WorldWideScience

Sample records for group consciousness theories

  1. Using group consciousness theories to understand political activism: case studies of Barack Obama, Hillary Clinton, and Ingo Hasselbach.

    Science.gov (United States)

    Duncan, Lauren E

    2010-12-01

    I describe and integrate several theories of group consciousness and collective action, along with 3 case studies of political activists. I have 2 goals: (1) to use the theories to help us understand something puzzling about each life and (2) to use the cases to complicate and expand the theories. Barack Obama's case raises the question of how someone with a politicized Black identity evolved into a politician working for all oppressed people and complicates racial identity development theory. Hillary Clinton's case raises the question of how a middle-class White girl raised in a conservative family became a prominent Democratic Party politician and complicates group consciousness theories by demonstrating the importance of generation and personality. Ingo Hasselbach's (a former German neo-Nazi leader) case illustrates relative deprivation theory and raises the question of whether theories developed to explain subordinate group consciousness can be applied to movements of dominant group consciousness.

  2. An information integration theory of consciousness

    Directory of Open Access Journals (Sweden)

    Tononi Giulio

    2004-11-01

    Full Text Available Abstract Background Consciousness poses two main problems. The first is understanding the conditions that determine to what extent a system has conscious experience. For instance, why is our consciousness generated by certain parts of our brain, such as the thalamocortical system, and not by other parts, such as the cerebellum? And why are we conscious during wakefulness and much less so during dreamless sleep? The second problem is understanding the conditions that determine what kind of consciousness a system has. For example, why do specific parts of the brain contribute specific qualities to our conscious experience, such as vision and audition? Presentation of the hypothesis This paper presents a theory about what consciousness is and how it can be measured. According to the theory, consciousness corresponds to the capacity of a system to integrate information. This claim is motivated by two key phenomenological properties of consciousness: differentiation – the availability of a very large number of conscious experiences; and integration – the unity of each such experience. The theory states that the quantity of consciousness available to a system can be measured as the Φ value of a complex of elements. Φ is the amount of causally effective information that can be integrated across the informational weakest link of a subset of elements. A complex is a subset of elements with Φ>0 that is not part of a subset of higher Φ. The theory also claims that the quality of consciousness is determined by the informational relationships among the elements of a complex, which are specified by the values of effective information among them. Finally, each particular conscious experience is specified by the value, at any given time, of the variables mediating informational interactions among the elements of a complex. Testing the hypothesis The information integration theory accounts, in a principled manner, for several neurobiological observations

  3. Freudian theory and consciousness: A conceptual analysis

    OpenAIRE

    Avinash De Sousa

    2011-01-01

    This paper aims at taking a fresh look at Freudian psychoanalytical theory from a modern perspective. Freudian psychology is a science based on the unconscious (id) and the conscious (ego). Various aspects of Freudian thinking are examined from a modern perspective and the relevance of the psychoanalytical theory of consciousness is projected. Do psychoanalysis and the unconsciousness have something to teach us about consciousness? Approaching Freud from a historical, psychoanalytical, anthro...

  4. Freudian theory and consciousness: A conceptual analysis

    Directory of Open Access Journals (Sweden)

    De Sousa Avinash

    2011-01-01

    Full Text Available This paper aims at taking a fresh look at Freudian psychoanalytical theory from a modern perspective. Freudian psychology is a science based on the unconscious (id and the conscious (ego. Various aspects of Freudian thinking are examined from a modern perspective and the relevance of the psychoanalytical theory of consciousness is projected. Do psychoanalysis and the unconsciousness have something to teach us about consciousness? Approaching Freud from a historical, psychoanalytical, anthropological and sociological perspective, we need to look at how Freudian theory may contribute to a better understanding of consciousness. We also need to look at psychoanalytical psychotherapy and its contribution to a better understanding of body-mind dualism and consciousness as a whole. Ego psychology is considered in the present day context and it is synthesized with various psychological studies to give us a better understanding of consciousness.

  5. Freudian theory and consciousness: A conceptual analysis

    Directory of Open Access Journals (Sweden)

    Avinash De Sousa

    2011-03-01

    Full Text Available This paper aims at taking a fresh look at Freudian psychoanalytical theory from a modern perspective. Freudian psychology is a science based on the unconscious (id and the conscious (ego. Various aspects of Freudian thinking are examined from a modern perspective and the relevance of the psychoanalytical theory of consciousness is projected. Do psychoanalysis and the unconsciousness have something to teach us about consciousness? Approaching Freud from a historical, psychoanalytical, anthropological and sociological perspective, we need to look at how Freudian theory may contribute to a better understanding of consciousness. We also need to look at psychoanalytical psychotherapy and its contribution to a better understanding of body-mind dualism and consciousness as a whole. Ego psychology is considered in the present day context and it is synthesized with various psychological studies to give us a better understanding of consciousness.

  6. Freudian theory and consciousness: a conceptual analysis**.

    Science.gov (United States)

    De Sousa, Avinash

    2011-01-01

    This paper aims at taking a fresh look at Freudian psychoanalytical theory from a modern perspective. Freudian psychology is a science based on the unconscious (id) and the conscious (ego). Various aspects of Freudian thinking are examined from a modern perspective and the relevance of the psychoanalytical theory of consciousness is projected. Do psychoanalysis and the unconsciousness have something to teach us about consciousness? Approaching Freud from a historical, psychoanalytical, anthropological and sociological perspective, we need to look at how Freudian theory may contribute to a better understanding of consciousness. We also need to look at psychoanalytical psychotherapy and its contribution to a better understanding of body-mind dualism and consciousness as a whole. Ego psychology is considered in the present day context and it is synthesized with various psychological studies to give us a better understanding of consciousness.

  7. Edmund Husserl's theory of image consciousness, aesthetic consciousness, and art

    OpenAIRE

    2014-01-01

    The central theme of my dissertation is Husserl’s phenomenological analysis of how we experience images. The aim of my dissertation is twofold: 1) to offer a contribution to the understanding of Husserl’s theory of image consciousness, aesthetic consciousness and art, and 2) to find out whether Husserl’s theory of the experience of images is applicable to modern and contemporary art, particularly to strongly site-specific art, unaided ready-mades, and contemporary films and theatre plays in w...

  8. System, subsystem, hive: boundary problems in computational theories of consciousness

    Directory of Open Access Journals (Sweden)

    Tomer Fekete

    2016-07-01

    Full Text Available A computational theory of consciousness should include a quantitative measure of consciousness, or MoC, that (i would reveal to what extent a given system is conscious, (ii would make it possible to compare not only different systems, but also the same system at different times, and (iii would be graded, because so is consciousness. However, unless its design is properly constrained, such an MoC gives rise to what we call the boundary problem: an MoC that labels a system as conscious will do so for some – perhaps most – of its subsystems, as well as for irrelevantly extended systems (e.g., the original system augmented with physical appendages that contribute nothing to the properties supposedly supporting consciousness, and for aggregates of individually conscious systems (e.g., groups of people. This problem suggests that the properties that are being measured are epiphenomenal to consciousness, or else it implies a bizarre proliferation of minds. We propose that a solution to the boundary problem can be found by identifying properties that are intrinsic or systemic: properties that clearly differentiate between systems whose existence is a matter of fact, as opposed to those whose existence is a matter of interpretation (in the eye of the beholder. We argue that if a putative MoC can be shown to be systemic, this ipso facto resolves any associated boundary issues. As test cases, we analyze two recent theories of consciousness in light of our definitions: the Integrated Information Theory and the Geometric Theory of consciousness.

  9. Toward a Unified Consciousness Theory

    Science.gov (United States)

    Johnson, Richard H.

    1977-01-01

    The beginning of a holistic theory that can treat paranormal phenomena as normal human development is presented. Implications for counseling, counselor education, and counselor supervision are discussed. (Author)

  10. Integrated information theory: from consciousness to its physical substrate.

    Science.gov (United States)

    Tononi, Giulio; Boly, Melanie; Massimini, Marcello; Koch, Christof

    2016-07-01

    In this Opinion article, we discuss how integrated information theory accounts for several aspects of the relationship between consciousness and the brain. Integrated information theory starts from the essential properties of phenomenal experience, from which it derives the requirements for the physical substrate of consciousness. It argues that the physical substrate of consciousness must be a maximum of intrinsic cause-effect power and provides a means to determine, in principle, the quality and quantity of experience. The theory leads to some counterintuitive predictions and can be used to develop new tools for assessing consciousness in non-communicative patients.

  11. A higher-order theory of emotional consciousness.

    Science.gov (United States)

    LeDoux, Joseph E; Brown, Richard

    2017-03-07

    Emotional states of consciousness, or what are typically called emotional feelings, are traditionally viewed as being innately programmed in subcortical areas of the brain, and are often treated as different from cognitive states of consciousness, such as those related to the perception of external stimuli. We argue that conscious experiences, regardless of their content, arise from one system in the brain. In this view, what differs in emotional and nonemotional states are the kinds of inputs that are processed by a general cortical network of cognition, a network essential for conscious experiences. Although subcortical circuits are not directly responsible for conscious feelings, they provide nonconscious inputs that coalesce with other kinds of neural signals in the cognitive assembly of conscious emotional experiences. In building the case for this proposal, we defend a modified version of what is known as the higher-order theory of consciousness.

  12. A higher-order theory of emotional consciousness

    Science.gov (United States)

    LeDoux, Joseph E.; Brown, Richard

    2017-01-01

    Emotional states of consciousness, or what are typically called emotional feelings, are traditionally viewed as being innately programmed in subcortical areas of the brain, and are often treated as different from cognitive states of consciousness, such as those related to the perception of external stimuli. We argue that conscious experiences, regardless of their content, arise from one system in the brain. In this view, what differs in emotional and nonemotional states are the kinds of inputs that are processed by a general cortical network of cognition, a network essential for conscious experiences. Although subcortical circuits are not directly responsible for conscious feelings, they provide nonconscious inputs that coalesce with other kinds of neural signals in the cognitive assembly of conscious emotional experiences. In building the case for this proposal, we defend a modified version of what is known as the higher-order theory of consciousness. PMID:28202735

  13. Making sense of self-conscious emotion: linking theory of mind and emotion in children with autism.

    Science.gov (United States)

    Heerey, Erin A; Keltner, Dacher; Capps, Lisa M

    2003-12-01

    Self-conscious emotions such as embarrassment and shame are associated with 2 aspects of theory of mind (ToM): (a) the ability to understand that behavior has social consequences in the eyes of others and (b) an understanding of social norms violations. The present study aimed to link ToM with the recognition of self-conscious emotion. Children with and without autism identified facial expressions conscious of self-conscious and non-self-conscious emotions from photographs. ToM was also measured. Children with autism performed more poorly than comparison children at identifying self-conscious emotions, though they did not differ in the recognition of non-self-conscious emotions. When ToM ability was statistically controlled, group differences in the recognition of self-conscious emotion disappeared. Discussion focused on the links between ToM and self-conscious emotion.

  14. Object of desire self-consciousness theory.

    Science.gov (United States)

    Bogaert, Anthony F; Brotto, Lori A

    2014-01-01

    In this article, the authors discuss the construct of object of desire self-consciousness, the perception that one is romantically and sexually desirable in another's eyes. The authors discuss the nature of the construct, variations in its expression, and how it may function as part of a self-schemata or script related to romance and sexuality. The authors suggest that object of desire self-consciousness may be an adaptive, evolved psychological mechanism allowing sexual and romantic tactics suitable to one's mate value. The authors also suggest that it can act as a signal that one has high mate value in the sexual marketplace. The authors then review literature (e.g., on fantasies, on sexual activity preferences, on sexual dysfunctions, on language) suggesting that object of desire self-consciousness plays a particularly important role in heterosexual women's sexual/romantic functioning and desires.

  15. Amplifying Phenomenal Information Toward a Fundamental Theory of Consciousness

    CERN Document Server

    Gabora, L

    1999-01-01

    Since an organism eats other living things to survive, it must behave as if it values its own subjective experience more than that of the entities it consumes. Thus assessments about consciousness are inherently warped. This lends credibility to Chalmers' double aspect theory of information, and suggests that the degree of consciousness is a function of the degree to which information is locally amplified. Autocatalytic closure may induce a phase transition in degree of amplification by trapping and integrating information. The effect may be magnified in humans through a second level of closure: distributed memories (attractors) are woven into a conceptual web through the emergence of abstractions (lower-dimensional attractors). Human consciousness is viewed as a temporally self-similar hyperstructure or sequence of phase relations which evolve and are evolved by this conceptual web. The final stages in the proposed transformation from proto-conscious to human conscious involve reflection, focusing, resonance...

  16. An extended theory of global workspace of consciousness

    Institute of Scientific and Technical Information of China (English)

    Xiaolan Song; Xiaowei Tang

    2008-01-01

    Global Workspace theory and Global Neuronal Workspace hypothesis are frameworks about the mechanism of the consciousness,which argued that it is the global workspace that makes awareness. These two theories ignored an important fact that the content of consciousness is not only from the instant sensory input, but also from the inward mind representation. The existence of the default mode network of brain indicates that without the sensory input from instant environment, the brain can carry out organized activities which have intense relationship with inward information processing. This article combines the hypothesis of brain's default mode network and the classical Global Workspace theory, and put forward an extended theory about global workspace of consciousness.

  17. Philosophy Iceberg of the Universe Consciousness Energy (The Theory of the Universe Consciousness Energy Expression

    Directory of Open Access Journals (Sweden)

    Georgii Chuzhyk

    2017-02-01

    Full Text Available We offer an evolutionary and alternative solution to the problem of the Universe. The theory involves the formation of the Universe by means of all the sequences of energies and energy of consciousness with gradual structural wrapping by energy shells recording and accumulating them; formation of the core dispatch centers performing energetic and informational communication with a single rhythm among all space objects that form civilizations. We outline a way of human consciousness formation. The theory explains how the first objectively appeared sparks of human consciousness energy were evolving, accumulating and being recorded, formed the Earth’s noosphere in its core dispatch center. The consciousness energy structure has not yet been discovered and that inhibits the science, which is wary of those who define it as a stream of multi-super large reflection objectively reflecting the highest degree of manifestation of civilization collective creativity, named by John Wheeler as a substance of the information — “It from Bit.” Core dispatching centers of all cosmic objects consciousness energies such as the Earth are combined into the Universe core dispatcher center of which called the Cosmic Consciousness. Many hundreds of billions of years the Cosmic Consciousness absorbed and only recorded the sequences, experience of which ended strictly following the laws of nature, formed a unique quality — for each new sequence by its energetic and informational signal it can highlight, express from its archive the evolution of similar Roadmap, which had been already passed by a similar sequence. The Cosmic Consciousness indirectly provides the most important thing in the Universe — not interfering, it retains all its evolutionary integrity and harmony. All of them constantly and continuously follow and check it through bioinformational communication, without deviation move toward their goal. Life of the Earth civilization is also moving

  18. Quantum theory and consciousness: an overview with selected examples

    Directory of Open Access Journals (Sweden)

    Harald Atmanspacher

    2004-05-01

    Full Text Available It is widely accepted that consciousness or, in other words, mental activity is in some way correlated to the behavior of the brain or, in other words, material brain activity. Since quantum theory is the most fundamental theory of matter that is currently available, it is a legitimate question to ask whether quantum theory can help us to understand consciousness. Several approaches answering this question affirmatively, proposed in recent decades, will be surveyed. It will be pointed out that they make different epistemological assumptions, refer to different neurophysiological levels of description, and adopt quantum theory in different ways. For each of the approaches discussed, these imply both problematic and promising features which will be indicated.

  19. How do the brain's time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC).

    Science.gov (United States)

    Northoff, Georg; Huang, Zirui

    2017-07-28

    Time and space are the basic building blocks of nature. As a unique existent in nature, our brain exists in time and takes up space. The brain's activity itself also constitutes and spreads in its own (intrinsic) time and space that is crucial for consciousness. Consciousness is a complex phenomenon including different dimensions: level/state, content/form, phenomenal aspects, and cognitive features. We propose a Temporo-spatial Theory of Consciousness (TTC) focusing primarily on the temporal and spatial features of the brain activity. We postulate four different neuronal mechanisms accounting for the different dimensions of consciousness: (i) "temporo-spatial nestedness" of the spontaneous activity accounts for the level/state of consciousness as neural predisposition of consciousness (NPC); (ii) "temporo-spatial alignment" of the pre-stimulus activity accounts for the content/form of consciousness as neural prerequisite of consciousness (preNCC); (iii) "temporo-spatial expansion" of early stimulus-induced activity accounts for phenomenal consciousness as neural correlates of consciousness (NCC); (iv) "temporo-spatial globalization" of late stimulus-induced activity accounts for the cognitive features of consciousness as neural consequence of consciousness (NCCcon). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Quantum theory - essential from cosmos to consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Goernitz, T, E-mail: goernitz@em.uni-frankfurt.d [Institut fuer Didaktik der Physik, FB Physik J. W. Goethe-Universitaet Frankfurt/Main Mail: Karl-Mangold-Str. 13, D-81245 Muenchen (Germany)

    2010-06-01

    Quantum theory is the most successful physical theory. About one third of the gross national product in the developed countries results from its applications. But very often quantum theory is still declared as 'crazy' or 'not understandable'. However, quantum theory has a clear mathematical structure that expresses well-known experiences from every day life: A whole is often more than the sum of its parts, and not only the facts also the possibilities can act. If such structures become important then the consequences differ from the models of classical physics which rests on the fundamental differences between matter and motion, material and force, localization and extension, fullness and emptiness. From quantum theory one can learn that all these differences are useful in many cases but are not fundamental. There are equivalences between them, and these can be extended even to the equivalence between matter, energy and abstract quantum information. It is cosmological funded and is denominated as 'Protyposis' to avoid the connotation of information and meaning. Protyposis enables a fundamentally new understanding of matter which can be seen as 'formed', 'condensed' or 'designed' abstract quantum information. One result of the Protyposis is a derivation of Einstein's equations from the abstract quantum information. Another consequence is the ontological reality of the mind and its connection to a brain which can be explained without any dualistic model.

  1. Fundamental Measurements in Economics and in the Theory of Consciousness

    CERN Document Server

    Melnyk, S I

    2011-01-01

    A new constructivist approach to modeling in economics and theory of consciousness is proposed. The state of elementary object is defined as a set of its measurable consumer properties. A proprietor's refusal or consent for the offered transaction is considered as a result of elementary economic measurement. Elementary (indivisible) technology, in which the object's consumer values are variable, in this case can be formalized as a generalized economic measurement. The algebra of such measurements has been constructed. It has been shown that in the general case the quantum-mechanical formalism of the theory of selective measurements is required for description of such conditions. The economic analogs of the elementary slit experiments in physics have been created. The proposed approach can be also used for consciousness modeling.

  2. Consciousness

    National Research Council Canada - National Science Library

    Zeman, A

    2001-01-01

    Consciousness is topical, for reasons including its renewed respectability among psychologists, rapid progress in the neuroscience of perception, memory and action, advances in artificial intelligence...

  3. Geometric group theory

    CERN Document Server

    Bestvina, Mladen; Vogtmann, Karen

    2014-01-01

    Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...

  4. Towards an integrative theory of consciousness: part 1 (neurobiological and cognitive models).

    Science.gov (United States)

    De Sousa, Avinash

    2013-01-01

    The study of consciousness is poised today at interesting crossroads. There has been a surge of research into various neurobiological underpinnings of consciousness in the past decade. The present article looks at the theories regarding this complex phenomenon, especially the ones that neurobiology, cognitive neuroscience and cognitive psychology have to offer. We will first discuss the origin and etymology of word consciousness and its usage. Neurobiological correlates of consciousness are discussed with structures like the ascending reticular activating system, the amygdala, the cerebellum, the thalamus, the frontoparietal circuits, the prefrontal cortex and the precuneus. The cellular and microlevel theories of consciousness and cerebral activity at the neuronal level contributing to consciousness are highlighted, along with the various theories posited in this area. The role of neuronal assemblies and circuits along with firing patterns and their ramifications for the understanding of consciousness are discussed. A section on the role of anaesthesia and its links to consciousness is presented, along with details of split-brain studies in consciousness and altered states of awareness, including the vegetative states. The article finally discusses the progress cognitive psychology has made in identifying and theorising various perspectives of consciousness, perceptual awareness and conscious processing. Both recent and past researches are highlighted. The importance and salient features of each theory are discussed along with the pitfalls, if present. A need for integration of various theories to understand consciousness from a holistic perspective is stressed, to enable one to reach a theory that explains the ultimate neurobiology of consciousness.

  5. Towards an integrative theory of consciousness: Part 1 (Neurobiological and cognitive models

    Directory of Open Access Journals (Sweden)

    Avinash De Sousa

    2013-01-01

    Full Text Available The study of consciousness is poised today at interesting crossroads. There has been a surge of research into various neurobiological underpinnings of consciousness in the past decade. The present article looks at the theories regarding this complex phenomenon, especially the ones that neurobiology, cognitive neuroscience and cognitive psychology have to offer. We will first discuss the origin and etymology of word consciousness and its usage. Neurobiological correlates of consciousness are discussed with structures like the ascending reticular activating system, the amygdala, the cerebellum, the thalamus, the frontoparietal circuits, the prefrontal cortex and the precuneus. The cellular and microlevel theories of consciousness and cerebral activity at the neuronal level contributing to consciousness are highlighted, along with the various theories posited in this area. The role of neuronal assemblies and circuits along with firing patterns and their ramifications for the understanding of consciousness are discussed. A section on the role of anaesthesia and its links to consciousness is presented, along with details of split-brain studies in consciousness and altered states of awareness, including the vegetative states. The article finally discusses the progress cognitive psychology has made in identifying and theorising various perspectives of consciousness, perceptual awareness and conscious processing. Both recent and past researches are highlighted. The importance and salient features of each theory are discussed along with the pitfalls, if present. A need for integration of various theories to understand consciousness from a holistic perspective is stressed, to enable one to reach a theory that explains the ultimate neurobiology of consciousness.

  6. From consciousness to computation: a spectrum of theories of consciousness and selected salient features germane to the development of thinking machines

    OpenAIRE

    2013-01-01

    This study investigated the field of consciousness to isolate concepts that might be useful in producing thinking machines, potentially with full consciousness. Questions that informed the research were: Is it possible to identify “successful” theories of consciousness? Can there be a set of salient features that would be useful in the evaluation of theories of consciousness? A literature survey identifies ways in which enduring problems in discussing intelligence, cognition and conscious...

  7. Group theory I essentials

    CERN Document Server

    Milewski, Emil G

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Group Theory I includes sets and mapping, groupoids and semi-groups, groups, isomorphisms and homomorphisms, cyclic groups, the Sylow theorems, and finite p-groups.

  8. Using category theory to assess the relationship between consciousness and integrated information theory.

    Science.gov (United States)

    Tsuchiya, Naotsugu; Taguchi, Shigeru; Saigo, Hayato

    2016-06-01

    One of the most mysterious phenomena in science is the nature of conscious experience. Due to its subjective nature, a reductionist approach is having a hard time in addressing some fundamental questions about consciousness. These questions are squarely and quantitatively tackled by a recently developed theoretical framework, called integrated information theory (IIT) of consciousness. In particular, IIT proposes that a maximally irreducible conceptual structure (MICS) is identical to conscious experience. However, there has been no principled way to assess the claimed identity. Here, we propose to apply a mathematical formalism, category theory, to assess the proposed identity and suggest that it is important to consider if there exists a proper translation between the domain of conscious experience and that of the MICS. If such translation exists, we postulate that questions in one domain can be answered in the other domain; very difficult questions in the domain of consciousness can be resolved in the domain of mathematics. We claim that it is possible to empirically test if such a functor exists, by using a combination of neuroscientific and computational approaches. Our general, principled and empirical framework allows us to assess the relationship between the domain of consciousness and the domain of mathematical structures, including those suggested by IIT. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Towards an integrative theory of consciousness: part 2 (an anthology of various other models).

    Science.gov (United States)

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed.

  10. Group theory in physics

    CERN Document Server

    Cornwell, J F

    1989-01-01

    Recent devopments, particularly in high-energy physics, have projected group theory and symmetry consideration into a central position in theoretical physics. These developments have taken physicists increasingly deeper into the fascinating world of pure mathematics. This work presents important mathematical developments of the last fifteen years in a form that is easy to comprehend and appreciate.

  11. Consciousness

    OpenAIRE

    Terrence J Sejnowski

    2015-01-01

    No one did more to draw neuroscientists’ attention to the problem of consciousness in the twentieth century than Francis Crick, who may be better known as the co-discoverer (with James Watson) of the structure of DNA. Crick focused his research on visual awareness and based his analysis on the progress made over the last fifty years in uncovering the neural mechanisms underlying visual perception. Because much of what happens in our brains occurs below the level of consciousness and many of o...

  12. Consciousness

    OpenAIRE

    R. J. Aumann

    2005-01-01

    Consciousness is the last great frontier of science. Here we discuss what it is, how it differs fundamentally from other scientific phenomena, what adaptive function it serves, and the difficulties in trying to explain how it works. The emphasis is on the adaptive function.

  13. Towards an integrative theory of consciousness: Part 1 (Neurobiological and cognitive models)

    OpenAIRE

    2013-01-01

    The study of consciousness is poised today at interesting crossroads. There has been a surge of research into various neurobiological underpinnings of consciousness in the past decade. The present article looks at the theories regarding this complex phenomenon, especially the ones that neurobiology, cognitive neuroscience and cognitive psychology have to offer. We will first discuss the origin and etymology of word consciousness and its usage. Neurobiological correlates of consciousness are d...

  14. Combinatorial group theory

    CERN Document Server

    Lyndon, Roger C

    2001-01-01

    From the reviews: "This book (...) defines the boundaries of the subject now called combinatorial group theory. (...)it is a considerable achievement to have concentrated a survey of the subject into 339 pages. This includes a substantial and useful bibliography; (over 1100 ÄitemsÜ). ...the book is a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews, AMS, 1979.

  15. Group theory and chemistry

    CERN Document Server

    Bishop, David M

    1993-01-01

    Group theoretical principles are an integral part of modern chemistry. Not only do they help account for a wide variety of chemical phenomena, they simplify quantum chemical calculations. Indeed, knowledge of their application to chemical problems is essential for students of chemistry. This complete, self-contained study, written for advanced undergraduate-level and graduate-level chemistry students, clearly and concisely introduces the subject of group theory and demonstrates its application to chemical problems.To assist chemistry students with the mathematics involved, Professor Bishop ha

  16. Group and representation theory

    CERN Document Server

    Vergados, J D

    2017-01-01

    This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

  17. [Dream interpretation: theory of the "psychological apparatus" as initial consciousness theory in Freud's metapsychology].

    Science.gov (United States)

    Weiss, H

    1983-01-01

    In the "Interpretation of Dreams" (1900 a) Freud presents for the first time a purely psychologically founded theory of psychic functioning, in the centre of which stands the model of the "psychic apparatus". In the detailed reconstruction of the statements of the "Interpretation" the present study tries to elaborate the meaning of "consciousness" within a psychology of the unconscious, in order to transfer--with reference to the early writings of J.-P. Sartre--the critique of Freudian unconscious to the level of the underlying conception of consciousness.

  18. Health as expanding consciousness: a nursing perspective for grounded theory research.

    Science.gov (United States)

    Brown, Janet Witucki

    2011-07-01

    Margaret Newman's theory of health as expanding consciousness provides an excellent nursing perspective for nursing grounded theory research studies. Application of this nursing theory to grounded theory research provides a unitary-transformative paradigm perspective to the sociological underpinnings of grounded theory methodology. The fit between this particular nursing theory and grounded theory methodology is apparent when purpose, timing, process, and health outcomes of the two are compared. In this column, the theory of health as expanding consciousness is described and the theory's research as praxis methodology is compared to grounded theory methodology. This is followed by a description of how the theory of health as expanding consciousness can be utilized as a perspective for nursing grounded theory research.

  19. Group theories: relevance to group safety studies.

    Science.gov (United States)

    Benevento, A L

    1998-01-01

    Promoting safety in the workplace has been attempted in a variety of ways. Increasingly, industries are using groups such as safety teams and quality circles to promote worker safety. Group influences on individual behavior and attitudes have long been studied in the social psychology literature, but the theories have not been commonly found outside the psychology arena. This paper describes the group theories of group polarization, risky shift, social loafing, groupthink and team think and attempts to apply these theories to existing studies that examine work group influences on safety. Interesting parallels were found but only one study examined group influences as their primary focus of research. Since groups are increasingly used for safety promotion, future research on safety that studies group influences with respect to current group theories is recommended.

  20. Towards an integrative theory of consciousness: Part 2 (An anthology of various other models

    Directory of Open Access Journals (Sweden)

    Avinash De Sousa

    2013-01-01

    Full Text Available The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed.

  1. Towards An Integrative Theory Of Consciousness: Part 2 (An Anthology Of Various Other Models)

    Science.gov (United States)

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed. PMID:23678242

  2. Obliczeniowe teorie świadomości (Computational theories of consciousness

    Directory of Open Access Journals (Sweden)

    Marcin Miłkowski

    2010-06-01

    Full Text Available In this paper, I review the motivations for having a computational theory of consciousness to see if they turn out to be no longer plausible in the light of recent criticisms. These criticisms focus on the alleged inability of computational theories to deal with qualia, or qualities of experience (or objects of experience in some accounts, and with so-called symbol grounding on the other hand. Yet it seems that computationalism remains the best game in town when one wants to explain and predict the dynamics of information processing of cognitive systems. Conscious information processing does not seem to be explainable better within any other framework; computationalism regarding consciousness can only be discarded by supposing that consciousness is epiphenomenal in information processing.I will argue that recent theories of consciousness that are to deal with the so-called hard problem of consciousness remain in their core computational if they do not subscribe to epiphenomenalism. For example, the quantum theory as proposed by Stuart Hameroff remains openly computational; the same goes for pan(protopsychist speculation of David Chalmers. The qualitative character of information processing that Chalmers takes to explain the existence of subjective experience piggy-backs, so to say, on the very fact that there is information processing that is best explained in a computationalist framework. I also briefly show that other alternative accounts of consciousness (such as direct theories of consciousness that were supposed to oppose computational and functionalist conceptions are not only compatible with them but require them to begin with.In short, to discard credentials of computationalism in consciousness research one would have to show that it`s possible to explain conscious information-processing mechanisms sufficiently in a non-computational way. And this has not been done by any of the critics of computational accounts. This all doesn`t suggest

  3. Public and Private Self-Consciousness: Assessment and Theory

    Science.gov (United States)

    Fenigstein, Allen; And Others

    1975-01-01

    A scale was constructed to assess individual differences in self-consciousness. Norms and test-retest reliability are presented. Factor analysis of the scale revealed that self-consciousness has three components: public, private, and social anxiety. The relationships among these three factors are examined. (Author)

  4. Reading Consciousness: Analyzing Literature through William James' Stream of Thought Theory

    OpenAIRE

    Casto, Andrew Christopher

    2011-01-01

    Proceeding from the assumption that psychoanalytic theory has yielded insightful literary interpretations, I propose that equally legitimate readings result from analyzing consciousness in literature. William Jamesâ â Stream of Thoughtâ offers a psychological theory of consciousness from which I develop a literary theory that counterbalances the Freudian emphasis on the unconscious. Examining two works by Henry James, I demonstrate how assessing the elements of a character...

  5. Integrated information theory of consciousness: an updated account.

    Science.gov (United States)

    Tononi, G

    2012-12-01

    This article presents an updated account of integrated information theory of consciousness (liT) and some of its implications. /IT stems from thought experiments that lead to phenomenological axioms (existence, compositionality, information, integration, exclusion) and corresponding ontological postulates. The information axiom asserts that every experience is spec~fic - it is what it is by differing in its particular way from a large repertoire of alternatives. The integration axiom asserts that each experience is unified- it cannot be reduced to independent components. The exclusion axiom asserts that every experience is definite - it is limited to particular things and not others and flows at a particular speed and resolution. /IT formalizes these intuitions with postulates. The information postulate states that only "differences that make a difference" from the intrinsic perpective of a system matter: a mechanism generates cause-effect information if its present state has selective past causes and selective future effects within a system. The integration postulate states that only information that is irreducible matters: mechanisms generate integrated information only to the extent that the information they generate cannot be partitioned into that generated within independent components. The exclusion postulate states that only maxima of integrated information matter: a mechanism specifies only one maximally irreducible set of past causes and future effects - a concept. A complex is a set of elements specifying a maximally irreducible constellation of concepts, where the maximum is evaluated over elements and at the optimal spatiatemporal scale. Its concepts specify a maximally integrated conceptual information structure or quale, which is identical with an experience. Finally, changes in information integration upon exposure to the environment reflect a system's ability to match the causal structure of the world. After introducing an updated definition of

  6. Changing Consciousness: Autoethnographic Mapping in a Dialog Group

    Science.gov (United States)

    Hager, Tamar; Mazali, Rela

    2013-01-01

    This article introduces a pedagogical tool for raising critical consciousness and nurturing resistance to discrimination. "Autoethnographic mapping," integrating guided cognitive mapping and autoethnographies, has been implemented for a decade now within the framework of a college course occasioning dialogue between Palestinian Arab and…

  7. Using the Self-Consciousness Scale to Predict Student Discussion Group Participation.

    Science.gov (United States)

    Aamodt, Michael G.; Keller, Robert J.

    1981-01-01

    This study used the Self-Consciousness Scale to test the hypothesis that socially anxious people could seek to avoid embarrassment and do poorly in small group discussions as a result. Those people high in private self-consciousness (lacking concern for social evaluation) would participate more in discussions. Findings supported the hypothesis.…

  8. Linear algebra and group theory

    CERN Document Server

    Smirnov, VI

    2011-01-01

    This accessible text by a Soviet mathematician features material not otherwise available to English-language readers. Its three-part treatment covers determinants and systems of equations, matrix theory, and group theory. 1961 edition.

  9. Alteration of consciousness in focal epilepsy: the global workspace alteration theory.

    Science.gov (United States)

    Bartolomei, Fabrice; McGonigal, Aileen; Naccache, Lionel

    2014-01-01

    Alteration of consciousness (AOC) is an important clinical manifestation of partial seizures that greatly impacts the quality of life of patients with epilepsy. Several theories have been proposed in the last fifty years. An emerging concept in neurology is the global workspace (GW) theory that postulates that access to consciousness (from several sensorial modalities) requires transient coordinated activity from associative cortices, in particular the prefrontal cortex and the posterior parietal associative cortex. Several lines of evidence support the view that partial seizures alter consciousness through disturbance of the GW. In particular, a nonlinear relation has been shown between excess of synchronization in the GW regions and the degree of AOC. Changes in thalamocortical synchrony occurring during the spreading of the ictal activity seem particularly involved in the mechanism of altered consciousness. This link between abnormal synchrony and AOC offers new perspectives in the treatment of the AOC since means of decreasing consciousness alteration in seizures could improve patients' quality of life.

  10. A theory of working memory without consciousness or sustained activity.

    Science.gov (United States)

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-07-18

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of 'activity-silent' working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds.

  11. Group theory and its applications

    CERN Document Server

    Loebl, Ernest M

    1975-01-01

    Group Theory and its Applications, Volume III covers the two broad areas of applications of group theory, namely, all atomic and molecular phenomena, as well as all aspects of nuclear structure and elementary particle theory.This volume contains five chapters and begins with an introduction to Wedderburn's theory to establish the structure of semisimple algebras, algebras of quantum mechanical interest, and group algebras. The succeeding chapter deals with Dynkin's theory for the embedding of semisimple complex Lie algebras in semisimple complex Lie algebras. These topics are followed by a rev

  12. Literary Fiction as a Tool for Teaching Social Theory and Critical Consciousness

    Science.gov (United States)

    Weber, Christina D.

    2010-01-01

    In this paper, I discuss the possibilities that emerge from using literary fiction as a tool for teaching social theory and critical consciousness. Focusing on data from a social theory course I taught in fall 2007, along with my experiences teaching social theory, I evaluate the utility of utilizing literary fiction in the social theory…

  13. Literary Fiction as a Tool for Teaching Social Theory and Critical Consciousness

    Science.gov (United States)

    Weber, Christina D.

    2010-01-01

    In this paper, I discuss the possibilities that emerge from using literary fiction as a tool for teaching social theory and critical consciousness. Focusing on data from a social theory course I taught in fall 2007, along with my experiences teaching social theory, I evaluate the utility of utilizing literary fiction in the social theory…

  14. Restructuring consciousness -the psychedelic state in light of integrated information theory.

    Science.gov (United States)

    Gallimore, Andrew R

    2015-01-01

    The psychological state elicited by the classic psychedelics drugs, such as LSD and psilocybin, is one of the most fascinating and yet least understood states of consciousness. However, with the advent of modern functional neuroimaging techniques, the effect of these drugs on neural activity is now being revealed, although many of the varied phenomenological features of the psychedelic state remain challenging to explain. Integrated information theory (IIT) is one of the foremost contemporary theories of consciousness, providing a mathematical formalization of both the quantity and quality of conscious experience. This theory can be applied to all known states of consciousness, including the psychedelic state. Using the results of functional neuroimaging data on the psychedelic state, the effects of psychedelic drugs on both the level and structure of consciousness can be explained in terms of the conceptual framework of IIT. This new IIT-based model of the psychedelic state provides an explanation for many of its phenomenological features, including unconstrained cognition, alterations in the structure and meaning of concepts and a sense of expanded awareness. This model also suggests that whilst cognitive flexibility, creativity, and imagination are enhanced during the psychedelic state, this occurs at the expense of cause-effect information, as well as degrading the brain's ability to organize, categorize, and differentiate the constituents of conscious experience. Furthermore, the model generates specific predictions that can be tested using a combination of functional imaging techniques, as has been applied to the study of levels of consciousness during anesthesia and following brain injury.

  15. Restructuring consciousness –the psychedelic state in light of integrated information theory

    Science.gov (United States)

    Gallimore, Andrew R.

    2015-01-01

    The psychological state elicited by the classic psychedelics drugs, such as LSD and psilocybin, is one of the most fascinating and yet least understood states of consciousness. However, with the advent of modern functional neuroimaging techniques, the effect of these drugs on neural activity is now being revealed, although many of the varied phenomenological features of the psychedelic state remain challenging to explain. Integrated information theory (IIT) is one of the foremost contemporary theories of consciousness, providing a mathematical formalization of both the quantity and quality of conscious experience. This theory can be applied to all known states of consciousness, including the psychedelic state. Using the results of functional neuroimaging data on the psychedelic state, the effects of psychedelic drugs on both the level and structure of consciousness can be explained in terms of the conceptual framework of IIT. This new IIT-based model of the psychedelic state provides an explanation for many of its phenomenological features, including unconstrained cognition, alterations in the structure and meaning of concepts and a sense of expanded awareness. This model also suggests that whilst cognitive flexibility, creativity, and imagination are enhanced during the psychedelic state, this occurs at the expense of cause-effect information, as well as degrading the brain's ability to organize, categorize, and differentiate the constituents of conscious experience. Furthermore, the model generates specific predictions that can be tested using a combination of functional imaging techniques, as has been applied to the study of levels of consciousness during anesthesia and following brain injury. PMID:26124719

  16. Harmony between groups : nuancing traditional views of color-blindness and color-consciousness/

    OpenAIRE

    Maquil, Annemie

    2007-01-01

    Color-blindness and color-consciousness are two ideologies aiming at prejudice and negative intergroup behavior reduction. Whereas color-blindness emphasizes the importance of breaking down group differences and considering everybody as an individal similar and equal to each other, color-consciousness emphasizes the recognition and appreciation of group differences. This dissertation is about the positive and negative aspects of both ideologies, as well as about their differential effects on ...

  17. Character theory of finite groups

    CERN Document Server

    Isaacs, I Martin

    2006-01-01

    Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the

  18. Group theory and its applications

    CERN Document Server

    Thapa, Ram Kumar

    2019-01-01

    Every molecule possesses symmetry and hence has symmetry operations and symmetry elements. From symmetry properties of a system we can deduce its significant physical results. Consequently it is essential to operations of a system forms a group. Group theory is an abstract mathematical tool that underlies the study of symmetry and invariance. By using the concepts of symmetry and group theory, it is possible to obtain the members of complete set of known basis functions of the various irreducible representations of the group. I practice this is achieved by applying the projection operators to linear combinations of atomic orbital (LCAO) when the valence electrons are tightly bound to the ions, to orthogonalized plane waves (OPW) when valence electrons are nearly free and to the other given functions that are judged to the particular system under consideration. In solid state physics the group theory is indispensable in the context of finding the energy bands of electrons in solids. Group theory can be applied...

  19. Incompatibility between Self-Observing Consciousness and the Axioms of Quantum theory

    CERN Document Server

    Song, Daegene

    2007-01-01

    Based on the standard axioms of quantum theory, we provide a counter-example which invalidates the full compatibility between consciousness and quantum theory. In particular, we present an example of a natural phenomenon in which an observer's the mental state can be fully described in mathematical terms analogous to the state vector that is being observed. This mathematical description of the observer's mental state enables us to examine consciousness within the standard axioms of quantum theory. The separation between the observing party and the physical system being observed, imposed by the axiom of quantum theory, poses a problem when the observer is observing his own mental state, i.e., self-observing consciousness.

  20. Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives.

    Science.gov (United States)

    Venkatasubramanian, Ganesan

    2015-04-30

    From neurophenomenological perspectives, schizophrenia has been conceptualized as "a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness". While these theoretical constructs based on consciousness facilitate understanding the 'gestalt' of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of "perturbed consciousness" in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is "the orchestrated object reduction (Orch-OR) theory" which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared 'scaffold' of microtubules. The initial sections of this review focus on the compelling evidence to support the view that "schizophrenia is a disorder of consciousness" through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with 'Orch-OR theory' through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as "fundamental disturbances in consciousness".

  1. Remainder Wheels and Group Theory

    Science.gov (United States)

    Brenton, Lawrence

    2008-01-01

    Why should prospective elementary and high school teachers study group theory in college? This paper examines applications of abstract algebra to the familiar algorithm for converting fractions to repeating decimals, revealing ideas of surprising substance beneath an innocent facade.

  2. The Relationship between Theory of Mind and Episodic Memory: Evidence for the Development of Autonoetic Consciousness.

    Science.gov (United States)

    Naito, Mika

    2003-01-01

    Links between theory of mind and episodic memory involving autonoetic consciousness were investigated in Japanese 4- to 6-year-olds. After age was controlled for, most theory of mind abilities showed no interrelations. Own and others' belief understandings on deceptive appearance tasks were solely related to source memory. Results suggest that…

  3. Representation Theory of Algebraic Groups and Quantum Groups

    CERN Document Server

    Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki

    2010-01-01

    Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

  4. What should be the roles of conscious states and brain states in theories of mental activity?

    Directory of Open Access Journals (Sweden)

    Donelson E Dulany

    2011-03-01

    Full Text Available Answers to the title's question have been influenced by a history in which an early science of consciousness was rejected by behaviourists on the argument that this entails commitment to ontological dualism and "free will" in the sense of indeterminism. This is, however, a confusion of theoretical assertions with metaphysical assertions. Nevertheless, a legacy within computational and information-processing views of mind rejects or de-emphasises a role for consciousness. This paper sketches a mentalistic metatheory in which conscious states are the sole carriers of symbolic representations, and thus have a central role in the explanation of mental activity and action-while specifying determinism and materialism as useful working assumptions. A mentalistic theory of causal learning, experimentally examined with phenomenal reports, is followed by examination of these questions: Are there common roles for phenomenal reports and brain imaging? Is there defensible evidence for unconscious brain states carrying symbolic representations? Are there interesting dissociations within consciousness?

  5. Restructuring Consciousness –the Psychedelic State in Light of Integrated Information Theory

    Directory of Open Access Journals (Sweden)

    Andrew Robert Gallimore

    2015-06-01

    Full Text Available The psychological state elicited by the classic psychedelics drugs, such as LSD and psilocybin, is one of the most fascinating and yet least understood states of consciousness. However, with the advent of modern functional neuroimaging techniques, the effect of these drugs on neural activity is now being revealed, although many of the varied phenomenological features of the psychedelic state remain challenging to explain. Integrated information theory (IIT is one of the foremost contemporary theories of consciousness, providing a mathematical formalization of both the quantity and quality of conscious experience. This theory can be applied to all known states of consciousness, including the psychedelic state. Using the results of functional neuroimaging data on the psychedelic state, the effects of psychedelic drugs on both the level and structure of consciousness can be explained in terms of the conceptual framework of IIT. This new IIT-based model of the psychedelic state provides an explanation for many of its phenomenological features, including unconstrained cognition, alterations in the structure and meaning of concepts and a sense of expanded awareness. This model also suggests that whilst cognitive flexibility, creativity, and imagination are enhanced during the psychedelic state, this occurs at the expense of cause-effect information, as well as degrading the brain’s ability to organize, categorize, and differentiate the constituents of conscious experience. Furthermore, the model generates specific predictions that can be tested using a combination of functional imaging techniques, as has been applied to the study of levels of consciousness during anesthesia and following brain injury.

  6. Bosonic colored group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2010-12-15

    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)

  7. The conscious mind and its emergent properties; an analysis based on decision theory.

    Science.gov (United States)

    Morris, James A

    2011-08-01

    The process of conscious and unconscious decision making is analyzed using decision theory. An essential part of an optimum decision strategy is the assessment of values and costs associated with correct and incorrect decisions. In the case of unconscious decisions this involves an automatic process akin to computation using numerical values. But for conscious decisions the conscious mind must experience the outcome of the decision as pleasure or pain. It is suggested that the rules of behavior are programmed in our genes but modified by experience of the society in which we are reared. Our unconscious then uses the rules to reward or punish our conscious mind for the decisions it makes. This is relevant to concepts of altruism and religion in society. It is consistent with the observation that we prefer beauty to utility. The decision theory equations also explain the paradox that a single index of happiness can be applied in society. The symptoms of mental illness can be due to appropriate or inappropriate action by the unconscious. The former indicates a psychological conflict between conscious and unconscious decision making. Inappropriate action indicates that a pathological process has switched on genetic networks that should be switched off. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Clifford theory for group representations

    CERN Document Server

    Karpilovsky, G

    1989-01-01

    Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products.The purpos

  9. Understanding a Spiritual Youth Camp as a Consciousness Raising Group: The Effects of a Subculture's Communication.

    Science.gov (United States)

    Schnell, Jim

    This paper defines a spiritual youth camp as a consciousness raising group. The camp, founded in 1956 as a community church camp, has been independent of any religious denomination since disassociating from the founding community church in 1986. Communication processes are described as they relate to primary aspects of the camp experience. Primary…

  10. An architectural model of conscious and unconscious brain functions: Global Workspace Theory and IDA.

    Science.gov (United States)

    Baars, Bernard J; Franklin, Stan

    2007-11-01

    While neural net models have been developed to a high degree of sophistication, they have some drawbacks at a more integrative, "architectural" level of analysis. We describe a "hybrid" cognitive architecture that is implementable in neuronal nets, and which has uniform brainlike features, including activation-passing and highly distributed "codelets," implementable as small-scale neural nets. Empirically, this cognitive architecture accounts qualitatively for the data described by Baars' Global Workspace Theory (GWT), and Franklin's LIDA architecture, including state-of-the-art models of conscious contents in action-planning, Baddeley-style Working Memory, and working models of episodic and semantic longterm memory. These terms are defined both conceptually and empirically for the current theoretical domain. The resulting architecture meets four desirable goals for a unified theory of cognition: practical workability, autonomous agency, a plausible role for conscious cognition, and translatability into plausible neural terms. It also generates testable predictions, both empirical and computational.

  11. Spin-mediated consciousness theory: possible roles of neural membrane nuclear spin ensembles and paramagnetic oxygen.

    Science.gov (United States)

    Hu, Huping; Wu, Maoxin

    2004-01-01

    A novel theory of consciousness is proposed in this paper. We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. That is, spin is the "mind-pixel". The unity of mind is achieved by entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we theorize that human brain works as follows: through action potential modulated nuclear spin interactions and paramagnetic O2/NO driven activations, the nuclear spins inside neural membranes and proteins form various entangled quantum states some of which survive decoherence through quantum Zeno effects or in decoherence-free subspaces and then collapse contextually via irreversible and non-computable means producing consciousness and, in turn, the collective spin dynamics associated with said collapses have effects through spin chemistry on classical neural activities thus influencing the neural networks of the brain. Our proposal calls for extension of associative encoding of neural memories to the dynamical structures of neural membranes and proteins. Thus, according our theory, the nuclear spin ensembles are the "mind-screen" with nuclear spins as its pixels, the neural membranes and proteins are the mind-screen and memory matrices, and the biologically available paramagnetic species such as O2 and NO are pixel-activating agents. Together, they form the neural substrates of consciousness. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies. Further, experimental realizations of intra-/inter-molecular nuclear spin coherence and entanglement, macroscopic entanglement of spin ensembles and NMR quantum computation, all in room temperatures, strongly suggest the possibility of a spin

  12. Awareness of self and expanding consciousness: using nursing theories to prepare nurse-therapists.

    Science.gov (United States)

    Vandemark, Lisa M

    2006-07-01

    Psychotherapy is an accepted role of the advanced practice psychiatric nurse. Nursing theorists, notably Hildegard Peplau and Margaret Newman, offer guidance on the psychological and professional development of the nurse. This paper examines Newman's theory of health as expanding consciousness and the concept of awareness of self in Peplau's theory, and suggests that psychiatric advanced practice nursing programs consider the need for nurses to develop self-knowledge to facilitate the nurse-patient relationship and to improve outcomes of patient care in psychotherapy.

  13. Group theory for chemists fundamental theory and applications

    CERN Document Server

    Molloy, K C

    2010-01-01

    The basics of group theory and its applications to themes such as the analysis of vibrational spectra and molecular orbital theory are essential knowledge for the undergraduate student of inorganic chemistry. The second edition of Group Theory for Chemists uses diagrams and problem-solving to help students test and improve their understanding, including a new section on the application of group theory to electronic spectroscopy.Part one covers the essentials of symmetry and group theory, including symmetry, point groups and representations. Part two deals with the application of group theory t

  14. Public acceptance for nuclear energy. Group unconsciousness and personnel self-consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Yosinobu [Mitsubishi Materials Corp., Tokyo (Japan)

    1995-12-31

    Since commercial usage of nuclear energy, 40 years already has spent. During that time, public acceptance has been told as very important. The procedure itself was changed gradually. Recently, at same time understandable man and non understandable man for nuclear energy are called at the stage, and talked to audience from the stage. They expect the audience will easily understand the nuclear energy. But the problem may come in the selection of good coordinator. Mr. Jung used the word of group unconsciousness. This is some time good for a battle, a religion and a political affairs for a while. Nazis, blend in all over the world, Ohm religion, present cooperated government etc. Japanese people are easily to have group consciousness. To opposite to them a self-consciousness are very important, Human being may have two different feeling, one is very much emotional and another is very much reasonable. Emotional man have tendency to have separate knowledge points and be get his conclusion very much quickly. Reasonable man have tendency to have the stacked knowledge points and take a little bit more time to get his conclusion. To get better nuclear energy PA, it`s very important that self-consciousness excitedly attractive knowledge should be increased. Easy understandable knowledge and high technical knowledge should be mixed up and nuclear energy technique should be easily understood. (author)

  15. On Theory Consciousness of Teacher%论教师的理论自觉

    Institute of Scientific and Technical Information of China (English)

    马新英

    2012-01-01

    The theory consciousness of teacher is consciousness of the existence of teacher himself as the theoretical main body, which means teacher should have an independence spirit and critical attitude to question or review the teaching affairs to clarify and disclose the ordinary phenomenon in education which happened daily. In the process of education reform, teacher can be the reformer to push forward the transform practical on the theory consciousness, and it is also the objective requirement of teacher professional development.%教师的理论自觉即教师对自我作为理论主体存在的自觉,它意味着教师以一种独立思想精神和批判态度对那些习以为常的教育教学事件有意识地追问与反思,以寻求对日常教育现象、问题的澄清与解蔽。理论自觉是教师在教育变革中能够以变革主体参与变革推进以改革在实践层面真正发生的需要,也是当前教师专业发展的客观要求。

  16. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  17. Group theory analysis of braided geometry structures

    Institute of Scientific and Technical Information of China (English)

    FENG Wei; MA Wensuo

    2005-01-01

    The braided geometry structures are analyzed with point groups and space groups for which the continuous yarn of the braided preforms is segmented and expressed in some special symbols. All structures of braided material are described and classified with group theory, and new braiding methods are found. The group theory analysis lays the theoretical foundation for optimizing material performance.

  18. From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0.

    Science.gov (United States)

    Oizumi, Masafumi; Albantakis, Larissa; Tononi, Giulio

    2014-05-01

    This paper presents Integrated Information Theory (IIT) of consciousness 3.0, which incorporates several advances over previous formulations. IIT starts from phenomenological axioms: information says that each experience is specific--it is what it is by how it differs from alternative experiences; integration says that it is unified--irreducible to non-interdependent components; exclusion says that it has unique borders and a particular spatio-temporal grain. These axioms are formalized into postulates that prescribe how physical mechanisms, such as neurons or logic gates, must be configured to generate experience (phenomenology). The postulates are used to define intrinsic information as "differences that make a difference" within a system, and integrated information as information specified by a whole that cannot be reduced to that specified by its parts. By applying the postulates both at the level of individual mechanisms and at the level of systems of mechanisms, IIT arrives at an identity: an experience is a maximally irreducible conceptual structure (MICS, a constellation of concepts in qualia space), and the set of elements that generates it constitutes a complex. According to IIT, a MICS specifies the quality of an experience and integrated information ΦMax its quantity. From the theory follow several results, including: a system of mechanisms may condense into a major complex and non-overlapping minor complexes; the concepts that specify the quality of an experience are always about the complex itself and relate only indirectly to the external environment; anatomical connectivity influences complexes and associated MICS; a complex can generate a MICS even if its elements are inactive; simple systems can be minimally conscious; complicated systems can be unconscious; there can be true "zombies"--unconscious feed-forward systems that are functionally equivalent to conscious complexes.

  19. From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0.

    Directory of Open Access Journals (Sweden)

    Masafumi Oizumi

    2014-05-01

    Full Text Available This paper presents Integrated Information Theory (IIT of consciousness 3.0, which incorporates several advances over previous formulations. IIT starts from phenomenological axioms: information says that each experience is specific--it is what it is by how it differs from alternative experiences; integration says that it is unified--irreducible to non-interdependent components; exclusion says that it has unique borders and a particular spatio-temporal grain. These axioms are formalized into postulates that prescribe how physical mechanisms, such as neurons or logic gates, must be configured to generate experience (phenomenology. The postulates are used to define intrinsic information as "differences that make a difference" within a system, and integrated information as information specified by a whole that cannot be reduced to that specified by its parts. By applying the postulates both at the level of individual mechanisms and at the level of systems of mechanisms, IIT arrives at an identity: an experience is a maximally irreducible conceptual structure (MICS, a constellation of concepts in qualia space, and the set of elements that generates it constitutes a complex. According to IIT, a MICS specifies the quality of an experience and integrated information ΦMax its quantity. From the theory follow several results, including: a system of mechanisms may condense into a major complex and non-overlapping minor complexes; the concepts that specify the quality of an experience are always about the complex itself and relate only indirectly to the external environment; anatomical connectivity influences complexes and associated MICS; a complex can generate a MICS even if its elements are inactive; simple systems can be minimally conscious; complicated systems can be unconscious; there can be true "zombies"--unconscious feed-forward systems that are functionally equivalent to conscious complexes.

  20. From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0

    Science.gov (United States)

    Tononi, Giulio

    2014-01-01

    This paper presents Integrated Information Theory (IIT) of consciousness 3.0, which incorporates several advances over previous formulations. IIT starts from phenomenological axioms: information says that each experience is specific – it is what it is by how it differs from alternative experiences; integration says that it is unified – irreducible to non-interdependent components; exclusion says that it has unique borders and a particular spatio-temporal grain. These axioms are formalized into postulates that prescribe how physical mechanisms, such as neurons or logic gates, must be configured to generate experience (phenomenology). The postulates are used to define intrinsic information as “differences that make a difference” within a system, and integrated information as information specified by a whole that cannot be reduced to that specified by its parts. By applying the postulates both at the level of individual mechanisms and at the level of systems of mechanisms, IIT arrives at an identity: an experience is a maximally irreducible conceptual structure (MICS, a constellation of concepts in qualia space), and the set of elements that generates it constitutes a complex. According to IIT, a MICS specifies the quality of an experience and integrated information ΦMax its quantity. From the theory follow several results, including: a system of mechanisms may condense into a major complex and non-overlapping minor complexes; the concepts that specify the quality of an experience are always about the complex itself and relate only indirectly to the external environment; anatomical connectivity influences complexes and associated MICS; a complex can generate a MICS even if its elements are inactive; simple systems can be minimally conscious; complicated systems can be unconscious; there can be true “zombies” – unconscious feed-forward systems that are functionally equivalent to conscious complexes. PMID:24811198

  1. Introducing Group Theory through Music

    Science.gov (United States)

    Johnson, Craig M.

    2009-01-01

    The central ideas of postcalculus mathematics courses offered in college are difficult to introduce in middle and secondary schools, especially through the engineering and sciences examples traditionally used in algebra, geometry, and trigonometry textbooks. However, certain concepts in music theory can be used to expose students to interesting…

  2. Human development VIII: a theory of "deep" quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organisms consciousness and complex behavior.

    Science.gov (United States)

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav

    2006-11-14

    Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it "sees", and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occam's razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules' orbitals make one huge "cell-orbital", which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants) and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness.

  3. Group theory in a nutshell for physicists

    CERN Document Server

    Zee, A

    2016-01-01

    Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study.

  4. Signal detection theory, the exclusion failure paradigm and weak consciousness--evidence for the access/phenomenal distinction?

    Science.gov (United States)

    Irvine, Elizabeth

    2009-06-01

    Block [Block, N. (2005). Two neural correlates of consciousness. Trends in Cognitive Science, 9, 46-52] and Snodgrass (2006) claim that a signal detection theory (SDT) analysis of qualitative difference paradigms, in particular the exclusion failure paradigm, reveals cases of phenomenal consciousness without access consciousness. This claim is unwarranted on several grounds. First, partial cognitive access rather than a total lack of cognitive access can account for exclusion failure results. Second, Snodgrass's Objective Threshold/Strategic (OT/S) model of perception relies on a problematic 'enable' approach to perception that denies the possibility of intentional control of unconscious perception and any effect of following different task instructions on the presence/absence of phenomenal consciousness. Many of Block's purported examples of phenomenal consciousness without cognitive access also rely on this problematic approach. Third, qualitative difference paradigms may index only a subset of access consciousness. Thus, qualitative difference paradigms like exclusion failure cannot be used to isolate phenomenal consciousness, any attempt to do so still faces serious methodological problems.

  5. Group Development: Extending Tuckman's Theory.

    Science.gov (United States)

    Maples, Mary F.

    1988-01-01

    Presents a framework for extending the Tuckman model of developmental sequence in small groups. Considers Tuckman's stages of forming, storming, norming, performing, and adjourning lacking in descriptive depth and clear definition. Gathered and organized group dynamics graduate students' assessments of characteristics of stages over five-year…

  6. Perturbation theory and renormalisation group equations

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    We discuss the perturbative expansion of several one-loop improved renormalisation group equations. It is shown that in general the integrated renormalisation group flows fail to reproduce perturbation theory beyond one loop.

  7. Subliminal Gestalt grouping: evidence of perceptual grouping by proximity and similarity in absence of conscious perception.

    Science.gov (United States)

    Montoro, Pedro R; Luna, Dolores; Ortells, Juan J

    2014-04-01

    Previous studies making use of indirect processing measures have shown that perceptual grouping can occur outside the focus of attention. However, no previous study has examined the possibility of subliminal processing of perceptual grouping. The present work steps forward in the study of perceptual organization, reporting direct evidence of subliminal processing of Gestalt patterns. In two masked priming experiments, Gestalt patterns grouped by proximity or similarity that induced either a horizontal or vertical global orientation of the stimuli were presented as masked primes and followed by visible targets that could be congruent or incongruent with the orientation of the primes. The results showed a reliable priming effect in the complete absence of prime awareness for both proximity and similarity grouping principles. These findings suggest that a phenomenal report of the Gestalt pattern is not mandatory to observe an effect on the response based on the global properties of Gestalt stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Computer Programming and Group Theory

    Science.gov (United States)

    1990-05-01

    the following: SO is the null subgroup S1 = ( eO el e2 ) The above was a very quick walk -through of the group generation options of the system. We will...depth-of-canonical form) first element - canionical form~m] En]; hold =n; ++n; while(canionicatlform(m][n] I 1 \\0’) if(first-element > canonical...canonicalform - 0) m z 0; first element = canonical forin~m] En]; hold = m; ++m; while(m :depth of canionical form) if(first-element < canonical-formlm

  9. Relative blindsight arises from a criterion confound in metacontrast masking: implications for theories of consciousness.

    Science.gov (United States)

    Jannati, Ali; Di Lollo, Vincent

    2012-03-01

    Relative blindsight is said to occur when different levels of subjective awareness are obtained at equality of objective performance. Using metacontrast masking, Lau and Passingham (2006) reported relative blindsight in normal observers at the shorter of two stimulus-onset asynchronies (SOAs) between target and mask. Experiment 1 replicated the critical asymmetry in subjective awareness at equality of objective performance. We argue that this asymmetry cannot be regarded as evidence for relative blindsight because the observers' responses were based on different attributes of the stimuli (criterion contents) at the two SOAs. With an invariant criterion content (Experiment 2), there was no asymmetry in subjective awareness across the two SOAs even though objective performance was the same. Experiment 3 examined the effect of criterion level on estimates of relative blindsight. Collectively, the present results question whether metacontrast masking is a suitable paradigm for establishing relative blindsight. Implications for theories of consciousness are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. On Cohomology Theory for Topological Groups

    Indian Academy of Sciences (India)

    Arati S Khedekar; C S Rajan

    2012-05-01

    We construct some new cohomology theories for topological groups and Lie groups and study some of its basic properties. For example, we introduce a cohomology theory based on measurable cochains which are continuous in a neighbourhood of the identity. We show that if and are locally compact and second countable, then the second cohomology group based on locally continuous measurable cochains as above parametrizes the collection of locally split extensions of by .

  11. 神经精神分析学的意识观%A Neuro-psychoanalytic Theory of Consciousness

    Institute of Scientific and Technical Information of China (English)

    吕英军

    2014-01-01

    自20世纪最后十年至今,意识重新成为科学研究的“宠儿”,学界形成了一股跨学科研究意识问题的高潮。在这一时代背景下,神经精神分析学家也同样致力于这一主题的研究,他们从对弗洛伊德的重新解读入手提出了独具特色的意识理论观点。索尔姆斯认为,意识就像是一种知觉内部的感觉器官,意识的内容即是感觉的资料、记忆的资料以及情感的内在评价,而意识的加工等同于产生感觉、知觉、思维和情绪的加工。潘克塞普在感质的基础上又进一步提出了情感质概念,强调了情感在意识中的作用。达马西奥整合了意识的内容和意识的状态两种研究方向,将意识分为核心意识和扩展意识。%Since the last decade of the 20th century, consciousness has become a favorite topic of sci-entific research again and constituted the highlight of the multidisciplinary research of consciousness. Against this background, neuro-psychoanalysts have also devoted themselves to this subject and put forward a unique theory of consciousness in re-interpreting Freud’s theory. Solms argues that con-sciousness works like a sensory organ inside perception, the content of which is the material of the feeling, the memory and the internal evaluation of emotion. The process of consciousness is equivalent to the process of sensation, perception, thought and emotion. On the basis of sensory qualia, Panks-epp further proposes the concept of equalia, emphasizing the role of emotions in consciousness. Damasio integrates two research tendencies of the content and status of consciousness, and divides con-sciousness into core consciousness and expanding consciousness.

  12. Intersectional Political Consciousness: Appreciation for Intragroup Differences and Solidarity in Diverse Groups

    Science.gov (United States)

    Greenwood, Ronni Michelle

    2008-01-01

    This article introduces an intersectional approach to political consciousness and presents data to demonstrate its importance for predicting solidarity in diverse social change organizations. Women activists (N = 174) completed measures of political consciousness, diversity, and solidarity. As expected, women differed in the degree to which their…

  13. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  14. Topological gauge theories and group cohomology

    Science.gov (United States)

    Dijkgraaf, Robbert; Witten, Edward

    1990-04-01

    We show that three dimensional Chern-Simons gauge theories with a compact gauge group G (not necessarily connected or simply connected) can be classified by the integer cohomology group H 4( BG, Z). In a similar way, possible Wess-Zumino interactions of such a group G are classified by H 3( G, Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map from H 4( BG, Z) to H 3( G, Z). We generalize this correspondence to topological “spin” theories, which are defined on three manifolds with spin structure, and are related to what might be called Z 2 graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models.

  15. An introduction to the theory of groups

    CERN Document Server

    Alexandroff, Paul; Petersen, GM

    2012-01-01

    This introductory exposition of group theory by an eminent Russian mathematician is particularly suited to undergraduates. Includes a wealth of simple examples, primarily geometrical, and end-of-chapter exercises. 1959 edition.

  16. Linear algebra and group theory for physicists

    CERN Document Server

    Rao, K N Srinivasa

    2006-01-01

    Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...

  17. Adaptive Resonance Theory: how a brain learns to consciously attend, learn, and recognize a changing world.

    Science.gov (United States)

    Grossberg, Stephen

    2013-01-01

    Adaptive Resonance Theory, or ART, is a cognitive and neural theory of how the brain autonomously learns to categorize, recognize, and predict objects and events in a changing world. This article reviews classical and recent developments of ART, and provides a synthesis of concepts, principles, mechanisms, architectures, and the interdisciplinary data bases that they have helped to explain and predict. The review illustrates that ART is currently the most highly developed cognitive and neural theory available, with the broadest explanatory and predictive range. Central to ART's predictive power is its ability to carry out fast, incremental, and stable unsupervised and supervised learning in response to a changing world. ART specifies mechanistic links between processes of consciousness, learning, expectation, attention, resonance, and synchrony during both unsupervised and supervised learning. ART provides functional and mechanistic explanations of such diverse topics as laminar cortical circuitry; invariant object and scenic gist learning and recognition; prototype, surface, and boundary attention; gamma and beta oscillations; learning of entorhinal grid cells and hippocampal place cells; computation of homologous spatial and temporal mechanisms in the entorhinal-hippocampal system; vigilance breakdowns during autism and medial temporal amnesia; cognitive-emotional interactions that focus attention on valued objects in an adaptively timed way; item-order-rank working memories and learned list chunks for the planning and control of sequences of linguistic, spatial, and motor information; conscious speech percepts that are influenced by future context; auditory streaming in noise during source segregation; and speaker normalization. Brain regions that are functionally described include visual and auditory neocortex; specific and nonspecific thalamic nuclei; inferotemporal, parietal, prefrontal, entorhinal, hippocampal, parahippocampal, perirhinal, and motor cortices

  18. Introduction to the theory of Lie groups

    CERN Document Server

    Godement, Roger

    2017-01-01

    This textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann's method) before proceeding to the general case, the reader is naturally introduced to Lie theory. Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.

  19. New Pathways between Group Theory and Model Theory

    CERN Document Server

    Fuchs, László; Goldsmith, Brendan; Strüngmann, Lutz

    2017-01-01

    This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of th...

  20. Kuaering queer theory: my autocritography and a race-conscious, womanist, transnational turn.

    Science.gov (United States)

    Lee, Wenshu

    2003-01-01

    Critiquing queer theory's omissions in race and class, E. Patrick Johnson (2001) suggests "quare" studies, a turn similar to that being made from feminism to womanism. I fully embrace Johnson's theorizing. But to make relevant the worlds lying beyond the pale of North America, Europe, and the English language to the study of sexualities and other dimensions of systematic discrimination, I use kuaer theory to make another turn. One that is at once race-conscious, womanist and transnational. I travel through three awakenings, and look into nu nu (female-female) words in Taiwanese and Chinese lesbian existence in different historical periods. I also ofter a rhetorical analysis of the title of Ai Bao, the first officially registered Taiwanese lesbian magazine, exploring its persuasiveness via wordplay and multiple entendre. In addition, from jin lan hui to nu tongzhi, from T/puo and lazi to kuer, I provide sketches of heterogeneous and complex Taiwanese and Chinese nu nu worlds. As I get deeper into my autocritography, these women become my women and I learn to utter my own words in a language that is little pre-packaged. My crossing marks a daring but humble beginning. If nothing else, there is at least more space for bringing up race and transnational complicity queerly.

  1. Workshop on Topology and Geometric Group Theory

    CERN Document Server

    Fowler, James; Lafont, Jean-Francois; Leary, Ian

    2016-01-01

    This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.

  2. Higher Gauge Theory with String 2-Groups

    CERN Document Server

    Demessie, Getachew Alemu

    2016-01-01

    We give a complete and explicit description of the kinematical data of higher gauge theory on principal 2-bundles with the string 2-group model of Schommer-Pries as structure 2-group. We start with a self-contained review of the weak 2-category Bibun of Lie groupoids, bibundles and bibundle morphisms. We then construct categories internal to Bibun, which allow us to define principal 2-bundles with 2-groups internal to Bibun as structure 2-groups. Using these, we Lie-differentiate the 2-group model of the string group and we obtain the well-known string Lie 2-algebra. Generalizing the differentiation process, we find Maurer-Cartan forms leading us to higher non-abelian Deligne cohomology, encoding the kinematical data of higher gauge theory together with their (finite) gauge symmetries. We end by discussing an example of non-abelian self-dual strings in this setting.

  3. Group field theories generating polyhedral complexes

    CERN Document Server

    Thürigen, Johannes

    2015-01-01

    Group field theories are a generalization of matrix models which provide both a second quantized reformulation of loop quantum gravity as well as generating functions for spin foam models. While states in canonical loop quantum gravity, in the traditional continuum setting, are based on graphs with vertices of arbitrary valence, group field theories have been defined so far in a simplicial setting such that states have support only on graphs of fixed valency. This has led to the question whether group field theory can indeed cover the whole state space of loop quantum gravity. In this contribution based on [1] I present two new classes of group field theories which satisfy this objective: i) a straightforward, but rather formal generalization to multiple fields, one for each valency and ii) a simplicial group field theory which effectively covers the larger state space through a dual weighting, a technique common in matrix and tensor models. To this end I will further discuss in some detail the combinatorial ...

  4. Renormalization group theory impact on experimental magnetism

    CERN Document Server

    Köbler, Ulrich

    2010-01-01

    Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are calle...

  5. Continuous point symmetries in Group Field Theories

    CERN Document Server

    Kegeles, Alexander

    2016-01-01

    We discuss the notion of symmetries in non-local field theories characterized by integro-differential equation of motion, from a geometric perspective. We then focus on Group Field Theory (GFT) models of quantum gravity. We provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them, and apply it to several GFT models of interest to current research.

  6. Symmetry and group theory throughout physics

    Directory of Open Access Journals (Sweden)

    Villain J.

    2012-03-01

    Full Text Available As noticed in 1884 by Pierre Curie [1], physical properties of matter are tightly related to the kind of symmetry of the medium. Group theory is a systematic tool, though not always easy to handle, to exploit symmetry properties, for instance to find the eigenvectors and eigenvalues of an operator. Certain properties (optical activity, piezoelectricity are forbidden in molecules or crystals of high symmetry. A few theorems (Noether, Goldstone establish general relations between physical properties and symmetry. Applications of group theory to condensed matter physics, elementary particle physics, quantum mechanics, electromagnetism are reviewed. Group theory is not only a tool, but also a beautiful construction which casts insight into natural phenomena.

  7. Applied group theory selected readings in physics

    CERN Document Server

    Cracknell, Arthur P

    1968-01-01

    Selected Readings in Physics: Applied Group Theory provides information pertinent to the fundamental aspects of applied group theory. This book discusses the properties of symmetry of a system in quantum mechanics.Organized into two parts encompassing nine chapters, this book begins with an overview of the problem of elastic vibrations of a symmetric structure. This text then examines the numbers, degeneracies, and symmetries of the normal modes of vibration. Other chapters consider the conditions under which a polyatomic molecule can have a stable equilibrium configuration when its electronic

  8. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    changes or to abandon the strong identity thesis altogether. Were one to pursue a theory according to which consciousness is not an epiphenomenon to brain processes, consciousness may in fact affect its own neural basis. The neural correlate of consciousness is often seen as a stable structure, that is...

  9. Small-Group Instruction. Theory and Practice

    Science.gov (United States)

    1974-01-01

    Human Relations, vol. 1, 1948, cation Association, Washington, pp. 512-532. 1961, pp. 34-47, 125 Preceding Page Blank References 21. Cartwright , Dorwin ...Rela- Membership," in Dorwin Cartwright tions and Administration, Harvard and A. Zander (eds,), Group University Press, Cambridge, Mass., Dynamics... Dorwin Cartwright and A. 54. Johnson, D.M., and Smith, H.C. Zander (eds.) Group Dynamics: "Democratic Leadership in the Research and Theory, Row

  10. Topological gauge theories and group cohomology

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica); Witten, E. (Institute for Advanced Study, Princeton, NJ (USA). School of Natural Sciences)

    1990-04-01

    We show that three dimensional Chern-Simons gauge theories with a compact gauge group G (not necessarily connected or simply connected) can be classified by the integer cohomology group H{sup 4}(BG, Z). In a similar way, possible Wess-Zumino interactions of such a group G are classified by H{sup 3}(G, Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map from H{sup 4}(BG, Z) to H{sup 3}(G, Z). We generalize this correspondence to topological 'spin' theories, which are defined on three manifolds with spin structure, and are related to what might be called Z{sub 2} graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models. (orig.).

  11. Teaching Group Theory Using Rubik's Cubes

    Science.gov (United States)

    Cornock, Claire

    2015-01-01

    Being situated within a course at the applied end of the spectrum of maths degrees, the pure mathematics modules at Sheffield Hallam University have an applied spin. Pure topics are taught through consideration of practical examples such as knots, cryptography and automata. Rubik's cubes are used to teach group theory within a final year pure…

  12. How Do Theories of Cognition and Consciousness in Ancient Indian Thought Systems Relate to Current Western Theorizing and Research?

    Directory of Open Access Journals (Sweden)

    Peter eSedlmeier

    2016-03-01

    Full Text Available Unknown to most Western psychologists, ancient Indian scriptures contain very rich, empirically derived psychological theories that are, however, intertwined with religious and philosophical content. This article represents our attempt to extract the psychological theory of cognition and consciousness from a prominent ancient Indian thought system: Samkhya-Yoga. We derive rather broad hypotheses from this approach that may complement and extend Western mainstream theorizing. These hypotheses address an ancient personality theory, the effects of practicing the applied part of Samkhya-Yoga on normal and extraordinary cognition, as well as different ways of perceiving reality. We summarize empirical evidence collected (mostly without reference to the Indian thought system in diverse fields of research that allows for making judgments about the hypotheses, and suggest more specific hypotheses to be examined in future research. We conclude that the existing evidence for the (broad hypotheses is substantial but that there are still considerable gaps in theory and research to be filled. Theories of cognition contained in the ancient Indian systems have the potential to modify and complement existing Western mainstream accounts of cognition. In particular, they might serve as a basis for arriving at more comprehensive theories for several research areas that, so far, lack strong theoretical grounding, such as meditation research or research on aspects of consciousness.

  13. Groups in the radiative transfer theory

    Science.gov (United States)

    Nikoghossian, Arthur

    2016-11-01

    The paper presents a group-theoretical description of radiation transfer in inhomogeneous and multi-component atmospheres with the plane-parallel geometry. It summarizes and generalizes the results obtained recently by the author for some standard transfer problems of astrophysical interest with allowance of the angle and frequency distributions of the radiation field. We introduce the concept of composition groups for media with different optical and physical properties. Group representations are derived for two possible cases of illumination of a composite finite atmosphere. An algorithm for determining the reflectance and transmittance of inhomogeneous and multi-component atmospheres is described. The group theory is applied also to determining the field of radiation inside an inhomogeneous atmosphere. The concept of a group of optical depth translations is introduced. The developed theory is illustrated with the problem of radiation diffusion with partial frequency distribution assuming that the inhomogeneity is due to depth-variation of the scattering coefficient. It is shown that once reflectance and transmittance of a medium are determined, the internal field of radiation in the source-free atmosphere is found without solving any new equations. The transfer problems for a semi-infinite atmosphere and an atmosphere with internal sources of energy are discussed. The developed theory allows to derive summation laws for the mean number of scattering events underwent by the photons in the course of diffusion in the atmosphere.

  14. A course in finite group representation theory

    CERN Document Server

    Webb, Peter

    2016-01-01

    This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

  15. Exact renormalization group and Sine Gordon theory

    Science.gov (United States)

    Oak, Prafulla; Sathiapalan, B.

    2017-07-01

    The exact renormalization group is used to study the RG flow of quantities in field theories. The basic idea is to write an evolution operator for the flow and evaluate it in perturbation theory. This is easier than directly solving the differential equation. This is illustrated by reproducing known results in four dimensional ϕ 4 field theory and the two dimensional Sine-Gordon theory. It is shown that the calculation of beta function is somewhat simplified. The technique is also used to calculate the c-function in two dimensional Sine-Gordon theory. This agrees with other prescriptions for calculating c-functions in the literature. If one extrapolates the connection between central charge of a CFT and entanglement entropy in two dimensions, to the c-function of the perturbed CFT, then one gets a value for the entanglement entropy in Sine-Gordon theory that is in exact agreement with earlier calculations (including one using holography) in arXiv:1610.04233.

  16. Melonic phase transition in group field theory

    CERN Document Server

    Baratin, Aristide; Oriti, Daniele; Ryan, James P; Smerlak, Matteo

    2013-01-01

    Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of four dimensional models of quantum gravity.

  17. Differential geometry of groups in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Schmidke, W.B. Jr.

    1990-09-01

    Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1{vert bar}1). The quantum group GL{sub q}(1{vert bar}1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL{sub q}(1{vert bar}1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S{sup 1})/S{sup 1}. We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs.

  18. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs.

    Science.gov (United States)

    Carhart-Harris, Robin L; Leech, Robert; Hellyer, Peter J; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R; Nutt, David

    2014-01-01

    Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of "primary states" is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit "criticality," i.e., the property of being poised at a "critical" point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with

  19. Consciousness in the universe. A review of the 'Orch OR' theory

    Science.gov (United States)

    Hameroff, Stuart; Penrose, Roger

    2014-03-01

    The nature of consciousness, the mechanism by which it occurs in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990's that consciousness depends on biologically 'orchestrated' coherent quantum processes in collections of microtubules within brain neurons, that these quantum processes correlate with, and regulate, neuronal synaptic and membrane activity, and that the continuous Schrödinger evolution of each such process terminates in accordance with the specific Diósi-Penrose (DP) scheme of 'objective reduction' ('OR') of the quantum state. This orchestrated OR activity ('Orch OR') is taken to result in moments of conscious awareness and/or choice. The DP form of OR is related to the fundamentals of quantum mechanics and space-time geometry, so Orch OR suggests that there is a connection between the brain's biomolecular processes and the basic structure of the universe. Here we review Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We also introduce a novel suggestion of 'beat frequencies' of faster microtubule vibrations as a possible source of the observed electro-encephalographic ('EEG') correlates of consciousness. We conclude that consciousness plays an intrinsic role in the universe.

  20. Consciousness in the universe: a review of the 'Orch OR' theory.

    Science.gov (United States)

    Hameroff, Stuart; Penrose, Roger

    2014-03-01

    The nature of consciousness, the mechanism by which it occurs in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990's that consciousness depends on biologically 'orchestrated' coherent quantum processes in collections of microtubules within brain neurons, that these quantum processes correlate with, and regulate, neuronal synaptic and membrane activity, and that the continuous Schrödinger evolution of each such process terminates in accordance with the specific Diósi-Penrose (DP) scheme of 'objective reduction' ('OR') of the quantum state. This orchestrated OR activity ('Orch OR') is taken to result in moments of conscious awareness and/or choice. The DP form of OR is related to the fundamentals of quantum mechanics and space-time geometry, so Orch OR suggests that there is a connection between the brain's biomolecular processes and the basic structure of the universe. Here we review Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We also introduce a novel suggestion of 'beat frequencies' of faster microtubule vibrations as a possible source of the observed electro-encephalographic ('EEG') correlates of consciousness. We conclude that consciousness plays an intrinsic role in the universe. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Polynomial Invariant Theory of the Classical Groups

    CERN Document Server

    Westrich, Quinton

    2011-01-01

    The goal of invariant theory is to find all the generators for the algebra of representations of a group that leave the group invariant. Such generators will be called \\emph{basic invariants}. In particular, we set out to find the set of basic invariants for the classical groups GL$(V)$, O$(n)$, and Sp$(n)$ for $n$ even. In the first half of the paper we set up relevant definitions and theorems for our search for the set of basic invariants, starting with linear algebraic groups and then discussing associative algebras. We then state and prove a monumental theorem that will allow us to proceed with hope: it says that the set of basic invariants is finite if $G$ is reductive. Finally we state without proof the First Fundamental Theorems, which aim to list explicitly the relevant sets of basic invariants, for the classical groups above. We end by commenting on some applications of invariant theory, on the history of its development, and stating a useful theorem in the appendix whose proof lies beyond the scope ...

  2. The entropic brain:A theory of conscious states informed by neuroimaging research with psychedelic drugs

    Directory of Open Access Journals (Sweden)

    Robin Lester Carhart-Harris

    2014-02-01

    Full Text Available Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neural dynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of ‘primary states’ is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. It is noted that elevated entropy in this sense, is a characteristic of systems exhibiting ‘self-organised criticality’, i.e., a property of systems that gravitate towards a ‘critical’ point in a transition zone between order and disorder in which certain phenomena such as power-law scaling appear. This implies that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organised activity within the default-mode network (DMN and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled. These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as REM sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetised state.

  3. Connecting Consciousness to Physical Causality: Abhinavagupta’s Phenomenology of Subjectivity and Tononi’s Integrated Information Theory

    Directory of Open Access Journals (Sweden)

    Loriliai Biernacki

    2016-07-01

    Full Text Available This article demonstrates remarkably similar methods for linking mind and body to address the “hard problem” in the work of 11th-century Indian philosopher Abhinavagupta with a currently prominent neuroscienctific theory, Tononi’s Integrated Information Theory 3.0. Both Abhinavagupta and Tononi and Christof Koch hinge their theories on the identity of phenomenal subjective experience with causality. Giulio Tononi’s Integrated Information Theory is remarkable precisely in its method for dealing with the mind-body problem; namely, Tononi’s mathematically oriented systems neurology proposes something we typically do not find in neuroscientific literature—that we start from a phenomenology of experience. Abhinavagupta’s sophisticated and, for his milieu, novel way of linking subjectivity and objectivity in the concepts of knowledge (jñāna and action (kriyā also offers a way of understanding how subjectivity can be linked to causality. This particular configuration is mostly absent in Western Cartesian models for understanding consciousness and in Indian philosophical speculations on consciousness. However, this, in any case, is precisely the move that Tononi makes when he proposes that information is both “causal and intrinsic.” Abhinavagupta’s similar linkage of subjectivity with causality can help us to think about Tononi’s neuroscientific mathematical model.

  4. Double Field Theory on Group Manifolds (Thesis)

    CERN Document Server

    Hassler, Falk

    2015-01-01

    This thesis deals with Double Field Theory (DFT), an effective field theory capturing the low energy dynamics of closed strings on a torus. It renders T-duality on a torus manifest by adding $D$ winding coordinates in addition to the $D$ space time coordinates. An essential consistency constraint of the theory, the strong constraint, only allows for field configurations which depend on half of the coordinates of the arising doubled space. I derive DFT${}_\\mathrm{WZW}$, a generalization of the current formalism. It captures the low energy dynamics of a closed bosonic string propagating on a compact group manifold. Its classical action and the corresponding gauge transformations arise from Closed String Field Theory up to cubic order in the massless fields. These results are rewritten in terms of a generalized metric and extended to all orders in the fields. There is an explicit distinction between background and fluctuations. For the gauge algebra to close, the latter have to fulfill a modified strong constrai...

  5. Groups, information theory, and Einstein's likelihood principle

    Science.gov (United States)

    Sicuro, Gabriele; Tempesta, Piergiulio

    2016-04-01

    We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts.

  6. Working Group Report: Lattice Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Blum, T.; et al.,

    2013-10-22

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  7. The Science of Consciousness

    CERN Document Server

    CERN. Geneva

    2015-01-01

    We not only act in the world but we consciously perceive it. The interactions of myriad of neuronal and sub-neuronal processes that are responsible for visual behaviors also give rise to the daily movie screened for our benefit in the privacy of our own skull. I will discuss the empirical progress that has been achieved over the past several decades in characterizing the behavioral and the neuronal correlates of consciousness in human and non-human animals and in dissociating selective visual attention from visual consciousness. I will introduce Tononi’s integrated Information Theory (IIT) that explains in a principled manner which physical systems are capable of conscious, subjective experience. The theory explains many empirical facts about consciousness and its pathologies in humans. It can also be extrapolated to more difficult cases, such as fetuses, mice, or bees. The theory predicts that many, seemingly complex, systems are not conscious, in particular digital computers running software, even if thes...

  8. “Situation” in the study of moral and legal consciousness: From theory to techniques

    Directory of Open Access Journals (Sweden)

    V E Grebneva

    2016-12-01

    Full Text Available The multidimensional structure of legal consciousness, in which the norms of different orders collide, and the intricate intertwining of cognitive, emotive and behavioral components cannot be described in just one system of representations. This article considers conceptual bases of the study of moral and legal consciousness on the example of value-cognitive dilemmas. The author presents interpretations of the concept “situation” in the works of Russian and Western scientists, identifies its general theoretical bases and analyzes its potential in the study of moral and legal consciousness; suggests as one of the ways to find and identify determinants of moral and legal consciousness identification of specific decisions made by individuals in a variety of small-scale short situations in the given frame and normatively determined, because in the situational dilemma a social agent, whatever decision he makes, needs a rational reason and justification. The author describes the process of designing a technique on the basis of vignette-method and the method of controlled projection for the study of the conflict of multiple rationalities implying different models of justification in the structure of value choice.

  9. Dimensional analysis and group theory in astrophysics

    CERN Document Server

    Kurth, Rudolf

    2013-01-01

    Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si

  10. Teaching group theory using Rubik's cubes

    Science.gov (United States)

    Cornock, Claire

    2015-10-01

    Being situated within a course at the applied end of the spectrum of maths degrees, the pure mathematics modules at Sheffield Hallam University have an applied spin. Pure topics are taught through consideration of practical examples such as knots, cryptography and automata. Rubik's cubes are used to teach group theory within a final year pure elective based on physical examples. Abstract concepts, such as subgroups, homomorphisms and equivalence relations are explored with the cubes first. In addition to this, conclusions about the cubes can be made through the consideration of algebraic approaches through a process of discovery. The teaching, learning and assessment methods are explored in this paper, along with the challenges and limitations of the methods. The physical use of Rubik's cubes within the classroom and examination will be presented, along with the use of peer support groups in this process. The students generally respond positively to the teaching methods and the use of the cubes.

  11. Genomic instantiation of consciousness in neurons through a biophoton field theory.

    Science.gov (United States)

    Cacha, Lleuvelyn A; Poznanski, Roman R

    2014-06-01

    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is

  12. Consciousness and the self.

    Science.gov (United States)

    Di Francesco, Michele

    2008-01-01

    In this paper I argue that, even though there is no doubt that to understand consciousness we have to understand the brain, the idea that a complete understanding of the essence of the phenomenon of human consciousness might derive from neuroscience alone is more disputable. Major progress in our understanding of the phenomenon of consciousness can certainly derive from neuroscience, but, as far as human consciousness is concerned, the thesis that since consciousness starts as a biological reality the proper locus of its analysis and explanation lies in neuroscience encounters serious difficulties. In particular, any theory of human consciousness that entails an explanation of the genesis and the nature of the subject of experience would require reference to social and cultural phenomena as well as to biological phenomena: the science of human consciousness, then, cannot avoid being intrinsically pluralistic in character.

  13. Discrete Renormalization Group for SU(2) Tensorial Group Field Theory

    CERN Document Server

    Carrozza, Sylvain

    2014-01-01

    This article provides a Wilsonian description of the perturbatively renormalizable Tensorial Group Field Theory introduced in arXiv:1303.6772 [hep-th] (Commun. Math. Phys. 330, 581-637). It is a rank-3 model based on the gauge group SU(2), and as such is expected to be related to Euclidean quantum gravity in three dimensions. By means of a power-counting argument, we introduce a notion of dimensionality of the free parameters defining the action. General flow equations for the dimensionless bare coupling constants can then be derived, in terms of a discretely varying cut-off, and in which all the so-called melonic Feynman diagrams contribute. Linearizing around the Gaussian fixed point allows to recover the splitting between relevant, irrelevant, and marginal coupling constants. Pushing the perturbative expansion to second order for the marginal parameters, we are able to determine their behaviour in the vicinity of the Gaussian fixed point. Along the way, several technical tools are reviewed, including a dis...

  14. An analysis of totalitarian consciousness in Frankfurt School socio-critical theory

    Directory of Open Access Journals (Sweden)

    O. O. Demura

    2014-10-01

    Full Text Available In the article there were analyzed the main ideas of Frankfurt School representatives, namely Theodor. W. Adorno, Max Horkheimer, Herbert Marcuse, Erich Fromm. The author attempted to identify the main causes of neototalitarianism formation and the formation of totalitarian regime in the 20th century. In the attempt the author based on the main researches and fundamental works of Frankfurt school representatives. It was established an interdependency between the Enlightenment practice and the mythologizing of consciousness; the role of culture was determined. The role of ideological system as one of the forms of social mythology was described. It was established the regularity between ‘happy consciousness’ of the Consumer Society and myths and ideological system effecting rooting in the society mass consciousness of the 20th century. The relevance of the article is determined by the need for critical thinking of the development of totalitarian states culture that today is becoming obvious. An awareness of the fact that social consciousness of post-Soviet states still guided by myths that were created and instituted by totalitarian culture makes us serious study of the problems mythologizing of consciousness and ideological influence. Therefore the deliverance from prejudice and the transition to a new round of democratic society is not possible without studying the formations foundations of mass society and the functions of culture in it. Moreover, the solution of modernity global problems and the transition on qualitatively new round of social and cultural development is impossible without definition of conditions that identified the construction of Western civilization.

  15. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... the relation between consciousness and brain functions. If consciousness is connected to specific brain structures (as a function or in identity) what happens to consciousness when those specific underlying structures change? It is therefore possible that the understanding and theories of neural plasticity can...

  16. The sense of consciousness.

    Science.gov (United States)

    Tannenbaum, A S

    2001-08-21

    I propose that consciousness might be understood as the property of a system that functions as a sense in the biological meaning of that term. The theory assumes that, as a complex system, the sense of consciousness is not a fixed structure but implies structure with variations and that it evolved, as many new functions do, through the integration of simpler systems. The recognized exteroceptive and enteroceptive senses provide information about the organism's environment and about the organism itself that are important to adaptation. The sense of consciousness provides information about the brain and thus about the organism and its environment. It senses other senses and processes in the brain, selecting and relating components into a form that "makes sense"-where making sense is defined as being useful to the organism in its adaptation to the environment. The theory argues that this highly adaptive organizing function evolved with the growing complexity of the brain and that it might have helped resolve discrepancies created at earlier stages. Neural energies in the brain that are the input to the sense of consciousness, along with the processing subsystem of which they are a part, constitute the base of consciousness. Consciousness itself is an emergent effect of an organizing process achieved through the sense of consciousness. The sense of consciousness thus serves an organizing function although it is not the only means of organization in the brain. Its uniqueness lies in the character of the organization it creates with consciousness as a property of that organization. The paper relates the theory to several general conceptions-interactionism, epiphenomenalism and identity theory-and illustrates a number of testable hypotheses. Viewing consciousness as a property of a sense provides a degree of conceptual integration. Much of what we know about the evolution and role of the conventionally recognized senses should help us understand the evolution and role of

  17. A Commentary on De Sousa′s "Towards an Integrative Theory of Consciousness"

    Directory of Open Access Journals (Sweden)

    Alfredo Pereira

    2013-01-01

    Full Text Available De Sousa′s comprehensive two-part review of a diversity of contemporary approaches to the study of consciousness is highly welcome. He makes us aware of a proliferation of theoretical and empirical approaches targeting a common theme, but diverging in many ways. He skilfully accomplishes a classification of kinds of approach, identification of the main representatives, their contributions, and respective limitations. However, he does not show how the desired integration could be accomplished. Besides summarising De Sousa′s efficient analytical work, I make critical comments and briefly report my contribution for the integration project.

  18. Spin-Mediated Consciousness Theory Possible Roles of Oxygen Unpaired Electronic Spins and Neural Membrane Nuclear Spin Ensemble in Memory and Consciousness

    CERN Document Server

    Hu, H; Hu, Huping; Wu, Maoxin

    2002-01-01

    We postulate that consciousness is connected to quantum mechanical spin since said spin is embedded in the microscopic structure of spacetime and may be more fundamental than spacetime itself. Thus, we theorize that consciousness is connected with the fabric of spacetime through spin. That is, spin is the "pixel" and "antenna" of mind. The unity of mind is achieved by non-local means within the pre-spacetime domain interfaced with spacetime. Human mind is possible because of the particular structures and dynamics of our brain postulated working as follows: The unpaired electronic spins of highly lipid-soluble and rapidly diffusing oxygen molecules extract information from the dynamical neural membranes and communicate said information through strong spin-spin couplings to the nuclear spin ensemble in the membranes for consciousness-related quantum statistical processing which survives decoherence. In turn, the dynamics of the nuclear spin ensemble has effects through spin chemistry on the classical neural act...

  19. Human development II: We Need an Integrated Theory for Matter, Life and Consciousness to Understand Life and Healing

    Directory of Open Access Journals (Sweden)

    Sören Ventegodt

    2006-01-01

    Full Text Available For almost a decade, we have experimented with supporting the philosophical development of severely ill patients to induce recovery and spontaneous healing. Recently, we have observed a new pattern of extremely rapid, spontaneous healing that apparently can facilitate even the spontaneous remission of cancer and the spontaneous recovery of mental diseases like schizophrenia and borderline schizophrenia. Our working hypothesis is that the accelerated healing is a function of the patient’s brain-mind and body-mind coming closer together due to the development of what we call “deep” cosmology. To understand and describe what happens at a biological level, we have suggested naming the process adult human metamorphosis, a possibility that is opened by the human genome showing full generic equipment for metamorphosis. To understand the mechanistic details in the complicated interaction between consciousness and biology, we need an adequate theory for biological information. In a series of papers, we propose what we call “holistic biology for holistic medicine”. We suggest that a relatively simple model based on interacting wholenesses instead of isolated parts can shed a new light on a number of difficult issues that we need to explain and understand in biology and medicine in order to understand and use metamorphosis in the holistic medical clinic. We aim to give a holistic theoretical interpretation of biological phenomena at large, morphogenesis, evolution, immune system regulation (self-nonself discrimination, brain function, consciousness, and health in particular. We start at the most fundamental problem: what is biological information at the subcellular, cellular, and supracellular levels if we presume that it is the same phenomenon on all levels (using Occam's razor, and how can this be described scientifically? The problems we address are all connected to the information flow in the functioning, living organism: function of the brain

  20. Human development II: we need an integrated theory for matter, life and consciousness to understand life and healing.

    Science.gov (United States)

    Ventegodt, Søren; Hermansen, Tyge Dahl; Nielsen, Maj Lyck; Clausen, Birgitte; Merrick, Joav

    2006-07-06

    For almost a decade, we have experimented with supporting the philosophical development of severely ill patients to induce recovery and spontaneous healing. Recently, we have observed a new pattern of extremely rapid, spontaneous healing that apparently can facilitate even the spontaneous remission of cancer and the spontaneous recovery of mental diseases like schizophrenia and borderline schizophrenia. Our working hypothesis is that the accelerated healing is a function of the patient's brain-mind and body-mind coming closer together due to the development of what we call "deep" cosmology. To understand and describe what happens at a biological level, we have suggested naming the process adult human metamorphosis, a possibility that is opened by the human genome showing full generic equipment for metamorphosis. To understand the mechanistic details in the complicated interaction between consciousness and biology, we need an adequate theory for biological information. In a series of papers, we propose what we call "holistic biology for holistic medicine". We suggest that a relatively simple model based on interacting wholenesses instead of isolated parts can shed a new light on a number of difficult issues that we need to explain and understand in biology and medicine in order to understand and use metamorphosis in the holistic medical clinic. We aim to give a holistic theoretical interpretation of biological phenomena at large, morphogenesis, evolution, immune system regulation (self-nonself discrimination), brain function, consciousness, and health in particular. We start at the most fundamental problem: what is biological information at the subcellular, cellular, and supracellular levels if we presume that it is the same phenomenon on all levels (using Occam's razor), and how can this be described scientifically? The problems we address are all connected to the information flow in the functioning, living organism: function of the brain and consciousness, the

  1. Teaching Theory Research: Theory Consciousness and Practice Feelings%教学论研究:理论自觉与实践情怀

    Institute of Scientific and Technical Information of China (English)

    辛继湘

    2012-01-01

    Teaching theory research fails to obtain valuable study results which can guide practice is partly due to the insufficiency of its theory consciousness and practice feelings. And it is not merely because researchers do not get involved into the teaching practice in primary and secondary schools. As for teaching theory research, to truly make a difference and highlight its significance, it is necessary to have a close contact with teaching practice and maintain its theory trait at the same time. Only by sticking to both profound theory consciousness and practice feelings, can teaching understanding be enhanced, teaching wisdom and spirit be evoked, and the quality of teaching practice be promoted.%教学论研究未能取得能够引导实践的研究成果,与其理论品性和实践情怀的双重不足有关,而不只是因为研究者未能走进中小学教学实践。教学论研究要真正有所作为、彰显其意义,需要在密切联系教学实践的同时不失其理论特质,在直面教学现实的过程中保持深刻的理论自觉;在提升理论品性的同时也应具有实践情怀,从而增进教学理解,唤起教学智慧和精神,提升教学实践的品质,促成人的幸福与完善。

  2. Theory of groups of finite order

    CERN Document Server

    Burnside, W

    2013-01-01

    After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; Abelian groups; groups whose orders are the powers of primes; Sylow's theorem; more. 18 illustrations. A classic introduction.

  3. The evolution of consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1996-08-16

    It is argued that the principles of classical physics are inimical to the development of an adequate science of consciousness. The problem is that insofar as the classical principles are valid consciousness can have no effect on the behavior, and hence on the survival prospects, of the organisms in which it inheres. Thus within the classical framework it is not possible to explain in natural terms the development of consciousness to the high-level form found in human beings. In quantum theory, on the other hand, consciousness can be dynamically efficacious: quantum theory does allow consciousness to influence behavior, and thence to evolve in accordance with the principles of natural selection. However, this evolutionary requirement places important constraints upon the details of the formulation of the quantum dynamical principles.

  4. Neural Darwinism and consciousness.

    Science.gov (United States)

    Seth, Anil K; Baars, Bernard J

    2005-03-01

    Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.

  5. Equivariant homology theories for totally disconnected groups

    OpenAIRE

    2002-01-01

    Der Begriff der äquivarianten Familie von Spektren steht in Korrespondenz zu dem der äquivarianten Homologietheorie, wie er von W. Lück benutzt wird. Wir entwickeln ein allgemeines Prinzip, um äquivariante Familien von Spektren zu konstruieren. Diese Maschine kann dazu benutzt werden, viele interessante Beispiele zu definieren. Die Hauptbeispiele sind algebraische K- und L-Theorie für diskrete Gruppen, topologische K-Theorie, Hochschild Homologie, Zyklische Hom...

  6. Attachment to groups: theory and measurement.

    Science.gov (United States)

    Smith, E R; Murphy, J; Coats, S

    1999-07-01

    Aspects of people's identification with groups may be understood by borrowing theoretical ideas and measurement strategies from research on attachment in close relationships. People have mental models of the self as a group member and of groups as sources of identity and esteem. These models affect thoughts, emotions, and behaviors related to group membership. Three studies show that two dimensions of attachment to groups, attachment anxiety and avoidance, can be assessed with good reliability, validity, and over-time stability. These factors are distinct from relationship attachment and from other measures of group identification. Group attachment predicts several important outcomes, including emotions concerning the group, time and activities shared with a group, social support, collective self-esteem, and ways of resolving conflict. This conceptualization provides new insights into the nature of people's psychological ties to groups.

  7. Human Development VIII: A Theory of “Deep” Quantum Chemistry and Cell Consciousness: Quantum Chemistry Controls Genes and Biochemistry to Give Cells and Higher Organisms Consciousness and Complex Behavior

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2006-01-01

    Full Text Available Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it “sees”, and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occam’s razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules’ orbitals make one huge “cell-orbital”, which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness.

  8. Small Group Learning: Do Group Members' Implicit Theories of Ability Make a Difference?

    Science.gov (United States)

    Beckmann, Nadin; Wood, Robert E.; Minbashian, Amirali; Tabernero, Carmen

    2012-01-01

    We examined the impact of members' implicit theories of ability on group learning and the mediating role of several group process variables, such as goal-setting, effort attributions, and efficacy beliefs. Comparisons were between 15 groups with a strong incremental view on ability (high incremental theory groups), and 15 groups with a weak…

  9. Small Group Learning: Do Group Members' Implicit Theories of Ability Make a Difference?

    Science.gov (United States)

    Beckmann, Nadin; Wood, Robert E.; Minbashian, Amirali; Tabernero, Carmen

    2012-01-01

    We examined the impact of members' implicit theories of ability on group learning and the mediating role of several group process variables, such as goal-setting, effort attributions, and efficacy beliefs. Comparisons were between 15 groups with a strong incremental view on ability (high incremental theory groups), and 15 groups with a weak…

  10. Recursive renormalization group theory based subgrid modeling

    Science.gov (United States)

    Zhou, YE

    1991-01-01

    Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.

  11. Non-local quantum evolution of entangled ensemble states in neural nets and its significance for brain function and a theory of consciousness

    CERN Document Server

    Bieberich, E

    1999-01-01

    Current quantum theories of consciousness suggest a configuration space of an entangled ensemble state as global work space for conscious experience. This study will describe a procedure for adjustment of the singlet evolution of a quantum computation to a classical signal input by action potentials. The computational output of an entangled state in a single neuron will be selected in a network environment by "survival of the fittest" coupling with other neurons. Darwinian evolution of this coupling will result in a binding of action potentials to a convoluted orbit of phase-locked oscillations with harmonic, m-adic, or fractal periodicity. Progressive integration of signal inputs will evolve a present memory space independent from the history of construction. Implications for mental processes, e.g., associative memory, creativity, and consciousness will be discussed. A model for the generation of quantum coherence in a single neuron will be suggested.

  12. On the Representation Theory of Alternating Groups

    Institute of Scientific and Technical Information of China (English)

    Christine Bessenrodt

    2003-01-01

    In this paper, we survey the classification of the irreducible linear and projective representations of the symmetric and alternating groups, and we present some new results on constituents in Kronecker products of complex linear and spin characters.

  13. FromSystemof Village Eight to Japanese Group Consciousnesses%从村八分制度看日本人的集团意识

    Institute of Scientific and Technical Information of China (English)

    赵秦怡

    2015-01-01

    With the exception of Fuji Mountain ,sakura and kimono ,what Japan is most lauded for to foreigners is undoubt‐edly collective consciousness ,which means subordination to the group in which people belong to with resolution .Meanwhile ,the brief analysis on how to deal with the current Sino Japanese Relations is submitted In the essay based on the understanding of col‐lective consciousness .By analyzing the system embodied in the village eight group consciousnesses ,from the natural environment , culture and Confucianism three paths start to explore the causes of the Japanese sense of group consciousnesses .%日本给国人的印象除了富士山、樱花、和服以外,最为人称道的则是日本人坚决服从自己所属集团的这种意识,即集团意识。而日本传统社会中所保留的村八分制度正是集团意识的一种极端体现和缩影。文章通过分析村八分制度在集团意识中的体现,从自然环境、稻作文化以及儒学这三个路径入手,探究日本人集团意识形成的根源以及对日本社会的影响。

  14. Integrating Theory, Content, and Method to Foster Critical Consciousness in Medical Students: A Comprehensive Model for Cultural Competence Training.

    Science.gov (United States)

    Dao, Diane K; Goss, Adeline L; Hoekzema, Andrew S; Kelly, Lauren A; Logan, Alexander A; Mehta, Sanjiv D; Sandesara, Utpal N; Munyikwa, Michelle R; DeLisser, Horace M

    2017-03-01

    Many efforts to design introductory "cultural competence" courses for medical students rely on an information delivery (competence) paradigm, which can exoticize patients while obscuring social context, medical culture, and power structures. Other approaches foster a general open-minded orientation, which can remain nebulous without clear grounding principles. Medical educators are increasingly recognizing the limitations of both approaches and calling for strategies that reenvision cultural competence training. Successfully realizing such alternative strategies requires the development of comprehensive models that specify and integrate theoretical frameworks, content, and teaching principles.In this article, the authors present one such model: Introduction to Medicine and Society (IMS), a required cultural competence course launched in 2013 for first-year medical students at the Perelman School of Medicine at the University of Pennsylvania. Building on critical pedagogy, IMS is centered on a novel specification of "critical consciousness" in clinical practice as an orientation to understanding and pragmatic action in three relational domains: internal, interpersonal, and structural. Instead of transmitting discrete "facts" about patient "types," IMS content provokes students to engage with complex questions bridging the three domains. Learning takes place in a small-group space specifically designed to spur transformation toward critical consciousness. After discussing the three key components of the course design and describing a representative session, the authors discuss the IMS model's implications, reception by students and faculty, and potential for expansion. Their early experience suggests the IMS model successfully engages students and prepares future physicians to critically examine experiences, manage interpersonal dynamics, and structurally contextualize patient encounters.

  15. Symmetry an introduction to group theory and its applications

    CERN Document Server

    McWeeny, R

    2013-01-01

    Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely w

  16. Face consciousness among South Korean women: a culture-specific extension of objectification theory.

    Science.gov (United States)

    Kim, Si Yeon; Seo, Young Seok; Baek, Keun Young

    2014-01-01

    This study tested key tenets of objectification theory with South Korean women and explored the roles of sexually objectifying media and culture-specific standards of beauty in body image and eating disorder symptoms. Two pilot studies with South Korean college women (n = 40, n = 30) revealed that facial characteristics such as size and shape represent a discrete variable among culture-specific standards of beauty for South Korean women. Results with a sample of 562 South Korean college women indicated that media exposure had significant positive indirect relations with body shame and eating disorder symptoms through the mediating roles of internalization, body surveillance, and face surveillance. Internalization of cultural standards of beauty had significant positive direct relations with body surveillance and face surveillance and had both direct and indirect relations with body shame and eating disorder symptoms. Body and face surveillances had significant positive direct relations with body shame and had indirect relations with eating disorder symptoms. Finally, body shame mediated the links from internalization and surveillance variables to eating disorder symptoms. The results support the applicability of objectification theory as it relates to South Korean women and point to the significance of culture-specific standards of beauty within that framework. These findings could contribute to the broader field of multicultural body image research, with potential implications for therapist practices and training. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  17. The theory of the disease of the group members

    Directory of Open Access Journals (Sweden)

    Miriam Lata Chiodi

    2014-09-01

    Full Text Available The group members shall draw up a theory of the genesis of mental suffering, which is part of the group’s culture. This is an implicit theory. It has not been disseminated, organized and systematized. However, the group members make use of it. Its recognition is an important point of reference for the analyst. An analyst who is able to recognize its features and content will understand better how the group is progressing in its attempt to achieve health. The recognition of this theory also helps the analyst understand what image the group members have of themselves as a group.Keywords: Psychopathology, Psychoanalysis, Group psychotherapy, Psychological Field Theory, Group self-representation

  18. A Patient with Cancer and Her Family in Caring Partnership Based on Margaret Newman's Theory of Health as Expanding Consciousness.

    Science.gov (United States)

    Fujiwara, Yoshimi; Endo, Emiko

    2017-01-01

    The purpose, on the basis of Margaret Newman's theory of health as expanding consciousness in a unitary perspective, was to practice the caring partnership with a client who could not share their desires and find their future direction at a gear change period and document the process of their relational changes within this process. The design was research as praxis. The participant was a patient with cancer and her family in the midst of a difficult health situation. Through caring partnership, a nurse researcher asked to tell "the meaningful events and relationships in their lives" over four in-depth dialogue meetings. Data were collected from the tape-recorded dialogue transcriptions. In the process of caring partnership, the patient and each family member recognized their own pattern and family pattern of "being closed off," their approach to the situation, and found a new direction through this process. The finding suggested that caring partnership as a nursing intervention would be helpful for nurses as well as for patients and their families in difficult health situations.

  19. Polchinski's equation for group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, T. [Centre de Physique Theorique, Campus de Luminy, 13 288 Marseille cedex 9 (France); Laboratoire d' Informatique de Paris Nord, 99 avenue Jean Baptiste Clement, 93 430 Villetaneuse (France); Toriumi, R. [Centre de Physique Theorique, Campus de Luminy, 13 288 Marseille cedex 9 (France)

    2014-09-11

    We derive an exact renormalization group equation in the context of (colored) group field theories. This equation describes the variation of the effective action as some of the modes of the fields are integrated out. From a combinatorial point of view, the effective action can be expressed using a boundary triangulation and the corresponding renormalization group equation identifies some of its simplexes, In group field theory, terms in the effective action are parametrized by spin networks, while the group field theory Feynman graphs correspond to spin foams. This provides a formulation of group field theories that only involves boundary graphs. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Cybernetics and consciousness.

    Science.gov (United States)

    Trabka, J

    1999-01-01

    This paper is a review of hypotheses of consciousness which arose from application of the theory of information and regulation and the cybernetic theory of mathematical machines in medicine. The author presents these hypotheses on the examples of his own works.

  1. The minimally conscious state: defining the borders of consciousness.

    Science.gov (United States)

    Giacino, J T

    2005-01-01

    There is no agreement as to where the limits of consciousness lie, or even if these putative borders exist. Problems inherent to the study of consciousness continue to confound efforts to establish a universally accepted theory of consciousness. Consequently, clinical definitions of consciousness and unconsciousness are unavoidably arbitrary. Recently, a condition of severely altered consciousness has been described, which characterizes the borderzone between the vegetative state and so-called "normal" consciousness. This condition, referred to as the minimally conscious state (MCS), is distinguished from the vegetative state by the presence of minimal but clearly discernible behavioral evidence of self or environmental awareness. This chapter reviews the diagnostic criteria, pathophysiology, prognostic relevance, neurobehavioral assessment procedures and treatment implications associated with MCS.

  2. Flowing in group field theory space: a review

    CERN Document Server

    Carrozza, Sylvain

    2016-01-01

    We provide a non--technical overview of recent extensions of renormalization methods and techniques to Group Field Theories (GFTs), a class of combinatorially non--local quantum field theories which generalize matrix models to dimension $d \\geq 3$. More precisely, we focus on GFTs with so--called closure constraint, which are closely related to lattice gauge theories and quantum gravity spin foam models. With the help of modern tensor model tools, a rich landscape of renormalizable theories has been unravelled. We review our current understanding of their renormalization group flows, at both perturbative and non--perturbative levels.

  3. Group dualities, T-dualities, and twisted K-theory

    CERN Document Server

    Mathai, Varghese

    2016-01-01

    This paper explores further the connection between Langlands duality and T-duality for compact simple Lie groups, which appeared in work of Daenzer-Van Erp and Bunke-Nikolaus. We show that Langlands duality gives rise to isomorphisms of twisted K-groups, but that these K-groups are trivial except in the simplest case of SU(2) and SO(3). Along the way we compute explicitly the map on $H^3$ induced by a covering of compact simple Lie groups, which is either 1 or 2 depending in a complicated way on the type of the groups involved. We also give a new method for computing twisted K-theory using the Segal spectral sequence, giving simpler computations of certain twisted K-theory groups of compact Lie groups relevant for D-brane charges in WZW theories and rank-level dualities. Finally we study a duality for orientifolds based on complex Lie groups with an involution.

  4. Renormalization-group flows and fixed points in Yukawa theories

    DEFF Research Database (Denmark)

    Mølgaard, Esben; Shrock, R.

    2014-01-01

    We study renormalization-group flows in Yukawa theories with massless fermions, including determination of fixed points and curves that separate regions of different flow behavior. We assess the reliability of perturbative calculations for various values of Yukawa coupling y and quartic scalar....... In the regime of weak couplings where the perturbative calculations are most reliable, we find that the theories have no nontrivial fixed points, and the flow is toward a free theory in the infrared....

  5. Replicating Small Group Research Using the Functional Theory.

    Science.gov (United States)

    Cragan, John F.; Wright, David W.

    A replication study tested functional theory utilizing untrained full-fledged groups. One hundred forty undergraduate students who were enrolled in a small group communication course at a large midwestern university participated in small group discussions analyzing a plagiarism case used in an original study by R. Y. Hirokawa. Results indicated…

  6. Elements of the representation theory of the Jacobi group

    CERN Document Server

    Berndt, Rolf

    1998-01-01

    The Jacobi group is a semidirect product of a symplectic group with a Heisenberg group. It is an important example for a non-reductive group and sets the frame within which to treat theta functions as well as elliptic functions - in particular, the universal elliptic curve. This text gathers for the first time material from the representation theory of this group in both local (archimedean and non-archimedean) cases and in the global number field case. Via a bridge to Waldspurger's theory for the metaplectic group, complete classification theorems for irreducible representations are obtained. Further topics include differential operators, Whittaker models, Hecke operators, spherical representations and theta functions. The global theory is aimed at the correspondence between automorphic representations and Jacobi forms. This volume is thus a complement to the seminal book on Jacobi forms by M. Eichler and D. Zagier. Incorporating results of the authors' original research, this exposition is meant for research...

  7. A Grounded Theory of Western-Trained Asian Group Leaders Leading Groups in Asia

    Science.gov (United States)

    Taephant, Nattasuda; Rubel, Deborah; Champe, Julia

    2015-01-01

    This grounded theory research explored the experiences of Western-trained Asian group leaders leading groups in Asia. A total of 6 participants from Japan, Taiwan, and Thailand were interviewed 3 times over 9 months. The recursive process of data collection and analysis yielded substantive theory describing the participants' process of reconciling…

  8. A Grounded Theory of Western-Trained Asian Group Leaders Leading Groups in Asia

    Science.gov (United States)

    Taephant, Nattasuda; Rubel, Deborah; Champe, Julia

    2015-01-01

    This grounded theory research explored the experiences of Western-trained Asian group leaders leading groups in Asia. A total of 6 participants from Japan, Taiwan, and Thailand were interviewed 3 times over 9 months. The recursive process of data collection and analysis yielded substantive theory describing the participants' process of reconciling…

  9. A Grounded Theory of Western-Trained Asian Group Leaders Leading Groups in Asia

    Science.gov (United States)

    Taephant, Nattasuda; Rubel, Deborah; Champe, Julia

    2015-01-01

    This grounded theory research explored the experiences of Western-trained Asian group leaders leading groups in Asia. A total of 6 participants from Japan, Taiwan, and Thailand were interviewed 3 times over 9 months. The recursive process of data collection and analysis yielded substantive theory describing the participants' process of…

  10. Topological Graph Polynomials in Colored Group Field Theory

    CERN Document Server

    Gurau, Razvan

    2009-01-01

    In this paper we analyze the open Feynman graphs of the Colored Group Field Theory introduced in [arXiv:0907.2582]. We define the boundary graph $\\cG_{\\partial}$ of an open graph $\\cG$ and prove it is a cellular complex. Using this structure we generalize the topological (Bollobas-Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension.

  11. MODELING CONSCIOUSNESS

    OpenAIRE

    Taylor, J G

    2009-01-01

    We present tentative answers to three questions: firstly, what is to be assumed about the structure of the brain in attacking the problem of modeling consciousness; secondly, what is it about consciousness that is attempting to be modeled; and finally, what is taken on board the modeling enterprise, if anything, from the vast works by philosophers about the nature of mind.

  12. Control consciousness.

    Science.gov (United States)

    Mandik, Pete

    2010-10-01

    Control consciousness is the awareness or experience of seeming to be in control of one's actions. One view, which I will be arguing against in the present paper, is that control consciousness is a form of sensory consciousness. In such a view, control consciousness is exhausted by sensory elements such as tactile and proprioceptive information. An opposing view, which I will be arguing for, is that sensory elements cannot be the whole story and must be supplemented by direct contributions of nonsensory, motor elements. More specifically, I will be arguing for the view that the neural basis of control consciousness is constituted by states of recurrent activation in relatively intermediate levels of the motor hierarchy. Copyright © 2010 Cognitive Science Society, Inc.

  13. Conscious Belief

    Directory of Open Access Journals (Sweden)

    David Pitt

    2016-04-01

    Full Text Available Tim Crane maintains that beliefs cannot be conscious because they persist in the absence of consciousness. Conscious judgments can share their contents with beliefs, and their occurrence can be evidence for what one believes; but they cannot be beliefs, because they don’t persist. I challenge Crane’s premise that belief attributions to the temporarily unconscious are literally true. To say of an unconscious agent that she believes that p is like saying that she sings well. To say she sings well is to say that when she sings, her singing is good. To say that she believes that p is (roughly to say that when she consciously considers the content that p she consciously affirms (believes it. I also argue that the phenomenal view of intentional content Crane appears to endorse prima facie commits him to the view, at least controversial, perhaps incoherent, that there is unconscious phenomenology (the intentional contents of unconscious beliefs.

  14. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir

    2011-01-01

    An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...

  15. Algebra 2 linear algebra, Galois theory, representation theory, group extensions and Schur multiplier

    CERN Document Server

    Lal, Ramji

    2017-01-01

    This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1–5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. .

  16. Emergent geometry from field theory: Wilson's renormalization group revisited

    Science.gov (United States)

    Kim, Ki-Seok; Park, Chanyong

    2016-06-01

    We find a geometrical description from a field theoretical setup based on Wilson's renormalization group in real space. We show that renormalization group equations of coupling parameters encode the metric structure of an emergent curved space, regarded to be an Einstein equation for the emergent gravity. Self-consistent equations of local order-parameter fields with an emergent metric turn out to describe low-energy dynamics of a strongly coupled field theory, analogous to the Maxwell equation of the Einstein-Maxwell theory in the AdSd +2 /CFTd +1 duality conjecture. We claim that the AdS3 /CFT2 duality may be interpreted as Landau-Ginzburg theory combined with Wilson's renormalization group, which introduces vertex corrections into the Landau-Ginzburg theory in the large-Ns limit, where Ns is the number of fermion flavors.

  17. Resource Letter SP-2: Symmetry and Group Theory in Physics.

    Science.gov (United States)

    Rosen, Joe

    1981-01-01

    Presents listings of selected reference materials relevant to symmetry and group theory in college physics and chemistry. Entries are classified according to a scheme involving 34 subject areas divided into four major groups. Comments on these materials and suggestions for future topics will be welcomed. (Author/SK)

  18. Characterization of entanglement transformation via group representation theory

    CERN Document Server

    Cen, L X; Yan, Y J; Cen, Li-Xiang; Li, Xin-Qi; Yan, YiJing

    2003-01-01

    Entanglement transformation of composite quantum systems is investigated in the context of group representation theory. Representation of the direct product group $SL(2,C)\\otimes SL(2,C)$, composed of local operators acting on the binary composite system, is realized in the four-dimensional complex space in terms of a set of novel bases that are pseudo orthonormalized. The two-to-one homomorphism is then established for the group $SL(2,C)\\otimes SL(2,C)$ onto the $SO(4,C)$. It is shown that the resulting representation theory leads to the complete characterization for the entanglement transformation of the binary composite system.

  19. [Self-consciousness, consciousness of the other and dementias].

    Science.gov (United States)

    Gil, Roger

    2007-06-01

    Studies of self-consciousness in dementia concern essentially anosognosia or the loss of insight. However, Self-consciousness is multifaceted: it includes awareness of the body, perceptions, one's own history, identity, and one's own projects. Self-consciousness is linked to consciousness of others i.e. to social cognition supported by identification of others, but also by comprehension of facial expression of emotions, comprehension and expression of emotional prosody, pragmatic abilities, ability to infer other's people's mental states, thoughts, and feelings (theory of mind and empathy), knowledge of social norms and rules, social reasoning. The subtypes of dementias (and namely Alzheimer's disease and frontotemporal dementia) affect heterogeneously the different aspects of the self-and other-consciousness. Further studies are needed for a better knowledge of the complex relationship between Self-consciousness, social cognition, decision making and neuropsychiatric symptoms and behavioral disturbances occurring in demented patients.

  20. FRT Quantization Theory for the Nonsemisimple Cayley-Klein Groups

    CERN Document Server

    Gromov, N A; Kuratov, V V

    1997-01-01

    The quantization theory of the simple Lie groups and algebras was developed by Faddeev-Reshetikhin-Takhtadjan (FRT). In group theory there is a remarkable set of groups, namely the motion groups of n-dimensional spaces of constant curvature or the orthogonal Cayley-Klein (CK) groups. In some sense the CK groups are in the nearest neighborhood with the simple ones. The well known groups of physical interest such as Euclidean E(n), Poincare P(n), Galileian G(n) and other nonsemisimple groups are in the set of CK groups. But many standart algebraical costructions are not suitable for the nonsemisimple groups and algebras, in particular Killing form is degenerate, Cartan matrix do not exist. Nevertheless it is possible to describe and to quantize all CK groups and algebras, as it was made for the simple ones. The principal proposal is to consider CK groups as the groups over an associative algebra $D$ with nilpotent commutative generators and the corresponding quantum CK groups as the algebra of noncommutative fu...

  1. Vassiliev invariants; 1, braid groups and rational homotopy theory

    CERN Document Server

    Funar, L

    1995-01-01

    We get a detailed account of Vassiliev type invariants starting with Chen's theory of iterated integrals and Malcev's completion of discrete groups. The canonical injection of the group of pure braids into its completion is identified with the universal Kontsevich-Vassiliev invariant.Further we discuss the extension of this morphism to the whole braid group and the multiplication law for the last one.

  2. Are we explaining consciousness yet?

    Science.gov (United States)

    Dennett, D

    2001-04-01

    Theorists are converging from quite different quarters on a version of the global neuronal workspace model of consciousness, but there are residual confusions to be dissolved. In particular, theorists must resist the temptation to see global accessibility as the cause of consciousness (as if consciousness were some other, further condition); rather, it is consciousness. A useful metaphor for keeping this elusive idea in focus is that consciousness is rather like fame in the brain. It is not a privileged medium of representation, or an added property some states have; it is the very mutual accessibility that gives some informational states the powers that come with a subject's consciousness of that information. Like fame, consciousness is not a momentary condition, or a purely dispositional state, but rather a matter of actual influence over time. Theorists who take on the task of accounting for the aftermath that is critical for consciousness often appear to be leaving out the Subject of consciousness, when in fact they are providing an analysis of the Subject, a necessary component in any serious theory of consciousness.

  3. Group Dynamics in Janis's Theory of Groupthink: Backward and Forward.

    Science.gov (United States)

    McCauley

    1998-02-01

    Janis's groupthink theory is an appealing explanation of how group process can get in the way of optimal decision making. Unfortunately, Janis was selective and not always consistent in his application of research in group dynamics. This paper traces groupthink to its theoretical roots in order to suggest how a broader and more consistent use of research in group dynamics can advance understanding of decision-making problems. In particular, the paper explores and reinterprets the groupthink prediction that poor decision making is most likely when group cohesion is based on the personal attractiveness of group members. Copyright 1998 Academic Press.

  4. Challenging gender stereotypes: Theory of mind and peer group dynamics.

    Science.gov (United States)

    Mulvey, Kelly Lynn; Rizzo, Michael T; Killen, Melanie

    2016-11-01

    To investigate the social cognitive skills related to challenging gender stereotypes, children (N = 61, 3-6 years) evaluated a peer who challenged gender stereotypic norms held by the peer's group. Participants with false belief theory of mind (FB ToM) competence were more likely than participants who did not have FB ToM to expect a peer to challenge the group's stereotypes and propose that the group engage in a non-stereotypic activity. Further, participants with FB ToM rated challenging the peer group more positively. Participants without FB ToM did not differentiate between their own and the group's evaluation of challenges to the group's stereotypic norms, but those with ToM competence asserted that they would be more supportive of challenging the group norm than would the peer group. Results reveal the importance of social-cognitive competencies for recognizing the legitimacy of challenging stereotypes, and for understanding one's own and other group perspectives.

  5. Mean field theory for U(n) dynamical groups

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, G, E-mail: george.rosensteel@tulane.edu [Department of Physics, Tulane University, New Orleans, LA 70118 (United States)

    2011-04-22

    Algebraic mean field theory (AMFT) is a many-body physics modeling tool which firstly, is a generalization of Hartree-Fock mean field theory, and secondly, an application of the orbit method from Lie representation theory. The AMFT ansatz is that the physical system enjoys a dynamical group, which may be either a strong or a weak dynamical Lie group G. When G is a strong dynamical group, the quantum states are, by definition, vectors in one irreducible unitary representation (irrep) space, and AMFT is equivalent to the Kirillov orbit method for deducing properties of a representation from a direct geometrical analysis of the associated integral co-adjoint orbit. AMFT can be the only tractable method for analyzing some complex many-body systems when the dimension of the irrep space of the strong dynamical group is very large or infinite. When G is a weak dynamical group, the quantum states are not vectors in one irrep space, but AMFT applies if the densities of the states lie on one non-integral co-adjoint orbit. The computational simplicity of AMFT is the same for both strong and weak dynamical groups. This paper formulates AMFT explicitly for unitary Lie algebras, and applies the general method to the Lipkin-Meshkov-Glick su(2) model and the Elliott su(3) model. When the energy in the su(3) theory is a rotational scalar function, Marsden-Weinstein reduction simplifies AMFT dynamics to a two-dimensional phase space.

  6. Pseudofinite groups with NIP theory and definability in finite simple groups

    CERN Document Server

    Macpherson, Dugald

    2012-01-01

    We show that any pseudofinite group with NIP theory and with a finite upper bound on the length of chains of centralisers is soluble-by-finite. In particular, any NIP rosy pseudofinite group is soluble-by-finite. This generalises, and shortens the proof of, an earlier result for stable pseudofinite groups. An example is given of an NIP pseudofinite group which is not soluble-by-finite. However, if C is a class of finite groups such that all infinite ultraproducts of members of C have NIP theory, then there is a bound on the index of the soluble radical of any member of C. We also survey some ways in which model theory gives information on families of finite simple groups, particularly concerning products of images of word maps.

  7. [Consciousness and emotion].

    Science.gov (United States)

    Carton, Solange

    2007-12-01

    This article focuses on the processes that lead to awareness of our own emotions, which deserve particular attention in contemporary models of emotional consciousness. The subjective component of emotion, or emotional experience, was for a long time the most neglected aspect in the study of emotions although it already constituted the initial point of discussion in the famous William James still asked question : What is an emotion? More than a century later, contemporary theories debate about this heritage. We examine the successive historic contributions to the question of the determinants of our own emotional experience: from James-Lange bodily changes to cognitive appraisal theories, also relating the major role that the fundamental emotions theory attributed to facial expressions. Twenty years after the debate about primacy of cognition or emotion, both physiological-somatic and cognitive components are integrated in contemporary approaches to emotions. However, their respective degree of implication varies according to the different levels of emotional consciousness which are modelized. It is on the last level that present models focus, level that leads to consciousness of our emotional experience, benefiting from the contributions of cognitive neurosciences. Models differ according to the role devoted to neuronal substrates in determining emotional experience, but they converge on the specification of a last level of consciousness, which is the only one that allows the subject to be conscious of emotion as it is experienced (feeling) and that what he is experiencing is an emotion. Then, different models of emotional consciousness account for different varieties of emotion experience and also for various cases of emotions, that is occurrence of emotion with a lack of awareness.

  8. What explains consciousness? Or…What consciousness explains?

    Science.gov (United States)

    Dulany, Donelson E

    2014-01-01

    In this invited commentary I focus on the topic addressed in three papers: De Sousa's (2013[1617]) Toward an Integrative Theory of Consciousness, a monograph with Parts 1 & 2, as well as commentaries by Pereira (2013a[59]) and Hirstein (2013[42]). All three are impressively scholarly and can stand-and shout-on their own. But theory of consciousness? My aim is to slice that topic into the two fundamentally different kinds of theories of consciousness, say what appears to be an ideology, out of behaviourism into cognitivism, now also influencing the quest for an "explanation of consciousness" in cognitive neuroscience. I will then say what can be expected given what we know of the complexity of brain structure, the richness of a conscious "vocabulary", and current technological limits of brain imaging. This will then turn to the strategy for examining "what consciousness explains"-metatheory, theories, mappings, and a methodology of competitive support, a methodology especially important where there are competing commitments. There are also increasingly common identifications of methodological bias in, along with failures to replicate, studies reporting unconscious controls in decision, social priming-as there have been in perception, learning, problem solving, etc. The literature critique has provided evidence taken as reducing, and in some cases eliminating, a role for conscious controls-a position consistent with that ideology out of behaviourism into cognitivism. It is an ideological position that fails to recognize the fundamental distinction between theoretical and metaphysical assertions.

  9. Quantum-Holographic Informational Consciousness

    National Research Council Canada - National Science Library

    Francisco Di Biase

    2009-01-01

      The author propose a quantum-informational holographic model of brain-consciousness-universe interactions based in the holonomic neural networks of Karl Pribram, in the holographic quantum theory...

  10. The application of Peplau's theory to group psychotherapy.

    Science.gov (United States)

    Lego, S

    1998-06-01

    This paper illustrates the application of Hildegard Peplau's Interpersonal Theory of Nursing to group psychotherapy. The phases of the nurse-patient relationship, including orientation, identification, exploitation and resolution, are described as they relate to group psychotherapy, and clinical examples are presented. The clinical examples also demonstrate the patient's movement in group therapy through the steps of the learning process: observation, description, analysis, formulation, validation, testing, integration and utilization. Finally, the roles of the nurse including stranger, resource person, teacher, leader, surrogate and counsellor are described as they occur in group psychotherapy.

  11. Consciousness in the Universe

    Directory of Open Access Journals (Sweden)

    Khalil Chamcham

    2013-07-01

    Full Text Available So far we can identify at least three concepts within modern cosmology that bring into debate the question of consciousness in the universe: 1 Fine Tuning; 2 The Anthropic Principle and 3 The Multiverse. This does not exclude the question of the role of observer (i.e. consciousness in cosmology as developed within Quantum Physics: we observe the universe through quanta and any breakthrough in understanding the origin and nature of the universe will come only through a quantum theory of gravity […

  12. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir

    2015-01-01

    The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics.  Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations.  New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students.   Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part...

  13. Dimensional reduction of Markov state models from renormalization group theory

    Science.gov (United States)

    Orioli, S.; Faccioli, P.

    2016-09-01

    Renormalization Group (RG) theory provides the theoretical framework to define rigorous effective theories, i.e., systematic low-resolution approximations of arbitrary microscopic models. Markov state models are shown to be rigorous effective theories for Molecular Dynamics (MD). Based on this fact, we use real space RG to vary the resolution of the stochastic model and define an algorithm for clustering microstates into macrostates. The result is a lower dimensional stochastic model which, by construction, provides the optimal coarse-grained Markovian representation of the system's relaxation kinetics. To illustrate and validate our theory, we analyze a number of test systems of increasing complexity, ranging from synthetic toy models to two realistic applications, built form all-atom MD simulations. The computational cost of computing the low-dimensional model remains affordable on a desktop computer even for thousands of microstates.

  14. An improved renormalization group theory for real fluids.

    Science.gov (United States)

    Mi, Jianguo; Zhong, Chongli; Li, Yi-Gui; Tang, Yiping

    2004-09-15

    On the basis of White's theory, an improved renormalization group (RG) theory is developed for chain bonding fluids inside the critical region. Outside the critical region, the statistical associating fluid theory based on the first-order mean sphere approximation [Fluid Phase Equilibria 171, 27 (2000)] is adopted and all the microscopic parameters are taken directly from its earlier application of real fluids. Inside the critical region, the RG transformation for long-range density fluctuation is derived in the k space, which illustrates explicitly the contributions from the mean-field term, the local density fluctuation, and the nonlocal density fluctuation. The RG theory is applied to describe physical behavior of ten n alkanes (C1-C10) both near to and far from the critical point. With no additional parameters for chain bonding fluids, good results are obtained for critical specific heat and phase coexistence curves and the resulting critical exponents are in good agreement with the reported nonclassic values.

  15. Dimensional reduction of Markov state models from renormalization group theory.

    Science.gov (United States)

    Orioli, S; Faccioli, P

    2016-09-28

    Renormalization Group (RG) theory provides the theoretical framework to define rigorous effective theories, i.e., systematic low-resolution approximations of arbitrary microscopic models. Markov state models are shown to be rigorous effective theories for Molecular Dynamics (MD). Based on this fact, we use real space RG to vary the resolution of the stochastic model and define an algorithm for clustering microstates into macrostates. The result is a lower dimensional stochastic model which, by construction, provides the optimal coarse-grained Markovian representation of the system's relaxation kinetics. To illustrate and validate our theory, we analyze a number of test systems of increasing complexity, ranging from synthetic toy models to two realistic applications, built form all-atom MD simulations. The computational cost of computing the low-dimensional model remains affordable on a desktop computer even for thousands of microstates.

  16. Renormalization Group Optimized Perturbation Theory at Finite Temperatures

    CERN Document Server

    Kneur, J -L

    2015-01-01

    A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar $ \\lambda\\phi^4$ field theory. We show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated resummation methods at two-loop order, such as the two-particle irreducible approach typically. This lowest order also reproduces the exact large-$N$ results of the $O(N)$ model. Although very close in spirit, our RGOPT method and corresponding results differ drastically from similar variational approaches, such as the screened perturbation theory or its QCD-version, the (resummed) hard therm...

  17. Renormalization group evolution of the universal theories EFT

    Energy Technology Data Exchange (ETDEWEB)

    Wells, James D.; Zhang, Zhengkang [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)

    2016-06-21

    The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, but dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. We perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.

  18. Group theory Application to the physics of condensed matter

    CERN Document Server

    Dresselhauss, M S; Jorio, A

    2007-01-01

    Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides in the transformation of many complex symmetry operations into a very simple linear algebra. This concise and class-tested book has been pedagogically tailored over 30 years MIT and 2 years at the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory in close connection with applications helps students to learn, understand and use it for their own needs. For this reason, the theoretical background is confined to the first 4 introductory chapters (6-8 classroom hours). From there, each chapter develops new theory while introducing applications so that the students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolid...

  19. Scaling behaviour of three-dimensional group field theory

    CERN Document Server

    Magnen, Jacques; Rivasseau, Vincent; Smerlak, Matteo

    2009-01-01

    Group field theory is a generalization of matrix models, with triangulated pseudomanifolds as Feynman diagrams and state sum invariants as Feynman amplitudes. In this paper, we consider Boulatov's three-dimensional model and its Freidel-Louapre positive regularization (hereafter the BFL model) with a `ultraviolet' cutoff, and study rigorously their scaling behavior in the large cutoff limit. We prove an optimal bound on large order Feynman amplitudes, which shows that the BFL model is perturbatively more divergent than the former. We then upgrade this result to the constructive level, using, in a self-contained way, the modern tools of constructive field theory: we construct the Borel sum of the BFL perturbative series via a convergent `cactus' expansion, and establish the `ultraviolet' scaling of its Borel radius. Our method shows how the `sum over triangulations' in quantum gravity can be tamed rigorously, and paves the way for the renormalization program in group field theory.

  20. Exceptional Lie Groups, E-infinity Theory and Higgs Boson

    CERN Document Server

    El-Okaby, Ayman A

    2007-01-01

    In this paper, we study the correlation between the exceptional lie groups and El-Naschie's transfinite E-infinity spacetime theory. Subsequently this is used to calculate the number of elementary particles in the standard model, mass of the Higgs boson and some coupling constants.

  1. Exceptional Lie groups, E-infinity theory and Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    El-Okaby, Ayman A. [Department of Physics, Faculty of Science, Alexandria University (Egypt)], E-mail: elokaby@yahoo.com

    2008-12-15

    In this paper we study the correlation between El-Naschie's exceptional Lie groups hierarchies and his transfinite E-infinity space-time theory. Subsequently this correlation is used to calculate the number of elementary particles in the standard model, mass of the Higgs Bosons and some coupling constants.

  2. A philosophical theory on human communication and modern physics: e(,2)c(,2)H('2)T energy-exchange and consciousness-change toward humanism, healing, and transformation

    Science.gov (United States)

    Jenkins-Tate, Marnishia Laverne

    This dissertation addresses the need for a body of human communication theory that can be useful toward advancing personal and social transformation. Of the humanistic genre, it suggests that there is a need to promote humanism, healing, and personal transformation in the non-clinical settings of everyday living. Three questions guide the effort. First, it asks: what kind of human communication theory might describe some of the underlying dynamics of human interaction, while also suggesting ways to improve the quality of interactions of any related philosophical theory be grounded by some scientific discipline? Then finally, it asks: how might these proposed concepts be captured in a manner that can be useful to human beings in everyday human interaction? Extending the work of modern physics to the realm of human communication, the theory integrates conceptual aspects of quantum theory, relativity theory, communication accommodation theory, and various nonverbal communication theory. Then, it proposes the philosophical framework for a new body of theory which it calls the energy-exchange theory of human communication. Treating human beings as living forms of matter, it suggests that ``energy'' is the life-force that sustains all human beings, and that ``consciousness'' is that qualitative level of development at which energy manifests itself in the human experience. It proposes that human beings have the capacity to exchange energy and influence consciousness during the human communication process, and that these interactions can advance humanism, healing, and transformation-which it proposes are the higher states and levels of human consciousness. Thus, this research effort sought to know and to describe a phenomenon that is the interactive human being; and to suggest useful ways that this volitional being can know and transform itself through human interaction. With verisimilitude as a driving factor in describing human beings as communicators, the research is

  3. 意识与无意识:双流视觉理论%The Conscious and the Unconscious:A Theory of Duplex Vision

    Institute of Scientific and Technical Information of China (English)

    李恒威; 龚书

    2015-01-01

    Conscious experience, unconscious and non-conscious processes combine the whole mental life of human beings.Pathological observation offers us one of effective ways to explore human minds, in which we could compare the remarkable conscious and unconscious events happened on particular brain-damaged pa-tients.Goodale and Milner subtly observed the astonished phenomena on DF whose visual cortex was severely destroyed, and then they designed a series of precise experiments upon her conscious and unconscious behav-iors to explore the causal reasons between her behaviors and her brain.In The Visual Brain in Action and Sight Unseen, the co-writers, Goodale and Milner have been advancing the idea that the ventral perception stream and the dorsal action stream are two independent visual systems within the primate brain.Normally, the former offers us the conscious experience but we could not realize how the latter works, which guides our actions un-consciously.This theory is very helpful for us to understand the difference between consciousness and uncon-sciousness in the way of phenomenology, neuroscience and behaviors, and also it is a useful reference to the division of labor of consciousness and unconsciousness.%人的心智生活既包括有意识体验也包括各种类型的无意识和非意识的过程。意识研究的方法之一就是在病理学观察中比较特定脑损伤患者身上呈现出的令人瞩目的意识事件与无意识事件的对比。由于敏锐地观察到视觉皮层受损患者DF 身上的有意识表现与无意识表现之间令人惊异对比的重要价值,古德尔和米尔纳随后对DF进行了系统而严格的跟踪研究。在《行动中的视觉脑》和《看不见的视觉》这两本著作中,古德尔和米尔纳在传统视觉神经理论基础上提出了一个视觉加工的双流理论,他们认为视觉系统中存在两个视觉信息的加工和利用的通道:一个是知觉视觉,一个是行动视觉

  4. Cajal and consciousness. Introduction.

    Science.gov (United States)

    Marijuán, P C

    2001-04-01

    One hundred years after Santiago Ramón Cajal established the bases of modern neuroscience in his masterpiece Textura del sistema nervioso del hombre y de los vertebrados, the question is stated again: What is the status of consciousness today? The responses in this book, by contemporary leading figures of neuroscience, evolution, molecular biology, computer science, and quantum physics, collectively compose a fascinating conceptual landscape. Both the evolutionary emergence of consciousness and its development towards the highest level may be analyzed by a wealth of new theories and hypotheses, including Cajal's prescient ones. Some noticeable gaps remain, however. Celebrating the centennial of Textura is a timely occasion to reassess how close--and how far--our system of the sciences is to explaining consciousness.

  5. Neuroimaging of genesis and satiation of thirst and an interoceptor-driven theory of origins of primary consciousness

    OpenAIRE

    Denton, Derek; Shade, Robert; Zamarippa, Frank; Egan, Gary; Blair-West, John; McKinley, Michael; Lancaster, Jack; Fox, Peter

    1999-01-01

    There are defined hypothalamic functions in the genesis of thirst, but little is known of the cortical processes subserving consciousness of thirst notwithstanding the medical disorders that occur in psychiatric illness, addiction, and the attested decline of thirst with aging. In 10 adult males, positron emission tomography scans were made (i) during genesis of moderate thirst by infusion of i.v. hypertonic saline 0.51 M, (ii) after irrigation of the mouth with water to remove the sensation ...

  6. Occupational Consciousness.

    Science.gov (United States)

    Ramugondo, Elelwani L

    2015-10-02

    Occupational consciousness refers to ongoing awareness of the dynamics of hegemony and recognition that dominant practices are sustained through what people do every day, with implications for personal and collective health. The emergence of the construct in post-apartheid South Africa signifies the country's ongoing struggle with negotiating long-standing dynamics of power that were laid down during colonialism, and maintained under black majority rule. Consciousness, a key component of the new terminology, is framed from post-colonial perspectives - notably work by Biko and Fanon - and grounded in the philosophy of liberation, in order to draw attention to continuing unequal intersubjective relations that play out through human occupation. The paper also draws important links between occupational consciousness and other related constructs, namely occupational possibilities, occupational choice, occupational apartheid, and collective occupation. The use of the term 'consciousness' in sociology, with related or different meanings, is also explored. Occupational consciousness is then advanced as a critical notion that frames everyday doing as a potentially liberating response to oppressive social structures. This paper advances theorizing as a scholarly practice in occupational science, and could potentially expand inter or transdisciplinary work for critical conceptualizations of human occupation.

  7. Consciousness CLEARS the mind.

    Science.gov (United States)

    Grossberg, Stephen

    2007-11-01

    A full understanding of consciousness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance and Synchrony (CLEARS), including the prediction that "all conscious states are resonant states". This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These predictions include explanations of how slow perceptual learning can occur without conscious awareness, and why oscillation frequencies in the lower layers of neocortex are sometimes slower beta oscillations, rather than the higher-frequency gamma oscillations that occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.

  8. Dilogarithm Identities in Conformal Field Theory and Group Homology

    CERN Document Server

    Dupont, J L

    1994-01-01

    Recently, Rogers' dilogarithm identities have attracted much attention in the setting of conformal field theory as well as lattice model calculations. One of the connecting threads is an identity of Richmond-Szekeres that appeared in the computation of central charges in conformal field theory. We show that the Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin can be interpreted as a lift of a generator of the third integral homology of a finite cyclic subgroup sitting inside the projective special linear group of all $2 \\times 2$ real matrices viewed as a {\\it discrete} group. This connection allows us to clarify a few of the assertions and conjectures stated in the work of Nahm-Recknagel-Terhoven concerning the role of algebraic $K$-theory and Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related to hyperbolic 3-manifolds as suggested but is more appropriately related to the group manifold of the universal covering group of the projective special linear group of al...

  9. Encoding simplicial quantum geometry in group field theories

    Energy Technology Data Exchange (ETDEWEB)

    Oriti, D [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Tlas, T, E-mail: daniele.oriti@aei.mpg.d, E-mail: tamer.tlas@aub.edu.l [Department of Mathematics, American Univeristy of Beirut, Bliss Street, Beirut, PO Box 11-0236 (Lebanon)

    2010-07-07

    An extended group field theory formalism for quantum gravity, based on a field that is a function of both group variables, interpreted as discretized connection, and Lie algebra variables, interpreted as discretized triads, has been proposed recently as an attempt to define models with a clearer link with simplicial geometry. In the context of such a formalism, we introduce a new symmetry requirement on the field. This leads, in 3D, to Feynman amplitudes interpreted as simplicial path integrals based on the Regge action, to a proper relation between the discrete connection and the triad vectors appearing in the Regge action, and to a much more satisfactory and transparent encoding of simplicial geometry already at the level of the group field theory action.

  10. Mean field theory for U(n) dynamical groups

    Science.gov (United States)

    Rosensteel, G.

    2011-04-01

    Algebraic mean field theory (AMFT) is a many-body physics modeling tool which firstly, is a generalization of Hartree-Fock mean field theory, and secondly, an application of the orbit method from Lie representation theory. The AMFT ansatz is that the physical system enjoys a dynamical group, which may be either a strong or a weak dynamical Lie group G. When G is a strong dynamical group, the quantum states are, by definition, vectors in one irreducible unitary representation (irrep) space, and AMFT is equivalent to the Kirillov orbit method for deducing properties of a representation from a direct geometrical analysis of the associated integral co-adjoint orbit. AMFT can be the only tractable method for analyzing some complex many-body systems when the dimension of the irrep space of the strong dynamical group is very large or infinite. When G is a weak dynamical group, the quantum states are not vectors in one irrep space, but AMFT applies if the densities of the states lie on one non-integral co-adjoint orbit. The computational simplicity of AMFT is the same for both strong and weak dynamical groups. This paper formulates AMFT explicitly for unitary Lie algebras, and applies the general method to the Lipkin-Meshkov-Glick {\\mathfrak s}{\\mathfrak u} (2) model and the Elliott {\\mathfrak s}{\\mathfrak u} (3) model. When the energy in the {\\mathfrak s}{\\mathfrak u} (3) theory is a rotational scalar function, Marsden-Weinstein reduction simplifies AMFT dynamics to a two-dimensional phase space.

  11. Chern-Simons theory with finite gauge group

    Science.gov (United States)

    Freed, Daniel S.; Quinn, Frank

    1993-10-01

    We construct in detail a 2+1 dimensional gauge field theory with finite gauge group. In this case the path integral reduces to a finite sum, so there are no analytic problems with the quantization. The theory was originally introduced by Dijkgraaf and Witten without details. The point of working it out carefully is to focus on the algebraic structure, and particularly the construction of quantum Hilbert spaces on closed surfaces by cutting and pasting. This includes the “Verlinde formula”. The careful development may serve as a model for dealing with similar issues in more complicated cases.

  12. Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence

    Science.gov (United States)

    Rubinstein, Robert

    1994-01-01

    Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.

  13. Creative Consciousness

    Directory of Open Access Journals (Sweden)

    Ashok Natarajan

    2013-09-01

    Full Text Available Consciousness is creative. That creativity expresses in myriad ways – as moments in time in which decades of progress can be achieved overnight, as organizational innovations of immense power for social accomplishment; as creative social values that further influence the evolution of organizations and society; as the creativity of individuality in the leader, genius, artist and inventor; as social creativity that converts raw human experience into civilization; as cultural creativity that transforms human relationships into sources of rich emotional capacity; and as value-based educational creativity that can awaken and nurture young minds to develop and discover their own inherent capacity for knowledge in freedom. Through such moments do society and humanity evolve. Education is society’s most advanced institution for conscious social evolution. Values are the essence of society’s knowledge for highest accomplishment. Education that imparts values is an evolutionary social organization that can hasten the emergence of that creative consciousness.

  14. Consciousness extended

    DEFF Research Database (Denmark)

    Carrara-Augustenborg, Claudia

    2012-01-01

    There is no consensus yet regarding a conceptualization of consciousness able to accommodate all the features of such complex phenomenon. Different theoretical and empirical models lend strength to both the occurrence of a non-accessible informational broadcast, and to the mobilization of specific...... brain areas responsible for the emergence of the individual´s explicit and variable access to given segments of such broadcast. Rather than advocating one model over others, this chapter proposes to broaden the conceptualization of consciousness by letting it embrace both mechanisms. Within...... such extended framework, I propose conceptual and functional distinctions between consciousness (global broadcast of information), awareness (individual´s ability to access the content of such broadcast) and unconsciousness (focally isolated neural activations). My hypothesis is that a demarcation in terms...

  15. Subliminal unconscious conflict alpha power inhibits supraliminal conscious symptom experience

    Directory of Open Access Journals (Sweden)

    Howard eShevrin

    2013-09-01

    Full Text Available Our approach is based on a tri-partite method of integrating psychodynamic hypotheses, cognitive subliminal processes, and psychophysiological alpha power measures. We present ten social phobic subjects with three individually selected groups of words representing unconscious conflict, conscious symptom experience, and Osgood Semantic negative valence words used as a control word group. The unconscious conflict and conscious symptom words, presented subliminally and supraliminally, act as primes preceding the conscious symptom and control words presented as supraliminal targets. With alpha power as a marker of inhibitory brain activity, we show that unconscious conflict primes, only when presented subliminally, have a unique inhibitory effect on conscious symptom targets. This effect is absent when the unconscious conflict primes are presented supraliminally, or when the target is the control words. Unconscious conflict prime effects were found to correlate with a measure of repressiveness in a similar previous study (Shevrin et al., 1992, 1996. Conscious symptom primes have no inhibitory effect when presented subliminally. Inhibitory effects with conscious symptom primes are present, but only when the primes are supraliminal, and they did not correlate with repressiveness in a previous study (Shevrin, et al., 1992, 1996. We conclude that while the inhibition following supraliminal conscious symptom primes is due to conscious threat bias, the inhibition following subliminal unconscious conflict primes provides a neurological blueprint for dynamic repression: it is only activated subliminally by an individual’s unconscious conflict and has an inhibitory effect specific only to the conscious symptom. These novel findings constitute neuroscientific evidence for the psychoanalytic concepts of unconscious conflict and repression, while extending neuroscience theory and methods into the realm of personal, psychological meaning.

  16. Fundamental Measurements in Economics and in the Theory of Consciousness (Manifestation of quantum-mechanical properties of economic objects in slit measurements)

    CERN Document Server

    Tuluzov, I G

    2011-01-01

    A new constructivist approach to modeling in economics and theory of consciousness is proposed. The state of elementary object is defined as a set of its measurable consumer properties. A proprietor's refusal or consent for the offered transaction is considered as a result of elementary economic measurement. We were also able to obtain the classical interpretation of the quantum-mechanical law of addition of probabilities by introducing a number of new notions. The principle of "local equity" assumes the transaction completed (regardless of the result) of the states of transaction partners are not changed in connection with the reception of new information on proposed offers or adopted decisions (consent or refusal of the transaction). However it has no relation to the paradoxes of quantum theory connected with non-local interaction of entangled states. In the economic systems the mechanism of entangling has a classical interpretation, while the quantum-mechanical formalism of the description of states appear...

  17. The Effect of Group Mindfulness-based Stress Reduction and Consciousness Yoga Program on Quality of Life and Fatigue Severity in Patients with MS

    Directory of Open Access Journals (Sweden)

    Somayeh Nejati

    2016-12-01

    Full Text Available Introduction: The chronic nature of Multiple Sclerosis (MS, have can leave devastating effects on quality of life and fatigue. The present research aimed to study the effect of group Mindfulness-based Stress Reduction (MBSR and conscious yoga program on the quality of life and fatigue severity among patients with MS. Methods: This study was quasi-experimental with intervention and control groups. The statistical population included all members to MS Society of Tehran Province, 24 of whom diagnosed with MS were selected as the sample based on the inclusion criteria. The subjects were randomly assigned into the test group (12 patients and the control group (12 patients. MS Quality of Life-54 (MSQOL-54 and Fatigue Severity Scale (FSS were used for data collection. Subjects in the test group underwent a MBSR and conscious yoga program in 8 two-hour sessions. The data were analyzed using the SPSS ver.13 software. Results: The study findings showed that there was a significant difference between subjects in the experimental and control groups in terms of mean score of some subscales of quality of life including physical health, role limitations due to physical and emotional problems, energy, emotional well-being, health distress, health perception, and satisfaction with sexual function, overall quality of life, and fatigue severity. Conclusion: The results show that the program is effective in reduction of fatigue severity and improving some subscales of quality of life in MS patients. Hence, this supportive method can be used as an effective way for improving quality of life and relieving fatigue in MS patients.

  18. The Effect of Group Mindfulness-based Stress Reduction and Consciousness Yoga Program on Quality of Life and Fatigue Severity in Patients with MS.

    Science.gov (United States)

    Nejati, Somayeh; Rajezi Esfahani, Sepideh; Rahmani, Soheila; Afrookhteh, Gita; Hoveida, Shahrzad

    2016-12-01

    Introduction: The chronic nature of Multiple Sclerosis (MS), have can leave devastating effects on quality of life and fatigue. The present research aimed to study the effect of group Mindfulness-based Stress Reduction (MBSR) and conscious yoga program on the quality of life and fatigue severity among patients with MS. Methods: This study was quasi-experimental with intervention and control groups. The statistical population included all members to MS Society of Tehran Province, 24 of whom diagnosed with MS were selected as the sample based on the inclusion criteria. The subjects were randomly assigned into the test group (12 patients) and the control group (12 patients). MS Quality of Life-54 (MSQOL-54) and Fatigue Severity Scale (FSS) were used for data collection. Subjects in the test group underwent a MBSR and conscious yoga program in 8 two-hour sessions. The data were analyzed using the SPSS ver.13 software. Results: The study findings showed that there was a significant difference between subjects in the experimental and control groups in terms of mean score of some subscales of quality of life including physical health, role limitations due to physical and emotional problems, energy, emotional well-being, health distress, health perception, and satisfaction with sexual function, overall quality of life, and fatigue severity. Conclusion: The results show that the program is effective in reduction of fatigue severity and improving some subscales of quality of life in MS patients. Hence, this supportive method can be used as an effective way for improving quality of life and relieving fatigue in MS patients.

  19. The Effect of Group Mindfulness-based Stress Reduction and Consciousness Yoga Program on Quality of Life and Fatigue Severity in Patients with MS

    Science.gov (United States)

    Nejati, Somayeh; Rajezi Esfahani, Sepideh; Rahmani, Soheila; Afrookhteh, Gita; Hoveida, Shahrzad

    2016-01-01

    Introduction: The chronic nature of Multiple Sclerosis (MS), have can leave devastating effects on quality of life and fatigue. The present research aimed to study the effect of group Mindfulness-based Stress Reduction (MBSR) and conscious yoga program on the quality of life and fatigue severity among patients with MS. Methods: This study was quasi-experimental with intervention and control groups. The statistical population included all members to MS Society of Tehran Province, 24 of whom diagnosed with MS were selected as the sample based on the inclusion criteria. The subjects were randomly assigned into the test group (12 patients) and the control group (12 patients). MS Quality of Life-54 (MSQOL-54) and Fatigue Severity Scale (FSS) were used for data collection. Subjects in the test group underwent a MBSR and conscious yoga program in 8 two-hour sessions. The data were analyzed using the SPSS ver.13 software. Results: The study findings showed that there was a significant difference between subjects in the experimental and control groups in terms of mean score of some subscales of quality of life including physical health, role limitations due to physical and emotional problems, energy, emotional well-being, health distress, health perception, and satisfaction with sexual function, overall quality of life, and fatigue severity. Conclusion: The results show that the program is effective in reduction of fatigue severity and improving some subscales of quality of life in MS patients. Hence, this supportive method can be used as an effective way for improving quality of life and relieving fatigue in MS patients. PMID:28032077

  20. The Family FIRO Model: The Integration of Group Theory and Family Theory.

    Science.gov (United States)

    Colangelo, Nicholas; Doherty, William J.

    1988-01-01

    Presents the Family Fundamental Interpersonal Relations Orientation (Family FIRO) Model, an integration of small-group theory and family therapy. The model is offered as a framework for organizing family issues. Discusses three fundamental issues of human relatedness and their applicability to group dynamics. (Author/NB)

  1. Facilitating Group Decision-Making: Facilitator's Subjective Theories on Group Coordination

    Directory of Open Access Journals (Sweden)

    Michaela Kolbe

    2008-10-01

    Full Text Available A key feature of group facilitation is motivating and coordinating people to perform their joint work. This paper focuses on group coordination which is a prerequisite to group effectiveness, especially in complex tasks. Decision-making in groups is a complex task that consequently needs to be coordinated by explicit rather than implicit coordination mechanisms. Based on the embedded definition that explicit coordination does not just happen but is purposely executed by individuals, we argue that individual coordination intentions and mechanisms should be taken into account. Thus far, the subjective perspective of coordination has been neglected in coordination theory, which is understandable given the difficulties in defining and measuring subjective aspects of group facilitation. We therefore conducted focused interviews with eight experts who either worked as senior managers or as experienced group facilitators and analysed their approaches to group coordination using methods of content analysis. Results show that these experts possess sophisticated mental representations of their coordination behaviour. These subjective coordination theories can be organised in terms of coordination schemes in which coordination-releasing situations are facilitated by special coordination mechanisms that, in turn, lead to the perception of specific consequences. We discuss the importance of these subjective coordination theories for effectively facilitating group decision-making and minimising process losses. URN: urn:nbn:de:0114-fqs0901287

  2. Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits

    CERN Document Server

    Hanany, Amihay

    2016-01-01

    We approach the topic of Classical group nilpotent orbits from the perspective of their moduli spaces, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKahler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for ...

  3. Renormalization group study of damping in nonequilibrium field theory

    CERN Document Server

    Zanella, J

    2006-01-01

    In this paper we shall study whether dissipation in a $\\lambda\\phi^{4}$ may be described, in the long wavelength, low frequency limit, with a simple Ohmic term $\\kappa\\dot{\\phi}$, as it is usually done, for example, in studies of defect formation in nonequilibrium phase transitions. We shall obtain an effective theory for the long wavelength modes through the coarse graining of shorter wavelengths. We shall implement this coarse graining by iterating a Wilsonian renormalization group transformation, where infinitesimal momentum shells are coarse-grained one at a time, on the influence action describing the dissipative dynamics of the long wavelength modes. To the best of our knowledge, this is the first application of the nonequilibrium renormalization group to the calculation of a damping coefficient in quantum field theory.

  4. The Emerging Physics of Consciousness

    CERN Document Server

    Tuszynski, Jack A

    2006-01-01

    Consciousness remains one of the major unsolved problems in science. How do the feelings and sensations making up conscious experience arise from the concerted actions of nerve cells and their associated synaptic and molecular processes? Can such feelings be explained by modern science, or is there an entirely different kind of explanation needed? And how can this seemingly intractable problem be approached experimentally? How do the operations of the conscious mind emerge out of the specific interactions involving billions of neurons? This book seeks answers to these questions on the underlying assumption that consciousness can be understood using the intellectual potential of modern physics and other sciences. There are a number of theories of consciousness, some based on classical physics while others require the use of quantum concepts. The latter ones have drawn criticism from the parts of the scientific establishment while simultaneously claiming that classical approaches are doomed to failure. The cont...

  5. Demodernizing Consciousness

    Science.gov (United States)

    Berger, Peter L.; And Others

    1973-01-01

    Youth culture and counterculture in contemporary Western societies are complex phenomena that may be viewed from a variety of social science perspectives. The authors analyze these cultures as embodiments of demodernizing consciousness with which they hold they have considerable firsthand experience. (RJ)

  6. Consciousness: individuated information in action

    Directory of Open Access Journals (Sweden)

    Jakub Adam Jonkisz

    2015-07-01

    Full Text Available Within theoretical and empirical enquiries, many different meanings associated with consciousness have appeared, leaving the term itself quite vague. This makes formulating an abstract and unifying version of the concept of consciousness – the main aim of this article –into an urgent theoretical imperative. It is argued that consciousness, characterized as dually accessible (cognized from the inside and the outside, hierarchically referential (semantically ordered, bodily determined (embedded in the working structures of an organism or conscious system and useful in action (pragmatically functional, is a graded rather than an all-or-none phenomenon. A gradational approach, however, despite its explanatory advantages, can lead to some counterintuitive consequences and theoretical problems. In most such conceptions consciousness is extended globally (attached to primitive organisms or artificial systems, but also locally (connected to certain lower-level neuronal and bodily processes. For example, according to information integration theory (as introduced recently by Tononi and Koch, even such simple artificial systems as photodiodes possess miniscule amounts of consciousness. The major challenge for this article, then, is to establish reasonable, empirically justified constraints on how extended the range of a graded consciousness could be. It is argued that conscious systems are limited globally by the ability to individuate information (where individuated information is understood as evolutionarily embedded, socially altered and private, whereas local limitations should be determined on the basis of a hypothesis about the action-oriented nature of the processes that select states of consciousness. Using these constraints, an abstract concept of consciousness is arrived at, hopefully contributing to a more unified state of play within consciousness studies itself.

  7. Consciousness: individuated information in action.

    Science.gov (United States)

    Jonkisz, Jakub

    2015-01-01

    Within theoretical and empirical enquiries, many different meanings associated with consciousness have appeared, leaving the term itself quite vague. This makes formulating an abstract and unifying version of the concept of consciousness - the main aim of this article -into an urgent theoretical imperative. It is argued that consciousness, characterized as dually accessible (cognized from the inside and the outside), hierarchically referential (semantically ordered), bodily determined (embedded in the working structures of an organism or conscious system), and useful in action (pragmatically functional), is a graded rather than an all-or-none phenomenon. A gradational approach, however, despite its explanatory advantages, can lead to some counterintuitive consequences and theoretical problems. In most such conceptions consciousness is extended globally (attached to primitive organisms or artificial systems), but also locally (connected to certain lower-level neuronal and bodily processes). For example, according to information integration theory (as introduced recently by Tononi and Koch, 2014), even such simple artificial systems as photodiodes possess miniscule amounts of consciousness. The major challenge for this article, then, is to establish reasonable, empirically justified constraints on how extended the range of a graded consciousness could be. It is argued that conscious systems are limited globally by the ability to individuate information (where individuated information is understood as evolutionarily embedded, socially altered, and private), whereas local limitations should be determined on the basis of a hypothesis about the action-oriented nature of the processes that select states of consciousness. Using these constraints, an abstract concept of consciousness is arrived at, hopefully contributing to a more unified state of play within consciousness studies itself.

  8. Objects of consciousness.

    Science.gov (United States)

    Hoffman, Donald D; Prakash, Chetan

    2014-01-01

    Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a "conscious agent." We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale.

  9. A renormalization in group study of supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, Marianne

    2015-05-13

    This thesis analyses scalar supersymmetric field theories within the framework of the functional renormalization group (FRG). Classical physics on microscopic scales is connected to the effective model on macroscopic scales via the scale-dependent effective average action by a reformulation of the path integral. Three supersymmetric theories are explored in detail: supersymmetric quantum mechanics, the three-dimensional Wess-Zumino model and supersymmetric spherical theories in three dimensions. The corresponding renormalization group flow is formulated in a manifestly supersymmetric way. By utilizing an expansion of the effective average action in derivative operators, an adequate and intrinsically non-perturbative truncation scheme is selected. In quantum mechanics, the supersymmetric derivative expansion is shown to converge by increasing the order of truncation. Besides, high-accuracy results for the ground and first excited state energies for quantum systems with conserved as well as spontaneously broken supersymmetry are achieved. Furthermore, the critical behaviour of the three-dimensional Wess-Zumino is investigated. Via spectral methods, a global Wilson-Fisher scaling solution and its corresponding universal exponents are determined. Besides, a superscaling relation of the leading exponents is verified for arbitrary dimensions greater than or equal to two. Lastly, three-dimensional spherical, supersymmetric theories are analysed. Their phase structure is determined in detail for infinite as well as finitely many superfields. The exact one-parameter scaling solution for infinitely many fields is shown to collapse to a single non-trivial Wilson-Fisher fixed-point for finitely many superfields. It is pointed out that the strongly-coupled domains of these theories are plagued by Landau poles and non-analyticities, indicating spontaneous supersymmetry breaking.

  10. Theory of transformation groups I general properties of continuous transformation groups a contemporary approach and translation

    CERN Document Server

    2015-01-01

    This modern translation of Sophus Lie's and Friedrich Engel's “Theorie der Transformationsgruppen Band I” will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, p...

  11. Group decisions in biodiversity conservation: implications from game theory.

    Directory of Open Access Journals (Sweden)

    David M Frank

    Full Text Available BACKGROUND: Decision analysis and game theory have proved useful tools in various biodiversity conservation planning and modeling contexts. This paper shows how game theory may be used to inform group decisions in biodiversity conservation scenarios by modeling conflicts between stakeholders to identify Pareto-inefficient Nash equilibria. These are cases in which each agent pursuing individual self-interest leads to a worse outcome for all, relative to other feasible outcomes. Three case studies from biodiversity conservation contexts showing this feature are modeled to demonstrate how game-theoretical representation can inform group decision-making. METHODOLOGY AND PRINCIPAL FINDINGS: The mathematical theory of games is used to model three biodiversity conservation scenarios with Pareto-inefficient Nash equilibria: (i a two-agent case involving wild dogs in South Africa; (ii a three-agent raptor and grouse conservation scenario from the United Kingdom; and (iii an n-agent fish and coral conservation scenario from the Philippines. In each case there is reason to believe that traditional mechanism-design solutions that appeal to material incentives may be inadequate, and the game-theoretical analysis recommends a resumption of further deliberation between agents and the initiation of trust--and confidence--building measures. CONCLUSIONS AND SIGNIFICANCE: Game theory can and should be used as a normative tool in biodiversity conservation contexts: identifying scenarios with Pareto-inefficient Nash equilibria enables constructive action in order to achieve (closer to optimal conservation outcomes, whether by policy solutions based on mechanism design or otherwise. However, there is mounting evidence that formal mechanism-design solutions may backfire in certain cases. Such scenarios demand a return to group deliberation and the creation of reciprocal relationships of trust.

  12. Finite Heisenbeg Groups and Seiberg Dualities in Quiver Gauge Theories

    CERN Document Server

    Burrington, B A; Mahato, M; Pando-Zayas, L A; Burrington, Benjamin A.; Liu, James T.; Mahato, Manavendra; Zayas, Leopoldo A. Pando

    2006-01-01

    A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z_q x Z_q). This Heisenberg group is generated by a manifest Z_q shift symmetry acting on the quiver along with a second Z_q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z_q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of original finite Heisenberg group, where now the shift generator Z_q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C^3/Z_3, Y^{4,2} and Y^{6,3} quiver.

  13. Driven similarity renormalization group: Third-order multireference perturbation theory.

    Science.gov (United States)

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N(6)) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F2, H2O2, C2H6, and N2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (ΔST=ET-ES) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic ΔST is 3.9 kcal mol(-1), a value that is within 0.1 kcal mol(-1) from multireference coupled cluster results.

  14. Symmetry, Group Theory, and the Physical Properties of Crystals

    Science.gov (United States)

    Powell, Richard C.

    The intent of this book is to demonstrate the importance of symmetry in determining the properties of solids and the power of using group theory and tensor algebra to elucidate these properties. It is not meant to be a comprehensive text on solid state physics, so many important aspects of condensed matter physics not related to symmetry are not covered here. The book begins by discussing the concepts of symmetry relevant to crystal structures. This is followed by a summary of the basics of group theory and how it is applied to quantum mechanics. Next is a discussion of the description of the macroscopic properties of crystals by tensors and how symmetry determines the form of these tensors. The basic concepts covered in these early chapters are then applied to a series of different examples. There is a discussion of the use of point symmetry in the crystal field theory treatment of point defects in solids. Next is a discussion of crystal symmetry in determining the optical properties of solids, followed by a chapter on the nonlinear optical properties of solids. Then the role of symmetry in treating lattice vibrations is described. The last chapter discusses the effects of translational symmetry on electronic energy bands in solids.

  15. Functional Renormalisation Group analysis of Tensorial Group Field Theories on $\\mathbb{R}^d$

    CERN Document Server

    Geloun, Joseph Ben; Oriti, Daniele

    2016-01-01

    Rank-d Tensorial Group Field Theories are quantum field theories defined on a group manifold $G^{\\times d}$, which represent a non-local generalization of standard QFT, and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalisation analysis is crucial both for establishing their consistency as quantum field theories, and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalisation group flow of two simple classes of TGFTs, defined for the group $G=\\mathbb{R}$ for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalisation group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed poin...

  16. Cosmology from group field theory formalism for quantum gravity.

    Science.gov (United States)

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  17. The Affine Structure of Gravitational Theories: Symplectic Groups and Geometry

    CERN Document Server

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2014-01-01

    We give a geometrical description of gravitational theories from the viewpoint of symmetries and affine structure. We show how gravity, considered as a gauge theory, can be consistently achieved by the nonlinear realization of the conformal-affine group in an indirect manner: due the partial isomorphism between $CA\\left( 3,1\\right) $ and the centrally extended $Sp\\left( 8\\right) $, we perform a nonlinear realization of the centrally extended (CE)$Sp\\left( 8\\right) $ in its semi-simple version. In particular, starting from the bundle structure of gravity, we derive the conformal-affine Lie algebra and then, by the non-linear realization, we define the coset field transformations, the Cartan forms and the inverse Higgs constraints. Finally we discuss the geometrical Lagrangians where all the information on matter fields and their interactions can be contained.

  18. Creative Consciousness

    OpenAIRE

    Ashok Natarajan

    2013-01-01

    Consciousness is creative. That creativity expresses in myriad ways – as moments in time in which decades of progress can be achieved overnight, as organizational innovations of immense power for social accomplishment; as creative social values that further influence the evolution of organizations and society; as the creativity of individuality in the leader, genius, artist and inventor; as social creativity that converts raw human experience into civilization; as cultural creativity that tra...

  19. Consciousness and biological evolution.

    Science.gov (United States)

    Lindahl, B I

    1997-08-21

    It has been suggested that if the preservation and development of consciousness in the biological evolution is a result of natural selection, it is plausible that consciousness not only has been influenced by neural processes, but has had a survival value itself; and it could only have had this, if it had also been efficacious. This argument for mind-brain interaction is examined, both as the argument has been developed by William James and Karl Popper and as it has been discussed by C.D. Broad. The problem of identifying mental phenomena with certain neural phenomena is also addressed. The main conclusion of the analysis is that an explanation of the evolution of consciousness in Darwinian terms of natural selection does not rule out that consciousness may have evolved as a mere causally inert effect of the evolution of the nervous system, or that mental phenomena are identical with certain neural phenomena. However, the interactionistic theory still seems, more plausible and more fruitful for other reasons brought up in the discussion.

  20. Homology and K-theory of the Bianchi groups

    CERN Document Server

    Rahm, Alexander D

    2011-01-01

    We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We use it to explicitly compute their integral group homology and equivariant K-homology. By the Baum/Connes conjecture, which holds for the Bianchi groups, we obtain the K-theory of their reduced C\\ast -algebras in terms of isomorphic images of the computed K-homology. We further find an application to Chen/Ruan orbifold cohomology. Nous mettons en \\'evidence une correspondance entre la torsion homologique des groupes de Bianchi et de nouveaux invariants g\\'eom\\'etriques, calculables gr\\^ace \\'a leur action sur l'espace hyperbolique. Nous l'utilisons pour calculer explicitement leur homologie de groupe \\'a coefficients entiers et leur K-homologie \\'equivariante. En cons\\'equence de la conjecture de Baum/Connes, qui est v\\'erifi\\'ee pour ces groupes, nous obtenons la K-th\\'eorie de leurs C\\ast-alg\\'ebres r\\'eduites en termes...

  1. AMisfit Theory of Spontaneous Conscious Odor Perception (MITSCOP: reflections on the role and function of odor memory in everyday life.

    Directory of Open Access Journals (Sweden)

    Egon P Köster

    2014-02-01

    Full Text Available Our senses have developed as an answer to the world we live in (Gibson, 1966 and so have the forms of memory that accompany them. All senses serve different purposes and do so in different ways. In vision, where orientation and object recognition are important, memory is strongly linked to identification. In olfaction, the guardian of vital functions such as breathing and food ingestion, perhaps the most important (and least noticed and researched role of odor memory is to help us not to notice the well-known odors or flavors in our everyday surroundings, but to react immediately to the unexpected ones. At the same time it provides us with a feeling of safety when our expectancies are met. All this happens without any smelling intention or conscious knowledge of our expectations. Identification by odor naming is not involved in this and people are notoriously bad at it. Odors are usually best identified via the episodic memory of the situation in which they once occurred. Spontaneous conscious odor perception normally only occurs in situations where attention is demanded, either because the inhaled air or the food smell is particularly good or particularly bad and people search for its source or because people want to actively enjoy the healthiness and pleasantness of their surroundings or food. Odor memory is concerned with novelty detection rather than with recollection of odors. In this paper, these points are illustrated with experimental results and their consequences for doing ecologically valid odor memory research are drawn. Furthermore, suggestions for ecologically valid research on everyday odor memory and some illustrative examples are given.

  2. Agential Self-consciousness : beyond conscious agency

    NARCIS (Netherlands)

    Bos, G.H.

    2013-01-01

    Although we perform many of our actions without much consciousness of these, occasionally we are explicitly conscious that we are doing something for a reason. Such consciousness I call ‘agential self-consciousness’. Since ages we have understood such agential self-consciousness in terms of the

  3. Agential Self-consciousness : beyond conscious agency

    NARCIS (Netherlands)

    Bos, G.H.

    2013-01-01

    Although we perform many of our actions without much consciousness of these, occasionally we are explicitly conscious that we are doing something for a reason. Such consciousness I call ‘agential self-consciousness’. Since ages we have understood such agential self-consciousness in terms of the self

  4. Summary of the working group on FEL theory

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  5. Lectures on the theory of group properties of differential equations

    CERN Document Server

    Ovsyannikov, LV

    2013-01-01

    These lecturers provide a clear introduction to Lie group methods for determining and using symmetries of differential equations, a variety of their applications in gas dynamics and other nonlinear models as well as the author's remarkable contribution to this classical subject. It contains material that is useful for students and teachers but cannot be found in modern texts. For example, the theory of partially invariant solutions developed by Ovsyannikov provides a powerful tool for solving systems of nonlinear differential equations and investigating complicated mathematical models. Readers

  6. Group theory in particle, nuclear, and hadron physics

    CERN Document Server

    Abbas, Syed Afsar

    2016-01-01

    This user-friendly book on group theory introduces topics in as simple a manner as possible and then gradually develops those topics into more advanced ones, eventually building up to the current state-of-the-art. By using simple examples from physics and mathematics, the advanced topics become logical extensions of ideas already introduced. In addition to being used as a textbook, this book would also be useful as a reference guide for graduates and researchers in particle, nuclear and hadron physics.

  7. Renormalisation group flows for gauge theories in axial gauges

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.

  8. Effects of aggressive behaviour and group size on collective escape in an emergency: a test between a social identity model and deindividuation theory.

    Science.gov (United States)

    Kugihara, N

    2001-12-01

    This study models escape behaviour in emergency situations and compares the ability of deindividuation and social identity-based explanations in particular to account for responses. According to deindividuation theory, the larger the group, the higher the degree of anonymity and the stronger antisocial responses such as competitiveness will be. Moreover, the competition for escape should be more severe, and the escape rate lowered, in a large group, regardless of whether participants have an aggressive option. A social identity model predicts that when group members have an option of aggressive behaviour, the salience of the aggressive norm in a larger group will be stronger than that in a smaller group. In contrast, when participants only have concessive option, the salience of the non-aggressive norm in a large group is expected to be stronger than that in a small group. The results of Study 1 supported the social identity model. Study 2 tested how participants responded to their norm. The social identity model suggests a more conscious and socially regulated process whereas deindividuation theory implies an unconscious or unregulated process. The results showed that what directly affects norm formation is the density of stimulus, that is, the amount of aggression received from others and of others' escape activity divided by group size. The results suggest the conscious process of the norm formation and support the social identity model.

  9. Critical asymmetry in renormalization group theory for fluids.

    Science.gov (United States)

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  10. Review and application of group theory to molecular systems biology

    Directory of Open Access Journals (Sweden)

    Rietman Edward A

    2011-06-01

    Full Text Available Abstract In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  11. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-06-22

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  12. Yang-Baxter algebras, integrable theories and quantum groups

    Energy Technology Data Exchange (ETDEWEB)

    Vega, H.J. de (Paris-6 Univ., 75 (France). Lab. de Physique Theorique et Hautes Energies)

    1990-12-01

    The Yang-Baxter algebras (YBA) are introduced in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Bethe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitely. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approach permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underly the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized. (orig.).

  13. Real space renormalization group theory of disordered models of glasses.

    Science.gov (United States)

    Angelini, Maria Chiara; Biroli, Giulio

    2017-03-28

    We develop a real space renormalization group analysis of disordered models of glasses, in particular of the spin models at the origin of the random first-order transition theory. We find three fixed points, respectively, associated with the liquid state, with the critical behavior, and with the glass state. The latter two are zero-temperature ones; this provides a natural explanation of the growth of effective activation energy scale and the concomitant huge increase of relaxation time approaching the glass transition. The lower critical dimension depends on the nature of the interacting degrees of freedom and is higher than three for all models. This does not prevent 3D systems from being glassy. Indeed, we find that their renormalization group flow is affected by the fixed points existing in higher dimension and in consequence is nontrivial. Within our theoretical framework, the glass transition results in an avoided phase transition.

  14. Quiver theories for moduli spaces of classical group nilpotent orbits

    Science.gov (United States)

    Hanany, Amihay; Kalveks, Rudolph

    2016-06-01

    We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3 d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.

  15. Quiver theories for moduli spaces of classical group nilpotent orbits

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay; Kalveks, Rudolph [Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-06-21

    We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.

  16. George Herbert Mead on consciousness: antidote to Cartesian absurdities?

    DEFF Research Database (Denmark)

    Willert, Søren

    The article explicates George Herbert Mead's theory of consciousness as presented in Mind, Self and Society. According to Mead, the term consciousness may refer to three different sets of phenomena: (1) the environment as implied by our goal-directed action; Mead names this consciousness aspect...... experience; it is shared by humans and subhuman animals alike; (2) consciousness of environmental experience; Mead names this consciousness aspect awareness; it is exclusively human; (3) the peculiar sensed qualities attaching to consciousness, equalling what is today named qualia. Descartes......-inspired psychology makes the third consciousness aspect all-important. Within Mead's framework for a darwinistically inspired psycholgy, it becomes theoretically insignificant....

  17. Group processes in medical education: learning from social identity theory.

    Science.gov (United States)

    Burford, Bryan

    2012-02-01

    The clinical workplace in which doctors learn involves many social groups, including representatives of different professions, clinical specialties and workplace teams. This paper suggests that medical education research does not currently take full account of the effects of group membership, and describes a theoretical approach from social psychology, the social identity approach, which allows those effects to be explored. The social identity approach has a long history in social psychology and provides an integrated account of group processes, from the adoption of group identity through a process of self-categorisation, to the biases and conflicts between groups. This paper outlines key elements of this theoretical approach and illustrates their relevance to medical education. The relevance of the social identity approach is illustrated with reference to a number of areas of medical education. The paper shows how research questions in medical education may be usefully reframed in terms of social identity in ways that allow a deeper exploration of the psychological processes involved. Professional identity and professionalism may be viewed in terms of self-categorisation rather than simply attainment; the salience of different identities may be considered as influences on teamwork and interprofessional learning, and issues in communication and assessment may be considered in terms of intergroup biases. Social identity theory provides a powerful framework with which to consider many areas of medical education. It allows disparate influences on, and consequences of, group membership to be considered as part of an integrated system, and allows assumptions, such as about the nature of professional identity and interprofessional tensions, to be made explicit in the design of research studies. This power to question assumptions and develop deeper and more meaningful research questions may be increasingly relevant as the nature and role of the medical profession change

  18. Generalized metric formulation of double field theory on group manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Bosque, Pascal du [Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Hassler, Falk [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Lüst, Dieter [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); CERN, PH-TH,1211 Geneva 23 (Switzerland)

    2015-08-13

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT{sub WZW} and of original DFT from tori is clarified. Furthermore, we show how to relate DFT{sub WZW} of the WZW background with the flux formulation of original DFT.

  19. Generalized Metric Formulation of Double Field Theory on Group Manifolds

    CERN Document Server

    Blumenhagen, Ralph; Hassler, Falk; Lust, Dieter

    2015-01-01

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds [arXiv:1410.6374] in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT${}_\\mathrm{WZW}$ and of original DFT from tori is clarified. Furthermore we show how to relate DFT${}_\\mathrm{WZW}$ of the WZW background with the flux formulation of original DFT.

  20. Group field cosmology: a cosmological field theory of quantum geometry

    CERN Document Server

    Calcagni, Gianluca; Oriti, Daniele

    2012-01-01

    Following the idea of a field quantization of gravity as realized in group field theory, we construct a minisuperspace model where the wavefunction of canonical quantum cosmology (either Wheeler-DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuperspace variables, the kinetic operator is the Hamiltonian constraint operator, and the action features a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the quantum propagator, and a mean-field approximation linearizing the equation of motion and augmenting the Hamiltonian constraint by an effective term mixing gravitational and matter variables. Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a scalar-field potential, or a curvature contribution.

  1. Function group approach to unconstrained Hamiltonian Yang-Mills theory

    CERN Document Server

    Salmela, A

    2004-01-01

    Starting from the temporal gauge Hamiltonian for classical pure Yang-Mills theory with the gauge group SU(2) a canonical transformation is initiated by parametrising the Gauss law generators with three new canonical variables. The construction of the remaining variables of the new set proceeds through a number of intermediate variables in several steps, which are suggested by the Poisson bracket relations and the gauge transformation properties of these variables. The unconstrained Hamiltonian is obtained from the original one by expressing it in the new variables and then setting the Gauss law generators to zero. This Hamiltonian turns out to be local and it decomposes into a finite Laurent series in powers of the coupling constant.

  2. Quantum cosmology from group field theory condensates: a review

    CERN Document Server

    Gielen, Steffen

    2016-01-01

    We give, in some detail, a critical overview over recent work towards deriving a cosmological phenomenology from the fundamental quantum dynamics of group field theory (GFT), based on the picture of a macroscopic universe as a "condensate" of a large number of quanta of geometry which are given by excitations of the GFT field over a "no-space" vacuum. We emphasise conceptual foundations, relations to other research programmes in GFT and the wider context of loop quantum gravity (LQG), and connections to the quantum physics of real Bose-Einstein condensates. We show how to extract an effective dynamics for GFT condensates from the microscopic GFT physics, and how to compare it with predictions of more conventional quantum cosmology models, in particular loop quantum cosmology (LQC). No detailed familiarity with the GFT formalism is assumed.

  3. Concepts of Cognition and Consciousness: four voices

    Directory of Open Access Journals (Sweden)

    Bonnie Nardi

    1996-11-01

    Full Text Available This paper considers theories of cognition and consciousness in four traditions: neuroscience, cognitive science, activity theory and the distributed cognition approach. It is most concerned with social theories of consciousness—activity theory and distributed cognition—but briefly considers biological and computational models as a foil or backdrop against which the social theories stand out more clearly.

  4. Dietary intake and plasma lipid levels: lessons from a study of the diet of health conscious groups.

    OpenAIRE

    Thorogood, M; Roe, L; McPherson, K.; J. Mann

    1990-01-01

    AIM--To re-examine the contentious relation between diet and plasma lipids within a population. DESIGN--Cross sectional sample from a large prospective cohort study of people eating different diets in Britain. Blood samples and diet records collected from subjects. SUBJECTS--Volunteers eating one of four distinct diets--namely, vegans, vegetarians, fish eaters who do not eat meat, and meat eaters. 52 Subjects selected from each group. METHODS--Examination of the relation between nutritional i...

  5. Science of consciousness and the hard problem

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1996-05-22

    Quantum theory is essentially a rationally coherent theory of the interaction of mind and matter, and it allows our conscious thoughts to play a causally efficacious and necessary role in brain dynamics. It therefore provides a natural basis, created by scientists, for the science of consciousness. As an illustration it is explained how the interaction of brain and consciousness can speed up brain processing, and thereby enhance the survival prospects of conscious organisms, as compared to similar organisms that lack consciousness. As a second illustration it is explained how, within the quantum framework, the consciously experienced {open_quotes}I{close_quotes} directs the actions of a human being. It is concluded that contemporary science already has an adequate framework for incorporating causally efficacious experimential events into the physical universe in a manner that: (1) puts the neural correlates of consciousness into the theory in a well defined way, (2) explains in principle how the effects of consciousness, per se, can enhance the survival prospects of organisms that possess it, (3) allows this survival effect to feed into phylogenetic development, and (4) explains how the consciously experienced {open_quotes}I{close_quotes} can direct human behaviour.

  6. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1975-01-01

    The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por­ tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus­ sion on point symmetry to include space symmetry. The selection rules in­ clude space group selection rules (for k = 0). Numerous examples are pro­ vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor­ dinate treatment of ...

  7. The effect of group mindfulness - based stress reduction program and conscious yoga on the fatigue severity and global and specific life quality in women with breast cancer.

    Science.gov (United States)

    Rahmani, Soheila; Talepasand, Siavash

    2015-01-01

    Cancer is not merely an event with a certain end, but it is a permanent and vague situation that is determined by delayed effects due to the disease, its treatment and its related psychological issues. The aim of this study was to examine the effectiveness of the mindfulness-based stress reduction program and conscious yoga on the mental fatigue severity and life quality of women with breast cancer. This was a quasi-experimental study with a pre-test, post-test and control group. In this study, 24 patients with the diagnosis of breast cancer were selected among the patients who referred to the Division of Oncology and Radiotherapy of Imam Hossein hospital in Tehran using available sampling method, and were randomly assigned into the experimental and control groups. All the participants completed the Fatigue Severity Scale, Global Life Quality of Cancer Patient and Specific Life Quality of Cancer Patient questionnaires. Data were analyzed by multivariate repeated measurement variance analysis model. Findings revealed that the mindfulness-based stress reduction treatment significantly improved the overall quality of life, role, cognitive, emotion, social functions and pain and fatigue symptoms in global life quality in the experimental group. It also significantly improved the body image, future functions and therapy side effects in specific life quality of the experimental group compared to the control group. In addition, fatigue severity caused by cancer was reduced significantly. The results showed that the mindfulness - based stress reduction treatment can be effective in improving global and specific life quality and fatigue severity in women with breast cancer.

  8. Efficient perturbation theory to improve the density matrix renormalization group

    Science.gov (United States)

    Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej

    2017-02-01

    The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.

  9. K-Theory for group C^*-algebras

    CERN Document Server

    Baum, Paul F

    2009-01-01

    These notes are based on a lecture course given by the first author in the Sedano Winter School on K-theory held in Sedano, Spain, on January 22-27th of 2007. They aim at introducing K-theory of C^*-algebras, equivariant K-homology and KK-theory in the context of the Baum-Connes conjecture.

  10. Intrinsic Awareness, the Fundamental State of Consciousness

    CERN Document Server

    Luo, Weili

    2011-01-01

    In an effort to simplify the complexity in the studies of consciousness, the author suggests to divide the conscious experiences into a fundamental state, the intrinsic awareness (IA), and functions of this fundamental state. IA does not depend on external environment, our sense organs, and our cognitions. This ground state of consciousness is timeless and irreducible to sub-constituents; therefore reductionism can apply neither to the analysis nor to the new theory of IA. The methodology for investigating IA is proposed and the relation between IA and the hard problem in consciousness proposed by Chalmers is discussed.

  11. One-Group Perturbation Theory Applied to Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rolf

    1966-09-15

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.

  12. Improved renormalization group theory for critical asymmetry of fluids.

    Science.gov (United States)

    Wang, Long; Zhao, Wei; Wu, Liang; Li, Liyan; Cai, Jun

    2013-09-28

    We develop an improved renormalization group (RG) approach incorporating the critical vapor-liquid equilibrium asymmetry. In order to treat the critical asymmetry of vapor-liquid equilibrium, the integral measure is introduced in the Landau-Ginzbug partition function to achieve a crossover between the local order parameter in Ising model and the density of fluid systems. In the implementation of the improved RG approach, we relate the integral measure with the inhomogeneous density distribution of a fluid system and combine the developed method with SAFT-VR (statistical associating fluid theory of variable range) equation of state. The method is applied to various fluid systems including square-well fluid, square-well dimer fluid and real fluids such as methane (CH4), ethane (C2H6), trifluorotrichloroethane (C2F3Cl3), and sulfur hexafluoride (SF6). The descriptions of vapor-liquid equilibria provided by the developed method are in excellent agreement with simulation and experimental data. Furthermore, the improved method predicts accurate and qualitatively correct behavior of coexistence diameter near the critical point and produces the non-classical 3D Ising criticality.

  13. Qudit surface codes and gauge theory with finite cyclic groups

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Stephen S [IDA Center for Computing Sciences, 17100 Science Drive, Bowie, MD 20715-4300 (United States); Brennen, Gavin K [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2007-03-30

    Surface codes describe quantum memory stored as a global property of interacting spins on a surface. The state space is fixed by a complete set of quasi-local stabilizer operators and the code dimension depends on the first homology group of the surface complex. These code states can be actively stabilized by measurements or, alternatively, can be prepared by cooling to the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2 (qubit) lattices, such ground states have been proposed as topologically protected memory for qubits. We extend these constructions to lattices or more generally cell complexes with qudits, either of prime level or of level d{sup l} for d prime and l {>=} 0, and therefore under tensor decomposition, to arbitrary finite levels. The Hamiltonian describes an exact Z/dZ gauge theory whose excitations correspond to Abelian anyons. We provide protocols for qudit storage and retrieval and propose an interferometric verification of topological order by measuring quasi-particle statistics.

  14. Quantum groups and quantum field theory III. Renormalisation

    CERN Document Server

    Brouder, C; Brouder, Christian; Schmitt, William

    2002-01-01

    The Hopf algebra of renormalisation in quantum field theory is described at a general level. The products of fields at a point are assumed to form a bialgebra B and renormalisation endows T(T(B)^+), the double tensor algebra of B, with the structure of a noncommutative bialgebra. When the bialgebra B is commutative, renormalisation turns S(S(B)^+), the double symmetric algebra of B, into a commutative bialgebra. The usual Hopf algebra of renormalisation is recovered when the elements of $T^1(B)$ are not renormalised, i.e. when Feynman diagrams containing one single vertex are not renormalised. When B is the Hopf algebra of a commutative group, a homomorphism is established between the bialgebra S(S(B)^+) and the Faa di Bruno bialgebra of composition of series. The relation with the Connes-Moscovici Hopf algebra of diffeomorphisms is given. Finally, the bialgebra S(S(B)^+) is shown to give the same results as the standard renormalisation procedure for the scalar field.

  15. The impact of renormalization group theory on magnetism

    Science.gov (United States)

    Köbler, U.; Hoser, A.

    2007-11-01

    The basic issues of renormalization group (RG) theory, i.e. universality, crossover phenomena, relevant interactions etc. are verified experimentally on magnetic materials. Universality is demonstrated on account of the saturation of the magnetic order parameter for T ↦ 0. Universal means that the deviations with respect to saturation at T = 0 can perfectly be described by a power function of absolute temperature with an exponent ɛ that is independent of spin structure and lattice symmetry. Normally the Tɛ function holds up to ~0.85Tc where crossover to the critical power function occurs. Universality for T ↦ 0 cannot be explained on the basis of the material specific magnon dispersions that are due to atomistic symmetry. Instead, continuous dynamic symmetry has to be assumed. The quasi particles of the continuous symmetry can be described by plane waves and have linear dispersion in all solids. This then explains universality. However, those quasi particles cannot be observed using inelastic neutron scattering. The principle of relevance is demonstrated using the competition between crystal field interaction and exchange interaction as an example. If the ratio of crystal field interaction to exchange interaction is below some threshold value the local crystal field is not relevant under the continuous symmetry of the ordered state and the saturation moment of the free ion is observed for T ↦ 0. Crossover phenomena either between different exponents or between discrete changes of the pre-factor of the Tɛ function are demonstrated for the spontaneous magnetization and for the heat capacity.

  16. Scaling theory of Anderson localization: A renormalization-group approach

    Science.gov (United States)

    Sarker, Sanjoy; Domany, Eytan

    1981-06-01

    A position-space renormalization-group method, suitable for studying the localization properties of electrons in a disordered system, was developed. Two different approximations to a well-defined exact procedure were used. The first method is a perturbative treatment to lowest order in the intercell couplings. This yields a localization edge in three dimensions, with a fixed point at the band center (E=0) at a critical disorder σc~=7.0. In the neighborhood of the fixed point the localization length L is predicted to diverge as L~(σ-σc+βE2)-ν. In two dimensions no fixed point is found, indicating localization even for small randomness, in agreement with Abrahams, Anderson, Licciardello, and Ramakrishnan. The second method is an application of the finite-lattice approximation, in which the intercell hopping between two (or more) cells is treated to infinite order in perturbation theory. To our knowledge, this method has not been previously used for quantum systems. Calculations based on this approximation were carried out in two dimensions only, yielding results that are in agreement with those of the lowest-order approximation.

  17. Functional renormalisation group equations for supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Synatschke-Czerwonka, Franziska

    2011-01-11

    This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)

  18. Group Dynamics as a Critical Component of Successful Space Exploration: Conceptual Theory and Insights from the Biosphere 2 Closure Experiment

    Science.gov (United States)

    Nelson, Mark; Allen, John P.

    As space exploration and eventually habitation achieves longer durations, successfully managing group dynamics of small, physically isolated groups will become vital. The paper summarizes important underlying research and conceptual theory and how these manifested in a well-documented example: the closure experiments of Biosphere 2. Key research breakthroughs in discerning the operation of small human groups comes from the pioneering work of W.R. Bion. He discovered two competing modalities of behavior. The first is the “task-oriented” or work group governed by shared acceptance of goals, reality-thinking in relation to time, resources and rational, and intelligent management of challenges presented. The opposing, usually unconscious, modality is what Bion called the “basic-assumption” group and alternates between three “group animal” groups: dependency/kill the leader; fight/flight and pairing. If not dealt with, these dynamics work to undermine and defeat the conscious task group’s goal achievement. The paper discusses crew training and selection, various approaches to structuring the work and hierarchy of the group, the importance of contact with a larger population through electronic communication and dealing with the “us-them” syndrome frequently observed between crew and Mission Control. The experience of the first two year closure of Biosphere 2 is drawn on in new ways to illustrate vicissitudes and management of group dynamics especially as both the inside team of biospherians and key members of Mission Control had training in working with group dynamics. Insights from that experience may help mission planning so that future groups in space cope successfully with inherent group dynamics challenges that arise.

  19. [Functional pathophysiology of consciousness].

    Science.gov (United States)

    Jellinger, Kurt A

    2009-01-01

    from important somatic and sensory pathways and acts as a control system of neuronal activities of the cerebral cortex. The principal function of the ARAS is to focus our alertness on specific stimuli or internal processes, which run via complex neuronal cell groups and numerous neurotransmitters that influence various aspects of consciousness and wakefulness. Stimulation of the ARAS produces an arousal reaction as the electric correlate of consciousness; its destruction causes coma and related states. The highest level are cortical (prefrontal and association) networks for recognition, motor activity, longterm memory and attention, the left hemisphere being considered as the dominant one. Different levels of consciousness are distinguished: 1. hyperalertness, 2. alertness (normal state of wakefulness), 3. somnolence or lethargy, 4. obtundation with tendency to fall asleep, 5. stupor, 6. coma and its subtypes, like akinetic mutism, apallic syndrome or persistent vegative state, locked-in syndrome, delirium, and catatonia. They are caused by damages in various functional levels of the brain, by psychogenic factors or experimentally, and are accompanied by characteristic neurological and psychiatric disorders. The relevant morphological lesions can be detected by electrophysiological and imaging studies. The bases of functional anatomy and pathophysiology of consciousness, its cognitive aspects and its major disorders, their causes and functional substrates with reference to sleep and both spontaneous and iatrogenic disorders of consciousness are critically summarized.

  20. Consciousness from the ground up

    Science.gov (United States)

    Lloyd, Seth

    2013-05-01

    The book Physics in Mind: a Quantum View of the Brain certainly aims high. Written by the eminent biophysicist Werner Loewenstein, its goal is nothing less than a theory that explains our sense of conscious existence, built from the bottom up.

  1. An Essay on Consciousness.

    Science.gov (United States)

    Webb, Wise B.

    1981-01-01

    Reviews the role of consciousness within the discipline of psychology (including psychology research and textbooks). Presents information on the nature of consciousness, problems with consciousness, the mind/ matter controversy, and the state of the art of consciousness within psychology today. Concludes that there is a shift in psychology toward…

  2. Autonoetic Consciousness in Autobiographical Memories after Medial Temporal Lobe Resection

    Science.gov (United States)

    Noulhiane, M.; Piolino, P.; Hasboun, D.; Clemenceau, S.; Baulac, M.; Samson, S.

    2008-01-01

    This study aims to investigate autonoetic consciousness associated with episodic autobiographical memory in patients who had undergone unilateral medial temporal lobe resection for intractable epilepsy. Autonoetic consciousness, defined as the conscious feeling of mentally travelling back in time to relive a specific event, was assessed using the Remember/Know (R/K) paradigm across different time periods as proposed in the autobiographical memory task developed by Piolino et al. (TEMPau task). Results revealed that the two patient groups (left and right temporal resection) gave reduced sense of reliving (R) responses and more familiarity (K) responses than healthy controls. This poor autonoetic consciousness was highlighted when patients were asked to justify their Remember responses by recalling sensory-perceptive, affective or spatiotemporal specific details across all life periods. These results support the bilateral MTL contribution to episodic autobiographical memory covering the entire lifespan, which is consistent with the multiple trace theory of MTL function [7,9]. This study also demonstrates the bilateral involvement of MTL structures in recalling specific details of personal events characterized by autonoetic consciousness. PMID:18413911

  3. All-loop group-theory constraints for color-ordered SU(N) gauge-theory amplitudes

    OpenAIRE

    Naculich, Stephen G.

    2011-01-01

    We derive constraints on the color-ordered amplitudes of the L-loop four-point function in SU(N) gauge theories that arise solely from the structure of the gauge group. These constraints generalize well-known group theory relations, such as U(1) decoupling identities, to all loop orders.

  4. Conscious and unconscious thought in risky choice: Testing the capacity principle and the appropriate weighting principle of Unconscious Thought Theory

    Directory of Open Access Journals (Sweden)

    Nathaniel James Siebert Ashby

    2011-10-01

    Full Text Available Daily we make decisions ranging from the mundane to the seemingly pivotal that shape our lives. Assuming rationality, all relevant information about one’s options should be thoroughly examined in order to make the best choice. However, some findings suggest that under specific circumstances thinking too much has disadvantageous effects on decision quality and that it might be best to let the unconscious do the busy work. In three studies we test the capacity assumption and the appropriate weighting principle of unconscious thought theory using a classic risky choice paradigm and including a ‘deliberation with information’ condition. Although we replicate an advantage for unconscious thought over ‘deliberation without information’, we find that ‘deliberation with information’ equals or outperforms unconscious thought in risky choices. These results speak against the generality of the assumption that unconscious thought has a higher capacity for information integration and show that this capacity assumption does not hold in all domains. We furthermore show that ‘deliberate thought with information’ leads to more differentiated knowledge compared to unconscious thought which speaks against the generality of the appropriate weighting assumption.

  5. Group theory and its applications in physics, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, T.H. (ed.)

    1980-01-01

    Lectures were presented in representation theory, elementary particle physics, nuclear physics, and modern applications in mathematical physics. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  6. Experiences from Participants in Large-Scale Group Practice of the Maharishi Transcendental Meditation and TM-Sidhi Programs and Parallel Principles of Quantum Theory, Astrophysics, Quantum Cosmology, and String Theory: Interdisciplinary Qualitative Correspondences

    Science.gov (United States)

    Svenson, Eric Johan

    Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.

  7. Wade's and Gelso's Contribution to the New Psychology of Men: Male Reference Group Dependence Theory.

    Science.gov (United States)

    O'Neil, James M.

    1998-01-01

    Relates Wade's and Gelso's Male Reference Group Dependence Theory to past and present literature in the new psychology of men. Points out the strengths of the ideas and data; reflects on where the theory needs more clarification and extension. (MKA)

  8. New Public Key Cryptosystems from Combinatorial Group Theory

    Institute of Scientific and Technical Information of China (English)

    TANG Xueming; WANG Xiaofei; HONG Fan; CUI Guohua

    2006-01-01

    External direct product of some low layer groups such as braid groups and general Artin groups, with a kind of special group action on it, provides a secure cryptographic computation platform, which can keep secure in the quantum computing epoch. Three hard problems on this new platform, Subgroup Root Problem, Multi-variant Subgroup Root Problem and Subgroup Action Problem are presented and well analyzed, which all have no relations with conjugacy. New secure public key encryption system and key agreement protocol are designed based on these hard problems. The new cryptosystems can be implemented in a general group environment other than in braid or Artin groups.

  9. Quantum Consciousness

    OpenAIRE

    Mould, Richard A

    1999-01-01

    In a previous paper, the author proposed a quantum mechanical interaction that would insure that the evolution of subjective states would parallel the evolution of biological states, as required by von Neumann's theory of measurement. The particular model for this interaction suggested an experiment that the author has now performed wih negative results. A modified model is outlined in this paper that preserves the desirable features of the original model, and is consistent with the experimen...

  10. Homology of classical groups and K-theory

    NARCIS (Netherlands)

    Mirzaii, B.

    2004-01-01

    The study of the homology groups of classical group over a ring R with coefficient A, where A is a commutative ring with trivial group action, seems important, notably because of their close relation to algebraic and Hermitian Ktheory and their appearance in the study of scissors congruence of polyh

  11. Homology of classical groups and K-theory

    NARCIS (Netherlands)

    Mirzaii, B.

    2004-01-01

    The study of the homology groups of classical group over a ring R with coefficient A, where A is a commutative ring with trivial group action, seems important, notably because of their close relation to algebraic and Hermitian Ktheory and their appearance in the study of scissors congruence of

  12. Theories in Developing Oral Communication for Specific Learner Group

    Science.gov (United States)

    Hadi, Marham Jupri

    2016-01-01

    The current article presents some key theories most relevant to the development of oral communication skills in an Indonesian senior high school. Critical analysis on the learners' background is employed to figure out their strengths and weaknesses. The brief overview of the learning context and learners' characteristic are used to identify which…

  13. Applying Kohlberg's Theory of Moral Development in Group Care Settings.

    Science.gov (United States)

    Larsen, John A.

    1981-01-01

    Argues that Kohlberg's theory of moral development and his methods of moral education have special relevance to residential treatment because they (1) provide a framework for understanding the moral decision-making process at various levels of development, and (2) encourage child care professionals of any theoretical or clinical persuasion to…

  14. Testing Belbin's Team Role Theory of Effective Groups.

    Science.gov (United States)

    Prichard, Jane S.; Stanton, Neville A.

    1999-01-01

    Belbin's theory that teams with a wide range of roles are more effective than those with role imbalance was tested with six teams composed of individuals with homogenous roles and six with mixed roles. Mixed teams performed better on team tasks. (SK)

  15. Hallmarks of consciousness.

    Science.gov (United States)

    Butler, Ann B

    2012-01-01

    Consciousness, ranging from the primary, or perceptual, level to high levels that include a sense of self, can be identified in various organisms by a set of hallmarks that include behavioral, neural and phenomenal and/or informational. Behavioral hallmarks include those that indicate high cognitive abilities, such behavioral flexibility, verbal abilities, episodic memories, theory of mind, object constancy, transitive inference and multistability, all of which have been demonstrated in birds as well as in primates. Neural hallmarks include the thalamocortical model for mammals and similar circuitry in some nonmammalian taxa. Informational hallmarks include sensorimotor awareness, as provided by somatosensory and/or lateral line systems, which may form the basis for the sense of self and distinguishing self from nonself, as well as other sensory information, such as the richness and quantity of color and form information obtained by the visual system. The comparative method reveals a correlation of these different types of hallmarks with each other in their degree of development, which thus may be indicative of the level of consciousness present in a particular species.

  16. Neural correlates of consciousness

    African Journals Online (AJOL)

    consciousness depends on the formation of complex arrangements which ... as well as the involvement of memory in consciousness. 40 Hz synchronized .... the cortex, thalamus, hippocampus and amygdala.1 Spiking activity in cholinergic ...

  17. Renormalization group theory of the three dimensional dilute Bose gas

    NARCIS (Netherlands)

    Bijlsma, M.; Stoof, H.T.C.

    1996-01-01

    We study the three-dimensional atomic Bose gas using renormalization group techniques. Using our knowledge of the microscopic details of the interatomic interaction, we determine the correct initial values of our renormalization group equations and thus obtain also information on nonuniversal

  18. Attention and Olfactory Consciousness

    OpenAIRE

    Andreas eKeller

    2011-01-01

    Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to ...

  19. [Altered states of consciousness].

    Science.gov (United States)

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed.

  20. Consciousness, brain, neuroplasticity

    OpenAIRE

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science...

  1. Invariant percolation and measured theory of nonamenable groups

    CERN Document Server

    Houdayer, Cyril

    2011-01-01

    Using percolation techniques, Gaboriau and Lyons recently proved that every countable, discrete, nonamenable group $\\Gamma$ contains measurably the free group $\\mathbf F_2$ on two generators: there exists a probability measure-preserving, essentially free, ergodic action of $\\mathbf F_2$ on $([0, 1]^\\Gamma, \\lambda^\\Gamma)$ such that almost every $\\Gamma$-orbit of the Bernoulli shift splits into $\\mathbf F_2$-orbits. A combination of this result and works of Ioana and Epstein shows that every countable, discrete, nonamenable group admits uncountably many non-orbit equivalent actions.

  2. Resumming instantons in N=2* theories with arbitrary gauge groups

    CERN Document Server

    Billò, M; Fucito, F; Lerda, A; Morales, J F

    2016-01-01

    We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the prepotential in terms of (quasi)-modular forms, thus resumming the instanton contributions. These results can be checked against the microscopic multi-instanton calculus in the case of classical algebras, but are valid also for the exceptional E6, E7, E8, F4 and G2 algebras, where direct computations are not available.

  3. Nonneurocognitive Extended Consciousness

    Science.gov (United States)

    Wojcik, Kevin; Chemero, Anthony

    2012-01-01

    One of the attributes necessary for Watson to be considered human is that it must be conscious. From Rachlin's (2012) point of view, that of teleological behaviorism, consciousness refers to the organization of behavioral complexity in which overt behavior is distributed widely over time. Consciousness is something that humans do, or achieve, in…

  4. Nonneurocognitive Extended Consciousness

    Science.gov (United States)

    Wojcik, Kevin; Chemero, Anthony

    2012-01-01

    One of the attributes necessary for Watson to be considered human is that it must be conscious. From Rachlin's (2012) point of view, that of teleological behaviorism, consciousness refers to the organization of behavioral complexity in which overt behavior is distributed widely over time. Consciousness is something that humans do, or achieve, in…

  5. [Brain and consciousness].

    Science.gov (United States)

    Fernández de Molina, Antonio

    2002-01-01

    The philosophical and biological concepts of consciousness are briefly reviewed, from Aristoteles to Descartes to the modern neurobiologist of the last 15 years. The CRICK's corticothalamic integration view, the Edelman's primary and higher order consciousness concept as well as the Edelman and Tononi's dynamic core concept were discussed. Then the corticothalamic resonance theory by Llinás was reported. Central to Llinás's theory is the existence of electrical intrinsic properties of neurones in the central nervous system that allows them to oscillate at different frequencies and if the membrane properties are suitable also to resonate at specific frequencies. From this oscillation and the neuronal connectivity result the corticothalamic dynamic loops specific and non specific. The dynamic corticothalamic loop of the specific thalamic nuclei connect directly as well as through the inhibitory interneurones in layer 4, with the pyramids in layer 5 and 6. The pyramids's rhythmic discharge excite the thalamic specific neurones and indirectly through the reticular neurones a rebound burst is also generated in the specific relay neurones. The oscillatory properties of cortical inhibitory interneurones initiates the action of the recurrent circuit whose function is to inform the cerebral cortex of the content of the sensory pathways. On the other side, the thalamocortical resonant loops of the non especific nuclei, particularly the intralaminar, connect with theapical dendrites of layer 1 pyramids whose discharge go to the thalamic relay neurones directly and through the reticular nucleus. The clinical and MEG data are consistent with the suggestion that the intralaminar nucleus works as providing the binding signal to the sensory specif le information conveyed by the specific pathways. In this way the non specific corticothalamic loop would act as the conjunction mechanism along the dendritic apical shaft with the specific sensory information. The specific loop will

  6. Equation for Consciousness in terms of Physics

    Science.gov (United States)

    Kodukula, Siva Prasad

    2012-11-01

    Based on the concepts 'Double Relativity Effectí. 'Film theory of the Universe ','Heart of the God model of the universeí and'Space time equivalenceí, it is concluded that consciousness is defined in terms of physics as Çthe electromagnetic field containing electromagnetic waves of velocity greater than that of light velocity.? Also it is concluded that because of this high velocity the cell or any living organism will get the perception of events before their happenings. This phenomenon is one of the properties of feeling which is a constituent of consciousness. The degree or strength of consciousness can be measured and defined as the distance of point of generation of conscious wave from the center of space time fluid related to consciousness (d). It can be measured by the equation VCW3.d2= Constant. Where 'VCWí is the velocity of consciousness wave observed. The unit of measurement for degree or strength of consciousness is 'conscious meterí.

  7. Group Motivation and Group Task Performance: The Expectancy-Valence Theory Approach.

    Science.gov (United States)

    Nakanishi, Masayuki

    1988-01-01

    Investigated effects of group motivation on group task performance. Created two levels of valence, expectancy and instrumentality. Valence variable reflected on group productivity on unstructured and task persistence measures. Expectancy variable's effect was on task persistence measure. Instrumentality affected group productivity on structured…

  8. Culture Consciousness

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This year, June 10 marked China's first Cultural Heritage Day. The designation by the Chinese Government aims to raise awareness of the need to protect and understand the value of the nation's abundant cultural treasures. In future the second Saturday in June each year will be set aside for this purpose. Recently, the State Council published the sixth group of major relics under state protection. On the list are 1,080 historic relics such as the Grand Canal from Beijing to Hangzhou and the

  9. Theory of galaxy dynamics in clusters and groups

    CERN Document Server

    Mamon, G A

    2000-01-01

    Analytical estimates of the mass and radial dependence of the rates of galaxy mergers and of tidal interactions are derived for clusters and groups of galaxies, taking into account the tides from the system potential that limit the sizes of galaxies. Only high mass galaxies undergo significant major merging before being themselves cannibalized by more massive galaxies. Strong tides from the group/cluster potential severely limit the merger/tide cross-sections in the central regions, and while tides are most efficient at the periphery, one should see merging encounters further inside rich clusters.

  10. Molecular electronegativity in density functional theory (II) --Direct calculation of group electronegativity and the atomic charges in a group

    Institute of Scientific and Technical Information of China (English)

    杨忠志; 沈尔忠

    1996-01-01

    On the basis of a more precise expression of the atomic effective electronegativity deduced from the density functional theory and electronegativity equalization principle, a new scheme for calculating the group electronegativity and the atomic charges in a group is proposed and programed, and various parameters of electronegativity and hardness are given for some common atoms. Through calculation, analysis and comparison of more than one hundred groups, it is shown that the results from this scheme are reasonable and may be extended.

  11. A new class of group field theories for 1st order discrete quantum gravity

    NARCIS (Netherlands)

    Oriti, D.; Tlas, T.

    2008-01-01

    Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman

  12. A new class of group field theories for 1st order discrete quantum gravity

    NARCIS (Netherlands)

    Oriti, D.; Tlas, T.

    2008-01-01

    Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman a

  13. A new class of group field theories for 1st order discrete quantum gravity

    NARCIS (Netherlands)

    Oriti, D.; Tlas, T.

    2008-01-01

    Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman a

  14. School Finance and Technology: A Case Study Using Grid and Group Theory to Explore the Connections

    Science.gov (United States)

    Case, Stephoni; Harris, Edward L.

    2014-01-01

    Using grid and group theory (Douglas 1982, 2011), the study described in this article examined the intersections of technology and school finance in four schools located in districts differing in size, wealth, and commitment to technology integration. In grid and group theory, grid refers to the degree to which policies and role prescriptions…

  15. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    Science.gov (United States)

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  16. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    Science.gov (United States)

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  17. Human evolutionary history and contemporary evolutionary theory provide insight when assessing cultural group selection.

    Science.gov (United States)

    Fuentes, Agustin; Kissel, Marc

    2016-01-01

    Richerson et al. provide a much needed roadmap for assessing cultural group selection (CGS) theory and for applying it to understanding variation between contemporary human groups. However, the current proposal lacks connection to relevant evidence from the human evolutionary record and requires a better integration with contemporary evolutionary theory. The article also misapplies the F st statistic.

  18. HOW COULD CONSCIOUS EXPERIENCES AFFECT BRAINS?

    OpenAIRE

    Velmans, Professor Max

    2002-01-01

    In everyday life we take it for granted that we have conscious control of some of our actions and that the part of us that exercises control is the conscious mind. Psychosomatic medicine also assumes that the conscious mind can affect body states, and this is supported by evidence that the use of imagery, hypnosis, biofeedback and other ‘mental interventions’ can be therapeutic in a variety of medical conditions. However, there is no accepted theory of mind/body interaction and this has had...

  19. Acute loss of consciousness.

    Science.gov (United States)

    Tristán, Bekinschtein; Gleichgerrcht, Ezequiel; Manes, Facundo

    2015-01-01

    Acute loss of consciousness poses a fascinating scenario for theoretical and clinical research. This chapter introduces a simple yet powerful framework to investigate altered states of consciousness. We then explore the different disorders of consciousness that result from acute brain injury, and techniques used in the acute phase to predict clinical outcome in different patient populations in light of models of acute loss of consciousness. We further delve into post-traumatic amnesia as a model for predicting cognitive sequels following acute loss of consciousness. We approach the study of acute loss of consciousness from a theoretical and clinical perspective to conclude that clinicians in acute care centers must incorporate new measurements and techniques besides the classic coma scales in order to assess their patients with loss of consciousness.

  20. Attachment theory and group processes: the association between attachment style and group-related representations, goals, memories, and functioning.

    Science.gov (United States)

    Rom, Eldad; Mikulincer, Mario

    2003-06-01

    Four studies examined attachment-style differences in group-related cognitions and behaviors. In Studies 1-2, participants completed scales on group-related cognitions and emotions. In Studies 3-4, participants were divided into small groups, and their performance in group tasks as well as the cohesion of their group were assessed. Both attachment anxiety and avoidance in close relationships were associated with negative group-related cognitions and emotions. Anxiety was also related to the pursuit of closeness goals and impaired instrumental performance in group tasks. Avoidance was related to the pursuit of distance goals and deficits in socioemotional and instrumental performance. Group cohesion significantly moderated the effects of attachment anxiety. The discussion emphasizes the relevance of attachment theory within group contexts.

  1. Consciousness, biology and quantum hypotheses

    Science.gov (United States)

    Baars, Bernard J.; Edelman, David B.

    2012-09-01

    , unpredictable and highly valued life events, such as evading predators, gathering critical information, seeking mates and hunting prey. Attentional selection of conscious events can be observed behaviorally in animals showing coordinated receptor orienting, flexible responding, alertness, emotional reactions, seeking, motivation and curiosity, as well as behavioral surprise and cortical and autonomic arousal. Brain events corresponding to attentional selection are prominent and widespread. Attention generally results in conscious experiences, which may be needed to recruit widespread processing resources in the brain. Many neuronal processes never become conscious, such as the balance system of the inner ear. An air traveler may “see” the passenger cabin tilt downward as the plane tilts to descend for a landing. That visual experience occurs even at night, when the traveler has no external frame of spatial reference. The passenger's body tilt with respect to gravity is detected unconsciously via the hair cells of the vestibular canals, which act as liquid accelerometers. However, that sensory activity is not experienced directly. It only becomes conscious via vision and the body senses. The vestibular sense is therefore quite different from visual perception, which “reports” accurately to a conscious field of experience, so that we can point accurately to a bright star on a dark night. Vestibular input is also precise but unconscious. Conscious cognition is therefore a distinct kind of brain event. Many of its features are well established, and must be accounted for by any adequate theory. No non-biological examples are known. Penrose and Hameroff have proposed that consciousness may be viewed as a fundamental problem in quantum physics. Specifically, their ‘orchestrated objective reduction’ (Orch-OR) hypothesis posits that conscious states arise from quantum computations in the microtubules of neurons. However, a number of microtubule-associated proteins are found

  2. Life Cycle Leadership Theory vs. Theory on the Phases of Small Group Discussion: Comparisons, Contrasts, and Examples.

    Science.gov (United States)

    Preston, Charles Thomas, Jr.

    The work of Paul Hersey and Kenneth Blanchard on life-cycle leadership was compared and contrasted to three studies on group phase theories. The studies on group phases were conducted by Robert Bales and Fred Strodtbeck in 1951, Thomas Scheidel and Laura Crowell in 1964, and B. Aubrey Fisher in 1970. The two theoretical approaches were found to…

  3. Appraisal of Lean Conscious Improvement System Based on Unascertained Theory and ANP%精益持续改善系统的未确知网络层次评价

    Institute of Scientific and Technical Information of China (English)

    张洪亮; 牛占文

    2013-01-01

    According to misunderstandings in lean implementation , the paper puts forward that its essence is conscious im-provement .The paper constructs lean conscious improvement system and analyses its components concretely , and then sets up lean conscious improvement ability appraisal system based on unascertained theory and ANP .At last one practical case is given to show its feasibility and reasonability .%针对我国企业精益实施过程中存在的种种误区,指出精益生产的本质与精髓是持续改善。构建精益持续改善系统,分析其各部分组成,给出企业精益持续改善能力的评价指标体系及基于网络层次法及未确知理论的评价模型,通过实例说明该方法的可行性。

  4. Thinking Ourselves to Liberation?: Advancing Sociopolitical Action in Critical Consciousness

    Science.gov (United States)

    Watts, Roderick J.; Hipolito-Delgado, Carlos P.

    2015-01-01

    Freire advanced critical consciousness as a tool for the liberation of oppressed communities. Based on his ideas, scholars of theory and practice from myriad disciplines have written about how to advance critical consciousness (CC) among oppressed peoples. We reviewed CC theory and practice articles in scholarly journals with the goal of…

  5. Consciousness-raising Activities in Communicative Language Teaching

    Institute of Scientific and Technical Information of China (English)

    Cui Xiaoxia

    2011-01-01

    This study is based mainly on the theories of grammatical instruction in communicative methodologies. In review of the related theories,this paper presents the methodologies,and designs three consciousness-raising tasks to verify the effectiveness of consciousness-raising instruction.

  6. Morse Theory for Flows in Presence of a Symmetry Group.

    Science.gov (United States)

    1984-07-01

    n. 2534. [15] J. J. Rotman , An Introduction to Homological Algebra , Academic Press, New York (1979). (16] S. H. Spanier, Algebraic Topology, McGraw... algebra , a method of treating finite groups is described. I ~-- *. --- ptA The responsibility for the wording and views expressed in this descriptive...Aut A. The definition of a G-module A, essentially means that there is an action of G on A which also considers the algebraic structure of A. In

  7. Boundary Conformal Field Theories and Limit Sets of Kleinian Groups

    CERN Document Server

    Kholodenko, A L

    2000-01-01

    In this paper,based on the available mathematical works on geometry and topology of hyperbolic manifolds and discrete groups, some results of Freedman et al (hep-th/9804058) are reproduced and broadly generalized. Among many new results the possibility of extension of work of Belavin,Polyakov and Zamolodchikov to higher dimensions is investigated. Known in physical literature objections against such extension are removed and the possibility of an extension is convincingly demonstrated.

  8. Group theory, entropy and the third law of thermodynamics

    Science.gov (United States)

    Canturk, Bilal; Oikonomou, Thomas; Bagci, G. Baris

    2017-02-01

    Curado et al. (2016) have recently studied the axiomatic structure and the universality of a three-parameter trace-form entropy inspired by the group-theoretical structure. In this work, we study the group-theoretical entropy S a , b , r in the context of the third law of thermodynamics where the parameters { a , b , r } are all independent. We show that this three-parameter entropy expression can simultaneously satisfy the third law of thermodynamics and the three Khinchin axioms, namely continuity, concavity and expansibility only when the parameter b is set to zero. In other words, it is thermodynamically valid only as a two-parameter generalization Sa,r. Moreover, the restriction set by the third law i.e., the condition b = 0, is important in the sense that the so obtained two-parameter group-theoretical entropy becomes extensive only when this condition is met. We also illustrate the interval of validity of the third law using the one-dimensional Ising model with no external field. Finally, we show that the Sa,r is in the same universality class as that of the Kaniadakis entropy for 0 < r < 1 while it has a distinct universality class in the interval - 1 < r < 0.

  9. Trigrams in the Ancient I Ching Oracle: An Application of Group Theory

    Science.gov (United States)

    Vugman, Ney V.

    2001-02-01

    The Ancient Chinese I Ching's trigrams may provide excellent motivation for learning group theory. It is shown that the eight trigrams form the representation of a mathematical group, which also may be written as the direct product of the water molecule point symmetry group and the group of the inversion operation.

  10. Radar and Sonar Ambiguity Functions and Group Theory

    Science.gov (United States)

    1993-08-01

    Rice, On contractions of semisimple Lie groups, Trans. Amer. Math. Soc., 289 (1985), 185-202. [16] J. B. Fraleigh , A First course in Abstract Algebra...will be 6 identical to the transmitted waveform, delayed of course , if the object were not moving. Finally we assume the object to be travelling at a...e,(t) = V/is(at + b) (2.5) 8 where b is related io the delay of the first transmitted photon and 1+0 (2.6) 1-0 where J - £. Note that now the time

  11. Multifractality to Photonic Crystal & Self-Organization to Metamaterials through Anderson Localizations & Group/Gauge Theory

    Science.gov (United States)

    Hidajatullah-Maksoed, Widastra

    2015-04-01

    Arthur Cayley at least investigate by creating the theory of permutation group[F:∖∖Group_theory.htm] where in cell elements addressing of the lattice Qmf used a Cayley tree, the self-afine object Qmf is described by the combination of the finite groups of rotation & inversion and the infinite groups of translation & dilation[G Corso & LS Lacena: ``Multifractal lattice and group theory'', Physica A: Statistical Mechanics &Its Applications, 2005, v 357, issue I, h 64-70; http://www.sciencedirect.com/science/articel/pii/S0378437105005005 ] hence multifractal can be related to group theory. Many grateful Thanks to HE. Mr. Drs. P. SWANTORO & HE. Mr. Ir. SARWONO KUSUMAATMADJA.

  12. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1969-01-01

    This volume is a consequence of a series of seminars presented by the authors at the Infrared Spectroscopy Institute, Canisius College, Buffalo, New York, over the last nine years. Many participants on an intermediate level lacked a sufficient background in mathematics and quantum mechan­ ics, and it became evident that a non mathematical or nearly nonmathe­ matical approach would be necessary. The lectures were designed to fill this need and proved very successful. As a result of the interest that was developed in this approach, it was decided to write this book. The text is intended for scientists and students with only limited theore­ tical background in spectroscopy, but who are sincerely interested in the interpretation of molecular spectra. The book develops the detailed selection rules for fundamentals, combinations, and overtones for molecules in several point groups. Detailed procedures used in carrying out the normal coordinate treatment for several molecules are also presented. Numerous examples...

  13. The "conscious pilot"-dendritic synchrony moves through the brain to mediate consciousness.

    Science.gov (United States)

    Hameroff, Stuart

    2010-01-01

    Cognitive brain functions including sensory processing and control of behavior are understood as "neurocomputation" in axonal-dendritic synaptic networks of "integrate-and-fire" neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic-dendritic gap junctions, forming transient syncytia ("dendritic webs") in input/integration layers oriented sideways to axonal-dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The "conscious pilot" is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation.

  14. Authenticated group Diffie-Hellman key exchange: theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Chevassut, Olivier [Catholic Univ. of Louvain, Louvain-la-Neuve (Belgium)

    2002-10-01

    Authenticated two-party Diffie-Hellman key exchange allows two principals A and B, communicating over a public network, and each holding a pair of matching public/private keys to agree on a session key. Protocols designed to deal with this problem ensure A (B resp.)that no other principals aside from B (A resp.) can learn any information about this value. These protocols additionally often ensure A and B that their respective partner has actually computed the shared secret value. A natural extension to the above cryptographic protocol problem is to consider a pool of principals agreeing on a session key. Over the years several papers have extended the two-party Diffie-Hellman key exchange to the multi-party setting but no formal treatments were carried out till recently. In light of recent developments in the formalization of the authenticated two-party Diffie-Hellman key exchange we have in this thesis laid out the authenticated group Diffie-Hellman key exchange on firmer foundations.

  15. Japanese Group Consciousness and the Use of Business Honorific%日本人的集团意识及其影响下的商务敬语的使用

    Institute of Scientific and Technical Information of China (English)

    赵瑞琦

    2013-01-01

    集团意识是日本国民性中最具代表性的方面,也是日本民族性格的有机组成部分,对日本社会的经济发展产生了至关重要的影响。简单介绍了集团意识的成因、集团意识在社会各领域中的体现和集团意识的两面性,进而将目光投射到日语中最为发达的敬语,特别是日本人在集团意识的影响下使用商务敬语的各种情况及意义。最终指出:文化会影响语言的表达和发展,语言承载着文化的内涵。%Group consciousness is not only one of the most representative aspects of Japanese national traits,but also an organic part of the Japanese national character.It has a crucial impact on the economic development of the Japanese society.This paper briefly introduces the causes of group consciousness,its re-flections in various areas of society,and its dual character,and then pays close attention to the most devel-oped honorific in Japanese,especially the situation and the meaning of using business honorific under the in-fluence of group consciousness.The conclusion involves that culture can affect the expression and develop-ment of language,and language carries cultural connotation.

  16. Networks of conscious experience: computational neuroscience in understanding life, death, and consciousness.

    Science.gov (United States)

    Leisman, Gerry; Koch, Paul

    2009-01-01

    We demonstrate brain locations appearing to correlate with consciousness, but not being directly responsible for it. Technology reveals that brain activity is associated with consciousness but is not equivalent to it. We examine how consciousness occurs at critical levels of complexity. Conventional explanations portray consciousness as an emergent property of classical computer-like activities in the brain's neural networks. Prevailing views in this camp are that patterns of neural network activities correlate with mental states, that synchronous network oscillations in the thalamus and cerebral cortex temporally bind information, and that consciousness emerges as a novel property of computational complexity among neurons. A hard-wired theory is enigmatic for explaining consciousness because the nature of subjective experience, or 'qualia'- 'inner life' - is a "hard problem" to understand; binding spatially distributed brain activity into unitary objects, and a coherent sense of self, or 'oneness' is difficult to explain as is the transition from pre- to conscious states. Consciousness is non-computable and involves factors that are neither random nor algorithmic - consciousness cannot be simulated; explanations are also needed for free will and for subjective time flow. Convention argues that neurons and their chemical synapses are the fundamental units of information in the brain, and that conscious experience emerges when a critical level of complexity is reached in the brain's neural networks. The basic idea is that the mind is a computer functioning in the brain. In fitting the brain to a computational view, such explanations omit incompatible neurophysiological details, including widespread apparent randomness at all levels of neural processes (is it really noise, or underlying levels of complexity?); glial cells (which account for some 80% of the brain); dendritic-dendritic processing; electrotonic gap junctions; cytoplasmic/cytoskeletal activities; living

  17. Clifford algebra is the natural framework for root systems and Coxeter groups. Group theory: Coxeter, conformal and modular groups

    CERN Document Server

    Dechant, Pierre-Philippe

    2016-01-01

    In this paper, we make the case that Clifford algebra is the natural framework for root systems and reflection groups, as well as related groups such as the conformal and modular groups: The metric that exists on these spaces can always be used to construct the corresponding Clifford algebra. Via the Cartan-Dieudonn\\'e theorem all the transformations of interest can be written as products of reflections and thus via `sandwiching' with Clifford algebra multivectors. These multivector groups can be used to perform concrete calculations in different groups, e.g. the various types of polyhedral groups, and we treat the example of the tetrahedral group $A_3$ in detail. As an aside, this gives a constructive result that induces from every 3D root system a root system in dimension four, which hinges on the facts that the group of spinors provides a double cover of the rotations, the space of 3D spinors has a 4D euclidean inner product, and with respect to this inner product the group of spinors can be shown to be cl...

  18. Attention and Olfactory Consciousness

    Directory of Open Access Journals (Sweden)

    Andreas eKeller

    2011-12-01

    Full Text Available Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness.

  19. Neural correlates of consciousness.

    Science.gov (United States)

    Negrao, B L; Viljoen, M

    2009-11-01

    A basic understanding of consciousness and its neural correlates is of major importance for all clinicians, especially those involved with patients with altered states of consciousness. In this paper it is shown that consciousness is dependent on the brainstem and thalamus for arousal; that basic cognition is supported by recurrent electrical activity between the cortex and the thalamus at gamma band frequencies; aand that some kind of working memory must, at least fleetingly, be present for awareness to occur. The problem of cognitive binding and the role of attention are briefly addressed and it shown that consciousness depends on a multitude of subconscious processes. Although these processes do not represent consciousness, consciousness cannot exist without them.

  20. Consciousness: a neurological perspective.

    Science.gov (United States)

    Cavanna, Andrea E; Shah, Sachin; Eddy, Clare M; Williams, Adrian; Rickards, Hugh

    2011-01-01

    Consciousness is a state so essentially entwined with human experience, yet so difficult to conceptually define and measure. In this article, we explore how a bidimensional model of consciousness involving both level of arousal and subjective awareness of the contents of consciousness can be used to differentiate a range of healthy and altered conscious states. These include the different sleep stages of healthy individuals and the altered states of consciousness associated with neurological conditions such as epilepsy, vegetative state and coma. In particular, we discuss how arousal and awareness are positively correlated in normal physiological states with the exception of REM sleep, while a disturbance in this relationship is characteristic of vegetative state, minimally conscious state, complex partial seizures and sleepwalking.

  1. Consciousness: A Neurological Perspective

    Directory of Open Access Journals (Sweden)

    Andrea E. Cavanna

    2011-01-01

    Full Text Available Consciousness is a state so essentially entwined with human experience, yet so difficult to conceptually define and measure. In this article, we explore how a bidimensional model of consciousness involving both level of arousal and subjective awareness of the contents of consciousness can be used to differentiate a range of healthy and altered conscious states. These include the different sleep stages of healthy individuals and the altered states of consciousness associated with neurological conditions such as epilepsy, vegetative state and coma. In particular, we discuss how arousal and awareness are positively correlated in normal physiological states with the exception of REM sleep, while a disturbance in this relationship is characteristic of vegetative state, minimally conscious state, complex partial seizures and sleepwalking.

  2. Assessing Politicized Sexual Orientation Identity: Validating the Queer Consciousness Scale.

    Science.gov (United States)

    Duncan, Lauren E; Mincer, Elizabeth; Dunn, Sarah R

    2016-09-15

    Building on psychological theories of motivation for collective action, we introduce a new individual difference measure of queer consciousness, defined as a politicized collective identity around sexual orientation. The Queer Consciousness Scale (QCS) consists of 12 items measuring five aspects of a politicized queer identity: sense of common fate, power discontent, system blame, collective orientation, and cognitive centrality. In four samples of adult women and men of varied sexual orientations, the QCS showed good test-retest and Cronbach's reliability and excellent known-groups and predictive validity. Specifically, the QCS was positively correlated with identification as a member of the LGBTQ community, political liberalism, personal political salience, and LGBTQ activism and negatively correlated with right-wing authoritarianism and social dominance orientation. QCS mediated relationships between several individual difference variables and gay rights activism and can be used with both LGBTQ people and allies.

  3. Effects of problem-based group teaching on information consciousness of nursing undergraduate students%以问题为导向的小组教学对护理本科生信息意识的影响

    Institute of Scientific and Technical Information of China (English)

    李莎莎; 沈旭慧; 史平

    2012-01-01

    目的 探讨以问题为导向的小组教学对护理本科生信息意识的影响.方法 将2009级护理本科生88人分为实验组和对照组.对照组进行传统课堂讲授式教学,实验组进行为期6周的以问题为导向的小组教学.以护理专业大学生信息意识量表及护理本科生主观评价问卷评价其效果.结果 干预后实验组护生信息意识及各因子得分高于对照组,且差异具有统计学意义(P<0.05);实验组干预前后信息意识及各因子得分比较,差异具有统计学意义(P<0.05);对照组前后信息意识比较,差异具有统计学意义(P<0.05),但信息认知与信息行为倾向前后得分差异无统计学意义(P >0.05);92.86%的护理本科生愿意再次参加以问题为导向的小组教学.结论 以问题为导向的小组教学有利于提升护理本科生的信息意识.%Objective To explore the effeets of problem - based group teaching on information consciousness of nursing undergraduate students. Methods A total of 88 nursing undergraduate students of Grade 2009 were divided into observation group and control group. The control group was received teaching with the traditional lecturing teaching methods, while the observation group with the problem - based group teaching for six weeks. The Information Consciousness of Nursing Student Scale and the nursing undergraduate students ' subjective evaluation questionnaire were employed to evaluate the effects. Results The scores of information consciousness and its each factor in observation group were higher than those in the control group (P 0.05). Among all the students, 92. 86% of the nursing students were willing to participate in problem - based group teaching again. Conclusion The problem - based group teaching can help to improve the information awareness of nursing undergraduate students.

  4. Evidence for a communal consciousness.

    Science.gov (United States)

    Bobrow, Robert S

    2011-01-01

    Recently described social network phenomena show that emotionally connected people come to share certain traits, including obesity, happiness, and loneliness. These do not appear to be mediated by face-to-face contact. Other examples of groups with a common connection that act in unison are mass hysteria, menstrual synchrony, and the ability of a group to guess the number of jelly beans in a jar. The animal kingdom abounds with examples of groups functioning as a single whole: fish school, birds flock, hoofed animals herd, ant and bee colonies work as a single organism. Try as they might, neuroscientists have been unable to find an anatomical seat of consciousness within the brain. C.G. Jung's realization of a collective unconscious began with an observation of a patient whose thoughts matched previous writings that the patient had never seen. The "emotional telepathy" of social network phenomena suggests a collective/communal consciousness as well.

  5. Consciousness, brain, neuroplasticity.

    Science.gov (United States)

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training.

  6. Consciousness, brain, neuroplasticity

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Marcel Askenasy

    2013-07-01

    Full Text Available Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain?The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent.We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention e.g. by cognitive training.

  7. Does Ethnolinguistic Vitality Theory Account for the Actual Vitality of Ethnic Groups? A Critical Evaluation

    Science.gov (United States)

    Yagmur, Kutlay

    2011-01-01

    Ethnolinguistic vitality theory asserts that Status, Demographic, Institutional Support and Control factors make up the vitality of ethnolinguistic groups. An assessment of a group's strengths and weaknesses in each of these dimensions provides a rough classification of ethnolinguistic groups into those having low, medium, or high vitality. Low…

  8. Hamiltonian analysis of the BFCG theory for a generic Lie 2-group

    CERN Document Server

    Mikovic, Aleksandar; Vojinovic, Marko

    2016-01-01

    We perform a complete Hamiltonian analysis of the BFCG action for a general Lie 2-group by using the Dirac procedure. We show that the resulting dynamical constraints eliminate all local degrees of freedom which implies that the BFCG theory is a topological field theory.

  9. Teaching Reform of Course Group Regarding Theory and Design of Mechanisms Based on MATLAB Technology

    Science.gov (United States)

    Shen, Yi; Yuan, Mingxin; Wang, Mingqiang

    2013-01-01

    Considering that the course group regarding theory and design of mechanisms is characterized by strong engineering application background and the students generally feel very boring and tedious during the learning process, some teaching reforms for the theory and design of mechanisms are carried out to improve the teaching effectiveness in this…

  10. Sleep neuroimaging and models of consciousness

    Directory of Open Access Journals (Sweden)

    Enzo eTagliazucchi

    2013-05-01

    Full Text Available Human deep sleep is characterized by reduced or absent sensory activity, responsiveness to stimuli and conscious awareness. Given its ubiquity and reversible nature, it represents an attractive paradigm to study the neural changes which accompany the loss of consciousness in humans. In particular, the deepest stages of sleep can serve as an empirical test for the predictions of theoretical models relating the phenomenology of consciousness with underlying neural activity. A relatively recent shift of attention from the analysis of evoked responses towards spontaneous (or ``resting state'' activity has taken place in the neuroimaging community, together with the development of tools suitable to study distributed functional interactions. In this review we focus on recent functional Magnetic Resonance Imaging (fMRI studies of spontaneous activity during sleep and their relationship with theoretical models for human consciousness generation, considering the global workspace theory, the information integration theory and the dynamical core hypothesis. We discuss the venues of research opened by these results, emphasizing the need to extend the analytic methodology in order to obtain a dynamical picture of how functional interactions change over time and how their evolution is modulated during different conscious states. Finally, we discuss the need to experimentally establish absent or reduced conscious content, even when studying the deepest sleep stages.

  11. Renormalization group flows for the second Z{sub 5} parafermionic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, Vladimir S. [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589. Universite Pierre et Marie Curie, Paris VI (France) and CNRS, Universite Denis Diderot, Paris VII, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: dotsenko@lpthe.jussieu.fr; Estienne, Benoit [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589. Universite Pierre et Marie Curie, Paris VI (France) and CNRS, Universite Denis Diderot, Paris VII, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: estienne@lpthe.jussieu.fr

    2006-12-28

    Using the renormalization group approach, the Coulomb gas and the coset techniques, the effect of slightly relevant perturbations is studied for the second parafermionic field theory with the symmetry Z{sub 5}. New fixed points are found and classified.

  12. [Application of the group theory to description of biological objects pseudosymmetry].

    Science.gov (United States)

    Gelashvili, D B; Chuprunov, E V; Marychev, M O; Somov, N V; Shirokov, A I; Nizhegorodtsev, A A

    2010-01-01

    The application of the group theory to description of biological objects pseudosymmetry is introduced and substantiated by the example of rotatory symmetry of actinomorphic and zygomorphic flowers. Problems of biosymmetrics terminology are considered; point symmetry elements are characterized as being applied to description of flower symmetry; central constructs of the group theory are stated. Application of the Curie principle to biological objects is outlined. Algorithms for quantitative assessment of flower pseudosymmetry are given; the description is made of flower pseudosymmetry in the terms of the group theory, including evolutionary aspect. The conclusion is made that adaptation of the group theory to description of biological objects symmetry (biosymmetrics) is important not only in fundamental respect but also as a tool of inter-disciplinary mutual understanding between biologists, physicists, crystallographers and other specialists whose communicative language is mathematics.

  13. Outcomes in GroupPsychotherapy: Using Persuasion Theory to Increase Treatment Efficiency

    Science.gov (United States)

    Beutler, Larry E.; And Others

    1974-01-01

    Some research suggests that improvement in psychotherapy is related to the degree that a patient adopts his therapist's evaluative attitudes. This article was designed to pursue the possibility of predicting the outcomes of group psychotherapy using attitude theory. (Author)

  14. Aligning Coordination Class Theory with a New Context: Applying a Theory of Individual Learning to Group Learning

    Science.gov (United States)

    Barth-Cohen, Lauren A.; Wittmann, Michael C.

    2017-01-01

    This article presents an empirical analysis of conceptual difficulties encountered and ways students made progress in learning at both individual and group levels in a classroom environment in which the students used an embodied modeling activity to make sense of a specific scientific scenario. The theoretical framework, coordination class theory,…

  15. Aligning Coordination Class Theory with a New Context: Applying a Theory of Individual Learning to Group Learning

    Science.gov (United States)

    Barth-Cohen, Lauren A.; Wittmann, Michael C.

    2017-01-01

    This article presents an empirical analysis of conceptual difficulties encountered and ways students made progress in learning at both individual and group levels in a classroom environment in which the students used an embodied modeling activity to make sense of a specific scientific scenario. The theoretical framework, coordination class theory,…

  16. The deconfinement phase transition in Yang-Mills theory with general Lie group G

    CERN Document Server

    Holland, K; Wiese, U J

    2004-01-01

    We present numerical results for the deconfinement phase transition in Sp(2) and Sp(3) Yang-Mills theories in (2+1)-D and (3+1)-D. We then make a conjecture on the order of this phase transition in Yang-Mills theories with general Lie groups G = SU(N), SO(N), Sp(N) and with exceptional groups G = G(2), F(4), E(6), E(7), E(8).

  17. Experimental test of renormalization group theory on the uniaxial, dipolar coupled ferromagnet LiTbf4

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1976-01-01

    The transverse correlation range ξ and the susceptibility in the critical region has been measured by neutron scattering. A special technique required to resolve the superdiverging longitudinal correlation range has been utilized. The results for ξ together with existing specific-heat data are in...... are in remarkable agreement with the renormalization group theory of systems with marginal dimensionality. The ratio between the susceptibility amplitudes above and below Tc was found to be 2 in accordance with renormalization-group and meanfield theory....

  18. A New Class of Group Field Theories for 1st Order Discrete Quantum Gravity

    OpenAIRE

    Oriti, D; Tlas, T.

    2007-01-01

    Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in 1st order variables. In the 3-dimensional case, the corresponding discrete action is that of 1st order Regg...

  19. Visual anticipation biases conscious perception but not bottom-up visual processing

    Directory of Open Access Journals (Sweden)

    Paul F.M.J. Verschure

    2015-01-01

    Full Text Available Theories of consciousness can be grouped with respect to their stance on embodiment, sensori-motor contingencies, prediction and integration. In this list prediction plays a key role and it is not clear which aspects of prediction are most prominent in the conscious scene. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the conscious scene. Yet, due to the lack of efficient indirect measures, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and / or errors on the conscious scene. Using a displacement detection task combined with reverse correlation we reveal signatures of the usage of prediction at three different levels of perception: bottom-up early saccades, top-down driven late saccades and conscious decisions. Our results suggest that the brain employs multiple parallel mechanisms at different levels of information processing to restrict the sensory field using predictions. We observe that cognitive load has a quantifiable effect on this dissociation of the bottom-up sensory and top-down predictive processes. We propose a probabilistic data association model from dynamical systems theory to model this predictive bias in different information processing levels.

  20. Co-evolution of human consciousness and language (revisited).

    Science.gov (United States)

    Arbib, Michael A

    2014-06-01

    This article discusses the view that human consciousness may share aspects of "animal awareness" with other species, but has its unique form because humans possess language. Two ingredients of a theory of the evolution of human consciousness are offered: the view that a précis of intended activity is necessarily formed in the brain of a human that communicates in a human way; and the notion that such a précis underwrites the uniquely human aspect of consciousness.

  1. Collective Consciousness and Idealist Philosophy

    OpenAIRE

    Randrup, Dr. Axel

    2005-01-01

    Abstract Descriptions of publications on collective consciousness, collective conscious experience, and idealist philosophy by Axel Randrup. The recognition of collective consciousness overcomes the problem of solipsism, which has been seen as an argument against idealist philosophy.

  2. Consciousness and psychotherapy.

    Science.gov (United States)

    Ryle, A

    1994-06-01

    The origins and resistance to change of neurotic procedures are considered with particular reference to the nature and role of consciousness. It is argued that the traditional opposition between conscious and unconscious systems provides an unsatisfactory model. The crucial role of language in the formation of human self-consciousness is emphasized. The restricted procedural repertoire of neurotic subjects, and their deficient self-consciousness, can be attributed to a number of factors. It is argued that the main use of consciousness in therapy should be to heighten the patient's awareness of his or her damaging or restricting procedural repertoire through the process of reformulation, which allows recognition, and in due course revision to be achieved.

  3. Inner Consciousness Tindakan Nabi

    Directory of Open Access Journals (Sweden)

    Moh. Helmi Umam

    2015-09-01

    Full Text Available The article is written to examine deeds and actions of the Prophet Muhammad (peace be upon him within inner consciousness analysis of Husserl’s phenomenology. The article is formulated to explore the significance of phenomenology of religious study, Prophet’s deeds as well as his inner consciousness, and inner consciousness analysis of Prophet’s deeds. This article is written using phenomenological method, i.e. a comprehensive interpretation about the source of information or object’s phenomenon as long as it can be traced. Inner consciousness of Prophet’s actions sees that his deeds in deciding important religious pronouncements were results of long-term memory based on divine and social argumentations, which have came into Prophet’s consciousness as a human.

  4. Reference group theory with implications for information studies: a theoretical essay

    Directory of Open Access Journals (Sweden)

    E. Murell Dawson

    2001-01-01

    Full Text Available This article explores the role and implications of reference group theory in relation to the field of library and information science. Reference group theory is based upon the principle that people take the standards of significant others as a basis for making self-appraisals, comparisons, and choices regarding need and use of information. Research that applies concepts of reference group theory to various sectors of library and information studies can provide data useful in enhancing areas such as information-seeking research, special populations, and uses of information. Implications are promising that knowledge gained from like research can be beneficial in helping information professionals better understand the role theory plays in examining ways in which people manage their information and social worlds.

  5. A new class of group field theories for first order discrete quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oriti, D [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Utrecht 3584 TD (Netherlands); Tlas, T [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)], E-mail: d.oriti@phys.uu.nl, E-mail: t.tlas@damtp.cam.ac.uk

    2008-04-21

    Group field theories, a generalization of matrix models for 2D gravity, represent a second quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of group field theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in first order variables. In the three-dimensional case, the corresponding discrete action is that of first order Regge calculus for gravity (generalized to include higher order corrections), while in higher dimensions, they correspond to a discrete BF theory (again, generalized to higher order) with an imposed orientation restriction on hinge volumes, similar to that characterizing discrete gravity. This new class of group field theories may represent a concrete unifying framework for loop quantum gravity and simplicial quantum gravity approaches.

  6. A New Class of Group Field Theories for 1st Order Discrete Quantum Gravity

    CERN Document Server

    Oriti, Daniele

    2007-01-01

    Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in 1st order variables. In the 3-dimensional case, the corresponding discrete action is that of 1st order Regge calculus for gravity (generalized to include higher order corrections), while in higher dimensions, they correspond to a discrete BF-theory (again, generalized to higher order) with an imposed orientation restriction on hinge volumes, similar to that characterizing discrete gravity. The new models shed also light on the large distance or semi-classical approximation of spin foam models. This new class of group field theories may represent a concrete unifying framework for loop quantum gravity and simplicial quantum grav...

  7. The Methodology of Psychological Research of Ecological Consciousness

    Directory of Open Access Journals (Sweden)

    Irina A. Shmeleva

    2009-01-01

    Full Text Available The paper examines the methodological principles of the psychological study of ecological consciousness as one of the urgent interdisciplinary problems of XX–XXI century, caused by the aggravation of global ecological problems and the need for the realization of the “sustainable development”ideas. Ecological consciousness is considered as multilayered, dynamic, reflexive element of human consciousness, incorporating multivariate, holistic aspects of interaction of the human being as the H.S. and the Humanity representative with the environment and the Planet. The possibility of the more active introduction of Russian psychology in the process is argued for in connection with the existing conceptual approaches, which compose the methodological basis for ecological consciousness research. Among these approaches are considered: the principles of holistic study of the human being by B. Ananyev, the methodology of system psychological description by V. Gansen and G. Sukhodolsky, the idea of reflexivity of consciousness by S. Rubinstein, the humanitarian- ecological imperative of the development of consciousness by V. Zinchenko, the theory of relations by V. Myasishev, consideration of ecological consciousness as relation to nature by S. Deryabo and V. Yasvin, theories of consciousness by V. Petrenko, V. Allakhverdov and other Russian psychologists. The value component of ecological consciousness is distinguished as the most significant. The possibility of applying the Values’ theory of the by S. Schwartz for studying the ecological values is discussed along with the prognostic potential of the universalism value.

  8. Integral forms of Kac-Moody groups and Eisenstein series in low dimensional supergravity theories

    CERN Document Server

    Bao, Ling

    2013-01-01

    Kac-Moody groups $G$ over $\\mathbb{R}$ have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms $G(\\mathbb{Z})$ are conjecturally U-duality groups. Mathematical descriptions of $G(\\mathbb{Z})$, due to Tits, are functorial and not amenable to computation or applications. We construct Kac-Moody groups over $\\mathbb{R}$ and $\\mathbb{Z}$ using an analog of Chevalley's constructions in finite dimensions and Garland's constructions in the affine case. We extend a construction of Eisenstein series on finite dimensional semisimple algebraic groups using representation theory, which appeared in the context of superstring theory, to general Kac-Moody groups. This coincides with a generalization of Garland's Eisenstein series on affine Kac-Moody groups to general Kac-Moody groups and includes Eisenstein series on $E_{10}$ and $E_{11}$. For finite dimensional groups, Eisenstein series encode the quantum corrections in string theory and supergravity theories. T...

  9. Quantum field theory and phase transitions: universality and renormalization group; Theorie quantique des champs et transitions de phase: universalite et groupe de renormalisation

    Energy Technology Data Exchange (ETDEWEB)

    Zinn-Justin, J

    2003-08-01

    In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)

  10. Cross--Cultural Small Group Research: A Review, an Analysis, and a Theory

    Science.gov (United States)

    Shuter, Robert

    1977-01-01

    Reviews and analyzes research on cross-national small group behavior and offers a value theory of small group development. Available from: International Journal of Intercultural Relations, Transaction Periodicals Consortium, Rutgers-The State University, New Brunswick, New Jersey 08903. (MH)

  11. Practice-Based Inservice Teacher Education: Generating Local Theory about the Pedagogy of Group Work

    Science.gov (United States)

    Higgins, Joanna; Eden, Raewyn

    2015-01-01

    Developing local theories about what best works for Maori students is of critical importance to Aotearoa New Zealand. This discussion paper focuses on grouping as arranging for learning, by examining multiple ways in which grouping as pedagogy appears in practice settings and associated literature. We take the stance of interpretive bricoleurs to…

  12. Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups

    Science.gov (United States)

    Shi, Yan-Liang; Shrock, Robert

    2016-09-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  13. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  14. The geometry and physics of Abelian gauge groups in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Keitel, Jan

    2015-07-14

    In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.

  15. Ideological and Political Theory Course Teaching in graduate students "problem consciousness" construction%思想政治理论课教学中研究生"问题意识"的建构

    Institute of Scientific and Technical Information of China (English)

    解西伟

    2015-01-01

    "Problem consciousness" is in essence the graduate study, work or the main initiative, but in the ideological and political theory courses shows lack of. The reason is various, mainly including the influence of traditional ethical relationship between teachers and students, the exam oriented education to study the old performance evaluation system and so on. Only in teaching, change the teaching idea and teaching method, the old form a new evaluation system, set up a graduate student to improve the ethical relationship between teachers and students to the old "problem consciousness".%"问题意识"本质上体现为研究生学习、工作的主体性或主动性,但在思想政治理论课教学中却呈现为缺失状态.原因是多方面的,主要的包括应试教育的影响、师生之间传统的伦理关系和对研究生成绩能力的旧的评价体系等等.只有在教学中改变旧的教学理念和教学方法、形成新的评价体系、改善师生之间的旧的伦理关系才能真正建构起研究生的"问题意识".

  16. States of Consciousness and State-Specific Sciences

    Science.gov (United States)

    Tart, Charles T.

    1972-01-01

    Proposes the development of state-specific sciences" to overcome the problems of scientifically studying altered states of consciousness induced by drugs or meditation from the paradigm of the ordinary consciousness state. The requirements of good observation, public nature of the observation, logical theorizing, and testing of theories by…

  17. Consciousness and the structuring property of typical data

    Science.gov (United States)

    Mason, Jonathan W. D.

    2013-01-01

    The theoretical base for consciousness, in particular an explanation of how consciousness is defined by the brain, has long been sought by science. We propose a partial theory of consciousness as relations defined by typical data. The theory is based on the idea that a brain state on its own is almost meaningless but in the context of the typical brain states, defined by the brain's structure, a particular brain state is highly structured by relations. The proposed theory can be applied and tested both theoretically and experimentally. Precisely how typical data determines relations is fully established using discrete mathematics.

  18. Consciousness in dreams.

    Science.gov (United States)

    Kahn, David; Gover, Tzivia

    2010-01-01

    This chapter argues that dreaming is an important state of consciousness and that it has many features that complement consciousness in the wake state. The chapter discusses consciousness in dreams and how it comes about. It discusses the changes that occur in the neuromodulatory environment and in the neuronal connectivity of the brain as we fall asleep and begin our night journeys. Dreams evolve from internal sources though the dream may look different than any one of these since something entirely new may emerge through self-organizing processes. The chapter also explores characteristics of dreaming consciousness such as acceptance of implausibility and how that might lead to creative insight. Examples of studies, which have shown creativity in dream sleep, are provided to illustrate important characteristics of dreaming consciousness. The chapter also discusses the dream body and how it relates to our consciousness while dreaming. Differences and similarities between wake, lucid, non-lucid and day dreaming are explored and the chapter concludes with a discussion on what we can learn from each of these expressions of consciousness. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Consciousness during dreams.

    Science.gov (United States)

    Cicogna, P C; Bosinelli, M

    2001-03-01

    Two aspects of consciousness are first considered: consciousness as awareness (phenomenological meaning) and consciousness as strategic control (functional meaning). As to awareness, three types can be distinguished: first, awareness as the phenomenal experiences of objects and events; second, awareness as meta-awareness, i.e., the awareness of mental life itself; third, awareness as self-awareness, i.e., the awareness of being oneself. While phenomenal experience and self-awareness are usually present during dreaming (even if many modifications are possible), meta-awareness is usually absent (apart from some particular experiences of self-reflectiveness) with the major exception of lucid dreaming. Consciousness as strategic control may also be present in dreams. The functioning of consciousness is then analyzed, following a cognitive model of dream production. In such a model, the dream is supposed to be the product of the interaction of three components: (a) the bottom-up activation of mnemonic elements coming from LTM systems, (b) interpretative and elaborative top-down processes, and (c) monitoring of phenomenal experience. A feedback circulation is activated among the components, where the top-down interpretative organization and the conscious monitoring of the oneiric scene elicitates other mnemonic contents, according to the requirements of the dream plot. This dream productive activity is submitted to unconscious and conscious processes. Copyright 2001 Academic Press.

  20. Is Your Gut Conscious? Is an Extraterrestrial?

    Science.gov (United States)

    Vos Post, Jonathan

    2011-10-01

    This paper speculates on questions intending to be taken scientifically rather than metaphysically: "Can the human gut (enteric nervous system) be conscious?"; "Can your immune system think?"; "Could consciousness be coded in DNA?"; "What do we mean when asserting that an Extraterrestrial is Thinking, or is Conscious? We explore through reference to theory, experiment, and computational models by Christof Koch (Caltech), Barbara Wold (Caltech), and Stuart Kauffman (University of Calgary, Tampere University of Technology, Santa Fe Institute). We use a tentative new definition of thinking, designed to be applicable for humans, cetecea, corvids, artificial intelligences, and extraterrestrial intelligences of any substrate (i.e. Life as We Do Not Know It): "Thinking is the occurrence, transformation, and storage in a mind or brain (or simulation thereof) of information-bearing structures (representations) of one kind or another, such as thoughts, concept, percepts, ideas, impressions, notions, rules, schemas, images, phantasms, or subpersonal representations." We use the framework for Consciousness developed by Francis Crick and Christof Koch. We try to describe scientific goals, but discuss Philosophy sufficient to avoid naïve philosophical category errors (thus are careful not to conflate thought, consciousness, and language) Penrose, Hameroff, and Kauffman speculate (differently) that CNS consciousness is a macroscopic quantum phenomenon. Might intestinal, immune system, or genetic regulatory network dynamics exhibit emergent cooperative quantum effects? The speculations are in the context of Evolution by Natural Selection, presumed to operate throughout the Cosmos, and recent work in the foundations of Computational Biology and Quantum Mechanics.

  1. The Politics of Affirmation Theory: When Group-Affirmation Leads to Greater Ingroup Bias.

    Science.gov (United States)

    Ehrlich, Gaven A; Gramzow, Richard H

    2015-08-01

    It has been well established in the literature that affirming the individual self reduces the tendency to exhibit group-favoring biases. The limited research examining group-affirmation and bias, however, is inconclusive. We argue that group-affirmation can exacerbate group-serving biases in certain contexts, and in the current set of studies, we document this phenomenon directly. Unlike self-affirmation, group-affirmation led to greater ingroup-favoring evaluative judgments among political partisans (Experiment 1). This increase in evaluative bias following group-affirmation was moderated by political party identification and was not found among those who affirmed a non-political ingroup (Experiment 2). In addition, the mechanism underlying these findings is explored and interpreted within the theoretical frameworks of self-categorization theory and the multiple self-aspects model (Experiments 2 and 3). The broader implications of our findings for the understanding of social identity and affirmation theory are discussed.

  2. Consistent Multigroup Theory Enabling Accurate Course-Group Simulation of Gen IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Haghighat, Alireza; Ougouag, Abderrafi

    2013-11-29

    The objective of this proposal is the development of a consistent multi-group theory that accurately accounts for the energy-angle coupling associated with collapsed-group cross sections. This will allow for coarse-group transport and diffusion theory calculations that exhibit continuous energy accuracy and implicitly treat cross- section resonances. This is of particular importance when considering the highly heterogeneous and optically thin reactor designs within the Next Generation Nuclear Plant (NGNP) framework. In such reactors, ignoring the influence of anisotropy in the angular flux on the collapsed cross section, especially at the interface between core and reflector near which control rods are located, results in inaccurate estimates of the rod worth, a serious safety concern. The scope of this project will include the development and verification of a new multi-group theory enabling high-fidelity transport and diffusion calculations in coarse groups, as well as a methodology for the implementation of this method in existing codes. This will allow for a higher accuracy solution of reactor problems while using fewer groups and will reduce the computational expense. The proposed research represents a fundamental advancement in the understanding and improvement of multi- group theory for reactor analysis.

  3. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory

    Science.gov (United States)

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-01

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu2O2]2+ core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu2O2]2+.

  4. Study of Black Consciousness in A Raisin in The Sun

    Directory of Open Access Journals (Sweden)

    Rehana Kousar

    2014-07-01

    Full Text Available This work explores Black Consciousness in A Raisin in the Sun by Hansberry. Black Consciousness elaborates an awareness of and pride in one’s identity as a black person. It analyzes A Raisin in the Sun by applying the theory of Black Consciousness under the perspective of Fanon. This study analysis the drama at three levels: sense of pride on black culture and identity, struggle against Apartheid and Blacks’ resolution to accept the challenges of White Community. Keywords: Black Consciousness, Apartheid, Identity, Culture, A Raisin in the Sun, cross – cultural studies, diasporic, African Literature

  5. From cholesterol to consciousness.

    Science.gov (United States)

    Torday, John S

    2017-08-19

    The nature of consciousness has been debated for centuries. It can be understood as part and parcel of the natural progression of life from unicellular to multicellular, calcium fluxes mediating communication within and between cells. Consciousness is the vertical integration of calcium fluxes, mediated by the Target of Rapamycin gene integrated with the cytoskeleton. The premise of this paper is that there is a fundamental physiologic integration of the organism with the environment that constitutes consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integrated approach to cost consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, R.E.

    1988-01-01

    Cost consciousness was given a very necessary boost by the collapse of oil prices in 1986 and downward movements in prices have served to re-inforce the need for vigilance: oil companies were becoming complacent. The climate necessary for cost consciousness to flourish as part of the oil company culture is established by higher management attitude and can be reinforced by organizational structure. British Petroleum's current production/exploration organisational structure is reported on in the first section of this paper and this is followed by a discussion of pertinent cost-oriented observations to emerge from this grouping related both to the component phases of the exploitation of a field, and to the cost of engineering/managing same.

  7. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    Science.gov (United States)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  8. The $K$-groups and the index theory of certain comparison $C^*$-algebras

    CERN Document Server

    Monthubert, Bertrand

    2010-01-01

    We compute the $K$-theory of comparison $C^*$-algebra associated to a manifold with corners. These comparison algebras are an example of the abstract pseudodifferential algebras introduced by Connes and Moscovici \\cite{M3}. Our calculation is obtained by showing that the comparison algebras are a homomorphic image of a groupoid $C^*$-algebra. We then prove an index theorem with values in the $K$-theory groups of the comparison algebra.

  9. The group theory for solving electromagnetic scattering problems with geometric symmetric structure

    Institute of Scientific and Technical Information of China (English)

    朱峰; 杨海川; 任朗

    1997-01-01

    It is a very important issue to reduce computer storage and calculation time for matrix in solving scattering field by making use of geometric and physical symmetric features of a scattering body. A general definition for the symmetric and anti-symmetric structure is given by applying the group theory in mathematics and a general method for treating the electromagnetic scattering problems with symmetry is proposed. An example for applying the theory mentioned above is also given.

  10. Evidence for the social role theory of stereotype content: observations of groups' roles shape stereotypes.

    Science.gov (United States)

    Koenig, Anne M; Eagly, Alice H

    2014-09-01

    In applying social role theory to account for the content of a wide range of stereotypes, this research tests the proposition that observations of groups' roles determine stereotype content (Eagly & Wood, 2012). In a novel test of how stereotypes can develop from observations, preliminary research collected participants' beliefs about the occupational roles (e.g., lawyer, teacher, fast food worker, chief executive officer, store clerk, manager) in which members of social groups (e.g., Black women, Hispanics, White men, the rich, senior citizens, high school dropouts) are overrepresented relative to their numbers in the general population. These beliefs about groups' typical occupational roles proved to be generally accurate when evaluated in relation to data from the Bureau of Labor Statistics. Then, correlational studies predicted participants' stereotypes of social groups from the attributes ascribed to group members' typical occupational roles (Studies 1a, 1b, and 1c), the behaviors associated with those roles (Study 2), and the occupational interest profile of the roles (Study 3). As predicted by social role theory, beliefs about the attributes of groups' typical roles were strongly related to group stereotypes on both communion and agency/competence. In addition, an experimental study (Study 4) demonstrated that when social groups were described with changes to their typical social roles in the future, their projected stereotypes were more influenced by these future roles than by their current group stereotypes, thus supporting social role theory's predictions about stereotype change. Discussion considers the implications of these findings for stereotype change and the relation of social role theory to other theories of stereotype content.

  11. Constructive Tensorial Group Field Theory II: The $U(1)-T^4_4$ Model

    CERN Document Server

    Lahoche, Vincent

    2015-01-01

    In this paper we continue our program of non-pertubative constructions of tensorial group field theories (TGFT). We prove analyticity and Borel summability in a suitable domain of the coupling constant of the simplest super-renormalizable TGFT which contains some ultraviolet divergencies, namely the color-symmetric quartic melonic rank-four model with Abelian $U(1)$ gauge invariance, nicknamed $U(1)-T^4_4$. We use a multiscale loop vertex expansion. It is an extension of the loop vertex expansion (the basic constructive technique for non-local theories) which is required for theories that involve non-trivial renormalization.

  12. The Quillen category of finite p-groups and coclass theory

    OpenAIRE

    Eick, Bettina; Green, David J

    2013-01-01

    Coclass theory can be used to define infinite families of finite p-groups of a fixed coclass. It is conjectured that the groups in one of these infinite families all have isomorphic mod-p cohomology rings. Here we prove that almost all groups in one of these infinite families have equivalent Quillen categories. We also show how the Quillen categories of the groups in an infinite family are connected to the Quillen category of their associated infinite pro-p-group of finite coclass.

  13. Information sharing in the brain indexes consciousness in noncommunicative patients.

    Science.gov (United States)

    King, Jean-Rémi; Sitt, Jacobo D; Faugeras, Frédéric; Rohaut, Benjamin; El Karoui, Imen; Cohen, Laurent; Naccache, Lionel; Dehaene, Stanislas

    2013-10-07

    Neuronal theories of conscious access tentatively relate conscious perception to the integration and global broadcasting of information across distant cortical and thalamic areas. Experiments contrasting visible and invisible stimuli support this view and suggest that global neuronal communication may be detectable using scalp electroencephalography (EEG). However, whether global information sharing across brain areas also provides a specific signature of conscious state in awake but noncommunicating patients remains an active topic of research. We designed a novel measure termed "weighted symbolic mutual information" (wSMI) and applied it to 181 high-density EEG recordings of awake patients recovering from coma and diagnosed in various states of consciousness. The results demonstrate that this measure of information sharing systematically increases with consciousness state, particularly across distant sites. This effect sharply distinguishes patients in vegetative state (VS), minimally conscious state (MCS), and conscious state (CS) and is observed regardless of etiology and delay since insult. The present findings support distributed theories of conscious processing and open up the possibility of an automatic detection of conscious states, which may be particularly important for the diagnosis of awake but noncommunicating patients.

  14. Consciousness and working memory: Current trends and research perspectives.

    Science.gov (United States)

    Velichkovsky, Boris B

    2017-07-27

    Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Explaining Extremity in Evaluation of Group Members: Meta-Analytic Tests of Three Theories.

    Science.gov (United States)

    Bettencourt, B Ann; Manning, Mark; Molix, Lisa; Schlegel, Rebecca; Eidelman, Scott; Biernat, Monica

    2016-02-01

    A meta-analysis that included more than 1,100 effect sizes tested the predictions of three theoretical perspectives that explain evaluative extremity in social judgment: complexity-extremity theory, subjective group dynamics model, and expectancy-violation theory. The work seeks to understand the ways in which group-based information interacts with person-based information to influence extremity in evaluations. Together, these three theories point to the valence of person-based information, group membership of the evaluated targets relative to the evaluator, status of the evaluators' ingroup, norm consistency of the person-based information, and incongruency of person-based information with stereotype-based expectations as moderators. Considerable support, but some limiting conditions, were found for each theoretical perspective. Implications of the results are discussed. © 2015 by the Society for Personality and Social Psychology, Inc.

  16. A “Misfit” Theory of Spontaneous Conscious Odor Perception (MITSCOP): reflections on the role and function of odor memory in everyday life

    Science.gov (United States)

    Köster, Egon P.; Møller, Per; Mojet, Jozina

    2014-01-01

    Our senses have developed as an answer to the world we live in (Gibson, 1966) and so have the forms of memory that accompany them. All senses serve different purposes and do so in different ways. In vision, where orientation and object recognition are important, memory is strongly linked to identification. In olfaction, the guardian of vital functions such as breathing and food ingestion, perhaps the most important (and least noticed and researched) role of odor memory is to help us not to notice the well-known odors or flavors in our everyday surroundings, but to react immediately to the unexpected ones. At the same time it provides us with a feeling of safety when our expectancies are met. All this happens without any smelling intention or conscious knowledge of our expectations. Identification by odor naming is not involved in this and people are notoriously bad at it. Odors are usually best identified via the episodic memory of the situation in which they once occurred. Spontaneous conscious odor perception normally only occurs in situations where attention is demanded, either because the inhaled air or the food smell is particularly good or particularly bad and people search for its source or because people want to actively enjoy the healthiness and pleasantness of their surroundings or food. Odor memory is concerned with novelty detection rather than with recollection of odors. In this paper, these points are illustrated with experimental results and their consequences for doing ecologically valid odor memory research are drawn. Furthermore, suggestions for ecologically valid research on everyday odor memory and some illustrative examples are given. PMID:24575059

  17. Invited and contributed papers presented by the theory group at the joint Varenna-Lausanne international workshop `theory of fusion plasmas`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    In this report eight invited and contributed papers of the theory group are included which were presented at joint Varenna-Lausanne international workshop on `theory of fusion plasmas`. (author) figs., tabs., refs.

  18. Logical Evaluation of Consciousness: For Incorporating Consciousness into Machine Architecture

    OpenAIRE

    2010-01-01

    Machine Consciousness is the study of consciousness in a biological, philosophical, mathematical and physical perspective and designing a model that can fit into a programmable system architecture. Prime objective of the study is to make the system architecture behave consciously like a biological model does. Present work has developed a feasible definition of consciousness, that characterizes consciousness with four parameters i.e., parasitic, symbiotic, self referral and reproduction. Prese...

  19. Are We Explaining Consciousness Yet?

    Science.gov (United States)

    Dennett, Daniel

    2001-01-01

    Maintains that theorists are converging on a version of the global neuronal workspace model of consciousness, but that there are residual confusions to be dissolved. Asserts that global accessibility is not the "cause" of consciousness, it "is" consciousness. Argues that like fame, consciousness is not a momentary condition or…

  20. The effectiveness of group selection theory on the quality of drug addicted life

    Directory of Open Access Journals (Sweden)

    M Sodani

    2017-01-01

    Full Text Available Backgrounds and aim: Increase in addiction in the community and the plight of its people demand for improving the problems of addicts, indicate a need for individuals to interventions and training expertise. The aim of this study was to investigate the effectiveness of group selection theory on the quality of drug addicted life.  .  Methods: This study is an quasi-experimental design with pretest-posttest and follow up with the control group. The study population included: all addicted people who referred to ahvaz addiction treatment center in 2015. 50 addicts were selected by using of  available sampling and randomly divided into  two experimental group (number=25 and control group (number=25. The participants were completed the quality of life inventory in three stages (pre-test, post-test and follow-up after 60 days. The experimental group was received group training of the concepts of selection theory of 10 sessions of 90 minutes per week.Statistical data were analyzed  using of covariance(ANCOVA analysis. Results: Group training theory led to a significant difference among pretest, posttest, and follow-up of quality of addicted people life (p <0.001. In this case, the post-test and follow-up, after controlling of pre-test score, the experimental group compared to the control group higher quality of life was reported. Conclusion: Group training of selected theory about the role of choosing a behavior, five senses  the importance of self control, the role of effective behavior, the way of need fulfilment, responsibility, self worth, Quality world, seven destructive behavior, seven caring behavior, faiure identification and success identification can result in increasing the quality of life for addicted people.

  1. Decreased electrophysiological activity represents the conscious state of emptiness in meditation.

    Science.gov (United States)

    Hinterberger, Thilo; Schmidt, Stephanie; Kamei, Tsutomu; Walach, Harald

    2014-01-01

    Many neuroscientific theories explain consciousness with higher order information processing corresponding to an activation of specific brain areas and processes. In contrast, most forms of meditation ask for a down-regulation of certain mental processing activities while remaining fully conscious. To identify the physiological properties of conscious states with decreased mental and cognitive processing, the electrical brain activity (64 channels of EEG) of 50 participants of various meditation proficiencies was measured during distinct and idiosyncratic meditative tasks. The tasks comprised a wakeful "thoughtless emptiness (TE)," a "focused attention," and an "open monitoring" task asking for mindful presence in the moment and in the environment without attachment to distracting thoughts. Our analysis mainly focused on 30 highly experienced meditators with at least 5 years and 1000 h of meditation experience. Spectral EEG power comparisons of the TE state with the resting state or other forms of meditation showed decreased activities in specific frequency bands. In contrast to a focused attention task the TE task showed significant central and parietal gamma decreases (p waves than a wakeful closed eyes resting condition. A group of participants with none or little meditation practice did not present those differences significantly. Our findings indicate that a conscious state of TE reached by experienced meditators is characterized by reduced high-frequency brain processing with simultaneous reduction of the low frequencies. This suggests that such a state of meditative conscious awareness might be different from higher cognitive and mentally focused states but also from states of sleep and drowsiness.

  2. Group theory in quantum mechanics an introduction to its present usage

    CERN Document Server

    Heine, Volker

    1960-01-01

    Group Theory in Quantum Mechanics: An Introduction to its Present Usage introduces the reader to the three main uses of group theory in quantum mechanics: to label energy levels and the corresponding eigenstates; to discuss qualitatively the splitting of energy levels as one starts from an approximate Hamiltonian and adds correction terms; and to aid in the evaluation of matrix elements of all kinds, and in particular to provide general selection rules for the non-zero ones. The theme is to show how all this is achieved by considering the symmetry properties of the Hamiltonian and the way in w

  3. TOPICAL REVIEW: Group theory and biomolecular conformation: I. Mathematical and computational models

    Science.gov (United States)

    Chirikjian, Gregory S.

    2010-08-01

    Biological macromolecules, and the complexes that they form, can be described in a variety of ways ranging from quantum mechanical and atomic chemical models, to coarser grained models of secondary structure and domains, to continuum models. At each of these levels, group theory can be used to describe both geometric symmetries and conformational motion. In this survey, a detailed account is provided of how group theory has been applied across computational structural biology to analyze the conformational shape and motion of macromolecules and complexes.

  4. Evolution of consciousness.

    OpenAIRE

    Eccles, J C

    1992-01-01

    The hypothesis of the origin of consciousness is built upon the unique properties of the mammalian neocortex. The apical dendrites of the pyramidal cells bundle together as they ascend to lamina I to form neural receptor units of approximately 100 apical dendrites plus branches receiving hundreds of thousands of excitatory synapses, the collective assemblage being called a dendron. It is proposed that the whole world of consciousness, the mental world, is microgranular, with mental units call...

  5. Attention Networks and Consciousness

    Directory of Open Access Journals (Sweden)

    Michael ePosner

    2012-03-01

    Full Text Available The term consciousness is an important one in the vernacular of the western literature in many fields. It is no wonder that scientists have assumed that consciousness will be found as a component of the human brain and that we will come to understand its neural basis. However, there is rather little in common between consciousness as the neurologist would use it to diagnose the vegetative state, how the feminist would use it to support raising male consciousness of the economic plight of women and as the philosopher would use it when defining the really hard question of the subjective state of awareness induced by sensory qualities. When faced with this kind of problem it is usual to subdivide the term into more manageable perhaps partly operational definitions. Three meanings that capture aspects of consciousness are: (1 the neurology of the state of mind allowing coherent orientation to time and place (2 the selection of sensory or memorial information for awareness and (3 the voluntary control over overt responses. In each of these cases the mechanisms of consciousness overlap with one or more of the attentional networks that have been studied with the methods of cognitive neuroscience. In this paper we explore t

  6. Theoretical approaches to the diagnosis of altered states of consciousness.

    Science.gov (United States)

    Boly, Melanie; Massimini, Marcello; Tononi, Giulio

    2009-01-01

    Assessing the level of consciousness of noncommunicative brain-damaged patients is difficult, as one has to make inferences based on the patients' behavior. However, behavioral responses of brain-damaged patients are usually limited not only by their cognitive dysfunctions, but also by their frequent motor impairment. For these reasons, it is essential to resort to para-clinical markers of the level of consciousness. In recent years, a number of studies compared brain activity in comatose and vegetative state patients to that in healthy volunteers, and in other conditions of reduced consciousness such as sleep, anesthesia, or epileptic seizures. Despite the increasing amount of experimental results, no consensus on the brain mechanisms generating consciousness has yet been reached. Here, we discuss the need to combine a theoretical approach with current experimental procedures to obtain a coherent, parsimonious explanation for the loss of consciousness in several different conditions, such as coma, vegetative state, sleep, anesthesia, and epileptic seizures. In our view, without a theoretical account of how conscious experience is generated by the brain, it will remain difficult to understand the mechanisms underlying the generation of consciousness, and to predict reliably its presence or absence in noncommunicative brain-damaged patients. In this context, we review current theoretical approaches to consciousness, and how well they fit with current evidence on the neural correlates of experience. Specifically, we emphasize the principled approach provided by the Integrated Information Theory of Consciousness (IITC). We describe the different conditions where the theory predicts markedly reduced states of consciousness, and discuss several technical and conceptual issues limiting its applicability to measuring the level of consciousness of individual patients. Nevertheless, we argue that some of the predictions of the theory are potentially testable using available

  7. On the character of consciousness

    Directory of Open Access Journals (Sweden)

    Arto eAnnila

    2016-03-01

    Full Text Available The human brain is a particularly demanding system to infer its nature from observations. Thus, there is on one hand plenty of room for theorizing and on the other hand a pressing need for a rigorous theory. We apply statistical mechanics of open systems to describe the brain as a hierarchical system in consuming free energy in least time. This holistic tenet accounts for cellular metabolism, neuronal signaling, cognitive processes all together or any other process by a formal equation of motion that extends down to the ultimate precision of one quantum of action. According to this general thermodynamic theory cognitive processes are no different by their operational and organizational principle from other natural processes. Cognition too will emerge and evolve along path-dependent and non-determinate trajectories by consuming free energy in least time to attain thermodynamic balance within the nervous system itself and with its surrounding systems. Specifically, consciousness can be ascribed to a natural process that integrates various neural networks for coherent consumption of free energy, i.e., for meaningful deeds. The whole hierarchy of integrated systems can be formally summed up to thermodynamic entropy. The holistic tenet provides insight to the character of consciousness also by acknowledging awareness in other systems at other levels of nature’s hierarchy.

  8. Chemical Applications of Topology and Group Theory. 22. Lowest Degree Chirality Polynomials for Regular Polyhedra.

    Science.gov (United States)

    1986-08-18

    ligand partitions are determined by considering the point group G as a subgroup of the symmetric grouP n and calculating by standard group theo - retical...Keller, Theor. Chim. Acta, 56, 1 (1980). (8) R.B. King, Theor. Chim. Acta, 63, 103 (1983). (9) D. Meinkdhn, Theo . Chim. Acta, 47, 67 (1978). (10) D...Theory," Wiley-lnterscience, New York, 1971. (23) D. Gorenstein, "Finite Groups," Harper and Row, New York, 1968, Chapter 4. (24) L. Jansen and M. Boon

  9. Weyl Group Multiple Dirichlet Series Type A Combinatorial Theory (AM-175)

    CERN Document Server

    Brubaker, Ben; Friedberg, Solomon

    2011-01-01

    Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series an

  10. Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model

    CERN Document Server

    Roan, Shi-shyr

    2013-01-01

    The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.

  11. Spinors and Voros star-product for Group Field Theory: First Contact

    CERN Document Server

    Dupuis, Maité; Livine, Etera R

    2011-01-01

    In the context of non-commutative geometries, we develop a group Fourier transform for the Lie group SU(2). Our method is based on the Schwinger representation of the Lie algebra su(2) in terms of spinors. It allows us to prove that the non-commutative R^3 space dual to the SU(2) group is in fact of the Moyal-type and endowed with the Voros star-product when expressed in the spinor variables. Finally, from the perspective of quantum gravity, we discuss the application of these new tools to group field theories for spinfoam models and their interpretation as non-commutative field theories with quantum-deformed symmetries.

  12. Discrete gravity as a local theory of the Poincare group in the first-order formalism

    Energy Technology Data Exchange (ETDEWEB)

    Gionti, Gabriele [Vatican Observatory Research Group, Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721 (United States); Specola Vaticana, V-00120 Citta Del Vaticano (Vatican City State, Holy See,)

    2005-10-21

    A discrete theory of gravity, locally invariant under the Poincare group, is considered as in a companion paper. We define a first-order theory, in the sense of Palatini, on the metric-dual Voronoi complex of a simplicial complex. We follow the same spirit as the continuum theory of general relativity in the Cartan formalism. The field equations are carefully derived taking in account the constraints of the theory. They look very similar to first-order Einstein continuum equations in the Cartan formalism. It is shown that in the limit of small deficit angles these equations have Regge calculus, locally, as the only solution. A quantum measure is easily defined which does not suffer the ambiguities of Regge calculus, and a coupling with fermionic matter is easily introduced.

  13. Two-Group Theory of the Feynman-Alpha Method for Reactivity Measurement in ADS

    Directory of Open Access Journals (Sweden)

    Lénárd Pál

    2012-01-01

    Full Text Available The theory of the Feynman-alpha method, which is used to determine the subcritical reactivity of systems driven by an external source such as an ADS, is extended to two energy groups with the inclusion of delayed neutrons. This paper presents a full derivation of the variance to mean formula with the inclusion of two energy groups and delayed neutrons. The results are illustrated quantitatively and discussed in physical terms.

  14. Eisenstein series for higher-rank groups and string theory amplitudes

    CERN Document Server

    Green, Michael B; Russo, Jorge G; Vanhove, Pierre

    2010-01-01

    Scattering amplitudes of superstring theory are strongly constrained by the requirement that they be invariant under dualities generated by discrete subgroups, E_n(Z), of simply-laced Lie groups in the E_n series (n<= 8). In particular, expanding the four-supergraviton amplitude at low energy gives a series of higher derivative corrections to Einstein's theory, with coefficients that are automorphic functions with a rich dependence on the moduli. Boundary conditions supplied by string and supergravity perturbation theory, together with a chain of relations between successive groups in the E_n series, constrain the constant terms of these coefficients in three distinct parabolic subgroups. Using this information we are able to determine the expressions for the first two higher derivative interactions (which are BPS-protected) in terms of specific Eisenstein series. Further, we determine key features of the coefficient of the third term in the low energy expansion of the four-supergraviton amplitude (which i...

  15. Chaotic Feedback Loops within Decision Making Groups: Towards an Integration of Chaos Theory and Cybernetics.

    Science.gov (United States)

    Keaten, James A.

    This paper offers a model that integrates chaos theory and cybernetics, which can be used to describe the structure of decision making within small groups. The paper begins with an overview of cybernetics and chaos. Definitional characteristics of cybernetics are reviewed along with salient constructs, such as goal-seeking, feedback, feedback…

  16. Job Search and the Theory of Planned Behavior: Minority-Majority Group Differences in The Netherlands

    Science.gov (United States)

    van Hooft, Edwin A. J.; Born, Marise Ph.; Taris, Toon W.; van der Flier, Henk

    2004-01-01

    The labor market in many Western countries increasingly diversifies. However, little is known about job search behavior of ''non-traditional'' applicants such as ethnic minorities. This study investigated minority-majority group differences in the predictors of job search behavior, using the theory of planned behavior (Ajzen, 1985). Data were…

  17. The gauge theory of the de Sitter group and Ashtekar formulation

    CERN Document Server

    Nieto, J A; Socorro, J

    1994-01-01

    By adding the Pontrjagin topological invariant to the gauge theory of the de Sitter group proposed by MacDowell and Mansouri we obtain an action quadratic in the field-strengths, of the Chern-Simons type, from which the Ashtekar formulation is derived.

  18. The elementary theory of groups a guide through the proofs of the Tarski conjectures

    CERN Document Server

    Fine, Benjamin; Myasnikov, Alexei; Rosenberger, Gerhard; Spellman, Dennis

    2014-01-01

    After being an open question for sixty years the Tarski conjecture was answered in the affirmative by Olga Kharlampovich and Alexei Myasnikov and independently by Zlil Sela. This book is an examination of the material on the general elementary theory of groups that is necessary to begin to understand the proofs.

  19. Renormalization group flows for the second $Z_{N}$ parafermionic field theory for N odd

    CERN Document Server

    Dotsenko, V S; Dotsenko, Vladimir S.; Estienne, Benoit

    2007-01-01

    Using the renormalization group approach, the Coulomb gas and the coset techniques, the effect of slightly relevant perturbations is studied for the second parafermionic field theory with the symmetry $Z_{N}$, for N odd. New fixed points are found and classified.

  20. Renormalization group flows for the second Z{sub N} parafermionic field theory for N odd

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, Vladimir S. [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589, Universite Pierre et Marie Curie, Paris-6 (France) and CNRS, Universite Denis Diderot, Paris-7, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: dotsenko@lpthe.jussieu.fr; Estienne, Benoit [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589, Universite Pierre et Marie Curie, Paris-6 (France) and CNRS, Universite Denis Diderot, Paris-7, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: estienne@lpthe.jussieu.fr

    2007-07-23

    Using the renormalization group approach, the Coulomb gas and the coset techniques, the effect of slightly relevant perturbations is studied for the second parafermionic field theory with the symmetry Z{sub N}, for N odd. New fixed points are found and classified.

  1. A comment on continuous spin representations of the Poincare group and perturbative string theory

    Energy Technology Data Exchange (ETDEWEB)

    Font, A. [Departamento de Fisica, Centro de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Quevedo, F. [Abdus Salam ICTP, Trieste (Italy); DAMTP/CMS, University of Cambridge, Wilberforce Road, Cambridge (United Kingdom); Theisen, S. [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Golm (Germany)

    2014-11-04

    We make a simple observation that the massless continuous spin representations of the Poincare group are not present in perturbative string theory constructions. This represents one of the very few model-independent low-energy consequences of these models. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. A comment on continuous spin representations of the Poincaré group and perturbative string theory

    Science.gov (United States)

    Font, A.; Quevedo, F.; Theisen, S.

    2014-11-01

    We make a simple observation that the massless continuous spin representations of the Poincar\\'e group are not present in perturbative string theory constructions. This represents one of the very few model-independent low-energy consequences of these models.

  3. Grid, Group, and Grade : Challenges in Operationalizing Cultural Theory for Cross-National Research

    NARCIS (Netherlands)

    Maleki, A.; Hendriks, F.

    2015-01-01

    Grid–Group Cultural Theory (CT), developed by Mary Douglas and followers, is a well-known and often-used framework for the analysis of culture in the political–administrative world. Although Douglas herself was rather wary of detailed operationalization of CT, many scholars have tried to measure Gri

  4. Comment on 'Lost in translation: topological singularities in group field theory'

    Energy Technology Data Exchange (ETDEWEB)

    Smerlak, Matteo, E-mail: smerlak@cpt.univ-mrs.fr [Centre de Physique Theorique, Campus de Luminy, Case 907, 13288 Marseille Cedex 09 (France)

    2011-09-07

    Gurau argued in (Gurau R 2010 Class. Quantum Grav. 27 235023) that the gluing spaces arising as Feynman diagrams of three-dimensional group field theory are not all pseudo-manifolds. I dispute this conclusion: albeit not properly triangulated, these spaces are genuine pseudo-manifolds, namely their singular locus is of codimension at least 2. (comment)

  5. SU(N) group-theory constraints on color-ordered five-point amplitudes at all loop orders

    OpenAIRE

    Edison, Alexander C.; Naculich, Stephen G.

    2011-01-01

    Color-ordered amplitudes for the scattering of n particles in the adjoint representation of SU(N) gauge theory satisfy constraints arising solely from group theory. We derive these constraints for n=5 at all loop orders using an iterative approach. These constraints generalize well-known tree-level and one-loop group theory relations.

  6. Group Theory of Wannier Functions Providing the Basis for a Deeper Understanding of Magnetism and Superconductivity

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2015-05-01

    Full Text Available The paper presents the group theory of optimally-localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the Bloch functions at all of the points of symmetry in the Brillouin zone is known, the paper details whether or not the Bloch functions of particular energy bands can be unitarily transformed into optimally-localized Wannier functions symmetry-adapted to the space group G, to the magnetic group M or to a subgroup of G or M. In this context, the paper considers usual, as well as spin-dependent Wannier functions, the latter representing the most general definition of Wannier functions. The presented group theory is a review of the theory published by one of the authors (Ekkehard Krüger in several former papers and is independent of any physical model of magnetism or superconductivity. However, it is suggested to interpret the special symmetry of the optimally-localized Wannier functions in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of strongly-correlated localized electrons makes clear predictions of whether or not the system can possess superconducting or magnetic eigenstates.

  7. Postprandial hemodynamics in the conscious rat

    Energy Technology Data Exchange (ETDEWEB)

    Anzueto Hernandez, L.; Kvietys, P.R.; Granger, D.N.

    1986-07-01

    The postprandial intestinal hyperemia was studied in conscious and anesthetized rats using the radioactive microsphere technique. Carbohydrate, protein, lipid, and mixed meals, and the vehicle (Tyrode's solution), were placed in the stomach via a gastrostomy tube. In conscious rats, blood flow increased by 40-80% in the duodenum and jejunum 1 h after either a carbohydrate, lipid, protein, or mixed meal. Tyrode's solution produced a comparable hyperemia. Blood flow in the distal bowel segments (ileum, cecum, and colon) was significantly increased only by Tyrode's solution and the carbohydrate meal. The proximal intestinal hyperemia produced by the mixed meal in conscious animals was significantly attenuated by vagotomy yet unaltered by atropine pretreatment. In contrast to the results obtained from conscious rats, the mixed meal did not significantly alter intestinal blood flow in anesthetized animals. The results of this study indicate that the postprandial intestinal hyperemia is much greater in conscious than anesthetized animals. This difference may result from the higher resting blood flows in the latter group. The hyperemic response in conscious animals may be mediated by the vagus nerve.

  8. Consciousness, the brain, and spacetime geometry.

    Science.gov (United States)

    Hameroff, S

    2001-04-01

    What is consciousness? Conventional approaches see it as an emergent property of complex interactions among individual neurons; however these approaches fail to address enigmatic features of consciousness. Accordingly, some philosophers have contended that "qualia," or an experiential medium from which consciousness is derived, exists as a fundamental component of reality. Whitehead, for example, described the universe as being composed of "occasions of experience." To examine this possibility scientifically, the very nature of physical reality must be re-examined. We must come to terms with the physics of spacetime--as described by Einstein's general theory of relativity, and its relation to the fundamental theory of matter--as described by quantum theory. Roger Penrose has proposed a new physics of objective reduction: "OR," which appeals to a form of quantum gravity to provide a useful description of fundamental processes at the quantum/classical borderline. Within the OR scheme, we consider that consciousness occurs if an appropriately organized system is able to develop and maintain quantum coherent superposition until a specific "objective" criterion (a threshold related to quantum gravity) is reached; the coherent system then self-reduces (objective reduction: OR). We contend that this type of objective self-collapse introduces non-computability, an essential feature of consciousness which distinguishes our minds from classical computers. Each OR is taken as an instantaneous event--the climax of a self-organizing process in fundamental spacetime--and a candidate for a conscious Whitehead "occasion of experience." How could an OR process occur in the brain, be coupled to neural activities, and account for other features of consciousness? We nominate a quantum computational OR process with the requisite characteristics to be occurring in cytoskeletal micro-tubules within the brain's neurons. In this model, quantum-superposed states develop in microtubule

  9. Can self-representationalism explain away the apparent irreducibility of consciousness?

    OpenAIRE

    2016-01-01

    Kriegel’s self-representationalist (SR) theory of phenomenal consciousness pursues two projects. The first is to offer a positive account of how conscious experience arises from physical brain processes. The second is to explain why consciousness misleadingly appears to be irreducible to the physical i.e. to ‘demystify’ consciousness. This paper seeks to determine whether SR succeeds on the second project. Kriegel trades on a distinction between the subjective character and qualitative charac...

  10. Emotion and Consciousness: Ends of a Continuum

    Directory of Open Access Journals (Sweden)

    Yuri I. Alexandrov

    2009-01-01

    Full Text Available We suggest a united concept of consciousness and emotion, based on the systemic cognitive neuroscience perspective regarding organisms as active and goaldirected. We criticize the idea that consciousness and emotion are psychological phenomena having quite different neurophysiological mechanisms. We argue that both characterize a unified systemic organization of behavior, but at different levels. All systems act to achieve intended behavioral results in interaction with their environment. Differentiation of this interaction increases during individual development. Any behavioral act is a simultaneous realization of systems ranking from the least to the most differentiated. We argue that consciousness and emotion are dynamic systemic characteristics that are prominent at the most and least differentiated systemic levels, correspondingly. These levels are created during development. Our theory is based on both theoretical and empirical research and provides a solid framework for experimental work.

  11. Neuroimaging of consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, Andrea Eugenio [Birmingham Univ. (United Kingdom). Dept. of Neuropsychiatry; UCL Institute of Neurology, London (United Kingdom). Sobell Dept. of Motor, Neuroscience and Movement Disorders; Nani, Andrea [Birmingham Univ. (United Kingdom). Research Group BSMHFT; Blumenfeld, Hal [Yale University School of Medicine, New Haven, CT (United States). Depts. of Neurology, Neurobiology and Neurosurgery; Laureys, Steven (ed.) [Liege Univ. (Belgium). Cyclotron Research Centre

    2013-07-01

    An important reference work on a multidisciplinary and rapidly expanding area. Particular focus on the relevance of neuroimaging for the diagnosis and treatment of common neuropsychiatric disorders affecting consciousness. Written by world-class experts in the field. Relevant for clinicians, researchers, and scholars across different specialties. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This book presents the state of the art in neuroimaging exploration of the brain correlates of the alterations in consciousness across these conditions, with a particular focus on the potential applications for diagnosis and management. Although the book has a practical approach and is primarily targeted at neurologists, neuroradiologists, and psychiatrists, a wide range of researchers and health care professionals will find it an essential reference that explains the significance of neuroimaging of consciousness for clinical practice. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This

  12. A Critical Theory of Dialogue: A Review and Critique of Habermas' Theory of Universal Pragmatics and Implications for Theories of Decision Making and Negotiation.

    Science.gov (United States)

    Savage, Grant T.

    Intended for researchers and teachers of the small group process, decision making, and negotiation, this paper offers a review and critique of J. Habermas's theory of universal pragmatics. The first section of this paper retraces Habermas's theory, which seeks to free social action from false consciousness (that is, political ideologies) that…

  13. Environmentally conscious patent histories

    Science.gov (United States)

    Crouch, Dennis D.; Crouch, Henry L.

    2004-02-01

    There is a need for investigators, legislators, and business leaders to understand the magnitude of innovation and discovery in the field of environmentally conscious technologies (ECTs). Knowledge of the "big picture" is important to providing a national and global account of actual environmental stewardship over the last twenty-five years. A recitation of the Environmental Protection Agency (EPA) supported Acts which have been enacted into law reveals one facet of the multifaceted dynamic of environmental consciousness. The popular discussion and debate, as well as partisan lobbying, which created the political forces leading to environmentally conscious legislation is another facet. A third facet is the corporate response to the threats and opportunities predicted by CEO"s and others through environmental scanning. This paper examines changes in environmentally conscious inventive effort by comparing data from United States Patents issued from 1976 through 2003. Patents are useful tool for measuring technological innovation because they are publicly available records of innovative activity. Although not all inventions result in patent applications, the monopoly rights granted on the invention give the inventor a strong incentive to obtain patents on any viable product or process. Among the results, we found a significant increase in patents relating to environmentally conscious products and processes during the period in question. Specifically, a dramatic increase in patent activity was seen for the decade of the 1990"s. Surprisingly, the patenting rate from 2000 to 2003 seems to have stabilized. Additionally public discussion of ECTs appears to have a positive impact on patent filings.

  14. The Conscious Individual

    Directory of Open Access Journals (Sweden)

    Ashok Natarajan

    2014-10-01

    Full Text Available This article traces the evolutionary development of human consciousness and its increasingly complex and sophisticated organization as human personality from the instinctive behavior of the animal and the subconscious conformity characteristic of early forms of human civilization through progressive stages of transition from physical to social to mental levels of awareness and from the undifferentiated social consciousness of the member of the tribe to the emergence of independent thinking, creativity and uniqueness, which characterize the Conscious Individual. The individual and the collective evolve in tandem. The collective imparts its acquired capacities to its members. The emerging individual acts as a catalyst to spur further development of the collective. Each stage of the journey is the same in essence and structure at progressively higher levels of consciousness and organization. The higher the level achieved by the collective in terms of quality and complexity, the greater the knowledge and organization demanded of the individual. The article ends by cataloging crucial points at which modern society is mired in outmoded conceptions, superstitious beliefs, pre-modern values and archaic institutions that obstruct humanity’s further evolution from problems and limitations to ever-expanding opportunities. The conscious individual is the key to that process.

  15. Deriving a group psychic apparatus and a typology of group mental states from Bion's group dynamics

    OpenAIRE

    2009-01-01

    There is abundant psychoanalytically-oriented literature which apply Freud's concepts related to his psychic apparatus theory. For instance, many researchers often describe group phenomena in terms of "conscious", "unconscious", "ego", and "superego". However, with the exception of Rene Kas's pioneer work, l'appareil psychic groupal, there is, to the author's knowledge, no study which has discussed explicitly and systematically the group's psychic apparatus. In the present paper the author ha...

  16. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    Science.gov (United States)

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  17. The remnant group of local Lorentz transformations in f(T) theories

    CERN Document Server

    Ferraro, Rafael

    2014-01-01

    It is shown that the extended teleparallel gravitational theories, known as f(T) theories, inherit some \\emph{on shell} local Lorentz invariance associated with the tetrad field defining the spacetime structure. We discuss some enlightening examples, such as Minkowski spacetime and cosmological (FRW and Bianchi type I) manifolds. In the first case, we show that the absence of gravity reveals itself as an incapability in the selection of a preferred parallelization at a local level, due to the fact that the infinitesimal local Lorentz subgroup acts as a symmetry group of the frame characterizing Minkowski spacetime. Finite transformations are also discussed in these examples and, contrary to the common lore on the subject, we conclude that the set of tetrads responsible of the parallelization of these manifolds is quite vast and that the remnant group of local Lorentz transformations includes one and two dimensional abelian subgroups of the Lorentz group.

  18. Transcultural group performance in extreme environment: Issues, concepts and emerging theory

    Science.gov (United States)

    Lapierre, Judith; Bouchard, Stéphane; Martin, Thibault; Perreault, Michel

    2009-06-01

    A simulation for flight of international crew on space station took place in Moscow from July 1999 to April 2000 (SFINCS) at the State Biomedical Institute of Russia (IBMP) isolation chambers. Objectives of this study were to identify concepts of psychosocial adaptation and of social interactions to develop an explanation of the transcultural group performance. Method: constructivist epistemology with grounded theory research and fourth generation evaluation were used. Data on processes and interactions were gathered during 110 days of confinement as a subject and extended to 240 days as an outside scientist. Results indicate that coping is influenced by usual coping strategies and coping behaviors inside. Several stresses and human factor issues were identified altering well being and performance inside the chambers. Enabling and limiting forces are discussed. A theory on transcultural group performance is proposed. Issues are raised that appear critical to selection, training and group performance.

  19. Modeling Mixed Groups of Humans and Robots with Reflexive Game Theory

    Science.gov (United States)

    Tarasenko, Sergey

    The Reflexive Game Theory is based on decision-making principles similar to the ones used by humans. This theory considers groups of subjects and allows to predict which action from the set each subject in the group will choose. It is possible to influence subject's decision in a way that he will make a particular choice. The purpose of this study is to illustrate how robots can refrain humans from risky actions. To determine the risky actions, the Asimov's Three Laws of robotics are employed. By fusing the RGT's power to convince humans on the mental level with Asimov's Laws' safety, we illustrate how robots in the mixed groups of humans and robots can influence on human subjects in order to refrain humans from risky actions. We suggest that this fusion has a potential to device human-like motor behaving and looking robots with the human-like decision-making algorithms.

  20. Quantum Field Theories with Symmetries in the Wilsonian Exact Renormalization Group

    CERN Document Server

    Vian, Federica

    1999-01-01

    The purpose of the present thesis is the implementation of symmetries in the Wilsonian Exact Renormalization Group (ERG) approach. After recalling how the ERG can be introduced in a general theory (i.e. containing both bosons and fermions, scalars and vectors) and having applied it to the massless scalar theory as an example of how the method works, we discuss the formulation of the Quantum Action Principle (QAP) in the ERG and show that the Slavnov-Taylor identities can be directly derived for the cutoff effective action at any momentum scale. Firstly the QAP is exploited to analyse the breaking of dilatation invariance occurring in the scalar theory in this approach. Then we address SU(N) Yang-Mills theory and extensively treat the key issue of the boundary conditions of the flow equation which, in this case, have also to ensure restoration of symmetry for the physical theory. In case of a chiral gauge theory, we show how the chiral anomaly can be obtained in the ERG. Finally, we extend the ERG formulation ...

  1. Seiberg-like Dualities for 3d N=2 Theories with SU(N) gauge group

    CERN Document Server

    Park, Jaemo

    2013-01-01

    We work out Seiberg-like dualities for 3d $\\cN=2$ theories with SU(N) gauge group. We use the $SL(2,\\IZ)$ action on 3d conformal field theories with U(1) global symmetry. One of generator S of $SL(2,\\IZ)$ acts as gauging of the U(1) global symmetry. Utilizing $S=S^{-1}$ up to charge conjugation, we obtain Seiberg-like dual of SU(N) theories by gauging topological U(1) symmetry of the Seiberg-like dual of U(N) theories with the same matter content. We work out the Aharony dualities for SU(N) gauge theory with $N_f$ fundamental/anti-fundamnetal flavors, with/without one adjoint matter with the superpotential. We also work out the Giveon-Kutasov dualities for SU(N) gauge theory with Chern-Simons term and with $N_f$ fundamental/anti-fundamental flavors. For all the proposed dualities, we give various evidences such as chiral ring matching and the superconformal index computations. For all dualities proposed, we find the perfect matchings.

  2. Mobilizing collective identity to reduce HIV risk among sex workers in Sonagachi, India: the boundaries, consciousness, negotiation framework.

    Science.gov (United States)

    Ghose, Toorjo; Swendeman, Dallas; George, Sheba; Chowdhury, Debasish

    2008-07-01

    The significantly low rate of HIV infection and high rate of condom use among sex workers in Kolkata, India is partially attributable to a community-led structural intervention called the Sonagachi Project which mobilizes sex workers to engage in HIV education, formation of community-based organizations and advocacy around sex work issues. This research examines how Sonagachi Project participants mobilize collective identity and the manner in which collective identity influences condom use. Using purposive sampling methods, 46 Sonagachi Project participants were selected in 2005 for in-depth qualitative interviews. Taylor and Whittier's (Taylor, V & Whittier, N (1992). Collective identities in social movement communities: lesbian feminist mobilization. In A. Morris & C. Mueller (Eds.) Frontiers in social movement theory. New Haven, CT: Yale University Press) model of identity-formation through boundaries, consciousness and negotiation was used to interpret results. Subjects mobilized collective identity by (1) building boundaries demarcating in-group sex workers from out-group members, (2) raising consciousness about sex work as legitimate labor and the transformative change that results from program participation, and (3) negotiating identity with out-group members. This research establishes a conceptual link between the boundaries, consciousness and negotiation framework of collective identity mobilization and condom use. Condom use among sex workers is motivated by each element of the boundaries, consciousness and negotiation model: condoms mark boundaries, enunciate the consciousness that sex with clients is legitimate labor, and help negotiate the identity of sex workers in interactions with clients.

  3. Behavior of pre-stress group anchors--Theory approach and model

    Institute of Scientific and Technical Information of China (English)

    HE Siming; WANG Chenghua; QIAO Jianping

    2003-01-01

    First of all the pre-stress group anchor ropes are resolved into two sub-systems: the stable rock stand lateral resistance load and inner bonding section stand lateral resistance load and pre-stress load. Then, discretization of every sub-system was carried on and it is assumed that different micro-sections possess uniform distribution side resistance. On the basis of Mindlin stress solution, stress overlay principle, modified layered-summation method as well as the load transfer method, we study the anchor group effect and present a theory model which calculates the anchor group effect and establishes the relevant iterate standard.

  4. Renormalization of an Abelian Tensor Group Field Theory: Solution at Leading Order

    CERN Document Server

    Lahoche, Vincent; Rivasseau, Vincent

    2015-01-01

    We study a just renormalizable tensorial group field theory of rank six with quartic melonic interactions and Abelian group U(1). We introduce the formalism of the intermediate field, which allows a precise characterization of the leading order Feynman graphs. We define the renormalization of the model, compute its (perturbative) renormalization group flow and write its expansion in terms of effective couplings. We then establish closed equations for the two point and four point functions at leading (melonic) order. Using the effective expansion and its uniform exponential bounds we prove that these equations admit a unique solution at small renormalized coupling.

  5. Application of Angular Momentum Theory to Constructing Basis Functions of Irreducible Representations of Icosahedral Group

    Institute of Scientific and Technical Information of China (English)

    LI An-yong

    2004-01-01

    A new method based on angular momentum theory was proposed to construct the basis functions of the irreducible representations(IRs) of point groups. The transformation coefficients, i. e. , coefficients S, are the components of the eigenvectors of some Hermitian matrices, and can be made as real numbers for all pure rotation point groups. The general formula for coefficient S was deduced, and applied to constructing the basis functions of single-valued irreducible representations of icosahedral group from the spherical harmonics with angular momentum j≤7.

  6. Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups

    CERN Document Server

    Varchenko, A N

    1995-01-01

    This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimens

  7. Representation theory of the infinite symmetric group and Pfaffian point processes

    CERN Document Server

    Strahov, Eugene

    2012-01-01

    We construct a family of Pfaffian point processes relevant for the harmonic analysis on the infinite symmetric group. The correlation functions of these processes are representable as Pfaffians with matrix valued kernels. We give explicit formulae for the matrix valued kernels in terms of the classical Whittaker functions. The obtained formulae have the same structure as that arising in the study of symplectic ensembles of Random Matrix Theory. The paper is an extended version of the author's talk at Fall 2010 MSRI Random Matrix Theory program.

  8. Enhancement of field renormalization in scalar theories via functional renormalization group

    OpenAIRE

    Zappalà, Dario

    2012-01-01

    The flow equations of the Functional Renormalization Group are applied to the O(N)-symmetric scalar theory, for N=1 and N=4, in four Euclidean dimensions, d=4, to determine the effective potential and the renormalization function of the field in the broken phase. In our numerical analysis, the infrared limit, corresponding to the vanishing of the running momentum scale in the equations, is approached to obtain the physical values of the parameters by extrapolation. In the N=4 theory a non-per...

  9. Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods

    Energy Technology Data Exchange (ETDEWEB)

    Gallavotti, G.

    1985-04-01

    A self-contained analysis is given of the simplest quantum fields from the renormalization group point of view: multiscale decomposition, general renormalization theory, resummations of renormalized series via equations of the Callan-Symanzik type, asymptotic freedom, and proof of ultraviolet stability for sine-Gordon fields in two dimensions and for other super-renormalizable scalar fields. Renormalization in four dimensions (Hepp's theorem and the De Calan--Rivasseau nexclamation bound) is presented and applications are made to the Coulomb gases in two dimensions and to the convergence of the planar graph expansions in four-dimensional field theories (t' Hooft--Rivasseau theorem).

  10. How quantum brain biology can rescue conscious free will

    Science.gov (United States)

    Hameroff, Stuart

    2012-01-01

    Conscious “free will” is problematic because (1) brain mechanisms causing consciousness are unknown, (2) measurable brain activity correlating with conscious perception apparently occurs too late for real-time conscious response, consciousness thus being considered “epiphenomenal illusion,” and (3) determinism, i.e., our actions and the world around us seem algorithmic and inevitable. The Penrose–Hameroff theory of “orchestrated objective reduction (Orch OR)” identifies discrete conscious moments with quantum computations in microtubules inside brain neurons, e.g., 40/s in concert with gamma synchrony EEG. Microtubules organize neuronal interiors and regulate synapses. In Orch OR, microtubule quantum computations occur in integration phases in dendrites and cell bodies of integrate-and-fire brain neurons connected and synchronized by gap junctions, allowing entanglement of microtubules among many neurons. Quantum computations in entangled microtubules terminate by Penrose “objective reduction (OR),” a proposal for quantum state reduction and conscious moments linked to fundamental spacetime geometry. Each OR reduction selects microtubule states which can trigger axonal firings, and control behavior. The quantum computations are “orchestrated” by synaptic inputs and memory (thus “Orch OR”). If correct, Orch OR can account for conscious causal agency, resolving problem 1. Regarding problem 2, Orch OR can cause temporal non-locality, sending quantum information backward in classical time, enabling conscious control of behavior. Three lines of evidence for brain backward time effects are presented. Regarding problem 3, Penrose OR (and Orch OR) invokes non-computable influences from information embedded in spacetime geometry, potentially avoiding algorithmic determinism. In summary, Orch OR can account for real-time conscious causal agency, avoiding the need for consciousness to be seen as epiphenomenal illusion. Orch OR can rescue conscious

  11. How quantum brain biology can rescue conscious free will

    Directory of Open Access Journals (Sweden)

    Stuart eHameroff

    2012-10-01

    Full Text Available Conscious ‘free will’ is problematic because 1 brain mechanisms causing consciousness are unknown, 2 measurable brain activity correlating with conscious perception apparently occurs too late for real-time conscious response, consciousness thus being considered ‘epiphenomenal illusion’, and 3 determinism, i.e. our actions and the world around us seem algorithmic and inevitable. The Penrose-Hameroff theory of ‘orchestrated objective reduction’ (‘Orch OR’ identifies discrete conscious moments with quantum computations in microtubules inside brain neurons, e.g. 40 per second in concert with gamma synchrony EEG. Microtubules organize neuronal interiors and regulate synapses. In Orch OR, microtubule quantum computations occur in integration phases in dendrites and cell bodies of integrate-and-fire brain neurons connected and synchronized by gap junctions, allowing entanglement of microtubules among many neurons. Quantum computations in entangled microtubules terminate by Penrose ‘objective reduction’ (‘OR’, a proposal for quantum state reduction and conscious moments linked to fundamental spacetime geometry. Each OR reduction selects microtubule states which can trigger axonal firings, and control behavior. The quantum computations are ‘orchestrated’ by synaptic inputs and memory (thus ‘Orch OR’. If correct, Orch OR can account for conscious causal agency, resolving problem 1. Regarding problem 2, Orch OR can cause temporal non-locality, sending quantum information backward in classical time, enabling conscious control of behavior. Three lines of evidence for brain backward time effects are presented. Regarding problem 3 Penrose OR (and Orch OR invoke non-computable influences from information embedded in spacetime geometry, potentially avoiding algorithmic determinism. In summary, Orch OR can account for real-time conscious causal agency, avoiding the need for consciousness to be seen as epiphenomenal illusion. Orch

  12. Logical Evaluation of Consciousness: For Incorporating Consciousness into Machine Architecture

    CERN Document Server

    Padhy, C N

    2010-01-01

    Machine Consciousness is the study of consciousness in a biological, philosophical, mathematical and physical perspective and designing a model that can fit into a programmable system architecture. Prime objective of the study is to make the system architecture behave consciously like a biological model does. Present work has developed a feasible definition of consciousness, that characterizes consciousness with four parameters i.e., parasitic, symbiotic, self referral and reproduction. Present work has also developed a biologically inspired consciousness architecture that has following layers: quantum layer, cellular layer, organ layer and behavioral layer and traced the characteristics of consciousness at each layer. Finally, the work has estimated physical and algorithmic architecture to devise a system that can behave consciously.

  13. Perception, Action, and Consciousness

    DEFF Research Database (Denmark)

    What is the relationship between perception and action, between an organism and its environment, in explaining consciousness? These are issues at the heart of philosophy of mind and the cognitive sciences. This book explores the relationship between perception and action from a variety of interdi......What is the relationship between perception and action, between an organism and its environment, in explaining consciousness? These are issues at the heart of philosophy of mind and the cognitive sciences. This book explores the relationship between perception and action from a variety...

  14. The birth of consciousness.

    Science.gov (United States)

    Lagercrantz, Hugo

    2009-10-01

    Newborn infants fulfil some criteria of being conscious i.e. being aware of the body, the self and the world. They are able to differentiate between self and nonself touch, express emotions and show signs of shared feelings. They process sensory impressions including pain at a cortical level. They remember rhythmic sounds and vowels which they have been exposed to during fetal life. The spontaneous resting activity discovered in the cortex of newborn infants may correspond to what William James called "the stream of consciousness".

  15. Enhancement of field renormalization in scalar theories via functional renormalization group

    CERN Document Server

    Zappalà, Dario

    2012-01-01

    The flow equations of the Functional Renormalization Group are applied to the O(N)-symmetric scalar theory, for N=1 and N=4, to determine the effective potential and the renormalization function of the field in the broken phase. The flow equations of these quantities are derived from a reduction of the full flow of the effective action onto a set of equations for the n-point vertices of the theory. In our numerical analysis, the infrared limit, corresponding to the vanishing of the running momentum scale in the equations, is approached to obtain the physical values of the parameters by extrapolation. In the N=4 theory a non-perturbatively large value of the physical renormalization of the longitudinal component of the field is observed. The dependence of the field renormalization on the UV cut-off and on the bare coupling is also investigated.

  16. [Life project of a group of adolescents based on the theory of Paulo Freire].

    Science.gov (United States)

    Cardoso, Cristina Peres; Cocco, Maria Inês Monteiro

    2003-01-01

    This study aims to get to know the life project of a group of adolescents at a Basic Health Unit in Marilia-SP. A qualitative research was carried out through semi-structured interviews and group meetings, using the educational group technique with participant observation from the focus of Paulo Freire's theory. Throughout group discussions, three questions arose: what is being an adolescent; what is being healthy and what is the adolescent's life project. These themes were analyzed from the focus of Minayo. The analysis indicated that the adolescents have a life project, in spite of the characteristic difficulties of the socioeconomic conditions they belong to, a fact they perceive. The practice of Freire's ideals enhanced dialogue between the researcher and the group, pointing out that this is one way for a true critical reflection of the identified problems, providing adolescents with a means for making others aware and fighting for their life project.

  17. Coulomb branches for rank 2 gauge groups in 3d N=4 gauge theories

    CERN Document Server

    Hanany, Amihay

    2016-01-01

    The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.

  18. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Sperling, Marcus [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany)

    2016-08-02

    The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.

  19. Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data

    Energy Technology Data Exchange (ETDEWEB)

    Vivas-Reyes, R.; Aria, A. [Universidad de Cartagena, Cartagena (Colombia). Facultad de Ciencias Naturales y Exactas. Grupo de Quimica Cuantica y Computacional]. E-mail: rvivasr@unicartagena.edu.co

    2008-07-01

    Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetra coordinated Sn compounds of the CH{sub 3}SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental {sup 119}Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH{sub 3}, H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-3 1 1 + + G basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms. (author)

  20. Embodied mind and phenomenal consciousness

    Directory of Open Access Journals (Sweden)

    Maria VENIERI

    2015-06-01

    Full Text Available In recent years, a central debate in the philosophy of mind and cognitive science concerns the role of the body in perception and cognition. For many contemporary philosophers, not only cognition but also perception is connected mainly with the brain, where the processing of input from the senses takes place; whereas for the proponents of ‘embodied cognition’ other aspects of the body beyond the brain, including the environment, play a constitutive role in cognitive processes. In terms of perception, a new theory has emerged which stresses percep‑ tion’s active character and claims that the embodied subject and the environment, with which it interacts, form a dynamic system. Supporters of ‘enactive perception’ such as Susan Hurley and Alva Noë maintain that the physical substrate or the supervenience basis of perceptual experience and phenomenal consciousness may include besides the brain and the nervous system other bodily and environmental features. Yet, it will be argued in this paper that the interaction between the subject and the environment forms a system of causal relations, so we can theoretically interfere in the causal chains and create hallucinations, which cannot be distinguished from veridical perception, or a virtual reality as in the film Matrix (1999. This kind of argument and its related thought experiments aim to stress the primacy of the brain in determining phenomenal states, and show that the body and certain interactions with the environment have a causal, but not a constitutive or essential role, in forming phenomenal consciousness.

  1. The character of topological groups: Shelah's pcf theory and Pontryagin-van Kampen duality

    CERN Document Server

    Chis, Cristina; Hernandez, Salvador; Tsaban, Boaz

    2010-01-01

    The minimal cardinality of a base at the identity in a topological group $G$, denoted $\\chi(G)$, is one of the major invariants of $G$. A celebrated 1936 result of Birkhoff and (independently) Kakutani asserts that $G$ is metrizable if, and only if, $\\chi(G)$ is countable. We consider the case where $G$ is the \\emph{dual group} of a metrizable group. Using Pontryagin-van Kampen duality and pcf theory, we show that also in this case, $\\chi(G)$ is well behaved, and that it is determined by the density and the local density of the base, metrizable group. We apply our result to compute the character of free abelian topological groups, extending a number of results of Nickolas and Tkachenko. This phenomenon is also reformulated in an inner language, not referring to duality theory. Here, the compact subsets of quotients by compact subgroups of $G$ determine its character. For $G$ dual to a metrizable group, $\\chi(G)$ is especially well behaved in the absence of large cardinals. On the other hand, when large cardin...

  2. Using Group Theory to Obtain Eigenvalues of Nonsymmetric Systems by Symmetry Averaging

    Directory of Open Access Journals (Sweden)

    Marion L. Ellzey

    2009-08-01

    Full Text Available If the Hamiltonian in the time independent Schrödinger equation, HΨ = EΨ, is invariant under a group of symmetry transformations, the theory of group representations can help obtain the eigenvalues and eigenvectors of H. A finite group that is not a symmetry group of H is nevertheless a symmetry group of an operator Hsym projected from H by the process of symmetry averaging. In this case H = Hsym + HR where HR is the nonsymmetric remainder. Depending on the nature of the remainder, the solutions for the full operator may be obtained by perturbation theory. It is shown here that when H is represented as a matrix [H] over a basis symmetry adapted to the group, the reduced matrix elements of [Hsym] are simple averages of certain elements of [H], providing a substantial enhancement in computational efficiency. A series of examples are given for the smallest molecular graphs. The first is a two vertex graph corresponding to a heteronuclear diatomic molecule. The symmetrized component then corresponds to a homonuclear system. A three vertex system is symmetry averaged in the first case to Cs and in the second case to the nonabelian C3v. These examples illustrate key aspects of the symmetry-averaging process.

  3. Adaptive skeletal muscle action requires anticipation and "conscious broadcasting".

    Science.gov (United States)

    Poehlman, T Andrew; Jantz, Tiffany K; Morsella, Ezequiel

    2012-01-01

    Historically, the conscious and anticipatory processes involved in voluntary action have been associated with the loftiest heights of nervous function. Concepts like mental time travel, "theory of mind," and the formation of "the self" have been at the center of many attempts to determine the purpose of consciousness. Eventually, more reductionistic accounts of consciousness emerged, proposing rather that conscious states play a much more basic role in nervous function. Though the widely held integration consensus proposes that conscious states integrate information-processing structures and events that would otherwise be independent, Supramodular Interaction Theory (SIT) argues that conscious states are necessary for the integration of only certain kinds of information. As revealed in this selective review, this integration is related to what is casually referred to as "voluntary" action, which is intimately related to the skeletal muscle output system. Through a peculiar form of broadcasting, conscious integration often controls and guides action via "ideomotor" mechanisms, where anticipatory processes play a central role. Our selective review covers evidence (including findings from anesthesia research) for the integration consensus, SIT, and ideomotor theory.

  4. Doubled Lattice Chern-Simons-Yang-Mills Theories with Discrete Gauge Group

    CERN Document Server

    Caspar, Stephan; Olesen, Therkel Z; Vlasii, Nadiia D; Wiese, Uwe-Jens

    2016-01-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group $G$ in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm pha...

  5. Heightened Consciousness, Cultural Revolution, and Curriculum Theory. The Proceedings of the Rochester Conference (Rochester, New York, May 3-5, 1973).

    Science.gov (United States)

    Pinar, William, Ed.

    This book brings together the latest thinking of some of the scholars who are at work reconceptualizing the meaning of the field of curriculum. William Pinar explores a phenomenological approach to the main theme of the book, drawing heavily on psychoanalytic theory. Robert Starratt discusses futurological work in the context of curriculum theory…

  6. The Goal of the IAU/IAG Joint Working Group on the Theory of Earth Rotation

    Science.gov (United States)

    Ferrandiz, J. M.; Gross, R. S.

    2013-01-01

    In 2012 the International Association of Geodesy (IAG) and the International Astronomical Union (IAU) initiated a process to establish a Joint Working Group (JWG) on theory of Earth rotation with the purpose of promoting the development of improved theories of the Earth rotation which reach the accuracy required to meet the needs of the near future as recommended by, e.g. GGOS, the Global Geodetic Observing System of the IAG. The JWG was approved by both organizations in April 2013 with the chairs being the two authors of this paper. Its structure comprises three Sub Working Groups (SWGs) addressing Precession/Nutation, Polar Motion and UT1, the Numerical Solutions and Validation, respectively. The SWGs should work in parallel for the sake of efficiency, but should keep consistency as an overall goal. This paper offers a view of the objectives and scope of the JWG and reports about its initial activities and plans.

  7. The Goal of the IAU/IAG Joint Working Group on the Theory of Earth Rotation

    Science.gov (United States)

    Ferrandiz, J. M.; Gross, R. S.

    2013-01-01

    In 2012 the International Association of Geodesy (IAG) and the International Astronomical Union (IAU) initiated a process to establish a Joint Working Group (JWG) on theory of Earth rotation with the purpose of promoting the development of improved theories of the Earth rotation which reach the accuracy required to meet the needs of the near future as recommended by, e.g. GGOS, the Global Geodetic Observing System of the IAG. The JWG was approved by both organizations in April 2013 with the chairs being the two authors of this paper. Its structure comprises three Sub Working Groups (SWGs) addressing Precession/Nutation, Polar Motion and UT1, the Numerical Solutions and Validation, respectively. The SWGs should work in parallel for the sake of efficiency, but should keep consistency as an overall goal. This paper offers a view of the objectives and scope of the JWG and reports about its initial activities and plans.

  8. [The effect of public self-consciousness on forced laughter].

    Science.gov (United States)

    Oshimi, Teruo

    2002-08-01

    The purpose of this study was to investigate the effect of public self-consciousness on forced laughter. Participants (N = 409) were asked to imagine a group of either friends or acquaintances, and then to indicate how often he or she exhibited forced laughter toward the group members. They also completed Self-Consciousness Scale (Fenigstein, Scheier, & Buss, 1975). Results indicated that persons with high public self-consciousness reported more frequent expressions of all types of forced laughter--expression control, intimacy maintenance, action control, and affect manipulation--than those who were low, regardless of interpersonal intimacy level. Besides public self-consciousness, both gender and intimate feeling toward group members influenced frequency of forced laughter. Implications for the nature of public self-consciousness and forced laughter were discussed.

  9. Renormalization group flows for the second Z{sub N} parafermionic field theory for N even

    Energy Technology Data Exchange (ETDEWEB)

    Estienne, B., E-mail: b.d.a.estienne@uva.n [LPTHE, CNRS, UPMC Universite Paris 6 (France); Instituut voor Theoretische Fysica, Universiteit van Amsterdam (Netherlands)

    2010-07-26

    Extending the results obtained in the case N odd, the effect of slightly relevant perturbations of the second parafermionic field theory with the symmetry Z{sub N} are studied for N even. The renormalization group equations, and their infra red fixed points, exhibit the same structure in both cases. In addition to the standard flow from the pth to the (p-2)th model, another fixed point corresponding to the (p-1)th model is found.

  10. Renormalization group flows for the second $\\mathbb{Z}_{N}$ parafermionic field theory for $N$ even

    CERN Document Server

    Estienne, Benoit

    2008-01-01

    Extending the results obtained in the case $N$ odd, the effect of slightly relevant perturbations of the second parafermionic field theory with the symmetry $\\mathbb{Z}_{N}$, for $N$ even, are studied. The renormalization group equations, and their infra red fixed points exhibit the same structure in both cases. In addition to the standard flow from the $p$-th to the $(p-2)$-th model, another fixed point corresponding to the $(p-1)$-th model is found.

  11. Group field theory as the 2nd quantization of Loop Quantum Gravity

    OpenAIRE

    Oriti, Daniele

    2013-01-01

    We construct a 2nd quantized reformulation of canonical Loop Quantum Gravity at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the Group Field Theory formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specifi...

  12. Reply to comment on "Lost in translation: topological singularities in group field theory"

    CERN Document Server

    Gurau, Razvan

    2011-01-01

    In [1, arXiv:1102.1844] the author disputes the conclusion of our paper [2, arXiv:1006.0714]. He claims that the Feynman graphs of three dimensional group field theory always represent pseudo manifolds. However, [1] uses a different definition for pseudo manifolds. also, in order to apply the new definition, [1] proposes a construction which cannot be implemented in a path integral by Feynman rules. These two points invalidate the claims of [1].

  13. Application of renormalization group theory to the large-eddy simulation of transitional boundary layers

    Science.gov (United States)

    Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.

    1990-01-01

    An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.

  14. Ethical consciousness in auditing : a comparison of students and employees

    OpenAIRE

    Rong, Stine Mari Hilmarsen

    2011-01-01

    The purpose of this thesis has been to examine the difference in the level of consciousness towards ethics in auditing between students and employees, and further examine if the level of ethical consciousness comply with auditing standards. To examine the level of the different groups, a survey was conducted and distributed. The survey ...

  15. How rich is consciousness? The partial awareness hypothesis.

    Science.gov (United States)

    Kouider, Sid; de Gardelle, Vincent; Sackur, Jérôme; Dupoux, Emmanuel

    2010-07-01

    Current theories of consciousness posit a dissociation between 'phenomenal' consciousness (rich) and 'access' consciousness (limited). Here, we argue that the empirical evidence for phenomenal consciousness without access is equivocal, resulting either from a confusion between phenomenal and unconscious contents, or from an impression of phenomenally rich experiences arising from illusory contents. We propose a refined account of access that relies on a hierarchy of representational levels and on the notion of partial awareness, whereby lower and higher levels are accessed independently. Reframing of the issue of dissociable forms of consciousness into dissociable levels of access provides a more parsimonious account of the existing evidence. In addition, the rich phenomenology illusion can be studied and described in terms of testable cognitive mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Activity Theory.

    Science.gov (United States)

    Koschmann, Timothy; Roschelle, Jeremy; Nardi, Bonnie A.

    1998-01-01

    Includes three articles that discuss activity theory, based on "Context and Consciousness." Topics include human-computer interaction; computer interfaces; hierarchical structuring; mediation; contradictions and development; failure analysis; and designing educational technology. (LRW)

  17. Development of the applied mathematics originating from the group theory of physical and mathematical problems

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, J.; Beyer, W.; Louck, J.; Metropolis, N.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Group theoretical methods are a powerful tool both in their applications to mathematics and to physics. The broad goal of this project was to use such methods to develop the implications of group (symmetry) structures underlying models of physical systems, as well as to broaden the understanding of simple models of chaotic systems. The main thrust was to develop further the complex mathematics that enters into many-particle quantum systems with special emphasis on the new directions in applied mathematics that have emerged and continue to surface in these studies. In this area, significant advances in understanding the role of SU(2) 3nj-coefficients in SU(3) theory have been made and in using combinatoric techniques in the study of generalized Schur functions, discovered during this project. In the context of chaos, the study of maps of the interval and the associated theory of words has led to significant discoveries in Galois group theory, to the classification of fixed points, and to the solution of a problem in the classification of DNA sequences.

  18. Contributions of object relations theory and self psychology to relational psychology and group psychotherapy.

    Science.gov (United States)

    Schermer, V L

    2000-04-01

    Object relations theory and self psychology are psychoanalytic perspectives that are especially concerned with interpersonal relations and their mental representations. Object relations theory began as an intrapsychic "singleton" psychology with the work of Freud and Melanie Klein. It subsequently evolved into a multi-person psychology with the work of Bion on groups, as well as the clinical and theoretical contributions of Winnicott and Fairbairn. Kohutian self psychology, which emerged later, has been interested in the relations between the self and significant others as mirroring and idealizing "self-objects." Stolorow's "inter-subjective perspective" emerged from self psychology as a full-fledged multi-person point of view. This article considers the significance of contemporary object relations theory and self psychology as relational, multi-person perspectives in terms of their application to group psychotherapy, focusing upon the group-as-a-whole, projective identification, transitional space and object, and self/self-object relations as particularly useful constructs. A clinical vignette is provided.

  19. Chronic disorders of consciousness.

    Science.gov (United States)

    Xie, Qiuyou; Ni, Xiaoxiao; Yu, Ronghao; Li, Yuanqing; Huang, Ruiwang

    2017-08-01

    Over the last 20 years, studies have provided greater insight into disorders of consciousness (DOC), also known as altered state of consciousness. Increased brain residual functions have been identified in patients with DOC due to the successful application of novel next-generation imaging technologies. Many unconscious patients have now been confirmed to retain considerable cognitive functions. It is hoped that greater insight regarding the psychological state of patients may be achieved through the use of functional magnetic resonance imaging and brain-computer interfaces. However, issues surrounding the research and treatment of DOC remain problematic. These include differing opinions on the definition of consciousness, difficulties in diagnosis, assessment, prognosis and/or treatment, and newly emerging ethical, legal and social issues. To overcome these, appropriate care must be offered to patients with DOC by clinicians and families, as DOC patients may now be considered to live in more than just a vegetative state. The present article reviews the controversy surrounding the definition of consciousness and the reliability of novel technologies, prognostic prediction, communication with DOC patients and treatment methods. The ethical and social issues surrounding the treatment of DOC and future perspectives are also considered.

  20. Consciousness and the Brainstem.

    Science.gov (United States)

    Parvizi, Josef; Damasio, Antonio

    2001-01-01

    Summarizes a theoretical framework and set of hypotheses aimed at accounting for consciousness in neurobiological terms. Discusses the functional neuroanatomy of nuclei in the brainstem reticular formation. Notes that the views presented are compatible with the idea that the reticular formation modulates the electrophysiological activity of the…

  1. The mystery of consciousness

    CERN Document Server

    Searle, John R

    1997-01-01

    It has long been one of the most fundamental problems of philosophy, and it is now, John Searle writes, "the most important problem in the biological sciences": What is consciousness? Is my inner awareness of myself something separate from my body? In what began as a series of essays in The New York Review of Books, John Searle evaluates the positions on consciousness of such well-known scientists and philosophers as Francis Crick, Gerald Edelman, Roger Penrose, Daniel Dennett, David Chalmers, and Israel Rosenfield. He challenges claims that the mind works like a computer, and that brain functions can be reproduced by computer programs. With a sharp eye for confusion and contradiction, he points out which avenues of current research are most likely to come up with a biological examination of how conscious states are caused by the brain. Only when we understand how the brain works will we solve the mystery of consciousness, and only then will we begin to understand issues ranging from artificial intelligence...

  2. Study on vibrational modes by group theory and infrared spectra by D FT for calcite crystal

    Institute of Scientific and Technical Information of China (English)

    Danhua Lou; Fengjiu Sun; Lijuan Li

    2007-01-01

    The factor group symmetry analysis (FSA) method and position symmetry analysis (PSA) method are used to analyze the vibrational modes of calcite (CaCO3) crystal, respectively. With the activated results of infrared and Raman spectra presented, strong points of each method are concluded. The infrared spectra are studied by using dynamics calculations based on density-functional theory (DFT) with the supercell model of calcite crystal. The frequencies of 27 normal modes are achieved, which are consistent with that by the group symmetry analysis very well, and fit with the experimental results better than the lattice dynamical methods.

  3. Determining of a role of the teacher of physical training in making up of consciousness of students of special medical groups of higher educational establishments.

    Directory of Open Access Journals (Sweden)

    Korjagin V.M.

    2010-08-01

    Full Text Available The state of health of students is construed. Students of 1 rate participated in experiment. The functional state of health of students is defined. Effect of the teacher on the relation of students of special medical groups to state of the health is defined. Possibilities of improving of health with the help of exercises on physical training are exhibited. Main routes of methodological correction of operation of the teacher with students are defined. The primal problem of the teacher is a making up at students of the realized relation of necessity of improving and conservation of health, education of crop of a healthy way of life.

  4. Psychotropic medication from an object relations theory perspective: an analysis of vignettes from group psychotherapy.

    Science.gov (United States)

    Fain, Dana Shindel; Sharon, Amos; Moscovici, Lucian; Schreiber, Shaul

    2008-07-01

    In this article we explore the content and dynamics of patients' verbalizations within a "living with medications" group. Patients' perceptions of their psychotropic medications are interpreted and classified within the framework of object relations theory. One's perception of the role of medication in one's life can serve as a gateway to one's inner world and the way that he or she perceives authority figures, peers, and oneself. We suggest that working through patients' relationships with their medications can help them to achieve better integration of internal object relations. Discussing patients' views about medications should therefore be seen as an important part of psychotherapy with many individuals. Such a discussion may enhance and improve efficacy of both psychotherapy and pharmacotherapy. It is of particular importance in group therapy, within milieu environments and with individuals reluctant to explicitly discuss interpersonal matters. Vignettes from the group sessions illustrate the way in which discussing medication advances group process.

  5. Suicide prevention by online support groups: an action theory-based model of emotional first aid.

    Science.gov (United States)

    Gilat, Itzhak; Shahar, Golan

    2009-01-01

    In the last two decades, online support groups have become a valuable source of help for individuals in suicidal crisis. Their attractiveness is attributed to features that enhance help-seeking and self-disclosure such as availability, anonymity, and use of written communication. However, online support groups also suffer from limitations and potential risks as agents of suicide prevention. The Israeli Association for Emotional First Aid (ERAN) has developed a practical model that seeks to maximize the benefits and minimize the risks of online suicide prevention. The model applies the Action Theory concepts whereby individuals shape their own environment. The present paper presents the model, which is based on an online support group combined with personal chat and a telephonic help line. The online support group is moderated by paraprofessionals who function as both process regulators and support providers. The principles and practice of the model are described, the theoretical rationale is presented, and directions for future research are suggested.

  6. Ultraproducts of Tannakian Categories and Generic Representation Theory of Unipotent Algebraic Groups

    CERN Document Server

    Crumley, Michael

    2010-01-01

    The principle of tannakian duality states that any neutral tannakian category is tensorially equivalent to the category Rep_k G of finite dimensional representations of some affine group scheme G and field k, and conversely. Originally motivated by an attempt to find a first-order explanation for generic cohomology of algebraic groups, we study neutral tannakian categories as abstract first-order structures and, in particular, ultraproducts of them. One of the main theorems of this dissertation is that certain naturally definable subcategories of these ultraproducts are themselves neutral tannakian categories, hence tensorially equivalent to Comod_A for some Hopf algebra A over a field k. We are able to give a fairly tidy description of the representing Hopf algebras of these categories, and explicitly compute them in several examples. For the second half of this dissertation we turn our attention to the representation theories of certain unipotent algebraic groups, namely the additive group G_a and the Heise...

  7. Self-Consciousness and Reactance.

    Science.gov (United States)

    Carver, Charles S.; Scheier, Michael F.

    1981-01-01

    Two studies examined the effects of dispositional self-consciousness on reactance. Men who were high in private self-consciousness displayed greater reactance responses to a coercive communication attempt. Women high in private self-consciousness exhibited greater reactance responses to a self-imposed threat to their freedom of choice. (Author)

  8. Hybrid Multicriteria Group Decision Making Method for Information System Project Selection Based on Intuitionistic Fuzzy Theory

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2013-01-01

    Full Text Available Information system (IS project selection is of critical importance to every organization in dynamic competing environment. The aim of this paper is to develop a hybrid multicriteria group decision making approach based on intuitionistic fuzzy theory for IS project selection. The decision makers’ assessment information can be expressed in the form of real numbers, interval-valued numbers, linguistic variables, and intuitionistic fuzzy numbers (IFNs. All these evaluation pieces of information can be transformed to the form of IFNs. Intuitionistic fuzzy weighted averaging (IFWA operator is utilized to aggregate individual opinions of decision makers into a group opinion. Intuitionistic fuzzy entropy is used to obtain the entropy weights of the criteria. TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate IS project in group decision making environment. Finally, a numerical example for information system projects selection is given to illustrate application of hybrid multi-criteria group decision making (MCGDM method based on intuitionistic fuzzy theory and TOPSIS method.

  9. Loop Variables and Gauge Invariant Exact Renormalization Group Equations for (Open) String Theory

    CERN Document Server

    Sathiapalan, B

    2012-01-01

    An exact renormalization group equation is written down for the world sheet theory describing the bosonic open string in general backgrounds. Loop variable techniques are used to make the equation gauge invariant. This is worked out explicitly up to level 3. The equation is quadratic in the fields and can be viewed as a proposal for a string field theory equation. As in the earlier loop variable approach, the theory has one extra space dimension and mass is obtained by dimensional reduction. Being based on the sigma model RG, it is background independent. It is intriguing that in contrast to BRST string field theory, the gauge transformations are not modified by the interactions up to the level calculated. The interactions can be written in terms of gauge invariant field strengths for the massive higher spin fields and the non zero mass is essential for this. This is reminiscent of Abelian Born-Infeld action (along with derivative corrections) for the massless vector field, which is also written in terms of t...

  10. Broadside Ballads: Social Consciousness in Song

    Science.gov (United States)

    Junda, Mary Ellen

    2013-01-01

    This article highlights a group ballad project which is a part of student experiences in Sing and Shout!, a course that integrates academic study with singing and song writing to develop a deeper understanding of problems in society. Students explore the intricacies of song composition and social consciousness drawn from past events that reflect…

  11. A Boolean Map Theory of Visual Attention

    Science.gov (United States)

    Huang, Liqiang; Pashler, Harold

    2007-01-01

    A theory is presented that attempts to answer two questions. What visual contents can an observer consciously access at one moment? Answer: only one feature value (e.g., green) per dimension, but those feature values can be associated (as a group) with multiple spatially precise locations (comprising a single labeled Boolean map). How can an…

  12. PyR@TE. Renormalization group equations for general gauge theories

    Science.gov (United States)

    Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.

    2014-03-01

    Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer

  13. Are There Levels of Consciousness?

    Science.gov (United States)

    Bayne, Tim; Hohwy, Jakob; Owen, Adrian M

    2016-06-01

    The notion of a level of consciousness is a key construct in the science of consciousness. Not only is the term employed to describe the global states of consciousness that are associated with post-comatose disorders, epileptic absence seizures, anaesthesia, and sleep, it plays an increasingly influential role in theoretical and methodological contexts. However, it is far from clear what precisely a level of consciousness is supposed to be. This paper argues that the levels-based framework for conceptualizing global states of consciousness is untenable and develops in its place a multidimensional account of global states. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Recognition of an Independent Self-Consciousness

    DEFF Research Database (Denmark)

    Bjerre, Henrik Jøker

    2009-01-01

    Hegel's concept in the Phenomenology of the Spirit of the "recognition of an independent self-consciousness" is investigated as a point of separation for contemporary philosophy of recognition. I claim that multiculturalism and the theories of recognition (such as Axel Honneth's) based on empirical...... psychology neglect or deny crucial metaphysical aspects of the Hegelian legacy. Instead, I seek to point at an additional, "spiritual", level of recognition, based on the concept of the subject in Lacanian psychoanalysis....

  15. Recognition of an Independent Self-Consciousness

    DEFF Research Database (Denmark)

    Bjerre, Henrik Jøker

    2009-01-01

    Hegel's concept in the Phenomenology of the Spirit of the "recognition of an independent self-consciousness" is investigated as a point of separation for contemporary philosophy of recognition. I claim that multiculturalism and the theories of recognition (such as Axel Honneth's) based on empiric...... psychology neglect or deny crucial metaphysical aspects of the Hegelian legacy. Instead, I seek to point at an additional, "spiritual", level of recognition, based on the concept of the subject in Lacanian psychoanalysis....

  16. Representations of cohomological Hall algebras and Donaldson-Thomas theory with classical structure groups

    CERN Document Server

    Young, Matthew B

    2016-01-01

    We introduce a new class of representations of the cohomological Hall algebras of Kontsevich and Soibelman which we call cohomological Hall modules, or CoHM for short. These representations are constructed from self-dual representations of a quiver with contravariant involution $\\sigma$ and provide a mathematical model for the space of BPS states in orientifold string theory. We use the CoHM to define a generalization of cohomological Donaldson-Thomas theory of quivers which allows the quiver representations to have orthogonal and symplectic structure groups. The associated invariants are called orientifold Donaldson-Thomas invariants. We prove the integrality conjecture for orientifold Donaldson-Thomas invariants of $\\sigma$-symmetric quivers. We also formulate precise conjectures regarding the geometric meaning of these invariants and the freeness of the CoHM of a $\\sigma$-symmetric quiver. We prove the freeness conjecture for disjoint union quivers, loop quivers and the affine Dynkin quiver of type $\\widet...

  17. Quantum Electrodynamical Density-matrix Functional Theory and Group-theoretical Consideration of its Solution

    CERN Document Server

    Ohsaku, T; Yamaki, D; Yamaguchi, K

    2002-01-01

    For studying the group theoretical classification of the solutions of the density functional theory in relativistic framework, we propose quantum electrodynamical density-matrix functional theory (QED-DMFT). QED-DMFT gives the energy as a functional of a local one-body $4\\times4$ matrix $Q(x)\\equiv -$, where $\\psi$ and $\\bar{\\psi}$ are 4-component Dirac field and its Dirac conjugate, respectively. We examine some characters of QED-DMFT. After these preparations, by using Q(x), we classify the solutions of QED-DMFT under O(3) rotation, time reversal and spatial inversion. The behavior of Q(x) under nonrelativistic and ultrarelativistic limits are also presented. Finally, we give plans for several extensions and applications of QED-DMFT.

  18. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group.

    Science.gov (United States)

    Freitag, Leon; Knecht, Stefan; Angeli, Celestino; Reiher, Markus

    2017-02-14

    We present a second-order N-electron valence state perturbation theory (NEVPT2) based on a density matrix renormalization group (DMRG) reference wave function that exploits a Cholesky decomposition of the two-electron repulsion integrals (CD-DMRG-NEVPT2). With a parameter-free multireference perturbation theory approach at hand, the latter allows us to efficiently describe static and dynamic correlation in large molecular systems. We demonstrate the applicability of CD-DMRG-NEVPT2 for spin-state energetics of spin-crossover complexes involving calculations with more than 1000 atomic basis functions. We first assess, in a study of a heme model, the accuracy of the strongly and partially contracted variant of CD-DMRG-NEVPT2 before embarking on resolving a controversy about the spin ground state of a cobalt tropocoronand complex.

  19. Unexpected wave group behaviour challenges use of Stokes theory for ocean waves

    CERN Document Server

    Banner, Michael; Fedele, Francesco; Allis, Michael; Benetazzo, Alvise; Dias, Frederic; Peirson, William

    2013-01-01

    A key result of Stokes' water wave theory is that deep-water gravity waves of larger amplitude travel faster than those of lower amplitude at fixed wavelength. Recent observations, however, suggest that maximally-steep breaking wave crests actually travel significantly slower than expected, calling into question the predictions of Stokes' theory and its impact on diverse areas of ocean-wave physics ranging from rogue wave generation to the role of wave breaking in climate modelling. Here we report our discovery of a generic wave-crest slowdown mechanism that occurs within unsteady, propagating wave groups, which modifies the phasing of individual wave crests. Our numerical and observational studies show that just prior to reaching its maximum height, each wave crest slows down significantly. It either breaks at this reduced speed, or accelerates forward unbroken. Implications for oceanic and other natural wave systems are described.

  20. Investigating the critical properties of beyond-QCD theories using Monte Carlo Renormalization Group matching

    CERN Document Server

    Hasenfratz, Anna

    2009-01-01

    Monte Carlo Renormalization Group (MCRG) methods were designed to study the non-perturbative phase structure and critical behavior of statistical systems and quantum field theories. I adopt the 2-lattice matching method used extensively in the 1980's and show how it can be used to predict the existence of non-perturbative fixed points and their related critical exponents in many flavor SU(3) gauge theories. This work serves to test the method and I study relatively well understood systems: the $N_f=0$, 4 and 16 flavor models. The pure gauge and $N_f=4$ systems are confining and chirally broken and the MCRG method can predict their bare step scaling functions. Results for the $N_f=16$ model indicate the existence of an infrared fixed point with nearly marginal gauge coupling. I present preliminary results for the scaling dimension of the mass at this new fixed point.