used in the additive manufacturing process-suggesting that 3D printing can be achieved below the degradation temperatures of the hormones. Sample constructs in the shape of surgical meshes, subdermal rods, intrauterine devices and pessaries were designed and printed. 3D printing of estrogen and progesterone-eluting constructs was feasible in this proof of concept study. These custom designs have the potential to act as a form of personalized medicine for drug delivery and optimized fit based on patient-specific anatomy.

  16. 3D continuum phonon model for group-IV 2D materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Lew Yan Voon, Lok C.; Gandi, Appala Naidu

    2017-01-01

    . In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained......, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included....

  17. 3D finite element analysis on pile-soil interaction of passive pile group

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming-hua; LIU Dun-ping; ZHANG Ling; JIANG Chong

    2008-01-01

    The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and cousiderable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.

  18. Tribenzotriquinacenes bearing three peripheral or bridgehead urea groups stretched into the 3-D space

    Directory of Open Access Journals (Sweden)

    Dietmar Kuck

    2011-03-01

    Full Text Available The syntheses of tribenzotriquinacenes (TBTQ bearing three phenylurea groupings at either the arene periphery or at the benzhydrylic bridgeheads of the rigid, convex–concave, C3v-symmetrical molecular framework are reported. 1H NMR data point to supramolecular aggregation of these TBTQ derivatives in low-polarity solvents.

  19. 3D continuum phonon model for group-IV 2D materials

    KAUST Repository

    Willatzen, Morten

    2017-06-30

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included.

  20. A 3D analysis of the metal distribution in the compact group of galaxies HCG 31

    Science.gov (United States)

    Torres-Flores, Sergio; Mendes de Oliveira, Claudia; Alfaro-Cuello, Mayte; Rodrigo Carrasco, Eleazar; de Mello, Duilia; Amram, Philippe

    2015-02-01

    We present new Gemini/GMOS integral field unit observations of the central region of the merging compact group of galaxies HCG 31. Using this data set, we derive the oxygen abundances for the merging galaxies HCG 31A and HCG 31C. We found a smooth metallicity gradient between the nuclei of these galaxies, suggesting a mixing of metals between these objects. These results are confirmed by high-resolution Fabry-Perot data, from which we infer that gas is flowing between HCG 31A and HCG 31C.

  1. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging.

    Science.gov (United States)

    Gudur, Madhu Sudhan Reddy; Rao, Rameshwar R; Peterson, Alexis W; Caldwell, David J; Stegemann, Jan P; Deng, Cheri X

    2014-01-01

    Non-destructive monitoring of engineered tissues is needed for translation of these products from the lab to the clinic. In this study, non-invasive, high resolution spectral ultrasound imaging (SUSI) was used to monitor the differentiation of MC3T3 pre-osteoblasts seeded within collagen hydrogels. SUSI was used to measure the diameter, concentration and acoustic attenuation of scatterers within such constructs cultured in either control or osteogenic medium over 21 days. Conventional biochemical assays were used on parallel samples to determine DNA content and calcium deposition. Construct volume and morphology were accurately imaged using ultrasound. Cell diameter was estimated to be approximately 12.5-15.5 µm using SUSI, which corresponded well to measurements of fluorescently stained cells. The total number of cells per construct assessed by quantitation of DNA content decreased from 5.6±2.4×10(4) at day 1 to 0.9±0.2×10(4) at day 21. SUSI estimation of the equivalent number of acoustic scatters showed a similar decreasing trend, except at day 21 in the osteogenic samples, which showed a marked increase in both scatterer number and acoustic impedance, suggestive of mineral deposition by the differentiating MC3T3 cells. Estimation of calcium content by SUSI was 41.7±11.4 µg/ml, which agreed well with the biochemical measurement of 38.7±16.7 µg/ml. Color coded maps of parameter values were overlaid on B-mode images to show spatiotemporal changes in cell diameter and calcium deposition. This study demonstrates the use of non-destructive ultrasound imaging to provide quantitative information on the number and differentiated state of cells embedded within 3D engineered constructs, and therefore presents a valuable tool for longitudinal monitoring of engineered tissue development.

  2. Perceived Advantages of 3D Lessons in Constructive Learning for South African Student Teachers Encountering Learning Barriers

    Science.gov (United States)

    de Jager, Thelma

    2017-01-01

    Research shows that three-dimensional (3D)-animated lessons can contribute to student teachers' effective learning and comprehension, regardless of the learning barriers they experience. Student teachers majoring in the subject Life Sciences in General Subject Didactics viewed 3D images of the heart during lectures. The 3D images employed in the…

  3. Perceived Advantages of 3D Lessons in Constructive Learning for South African Student Teachers Encountering Learning Barriers

    Science.gov (United States)

    de Jager, Thelma

    2017-01-01

    Research shows that three-dimensional (3D)-animated lessons can contribute to student teachers' effective learning and comprehension, regardless of the learning barriers they experience. Student teachers majoring in the subject Life Sciences in General Subject Didactics viewed 3D images of the heart during lectures. The 3D images employed in the…

  4. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.

    Science.gov (United States)

    Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter

    2014-01-01

    In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed.

  5. Rational Design of Prevascularized Large 3D Tissue Constructs Using Computational Simulations and Biofabrication of Geometrically Controlled Microvessels.

    Science.gov (United States)

    Arrigoni, Chiara; Bongio, Matilde; Talò, Giuseppe; Bersini, Simone; Enomoto, Junko; Fukuda, Junji; Moretti, Matteo

    2016-07-01

    A major challenge in the development of clinically relevant 3D tissue constructs is the formation of vascular networks for oxygenation, nutrient supply, and waste removal. To this end, this study implements a multimodal approach for the promotion of vessel-like structures formation in stiff fibrin hydrogels. Computational simulations have been performed to identify the easiest microchanneled configuration assuring normoxic conditions throughout thick cylindrical hydrogels (8 mm height, 6 mm ∅), showing that in our configuration a minimum of three microchannels (600 μm ∅), placed in a non-planar disposition, is required. Using small hydrogel bricks with oxygen distribution equal to the microchanneled configuration, this study demonstrates that among different culture conditions, co-culture of mesenchymal and endothelial cells supplemented with ANG-1 and VEGF leads to the most developed vascular network. Microchanneled hydrogels have been then cultured in the same conditions both statically and in a bioreactor for 7 d. Unexpectedly, the combination between shear forces and normoxic conditions is unable to promote microvascular networks formation in three-channeled hydrogels. Differently, application of either shear forces or normoxic conditions alone results in microvessels outgrowth. These results suggest that to induce angiogenesis in engineered constructs, complex interactions between several biochemical and biophysical parameters have to be modulated.

  6. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    Science.gov (United States)

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. Copyright © 2013 John Wiley & Sons, Ltd.

  7. 3D tissue-engineered construct analysis via conventional high-resolution microcomputed tomography without X-ray contrast.

    Science.gov (United States)

    Voronov, Roman S; VanGordon, Samuel B; Shambaugh, Robert L; Papavassiliou, Dimitrios V; Sikavitsas, Vassilios I

    2013-05-01

    As the field of tissue engineering develops, researchers are faced with a large number of degrees of freedom regarding the choice of material, architecture, seeding, and culturing. To evaluate the effectiveness of a tissue-engineered strategy, histology is typically done by physically slicing and staining a construct (crude, time-consuming, and unreliable). However, due to recent advances in high-resolution biomedical imaging, microcomputed tomography (μCT) has arisen as a quick and effective way to evaluate samples, while preserving their structure in the original state. However, a major barrier for using μCT to do histology has been its inability to differentiate between materials with similar X-ray attenuation. Various contrasting strategies (hardware and chemical staining agents) have been proposed to address this problem, but at a cost of additional complexity and limited access. Instead, here we suggest a strategy for how virtual 3D histology in silico can be conducted using conventional μCT, and we provide an illustrative example from bone tissue engineering. The key to our methodology is an implementation of scaffold surface architecture that is ordered in relation to cells and tissue, in concert with straightforward image-processing techniques, to minimize the reliance on contrasting for material segmentation. In the case study reported, μCT was used to image and segment porous poly(lactic acid) nonwoven fiber mesh scaffolds that were seeded dynamically with mesenchymal stem cells and cultured to produce soft tissue and mineralized tissue in a flow perfusion bioreactor using an osteogenic medium. The methodology presented herein paves a new way for tissue engineers to identify and distinguish components of cell/tissue/scaffold constructs to easily and effectively evaluate the tissue-engineering strategies that generate them.

  8. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Science.gov (United States)

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  9. Dynamical History Of The Local Group In ΛCDM slowromancapii@ - Including External Perturbers In 3D

    Science.gov (United States)

    Banik, Indranil; Zhao, Hongsheng

    2017-01-01

    We attempt to fit the observed radial velocities (RVs) of ˜ 30 Local Group (LG) galaxies using a 3D dynamical model of it and its immediate environment within the context of the standard cosmological paradigm, ΛCDM. This extends and confirms the basic results of our previous axisymmetric investigation of the LG (MNRAS, 459, 2237). We find that there remains a tendency for observed RVs to exceed those predicted by our best-fitting model. The typical mismatch is slightly higher than in our 2D model, with a root mean square value of ˜ 50 km/s. Our main finding is that including the 3D distribution of massive perturbing dark matter halos is unlikely to help greatly with the high velocity galaxy problem. Nonetheless, the 2D and 3D results differ in several other ways such as which galaxies' RVs are most problematic and the preferred values of parameters common to both models. The anomalously high RVs of several LG dwarfs may be better explained if the Milky Way (MW) and Andromeda (M31) were once moving much faster than in our models. This would allow LG dwarfs to gain very high RVs via gravitational slingshot encounters with a massive fast-moving galaxy. Such a scenario is possible in some modified gravity theories, especially those which require the MW and M31 to have previously undergone a close flyby. In a ΛCDM context, however, this scenario is not feasible as the resulting dynamical friction would cause a rapid merger.

  10. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  11. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique.

    Science.gov (United States)

    Sher, Praveen; Oliveira, Sara M; Borges, João; Mano, João F

    2015-01-06

    In this work, three-dimensional (3D) self-sustaining, spiral-shaped constructs were produced through a combination of ionotropic gelation, to form cell-encapsulated alginate fibers, and a perfusion-based layer-by-layer (LbL) technique. Single fibers were assembled over cylindrical molds by reeling to form spiral shapes, both having different geometries and sizes. An uninterrupted nanometric multilayer coating produced by a perfusion-based LbL technique, using alginate and chitosan, generated stable 3D spiral-shaped macrostructures by gripping and affixing the threads together without using any crosslinking/binding agent. The chelation process altered the internal microenvironment of the 3D construct from the solid to the liquefied state while preserving the external geometry. L929 cell viability by MTS and dsDNA quantification favor liquefied 3D constructs more than non-liquefied ones. The proposed technique setup helps us to generate complex polyelectrolyte-based 3D constructs for tissue engineering applications and organ printing.

  12. FLT3 internal tandem duplication and FLT3-D835 mutation in 80 AML patients categorized into cytogenetic risk groups

    Directory of Open Access Journals (Sweden)

    Ewa Mały DEF

    2010-10-01

    Full Text Available Background:Acute myeloid leukemia (AML is a clonal disorder characterized by various genetic abnormalities and variable response to treatment. About 50�0of patients with AML have no cytogenetic aberrations, presenting normal karyotype, and are categorized in the intermediate risk group. In this group detection of FLT3 mutations move a patient from the intermediate to the adverse risk group.Material/Methods:Bone marrow from 80 AML patients was cultured to obtain chromosome slides and then karyotype. Simultaneously DNA was isolated from bone marrow and PCR reaction was conducted to test the FLT3 mutation status (ITD and D835. For statistical analysis Chi squared test was used.Results:From the group of 80 AML patients seven were classified as a favorable risk group and FLT3/ITD was found only in one of these patients (14.28� and FLT3/D835 in another one (14.28� Fifteen patients showed a complex karyotype with more than three aberrations or with any aberration known as a poor prognosis. Among the adverse group FLT3/ITD was detected in three patients (20�20and D835 mutation in two other patients (13.33� Among 58 patients with normal karyotype in GTG banding FLT3/ITD occurred in six cases (10.34�20and D835 mutation in two cases (3.45� No significant difference was found among these three risk groups regarding presence or absence of FLT3/ITD and FLT/D835.Discussion:Molecular characterization of mutations in several genes, such as FLT3, NPM1, MLL, CEBPA, in acute myeloid leukemia, especially in normal karyotype cases, could be another factor after cytogenetic analysis to stratify AML patients into different prognostic categories.

  13. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs

    OpenAIRE

    Jin Woo Jung; Jung-Seob Lee; Dong-Woo Cho

    2016-01-01

    Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the ...

  14. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  15. Current Status and Future Prospect of 3d Printing Technology in Construction%3D打印建筑技术的现状及展望

    Institute of Scientific and Technical Information of China (English)

    陈敬

    2015-01-01

    As a frontier and the origin of emerging technology, 3D printing technology has greatly changed the traditional production mode.3D printing construction technology is an important direction in the development of the construction industry.This paper summarizes the latest development of 3D printing construction technology at home and abroad, and points out the technical problems and research directions of 3D printing construction.%3D打印技术作为具有前沿性、先导性的新兴技术,极大改变了传统的生产制造方式,3D打印建筑技术是建筑行业发展的一个重要方向。本文综述了国内外3D打印建筑技术的最新进展,指出3D打印建筑存在的技术难题及研究方向。

  16. Bio-inks for 3D printing of Cartilage Implants : Tailoring gelMA and polyHPMA-lac-PEG hydrogels for the fabrication of spatially organized constructs

    NARCIS (Netherlands)

    Mouser, V.H.M.

    2017-01-01

    A promising approach to treat cartilage defects is the implantation of stratified cell-laden hydrogel implants that mimic native cartilage. To fabricate such constructs, three-dimensional (3D) bioprinting techniques are promising, as they allow accurate deposition of (cell-laden) biomaterials, the

  17. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs

    Science.gov (United States)

    Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo

    2016-02-01

    Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.

  18. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.

    Science.gov (United States)

    Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo

    2016-02-22

    Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.

  19. Pressure-Induced Oriented Attachment Growth of Large-Size Crystals for Constructing 3D Ordered Superstructures.

    Science.gov (United States)

    Wang, Jun; Lian, Gang; Si, Haibin; Wang, Qilong; Cui, Deliang; Wong, Ching-Ping

    2016-01-26

    Oriented attachment (OA), a nonclassical crystal growth mechanism, provides a powerful bottom-up approach to obtain ordered superstructures, which also demonstrate exciting charge transmission characteristic. However, there is little work observably pronouncing the achievement of 3D OA growth of crystallites with large size (e.g., submicrometer crystals). Here, we report that SnO2 3D ordered superstructures can be synthesized by means of a self-limited assembly assisted by OA in a designed high-pressure solvothermal system. The size of primary building blocks is 200-250 nm, which is significantly larger than that in previous results (normally pressure plays the key role in the formation of 3D configuration and fusion of adjacent crystals. Furthermore, this high-pressure strategy can be readily expanded to additional materials. We anticipate that the welded structures will constitute an ideal system with relevance to applications in optical responses, lithium ion battery, solar cells, and chemical sensing.

  20. 3D modelling and construction of a standard cross section of the Euganean Hydrothermal circuit - NE Italy

    Science.gov (United States)

    Pola, Marco; Zampieri, Dario; Fabbri, Paolo

    2010-05-01

    software uses 2D model sections, therefore the standard cross section will be useful as starting point for the hydrothermal model and to test its parameters sensitivity. The analysis of some available unpublished seismic lines, located few kilometres to the southeast of the EGF, has permitted to construct a 3D model of the subsurface, performed by gOcad. In the north-western part, including the EGF, the main constraint is given by the stratigraphies of deep wells penetrating the bedrock for few kilometres. Therefore, this work confirms the idea that the outflow of the thermal waters, in the area near the Euganei Hills, is caused by the local extensional regime related to the strike-slip kinematics of the Schio - Vicenza fault system.

  1. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  2. The combined use of Building Information Modelling (BIM) and Unmanned Aerial Vehicle (UAV) technologies for the 3D illustration of the progress of works in infrastructure construction projects

    Science.gov (United States)

    Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos

    2016-08-01

    Building Information Modelling (BIM) technology is already part of the construction industry and is considered by professionals as a very useful tool for all phases of a construction project. BIM technology, with the particularly useful 3D illustrations which it provides, can be used to illustrate and monitor the progress of works effectively through the entire lifetime of the project. Unmanned Aerial Vehicles (UAVs) have undergone significant advances in equipment capabilities and now have the capacity to acquire high resolution imagery from different angles in a cost effective and efficient manner. By using photogrammetry, characteristics such as distances, areas, volumes, elevations, object sizes, and object shape can be determined within overlapping areas. This paper explores the combined use of BIM and UAV technologies in order to achieve efficient and accurate as-built data collection and 3D illustrations of the works progress during an infrastructure construction project.

  3. From 2D to 3D: Construction of a 3D Parametric Model for Detection of Dental Roots Shape and Position from a Panoramic Radiograph—A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Laura Mazzotta

    2013-01-01

    Full Text Available Objectives. To build a 3D parametric model to detect shape and volume of dental roots, from a panoramic radiograph (PAN of the patient. Materials and Methods. A PAN and a cone beam computed tomography (CBCT of a patient were acquired. For each tooth, various parameters were considered (coronal and root lengths and widths: these were measured from the CBCT and from the PAN. Measures were compared to evaluate the accuracy level of PAN measurements. By using a CAD software, parametric models of an incisor and of a molar were constructed employing B-spline curves and free-form surfaces. PAN measures of teeth 2.1 and 3.6 were assigned to the parametric models; the same two teeth were segmented from CBCT. The two models were superimposed to assess the accuracy of the parametric model. Results. PAN measures resulted to be accurate and comparable with all other measurements. From model superimposition the maximum error resulted was 1.1 mm on the incisor crown and 2 mm on the molar furcation. Conclusion. This study shows that it is possible to build a 3D parametric model starting from 2D information with a clinically valid accuracy level. This can ultimately lead to a crown-root movement simulation.

  4. Geocadabra Construction Box: A dynamic geometry interface within a 3D visualization teaching-learning trajectory for elementary learners

    Directory of Open Access Journals (Sweden)

    Jacqueline Sack

    2013-07-01

    Full Text Available This study focuses on the integration of a 3-D dynamic geometry interface to enhance the 3-D visualization capacity of 8-9-year-old children who attend an after-school program. Each year, all third grade children, who attend a dual-language urban elementary school, are invited to participate, typically beginning with 20-25 participants. The program runs for one hour per week for the duration of the academic year. The research team (a university researcher and one or more classroom teachers uses design research principles (Cobb, et al., 2003 to develop and refine teaching-learning trajectories for the program. They use socially mediated instructional strategies, constantly challenging learners to find multiple solutions and explanations to a wide variety ofspatial problems. Learners work with figures made from wooden cubes, 2-D pictures that resemble these figures, and with iconic representations (such as top-view numeric or top, side and front plane views that do not directly resemble the figures. Through the integration of Geocadabra (Lecluse, 2005, the 3-D dynamic digital interface, learners move easily among the different representations and then can mentally abstract properties of these figures. They were able to visualize and accurately enumerate cubes of a complex 2-D conventional picture, but were also able to determine multiple solutions for given sets of front, side and top view diagrams, which do not always correlate with only one 3-D solution. With the current curricular focus on predominantly symbolic numeration, systematic integration of visualization, even as a representation tool for number work, into the elementary curriculum is problematic.

  5. Interactive Classification of Construction Materials: Feedback Driven Framework for Annotation and Analysis of 3d Point Clouds

    Science.gov (United States)

    Hess, M. R.; Petrovic, V.; Kuester, F.

    2017-08-01

    Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.

  6. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    Science.gov (United States)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  7. 3D打印技术公共服务平台建设探讨%Analysis on 3D Printing Public Service Platform Construction

    Institute of Scientific and Technical Information of China (English)

    范强贤

    2015-01-01

    3D printing as emerging technology of rapid prototyping, is now becomeing a current rapid development of science and technology.With the further development of intelligent manufacturing mature ,new information technology , control technology,material technology has been widely used in the field of manufacturing,3D printing will also be pushed to a higher level. This paper discusses the meaning of 3D printing public Service Platform construction ,3D printing public service platform construction orientation, goal and operation are discussed in this paper.%3D打印技术作为快速成型的新兴技术,目前正成为迅猛发展的科技潮流。随着智能制造的进一步发展成熟,新的信息技术、控制技术、材料技术等不断被广泛应用到制造领域,3D打印技术也将被推向更高的层面。文章论述了连云港市建设3D打印公共服务平台的意义,并对3D打印公共服务平台建设定位、目标、运行进行了探讨。

  8. Psychological wellness constructs: relationships and group differences

    OpenAIRE

    Liezl Gropp; Dirk Geldenhuys; Deléne Visser

    2007-01-01

    The objective of the study was to examine the relationships between several constructs that were hypothesised to be components underlying psychological wellness and to establish whether there were differences between managerial and non-managerial groups or between Black and White groups in respect of the wellness variables. The Personal Orientation Inventory (POI), Locus of Control Inventory (LOC), Sense of Coherence Scale (SOC), and the Bar-On EQ-I were administered to a random sample of 20...

  9. Psychological wellness constructs: Relationships and group differences.

    OpenAIRE

    2007-01-01

    The objective of the study was to examine the relationships between several constructs that were hypothesised to be components underlying psychological wellness and to establish whether there were differences between managerial and non-managerial groups or between Black and White groups in respect of the wellness variables. The Personal Orientation Inventory (POI), Locus of Control Inventory (LOC), Sense of Coherence Scale (SOC), and the Bar-On EQ-I were administered to a random sample of 200...

  10. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV Digital Images

    Directory of Open Access Journals (Sweden)

    Zarnowski Aleksander

    2015-12-01

    Full Text Available Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV. Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition.

  11. Research on the feasibility of moon base construction by 3d printing technology%3D打印月球基地可行性研究

    Institute of Scientific and Technical Information of China (English)

    宋靖华; 鲍明

    2015-01-01

    3D打印技术具有直接打印任意形状的建筑物和复杂结构体系的能力,在建筑界受到越来越多的关注.3D打印技术将惰性材料打印为建筑物,极大提高了建构太空空间可能.本文通过实验手段,验证了在月球恶劣的环境下,利用3D打印技术和月球土壤建设月球基地的可能性.%3D printing technology can construct arbitrary shape structure or complex structure system directly , which makes it draw more and more atention. 3 d printing is to print inert materials for building, and it greatly improve the possibility of the space construction. In this paper, experimental method was introduced , which was verified under the harsh environment of the moon, using 3 d printing technology and the possibility of lunar soil construction base on the moon.

  12. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  13. Psychological wellness constructs: relationships and group differences

    Directory of Open Access Journals (Sweden)

    Liezl Gropp

    2007-03-01

    Full Text Available The objective of the study was to examine the relationships between several constructs that were hypothesised to be components underlying psychological wellness and to establish whether there were differences between managerial and non-managerial groups or between Black and White groups in respect of the wellness variables. The Personal Orientation Inventory (POI, Locus of Control Inventory (LOC, Sense of Coherence Scale (SOC, and the Bar-On EQ-I were administered to a random sample of 200 employees of a financial services company. Statistically significant differences were found between the groups on several of the wellness variables with the manager and White groups obtaining higher scores on these variables than their comparison groups. However, in respect of External Locus of Control, the non-manager and Black groups obtained the higher scores. Factor analytic results demonstrated that the wellness variables clustered in two correlated factors (r = 0,43 labeled psychological wellness and self-actualisation.

  14. Construction and histological analysis of a 3D human arterial wall model containing vasa vasorum using a layer-by-layer technique.

    Science.gov (United States)

    Shima, Fumiaki; Narita, Hirokazu; Hiura, Ayami; Shimoda, Hiroshi; Akashi, Mitsuru

    2017-03-01

    There is considerable global demand for three-dimensional (3D) functional tissues which mimic our native organs and tissues for use as in vitro drug screening systems and in regenerative medicine. In particular, there has been an increasing number of patients who suffer from arterial diseases such as arteriosclerosis. As such, in vitro 3D arterial wall models that can evaluate the effects of novel medicines and a novel artificial graft for the treatment are required. In our previous study, we reported the rapid construction of 3D tissues by employing a layer-by-layer (LbL) technique and revealed their potential applications in the pharmaceutical fields and tissue engineering. In this study, we successfully constructed a 3D arterial wall model containing vasa vasorum by employing a LbL technique for the first time. The cells were coated with extracellular matrix nanofilms and seeded into a culture insert using a cell accumulation method. This model had a three-layered hierarchical structure: a fibroblast layer, a smooth muscle layer, and an endothelial layer, which resembled the native arterial wall. Our method could introduce vasa vasorum into a fibroblast layer in vitro and the 3D arterial wall model showed barrier function which was evaluated by immunostaining and transendothelial electrical resistance measurement. Furthermore, electron microscopy observations revealed that the vasa vasorum was composed of single-layered endothelial cells, and the endothelial tubes were surrounded by the basal lamina, which are known to promote maturation and stabilization in native blood capillaries. These models should be useful for tissue engineering, regenerative medicine, and pharmaceutical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 814-823, 2017.

  15. Pentafluorophenylammonium triflate (PFPAT catalyzed facile construction of substituted chromeno[2,3-d]pyrimidinone derivatives and their antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Majid Ghashang

    2014-03-01

    Full Text Available A new, simple thermally efficient and solvent-free condensation of 2-amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-ethylcarboxylate derivatives with coumarin-3-carboxylic acid employing pentafluorophenylammonium triflate (PFPAT as an inexpensive organocatalyst for the synthesis of a series of ethyl 4,5-dihydro 7-methyl-2-(2-oxo-2H-chromen-3-yl-4-oxo-5-aryl-3H-chromeno[2,3-d]pyrimidine-6-carboxylate derivatives is described. This method has the advantages of high yields, a cleaner reaction, simple methodology, short reaction times, easy workup, and greener conditions. All the compounds were evaluated for their in vitro antimicrobial activity against different bacterial and fungal strains.

  16. Novel 3-D Supramolecular Architectures Constructed from Zn2+ ions, Oxybis(4-benzoate) and Di(2-pyridyl)amine Ligands

    Institute of Scientific and Technical Information of China (English)

    TANG Long; LI Dong-Sheng; FU Feng; WANG Ji-Jiang; HU Huai-Ming; WANG Yao-Yu

    2007-01-01

    Using the V-shaped oba dianions as bridging ligands and dpa molecules as terminal ligands, a new 1D helical coordination-polymeric chain, [Zn(oba)(dpa)]n [oba=oxybis(4-benzoate), dpa=di(2-pyridyl)amine], was synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, UV-Vis and IR spectra, and TGA analysis. X-ray structural analysis revealed that, oba and dpa ligands played an important role in the self-assembly of the helical chains by providing potential supramolecular recognition sites for π-π aromatic stacking and hydrogen-bond interactions, resulting in the self-assembly of the (4,4) networks to give a 3-D supramolecular framework.The photoluminescence properties of the title compound were also investigated, showing intense blue photoluminescence properties at room temperature.

  17. Construction of Difference Equations Using Lie Groups

    Energy Technology Data Exchange (ETDEWEB)

    Axford, R.A.

    1998-08-01

    The theory of prolongations of the generators of groups of point transformations to the grid point values of dependent variables and grid spacings is developed and applied to the construction of group invariant numerical algorithms. The concepts of invariant difference operators and generalized discrete sources are introduced for the discretization of systems of inhomogeneous differential equations and shown to produce exact difference equations. Invariant numerical flux functions are constructed from the general solutions of first order partial differential equations that come out of the evaluation of the Lie derivatives of conservation forms of difference schemes. It is demonstrated that invariant numerical flux functions with invariant flux or slope limiters can be determined to yield high resolution difference schemes. The introduction of an invariant flux or slope limiter can be done so as not to break the symmetry properties of a numerical flux-function.

  18. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  19. 基于Creator的城市高架三维模型的构建%Construction of Urban Elevated Road 3D Model Basde on Creator

    Institute of Scientific and Technical Information of China (English)

    王瑞青

    2012-01-01

    目前高架三维模型得到了越来越广泛的应用。基于Multigen Creator(以下简称Creator)构建高架三维模型高效、快捷,所构建的高架三维模型具有良好的真实感。本文简单介绍了利用Creator软件建立三维模型的优点,主要结合郑州市大石桥立交桥三维模型的构建,详细介绍了基于Creator城市高架三维模型的构建的准备工作及其流程。为了更好地说明如何构建,插入了一些附图,并列出了一些构建时的注意事项。%3D Modeling Viaduct of the City was more and more popularity at present.3D Modeling Viaduct of the City Based on Multigen Creator was efficient and rapid,it has good realistic.This article gives a simple introduction of advantages of 3D Modeling Viaduct of the City Based on Creator.The process of 3D Modeling Viaduct was introduced in detail points of attention were presented,combined with model of 3D viaduct of zhengzhou city large stone bridge.In order to explain how to construct,some accompanying diagrams were inserted,points for attention were listed out.

  20. 3D lanthanide metal-organic frameworks constructed from 2,6-naphthalenedicarboxylate ligand: synthesis, structure, luminescence and dye adsorption

    Science.gov (United States)

    Zhu, Yajing; Wang, Li; Chen, Xiaodong; Wang, Pengcheng; Fan, Yong; Zhang, Ping

    2017-07-01

    A series of novel isostructural 3D lanthanide metal-organic frameworks {[Ln2(NDC)3(H2O)4]·(DMF)4}n (Ln=Eu(1), Gd(2), Tb(3), Er(4), Yb(5), Dy(6), Y(7), Lu(8), H2NDC =2,6-Naphthalenedicarboxylic acid, DMF=N,N-dimethylformamide) with a rhombic channel along the b axis and high thermal stabilities, have been successfully synthesized under solvothermal conditions. The network can be described as 2, 4, 5-connected net with Schäfli symbol of (42.62.82)2(42.63.85)2(6). Luminescent studies illustrate that 1, 2, 7 and 8 exhibit strong luminescent emitting of the corresponding Ln(III) centers in the visible range, while 5 shows near-infrared range (NIR) luminescence. Further studies of 1 and 2A (activated product of 2) show that 1 displays good stability in different solvents and excellent fluorescence sensing for organic solvent small molecules and 2A ([Gd2(NDC)3(H2O)4]n) exhibits good adsorption capacity for organic dyes in water, especially for crystal violet.

  1. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Arca, Turkan; Genever, Paul [Department of Biology, University of York, York, YO10 5DD (United Kingdom); Proffitt, Joanne, E-mail: paul.genever@york.ac.uk [TSL Centre of Biologics, Covidien, Allerton Bywater, Castleford, WF10 2DB (United Kingdom)

    2011-04-15

    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  2. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking.

    Science.gov (United States)

    Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François

    2017-09-01

    Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Constructing Weyl group multiple Dirichlet series

    Science.gov (United States)

    Chinta, Gautam; Gunnells, Paul E.

    2010-01-01

    Let Phi be a reduced root system of rank r . A Weyl group multiple Dirichlet series for Phi is a Dirichlet series in r complex variables s_1,dots,s_r , initially converging for {Re}(s_i) sufficiently large, that has meromorphic continuation to {{C}}^r and satisfies functional equations under the transformations of {{C}}^r corresponding to the Weyl group of Phi . A heuristic definition of such a series was given by Brubaker, Bump, Chinta, Friedberg, and Hoffstein, and they have been investigated in certain special cases by others. In this paper we generalize results by Chinta and Gunnells to construct Weyl group multiple Dirichlet series by a uniform method and show in all cases that they have the expected properties.

  4. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.

    Science.gov (United States)

    Pötter, Richard; Haie-Meder, Christine; Van Limbergen, Erik; Barillot, Isabelle; De Brabandere, Marisol; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm3; optional 5 and 10 cm3. Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm3. Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD2)-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from

  5. Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation

    Science.gov (United States)

    Berselli, Luigi C.; Spirito, Stefano

    2017-03-01

    In this paper we consider the Navier-Stokes equations supplemented with either the Dirichlet or vorticity-based Navier slip boundary conditions. We prove that weak solutions obtained as limits of solutions of the Navier-Stokes-Voigt model satisfy the local energy inequality, and we also prove certain regularity results for the pressure. Moreover, in the periodic setting we prove that if the parameters are chosen in an appropriate way, then we can construct suitable weak solutions through a Fourier-Galerkin finite-dimensional approximation in the space variables.

  6. Boresight calibration of construction misalignments for 3D scanners built with a 2D laser range finder rotating on its optical center.

    Science.gov (United States)

    Morales, Jesús; Martínez, Jorge L; Mandow, Anthony; Reina, Antonio J; Pequeño-Boter, Alejandro; García-Cerezo, Alfonso

    2014-10-24

    Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder.

  7. Constructing a starting 3D shear velocity model with sharp interfaces for SEM-based upper mantle tomography in North America

    Science.gov (United States)

    Calo, M.; Bodin, T.; Yuan, H.; Romanowicz, B. A.; Larmat, C. S.; Maceira, M.

    2013-12-01

    this work we propose instead to directly tackle the non-linearity of the inverse problem by using stochastic methods to construct a 3D starting model with a good estimate of the depths of the main layering interfaces. We present preliminary results of the construction of such a starting 3D model based on: (1) Regionalizing the study area to define provinces within which lateral variations are smooth; (2) Applying trans-dimensional stochastic inversion (Bodin et al., 2012) to obtain accurate 1D models in each province as well as the corresponding error distribution, constrained by receiver function and surface wave dispersion data as well as the previously constructed 3D model (name), and (3) connecting these models laterally using data-driven smoothing operators to obtain a starting 3D model with errors. References Bodin, T.,et al. 2012, Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301, doi:10.1029/2011JB008560. Yuan and Romanowicz, 2013, in revison. Yuan, H., et al. 2011, 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophysical Journal International, 184: 1237-1260. doi: 10.1111/j.1365-246X.2010.04901.x Yuan, H. & Romanowicz, B., 2010. Lithospheric layering in the North American Craton, Nature, 466, 1063-1068.

  8. 基于SURPAC的ANSYS三维复杂模型的构建方法%Construction of ANSYS 3D Complex Model Based on SURPAC Model

    Institute of Scientific and Technical Information of China (English)

    李启月; 郎秀权

    2014-01-01

    对大型数值分析软件FLAC3D、ANSYS进行了对比,发现ANSYS在对不规则模型进行网格划分方面优于FLAC3D ,并针对FLAC3D、ANSYS在建立不规则复杂模型时存在耗时耗力等问题,提出了基于SURPAC的ANSYS复杂模型的构建方法:采用JAVA语言编写了SURPAC⁃ANSYS接口程序,将SURPAC模型的点线面数据转换成ANSYS识别的数据格式,从而实现SURPAC模型到ANSYS模型的构建。最后,通过新城金矿V#矿体的工程实例,解决了SURPAC模型到ANSYS的转换以及模型难重构等问题。结果表明:此构建方法可行且高效。%After comparison of numerical analysis software FLAC3D with ANSYS, it was found that ANSYS is preferable than FLAC3D in mesh generation for an irregular model. As for the difficulty in the establishment of irregular and complex model with FLAC3D and SNSYS, it was proposed to build a complex model with ANSYS based on SURPAC model. With a SURPAC⁃ANSYS interface program in JAVA language, the data of points, lines and surfaces for the model in SURPAC were transferred into the data identified and used in the software ANSYS, resulting in a mode reconstruction in ANSYS. The orebody V# in Xincheng Gold Mine was taken as an example to testify such model construction method, verifying its effectiveness and feasibility.

  9. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  10. 3D Scanning technology for offshore purposes

    DEFF Research Database (Denmark)

    Christoffersen, Morten Thoft

    2005-01-01

    New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities......New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities...

  11. Application of 3 D Printing Technology in the Construction Industry Field%3D打印技术在建筑业领域的应用

    Institute of Scientific and Technical Information of China (English)

    李忠富; 何雨薇

    2015-01-01

    The method of literature review is adopted in this arcticle to introduce the concept of 3 D printing technolodge, as well as its history of the development domestic and overseas and its application status in the construction industry. The method of case analysis is used to summarize the four implementation processes of 3D printing buildings at home and abroad, furthermore, development ideas and proposals of popularizing the application of 3 D printing buildings in construction industry are put forward combined with the analysis of the strengths and weaknesses in application of 3 D printing buildings, finally it come to the conclusion that 3D printing buildings have feasibility and vast potential for future application in construction industry in our country and it has dramatic advantages compared with traditional construction methods. In addition, problems such as immature of techniques, under-investment and shortage of talents still exist in it’ s application, therefore, technologies and policies together with educational propaganda should be primarily developed as foundation.%为分析3D打印技术在建筑业领域的应用,并探索出适合在我国建筑业领域中推广3D打印技术的发展思路,采用文献调研方法,介绍了3D打印技术的概念、国内外发展历史以及3D打印技术在国内外建筑业领域中的应用现状。论文采用案例分析方法介绍了国内外4个3D打印建筑的实现过程,同时结合3D打印技术应用的优劣势分析,提出了在我国建筑业推广应用3D打印技术的发展思路与建议,最后得出结论:在我国建筑业领域推广应用3 D打印技术具有可行性和广阔前景,与传统建造方式相比该技术有很大优势;此外,3 D打印技术应用于我国建筑业领域仍存在技术不够成熟、投入不足、人才短缺等问题,需要在发展技术、政策、教育宣传等方面的基础上高效推广应用。

  12. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations; Uso do software VAP3D na construcao de fantomas antropomorficos patologicos para avaliacoes dosimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lindeval Fernandes de [Universidade Federal de Pernambuco (DEM/UFPE), Recife, PE (Brazil). Dept. de Engenharia Mecanica; Vieira, Jose Wilson [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, Recife, PE (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-10-26

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  13. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs.

    Science.gov (United States)

    Akkineni, Ashwini Rahul; Ahlfeld, Tilman; Lode, Anja; Gelinsky, Michael

    2016-10-07

    Three-dimensional extrusion of two different biomaterials in a core/shell (c/s) fashion has gained much interest in the last couple of years as it allows for fabricating constructs with novel and interesting properties. We now demonstrate that combining high concentrated (16.7 wt%) alginate hydrogels as shell material with low concentrated, soft biopolymer hydrogels as core leads to mechanically stable and robust 3D scaffolds. Alginate, chitosan, gellan gum, gelatin and collagen hydrogels were utilized successfully as core materials-hydrogels which are too soft for 3D plotting of open-porous structures without an additional mechanical support. The respective c/s scaffolds were characterized concerning their morphology, mechanical properties and swelling behavior. It could be shown that core as well as shell part can be loaded with growth factors and that the release depends on core composition and shell thickness. Neither the plotting process nor the crosslinking with 1M CaCl2 denatured the proteins. When core and shell were loaded with different growth factors (VEGF and BMP-2, respectively) a dual release was achieved. Finally, live human endothelial cells were integrated in the core material, demonstrating that this new strategy can be used for bioprinting purposes as well.

  14. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  15. The influence of ascorbic acid, TGF-beta1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs.

    Science.gov (United States)

    Kim, Peter D; Peyton, Shelly R; VanStrien, Amy J; Putnam, Andrew J

    2009-08-01

    Two-dimensional cell culture studies have shown that matrix rigidity can influence cell function, but little is known about how matrix physical properties, and their changes with time, influence cell function in 3-D. Biosynthetic hydrogels based on PEGylated fibrinogen permit the initial decoupling of matrix chemical and mechanical properties, and are thus potentially attractive for addressing this question. However, the mechanical stability of these gels due to passive hydrolysis and cell-mediated remodeling has not previously been addressed. Here, we show that the bulk mechanical properties of acellular PEG-fibrinogen hydrogels significantly decrease over time in PBS regardless of matrix cross-linking density in 7 days. To compensate, smooth muscle cells (SMCs) were encapsulated and stimulated to produce their own matrix using ascorbic acid or TGF-beta1. Ascorbic acid treatment improved the mechanical properties of the constructs after 14 days in less cross-linked matrices, but TGF-beta1 did not. The increase in matrix modulus of the constructs was not due to an increase in type I collagen deposition, which remained low and pericellular regardless of cross-link density or the soluble factor applied. Instead, ascorbic acid, but not TGF-beta1, preferentially enhanced the contractile SMC phenotype in the less cross-linked gels. Inhibition of contractility reduced cell spreading and the expression of contractile markers, and eliminated any beneficial increase in matrix modulus induced by cell-generated contraction of the gels. Together, these data show that PEG-fibrinogen hydrogels are susceptible to both hydrolysis and proteolysis, and suggest that some soluble factors may stimulate matrix remodeling by modulating SMC phenotype instead of inducing ECM synthesis in a 3-D matrix.

  16. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Science.gov (United States)

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi

    2014-01-01

    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045

  17. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Directory of Open Access Journals (Sweden)

    Zhuoshi Wang

    2014-04-01

    Full Text Available In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide (PEO with a degree of polymerization (DP of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC, thermal polarized optical microscopy (POM and X-ray diffraction (XRD reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7 self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies.

  18. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain.

    Science.gov (United States)

    Heher, Philipp; Maleiner, Babette; Prüller, Johanna; Teuschl, Andreas Herbert; Kollmitzer, Josef; Monforte, Xavier; Wolbank, Susanne; Redl, Heinz; Rünzler, Dominik; Fuchs, Christiane

    2015-09-01

    The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the

  19. Dosimetric evaluation of a commercial 3D treatment planning system using the AAPM Task Group 23 test package.

    Science.gov (United States)

    Casanova Borca, Valeria; Pasquino, Massimo; Bresciani, Sara; Catuzzo, Paola; Ozzello, Franca; Tofani, Santi

    2005-03-01

    The accuracy of the dose calculation algorithm is one of the most critical steps in assessing the radiotherapy treatment to achieve the 5% accuracy in dose delivery, which represents the suggested limit to increase the complication-free local control of tumor. We have used the AAPM Task Group 23 (TG-23) test package for clinical photon external beam therapy to evaluate the accuracy of the new version of the PLATO TPS algorithm. The comparison between tabulated values and calculated ones has been performed for 266 and 297 dose values for the 4 and 18 MV photon beams, respectively. Dose deviations less than 2% were found in the 98.5%- and 90.6% analyzed dose points for the two considered energies, respectively. Larger deviations were obtained for both energies, in large dose gradients, such as the build-up region or near the field edges and blocks. As far as the radiological field width is concerned, 64 points were analyzed for both the energies: 53 points (83%) and 64 points (100%) were within +/-2 millimeters for the 4 and 18 MV photon beams, respectively. The results show the good accuracy of the algorithm either in simple geometry beam conditions or in complex ones, in homogeneous medium, and in the presence of inhomogeneities, for low and high energy beams. Our results fit well the data reported by several authors related to the calculation accuracy of different treatment planning systems (TPSs) (within a mean value of 0.7% and 1.2% for 4 and 18 MV respectively). The TG-23 test package can be considered a powerful instrument to evaluate dose calculation accuracy, and as such may play an important role in a quality assurance program related to the commissioning of a new TPS.

  20. In situ synthesized 3D metal-organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: a family of insensitive energetic materials.

    Science.gov (United States)

    Xu, Yuangang; Liu, Wei; Li, Dongxue; Chen, Houhe; Lu, Ming

    2017-08-22

    The combination of the hydrothermal method with in situ synthesis has been successfully employed to prepare a family of tetrazole-based energetic metal-organic frameworks (EMOFs) ([Ag(Mtta)]n, 1; [Cd5(Mtta)9]n, 2; [Pb3(bta)2(O)2(H2O)]n, 3; and [Pb(tztr)2(H2O)]n, 4) through [2 + 3] cycloaddition of azide anions and nitrile groups. All the synthesized EMOFs were characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis (EA), different scanning calorimetry (DSC), and thermogravimetry (TG). Both complexes 1 and 4 consist of reticular two-dimensional (2D) layers that are linked by π-π overlap interactions between the ligands in neighbouring layers to form 3D supramolecular structures. In contrast, complexes 2 and 3 are 3D frameworks. The in situ formation of ligands bta and tztr has been described for the first time. Remarkably, thermogravimetric measurements demonstrated that the EMOFs 1-4 possess excellent thermostabilities with high decomposition temperatures up to 354, 389, and 372 °C for 1, 2, and 4, respectively. Sensitivity tests revealed that all the EMOFs are extremely insensitive.

  1. Construction of complete generalized algebraic groups

    Institute of Scientific and Technical Information of China (English)

    WANG; Dengyin

    2005-01-01

    With one exception, the holomorph of a finite dimensional abelian connectedalgebraic group is shown to be a complete generalized algebraic group. This result on algebraic group is an analogy to that on Lie algebra.

  2. Post-mastectomy radiotherapy in Denmark: From 2D to 3D treatment planning guidelines of The Danish Breast Cancer Cooperative Group

    DEFF Research Database (Denmark)

    Thomsen, Mette Skovhus; Berg, Martin; Nielsen, Hanne M.;

    2008-01-01

    with PWT. The dose to the internal mammary nodes (IMN) was not satisfactory for five of the seven patients for 3F, whereas only two of the seven patients had a minimum dose lower than 95% of the prescribed dose with PWT. Finally, the dose to the contralateral breast was increased when using PWT compared...... to 3F. It was concluded that PWT was an appropriate choice of technique for future radiation treatment of post-mastectomy patients. A working group was formed and guidelines for 3D planning were developed during a series of workshops where radiation oncologists and physicists from all radiotherapy...

  3. 基于规则的Web3D森林模型的轻量化构建%Rule-based Web3D forest lightweight construction.

    Institute of Scientific and Technical Information of China (English)

    戴唯艺; 杨阳; 贾金原

    2012-01-01

    Tree modeling and simulation has always been a challenging research topic in WebVR due to its complex structure and a great amount of data. Especially nowadays with the expansion of 3D virtual scene in web, the contradiction is more prominent between the real-time downloading request of mass virtual forest from client and the limiting network bandwidth. This paper proposes a rule-based method which can help to construct lightweight Web3D forest. This method is based on L-system' s self-similarity and the reuse thinking in WebVR. It can change tree/forest model files to lightweight Web3D files successfully, even only a few kB size. The virtual scene is also suitable for online real-time transmission and browsing in low web bandwidth environment. To a certain extent, the bottleneck problem is solved.%树木的建模仿真因其结构十分复杂数据量巨大一直以来都是WebVR领域中极具挑战的研究课题.尤其是目前随着网上三维虚拟场景的急剧扩张,海量WebVR虚拟森林场景在用户端的实时下载请求和有限网络带宽之间的矛盾亦变得日趋突出.提出了基于L-system的Web3D虚拟树木语森林的轻量化建模方法,基于树木L-System描述体系的自相似性和基于重用的WebVR轻量化建模思想,成功地将虚拟树木/森林场景转化为极为轻量化的Web3D文件,甚至只有十几kB大小,即便网络带宽很低的情况下,也非常适于网上的实时传输与漫游,在一定程度上解决了该瓶颈问题.

  4. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  5. Constructing Risky Target Groups among Normal Citizens

    DEFF Research Database (Denmark)

    Møller, Marie Østergaard; Harrits, Gitte Sommer

    Studies on social construction of target populations show how stereotypes and social categories transfer with experts, politicians and lawmakers from everyday life to the political system as ‘common sense knowledge’ about social problems and preferences for political categories. Here such categor......Studies on social construction of target populations show how stereotypes and social categories transfer with experts, politicians and lawmakers from everyday life to the political system as ‘common sense knowledge’ about social problems and preferences for political categories. Here...

  6. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  7. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  8. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  9. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  10. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  11. Reproducible Construction of Surface Tension-Mediated Honeycomb Concave Microwell Arrays for Engineering of 3D Microtissues with Minimal Cell Loss.

    Science.gov (United States)

    Lee, GeonHui; Lee, JaeSeo; Oh, HyunJik; Lee, SangHoon

    2016-01-01

    The creation of engineered 3D microtissues has attracted prodigious interest because of the fact that this microtissue structure is able to mimic in vivo environments. Such microtissues can be applied extensively in the fields of regenerative medicine and tissue engineering, as well as in drug and toxicity screening. Here, we develop a novel method of fabricating a large number of dense honeycomb concave microwells via surface tension-mediated self-construction. More specifically, in order to control the curvature and shape of the concavity in a precise and reproducible manner, a custom-made jig system was designed and fabricated. By applying a pre-set force using the jig system, the shape of the honeycomb concave well was precisely and uniformly controlled, despite the fact that wells were densely packed. The thin wall between the honeycomb wells enables the minimization of cell loss during the cell-seeding process. To evaluate the performance of the honeycomb microwell array, rat hepatocytes were seeded, and spheroids were successfully formed with uniform shape and size. Liver-specific functions such as albumin secretion and cytochrome P450 were subsequently analyzed. The proposed method of fabricating honeycomb concave wells is cost-effective, simple, and reproducible. The honeycomb well array can produce multiple spheroids with minimal cell loss, and can lead to significant contributions in tissue engineering and organ regeneration.

  12. Periprocedural 3D imaging of the left atrium and esophagus: comparison of different protocols of 3D rotational angiography of the left atrium and esophagus in group of 547 consecutive patients undergoing catheter ablation of the complex atrial arrhythmias.

    Science.gov (United States)

    Starek, Zdenek; Lehar, František; Jez, Jiri; Wolf, Jiri; Kulik, Tomas; Zbankova, Alena; Novak, Miroslav

    2016-07-01

    A new method in creating 3D models of the left atrium (LA) and esophagus before catheter ablation of atrial arrhythmias is 3D rotational angiography (3DRA) of the LA. The purpose of this retrospective study was to test various acquisition protocols of the 3DRA and attempt to define the parameters influencing the success of the protocols. From August 2010 to November 2014, 3DRA of the LA using the Philips Allura FD 10 X-ray system was performed in 547 consecutive patients using right atrial and left atrial protocols. Visualization of the esophagus was performed after oral administration of a contrast agent. Patients were monitored for success (creation of a useful 3D models) and evaluated for a number of parameters affecting the success of 3DRA. The success of the RA protocol was 88.89 % with and 91.91 % without esophagus imaging. The success of the LA protocol was 97.42 % with and 94.54 % without esophagus imaging. The only factor reducing the success of the RA protocol was BMI; the LA protocol was not influenced by any factor. Ventricular fibrillation induced in two patients was successfully treated with defibrillation. 3DRA of the LA is a reliable method that supports catheter ablation of complex atrial arrhythmias. The LA protocol with esophagus imaging was significantly more reliable than the RA protocol; the other protocols were comparable. The RA protocol may be negatively affected by high BMI. Simultaneous imaging of the esophagus is safe and feasible, and the LA protocol can be recommended.

  13. Research and Application Review of the Digital Construction Technology of 3 D Printing for Construction%建筑3D打印数字建造技术研究应用综述

    Institute of Scientific and Technical Information of China (English)

    丁烈云; 徐捷; 覃亚伟

    2015-01-01

    3D打印技术起源于20世纪80年代末,也称为“增材制造”或“快速原型”技术。21世纪以来,随着3D打印技术的引入,数字建造成为了建筑领域数字化发展的趋势。本文对国内外现有建筑3D打印技术相关研究及应用情况进行了分析,依据使用材料和打印工艺将目前主要建筑3D打印技术归纳为三类:基于混凝土分层喷挤叠加的增材建造方法、基于砂石粉末分层粘合叠加的增材建造方法和大型机械臂驱动的材料三维构造建造方法。文章对未来建筑3D打印的研究方向提出了若干展望,包括材料理论及新材料研发、机械设备及工艺改良、软硬件协同和智能化控制研究、3D打印构件及结构力学性能研究、技术适用性及工作模式研究、技术标准体系研究、社会经济效益评价研究等方面。%3D Printing was originated in the late 1980s, which is called Additive Manufacturing or Rapid Prototyping. With the introduction of 3D printing technology, digital construction has become the digital development trend of the construction field since the 21st century. This paper reviews the research and applications of 3D printing technologies for construction at home and abroad, and summarizes the current main technologies as three types according to the material and process:additive construction based on concrete layered overlay, additive construction based on sand powder layered adhesive stack and material structure construction by mechanical arm. Finally, several future research orientations are proposed, including material development, machinery and process improvement, intelligent control and cooperation of software and hardware, mechanical property of component and structure, technical applicability and mode, technical criterion system and social economic evaluation etc.

  14. Mental Constructions for The Group Isomorphism Theorem

    Directory of Open Access Journals (Sweden)

    Arturo Mena-Lorca

    2016-03-01

    Full Text Available The group isomorphism theorem is an important subject in any abstract algebra undergraduate course; nevertheless, research shows that it is seldom understood by students. We use APOS theory and propose a genetic decomposition that separates it into two statements: the first one for sets and the second with added structure. We administered a questionnaire to students from top Chilean universities and selected some of these students for interviews to gather information about the viability of our genetic decomposition. The students interviewed were divided in two groups based on their familiarity with equivalence relations and partitions. Students who were able to draw on their intuition of partitions were able to reconstruct the group theorem from the set theorem, while those who stayed on the purely algebraic side could not. Since our approach to learning this theorem was successful, it may be worthwhile to gather data while teaching it the way we propose here in order to check how much the learning of the group isomorphism theorem is improved. This approach could be expanded to other group homomorphism theorems provided further analysis is conducted: going from the general (e.g., sets to the particular (e.g., groups might not always the best strategy, but in some cases we may just be turning to more familiar settings.

  15. 3D Digital Legos for Teaching Security Protocols

    Science.gov (United States)

    Yu, Li; Harrison, L.; Lu, Aidong; Li, Zhiwei; Wang, Weichao

    2011-01-01

    We have designed and developed a 3D digital Lego system as an education tool for teaching security protocols effectively in Information Assurance courses (Lego is a trademark of the LEGO Group. Here, we use it only to represent the pieces of a construction set.). Our approach applies the pedagogical methods learned from toy construction sets by…

  16. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    Science.gov (United States)

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  17. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  18. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  19. Fabrication of viable centimeter-sized 3D tissue constructs with microchannel conduits for improved tissue properties through assembly of cell-laden microbeads.

    Science.gov (United States)

    Luo, Houyong; Chen, Maiqin; Wang, Xiu; Mei, Yang; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2014-06-01

    Bottom-up approaches have emerged as a new philosophy in tissue engineering, enabling precise control over tissue morphogenesis at the cellular level. We previously prepared large bone-like tissues using cell-laden microbeads (microtissues) by following a modular approach to ensure cell viability. However, a long-term culture of such avascular macroscopic tissues (macrotissues) has not been evaluated. In the present study, microtissues were fabricated by cultivating human fibroblasts on Cytopore-2 microbeads in spinner flasks for 16 days. We then examined the long-term perfusion culture for macrotissues. Specifically, following assembly in a perfusion chamber for 15 days, cell death was found to be prominent at a depth of 500 µm from the surface of macrotissues towards the interior, suggesting that there was a new mass transfer limit leading to cell death instead of tissue maturation. Subsequently, we developed a strategy by incorporating microchannel structures in centimeter-sized tissue constructs to promote mass transport. By installing glass rods (1 mm diameter, 1 mm wall-to-wall spacing) in the perfusion chamber, stable microchannel architectures were introduced during the microtissue assembly process. Based on live/dead assay and scanning electron microscopy (SEM), these channelled macrotissues (length × diameter, 1.6 × 2.0 cm) demonstrated high cell viability and compact packing of microbeads. Comparative biochemical analysis further suggested a more homogeneous spatial distribution of cells and extracellular matrix (ECM) in the channelled macrotissues than in solid ones. Viable 3D large tissues can therefore be prepared by assembling cell-laden microbeads in conjunction with microchannel carving, meeting clinical needs in tissue repair.

  20. A Novel 3D Supramolecular Network Constructed from [Cu(4,4'-bipyridine)(O2CMe)2]2 Molecular Ladders by Hydrogen Bonding

    Institute of Scientific and Technical Information of China (English)

    YANG E; WANG Xiao-Qin; QIN Ye-Yan

    2006-01-01

    The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2](H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474(5), b = 11.7566(2), c = 19.5380(6) (A), β = 92.930(2)°, V = 3084.84(16) (A)3, Z = 4, Cu2C28N4O9H30, Mr = 693.64, Dc = 1.494 g/cm3, F(000) = 1424 and μ(MoKa) = 1.436 mm-1. With the use of 2062 observed reflections (Ⅰ>2σ(Ⅰ)), the structure was refined to R = 0.0769 and wR = 0.2154. In complex 1, the dimeric copper acetate units are linked through 4,4'-bipyridine to yield 1D molecular ladders. These ladders are connected via O-H···O hydrogen bonds to generate 2D layers, which are further linked through C-H···O hydrogen bonds to give a 3D supramolecular network.

  1. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  2. Gateway技术构建转基因重组质粒pRP.EX3d-EF1A-LRP16-His-IRES-eGFP%Application of gateway technology in construction of recombinant transgenic vector pRP. EX3d-EF1A-LRP16-His-IRES-eGFP

    Institute of Scientific and Technical Information of China (English)

    柏苗苗; 王春萌; 伍志强; 梅倩; 李小雷; 李祥; 赵亚力; 韩为东

    2014-01-01

    Objective To lay the foundation for establishing transgenic mice by constructing recombinant transgenic vector pRP. EX3d-EF1A-LRP16-His-IRES-eGFP. Methods The attB1- LRP16-His-attB2 was amplified by overlap PCR. The LRP16 gene was cloned into pDown vector via BP reaction and transmitted into pRP.EX3d vector via LR reaction with pDown-LRP16-His, pUp-EF1A, pTail-IRES-eGFP and PRP. Des3d. The recombinant plasmid was transformed into Stbl3 cells and screened using the ampicillin (AMP) resistance gene. Positive clones were confirmed by PCR and DNA sequencing, respectively. Results Sequencing and restriction endonuclease showed that the recombinant vector pRP.EX3d-EF1A-LRP16-His-IRES-eGFP was successfully constructed. Conclusion The successfully constructed recombinant vector pRP.EX3d-EF1A-LRP16-His-IRES-eGFP can be used in establishing LRP16 transgenic mice.%目的:构建转基因重组质粒pRP.EX3d-EF1A-LRP16-His-IRES-eGFP,为转基因鼠的建立奠定基础。方法利用重叠PCR技术扩增attB1-LRP16-His-attB2,经BP反应,将LRP16基因插入到载体pDown上,pUp-EF1A、pDown-LRP16-His、pTail-IRES-eGFP和PRP.Des3d经LR反应,将LRP16转移到pRP.EX3d上,转化Stbl3细胞,用氨苄西林进行抗性筛选,经PCR鉴定后将阳性克隆送测序。结果测序及酶切结果验证获得正确的pRP.EX3d-EF1A-LRP16-His-IRES-eGFP重组质粒。结论成功构建pRP.EX3d-EF1A-LRP16-His-IRES-eGFP重组质粒,可用于下一步LRP16转基因小鼠的构建。

  3. Supplementation of Exogenous Adenosine 5′-Triphosphate Enhances Mechanical Properties of 3D Cell–Agarose Constructs for Cartilage Tissue Engineering

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr

    2013-01-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5′-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure–function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct. PMID:23651296

  4. Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Salanti, Ali; Jensen, Anja T R;

    2003-01-01

    and organization of the 3D7 PfEMP1 repertoire was investigated on the basis of the complete genome sequence. METHODS: Using two tree-building methods we analysed the coding and non-coding sequences of 3D7 var and rif genes as well as var genes of other parasite strains. RESULTS: var genes can be sub...

  5. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  6. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  7. Compact Lie groups: Euler constructions and generalized Dyson conjecture

    CERN Document Server

    Cacciatori, S L; Scotti, A

    2012-01-01

    In this paper we present a very general method to construct generalized Euler parameterizations for compact simple Lie groups w.r.t. maximally symmetrically embedded simple Lie groups. Our construction is based on a detailed analysis of the geometry of these groups, which moreover gives rise to an interesting connection with certain generalized Dyson integrals. In particular, we obtain a geometry based proof of the generalized Macdonald conjecture correspondent to the root systems associated to all irreducible symmetric spaces.

  8. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.

    Science.gov (United States)

    Shah, Furqan A; Omar, Omar; Suska, Felicia; Snis, Anders; Matic, Aleksandar; Emanuelsson, Lena; Norlindh, Birgitta; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora. Despite higher total bone-implant contact for Ti6Al4V (39±4%) than CoCr (27±4%), bone formation patterns were similar, e.g., densification around the implant, and gradual ingrowth into the porous network, with more bone in the outer half (periphery) than the inner half (centre). Raman spectroscopy revealed no major differences in mineral crystallinity, the apatite-to-collagen ratio, or the carbonate-to-phosphate ratio. Energy dispersive X-ray spectroscopy showed similar Ca/P ratio of the interfacial tissue adjacent to both materials. Osteocytes made direct contact with CoCr and Ti6Al4V. While osteocyte density and distribution in the new-formed bone were largely similar for the two alloys, higher osteocyte density was observed at the periphery of the porous network for CoCr, attributable to slower remodelling and a different biomechanical environment. The results demonstrate the possibility to achieve bone ingrowth into open-pore CoCr constructs, and attest to the potential for fabricating customised osseointegrated CoCr implants for load-bearing applications. Although cobalt chromium (CoCr) based alloys are used extensively in orthopaedic surgery, stress shielding due to the high stiffness of CoCr is of concern. To reduce the stiffness mismatch between CoCr and bone, CoCr and Ti6Al4V implants having

  9. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  10. GAP program for uniform constructions of some finite simple groups

    OpenAIRE

    Waki, Katsushi

    2007-01-01

    Let H be a finite group with an involution in Z(H). By the Brauer-Fowler theorem, there are only finitely many non-isomorphic simple groups which have H as a centralizer of the involution. We will explain our automatic GAP [7] program for Michler's algorithm [6] which constructs finite simple groups from this H.

  11. Construction of 3D V2O5/hydrogenated-WO3 nanotrees on tungsten foil for high-performance pseudocapacitors.

    Science.gov (United States)

    Wang, Fengmei; Li, Yuanchang; Cheng, Zhongzhou; Xu, Kai; Zhan, Xueying; Wang, Zhenxing; He, Jun

    2014-06-28

    3D semiconductor nanostructures have proved to be a rich system for the exploring of high-performance pseudocapacitors. Herein, a novel 3D WO3 nanotree on W foil is developed via a facile and green method. Both capacitance and conductivity of the WO3 nanotree electrode are greatly improved after hydrogenation treatment (denoted as H-WO3). First-principles calculation based on the experiments reveals the mechanism of the hydrogenation treatment effect on the 3D WO3 nanotrees. The surface O of 3D WO3 nanotrees gains electrons from the adsorbed H, and consequently certain electrons are back-donated to the neighboring W, thus providing the conducting channel on the surface. Ultrathin V2O5 films were coated on the H-WO3 nanotrees via a simple, low-cost, environmentally friendly electrochemical technique. This V2O5/H-WO3 electrode exhibited a remarkable specific capacitance of 1101 F g(-1) and an energy density of 98 W h kg(-1). The solid-state device based on the V2O5/H-WO3 electrodes shows excellent stability and practical application. Our work opens up the potential broad application of hydrogenation treatment of semiconductor nanostructures in pseudocapacitors and other energy storage devices.

  12. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer

    NARCIS (Netherlands)

    Canters, R.A.M.; Lips, I.M.; Wendling, M.; Kusters, M.; Zeeland, M. van; Gerritsen, R.M.; Poortmans, P.; Verhoef, C.G.

    2016-01-01

    BACKGROUND AND PURPOSE: Creating an individualized tissue equivalent material build-up (i.e. bolus) for electron beam radiation therapy is complex and highly labour-intensive. We implemented a new clinical workflow in which 3D printing technology is used to create the bolus. MATERIAL AND METHODS: A

  13. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer

    NARCIS (Netherlands)

    Canters, R.A.M.; Lips, I.M.; Wendling, M.; Kusters, M.; Zeeland, M. van; Gerritsen, R.M.; Poortmans, P.; Verhoef, C.G.

    2016-01-01

    BACKGROUND AND PURPOSE: Creating an individualized tissue equivalent material build-up (i.e. bolus) for electron beam radiation therapy is complex and highly labour-intensive. We implemented a new clinical workflow in which 3D printing technology is used to create the bolus. MATERIAL AND METHODS: A

  14. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  15. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  16. [A study on the construction, expression and immunosterility of Lagurus laguru zona pellucida 3 DNA vaccine pVAX1-sig-LTB-lZP3-C3d3].

    Science.gov (United States)

    Li, Chen-Chen; Yu, Ji-Yun; Jiang, Min; Tu, Yi-Xian; Ma, Xiao-Lin; Zhang, Fu-Chun

    2011-09-01

    To enhance the immunocontraceptive effect of Lagurus lagurus zona pellucida 3 DNA vaccine, and to achieve the prospect of application through the pVAX1-sig-LTB-lZP3-C3d3 different immunity pathway. Two adjuvant molecules were constructed into the recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 as DNA vaccine which contains Escherichia coli heat-labile enterotoxin B subunit and the molecular adjuvant 3 copies of C3d. The results of RT-PCR and western blot showed that the DNA vaccine was expressed in mRNA and protein level. The female C57BL/6 mice were immunized by three ways: intramuscular injection, intranasal or oral route.Antibody levels and types were detected by ELISA. ELISA results showed that recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 immunization induced specific IgG, IgA levels were significantly different comparing with control (Psig-LTB-lZP3-C3d3 can induce the specific immune response efficiently and enhance the immunocontraceptive effects.

  17. 基于S3C6410的3D图像构建系统研究%Research on 3D Image Constructing System Based on S3C6410

    Institute of Scientific and Technical Information of China (English)

    吴迪

    2016-01-01

    本文提出了一种基于单摄像头的3D图像构建系统的解决方案。系统硬件以ARM11处理器S3C6410为数据处理核心,并配备CMOS图像采集单元和红外传感单元;以嵌入式Linux操作系统作为系统软/硬件管理调度和协调控制中心,并采用ARM11处理器自带的3D硬件加速器和OpenGL ES软件图形开发库相结合的方式实现3D加速,构建了3D快速建模系统。%In this paper, we propose a solution of 3D image constructing system based on single camera. We use ARM11 proces-sor S3C6410 as the core of data processing which equipped with CMOS image capture unit and infrared sensor unit. In addition, we use Linux operation system as the core of management and coordination control platform for this system. By a combination of using 3D hardware accelerator in ARM11 processor and the graphics development library of OpenGL ES software it realizes 3D acceleration and constructs a rapid 3D modeling system.

  18. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  19. Construction of 3D Digital Community Based on Virtual Reality Technique%基于虚拟现实技术的3维数字社区建设

    Institute of Scientific and Technical Information of China (English)

    王金平; 王克峰

    2012-01-01

    数字社区是虚拟现实技术与地理信息技术相结合的具体应用。文章结合3维数字社区建设的实例,探讨了基于虚拟实现技术的3维数字社区建设的具体方法和关键技术。%Digital community is a practical application of virtual reality technique combined with geographic information technique. This paper probes into the pivotal techniques and practical methods of constructing 3D digital community based on virtual reality utilizing 3D digital community construction as a practical example.

  20. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  1. Construction of the cervical vertebra 3D finite element model%全颈椎三维有限元模型的建立

    Institute of Scientific and Technical Information of China (English)

    周毅强; 张建新; 林蔚莘

    2014-01-01

    Objective: To establish 3D finite element model of the cervical vertebra. Methods:Volunteers’ cervical vertebras were observed by thin layer CT. Medical image processing software (Mimics 10.01), reverse engineering software (Geomagic Studio 10) and finite element software (MSC. Patran 2004) were applied to establish the finite element model. Results: 3D finite element model of the cervical vertebra was established, it comprised with 7 vertebral bones and 5 cervical intervertebral discs and related ligaments, including 44, 526 nodes and 248, 348 elements. Conclusion: 3D finite element model of the cervical vertebra was precise; it could be used to simulate biomechanical experiment.%目的:建立正常人的全颈椎三维有限元模型。方法:对正常男性志愿者进行颈椎薄层CT扫描,使用医学图像处理软件Mimics 10.01、逆向工程软件Geomagic Studio 10、有限元软件MSC.Patran 2004等软件联合建立有限元模型。结果:成功建立了正常人的全颈椎三维有限元模型,由7块椎骨、5个椎间盘及相关韧带组成,包含44526个节点,248348个单元。结论:所建立的颈椎三维有限元模型精度较高,可用于进行生物力学实验。

  2. Construct irreducible representations of quantum groups Uq(fm(K))

    Institute of Scientific and Technical Information of China (English)

    Xin TANG

    2008-01-01

    In this paper,we construct families of irreducible representations for a class of quantum groups Uq(fm(K)).First,we give a natural construction of irreducible weight representations for Uq(fm(K)) using methods in spectral theory developed by Rosenberg.Second,we study the Whittaker model for the center of Uq(fm(K)).As a result,the structure of Whittaker representations is determined,and all irreducible Whittaker representations are explicitly constructed.Finally,we prove that the annihilator of a Whittaker representation is centrally generated.

  3. 3D gait analysis of lower extremity muscle group power in healthy subjects and subacute stroke patients, and task-specific gait interventions in early stroke rehabilitation

    DEFF Research Database (Denmark)

    Brincks, John

    2010-01-01

    Denne ph.d. afhandling omhandler 3D ganganalyse af raske og apopleksipatienter. Formålet med afhandlingen var at estimere referenceværdier for power i et udvalg af underekstremitetens muskelgrupper, samt at estimere ændringer i muskelgruppers power, når ganghastigheden øges blandt raske og apople...

  4. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  5. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  6. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  7. Constructive membership testing in black-box classical groups

    CERN Document Server

    Ambrose, Sophie; Praeger, Cheryl E; Schneider, Csaba

    2010-01-01

    The research described in this note aims at solving the constructive membership problem for the class of quasisimple classical groups. Our algorithms are developed in the black-box group model; that is, they do not require specific characteristics of the representations in which the input groups are given. The elements of a black-box group are represented, not necessarily uniquely, as bit strings of uniform length. We assume the existence of oracles to compute the product of two elements, the inverse of an element, and to test if two strings represent the same element. Solving the constructive membership problem for a black-box group $G$ requires to write every element of $G$ as a word in a given generating set. In practice we write the elements of $G$ as straight-line programs (SLPs) which can be viewed as a compact way of writing words.

  8. [Re]constructing Finite Flavour Groups: Horizontal Symmetry Scans from the Bottom-Up

    CERN Document Server

    Talbert, Jim

    2014-01-01

    We present a novel procedure for identifying discrete, leptonic flavour symmetries, given a class of unitary mixing matrices. By creating explicit 3D representations for generators of residual symmetries in both the charged lepton and neutrino sector, we reconstruct large(r) non-abelian flavour groups using the GAP language for computational finite algebra. We use experimental data to construct only those generators that yield acceptable (or preferable) mixing patterns. Such an approach is advantageous because it 1) can reproduce known groups from other 'top-down' scans while elucidating their origins from residuals, 2) find new previously unconsidered groups, and 3) serve as a powerful model building tool for theorists wishing to explore exotic flavour scenarios. We test our procedure on a generalization of the canonical tri-bimaximal (TBM) form.

  9. Research on the Construction of 3-D Printing Innovation Space in University Library%高校图书馆3D打印创新空间搭建研究

    Institute of Scientific and Technical Information of China (English)

    袁媛; 沈敏

    2015-01-01

    This paper introduces in detail 3D printing technology of 3D printer, expounds the necessity of introducing 3D printer into university library from the aspects of promoting university’s teaching and scientific research,realizing readers’ popular science education, cultivating talents, improving teaching course system,and satisfying readers’ individualized and customized demands, etc., probes into the guarantee conditions for university library to introduce 3D printer from the aspect of economy,technology,safety and law, and according to the technical staff, service and management needed by 3d printing,constructs an innovation space for 3D printing.%简要介绍了3D打印机的打印技术,从推进学校的教学科研、实现读者的科普教育、培养人才和完善教学课程体系、满足读者的个性化定制需求等方面,阐述了高校图书馆引入3D打印机的必要性,从经济、技术、安全、法律等方面探讨了高校图书馆引入3D打印机的保障条件,根据3D打印所需人员、服务、管理等的需求,搭建了3D打印创新空间。

  10. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  11. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  12. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells

    Science.gov (United States)

    Guo, Weibo; Wang, Shu; Yu, Xin; Qiu, Jichuan; Li, Jianhua; Tang, Wei; Li, Zhou; Mou, Xiaoning; Liu, Hong; Wang, Zhonglin

    2016-01-01

    The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells.The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold

  13. Synthesis, crystal structure and photo luminescent property of a 3D metal-organic hybrid of Cd(II) constructed by two different bridging carboxylate

    Indian Academy of Sciences (India)

    Biswajit Bhattacharya; Rajdip Dey; Debajyoti Ghoshal

    2013-05-01

    A solvothermal reaction of cadmium (II) nitrate with succinic acid and isonicotinic acid creates a novel 3D metal-organic framework, [Cd3(isonicotinate)2(suc)2] (1). Single crystal X-ray structure determination reveals that complex 1 posses two crystallographically independent Cd(II) centres. The succinate anion acts here as a heptadented ligand and binds five Cd(II) centre simultaneously. The heptacoordinated Cd(II) centres are oxo-bridged by succinate moiety and the hexacoordinated metal centres are terminally connected through four different succinate moiety to make the overall 2D sheet arrangement. In unit cell, the ratio of hexadented Cd(II) and heptadented Cd(II) is 1:2. The new compound was also characterized by luminescence spectra and compared with the luminescence spectra of the pure isonicotinic acid.

  14. Novel metal-organic and supramolecular 3D frameworks constructed from flexible biphenyl-2,5,3‧-tricarboxylate blocks: Synthesis, structural features and properties

    Science.gov (United States)

    You, Ao; Li, Yu; Zhang, Ze-Min; Zou, Xun-Zhong; Gu, Jin-Zhong; Kirillov, Alexander M.; Chen, Jin-Wei; Chen, Yun-Bo

    2017-10-01

    Biphenyl-2,5,3‧-tricarboxylic acid (H3L) was selected as an unexplored tricarboxylate building block and applied for the hydrothermal synthesis of three novel coordination compounds, namely a 0D tetramer [Co4(HL)2(μ3-HL)2(phen)6(H2O)2]·3H2O (1) and two 3D metal-organic frameworks (MOFs) [Cd3(μ5-L)(μ6-L)(py)(μ-H2O)2(H2O)]n·H2O (2) and [Zn3(μ4-L)2(2,2‧-bpy)(μ-4,4‧-bpy)]n·2H2O (3). These products were easily generated in aqueous medium from the corresponding metal(II) chlorides, H3L, and various N-donor ancillary ligands, selected from 1,10-phenanthroline (phen), pyridine (py), 2,2‧-bipyridine (2,2‧-bpy), and 4,4‧-bipyridine (4,4‧-bpy). Compounds 1-3 were isolated as stable crystalline solids and were fully characterized by IR and UV-vis spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a discrete tetracobalt(II) structure, which is extended into a 3D H-bonded network with the pcu topology. In contrast, MOF 2 discloses a very complex trinodal 4,5,12-connected net with an undocumented topology, while MOF 3 features the nce/I topological framework. The magnetic (for 1) and luminescence (for 2 and 3) properties were also studied and discussed. The present study thus widens a still very limited family of metal-organic and supramolecular frameworks driven by flexible biphenyl-2,5,3‧-tricarboxylate building blocks.

  15. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  16. Group theoretical construction of planar noncommutative phase spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  17. On the construction of double group molecular symmetry functions

    NARCIS (Netherlands)

    Visscher, L

    1996-01-01

    A new procedure for constructing double group symmetry functions is presented. Using this method integrals over Hermitian operators can become real quantities, even though the integrand and the functions themselves are complex. This is especially of interest to 4-component relativistic methods that

  18. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  19. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  20. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  1. [Construction of age group vegetation index and preliminary application].

    Science.gov (United States)

    Xu, Zhang-hua; Li, Cong-hui; Liu, Jian; Yu, Kun-yong; Gong, Cong-hong; Tang, Meng-ya

    2014-06-01

    In the present paper, one remote sensing index-age group vegetation index (AGVI) was put forward, and its feasibility was verified. Taking 518 groups of pine forest age group data collected in 13 counties (cities) of Sanming, Jiangle, Shaxian, Nanping, Huaan, Yunxiao, Nanping, Anxi, Putian, Changting, Jianyang, Ningde and Fuqing, Fujian Province and HJ-1 CCD multi-spectral image at the same time-phase as the basis, the spectrum differences of blue, green, red, near infrared and NDVI of each age group were analyzed, showing the characteristics of young forest>middle-aged forest>over-mature forest>mature forest>near mature forest at near infrared band and mature forest>near mature forest>over-mature forest>young forest>middle-aged forest at NDVI, thus the age group vegetation index (AGVI) was constructed; the index could increase the absolute and relative spectrum differences among age groups. For the pine forest AGVI, cluster analysis was conducted with K-mean method, showing that the division accuracy of pine forest age group was 80.45%, and the accurate rate was 90.41%. Therefore, the effectiveness of age group vegetation index constructed was confirmed.

  2. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  3. Imaging a Sustainable Future in 3D

    Science.gov (United States)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  4. Aspects of defects in 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,Seoul 02447 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Romo, Mauricio; Yamazaki, Masahito [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-10-12

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A{sub N−1} on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T{sub N}[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T{sub N}[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  5. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  6. Luminescent properties of heterotrinuclear 3d-4f complexes constructed from a naphthalenediol-based acyclic bis(salamo)-type ligand

    Science.gov (United States)

    Dong, Wen-Kui; Zheng, Shan-Shan; Zhang, Jin-Tong; Zhang, Yang; Sun, Yin-Xia

    2017-09-01

    Heterotrinuclear 3d-4f complexes with a naphthalenediol-based acyclic bis(salamo)-type ligand have been synthesized and structurally characterized. Spectral titrations clearly show that the heterotrinuclear complexes [Zn2(L)La(OAc)3] (1), [Zn2(L)Ce(OAc)3] (2) and [Zn2(L)Dy(OAc)3(CH3OH)]·CH2Cl2 (3) are acquired by the substitution reaction of the obtained homotrinuclear Zn(II) complex with 1 equiv. of Ln(NO3)3 (Ln3 + = La3 +, Ce3 + and Dy3 +). Two Zn(II) ions are penta- and hexa-coordinated with geometries of distorted tetragonal pyramid and octahedron. La(III) ion is deca-coordinated, adopting a distorted bicapped square antiprism geometry. Ce(III) ion is nona-coordinated with geometry of distorted capped square antiprism as well as Dy(III) ion. The different coordination modes of acetate ions in complexes 1, 2 and 3 lead to different coordination numbers of the lanthanide(III) ions. Furthermore, the structures and fluorescence properties have been discussed.

  7. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  8. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  9. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  10. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  11. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  12. CD28嵌合抗体及与抗原分子的3D空间结构模建%Construction of 3D model of CD28 chimeric antibody with its antigen docked

    Institute of Scientific and Technical Information of China (English)

    程钢; 秦媛媛; 程迪; 陈曦; 张学光; 邱玉华

    2012-01-01

    AIM: To construct a 3D model of the chimeric antibodies (AntiCD28: ch-2F5) with corresponding antigen molecuie docked to theoretically verify the rationality of the binding of antibody with its antigen and to provide a method of 3D identification between antigen and antibody and spatial structure analysis. METHODS; We analyzed the sequence by submitting it to http://www. ncbi. nlm. nih. gov/ and made a comparison using integratly the 3 databases of Gen-Bank, Protein data bank and GENO-3D. The 3D model was constructed by Swiss-model homology modeling server and molecular docking online was performed by GRAMM-X Protein Docking Web Server. Chimeric heavy chain, light chain, heavy-light chain complex, heavy-light chain and antigen complex were displayed and photographed by the Chimera Software. Meanwhile, the spatial structures of heavy, light chains, variable region, constant region, CDR and frame area were marked by different colours respectively to exhibit the 3D structure on every side. RESULTS: The 3D structure of the heavy-light chain and antigen complex we constructed was consistent well with the theory of antigen binding to antibody molecules. CONCLUSON; The structure of the chimeric antibody we constructed with the bioinformatic method was in accordance with the general structure of antibody, and its antigen binding site was also consistent with the molecular theory. Thus, the model helps to analyze the 3D structure of antibody and antigen-antibody interaction.%目的:对1株嵌合抗体(antiCD28:ch-2F5)进行3D建模,并与其抗原分子进行对接,验证是否与抗原抗体结合理论相符,并提供一种抗原抗体及其识别的空间结构分析方法.方法:在http://www.ncbi.nlm.nih.gov网站提交序列进行分析,综合运用GenBank、Protein data bank、GENO-3D等数据库比对分析,用Swiss-model同源建模服务器模建,运用GRAMM-X Protein Docking Web Server在线进行对接,结果采用Chimera软件对嵌合抗体的重、轻链、

  13. On Constructing, Grouping and Using Topical Ontology for Semantic Matching

    Science.gov (United States)

    Tang, Yan; de Baer, Peter; Zhao, Gang; Meersman, Robert

    An ontology topic is used to group concepts from different contexts (or even from different domain ontologies). This paper presents a pattern-driven modeling methodology for constructing and grouping topics in an ontology (PAD-ON methodology), which is used for matching similarities between competences in the human resource management (HRM) domain. The methodology is supported by a tool called PAD-ON. This paper demonstrates our recent achievement in the work from the EC Prolix project. The paper approach is applied to the training processes at British Telecom as the test bed.

  14. Construction of 3-D electronic sand table system for flood control and ice-jam flood prevention in Ningxia%宁夏防汛防凌三维电子沙盘系统建设

    Institute of Scientific and Technical Information of China (English)

    黄国峰; 范希民; 刘媛媛

    2011-01-01

    本文介绍了宁夏防汛防凌三维电子沙盘系统建设背景和需求,并在系统分析宁夏防汛防凌工作的基础上,提出了该系统建设的框架体系和功能结构.在该系统建设中,利用地理信息系统、遥感、海量数据管理、数据库等技术建立了宁夏回族自治区三维空间数字地图,再现了全区的三维地形、地貌场景,在三维场景中实现了防洪防凌工程信息查询,汛情和凌情信息的实时监控与管理,为宁夏防汛防凌工作提供了一个三维的基础数字化平台.%The background and demand of the construction of the 3-D electronic sand table system for flood control and ice-jam flood prevention in Ningxia are introduced herein, and then the framework and the function of the system are put forward on the basis of the analysis systematically made on the flood control and ice-jam flood prevention in Ningxia. During the construction, the 3-D digital map of Ningxia Hui Autonomous Region is established with the techniques of GIS, remote sensing, mass data management, database, etc. , and then the 3-D landform and topographic features of the whole region are represented and the information inquiry, real-time monitoring and management of the relevant flood control and ice-jam flood prevention projects therein are realized within a 3-D scene; which can provide a 3-D fundamental digitized platform for the flood control and ice-jam flood prevention in Ningxia

  15. 网络环境下道路三维整体建模与简化方法%Integrated model construction and simplification methods for Web 3D road

    Institute of Scientific and Technical Information of China (English)

    蒲浩; 李伟; 赵海峰

    2013-01-01

    In order to realize the Web 3D visualization of road engineering, the key technologies such as the road integrated 3D model construction and simplification methods concerning constraints were studied. Based on the theory of constrained Delaunay triangulation, the road 3D model with integrated appearance and inner topological relationship was created. A half-edge collapse error metric concerning road constrained edges was proposed. Based on it, original road model was integrated and simplified by half-edge collapse and operating hierarchical tree was built to store operation records on the server The view-dependent strategy was put forward, in which the constrained edges were refined preferentially and simplified afterwards. Combined with the view-dependent reconstruction criterions, the transmission data for 3D visualization was substantially reduced and fast view-dependent reconstruction of the road 3D model was realized on the client. Given the benefits from above methods, a relevant system was developed out and applied to many highways Web-based construction management successfully.%为实现网络环境下道路工程的三维可视化,对其中的关键技术:顾及约束的整体模型构建及模型简化方法进行了研究.基于约束Delaunay三角网构建理论,建立了外形与内部拓扑关系均为整体的道路三维模型.提出了顾及道路约束边界的半边折叠误差度量方法,采用半边折叠操作,在服务器端对道路模型进行整体简化,并建立操作层次树存储操作记录;提出了约束边优先细化,延迟简化的视相关策略,结合视相关重构准则,减少网络可视化所需传输的数据量,在客户端实现了道路三维模型的快速重构.基于上述原理方法开发了相关系统,已在高速公路的网络建设管理中成功应用.

  16. The Application of 3D Models in Construction of Mega City Architecture%三维模型在特大城市建筑规划报建中的应用

    Institute of Scientific and Technical Information of China (English)

    张瑞卫

    2015-01-01

    Make an appropriate urban planning and design is one of research topic in urban planning industry.With the advantages of convenience and intuition,3D models have provide technical support for the visualization of surveying and mapping product in urban planning administration.From the new practice of 3D planning construction in Shanghai,it analyses the characteristics of 3D planning design,describes how to build the 3D models of the planning objects and surrounding environment,which complete optimization process of urban planning at last.%优选合适的城市规划设计方案是城市规划行业研究的课题之一。三维模型在城市规划报建中具有方便、直观等优势,对城市建筑规划管理提供了测绘成果的可视化技术保障。从上海市新建建筑工程三维规划报建实践出发,剖析三维规划设计技术特点,阐述将规划对象与周边现实环境集成到三维可视化信息系统中并进行对比分析的方法,最终完成城市规划方案的优选过程。

  17. Cortical dynamics of figure-ground separation in response to 2D pictures and 3D scenes:How V2 combines border ownership, stereoscopic cues, and Gestalt grouping rules

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2016-01-01

    Full Text Available The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob – V2 interstripe – V4 cortical stream and the V1 blob – V2 thin stripe – V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that

  18. Laser printing of cells into 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B [Nanotechnology Department, Laser Zentrum Hannover eV, Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: a.ovsianikov@lzh.d [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2010-03-15

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  19. Laser printing of cells into 3D scaffolds.

    Science.gov (United States)

    Ovsianikov, A; Gruene, M; Pflaum, M; Koch, L; Maiorana, F; Wilhelmi, M; Haverich, A; Chichkov, B

    2010-03-01

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  20. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  1. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly

  2. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Science.gov (United States)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  3. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  4. 6D Interpretation of 3D Gravity

    Science.gov (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  5. 6D Interpretation of 3D Gravity

    CERN Document Server

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  6. Versatile structures of group 13 metal halide complexes with 4,4'-bipy: from 1D coordination polymers to 2D and 3D metal-organic frameworks.

    Science.gov (United States)

    Sevastianova, Tatiana N; Bodensteiner, Michael; Maulieva, Albina F; Davydova, Elena I; Virovets, Alexander V; Peresypkina, Eugenia V; Balázs, Gábor; Graßl, Christian; Seidl, Michael; Scheer, Manfred; Frenking, Gernot; Berezovskaya, Ekaterina A; Kazakov, Igor V; Khoroshilova, Olesya V; Timoshkin, Alexey Y

    2015-12-21

    A systematic structural study of complexes formed by aluminium and gallium trihalides with 4,4'-bipyridine (bipy) in 2 : 1, 1 : 1, and 1 : 2 stoichiometric ratios has been performed. Molecular structures of 11 complexes in the solid state have been determined for the first time. Complexes of 2 : 1 composition are molecular, while complexes of 1 : 1 composition form metal-organic frameworks of different kinds: an ionic 3D network (three interpenetrated lvt nets for AlCl3bipy), an ionic 2D network for AlBr3bipy and GaBr3bipy and a 1D coordination polymer in the case of GaCl3bipy. Thus, the nature of the Lewis acid plays a critical role in the structural type of the complex in the solid state. Incorporation of excess bipy molecules into (GaCl3bipy)∞ (formation of crystallosolvate) leads to an unprecedented change of the molecular structure from a non-ionic 1D coordination polymer to an ionic 2D metal organic framework [GaCl2bipy2](+)[GaCl4](-)·2bipy. As indicated by the temperature-dependent XRD study, removal of bipy by heating in a vacuum restores the non-ionic 1D structure. Quantum chemical computations for simple cluster model systems (up to eight Al and Ga atoms) reveal that ionic forms are slightly favourable, although the energy differences between the ionic and non-ionic structures are not large. These theoretical predictions are in good agreement with experimental findings. Thus, even relatively simple cluster models may be used to indicate the structural preferences in the solid state. Both experimental and computational IR frequency shifts of the in-plane ring bending mode of bipy upon complexation correlate well with the M-N bond distances in the complexes.

  7. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  8. Heterospin systems constructed from [Cu2Ln]3+ and [Ni(mnt)2]1-,2- Tectons: First 3p-3d-4f complexes (mnt = maleonitriledithiolato).

    Science.gov (United States)

    Madalan, Augustin M; Avarvari, Narcis; Fourmigué, Marc; Clérac, Rodolphe; Chibotaru, Liviu F; Clima, Sergiu; Andruh, Marius

    2008-02-04

    New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a

  9. Construction and application of 3D hidden geological model in Yuncao area,Anhui Province%安徽运漕地区隐伏地质体三维模型构建及应用∗

    Institute of Scientific and Technical Information of China (English)

    陈忠良; 童劲松; 吴雪峰; 陈永宁; 包海玲; 王小莺

    2015-01-01

    On the basis of the information of geology and geophysics,by studying on the characteristics of strata and rock mass,a 3D hidden geological model in shallow-covered areas is constructed taking Yun-cao area in Anhui Province as an example.It introduces how to divide the modeling units and how to con-struct geological-geophysical model and 3D geological model,and a parallel model of strata and intrusions and a thinking of “first in separation and then in combination”are pointed out to build the final 3D hidden geological model considering the developmental conditions of intrusion and shallow intrusive rocks in this area.It is found that the resulting-model can reveal the distributions of physical properties of hidden geo-logical bodies,major faults,folded structures and magma bulge structure.In addition,it can display grav-ity and magnetic regional field,fault distribution,known ore occurrence,diorites and Zhouchongcun For-mation to identify the spatial positions of metallogenetic favorable sections by 3D visualization.%以安徽运漕地区为例,从地层与岩体特征入手,结合地质—地球物理信息,开展浅覆盖区隐伏地质体三维建模研究。介绍了划分建模单元及建立地质—地球物理模型和构建最终地质体模型的过程,针对区内侵入岩、浅成侵入岩发育情况,提出采用地层与岩体并行建模的思路,通过“先分后合”的方式构建地质体三维模型。最终的成果模型反映了研究区隐伏地质体的主要物性层(建模单元)、主要断裂与褶皱构造、岩浆隆起构造的空间展布特征,模型将区域重磁、断层展布、已知矿点与闪长岩类及三叠世周冲村组叠加显示,以三维可视化的方式标识了成矿有利地段的空间位置。

  10. 利用CT数据构建3D打印骨组织工程支架材料%3D construction and printing of bone tissue engineering scaffolds based on CT data

    Institute of Scientific and Technical Information of China (English)

    袁浩天; 时舒曼; 张晓晓; 李婧; 吴哲

    2016-01-01

    目的:利用患者的CT数据,应用Mimics软件精细化对骨缺损区建模,确定3D打印技术在精细化构建组织工程骨方面的可行性,摸索应用Mimics软件构建组织工程支架材料的技术要点。方法:采集患者颌骨缺损区CT数据,利用阈值分割与区域增长相结合的方法分割图像,通过布尔运算获得目标蒙罩后进行三维重建,结合计算机辅助设计来构建个性化、具有内部结构的骨组织工程支架三维数字模型,并以聚乳酸为原材料借助3D打印技术制备支架材料。结果:利用Mimics软件成功地构建出了骨缺损区的数字化三维模型。构建的支架材料模型与患者骨缺损区形态匹配、具有一定内部形态和结构,模型可通过STL (stereo lithography,光固化立体造型术)标准格式导出,格式通用。结论:基于CT扫描数据,利用Mimics软件及计算机辅助设计,可以高效、便捷地构建骨缺损区支架材料的数字化三维模型。%Objective To study 3D construction and printing of bone tissue engineering scaffolds by bone defect modeling on Mimics software based on CT data. Methods CT data of jaw bone defect from patients were acquired and the images were segmented using threshold segmentation combined with region growing . The three dimensional model was reconstructed by Boolean operation. The individual 3D digital model was reconstructed with internal structure by combining with computer; preparing poly-lactic acid scaffold in virtue of 3D technology. Results Using the Mimics software, we successfully constructed a 3D digital reconstruction model of bone defect based on CT data. The constructed scaffold model with certain internal form and structure was matched with the bone defect of patients, and the constructed model was exported onto STL standard format, which may be in common use. Conclusion The 3D digital model of bone defect scaffolds may effectively be reconstructed

  11. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules.

    Science.gov (United States)

    Grossberg, Stephen

    2015-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob-V2 interstripe-V4 cortical stream and the V1 blob-V2 thin stripe-V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in

  12. 3D-kompositointi

    OpenAIRE

    Piirainen, Jere

    2015-01-01

    Opinnäytetyössä käydään läpi yleisimpiä 3D-kompositointiin liittyviä tekniikoita sekä kompositointiin käytettyjä ohjelmia ja liitännäisiä. Työssä esitellään myös kompositoinnin juuret 1800-luvun lopulta aina nykyaikaiseen digitaaliseen kompositointiin asti. Kompositointi on yksinkertaisimmillaan usean kuvan liittämistä saumattomasti yhdeksi uskottavaksi kokonaisuudeksi. Vaikka prosessi vaatii visuaalista silmää, vaatii se myös paljon teknistä osaamista. Tämän lisäksi perusymmärrys kamera...

  13. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  14. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  15. Application of 3D Fine Geologic Modeling to the Construction of the Underground Natural Gas Storage%三维精细地质建模技术在储气库建设中的应用

    Institute of Scientific and Technical Information of China (English)

    史军

    2011-01-01

    The capacity,effectively working gas volume and peak shaving capability of the underground natural gas storage are the important index in the design of underground natural gas storage,in which the capacity is the basis of other important index of underground natural gas storage and an important factor to design engineer.The calculation of capacity of underground natural gas storage is very critical,which plays an important role not only in the construction of underground natural gas storage,but also in the upstream natural gas development and downstream natural gas demand.In the study of underground natural gas storage of ES3 gas reservoir of Yong 21 block in Shengli oil field,based on the comprehensive analysis of drilling,seismic and logging data,the 3D fine geological model and the calculation of capacity are established with the 3D visual function module and integrated exploratory development module in Petrel software,which supplies a very firm base for the comprehensive evaluation of Yong 21 underground natural gas storage.%在综合分析钻井、地震、测井等资料的基础上,利用Petrel软件的三维可视化和勘探开发一体化功能模块,建立接近油藏实际地质特征的全三维精细地质模型,并进行库容量计算。

  16. Stereo 3D spatial phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jinwu, E-mail: kangjw@tsinghua.edu.cn; Liu, Baicheng, E-mail: liubc@tsinghua.edu.cn

    2016-07-15

    Phase diagrams serve as the fundamental guidance in materials science and engineering. Binary P-T-X (pressure–temperature–composition) and multi-component phase diagrams are of complex spatial geometry, which brings difficulty for understanding. The authors constructed 3D stereo binary P-T-X, typical ternary and some quaternary phase diagrams. A phase diagram construction algorithm based on the calculated phase reaction data in PandaT was developed. And the 3D stereo phase diagram of Al-Cu-Mg ternary system is presented. These phase diagrams can be illustrated by wireframe, surface, solid or their mixture, isotherms and isopleths can be generated. All of these can be displayed by the three typical display ways: electronic shutter, polarization and anaglyph (for example red-cyan glasses). Especially, they can be printed out with 3D stereo effect on paper, and watched by the aid of anaglyph glasses, which makes 3D stereo book of phase diagrams come to reality. Compared with the traditional illustration way, the front of phase diagrams protrude from the screen and the back stretches far behind of the screen under 3D stereo display, the spatial structure can be clearly and immediately perceived. These 3D stereo phase diagrams are useful in teaching and research. - Highlights: • Stereo 3D phase diagram database was constructed, including binary P-T-X, ternary, some quaternary and real ternary systems. • The phase diagrams can be watched by active shutter or polarized or anaglyph glasses. • The print phase diagrams retains 3D stereo effect which can be achieved by the aid of anaglyph glasses.

  17. A Group Action Method for Construction of Strong Substitution Box

    Science.gov (United States)

    Jamal, Sajjad Shaukat; Shah, Tariq; Attaullah, Atta

    2017-06-01

    In this paper, the method to develop cryptographically strong substitution box is presented which can be used in multimedia security and data hiding techniques. The algorithm of construction depends on the action of a projective general linear group over the set of units of the finite commutative ring. The strength of substitution box and ability to create confusion is assessed with different available analyses. Moreover, the ability of resistance against malicious attacks is also evaluated. The substitution box is examined by bit independent criterion, strict avalanche criterion, nonlinearity test, linear approximation probability test and differential approximation probability test. This substitution box is equated with well-recognized substitution boxes such as AES, Gray, APA, S8, prime of residue, Xyi and Skipjack. The comparison shows encouraging results about the strength of the proposed box. The majority logic criterion is also calculated to analyze the strength and its practical implementation.

  18. "Constructing" the Cell Cycle in 3D

    Science.gov (United States)

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  19. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  20. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  2. 采用123DCatch基于照片全自动构建人体器官三维模型%Fully automatically constructing the 3D human organ model with 123D Catch based on photos

    Institute of Scientific and Technical Information of China (English)

    韩中保; 韩扣兰

    2013-01-01

    Construction of 3 D model library is the key to realizing virtual laboratory of human anatomy .Due to the complicated shape of human organs , the traditional manual modeling techniques are not suitable because they are highly specialized and need big investment and long cycle .Because of its advantages in low cost , simple operation and high fidelity , photo-based 3D modeling technique is being paid close attention to by researchers .This paper , by comparing the advantages and disadvantages of various types of modeling methods and taking Autodesk 123 D Catch for an example , introduces how to realize quick construction of a photo-based virtual laboratory 3 D model library of Human Anatomy from the application point of view regarding the basic methods , corresponding processes , operation key points , precautions and application in VRML .%三维模型库的构建是实现《人体解剖学》虚拟实验室的关键。由于人体器官形态的复杂性,传统的手工建模技术因其专业性强、投入大、周期长,难以适用。基于照片的三维建模技术,因其成本低、操作简单、逼真性高等优势,逐渐得到研究者的重视。该文在比较各类建模方法优缺点的基础上,以Autodesk 123D Catch为例,从应用的角度重点阐述了其基本方法、相应流程、操作要点、注意事项及在VRML中的应用,实现了基于照片快速构建《人体解剖学》虚拟实验室三维模型库。

  3. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  4. Barriers and Facilitators for the Practice of Physical Exercise in Patients With Spondyloarthritis: Qualitative Study of Focus Groups (EJES-3D).

    Science.gov (United States)

    Curbelo Rodríguez, Rafael; Zarco Montejo, Pedro; Almodóvar González, Raquel; Flórez García, Mariano; Carmona Ortells, Loreto

    To explore barriers to exercise of patients with spondyloarthritis (SpA) and to propose facilitators. Analysis of the speech of focus groups. It included the identification the elements that shape the studied reality, description of the relationship between them and synthesis through: 1) Thematic segmentation, 2) Categorization according to situations, relationships, opinions, feelings or others, 3) Coding of the various categories and 4) Interpretation of results. Two focus groups of one hour each with 11 patients recruited from associations and social networks in Madrid and surrounding provinces took place (64% men, 72% between 40 and 60 years, 57% with disease duration longer than 10 years, 80% performed some type of exercise or physical activity). The following were identified: 1) barriers to exercise, among which the following pointed out: disinformation, fear, pain, distrust, and prior negative experiences with exercise; 2) facilitators to exercise: the complementary to barriers plus regularity and social and professional support; 3) items that could influence in either way, negative or positively; and 4) four phases of coping with exercise or physical activity in SpA. Apart from recognizing the existence of some modifiable personal factors, patients generally demand: more knowledge and education on exercise, including the pros and cons in the context of their disease, and coherence of messages received, together with better monitors that accompany them in their coping with disease and exercise. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  5. Two Accelerating Techniques for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘世霞; 胡事民; 孙家广

    2002-01-01

    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  6. DNA biosensing with 3D printing technology.

    Science.gov (United States)

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  7. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  8. Researchers' Construction of Knowledge from Studying Professional Conversation Groups

    Science.gov (United States)

    Orland-Barak, Lily; Tillema, Harm

    2007-01-01

    Data from written correspondence and conversations gathered from the authors' study on knowledge construction was used to examine the process of interpretation, or how researchers construct 'knowledge about knowledge construction.' The notion of 'working in the interpretive zone' was used to conceptualize interpretation among researchers as a…

  9. Urbanisation and 3d Spatial - a Geometric Approach

    Science.gov (United States)

    Duncan, E. E.; Rahman, A. Abdul

    2013-09-01

    Urbanisation creates immense competition for space, this may be attributed to an increase in population owing to domestic and external tourism. Most cities are constantly exploring all avenues in maximising its limited space. Hence, urban or city authorities need to plan, expand and use such three dimensional (3D) space above, on and below the city space. Thus, difficulties in property ownership and the geometric representation of the 3D city space is a major challenge. This research, investigates the concept of representing a geometric topological 3D spatial model capable of representing 3D volume parcels for man-made constructions above and below the 3D surface volume parcel. A review of spatial data models suggests that the 3D TIN (TEN) model is significant and can be used as a unified model. The concepts, logical and physical models of 3D TIN for 3D volumes using tetrahedrons as the base geometry is presented and implemented to show man-made constructions above and below the surface parcel within a user friendly graphical interface. Concepts for 3D topology and 3D analysis are discussed. Simulations of this model for 3D cadastre are implemented. This model can be adopted by most countries to enhance and streamline geometric 3D property ownership for urban centres. 3D TIN concept for spatial modelling can be adopted for the LA_Spatial part of the Land Administration Domain Model (LADM) (ISO/TC211, 2012), this satisfies the concept of 3D volumes.

  10. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  11. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  12. 3D touchable holographic light-field display.

    Science.gov (United States)

    Yamaguchi, Masahiro; Higashida, Ryo

    2016-01-20

    We propose a new type of 3D user interface: interaction with a light field reproduced by a 3D display. The 3D display used in this work reproduces a 3D light field, and a real image can be reproduced in midair between the display and the user. When using a finger to touch the real image, the light field from the display will scatter. Then, the 3D touch sensing is realized by detecting the scattered light by a color camera. In the experiment, the light-field display is constructed with a holographic screen and a projector; thus, a preliminary implementation of a 3D touch is demonstrated.

  13. Development of a 3D pixel module for an ultralarge screen 3D display

    Science.gov (United States)

    Hashiba, Toshihiko; Takaki, Yasuhiro

    2004-10-01

    A large screen 2D display used at stadiums and theaters consists of a number of pixel modules. The pixel module usually consists of 8x8 or 16x16 LED pixels. In this study we develop a 3D pixel module in order to construct a large screen 3D display which is glass-free and has the motion parallax. This configuration for a large screen 3D display dramatically reduces the complexity of wiring 3D pixels. The 3D pixel module consists of several LCD panels, several cylindrical lenses, and one small PC. The LCD panels are slanted in order to differentiate the distances from same color pixels to the axis of the cylindrical lens so that the rays from the same color pixels are refracted into the different horizontal directions by the cylindrical lens. We constructed a prototype 3D pixel module, which consists of 8x4 3D pixels. The prototype module is designed to display 300 different patterns into different horizontal directions with the horizontal display angle pitch of 0.099 degree. The LCD panels are controlled by a small PC and the 3D image data is transmitted through the Gigabit Ethernet.

  14. Construction of 3-D body surface model based on partitioning%基于部位划分的三维人体曲面模型的构建

    Institute of Scientific and Technical Information of China (English)

    李晓志; 李晓久

    2013-01-01

    By the self-developed 3-D body measurement system,the 3-D body scan line point cloud data can be acquired.For the complexity of the human body surface,if a body surface model is directly constructed,the result may cause arms with torso,left leg with right legs together as one contour,or big errors in the head-shoulder with the arms and the torso and the torso with legs.So the paper first divides the human body surface into six parts based on the shape,then constructs a triangular mesh for each part and puts forward a new method that divides the single contour into multi-contour to establish the triangular mesh between single contour and multi contours of the head-shoulder with the arms and the torso and the torso with legs.Finally,the triangular mesh surface model of the entire human body is constructed.%应用自主开发的三维人体测量系统获取人体扫描线点云数据.由于人体表面比较复杂,如果直接对整个人体点云进行模型的重构,可能会使人体手臂与人体躯干、左腿与右腿连在一起,或者导致体头肩部与人体躯干、手臂以及躯干与两腿之间连接的部分出现较大误差,为此,首先根据人体形状,将人体表面分割为6个部分,并对每部分人体点云分别进行三角网格化处理,然后提出将单轮廓划分为多轮廓的方法,将人体头肩部与人体躯干、手臂以及躯干与两腿进行合成,最终生成完整的人体三角网格曲面模型.

  15. 基于加工元体的三维工序模型构建方法%A 3D Process Model Construction Method based on Machining Volume

    Institute of Scientific and Technical Information of China (English)

    邵立; 张树生; 白晓亮; 王荣荣

    2015-01-01

    The construction method mentioned in the title aims to exhibit in the 3D CAPP system how a product part transforms from its blank to its finished product. First, we propose the manufacturing feature and machining el⁃ement expression method and establish their relationship and manufacturing feature library. Then, we employ the convex decomposition algorithm and the base⁃face matching algorithm to extract the manufacturing features of the 3D CAD model. We then use the geometrical information of the CAD model to automatically calculate and calibrate their location coordinate system and size parameters and also use the precursor process model to correct them. In this way, given the cutter radius and the machining allowance value, the machining elements are located and in⁃stantiated. Finally, the 3D in⁃process model is generated by executing the Boolean operation of the machining ele⁃ments and the precursor process model. The experiments on the complicated product parts verify the effectiveness of the 3D process model construction method.%为了在三维 CAPP 系统中展现产品零件由毛坯状态向最终成品动态演变的过程,提出了一种以加工元体为基本单元的三维工序模型构建方法。首先,提出了制造特征及加工元体的表达方法,建立了属性邻接图、制造特征体与加工元体的关联关系,对制造特征库进行了构建。接着,对于待加工三维 CAD 模型,采用凸边分解并经由基面匹配算法从特征库中检索出相应的制造特征,并在此基础上利用 CAD 模型的几何面信息自动计算出制造特征的定位坐标系和定形参数,同时依据前驱工序模型对定位坐标系和定形参数值进行修正。最后,给定刀具半径和加工余量值,实现加工元体的定位和实例化,并与前驱工序模型做布尔运算,生成三维中间工序模型。在实验部分,以某机加零件为例,对提出方法的有效性进行了实例验证。

  16. 面向三维重建的工艺语言理解及工艺语义模型构建%Semantics Understanding and Construction of Process Semantic Model for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    黄瑞; 张树生; 石云飞; 陶俊

    2011-01-01

    从动态工艺设计过程的视角考察工艺设计意图和二维工序图形的进化进程,以电子工艺卡片为输入对象,将自然语言理解技术和图形理解技术相融合,用具有工艺语义的工序语言指导二维工序图形的三维重建,实现对制造毛坯三维形态演变过程的智能推理,重建出基于特征的零件模型及中间工序模型.研究了工艺语义的定义与表示、机械加工领域概念知识库的构建及基于自动分词的工艺语义提取算法.%The process planning intention and the evolution of 2D-procedure drawing are inspected from the point of dynamic process design. The natural language understanding technology and t1he graphic understanding technology are combined by using the electronic process sheets as the input objects. The procedure language with process semantic is used to guide the 3D reconstruction frrm 2D procedure graph, and the intelligent inference of the 3D model evolution process of roughcast is realized and the pan model and the middle procedure model based on features are reconstructed. The definition and expression of process semantic, the construction of concept knowledge base in machining field and the extraction algorinthm of process semantic based on automatic segmentation are researched.

  17. 3D Printed Terahertz Focusing Grating Couplers

    Science.gov (United States)

    Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin

    2017-02-01

    We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.

  18. Methodology for the Efficient Progressive Distribution and Visualization of 3D Building Objects

    Directory of Open Access Journals (Sweden)

    Bo Mao

    2016-10-01

    Full Text Available Three-dimensional (3D, city models have been applied in a variety of fields. One of the main problems in 3D city model utilization, however, is the large volume of data. In this paper, a method is proposed to generalize the 3D building objects in 3D city models at different levels of detail, and to combine multiple Levels of Detail (LODs for a progressive distribution and visualization of the city models. First, an extended structure for multiple LODs of building objects, BuildingTree, is introduced that supports both single buildings and building groups; second, constructive solid geometry (CSG representations of buildings are created and generalized. Finally, the BuildingTree is stored in the NoSQL database MongoDB for dynamic visualization requests. The experimental results indicate that the proposed progressive method can efficiently visualize 3D city models, especially for large areas.

  19. 基于3D虚拟技术的建筑漫游动画的设计与实现%Construction roaming animation based on the technology of 3 d virtual design and implementation

    Institute of Scientific and Technical Information of China (English)

    刘民娟; 何世文

    2013-01-01

    One of building roaming animation is along with the development of the virtual technology to form a new creative field,is a 3 d virtual reality technology was applied to building design and urban planning.Construction roaming animation to architectural design in the form of virtual animation to show the future construction of the three-dimensional environment space.Also can realize arbitrary Angle,in building roaming JingBie lens movement and a variety of environmental effect of real-time switch,give a person with image lifelike,immersive audio and visual experience.This paper analyzes the application of virtual technology in construction of roaming animation advantages and production process.%建筑漫游动画是伴随虚拟技术的发展而形成的一个新的创作领域,就是将3D虚拟现实技术应用于建筑设计和城市规划。建筑漫游动画将建筑设计以虚拟动画的形式来展现未来建筑的三维环境空间。在建筑漫游中还可以实现任意角度、景别的镜头运动以及多种环境效果的实时切换,给人以形象逼真、身临其境的全方位视听感受。本文分析了虚拟技术应用于建筑漫游动画的优势和制作流程。

  20. Holography of 3d-3d correspondence at Large N

    OpenAIRE

    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin

    2014-01-01

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N = 2 $$ \\mathcal{N}=2 $$ superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS 4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the p...

  1. Construction of Industrial Design Right in China---A Case of 3D Printing%我国工业设计权制度的构建--以3D打印为视角

    Institute of Scientific and Technical Information of China (English)

    刘强; 张文思

    2015-01-01

    在3D打印环境下,产品设计图作为创新设计的核心要素,所面临的侵权风险会显著增加。传统类型的知识产权,包括专利权、著作权及商标权等,对于工业设计的保护均存在不足。构建新型的工业设计权能解决现有知识产权制度保护缺位的问题。我国有必要在借鉴英国《版权、外观设计权和专利法》、欧盟《共同体外观设计保护条例》、美国《船壳设计保护法》、日本《反不正当竞争法》等域外经验的基础上,对工业设计权制度进行合理的设计,在保护对象、授权标准、登记与公示程序、权利内容和限制以及保护期限方面制定相应的规则,以期促进3D打印产业的健康发展。%With the development of 3D printing, product design, the core element of innovative design, is exposed to increasing risk of tort. Traditional intellectual property rights, including patent right, copyright right, trademark right, have shortcomings in the protection of industrial design. Therefore, construction of the new industrial design right can solve this problem. We should learn from the BritishCopyright,DesignandPatentAct, the European Union DesignRulesandInstructions, the United StatesVesselHullDesignProtectionAct, the JapanAnti-UnfairCom-petitionLawto construct rational industrial design right and formulate corresponding rules in protection objects, stan-dards, registration and public mechanism, content and limit of right and protection period in order to promote the de-velopment of 3d printing industry.

  2. Factory drilling technology for G0-7 3D horizontal well group%G0-7三维水平井井组工厂化钻井工艺

    Institute of Scientific and Technical Information of China (English)

    王万庆; 石仲元; 付仟骞

    2015-01-01

    G0-7三维水平井组部署在长庆油田苏里格气田东南部,由1口直井、2口定向井、2口常规水平井、4口三维水平井组成,采用工厂化钻井作业“一字型”施工模式,3部钻机同时施工,每部钻机施工1口常规井和 2口水平井。针对丛式井组施工难点,从防碰绕障、井身剖面优化、井眼轨迹控制、降摩减阻等方面制定一系列措施,形成“预分法”井眼防碰绕障、三维井剖面优化、三维井井眼轨迹控制及 CQ-SP2钻井液体系等特色技术。该丛式井组水平井平均机械钻速达9.68 m/ h,同比提高18.19%,平均钻井周期为55.67 d,比原有模式施工周期缩短8.82%。该井组工厂化作业顺利完成为长庆油田部署三维水平井井组工厂化作业提供了有力技术支撑。%The G0-7 3D horizontal well group is planned in the southeast part of Sulige Gasfield of Changqing Oilfield, composed by 1 straight well, 2 directional wells, 2 conventional horizontal wells and 4 3D horizontal wells. The factory drilling operation was adopted – three rigs started drilling at the same time and each drilled one conventional well and two horizontal wells. In view of difficulties in drilling of cluster well group, a series of measures were formulated in terms of anti-collision and avoiding barriers, wellbore profile optimization, wellbore trajectory control, reducing friction and drag, and special techniques were developed like ‘pre-split’ anti-collision and avoiding barriers, 3D well profile optimization, 3D well wellbore trajectory control and CQ-SP2 drilling fluid system, etc. The penetration rate of this cluster well group was 9.68 m/h in average, up by 18.19% on year-on-year basis, and average drilling period was 55.67 d, shortened by 8.82% compared with the original drilling mode. The successful factory drilling operation of this well group provides a strong technical support for factory drilling operation of 3D

  3. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure

    Science.gov (United States)

    Kim, Yohan; Kang, Kyojin; Jeong, Jaemin; Paik, Seung Sam; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Park, Jisun

    2017-01-01

    Purpose The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. Methods To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6–8 weeks old mice by a 2-step collagenase method. Samples of 4 × 107 hepatocytes with 80%–90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. Results Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin, HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. Conclusion Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers. PMID:28203553

  4. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure.

    Science.gov (United States)

    Kim, Yohan; Kang, Kyojin; Jeong, Jaemin; Paik, Seung Sam; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Park, Jisun; Choi, Dongho

    2017-02-01

    The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6-8 weeks old mice by a 2-step collagenase method. Samples of 4 × 10(7) hepatocytes with 80%-90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin, HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers.

  5. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  6. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  7. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  8. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  9. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  10. 3D Stratigraphic Modeling of Central Aachen

    Science.gov (United States)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    , -y, -z coordinates, down-hole depth, and stratigraphic information are available. 4) We grouped stratigraphic units into four main layers based on analysis of geological settings of the modeling area. The stratigraphic units extend from Quaternary, Cretaceous, Carboniferous to Devonian. In order to facilitate the determination of each unit boundaries, a series of standard code was used to integrate data with different descriptive attributes. 5) The Quaternary and Cretaceous units are characterized by subhorizontal layers. Kriging interpolation was processed to the borehole data in order to estimate data distribution and surface relief for the layers. 6) The Carboniferous and Devonian units are folded. The lack of software support, concerning simulating folds and the shallow depth of boreholes and cross sections constrained the determination of geological boundaries. A strategy of digitalizing the fold surfaces from cross sections and establishing them as inclined strata was followed. The modeling was simply subdivided into two steps. The first step consisted of importing data into the modeling software. The second step involved the construction of subhorizontal layers and folds, which were constrained by geological maps, cross sections and outcrops. The construction of the 3D stratigraphic model is of high relevance to further simulation and application, such as 1) lithological modeling; 2) answering simple questions such as "At which unit is the water table?" and calculating volume of groundwater storage during assessment of aquifer vulnerability to contamination; and 3) assigned by geotechnical properties in grids and providing them for user required application. Acknowledgements: Borehole data is kindly provided by the Municipality of Aachen. References: 1. Janet T. Watt, Jonathan M.G. Glen, David A. John and David A. Ponce (2007) Three-dimensional geologic model of the northern Nevada rift and the Beowawe geothermal system, north-central Nevada. Geosphere, v. 3

  11. 3D visualization of complicated cavity group under open-pit limit and its application%复杂空区群露天开采境界三维可视化及其应用

    Institute of Scientific and Technical Information of China (English)

    刘科伟; 李夕兵; 刘希灵; 宫凤强; 强杜坤

    2011-01-01

    Because of the existence of complicated cavity group with open-pit limit constitutes a potential hazard for mine safety production, and of the necessity to accurately analyze cavity group and then create conditions for choosing proper prevention and treatment countermeasures so as to plan exploitation of mineral resources reasonably, 3D visualization modeling technology of complicated geological bodies based on triangular irregular network (TIN) was studied, and corresponding implementing scheme of 3D visualization of complicated cavity group with open-pit limit on platform of Surpac software was made, then, a case study was discussed. On the foundation of massive field survey, collecting and sorting data, the 3D visualization models of digital terrain models (DTM) of open-pit surface, occurrence state of ore body and complicated gravity group of the mine were built, especially. The results show that transfixion relationship in cavity group is emphatically described in 3D which can be used to logically analyze jointly destructive effect. The spatial relationships among the DTM, ore body and gravity group are made explicit which can be used to analyze the potential hazards of complicated cavity group with open-pit limit and associated destructive effect of cavities, besides, the references for hazard control, safety judgment and designing for open-pit mining can also be obtained by using the model built, the problem of blind mining can be solved and the major safety accidents can be prevented successfully.%为了预防露天开采境界下复杂空区群对矿山生产造成重大安全事故,研究以不规则三角网(TIN)为基础的复杂地质体三维可视化建模技术,并以Surpac软件为平台制定出相应的复杂空区群露天开采境界三维可视化实施方案.将该方案应用于某矿区,建立该矿区内露天开采境界地表、地下矿体以及复杂空区群的三维可视化模型,重点对空区群内部错综复杂的通透关系

  12. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  13. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  14. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  15. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  16. TRT地震波三维成像技术在隧道施工地质超前预报中的应用%TRT Seismic Wave 3D Imaging Technology Application in Advance Geological Forecast in Tunnel Construction

    Institute of Scientific and Technical Information of China (English)

    刘兆勇; 杨威; 王羿磊

    2016-01-01

    Tunnel geological prediction plays a key role in the tunnel construction, and is also a major technical problem in the field of engineering geophysics. In this paper,through the introduction of trt6000 tunnel geological predic-tion system principle and successful application examples that TRT 3-D seismic imaging technology in Tunnel Advance Geological Forecast in the advanced and effective,explore the in tunnel advanced detection application prospects.%隧道地质超前预报在隧道施工开挖中起着关键性作用,同时也是工程地球物理学界所面临的一大技术难题。本文通过介绍TRT6000隧道地质超前预报系统的方法原理以及成功应用实例,说明TRT地震波三维成像技术在隧道超前地质预报中的先进性和有效性,探讨其在隧道超前探测中的应用前景。

  17. Constructing of Large Scale 3D Air-Battle Scene Based on OSGEarth%基于OSGEarth的大型三维空战场景的搭建

    Institute of Scientific and Technical Information of China (English)

    王雷; 丁华

    2016-01-01

    This paper introduced an open source project named OSGEarth,focused on the rendering algorithm based on big data.During this project,I have researched on the air battle scene,basically including achieving,analyzing and generating the necessary data from satellite images,elevation data,and geography vector data,and Attitude presentation of the aircraft,algorithm of automatic cruise.Finally show an implementation of constructing the 3D air-battle scene based on OSGEarth whit an excellent result.%本文介绍了 OSGEarth 开源项目,并探讨海量地形数据的调度渲染算法,然后研究了三维空战场景搭建所需要的卫星影像数据、高程数据和地理矢量数据的获取及处理方法还有飞机的姿态展示方式及自动巡航算法,最后实现了基于OSGEarth的大型三维空战场景的搭建,取得了良好的效果.

  18. A New 3D Layered-pillared Cobalt(II)-organic Framework Constructed by Imidazole-4,5-dicarboxylic Acid (H_3IDC) and 4,4'-Bipyridine (bipy)

    Institute of Scientific and Technical Information of China (English)

    YUAN Li; LU Wen-Guan

    2011-01-01

    A new 3D metal-organic framework of {[Co3(IDC)2(bipy)2(py)2]·7H2O}n (1) was obtained by the hydrothermal reaction of Co(NO3)2·6H2O, imidazole-4,5-dicarboxylic acid (H3IDC), 4,4'-bipyridine (bipy), and pyridine (py), and structurally characterized by elemental analysis, infrared spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. X-ray diffraction crystal structural analysis reveals that it crystallizes in orthorhombic system, space group Pccn with a = 11.1040(3), b = 19.8834(5), c = 21.3025(5), V = 4703.3(2)3, Mr = 1079.63, Z = 4, Dc = 1.525 Mg·m-3, F(000) = 2212, μ(CuKα) = 8.855 mm-1, the final R = 0.0331 and wR = 0.0713 for 2525 observed reflections with I ≥ 2σ(I). In compound 1, each cobalt(II) ion is six-coordinated with a slightly distorted octahedral coordination geometry, and each μ3-IDC3- acts as a bridge to bond three neighboring Co(II) ions, leading to an infinite 2D network layer structure of [Co3(IDC)2]n with Kagomé lattice. The adjacent layers are further linked by μ2-bipy to form an infinite 3D layered-pillared framework architecture of [Co3(IDC)2(bipy)2(py)2]n.

  19. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  20. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Science.gov (United States)

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  1. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Science.gov (United States)

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  2. Resist loss in 3D compact modeling

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  3. Perception of 3D spatial relations for 3D displays

    Science.gov (United States)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  4. Expert System for 3D Collar Intelligent Design

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; GENG Zhao-feng

    2004-01-01

    A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.

  5. AntigenMap 3D: an online antigenic cartography resource.

    Science.gov (United States)

    Barnett, J Lamar; Yang, Jialiang; Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2012-05-01

    Antigenic cartography is a useful technique to visualize and minimize errors in immunological data by projecting antigens to 2D or 3D cartography. However, a 2D cartography may not be sufficient to capture the antigenic relationship from high-dimensional immunological data. AntigenMap 3D presents an online, interactive, and robust 3D antigenic cartography construction and visualization resource. AntigenMap 3D can be applied to identify antigenic variants and vaccine strain candidates for pathogens with rapid antigenic variations, such as influenza A virus. http://sysbio.cvm.msstate.edu/AntigenMap3D

  6. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  7. Market study: 3-D eyetracker

    Science.gov (United States)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  8. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  9. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  10. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D......The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...

  11. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  12. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  13. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  14. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  15. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  16. Behavioral Constructs and Mammography in Five Ethnic Groups

    Science.gov (United States)

    Stewart, Susan L.; Rakowski, William; Pasick, Rena J.

    2009-01-01

    Intention, self-efficacy, perceived susceptibility, perceived benefits, and subjective norms are key constructs of health behavior theories; their predictive validity for cancer screening has not been ascertained in multiethnic populations. Participants were 1,463 African American, Chinese, Filipina, Latina, and White women aged 40 to 74…

  17. Factorization of the 3d superconformal index

    CERN Document Server

    Hwang, Chiung; Park, Jaemo

    2012-01-01

    We prove that 3d superconformal index for general $\\mathcal N=2$ U(N) gauge group with fundamentals and anti-fundmentals with/without Chern-Simons terms is factorized into vortex and anti-vortex partition function. We show that for simple cases, 3d vortex partition function coincides with a suitable topological open string partition function. We provide much more elegant derivation at the index level for $\\mathcal N=2$ Seiberg-like dualities of unitary gauge groups with fundamantal matters and $\\mathcal N=4$ mirror symmetry

  18. The Social Construction of Policy Targets and the Interest Groups

    Directory of Open Access Journals (Sweden)

    Luminița Gabriela POPESCU

    2007-02-01

    Full Text Available Frequently the major pressures on the political system are generated by groups that project their objectives and interventions – private interest groups. The presence of these groups in the public arena is considered destructive, and the influences they exercise on the political system are deemed similar to those of corruption. However, political analysts consider that, effects notwithstanding, the presence of interest groups represents an unavoidable cost in any democratic system. A reason for maintaining interest groups is the connection established between citizens and public officials through unions and business, trade or professional associations. The value of such a link may be equivalent to the actual price of the unavoidable distortion that occurs when interest groups are active within the public policy process. The interest groups are certainly too important to be eliminated under the pressure of the myth of corruption.

  19. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  20. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  1. Deformed phase space for 3d loop gravity and hyperbolic discrete geometries

    CERN Document Server

    Bonzom, Valentin; Girelli, Florian; Livine, Etera R

    2014-01-01

    We revisit the loop gravity space phase for 3D Riemannian gravity by algebraically constructing the phase space $T^*\\mathrm{SU}(2)\\sim\\mathrm{ISO}(3)$ as the Heisenberg double of the Lie group $\\mathrm{SO}(3)$ provided with the trivial cocyle. Tackling the issue of accounting for a non-vanishing cosmological constraint $\\Lambda \

  2. 3D integral imaging with optical processing

    Science.gov (United States)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  3. On the construction of unitary quantum group differential calculus

    Science.gov (United States)

    Pyatov, Pavel

    2016-10-01

    We develop a construction of the unitary type anti-involution for the quantized differential calculus over {{GL}}q(n) in the case | q| =1. To this end, we consider a joint associative algebra of quantized functions, differential forms and Lie derivatives over {{GL}}q(n)/{{SL}}q(n), which is bicovariant with respect to {{GL}}q(n)/{{SL}}q(n) coactions. We define a specific non-central spectral extension of this algebra by the spectral variables of three matrices of the algebra generators. In the spectrally expended algebra, we construct a three-parametric family of its inner automorphisms. These automorphisms are used for the construction of the unitary anti-involution for the (spectrally extended) calculus over {{GL}}q(n). This work has been funded by the Russian Academic Excellence Project ‘5-100’. The results of section 5 (propositions 5.2, 5.3 and theorem 5.5) have been obtained under support of the RSF grant No.16-11-10160.

  4. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  5. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  6. Essentials of 3D biofabrication and translation

    CERN Document Server

    Atala, Anthony

    2015-01-01

    Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. Provides a new and versatile method to fabricating living tissue Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction Describes current approaches and future challenges for translation...

  7. Construction of 3D Seabed Terrain Model based on the Standard Deviation Criterion%基于标准差准则的海底三维地形模型构建

    Institute of Scientific and Technical Information of China (English)

    韩富江; 潘胜玲; 王德刚; 来向华

    2011-01-01

    At present, existing triangulation must be done in the projection plane, so it causes the loss of attribution information in LOP (Local Optimization Procedure). In this paper, a new triangulation criterion based on standard deviation is used. The definition of standard deviation, calculation of standard deviation, and description of standard deviation criterion is investigated. Then the construction algorithm of 3D seabed terrain model based on standard deviation is presented according to the standard deviation criterion. The result of experiment shows that this method improves the rationality of triangulation, the details and precision of seabed terrain model are better than others, and it is better in dealing with special terrain than the algorithm based on empty circum-circle criterion.%针对现有三角剖分需要投影到平面,局部优化时属性丢失的问题,本文采用一种顾及水深属性的三角剖分准则——标准差准则进行三角剖分,并且讨论了标准差的含义、标准差的计算以及标准差准则的描述.根据标准差准则,实现了一种基于标准差差则的海底三维地形模型构建方法.实验结果表明该方法提高了三角剖分的合理性,模型重建的细节与精确程度更高,在处理特殊地形土优于基于空外接圆准则的TIN模型构建方法.

  8. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  9. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  10. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  11. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  12. Group Coaching: A New Way of Constructing Leadership Identity?

    Science.gov (United States)

    Aas, Marit; Vavik, Mette

    2015-01-01

    This paper focuses on group coaching, one of the newer school leadership development approaches to recently emerge. Using a group-coaching methodology developed at the University of Oslo, we deconstruct the concept of leadership identity as it is reported in texts from students in the National Principal Programme. We suggest that leaders develop…

  13. Highway 3D Simulation Model Construction Method in Line Selection Stage%选线阶段公路三维仿真模型快速构建方法

    Institute of Scientific and Technical Information of China (English)

    江良华; 倪洪亮; 王晓安; 杨鹏

    2014-01-01

    In order to apply the driving simulation system to evaluate and compare the alignment in the highway route selection phase, based on the theory of highway map, using horizontal, longitudinal, transverse preliminary design data, this study constructed 3D model of highway. After searching the road cut fill relationship of both sides through digital terrain model, it generated the road slope model automatically on both sides according to the ratio of slope and the step width specified. By searching across the cut and fill height and determining the bridge or tun⁃nel section, bridge or tunnel simulation model was constructed. Then the model was output in OpenFlight format. The application in the examples shows that the method can quickly build up three-dimensional model of highway in line selection stage and simulation model has little error compared to entity mode with good versatility and porta⁃bility in model format. It also finds out that the method can effectively shorten the development cycle of using driv⁃ing simulation system in line selection stage for linear scheme evaluation and comparison.%为使驾驶模拟系统应用于公路选线阶段的备选方案评价与比选,基于公路堪测理论,利用备选方案的平,纵,横初步设计资料构建公路三维模型:利用数字地面模型,判断公路两侧填挖关系,按指定的坡比和台阶宽度,自动生成道路两侧边坡模型;搜索全线填挖高度,自动提取桥梁和隧道信息,并构建桥梁和隧道的仿真模型,最后将上述构建的模型输出为Open⁃Flight格式。实例应用效果表明:该方法可快速构建选线阶段的公路三维模型,所构建的模型与实体模型误差小,模型格式具有较好的通用性和可移植性。该方法能有效缩短利用驾驶模拟系统进行备选方案评价与比选的视景开发周期。

  14. Prototype construction of a dual-channel 3D many-core NoC based on KILL rule%基于KILL规则的双通道3D众核NoC原型构建

    Institute of Scientific and Technical Information of China (English)

    谭海

    2013-01-01

    In order to design a low-delay and low-overhead many-core Network-on-Chip (NoC),the paper proposes an Architecture Utilizing 3D Stack Hierarchical Dual-channel NoC (AUSHDN) and KILL(Kill If Less Linear)rule is used to determine the number of processing cores in each group of AUSHDN.What's more,the prototype of the AUSHDN system is established based on the Graphite simulator from MIT.In AUSGHN system,3D stack Hierarchical multilevel internet-on-chip is employed and different communication link is used to transfer control and data signal according to different content of communication.The results of simulation test in prototype system show that:compared with the traditional 2D NOC,the power consumption has reduced by 20% and the time delay has shortened by 30%.Meanwhile,the hierarchy feature of the AUSGHN system guarantees its good scalability.%为设计一个低开销低时延的众核NoC系统,提出了一种使用3D叠片技术的双通道片上众核体系AUTSDN,应用KILL规则确定了片上众核中组内处理核的个数,并基于MIT的Graphite模拟器建立了该体系的原型.AUTSDN体系中采用3D叠片分组多级片上互连网络,并且根据通信内容的不同,控制信号和数据信号的传输采取不同的通信链路.原型系统中的模拟测试结果表明,相比传统的2D片上网络,功耗降低了20%,时延降低了30%,同时AUTSDN的系统层次化特征确保了良好的系统扩展性.

  15. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  16. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...

  17. Constructing maturity through alcohol experience - Focus group interviews with teenagers

    DEFF Research Database (Denmark)

    Demant, Jakob Johan; Järvinen, Margaretha

    2006-01-01

    alcohol experience and positive attitudes towards drinking are related to popularity and influence in the peer group. The function of alcohol in teenagers’ struggle for recognition is so strong that the participants who drink very little or not at all are put under considerable pressure. With alcohol......Danish 14- and 15-year-olds are at the top of the European list when it comes to drinking and drunkenness. The aim of this article is to demonstrate how the struggle for social recognition–with alcohol as the central marker–transpires in groups of teenagers in Denmark. This article shows how...... as a central marker of maturity–and the drinking teenagers’ parents described as supporters of this view–non-drinking teenagers come out as the potential losers in the negotiation of status in the groups. The data are drawn from a large qualitative study in which 28 focus group interviews were conducted...

  18. Simulation of shield tunnel construction process base on 3D discontinuous geometry model%基于三维非连续几何模型的盾构施工模拟

    Institute of Scientific and Technical Information of China (English)

    李宇杰; 何平; 秦东平; 梁英俊

    2012-01-01

    Based on the 1 # metro line of Suzhou, a 3D discontinuous geometry model about segment blocks, connecting bolts and construction process factors was built to simulate the construction process. It mainly introduces the derivation process of geometry nonlinear equations of shield tunnel excavation model, and the calculation method of shield thrust force and grouting material properties The simulate results show that, most of the area on the inside and outside surface of shield segment are in compression, some area on top and bottom position of tunnel are in tension, and the position near the connecting bolt are also in tension. Because of shield jacking force, there is a typical uplift area ahead of shield excavation face. The maximum uplift value on ground is 2.5 mm, and the distance between the maximum uplift section and shield excavation face is 8.5 m. Due to grouting material properties change with time, the ground settlement curves along tunnel ccnterline which behind shield excavation farx are ups and downs, but they finally tend to stabilize. During shield tunnel construction process, the soil which near the segment joints is obviously affected by construction, so the soil plastic area is bigger than other positions.%以苏州地铁一号线工程为研究背景,建立考虑管片分块、连接螺栓及施工过程各因素的三维非连续几何模型,对盾构法施工过程进行仿真模拟论述了盾构开挖系统模型的几何非线性方程组的推导过程,盾构顶进推力及注浆材料性质的计算方法.模拟计算结果显示:盾构管片内外侧表面大部分区域处于受压状态,拱顶与拱底部位及靠近连接螺栓的部分区域处于受拉状态;受盾构顶推力作用,盾构开挖面前方土体有一个典型的隆起区域,地表最大隆起值为2.5 mm,出现在盾构开挖面前方8.5m处;盾构开挖面后方土体沿隧道纵向的沉降受注浆材料影响随时间变化,并逐渐趋于稳定;在盾构法

  19. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  20. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  1. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  2. Vertex-based diffusion for 3-D mesh denoising.

    Science.gov (United States)

    Zhang, Ying; Ben Hamza, A

    2007-04-01

    We present a vertex-based diffusion for 3-D mesh denoising by solving a nonlinear discrete partial differential equation. The core idea behind our proposed technique is to use geometric insight in helping construct an efficient and fast 3-D mesh smoothing strategy to fully preserve the geometric structure of the data. Illustrating experimental results demonstrate a much improved performance of the proposed approach in comparison with existing methods currently used in 3-D mesh smoothing.

  3. A 3d-4f complex constructed by the assembly of a cationic template, [Cu(en){sub 2}]{sup 2+}, and a 3D anionic coordination polymer, [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}(C{sub 5}O{sub 5})(H{sub 2}O){sub 2}]{sup 2-}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Szu-Yu; Yeh, Chang-Tsung; Wang, Chih-Chieh [Department of Chemistry, Soochow University, Taipei, Taiwan (China); Lee, Gene-Hsiang [Instrumentation Center, National Taiwan University, Taipei, Taiwan (China); Sheu, Hwo-Shuenn [National Synchrotron Radiation Research Center, Hsinchu, Taiwan (China)

    2017-05-18

    A three-dimensional (3D) 3d-4f complex, [Cu(en){sub 2}][Sm{sub 2}(C{sub 5}O{sub 5})(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 2}].8H{sub 2}O (1) (en = ethylenediamine, C{sub 5}O{sub 5}{sup 2-} = dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione), were prepared via the in-situ ring-opening oxidation reaction of croconate in the presence of the template-directed complex, [Cu(en){sub 2}]{sup 2+} cation. The structural characterization determined by X-ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}(C{sub 5}O{sub 5})(H{sub 2}O){sub 2}]{sup 2-} in 1 can be describe in terms of in-plane 2D honeycomb-like [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}] layered frameworks bridged by oxalate with bis-chelating mode, being mutually interlinked via the bridge of μ{sub 1,2,3,4}-croconate ligands with bis-chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 x 11.893 Aa (longest atom-atom contact distances) along the b axis. The structure-directing complex, [Cu(en){sub 2}]{sup 2+}, and solvated water molecules are resided into these honeycomb-type hexagonal channels. The thermal stability of 1 was further studied by TGA and in-situ powder X-ray diffraction measurement. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Constructing Restricted Patterson Measures for Geometrically Infinite Kleinian Groups

    Institute of Scientific and Technical Information of China (English)

    Kurt FALK; Bernd O. STRATMANN

    2006-01-01

    In this paper, we study exhaustions, referred to as ρ-restrictions, of arbitrary nonelementary Kleinian groups with at most finitely many bounded parabolic elements. Special emphasis is put on the geometrically infinite case, where we obtain that the limit set of each of these Kleinian groups contains an infinite family of closed subsets, referred to as ρ-restricted limit sets, such that there in this family. Generalizing concepts which are well known in the geometrically finite case, we then introduce the notion of ρ-restricted Patterson measure, and show that these measures are non-atomic,δρ-harmonic, δρ-subconformal on special sets and δρ-conformal on very special sets. Furthermore, we obtain the results that each ρ-restriction of our Kleinian group is of δρ-divergence type and that the Hausdorff dimension of the ρ-restricted limit set is equal to δρ.

  5. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  6. The GB/3D Type Fossils Online Web Portal

    Science.gov (United States)

    McCormick, T.; Howe, M. P.

    2013-12-01

    Fossils are the remains of once-living organisms that existed and played out their lives in 3-dimensional environments. The information content provided by a 3d representation of a fossil is much greater than that provided by a traditional photograph, and can grab the attention and imagination of the younger and older general public alike. The British Geological Survey has been leading a consortium of UK natural history museums including the Oxford University Museum of Natural History, the Sedgwick Museum Cambridge, the National Museum of Wales Cardiff, and a number of smaller regional British museums to construct a web portal giving access to metadata, high resolution images and interactive 3d models of type fossils from the UK. The web portal at www.3d-fossils.ac.uk was officially launched in August 2013. It can be used to discover metadata describing the provenance, taxonomy, and stratigraphy of the specimens. Zoom-able high resolution digital photographs are available, including for many specimens ';anaglyph' stereo images that can be viewed in 3d using red-cyan stereo spectacles. For many of the specimens interactive 3d models were generated by scanning with portable ';NextEngine 3D HD' 3d scanners. These models can be downloaded in zipped .OBJ and .PLY format from the web portal, or may be viewed and manipulated directly in certain web browsers. The images and scans may be freely downloaded subject to a Creative Commons Attribution ShareAlike Non-Commercial license. There is a simple application programming interface (API) allowing metadata to be downloaded, with links to the images and models, in a standardised format for use in data mash-ups and third party applications. The web portal also hosts ';open educational resources' explaining the process of fossilization and the importance of type specimens in taxonomy, as well as providing introductions to the most important fossil groups. We have experimented with using a 3d printer to create replicas of the

  7. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  8. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  9. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    that significantly contributed to the hundred-year flooding in Dresden in 2002, we empirically evaluated the usefulness of this immersive 3D technology towards learning success. Results show that immersive 3D geovisualisation have educational and content-related advantages compared to 2D geovisualisations through the mentioned benefits. This innovative way of geovisualisation is thus not only entertaining and motivating for students, but can also be constructive for research studies by, for instance, facilitating the study of complex environments or decision-making processes.

  10. NEBU_3D afast pseudo-3D photoionization code for aspherical planetary nebulae and HII regions

    CERN Document Server

    Morisset, C; Peña, M

    2005-01-01

    We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. We also present a tool, VELNEB_3D, which can be applied to the results of 1D or 3D photoionization codes to generate emission line profiles, position-velocity maps and 3D maps in any emission line by assuming an arbitrary velocity field. As examples of the capabilities of these new tools, we consider three very different theoretical cases. The first one is a blister HII region, for which we have also constructed a spherical model (the spherical impostor) which has exactly the same Hbeta surface brightness distribution as the blister model and the same ionizing star. The second example shows how complex line profiles can be obtained even with a simple expansion law if the nebula is bipolar and the slit slightly off-center. The third example shows different ways to prod...

  11. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  12. Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds

    Science.gov (United States)

    Shah, Fahad; Sukthankar, Gita

    Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.

  13. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  14. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  15. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  16. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  17. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  18. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  19. Holography of 3d-3d correspondence at large N

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,26 Kyungheedaero, Dongdaemun-gu, Seoul, 130-701 (Korea, Republic of); Lee, Sangmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Center for Theoretical Physics, Department of Physics and Astronomy, College of Liberal Studies,Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2015-04-20

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N=2 superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS{sub 4} geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the perturbative free energy of a Chern-Simons theory on hyperbolic 3-manifold. The conjecture claims that the tree, one-loop and two-loop terms all share the same N{sup 3} scaling behavior and are proportional to the volume of the 3-manifold, while the three-loop and higher terms are suppressed at large N. Under mild assumptions, we prove the tree and one-loop parts of the conjecture. For the two-loop part, we test the conjecture numerically in a number of examples and find precise agreement. We also confirm the suppression of higher loop terms in a few examples.

  20. 3D-printer visualization of neuron models

    Directory of Open Access Journals (Sweden)

    Robert A McDougal

    2015-06-01

    Full Text Available Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the wireframe tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG. We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  1. 3D-printer visualization of neuron models.

    Science.gov (United States)

    McDougal, Robert A; Shepherd, Gordon M

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  2. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  3. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  4. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  5. 3D-printed biological organs: medical potential and patenting opportunity.

    Science.gov (United States)

    Yoo, Seung-Schik

    2015-05-01

    Three-dimensional (3D) bioprinting has emerged as a new disruptive technology that may address the ever-increasing demand for organ transplants. 3D bioprinting offers many technical features that allow for building functional biological tissue constructs by dispensing the individual or group of cells into specific locations along with various types of bio-scaffold materials and extracellular matrices, and thus, may provide flexibility needed for on-demand individualized construction of biological organs. Several key classes of 3D bioprinting techniques are reviewed, including potential medical and industrial applications. Several unanswered engineering components for the ultimate creation of printed biological organs are also discussed. The complicated nature of the human organs, in addition to the legal and ethical requirements for safe implantation into the human body, would require significant research and development to produce marketable bioprinted organs. This also suggests the possibility for further patenting and licensing opportunities from different sectors of the economy.

  6. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  7. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  8. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  9. The 3D-index and normal surfaces

    CERN Document Server

    Garoufalidis, Stavros; Hoffman, Neil; Rubinstein, Hyam

    2016-01-01

    Dimofte, Gaiotto and Gukov introduced a powerful invariant, the 3D-index, associated to a suitable ideal triangulation of a 3-manifold with torus boundary components. The 3D-index is a collection of formal power series in $q^{1/2}$ with integer coefficients. Our goal is to explain how the 3D-index is a generating series of normal surfaces associated to the ideal triangulation. This shows a connection of the 3D-index with classical normal surface theory, and fulfills a dream of constructing topological invariants of 3-manifolds using normal surfaces.

  10. [Development of a software for 3D virtual phantom design].

    Science.gov (United States)

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.

  11. RESEARCH ON CONSTRUCTION METHOD OF STOCHASTIC JOINTS 3D-NETWORK MODEL OF EQUIVALENT ROCK MASS%等效岩体随机节理三维网络模型构建方法研究

    Institute of Scientific and Technical Information of China (English)

    吴顺川; 周喻; 高永涛; MISRA A

    2012-01-01

    由于目前仍难以将建立的结构面网络模型直接应用于岩体力学行为的分析,构建反映节理真实空间状态的等效岩体模型是岩体工程稳定性分析与计算的研究基础.以内蒙古白云鄂博铁矿东矿为研究背景,通过现场节理测线法调查,运用概率统计理论对节理倾向、倾角、间距和迹长进行统计分析、偏差校正并建立概率分布模型.在此基础上,根据Monte Carlo随机模拟理论并采用Matlab软件,获取节理模拟数据,并通过OPEN GL三维可视化技术构建能充分反映工程岩体节理分布特征的等效岩体随机节理三维网络模型,模拟结果与实测数据具有良好的统计相似性.该研究成果可为等效岩体技术所利用,并为后续开展节理岩体变形特性、强度特性、尺寸效应、各向异性、表征单元体积(REV)、关键块体识别、开挖效应、破裂机理等量化分析研究奠定基础.%Because that it is hardly applicable for mechanical analysis of rock mass currently, equivalent rock mass model, which is constructed to reflect actual space status of joints, is the research foundation for stability analysis of rock mass engineering. Taking Baiyunebo eastern iron open pit in Inner Mongolia as research background, based on the field joint investigation by scanline, the dip direction, dip angle, spacing and trace length of field joints are statistically analyzed with bias correction; and then their corresponding probability distribution models are established by using probability statistics theory. Based on these work, Monte Carlo stochastic simulation theory and Matlab software are adopted to obtain simulated joints data. Based on OPEN GL technique, these data are then used to construct visual stochastic joints 3D-network model of equivalent rock mass, which reflects the distribution feature of field joints. The simulation result shows excellent statistical similarity with the measured data. These research

  12. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  13. 3D digitization of mosaics

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2012-11-01

    Full Text Available In this paper we present a methodology developed to access to Cultural Heritage information using digital 3d reality-based models as graphic interfaces. The case studies presented belong to the wide repertoire of mosaics of Ravenna. One of the most peculiar characteristics of mosaics that often limits their digital survey is their multi-scale complexity; nevertheless their models could be used in 3d information systems, for digital exhibitions, for reconstruction aims and to document their conservation conditions in order to conduct restoration interventions in digital environments aiming at speeding and performing more reliable evaluations.

  14. Modeling the Individual Within the Group: an Interdisciplinary Approach to Collaborative Knowledge Construction

    OpenAIRE

    Lund, Kristine

    2016-01-01

    Constructing knowledge with others is fundamental for all human activity, and many disciplines have sought to understand how the individual, other people, and the context, all influence collaborative knowledge construction, be it individual or group knowledge. The goal of this Habilitation à Diriger des Recherches is to present an analytical model of the relations of the individual to the group in situations of collaborative knowledge construction. The model is inspired by the work of Levinso...

  15. 3D Porphyrin-Based Covalent Organic Frameworks.

    Science.gov (United States)

    Lin, Guiqing; Ding, Huimin; Chen, Rufan; Peng, Zhengkang; Wang, Baoshan; Wang, Cheng

    2017-06-28

    The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.

  16. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...

  17. Facial reconstruction using 3-D computer graphics.

    Science.gov (United States)

    Vanezi, P; Vanezis, M; McCombe, G; Niblett, T

    2000-02-14

    Facial reconstruction using 3-D computer graphics is being used in our institute as a routine procedure in forensic cases as well as for skulls of historical and archaeological interest. Skull and facial data from living subjects is acquired using an optical laser scanning system. For the production of the reconstructed image, we employ facial reconstruction software which is constructed using the TCL/Tk scripting language, the latter making use of the C3D system. The computer image may then be exported to enable the production of a solid model, employing, for example, stereolithography. The image can also be modified within an identikit system which allows the addition of facial features as appropriate.

  18. The EISCAT_3D Science Case

    Science.gov (United States)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  19. 3-D Object Recognition from Point Cloud Data

    Science.gov (United States)

    Smith, W.; Walker, A. S.; Zhang, B.

    2011-09-01

    The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case

  20. 3D printing for clinical application in otorhinolaryngology.

    Science.gov (United States)

    Zhong, Nongping; Zhao, Xia

    2017-09-19

    Three-dimensional (3D) printing is a promising technology that can use a patient's image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.

  1. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  2. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  3. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  4. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  5. 3D Printing of Metals

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2017-09-01

    Full Text Available The potential benefits that could be derived if the science and technology of 3D printing were to be established have been the crux behind monumental efforts by governments, in most countries, that invest billions of dollars to develop this manufacturing technology.[...

  6. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  7. IMAGE SELECTION FOR 3D MEASUREMENT BASED ON NETWORK DESIGN

    Directory of Open Access Journals (Sweden)

    T. Fuse

    2015-05-01

    Full Text Available 3D models have been widely used by spread of many available free-software. On the other hand, enormous images can be easily acquired, and images are utilized for creating the 3D models recently. However, the creation of 3D models by using huge amount of images takes a lot of time and effort, and then efficiency for 3D measurement are required. In the efficiency strategy, the accuracy of the measurement is also required. This paper develops an image selection method based on network design that means surveying network construction. The proposed method uses image connectivity graph. By this, the image selection problem is regarded as combinatorial optimization problem and the graph cuts technique can be applied. Additionally, in the process of 3D reconstruction, low quality images and similarity images are extracted and removed. Through the experiments, the significance of the proposed method is confirmed. Potential to efficient and accurate 3D measurement is implied.

  8. Effects of Tagcloud-Anchored Group Discussions on Pre-Service Teachers' Collaborative Knowledge Construction

    Science.gov (United States)

    Lin, Shu-Yuan; Xie, Ying

    2017-01-01

    Group discussions are critical for students constructing new understanding and knowledge in both classroom and distance education. Tagclouds can provide an intuitive overview about the group's collective knowledge and could potentially be used as an anchor for group discussions. The effect of using tagclouds as anchors for group discussions was…

  9. Group Selection and Learning for a Lab-Based Construction Management Course

    Science.gov (United States)

    Solanki, Pranshoo; Kothari, Nidhi

    2014-01-01

    In construction industries' projects, working in groups is a normal practice. Group work in a classroom is defined as students working collaboratively in a group so that everyone can participate on a collective task. The results from literature review indicate that group work is more effective method of learning as compared to individual work.…

  10. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  11. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  12. From individual preference construction to group decisions: framing effects and group processes

    NARCIS (Netherlands)

    Milch, K.F.; Weber, E.U.; Appelt, K.C.; Handgraaf, M.J.J.; Krantz, D.H.

    2009-01-01

    Two choice tasks known to produce framing effects in individual decisions were used to test group sensitivity to framing, relative to that of individuals, and to examine the effect of prior, individual consideration of a decision on group choice. Written post-decision reasons and pre-decision group

  13. Construction of Student Groups Using Belbin: Supporting Group Work in Environmental Management

    Science.gov (United States)

    Smith, Mark; Polglase, Giles; Parry, Carolyn

    2012-01-01

    Belbin team role self and observer perceptions were applied to a large cohort (145) of Geography, Earth and Environmental Sciences undergraduates in a module assessed through two separate group projects. Students self-selected groups for the first project; for the second, groups were more "balanced." Results show slight improvement in…

  14. Multizone Paper Platform for 3D Cell Cultures

    Science.gov (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  15. The Free Universal Construction Kit

    DEFF Research Database (Denmark)

    Stephensen, Jan Løhmann; Hansen, Lone Koefoed

    2013-01-01

    With the increasing economic accessibility of 3D printers, the lessons learned and the logics cultivated on digital Web 2.0 now seems applicable to the world of material things. Released in early 2012 by the artist groups F.A.T. and Sy-lab, the Free Universal Construction Kit is a set of 3D...

  16. The Free Universal Construction Kit

    DEFF Research Database (Denmark)

    Stephensen, Jan Løhmann; Hansen, Lone Koefoed

    2013-01-01

    With the increasing economic accessibility of 3D printers, the lessons learned and the logics cultivated on digital Web 2.0 now seems applicable to the world of material things. Released in early 2012 by the artist groups F.A.T. and Sy-lab, the Free Universal Construction Kit is a set of 3D...

  17. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    Science.gov (United States)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  18. [Computer-assisted 3D phonetography].

    Science.gov (United States)

    Neuschaefer-Rube, C; Klajman, S

    1996-10-01

    Profiles of fundamental frequency sound pressure levels and voice duration are measured separately in clinical practice. It was the aim of the present study to combine the two examinations, in order to estimate the relationship between pitch, sound pressure level and voice duration and to develop a new computer-assisted graph. A three-dimensional (3D) wireframe phonogram was constructed based on SPL profiles to obtain a general view of the parameters recorded. We have termed this "phonetography". Variable further projections were selected for the analysis of different aspects of parametric relationships. The results in 21 healthy volunteers and 4 patients with hyperfunctional dysphonias demonstrated that there were three typical figures of the 3D phonograms produced, depending on the relationship between voice duration when soft ("piano") compared to loud ("forte"). In one-third of the healthy volunteers, the values of the piano voice duration were greater than those of forte for almost all pitches examined. In two-thirds of the healthy subjects the values of forte voice duration were partly greater, as were those of piano voice duration. All of the patients showed voice duration values greater for forte than for piano. The results of the study demonstrate that the 3D phonogram is a useful tool for obtaining new insights into various relationships of voice parameters.

  19. Freehand 3D ultrasound breast tumor segmentation

    Science.gov (United States)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  20. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  1. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  2. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  3. PubChem3D: Similar conformers

    Directory of Open Access Journals (Sweden)

    Bolton Evan E

    2011-05-01

    Full Text Available Abstract Background PubChem is a free and open public resource for the biological activities of small molecules. With many tens of millions of both chemical structures and biological test results, PubChem is a sizeable system with an uneven degree of available information. Some chemical structures in PubChem include a great deal of biological annotation, while others have little to none. To help users, PubChem pre-computes "neighboring" relationships to relate similar chemical structures, which may have similar biological function. In this work, we introduce a "Similar Conformers" neighboring relationship to identify compounds with similar 3-D shape and similar 3-D orientation of functional groups typically used to define pharmacophore features. Results The first two diverse 3-D conformers of 26.1 million PubChem Compound records were compared to each other, using a shape Tanimoto (ST of 0.8 or greater and a color Tanimoto (CT of 0.5 or greater, yielding 8.16 billion conformer neighbor pairs and 6.62 billion compound neighbor pairs, with an average of 253 "Similar Conformers" compound neighbors per compound. Comparing the 3-D neighboring relationship to the corresponding 2-D neighboring relationship ("Similar Compounds" for molecules such as caffeine, aspirin, and morphine, one finds unique sets of related chemical structures, providing additional significant biological annotation. The PubChem 3-D neighboring relationship is also shown to be able to group a set of non-steroidal anti-inflammatory drugs (NSAIDs, despite limited PubChem 2-D similarity. In a study of 4,218 chemical structures of biomedical interest, consisting of many known drugs, using more diverse conformers per compound results in more 3-D compound neighbors per compound; however, the overlap of the compound neighbor lists per conformer also increasingly resemble each other, being 38% identical at three conformers and 68% at ten conformers. Perhaps surprising is that the average

  4. Research on the construction of 3D management system on sanitation facilities in Fenghua%奉化市环卫设施三维管理系统建设研究

    Institute of Scientific and Technical Information of China (English)

    许建宣

    2013-01-01

    介绍城市环卫设施三维管理信息系统的开发技术路线、系统架构、网络架构、数据库设计和功能设计等内容.将虚拟现实技术引入系统开发中,实现环卫设施信息的三维化、信息化管理,提高城市环卫的信息化管理水平.%It presents the technological trend of development,system framwork,database design and functional design of the 3D management system on sanitation facilities in Fenghua.The virtual reality technology is introduced into the system development in order to realize 3D information management of the sanitation facilities,and to improve the urban sanitation management level of information.

  5. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  6. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    Science.gov (United States)

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  7. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  8. Uncertainty in 3D gel dosimetry

    Science.gov (United States)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  9. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  10. Personalized development of human organs using 3D printing technology.

    Science.gov (United States)

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct.

  11. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  12. On 3D Geo-visualization of a Mine Surface Plant and Mine Roadway

    Institute of Scientific and Technical Information of China (English)

    WANG Yunjia; FU Yongming; FU Erjiang

    2007-01-01

    Constructing the 3D virtual scene of a coal mine is the objective requirement for modernizing and processing information on coal mining production. It is also the key technology to establish a "digital mine". By exploring current worldwide research, software and hardware tools and application demands, combined with the case study site (the Dazhuang mine of Pingdingshan coal group), an approach for 3D geo-visualization of a mine surface plant and mine roadway is deeply discussed. In this study, the rapid modeling method for a large range virtual scene based on Arc/Info and SiteBuilder3D is studied, and automatic generation of a 3D scene from a 2D scene is realized. Such an automatic method which can convert mine roadway systems from 2D to 3D is realized for the Dazhuang mine. Some relevant application questions are studied, including attribute query, coordinate query, distance measure, collision detection and the dynamic interaction between 2D and 3D virtual scenes in the virtual scene of a mine surface plant and mine roadway. A prototype system is designed and developed.

  13. Development of 3D statistical mandible models for cephalometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il [School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Hong, Helen; Yoo, Ji Hyun [Division of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)

    2012-09-15

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  14. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  15. The Life Design Group: A Case Study Vignette in Group Career Construction Counseling

    Science.gov (United States)

    Barclay, Susan R.; Stoltz, Kevin B.

    2016-01-01

    Providing cost efficient, yet effective, student services, including career services, is a critical component in higher education. Career services must include the perspectives of the 21st-century work place. We advocate for the delivery of career development services in a group format using a narrative approach to career counseling with college…

  16. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  17. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  18. Twisted gauge theories in 3D Walker-Wang models

    CERN Document Server

    Wang, Zitao

    2016-01-01

    Three dimensional gauge theories with a discrete gauge group can emerge from spin models as a gapped topological phase with fractional point excitations (gauge charge) and loop excitations (gauge flux). It is known that 3D gauge theories can be "twisted", in the sense that the gauge flux loops can have nontrivial braiding statistics among themselves and such twisted gauge theories are realized in models discovered by Dijkgraaf and Witten. A different framework to systematically construct three dimensional topological phases was proposed by Walker and Wang and a series of examples have been studied. Can the Walker Wang construction be used to realize the topological order in twisted gauge theories? This is not immediately clear because the Walker-Wang construction is based on a loop condensation picture while the Dijkgraaf-Witten theory is based on a membrane condensation picture. In this paper, we show that the answer to this question is Yes, by presenting an explicit construction of the Walker Wang models wh...

  19. Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells? ?Electronic supplementary information (ESI) available: qPCR primers and Fig.?S1. See DOI: 10.1039/c7ra04372d Click here for additional data file.

    OpenAIRE

    Kuss, Mitchell A.; Harms, Robert; Wu, Shaohua; Wang, Ying; Untrauer, Jason B.; Carlson, Mark A.; Duan, Bin

    2017-01-01

    Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or ...

  20. New software for 3D fracture network analysis and visualization

    Science.gov (United States)

    Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.

    2013-12-01

    This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  1. 3D printing of functional biomaterials for tissue engineering.

    Science.gov (United States)

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed.

  2. An Automatic Registration Algorithm for 3D Maxillofacial Model

    Science.gov (United States)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  3. Highway 3D model from image and lidar data

    Science.gov (United States)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  4. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  5. A Construction of String 2-Group Models using a Transgression-Regression Technique

    CERN Document Server

    Waldorf, Konrad

    2012-01-01

    In this note we present a new construction of the string group that ends optionally in two different contexts: strict diffeological 2-groups or finite-dimensional Lie 2-groups. It is canonical in the sense that no choices are involved; all the data is written down and can be looked up (at least somewhere). The basis of our construction is the basic gerbe of Gawedzki-Reis and Meinrenken. The main new insight is that under a transgression-regression procedure, the basic gerbe picks up a multiplicative structure coming from the Mickelsson product over the loop group. The conclusion of the construction is a relation between multiplicative gerbes and 2-group extensions for which we use recent work of Schommer-Pries.

  6. Twisting 2-cocycles for the construction of new non-standard quantum groups

    CERN Document Server

    Jacobs, A D; Jacobs, Andrew D.

    1997-01-01

    We introduce a new class of 2-cocycles defined explicitly on the generators of certain multiparameter standard quantum groups. These allow us, through the process of twisting the familiar standard quantum groups, to generate new as well as previously known examples of non-standard quantum groups. In particular we are able to construct generalizations of both the Cremmer-Gervais deformation of SL(3), and the so called esoteric quantum groups of Fronsdal and Galindo, in an explicit and straightforward manner.

  7. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  8. 3D medical thermography device

    Science.gov (United States)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  9. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  10. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  11. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically

  12. Voro3D: 3D Voronoi tessellations applied to protein structures.

    Science.gov (United States)

    Dupuis, Franck; Sadoc, Jean-François; Jullien, Rémi; Angelov, Borislav; Mornon, Jean-Paul

    2005-04-15

    Voro3D is an original easy-to-use tool, which provides a brand new point of view on protein structures through the three-dimensional (3D) Voronoi tessellations. To construct the Voronoi cells associated with each amino acid by a number of different tessellation methods, Voro3D uses a protein structure file in the PDB format as an input. After calculation, different structural properties of interest like secondary structures assignment, environment accessibility and exact contact matrices can be derived without any geometrical cut-off. Voro3D provides also a visualization of these tessellations superimposed on the associated protein structure, from which it is possible to model a polygonal protein surface using a model solvent or to quantify, for instance, the contact areas between a protein and a ligand. The software executable file for PC using Windows 98, 2000, NT, XP can be freely downloaded at http://www.lmcp.jussieu.fr/~mornon/voronoi.html franck.dupuis@sanofi-aventis.com; jean-paul-mornon@imcp.jussieu.fr.

  13. A Novel 3D Zn-La Heterometallic Coordination Polymer Involving in situ Glycinate Ligand Synthesis

    Institute of Scientific and Technical Information of China (English)

    SONG Wen-Donga; LI Shi-Jie; GUO Jian; TONG Shao-Wei; JI Li-Li; MIAO Dong-Liang; AN Jing-Bo; NG Seik Weng

    2012-01-01

    One novel 3D 3d-4f coordination polymer, [LaZn(glc)(ox)2(H20)2]n (1, glc = glycinate, ox = oxalate), was obtained by the in situ synthesis of glycinate from the reaction of tetrazole-l-acetic acid, sodium oxalate, zinc nitrate and lanthanide oxide in the presence of a trace quantity of nitric acid under hydrothermal conditions. Compound 1 is of monoclinic, space group P21/n with a = 0.99601(9), b = 1.14592(10), c = 1.19107(10) nm and β = 108.7150(10)°. 1 exhibits an unusual 3D heterometallic coordination framework constructed by heterometallic dinuclear LaZn subunits and mixed ox and glc linkers with a uninodal 6-connected vine {33.43.58.6} net.

  14. Holography of 3D asymptotically flat black holes

    Science.gov (United States)

    Fareghbal, Reza; Hosseini, Seyed Morteza

    2015-04-01

    We study the asymptotically flat rotating hairy black hole solution of a three-dimensional gravity theory which is given by taking the flat-space limit (zero cosmological constant limit) of new massive gravity. We propose that the dual field theory of the flat-space limit of new massive gravity can be described by a contracted conformal field theory which is invariant under the action of the BMS3 group. Using the flat/contracted conformal field theory correspondence, we construct a stress tensor which yields the conserved charges of the asymptotically flat black hole solution. We check that our expressions of the mass and angular momentum fit with the first law of black hole thermodynamics. Furthermore, by taking the appropriate limit of the Cardy formula in the parent conformal field theory, we find a Cardy-like formula which reproduces the Wald's entropy of the 3D asymptotically flat black hole.

  15. A simultaneous 2D/3D autostereo workstation

    Science.gov (United States)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  16. Modeling 3D Objects for Navigation Purposes Using Laser Scanning

    Directory of Open Access Journals (Sweden)

    Cezary Specht

    2016-07-01

    Full Text Available The paper discusses the creation of 3d models and their applications in navigation. It contains a review of available methods and geometric data sources, focusing mostly on terrestrial laser scanning. It presents detailed description, from field survey to numerical elaboration, how to construct accurate model of a typical few storey building as a hypothetical reference in complex building navigation. Hence, the paper presents fields where 3d models are being used and their potential new applications.

  17. 3D laser methods for calibrating and localising robotic vehicles

    OpenAIRE

    Mark Sheehan

    2013-01-01

    This thesis is about the construction and automatic target-less calibration of a 3D laser sensor; this is then used to localise an autonomous vehicle without using other sensors. Two novel contributions to our knowledge of robotics are presented here. The first is an automatic calibration routine, which is capable of learning its calibration parameters using only data from a 3D laser scanner. Targets with known dimensions are not required, as has previously been the case. The second main ...

  18. A method of 3D modeling and codec

    Institute of Scientific and Technical Information of China (English)

    QI Yue; YANG Shen; CAI Su; HOU Fei; SHEN XuKun; ZHAO QinPing

    2009-01-01

    3D modeling and codec of real objects are hot Issues in the field of virtual reality. In this paper, we propose an automatic registration two range Images method and a cycle based automatic global reg-istration algorithm for rapidly and automatically registering all range Images and constructing a real-istic 3D model. Besides, to meet the requirement of huge data transmission over Internet, we present a 3D mesh encoding/decoding method for encoding geometry, topology and attribute data with high compression ratio and supporting progressive transmission. The research results have already been applied successfully in digital museum.

  19. Discrete elements for 3D microfluidics.

    Science.gov (United States)

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  20. Self-fabrication of 3D Patterns on Aligned Carbon Nanotubes Films

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Because of its outstanding performance, an aligned nanotube film with micropatterns has been a research focus in the field of nano-science and technology. Although quite a number of researchers have been successful in constructing such patterns, the precondition for the success, until recently, is to obtain the patterned substrates in advance.A research group at the CAS Institute of Chemistry (ICCAS) has succeeded in self-assembly of threedimensional (3-D) micropatterns on aligned carbon nanotube films.

  1. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  2. 3D-SPACE与3D-CISS序列内耳成像的比较研究%Comparative study of MRI 3D-SPACE,3D-CISS sequences at inner-ear

    Institute of Scientific and Technical Information of China (English)

    程亚宝; 范伟雄; 刘可夫; 孙岩

    2016-01-01

    目的:比较MRI三维可变翻转角快速自旋回波序列(3-dimensional sampling perfection with application optimized contrast using different flip angle evolutions,3D-SPACE)、三维稳态进动结构相干(3D-constructive interference in the steady sate,3D-CISS)成像序列在内耳半规管的成像质量.方法:在1.5 T MRI仪上对15例志愿者进行检查.比较3D-SPACE和3D-CISS序列在前庭和脑干的对比信噪比(contrast to noise ratio,CNR).用三分法评价2种序列对半规管、面神经、位听神经的显示,同样用三分法对诊断信心进行评价.结果:3D-SPACE序列的CNR和对半规管的显示与3D-CISS差异有统计学意义(P<0.05);而在面神经和听神经的显示上2种序列差异无统计学意义(P=0.059);3D-SPACE序列的诊断信心比3D-CISS序列更高(P<0.05).结论:相比3D-CISS序列,3D-SPACE序列能更好地显示内耳半规管结构.

  3. Development of visual 3D virtual environment for control software

    Science.gov (United States)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  4. Item Construction Using Reflective, Formative, or Rasch Measurement Models: Implications for Group Work

    Science.gov (United States)

    Peterson, Christina Hamme; Gischlar, Karen L.; Peterson, N. Andrew

    2017-01-01

    Measures that accurately capture the phenomenon are critical to research and practice in group work. The vast majority of group-related measures were developed using the reflective measurement model rooted in classical test theory (CTT). Depending on the construct definition and the measure's purpose, the reflective model may not always be the…

  5. Abstracting Processes, from Individuals' Constructing of Knowledge to a Group's "Shared Knowledge"

    Science.gov (United States)

    Hershkowitz, Rina; Hadas, Nurit; Dreyfus, Tommy; Schwarz, Baruch

    2007-01-01

    A model for processes of abstraction, based on epistemic actions, has been proposed elsewhere. Here we apply this model to processes in which groups of individual students construct shared knowledge and consolidate it. The data emphasizes the interactive flow of knowledge from one student to the others in the group, until they reach a shared…

  6. 2-D and 3-D phosphotungstate-based TM-Ln heterometallic derivatives constructed from dimeric [Ln({alpha}-PW{sub 11}O{sub 39}){sub 2}]{sup 11-} fragments and copper-organic complex linkers

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Sensen [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Zhao, Junwei, E-mail: zhaojunwei@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen, Lijuan [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Basic Experiment Teaching Center, Henan University, Kaifeng, Henan 475004 (China); Li, Yuye; Zhang, Jingli; Li, Yanzhou [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Niu, Jingyang, E-mail: jyniu@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2012-12-15

    Three organic-inorganic hybrid TM-Ln heterometallic phosphotungstates [Cu(dap){sub 2}(H{sub 2}O)][Cu(dap){sub 2}]{sub 3.5}[La({alpha}-HPW{sub 11}O{sub 39}){sub 2}]{center_dot}6H{sub 2}O (1) [Cu(dap){sub 2}(H{sub 2}O)]{sub 0.5}[Cu(dap){sub 2}]{sub 4}[Nd({alpha}-HPW{sub 11}O{sub 39}){sub 2}]{center_dot}4H{sub 2}O (2) and [Cu(dap){sub 2}(H{sub 2}O)]{sub 2}[Cu(dap){sub 2}]{sub 3.5}[Eu({alpha}-PW{sub 11}O{sub 39}){sub 2}]{center_dot}6H{sub 2}O (3) (dap=1,2-diaminopropane) have been hydrothermally synthesized and structurally characterized by elemental analyses, IR spectra, optical diffuse reflectance spectra, powder X-ray diffraction (PXRD), thermogravimetric (TG) analyses and single-crystal X-ray diffraction. Their common features are that 1-3 all consist of asymmetric sandwich-type subunits [Ln({alpha}-PW{sub 11}O{sub 39}){sub 2}]{sup 11-} and [Cu(dap){sub 2}]{sup 2+} bridges. Both 1 and 2 display the 2-D (4,4)-topological sheets whereas 3 exhibits the 3-D 5-connected (4{sup 6}{center_dot}6{sup 4}) topological framework. The magnetic properties of 2 and 3 and the luminescence performance of 3 have been measured. - Graphical Abstract: Three TM-Ln heterometallic phosphotungstates 1-3 have been synthesized and characterized by elemental analyses, IR spectra, optical diffuse reflectance spectra, X-ray diffraction, thermogravimetric analyses magnetic susceptibility and luminescent properties. Highlights: Black-Right-Pointing-Pointer Cu{sup II}-Ln{sup III} heterometallic polyoxometalates. Black-Right-Pointing-Pointer 2-D and 3-D organic-inorganic hybrid phosphotungstates. Black-Right-Pointing-Pointer 2-D and 3-D structures consisting of Cu{sup II}-Ln{sup III} heterometals.

  7. Application of Angular Momentum Theory to Constructing Basis Functions of Irreducible Representations of Icosahedral Group

    Institute of Scientific and Technical Information of China (English)

    LI An-yong

    2004-01-01

    A new method based on angular momentum theory was proposed to construct the basis functions of the irreducible representations(IRs) of point groups. The transformation coefficients, i. e. , coefficients S, are the components of the eigenvectors of some Hermitian matrices, and can be made as real numbers for all pure rotation point groups. The general formula for coefficient S was deduced, and applied to constructing the basis functions of single-valued irreducible representations of icosahedral group from the spherical harmonics with angular momentum j≤7.

  8. 3D printing in space

    National Research Council Canada - National Science Library

    Aeronautics and Space Engineering Board; National Materials and Manufacturing Board; Division on Engineering and Physical Sciences; National Research Council; National Research Council

    2014-01-01

    .... The benefits of in-space additive manufacturing for robotic spacecraft are far less clear, although this rapidly advancing technology can also potentially enable space-based construction of large...

  9. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  10. Construction of virtual simulation system of gas chromatograph based on Unity 3D%基于Unity 3D的气相色谱仪虚拟仿真实验系统的构建

    Institute of Scientific and Technical Information of China (English)

    周思洁; 杨泽亮; 董子和; 周明达; 曾冬铭

    2016-01-01

    Virtual simulation technology has been widely proposed as a significant technological advance that can offer a novel form for education. Especially in the case of chemistry,virtual reality technology facilitates learning process surpassing major restrictions characterizing tradi-tional educational methods. In this system,some popular softwares including 3Ds Max and Unity 3D are used to develop a fully immersive,interactive and three-dimensional simulation system of gas chromatography( GC). Three modules are included in this system. First module is the introduction of the instrument. Second module is a three-dimensional display of the struc-tures,which are modeled by 3Ds Max and interacted by Unity 3D. The last module focuses on the simulation experiments,and this module is made by Unity 3D. All models created in this system are three-dimensional and the scenes are lifelike,so that all aspects of the instrument are presented to users clearly. Using this system to learn about the principles and structures of the instrument,users would feel that they were in a real laboratory and could master all related skills more easily. This system is not only a powerful tool to satisfy the need of instrument training and experimental teaching of chemistry,but also an excellent example of virtual simu-lation applied in chemistry.%虚拟仿真技术被广泛认为是一项重大技术进步,可以提供一种新颖的教学方式,能促进化学学习,打破传统教育方法的限制。三维交互式的气相色谱仪虚拟仿真实验系统使用当前主流的 Unity 3D 软件作为系统的主要开发工具。构建的系统主要包含仪器的动态原理展示、三维结构展示及仿真实验3部分。系统中的模型全部采用三维设计,场景逼真,能够全方位地向使用者展现真实仪器的外形及内部结构,令使用者如同置身于真实实验室中,获得身临其境的操作体验,从而更容易学习和掌握仪器组成、工

  11. Determination of acute lethal and chronic lethal dose thresholds of valproic acid using 3D spheroids constructed from the immortal human hepatocyte cell line HepG2/C3A

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, K.

    2013-01-01

    Valproic acid (VPA) is a broad-spectrum antiepileptic drug that is now used commonly for several other neurological and psychiatric indications. While VPA is usually well tolerated, on rare occasions, it has been associated with severe, and sometimes, fatal liver injuries. These complications may...... describe here a culture system based on 3D spheroid culture of immortal hepatocytes which can determine the toxicity of valproic acid (or structurally or functionally related molecules) in vitro. The spheroids were used to follow changes in ATP production, glucose uptake and adenylate kinase following...... also arise due to acute VPA overdose. As a branched chain carboxylic acid, VPA is readily metabolized in the liver via glucuronic acid conjugation, mitochondrial β- and cytosolic ω-oxidation to produce multiple metabolites, and it is probably some of these metabolites that are involved in its toxicity...

  12. Construction and Analysis of Probe Array Induced 3D Electrospun Nanofiber Structure%探针阵列诱导构建三维电纺纳米纤维结构分析

    Institute of Scientific and Technical Information of China (English)

    吴德志; 胡兴旺; 黄翔宇; 王凌云; 孙道恒; 刘益芳

    2012-01-01

    Three-dimensional(3D) nanofiber structure has vast potential applications due to its large surface area to volume ratio,controllable pore diameter and pore density.Probe array with adjustable height and position,which is controlled by switch controller to be connected with auxiliary voltage,is utilized as electrospinning collector.Desired 3D nanofiber structure can be fabricated by changing individual probe hcight,probe-to-probe distance and connectivity with auxiliary voltage.The preliminary experimental results show that the maximum/minimum of probe-to-probe distance decreases with the increase of applied voltage but increases with the increase of spinneret-to-collector distance.Meanwhile,auxiliary voltage decreases as spinneret-to-collector distance and probe-to-probe distance increase,but increases with the increase of height difference.%三维纳米纤维结构具有超高比表面积、可控孔径和孔密度,潜在应用非常广泛.以高度和位置可调的探针阵列为静电纺丝收集器,同时探针阵列通过控制开关与辅助电压相接,通过改变各探针高度、探针间距和与辅助电压的导通状态,制备所需的三维纳米纤维结构.初步实验结果表明,最大/最小探针间距随着电压的增大而减小,而随喷头与收集器间距的增大而增大.同时,增大探针高度差或减小喷头与收集器间距/探针间距将导致辅助电压变大.

  13. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  14. Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing.

    Science.gov (United States)

    Du, Ping; Suhaeri, Muhammad; Ha, Sang Su; Oh, Seung Ja; Kim, Sang-Heon; Park, Kwideok

    2017-05-01

    Extracellular matrix (ECM) is crucial to many aspects of vascular morphogenesis and maintenance of vasculature function. Currently the recapitulation of angiogenic ECM microenvironment is still challenging, due mainly to its diverse components and complex organization. Here we investigate the angiogenic potential of human lung fibroblast-derived matrix (hFDM) in creating a three-dimensional (3D) vascular construct. hFDM was obtained via decellularization of in vitro cultured human lung fibroblasts and analyzed via immunofluorescence staining and ELISA, which detect multiple ECM macromolecules and angiogenic growth factors (GFs). Human umbilical vein endothelial cells (HUVECs) morphology was more elongated and better proliferative on hFDM than on gelatin-coated substrate. To prepare 3D construct, hFDM is collected, quantitatively analyzed, and incorporated in collagen hydrogel (Col) with HUVECs. Capillary-like structure (CLS) formation at 7day was significantly better with the groups containing higher doses of hFDM compared to the Col group (control). Moreover, the group (Col/hFDM/GFs) with both hFDM and angiogenic GFs (VEGF, bFGF, SDF-1) showed the synergistic activity on CLS formation and found much larger capillary lumen diameters with time. Further analysis of hFDM via angiogenesis antibody array kit reveals abundant biochemical cues, such as angiogenesis-related cytokines, GFs, and proteolytic enzymes. Significantly up-regulated expression of VE-cadherin and ECM-specific integrin subunits was also noticed in Col/hFDM/GFs. In addition, transplantation of Col/hFMD/GFs with HUVECs in skin wound model presents more effective re-epithelialization, many regenerated hair follicles, better transplanted cells viability, and advanced neovascularization. We believe that current system is a very promising platform for 3D vasculature construction in vitro and for cell delivery toward therapeutic applications in vivo. Functional 3D vasculature construction in vitro is still

  15. 3D printing technology used in severe hip deformity.

    Science.gov (United States)

    Wang, Shanshan; Wang, Li; Liu, Yan; Ren, Yongfang; Jiang, Li; Li, Yan; Zhou, Hao; Chen, Jie; Jia, Wenxiao; Li, Hui

    2017-09-01

    This study was designed to assess the use of a 3D printing technique in total hip arthroplasty (THA) for severe hip deformities, where new and improved approaches are needed. THAs were performed from January 2015 to December 2016. Bioprosthesis artificial hip joints were used in both conventional and 3D printing hip arthroplasties. A total of 74 patients (57 cases undergoing conventional hip replacements and 17 undergoing 3D printing hip replacements) were followed-up for an average of 24 months. The average age of the patients was 62.7 years. Clinical data between the patients treated with different approaches were compared. Results showed that the time to postoperative weight bearing and the Harris scores of the patients in the 3D printing group were better than those for patients in the conventional hip replacement group. Unfortunately, the postoperative infection and loosening rates were higher in the 3D printing group. However, there were no significant differences in femoral neck anteversion, neck shaft, acetabular or sharp angles between ipsilateral and contralateral sides in the 3D printing group (P>0.05). The femoral neck anteversion angle was significantly different between the two sides in the conventional hip replacement group (P3D printing approach provides a better short-term curative effect that is more consistent with the physiological structure and anatomical characteristics of the patient, and we anticipate that its use will help improve the lives of many patients.

  16. 3D printing of microscopic bacterial communities

    Science.gov (United States)

    Connell, Jodi L.; Ritschdorff, Eric T.; Whiteley, Marvin; Shear, Jason B.

    2013-01-01

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell–cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to β-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  17. Denunciation and the construction of norms in group conflict: examples from an Al-Qaeda-supporting group.

    Science.gov (United States)

    Finlay, W M L

    2014-12-01

    In situations of violent group conflict, group members often argue about how to deal with the outgroup. While some argue for aggression, force, and separation, others argue for negotiation and cooperation. Each side attempts to persuade the group that their own position is normative and is most in line with the interests and essence of the group. These arguments often involve denunciations of opponents as disloyal or deviant. In such situations, definitions of group identities and norms, and what counts as loyalty and deviance, are therefore disputed. This article analyses how a UK-based Al-Qaeda-supporting organization denounces 'moderate' Muslims in the United Kingdom who engage with secular institutions and who ally themselves with non-Muslims in political disputes. Drawing on theological, historical, and political arguments, a prescriptive norm is constructed whereby the correct behaviour of Muslims in the West is to avoid participation in secular political systems and to avoid political cooperation with non-Muslims. Muslims who are seen as breaking these norms are denounced and denigrated in a variety of ways by assigning them a range of deviant identity positions. Denunciations involve explanatory accounts which construct opponents as unworthy representatives of the group based on their deviation from Islam, or from ignorance, cowardice, mental weakness, or self-interest. This article illustrates that the practice of denunciation is an important aspect of the organization of group conflict. Finally, it argues that it is dangerous for social psychologists to treat group norms and prototypes as consensual. © 2014 The British Psychological Society.

  18. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  19. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... materials have been developed and tested for enhancing the differentiation of hiPSC-derived hepatocytes and fabricating biodegradable scaffolds for in-vivo tissue engineering applications. Along with various scaffolds fabrication methods we finally presented an optimized study of hepatic differentiation...... doxycycline was loaded into the hydrogel of the IPN materials, and the biological activity of released doxycycline was tested using a doxycycline regulated green fluorescent reporter gene expression assay in HeLa cells. Additionally, decellularized liver extracellular matrix (ECM) and natural silk protein...

  20. Neural Network Based Reconstruction of a 3D Object from a 2D Wireframe

    CERN Document Server

    Johnson, Kyle; Lipson, Hod

    2010-01-01

    We propose a new approach for constructing a 3D representation from a 2D wireframe drawing. A drawing is simply a parallel projection of a 3D object onto a 2D surface; humans are able to recreate mental 3D models from 2D representations very easily, yet the process is very difficult to emulate computationally. We hypothesize that our ability to perform this construction relies on the angles in the 2D scene, among other geometric properties. Being able to reproduce this reconstruction process automatically would allow for efficient and robust 3D sketch interfaces. Our research focuses on the relationship between 2D geometry observable in the sketch and 3D geometry derived from a potential 3D construction. We present a fully automated system that constructs 3D representations from 2D wireframes using a neural network in conjunction with a genetic search algorithm.