WorldWideScience

Sample records for group composite materials

  1. Functional Group Compositions of Carbonaceous Materials of Hayabusa-Returned Samples

    Science.gov (United States)

    Yabuta, H.; Uesugi, M.; Naraoka, H.; Ito, M.; Kilcoyne, D.; Sandford, S. A.; Kitajima, F.; Mita, H.; Takano, Y.; Yada, T.; Karouji, Y.; Ishibashi, Y.; Okada, T.; Abe, M.

    2014-09-01

    We have analyzed the functional group compositions of the carbonaceous materials of Hayabusa-returned samples by STXM-XANES, in order to identify whether the materials are terrestrial or extraterrestrial.

  2. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  3. Composite material

    Science.gov (United States)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  4. Stiffness matrix determination of composite materials using lamb wave group velocity measurements

    Science.gov (United States)

    Putkis, O.; Croxford, A. J.

    2013-04-01

    The use of Lamb waves in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) is gaining popularity due to their ability to travel long distances without significant attenuation, therefore offering large area inspections with a small number of sensors. The design of a Lamb-wave-based NDE/SHM system for composite materials is more complicated than for metallic materials due to the directional dependence of Lamb wave propagation characteristics such as dispersion and group velocity. Propagation parameters can be theoretically predicted from known material properties, specifically the stiffness matrix and density. However, in practice it is difficult to obtain the stiffness matrix of a particular material or structure with high accuracy, hence introducing errors in theoretical predictions and inaccuracies in the resulting propagation parameters. Measured Lamb wave phase velocities can be used to infer the stiffness matrix, but the measurements are limited to the principal directions due to the steering effect (different propagation directions of phase and corresponding group velocities). This paper proposes determination of the stiffness matrix from the measured group velocities, which can be unambiguously measured in any direction. A highly anisotropic carbon-fibre-reinforced polymer plate is chosen for the study. The influence of different stiffness matrix elements on the directional group velocity profile is investigated. Thermodynamic Simulated Annealing (TSA) is used as a tool for inverse, multi variable inference of the stiffness matrix. A good estimation is achieved for particular matrix elements.

  5. Multifunctional materials and composites

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  6. The true structural periodicities and superspace group descriptions of the prototypical incommensurate composite materials: Alkane/urea inclusion compounds

    Science.gov (United States)

    Couzi, Michel; Guillaume, François; Harris, Kenneth D. M.; Palmer, Benjamin A.; Christensen, Kirsten; Collins, Stephen P.

    2016-12-01

    The prototypical family of incommensurate composite materials are the n-alkane/urea inclusion compounds, in which n-alkane guest molecules are arranged in a periodic manner along one-dimensional tunnels in a urea host structure, with an incommensurate relationship between the periodicities of the host and guest substructures along the tunnel. We develop interpretations of the structural periodicities, superspace group descriptions and symmetry properties of the low-temperature phases of n-alkane/urea inclusion compounds, based in part on a high-resolution synchrotron single-crystal X-ray diffraction study of n-nonadecane/urea. Specifically, we prove that, on passing from phase I to phase II, the C-centering of the orthohexagonal unit cell is lost for both the host and guest substructures, and that the symmetries of all phases I, II and III are described completely by (3 + 1)-dimensional superspace groups.

  7. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  8. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  9. Multifunctional Composite Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  10. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  11. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  13. Biotechnology and Composite Materials

    Science.gov (United States)

    1993-04-01

    Biotechnology, in general terms, is the science and engineering of using living organisms for making useful products such as pharmaceuticals, foods , fuels...chemicals, materials or in waste treatment processes and clinical and chemical analyses. It encompases the prosaic form of using yeast cells to make...ductile component of the composite. Table 1. Mechanical Properties of Ceramics, Cermets, and Abalone Shell •if KIC Hardness MPa MPam 1n 2 /2 Mohs KIlN

  14. Advanced composite materials and processes

    Science.gov (United States)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  15. Failure Modes in Composite Materials.

    Science.gov (United States)

    1987-05-19

    Derek, An Introduction to Composite Materials , New York: Cambridge University Press, 1981. 12. Jamison, R. D., Mechanical Engineering Department...1978. 19. Tsai, Stephen W., Introduction to Composite Materials , Lancaster, Pennsylvania: Technomic Publishing Company, Inc., 1980. 4,’ * .20. Vernon

  16. Platinum Group Metals New Material

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; ZHANG Jiankang; WANG Saibei; HU Jieqiong; LIU Manmen; CHEN Yongtai; ZHANG Jiming; YANG Youcai; YANG Yunfeng; ZHANG Guoquan

    2012-01-01

    Platinum group metals (PGM) include six elements,namely Pt,Pd,Rh,Ir,Os and Ru.PGM and their alloys are the important fundamental materials for modern industry and national defense construction,they have special physical and chemical properties,widely used in metallurgy,chemical,electric,electronic,information,energy,environmental protection,aviation,aerospace,navigation and other high technology industry.Platinum group metals and their alloys,which have good plasticity and processability,can be processed to electrical contact materials,resistance materials,solder,electronic paste,temperature-measurement materials,elastic materials,magnetic materials and high temperature structural materials.

  17. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  18. Decreased group velocity in compositionally graded films.

    Science.gov (United States)

    Gao, Lei

    2006-03-01

    A theoretical formalism is presented that describes the group velocity of electromagnetic signals in compositionally graded films. The theory is first based on effective medium approximation or the Maxwell-Garnett approximation to obtain the equivalent dielectric function in a z slice. Then the effective dielectric tensor of the graded film is directly determined, and the group velocities for ordinary and extraordinary waves in the film are derived. It is found that the group velocity is sensitively dependent on the graded profile. For a power-law graded profile f(x)=ax(m), increasing m results in the decreased extraordinary group velocity. Such a decreased tendency becomes significant when the incident angle increases. Therefore the group velocity in compositionally graded films can be effectively decreased by our suitable adjustment of the total volume fraction, the graded profile, and the incident angle. As a result, the compositionally graded films may serve as candidate material for realizing small group velocity.

  19. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  20. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  1. Composite Materials for Structural Design.

    Science.gov (United States)

    1982-03-01

    Introduction to Composite Materials , Technomic, Westport, Connecticut, 1980, pp. 19-20, 388-401. 8. W.D. Bascom, J.L. Bitner, R.J. Moulton, and A.R. Siebert...34 Introduction to Composite Materials ", Technomic Publishing Co., pp. 8-18,(1980). [6] Beckwith, S. W., "Viscoelastic Characterization of a Nonlinear Glass

  2. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2009-01-01

    The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  3. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M. (Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR))

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  4. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  5. Mechanics in Composite Materials and Process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Gil

    1993-03-15

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  6. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...... and concrete and associated internal stress states are examples of analysis made in this report. In this context is discussed that concrete strength is not an invariable material property. It is a property the potentials of which is highly and negatively influenced by any damage caused by stress concentrations...

  7. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  8. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  9. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  10. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  11. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  12. Protein-based composite materials

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2012-05-01

    Full Text Available Protein-based composite biomaterials have been actively pursued as they can encompass a range of physical properties to accommodate a broader spectrum of functional requirements, such as elasticity to support diverse tissues. By optimizing molecular interfaces between structural proteins, useful composite materials can be fabricated as films, gels, particles, and fibers, as well as for electrical and optical devices. Such systems provide analogies to more traditional synthetic polymers yet with expanded utility due to the material's tunability, mechanical properties, degradability, biocompatibility, and functionalization, such as for drug delivery, biosensors, and tissue regeneration.

  13. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions to the cr......Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  14. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  15. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  16. Composite materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  17. Compression Testing of Textile Composite Materials

    Science.gov (United States)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  18. Bioenvironmental Engineering Guide for Composite Materials

    Science.gov (United States)

    2014-03-31

    materials but may often have hybrid blends of composite materials. Therefore, referencing the specific aircraft’s composite material makeup and...Health Risk Analysis; 2001 Aug. Report No. IERA-RS-BR-TR-2001-0009. 8. Martin Marietta Corporation. Dust control handbook for minerals processing

  19. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  20. Material parameter identification on metal matrix composites

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2012-07-01

    Full Text Available Tests were done on the compressive behaviour of different metal matrix composite materials. These extremely hard engineering materials consist of ceramic particles embedded in a metal alloy binder. Due to the high stiffness and brittle nature...

  1. Composite materials for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  2. Clues for biomimetics from natural composite materials

    Science.gov (United States)

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  3. Composite, nanostructured, super-hydrophobic material

    Science.gov (United States)

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  4. Composite Dielectric Materials for Electrical Switching

    Energy Technology Data Exchange (ETDEWEB)

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  5. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  6. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  7. Polymer Matrix Composite Material Oxygen Compatibility

    Science.gov (United States)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  8. Synthesizing Smart Polymeric and Composite Materials

    OpenAIRE

    2013-01-01

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have...

  9. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  10. Tsallis Entropy Composition and the Heisenberg Group

    Science.gov (United States)

    Kalogeropoulos, Nikos

    2013-03-01

    We present an embedding of the Tsallis entropy into the three-dimensional Heisenberg group, in order to understand the meaning of generalized independence as encoded in the Tsallis entropy composition property. We infer that the Tsallis entropy composition induces fractal properties on the underlying Euclidean space. Using a theorem of Milnor/Wolf/Tits/Gromov, we justify why the underlying configuration/phase space of systems described by the Tsallis entropy has polynomial growth for both discrete and Riemannian cases. We provide a geometric framework that elucidates Abe's formula for the Tsallis entropy, in terms the Pansu derivative of a map between sub-Riemannian spaces.

  11. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    Science.gov (United States)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  12. Structure and content of competitive group compositions in sports aerobics

    Directory of Open Access Journals (Sweden)

    Tetiana Moshenska

    2017-02-01

    Full Text Available Purpose: to make the analysis of modern competitive group compositions in sports aerobics. Material & Methods: pedagogical, sociological and methods of mathematical statistics were used. 10 coaches took part in the experimental part; analysis of protocols and video records of competitions of the aged category of children of 9–11 years old, who perform in the nomination of triplets and quintuples (group exercises, is carried out. Results: the content of competitive compositions and the allocated indicators are studied which defined it. Conclusions: the basic structural elements, which characterize competitive compositions, are allocated. Their components, quantity and time of performance are defined. It is established that variety of aerobic contents, spaces, and means of registration, musical compliance and logicality of creation of the whole competitive composition at high quality of performance characterizes teams – winners.

  13. Natural Composite Systems for Bioinspired Materials.

    Science.gov (United States)

    Frezzo, Joseph A; Montclare, Jin Kim

    From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.

  14. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  15. Piezoelectric Nanoparticle-Polymer Composite Materials

    Science.gov (United States)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  16. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  17. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  18. Multiphysicsbased Condition Monitoring of Composite Materials

    OpenAIRE

    Xue, Hui; Sharma, Puneet; Khawaja, Hassan Abbas

    2015-01-01

    Composites are increasingly being used in products such as: automobiles, bridges, boats, drillships, offshore platforms, aircrafts and satellites. The increased usage of these composite materials and the fact that the conditions pertaining to their failure are not fully understood makes it imperative to develop condition monitoring systems for composite structures. In this work, we present a theoretical framework for the development of a condition monitoring system. For this, we plan...

  19. Cumulative Damage Model for Advanced Composite Materials.

    Science.gov (United States)

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  20. Method of making a composite refractory material

    Science.gov (United States)

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  1. LDEF materials special investigation group's data bases

    Science.gov (United States)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  2. Composite materials molding simulation for purpose of automotive industry

    Science.gov (United States)

    Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.

    2016-08-01

    Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from

  3. Center for Cement Composite Materials

    Science.gov (United States)

    1990-01-31

    pastes have shown that the matrix is microporous; mesopores are absent unless the material is allowed to dry out. This results in water adsorption at low...only to water. When subsequently dried a portion of3 the porosity is converted to larger mesopores . • Only about one third of the cement reacts in a...Frictional sliding, in this case was characterized by a decreasing slope in the loading curve followed by hysteresis in the unload/reloading curves

  4. Breakthroughs in Mesoporous Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Mesoporous materials have attracted a great deal of attention due to their extremely high surface area, uniform and tunable pore structure (2-50nm in diameter), and have been investigated extensively since its invention. Unfortunately,their catalytic properties are far away from the expectation due to their amorphous and inert framework and poor stability. This research project is aimed at the design and synthesis of mesoporous-

  5. Indirect composite resin materials for posterior applications.

    Science.gov (United States)

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  6. Multifunctional Laminated Composite Materials for Protective Clothing

    Directory of Open Access Journals (Sweden)

    Nermin M. Aly

    2014-10-01

    Full Text Available Protective clothing performs a vital role in maintaining the safety of human in workplace. The developments in this field are proceeding to fulfill the needs with multifunctional materials at competitive costs. Recently, the protective clothing field introduces the usage of composite materials taking advantage of their outstanding properties. In this paper, the multifunctional performance of hybrid laminated composites (HLC was investigated aiming to be utilized in protective clothing. The influences of reinforcement and resin properties on the physical properties of the laminated composites and their resistance to puncture load and UV transmittance were studied. ANOVA test was used for the statistical analysis of the results. The results showed that, the reinforcement material and structure and the fiber/matrix interface have major influences on the laminated composites performance. It was revealed that, the HLC fabricated from (polyester/glass fabric with satin 4 structure and nonwoven glass fiber mat exhibited the best functional performance.

  7. Flexible hydrogel-based functional composite materials

    Science.gov (United States)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  8. Color stability of different composite resin materials.

    Science.gov (United States)

    Falkensammer, Frank; Arnetzl, Gerwin Vincent; Wildburger, Angelika; Freudenthaler, Josef

    2013-06-01

    Data are needed to better predict the color stability of current composite resin materials. The purpose of this study was to evaluate the impact of different storage solutions on the color stability of different composite resin materials. Different restorative and adhesive composite resin specimens (dual-polymerizing self-adhesive resin cement, autopolymerizing resin-based composite resin, dual-polymerizing resin-based composite resin, nanohybrid composite resin, and microhybrid composite resin) were fabricated and stored in red wine, black tea, chlorhexidine, sodium fluoride, tea tree oil, or distilled water for 4 weeks at 37°C. Color parameters were measured with a colorimeter before and after storage. Total color differences and specific coordinate differences were expressed as ΔE, ΔL, Δa, and Δb. A 2-way and 1-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons were applied for statistical calculations (α=.05). Red wine caused the most severe discoloration (ΔE >10), followed by black tea with perceptible (ΔE >2.6) to clinically unacceptable discoloration (ΔE >5.5). Colored mouth rinses discolored the materials to a lesser extent with clinically acceptable values. Dual-polymerizing resin adhesives showed a higher amount of discoloration. Current restorative and adhesive composite resin materials discolor over time under the influence of different storage solutions. The composition related to the polymerizing mode seemed to be a causative factor. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Processes for fabricating composite reinforced material

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  10. Advanced composite materials for optomechanical systems

    Science.gov (United States)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  11. Chemical composition of the clays as indicator raw material sources

    Directory of Open Access Journals (Sweden)

    Khramchenkova Rezida Kh

    2014-06-01

    Full Text Available The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high calcium content corresponds to the addition of river shells, the high content of silicon results from sand addition. A more interesting picture has been revealed in the course of studies of the so-called “trace elements” (microelements. Nine groups of ceramics with different elemental set have been distinguished. The first two groups consist of imported ceramics; other groups have demonstrated a rather pronounced elemental composition. The most notable variations are observed in chromium, vanadium and nickel content. Similar microelement composition variety has been observed in clays from deposits of different localization, while the concentration of the mentioned elements in a variety of clays also differs considerably. Therefore, marker elements typical of different clays have been identified. A comparative analysis of the data obtained for clay raw materials and ceramics has been conducted. The results demonstrate the potential of studying the elemental composition in order to determine the localization of the raw material sources for ceramic production.

  12. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  13. Life of structures of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Koznetsov, N.D.; Stepanenko, N.D.

    1986-06-01

    The introduction of composite materials in gas turbine engines is rationally done in stages. It is desirable to concentrate efforts on the use of them for production of vanes, sound deadening panes, the reverse rod, and other elements of the stator. The authors use compressor blades as an example of the basic principles of design, the selection of the reinforcing structure, and inspection of the quality of structures of composite materials. A method of determination of the elastodamping properties of polymer composite materials on specimens with free ends in high frequency flexural vibrations excited by a modulated jet of compressed air has been developed and standardized. With the use of this method such defects as separations, cracks, disorientation of the reinforcing, deviations in the order of alternation and the angular orientation of the layers are revealed.

  14. New composite materials for optoelectronic applications

    Science.gov (United States)

    Iovu, M. S.; Buzurniuc, S. A.; Verlan, V. I.; Culeac, I. P.; Nistor, Yu. H.

    2009-01-01

    The problem of obtaining low cost but efficient luminescent materials is still actually. Data concerning fabrication and luminescent properties of new composite materials on the base of thenoyltrifluoroacetone (TTA) of Europium(III) (Eu(TTA)3) and chalcogenide glasses doped with rare earth ions and polymers are presented. The visible emission spectra of the composites on the base of Eu(TTA)3 structured with phenantroline (Eu(TTA)3Phen) and copolymer from styrene and butylmethacrylate (1:1)(SBMA) under the excitation with N2-laser (λ=337 nm) contain sharp emission bands located at 354, 415, 580, 587, 590, 596, 611.4, 616.5, 621, 652, 690, 700, 713 nm. The nature of the observed emission bands and the possible mechanisms of the radiative electron transition in the investigated composite materials are discussed.

  15. Composite Materials and Sandwich Structures - A Primer

    Science.gov (United States)

    2010-05-01

    quality and protects prepreg from handling damage. Non - woven unidirectional tapes can otherwise split between fibers. Clean, white lint-free cotton ...applications and S glass fibers are used in strength critical situations. S glass fibers are sometimes woven in composite materials to increase toughness...A woven form of the reinforcements (Figure 1b) is also used in certain cases, depending on the application of the composite. Figure 1a- Fiber

  16. Research on Composite Materials for Structural Design.

    Science.gov (United States)

    1984-04-01

    Residual Stresses in Composite Laminates", (August 1983); the M.Sc. thesis of E.J. Porth , titled "Effect of an External Stress on Moisture Diffusion in...Rates in OUnidirectional Double Cantilevered Beam Fracture Toughness Specimens", December 1982. 4. Porth , E.J., "Effect of an External Stress on...Composite Materials (December 1983) Edward John Porth , B.S., University of Colorado Chairman of Advisory Committee: Dr. Y. Weitsman This work concerns

  17. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  18. Amorphous titania/carbon composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  19. Multiaxial analysis of dental composite materials.

    Science.gov (United States)

    Kotche, Miiri; Drummond, James L; Sun, Kang; Vural, Murat; DeCarlo, Francesco

    2009-02-01

    Dental composites are subjected to extreme chemical and mechanical conditions in the oral environment, contributing to the degradation and ultimate failure of the material in vivo. The objective of this study is to validate an alternative method of mechanically loading dental composite materials. Confined compression testing more closely represents the complex loading that dental restorations experience in the oral cavity. Dental composites, a nanofilled and a hybrid microfilled, were prepared as cylindrical specimens, light-cured in ring molds of 6061 aluminum, with the ends polished to ensure parallel surfaces. The samples were subjected to confined compression loading to 3, 6, 9, 12, and 15% axial strain. Upon loading, the ring constrains radial expansion of the specimen, generating confinement stresses. A strain gage placed on the outer wall of the aluminum confining ring records hoop strain. Assuming plane stress conditions, the confining stress (sigma(c)) can be calculated at the sample/ring interface. Following mechanical loading, tomographic data was generated using a high-resolution microtomography system developed at beamline 2-BM of the Advanced Photon Source at Argonne National Laboratory. Extraction of the crack and void surfaces present in the material bulk is numerically represented as crack edge/volume (CE/V), and calculated as a fraction of total specimen volume. Initial results indicate that as the strain level increases the CE/V increases. Analysis of the composite specimens under different mechanical loads suggests that microtomography is a useful tool for three-dimensional evaluation of dental composite fracture surfaces.

  20. Composite materials for rail transit systems

    Science.gov (United States)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  1. Shear bond strength of indirect composite material to monolithic zirconia

    Science.gov (United States)

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  2. Failure Analysis of Composite Structure Materials.

    Science.gov (United States)

    1986-05-01

    8MATERIAL STRUCTURES DISCONTINUITY T•R PLY DROPOFF i 7ARC LAP/GAP . PRPAATION A, ,OM LY , 1e, ’ •INS ERVICE MAINTENANCE DAMAGE SVv , S IMPACT \\\\ CHESIE ...composite joints such as box beam members, for example, are difficult to inspect by ultrasonic techniques, and the X-ray attenuation coefficients of

  3. ECODESIGN CRITERIA FOR COMPOSITE MATERIALS AND ...

    African Journals Online (AJOL)

    sustainable design of new generation of composite products through the .... stress relations for an orthotropic material in the principal coordinate system (1,2) .... 4.1 Example 1: Eco-bonded structures with a single-lap adhesive joint ... The effect of the eco-factor λi on the plate first natural frequency is represented in Table 2,.

  4. Candida albicans adhesion to composite resin materials.

    Science.gov (United States)

    Bürgers, Ralf; Schneider-Brachert, Wulf; Rosentritt, Martin; Handel, Gerhard; Hahnel, Sebastian

    2009-09-01

    The adhesion of Candida albicans to dental restorative materials in the human oral cavity may promote the occurrence of oral candidosis. This study aimed to compare the susceptibility of 14 commonly used composite resin materials (two compomers, one ormocer, one novel silorane, and ten conventional hybrid composites) to adhere Candida albicans. Differences in the amount of adhering fungi should be related to surface roughness, hydrophobicity, and the type of matrix. Cylindrical specimens of each material were made according to the manufacturers' instructions. Surface roughness R (a) was assessed by perthometer measurements and the degree of hydrophobicity by computerized contact angle analysis. Specimens were incubated with a reference strain of C. albicans (DMSZ 1386), and adhering fungi were quantified by using a bioluminometric assay in combination with an automated plate reader. Statistical differences were analyzed by the Kruskal-Wallis test and Mann-Whitney U test. Spearman's rank correlation coefficients were calculated to assess correlations. Median R (a) of the tested composite resin materials ranged between 0.04 and 0.23 microm, median contact angles between 69.2 degrees and 86.9 degrees . The two compomers and the ormocer showed lower luminescence intensities indicating less adhesion of fungi than all tested conventional hybrid composites. No conclusive correlation was found between surface roughness, hydrophobicity, and the amount of adhering C. albicans.

  5. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  6. On gain in homogenized composite materials

    Science.gov (United States)

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2016-09-01

    Three theoretical studies were undertaken, each based on the Bruggeman homogenization formalism and each involving homogenized composite materials (HCMs) comprising active component materials. It was found that: (i) HCMs can exhibit higher degrees of amplification than are exhibited by the HCM's component materials; (ii) anisotropic HCMs can simultaneously exhibit plane-wave amplification for certain propagation directions and plane-wave attenuation for other propagation directions; and (iii) for isotropic chiral HCMs, left-circularly polarized fields may be amplified while right-circularly polarized fields may be simultaneously attenuated (or vice versa) in any propagation direction.

  7. Accelerated aging of polymer composite bridge materials

    Science.gov (United States)

    Carlson, Nancy M.; Blackwood, Larry G.; Torres, Lucinda L.; Rodriguez, Julio G.; Yoder, Timothy S.

    1999-05-01

    Accelerated aging research on samples of composite materials and candidate UV protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory. Durability results and sensor data form test with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  8. Accelerated Aging of Polymer Composite Bridge Materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  9. Investigation of Coating Capability of Composite Materials

    Directory of Open Access Journals (Sweden)

    Yelda Akçin

    2013-07-01

    Full Text Available Nowadays, composite materials are widely used in the sectors that are overrated high strength / density and high elasticity modulus / density ratios such as defense industry, marine transportation, automotive and aerospace industry. However, because of the surface properties such as tribological behavior and low wear resistance their application areas are limited. Coating is the prominent process in order to improve these properties of the materials. In this study, hard ceramic powders (Al2O3 + TiO2 and CrO3 are coated to surface of glass fiber and carbon fiber reinforced epoxy matrix composite materials with plasma spray coating method started to be widely used todays and physical, mechanical and metallographic properties of obtained coatings were examined.

  10. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    Science.gov (United States)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  11. Mechanical Spectroscopy of Nanostructured Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mari, Daniele; Schaller, Robert; Mazaheri, Mehdi, E-mail: daniele.mari@epfl.ch [Ecole Polytechnique Federale de Lausanne, Laboratoire de Physique de la Matiere Complexe, Groupe de Spectroscopie Mecanique, CH-1015 Lausanne (Switzerland)

    2011-07-06

    The thermo-mechanical behavior of different nano-structured composite materials, which were processed within the SAPHIR European Integrated Project, has been characterized by mechanical spectroscopy. The obtained results show clearly that creep resistance of fine grain ceramics such as zirconia can be improved by carbon nano-tube (CNT) reinforcements. On the other hand the elastic modulus and the damping capacity of aluminum matrix composites were increased by SiC nano-particle additions. It has also been observed that CNT additions are responsible for a better thermal stability of polymer such as ABS (Acrylonitrile-Butadiene-Styrene) used in automotive industry.

  12. The influence of ethnic group composition on focus group discussions

    National Research Council Canada - National Science Library

    Greenwood, Nan; Ellmers, Theresa; Holley, Jess

    2014-01-01

    ... of importance to them in their own words [2]. They are particularly useful for gaining insight from minority ethnic groups [1, 3] because of their sensitivity to cultural variables [2, 4]. One of the main differences between focus groups and one-to-one interviews is the interaction between participants. Focus group participants can...

  13. Composites materials for friction and braking application

    Science.gov (United States)

    Crăciun, A. L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A.

    2017-05-01

    The brake pads are an important component in the braking system of automotive. Materials used for brake pads should have stable and reliable frictional and wear properties under varying conditions of load, velocity, temperature and high durability. These factors must be satisfied simultaneously which makes it difficult to select effective brake pads material. The paper presents the results of the study for characterisation of the friction product used for automotive brake pads. In the study it was developed four frictional composites by using different percentages of coconut fibres (0%, 5%, 10%, 15%) reinforcement in aluminium matrix. The new composites tested in the laboratory, modelling appropriate percentage ratio between matrix and reinforcement volume and can be obtained with low density, high hardness properties, good thermal stability, higher ability to hold the compressive force and have a stable friction coefficient. These characteristics make them useful in automotive industry.

  14. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  15. Contraction stresses of composite resin filling materials.

    Science.gov (United States)

    Hegdahl, T; Gjerdet, N R

    1977-01-01

    The polymerization shrinkage of composite resin filling materials and the tensile stresses developed when the shrinkage is restrained were measured in an in vitro experiment. This allows an estimation to be made of the forces exerted upon the enamel walls of cavities filled with the resin in the acid etch technique. The results indicate that the stresses acting on the enamel are low compared to the tensile strength of the enamel.

  16. Chlorhexidine-releasing methacrylate dental composite materials.

    Science.gov (United States)

    Leung, Danny; Spratt, David A; Pratten, Jonathan; Gulabivala, Kishor; Mordan, Nicola J; Young, Anne M

    2005-12-01

    Light curable antibacterial, dental composite restoration materials, consisting of 80 wt% of a strontium fluoroaluminosilicate glass dispersed in methacrylate monomers have been produced. The monomers contained 40-100 wt% of a 10 wt% chlorhexidine diacetate (CHXA) in hydroxyethylmethacrylate (HEMA) solution and 60-0 wt% of a 50/50 mix of urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA). On raising HEMA content, light cure polymerisation rates decreased. Conversely, water sorption induced swelling and rates of diffusion controlled CHXA release from the set materials increased. Experimental composites with 50 and 90 wt% of the CHXA in HEMA solution in the monomer were shown, within a constant depth film fermentor (CDFF), to have slower rates of biofilm growth on their surfaces between 1 and 7 days than the commercial dental composite Z250 or fluoride-releasing dental cements, Fuji II LC and Fuji IX. When an excavated bovine dentine cylinder re-filled with Z250 was placed for 10 weeks in the CDFF, both bacteria and polymers from the artificial saliva penetrated between the material and dentine. With the 50 wt% experimental HEMA/CHXA formulation, this bacterial microleakage was substantially reduced. Polymer leakage, however, still occurred. Both polymer and bacterial microleakage were prevented with a 90 wt% HEMA/CHXA restoration in the bovine dentine due to swelling compensation for polymerisation shrinkage in combination with antibacterial release.

  17. Nanomembrane-based materials for Group IV semiconductor quantum electronics.

    Science.gov (United States)

    Paskiewicz, D M; Savage, D E; Holt, M V; Evans, P G; Lagally, M G

    2014-02-27

    Strained-silicon/relaxed-silicon-germanium alloy (strained-Si/SiGe) heterostructures are the foundation of Group IV-element quantum electronics and quantum computation, but current materials quality limits the reliability and thus the achievable performance of devices. In comparison to conventional approaches, single-crystal SiGe nanomembranes are a promising alternative as substrates for the epitaxial growth of these heterostructures. Because the nanomembrane is truly a single crystal, in contrast to the conventional SiGe substrate made by compositionally grading SiGe grown on bulk Si, significant improvements in quantum electronic-device reliability may be expected with nanomembrane substrates. We compare lateral strain inhomogeneities and the local mosaic structure (crystalline tilt) in strained-Si/SiGe heterostructures that we grow on SiGe nanomembranes and on compositionally graded SiGe substrates, with micro-Raman mapping and nanodiffraction, respectively. Significant structural improvements are found using SiGe nanomembranes.

  18. Environment Friendly Composite Materials: Biocomposites and Green Composites

    Directory of Open Access Journals (Sweden)

    B. C. Mitra

    2014-05-01

    Full Text Available Biocomposites can supplement and eventually replace petroleum-based composite materials in several applications. Several critical issues related to bio-fiber surface treatments is to make it a more suitable matrix for composite application and promising techniques need to be solved to design biocomposite of interest. The main motivation for developing biocomposites has been and still is to create a new generation of fiber reinforced plastics material competitive with glass fiber reinforced ones which are environmentally compatible in terms of products, use and renewal. There is an immense opportunity in developing new biobased products, but the real challenge isto design suitable bio-based products through innovation ideas. Green materials are the wave of the future. Bionanocomposites have very strong future prospects, though the present low level of production, some deficiency intechnology and high cost restrict them from a wide range of applications.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 244-261, DOI:http://dx.doi.org/10.14429/dsj.64.7323

  19. Anisotropic enhancement of group velocity in a homogenized dielectric composite medium

    OpenAIRE

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2005-01-01

    Under certain circumstances, the group velocity in a homogenized composite medium (HCM) can exceed the group velocity in its component material phases. We explore this phenomenon for a uniaxial dielectric HCM comprising isotropic component material phases distributed as oriented spheroidal particles. The theoretical approach is based upon the Bruggeman homogenization formalism. Enhancement in group velocity in the HCM with respect to the component material phases is shown to be sensitively de...

  20. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  1. Composite material systems for hydrogen management

    Science.gov (United States)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  2. 7 CFR 3411.11 - Composition of peer review groups.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Composition of peer review groups. 3411.11 Section... PROGRAM Scientific Peer Review of Research Grant Applications § 3411.11 Composition of peer review groups. (a) Peer review group members and ad hoc reviewers will be selected based upon their training...

  3. 7 CFR 3415.11 - Composition of peer review groups.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Composition of peer review groups. 3415.11 Section... PROGRAM Scientific Peer Review of Research Grant Applications § 3415.11 Composition of peer review groups. (a) Peer review group members and ad hoc reviewers will be selected based upon their training...

  4. 7 CFR 3401.13 - Composition of peer review groups.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Composition of peer review groups. 3401.13 Section... Peer Review of Research Applications for Funding § 3401.13 Composition of peer review groups. Peer review group members will be selected based upon their training or experience in relevant scientific...

  5. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2002-12-01

    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  6. Combustion synthesis of advanced composite materials

    Science.gov (United States)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  7. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall...

  8. Mechanics of Composite Materials for Spacecraft

    Science.gov (United States)

    1992-08-01

    localization problems. Technical report, January 1987. Report ONR-N00014-86-K-0235/1. [33] Z. P. Bazant and G. Pijauder-Cabot. Nonlocal damage: continuum model...Shephard and Jerry Lin. Dr. Jan L. Teply. and graduate students.R Shah and J. F Wu. contributed to the recent work on plasticity of composite materials...Fracture. 16. 585 (1980). 94. G J Dvorak and E. C. J. Wung. in Strain Localization and Size Effect Due to Cracking and Damage" 0. MJazars and Z. P Bazant

  9. ACOUSTIC EMISSION MODEL WITH THERMOACTIVATIVE DESTRUCTION OF COMPOSITE MATERIAL SURFACE

    Directory of Open Access Journals (Sweden)

    Sergii Filonenko

    2016-03-01

    Full Text Available Modeling of acoustic emission energy during the composite material machining for termoactivativemodel of acoustic radiation is simulated. The regularities of resultant signals energy parameters change dependingon composite materials machining speed are determined. Obtained regularities with their statistical characteristicsare described. Sensitivity of acoustic emission energy parameters to the change of composite material machiningspeed is shown.

  10. Four-dimensional space groups for pedestrians: composite structures.

    Science.gov (United States)

    Sun, Junliang; Lee, Stephen; Lin, Jianhua

    2007-10-01

    Higher-dimensional crystals have been studied for the last thirty years. However, most practicing chemists, materials scientists, and crystallographers continue to eschew the use of higher-dimensional crystallography in their work. Yet it has become increasingly clear in recent years that the number of higher-dimensional systems continues to grow from hundreds to as many as a thousand different compounds. Part of the problem has to do with the somewhat opaque language that has developed over the past decades to describe higher-dimensional systems. This language, while well-suited to the specialist, is too sophisticated for the neophyte wishing to enter the field, and as such can be an impediment. This Focus Review hopes to address this issue. The goal of this article is to show the regular chemist or materials scientist that knowledge of regular 3D crystallography is all that is really necessary to understand 4D crystal systems. To this end, we have couched higher-dimensional composite structures in the language of ordinary 3D crystals. In particular, we developed the principle of complementarity, which allows one to identify correctly 4D space groups solely from examination of the two 3D components that make up a typical 4D composite structure.

  11. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  12. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  13. Fissure sealant materials: Wear resistance of flowable composite resins

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  14. [Effects of composite resin materials on gingiva and pulp].

    Science.gov (United States)

    Yamaguchi, S; Ishikawa, I; Masunaga, H; Matsue, M; Matsue, I

    1989-09-01

    Composite resin materials are now widely used for dental therapy. The purpose of this study was to clarify the effect of composite resins on gingiva and pulp in case of application of them for temporally splint in periodontal treatment. 60 teeth in 6 female dogs ranging between 1 and 2 years of age with healty teeth and gingiva were divieded to 4 groups; (1) 12 teeth, controls; (2) 12 teeth, self-cured composite resin (Clearfil F II, CF II); (3) 18 teeth, light-cured resin (Belfel LX, BLX), curing time 20 sec. and (4) 18 teeth, BLX, 40 sec., and then 48 class V composite resins were restored supragingivally. The experimental procedure were carried out for 5 days and 30 days. Histopathological observations of 60 teeth inclusive of controls were made by applying to specimens with Hematoxylin eosin staining. For the materials and time periods in this study it was found that; 1. Light-cured composite resin was superior to self-cured composite resin on handlings. 2. There were no significant differences in periodontium between the experimentals (BLX, CF II) and controls in 5 days. At the 30 days the histologic score showed more gingivitis for the experimental teeth than for the controls (BLX-40 greater than BLX-20 greater than CF II greater than Cont.). 3. At 5 days hyperemia occurred in some cases of experimentals (both BLX and CF II). The appearance of predentin and changes of odontblastic layer were observed slightly in 30 days. But there were no significant differences between BLX and CF II. 4. The result suggested that applying to composite resin materials for temporally splint, both gingiva and pulp have to be protected.

  15. Group Composition Affecting Student Interaction and Achievement: Instructors' Perspectives

    Science.gov (United States)

    Lei, Simon A.; Kuestermeyer, Bailey N.; Westmeyer, Kara A.

    2010-01-01

    Multiple research studies have been conducted that focus on various uses of collaborative learning in and out of the classroom in higher education institutions. The purpose of this article is to review previously published literature regarding group composition and how it affects student interaction and achievement. Group composition research has…

  16. 42 CFR 52h.4 - Composition of peer review groups.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Composition of peer review groups. 52h.4 Section... PEER REVIEW OF RESEARCH GRANT APPLICATIONS AND RESEARCH AND DEVELOPMENT CONTRACT PROJECTS § 52h.4 Composition of peer review groups. (a) To the extent applicable, the selection and appointment of members...

  17. 7 CFR 3400.11 - Composition of peer review groups.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Composition of peer review groups. 3400.11 Section..., EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE SPECIAL RESEARCH GRANTS PROGRAM Scientific Peer Review of Research Grant Applications § 3400.11 Composition of peer review groups. (a) Peer review...

  18. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  19. Friendship Group Composition and Juvenile Institutional Misconduct.

    Science.gov (United States)

    Reid, Shannon E

    2017-02-01

    The present study examines both the patterns of friendship networks and how these network characteristics relate to the risk factors of institutional misconduct for incarcerated youth. Using friendship networks collected from males incarcerated with California's Division of Juvenile Justice (DJJ), latent profile analysis was utilized to create homogeneous groups of friendship patterns based on alter attributes and network structure. The incarcerated youth provided 144 egocentric networks reporting 558 social network relationships. Latent profile analysis identified three network profiles: expected group (67%), new breed group (20%), and model citizen group (13%). The three network profiles were integrated into a multiple group analysis framework to examine the relative influence of individual-level risk factors on their rate of institutional misconduct. The analysis finds variation in predictors of institutional misconduct across profile types. These findings suggest that the close friendships of incarcerated youth are patterned across the individual characteristics of the youth's friends and that the friendship network can act as a moderator for individual risk factors for institutional misconduct.

  20. Thermal pretreatment of silica composite filler materials

    OpenAIRE

    Wan, Quan; Ramsey, Christopher; Baran, George

    2010-01-01

    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent s...

  1. Does Group Composition Affect Learning by Invention?

    Science.gov (United States)

    Wiedmann, Michael; Leach, Ryan C.; Rummel, Nikol; Wiley, Jennifer

    2012-01-01

    Schwartz and Martin ("Cogn Instr" 22:129-184, 2004) as well as Kapur ("Instr Sci", this issue, 2012) have found that students can be better prepared to learn about mathematical formulas when they try to invent them in small groups before receiving the canonical formula from a lesson. The purpose of the present research was to investigate how the…

  2. Sex Composition and Leadership in Small Groups

    Science.gov (United States)

    Eskilson, Arlene; Wiley, Mary G.

    1976-01-01

    Leader behavior of males and females in three-person experimental groups was investigated in varying contexts. Deviating from stereotypical expectations, females reacted to "achieved" leader role by relatively intense leadership efforts, a response predicted for males but not females. Also, both sexes addressed more directive behavior toward own…

  3. Does Group Composition Affect Learning by Invention?

    Science.gov (United States)

    Wiedmann, Michael; Leach, Ryan C.; Rummel, Nikol; Wiley, Jennifer

    2012-01-01

    Schwartz and Martin ("Cogn Instr" 22:129-184, 2004) as well as Kapur ("Instr Sci", this issue, 2012) have found that students can be better prepared to learn about mathematical formulas when they try to invent them in small groups before receiving the canonical formula from a lesson. The purpose of the present research was to investigate how the…

  4. Composite materials from new textile technologies

    Directory of Open Access Journals (Sweden)

    Jiménez, M. A.

    1997-12-01

    Full Text Available The present paper describes in a general way the most important of the advanced textile technologies which are oriented to the manufacturing of organic matrix composite materials, the paper presents their applications and the possibilities of future development. The use of these advanced weaving techniques allows the production of near-net-shaped preforms, which results in important savings in processing costs; moreover, these textile processes offer the possibility of introducing out-of plane reinforcing fibres, so there is an important increment of the impact strength and the damage tolerance of the final material.

    En el presente artículo se describen, de forma genérica, las más importantes de las tejedurías avanzadas destinadas a la fabricación de materiales compuestos de matriz orgánica, presentándose sus aplicaciones y futuras posibilidades de desarrollo. La utilización de estos procesos de tejeduría avanzados permite la elaboración de preformas cercanas a la forma final de la pieza, lo que se traduce en importantes reducciones en los costes de fabricación; además, estos procesos textiles ofrecen la posibilidad de introducir fibras de refuerzo fuera del plano, aumentando de forma considerable la resistencia a impacto y la tolerancia al daño del material final.

  5. STUDY AND FABRICATION OF SOYBEAN- KEVLAR HYBRID COMPOSITE MATERIAL

    OpenAIRE

    Dilip M R*, Dr. B R Narendra Babu

    2016-01-01

    The prerequisite for most outstanding and normal composite materials to be delivered or recognized, having eco-pleasing ascribes and have ability to acclimate to trademark changes happening on regular calendar, has passed on individuals to find new sources and variety of composite materials to be made. At the present age, trademark fiber composites having near properties, from renewable normal resources expect a vital part in course of action of composite material when diverged from man-made ...

  6. Synthesis and study of composite organic silica sorption materials

    Directory of Open Access Journals (Sweden)

    Anna Nikolaevna Shipulya

    2016-03-01

    Full Text Available Currently, one of the promising areas of applied chemistry is research and development of composite absorption materials used as sorbents with a wide range of action, as well as media for biologic preparations and drugs. We have performed research on the development of composite organic silica chitosan-silica based materials with certain composition and biochemical action. Silica was used as the main component, and chitosan - as bio-compatible polymer in the composition of the composite sorbent.

  7. Materials and electromagnetism. The modeling of composite materials; Materiaux en electromagnetisme. Modelisation des materiaux composites

    Energy Technology Data Exchange (ETDEWEB)

    Priou, A. [Institut Universitaire de Technologie, 92 - Ville-d' Avray (France)

    1999-01-01

    Maxwell laws are briefly described and the different types of electromagnetic materials are presented. Composite materials are made up of at least 2 phases: a host phase and an inclusion. The inclusion is a discontinuous phase coming from a conducting material (metal, carbon based material, semi-conductor, solid electrolytes or conducting polymers) and is spread within the host phase either in an aleatory or organized way. The modeling of such media can be made by 3 different approaches. In the multi-diffusion approach, the size of the particles enclosed in the host material and their mutual interactions are taken into account. The quasi-static approach allows the definition of an equivalent medium in order to describe percolation phenomena. The approach based on cluster theory gives a complete mathematical description of composite materials. The modeling of dielectric-conducting multilayer is also presented. The last part of the article is dedicated to the characteristics and applications of chiral media and of last generation electromagnetic materials. (A.C.)

  8. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Science.gov (United States)

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  9. On the machinability of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G.; De Iorio, I.; Santo, L.; Nele, L. [Univ. of Naples Federico II, Naples (Italy)

    1996-12-31

    Orthogonal cutting tests were carried out on a unidirectional Carbon Fibre Reinforced Plastic (CFRP), a unidirectional Glass Fibre Reinforced Plastic (GFRP), and a Sheet Moulding Compound (SMC) R50, using high speed steel tools. The force data were interpreted in the light of the usual force scheme adopted in metal cutting, disregarding the forces developing at the tool flank. It was found that, similarly to metals, the unit cutting force depends on the depth of cut t, decreasing with increasing the latter (size effect). The same trend was followed by the coefficient of friction. A new force scheme, previously proposed for composites, together with a different definition of {open_quotes}specific energy{close_quotes}, was then applied. Irrespective of the material considered, the new model results in a coefficient of friction independent of the cutting parameters, and in a specific energy X unaffected by the depth of cut. Nevertheless, X strongly decreases with increasing the rake angle, following different trends for CFRP and GFRP. Amongst the materials tested, the poorest machinability pertains to SMC.

  10. Thermodynamics of the formation of mesostructures in nanodispersed composite materials

    Directory of Open Access Journals (Sweden)

    Lisovsky A.F.

    2009-01-01

    Full Text Available Two models of the formation of mesostructures in nanodispersed composite materials are considered. According to the first model, a mesoelement is formed of coarsely dispersed compositions as an inclusion in a nanodispersed composite body. The second model considers a mesoelement being formed from nanoparticles as an inclusion in the volume of a coarsely dispersed composite body. Depending on the class of composite materials used to produce mesoelements and a composite body, their composition and structure are defined by the liquid phase migration (or absence of the migration as well as diffusion flows of the components.

  11. Lectures on Composite Materials for Aircraft Structures,

    Science.gov (United States)

    1982-10-01

    lectures are related to structural applications of composites . In Lecture 7, the basic theory that is needed for composite structural analysis is...which composites have been taken up for aeronautical applications. Several specific applications of composites in aircraft structures am described in

  12. Alternative Approaches to Group IV Thermoelectric Materials

    Science.gov (United States)

    Snedaker, Matthew Loren

    In the pursuit of energy efficiency, there is a demand for systems capable of recovering waste heat. A temperature gradient across a thermoelectric material results in the thermal diffusion of charge carriers from the hot side to the cold side, giving rise to a voltage that can be used to convert waste heat to electricity. Silicon germanium (SiGe) alloys are the standard materials used for thermoelectric generators at high temperatures. We report an alternative method for preparing p-type Si1- xGex alloys from a boron-doped silica-germania nanocomposite. This is the first demonstration of the thermoelectric properties of SiGe-based thermoelectrics prepared at temperatures below the alloy's melting point through a magnesiothermic reduction of the (SiO 2)1-x(GeO2) x. We observe a thermoelectric power factor that is competitive with the literature record for the conventionally prepared SiGe. The large grain size in our hot pressed SiGe limits the thermoelectric figure of merit to 0.5 at 800°C for an optimally doped p-type Si80Ge 20 alloy. A phosphorus-doped oxide can yield n-type Si1- xGex; however, the current processing method introduces a background boron content that compensates ~10% of the donor impurities and limits the thermoelectric power factor. Spark plasma sintering of the nano-Si1-xGe x yields a heterogeneous alloy with thermal conductivity lower than that of the hot pressed homogeneous alloy due to a reduction in the average crystallite size. Magnesiothermic reduction in the presence of molten salts allows some control over crystallite growth and the extent of Si-Ge alloying.

  13. Glass matrix composite material prepared with waste foundry sand

    Directory of Open Access Journals (Sweden)

    ZHANG Zhao-shu

    2006-11-01

    Full Text Available The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  14. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  15. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  16. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  17. Quasimolecular Dynamic Simulation for Bending Fracture of Laminar Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2-dimensional numerical simulation using quasimolecular dynamics was performed to investigate laminar composite material fractures and crack propagation behavior in the uniform bending of laminar composite materials. It was verified that under bending deformation laminar composite materials deform quite differently from homogeneous materials

  18. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    Science.gov (United States)

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  19. Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes

    Science.gov (United States)

    2012-01-24

    conducted using ASTM D 6641/D 6641M “Standard Test Method for Determining the Compressive Properties of Polymer Matrix Composite Laminates Using a Combined...D 7291/D 7291M “Standard Test Method for Through-Thickness “Flatwise” Tensile Strength and Elastic Modulus of a Fiber- Reinforced Polymer Matrix Composite Material...34Flatwise" Tensile Strength and Elastic Modulus of a Fiber-Reinforced Polymer Matrix Composite Material”. West Conshohocken, PA, 2005, DOI: 10.1520/D7291

  20. Non-Catalytic Self Healing Composite Material Solution Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforce polymer (FRP) composite materials are seeing increasing use in the construction of a wide variety of aerospace structures. However, uncertainties...

  1. Composite materials of glass fiber. Los materiales compuestos de fibra de vidrio

    Energy Technology Data Exchange (ETDEWEB)

    Antequera, P.; Jimenez, L.; Miravete, A.

    1991-01-01

    This book analyzes the composite materials of glass fiber. The main aspect are: matrix materials, fabrication process, composite materials properties. Design, analysis, quality control, material testing and applications.

  2. Method of loading organic materials with group III plus lanthanide and actinide elements

    Science.gov (United States)

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  3. Multi-material Preforming of Structural Composites

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eberle, Cliff C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pastore, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sudbury, Thomas Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Fue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hartman, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  4. Lightweight Impact-Resistant Composite Materials: Lessons from Mantis Shrimp

    Science.gov (United States)

    Milliron, Garrett Wayne

    Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hyper-mineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one such species, Odontodactylus Scyllarus, exhibit an impressive set of characteristics adapted for surviving high velocity impacts with the heavily mineralized prey species on which they feed. Consisting of a multi-phase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines of defense against catastrophic failure during repetitive high energy loading events. The study of this organism and its relatives has lead to design cues, which were incorporated into prototype composite materials designed for applications in aviation, body armor, and entertainment.

  5. Designing with an underdeveloped computational composite for materials experience

    NARCIS (Netherlands)

    Barati, B.; Karana, E.; Hekkert, P.P.M.; Jönsthövel, I.

    2015-01-01

    In response to the urge for multidisciplinary development of computational composites, designers and material scientists are increasingly involved in collaborative projects to valorize these technology-push materials in the early stages of their development. To further develop the computational

  6. Present and future value of dental composite materials and sealants.

    Science.gov (United States)

    Dogon, I L

    1990-01-01

    This article reviews the development, composition, chemistry, recent technological advances, and extent of use of composite resin restorative materials, adhesives, and pit and fissure sealants. The problems related to the clinical behavior of these materials in the oral environment are dealt with, and methods of minimizing their present deficiencies are suggested. Future directions that might be taken to improve these materials and solve some of the inadequacies that these materials exhibit are also discussed.

  7. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    Science.gov (United States)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual

  8. Process and Outcome in Encounter Groups: The Effects of Group Composition.

    Science.gov (United States)

    Stava, Lawrence J.; Bednar, Richard L.

    1979-01-01

    Examines relative efficacy of dissonance theory and interpersonal attraction theory over random composition in composing groups that will work best in group therapy. Treatment variables were a tape-recorded treatment condition, a placebo condition, and a no-treatment control condition. No clear support for either theory of group support was found.…

  9. Imitation model of destruction of aviation fibrous polymeric composite materials

    Directory of Open Access Journals (Sweden)

    В. М. Синеглазов

    2000-12-01

    Full Text Available Considered are models imitating influence of lighting on dielectric construction materials with elements of lighting protection. Described are models of current spreading in multilayer materials and thermal destruction of fibrous polymeric composite materials caused by lighting current flowing on such materials

  10. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys

    Science.gov (United States)

    Paine, Jeffrey S. N.; Rogers, Craig A.

    1996-01-01

    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  11. Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials

    Directory of Open Access Journals (Sweden)

    Vincent Ball

    2017-07-01

    Full Text Available Polydopamine (PDA is related to eumelanins in its composition and structure. These pigments allow the design, inspired by natural materials, of composite nanoparticles and films for applications in the field of energy conversion and the design of biomaterials. This short review summarizes the main advances in the design of PDA-based composites with inorganic and organic materials.

  12. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  13. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  14. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  15. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  16. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview

    Science.gov (United States)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

    1999-01-01

    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  17. Heat-Resistant Composite Materials Based on Polyimide Matrix

    Directory of Open Access Journals (Sweden)

    Vitaly Sergeyevich Ivanov

    2016-12-01

    Full Text Available Heat-resistant composite materials with a polyimide-based binder were obtained in this paper. Composites were prepared with different content of single-wall carbon nanotubes (SWCNT and nanostructured silicon carbide, and polyimides coated carbon fibers woven into the cloth. Composite materials showed high values of thermostability and resistance to thermo-oxidative degradation, as well as good mechanical properties.

  18. Development and characterization of 430L matrix composites gradient materials

    Directory of Open Access Journals (Sweden)

    Elisa Maria Ruiz-Navas

    2005-03-01

    Full Text Available This paper deals with a new concept that is Functionally Gradient Materials (FGM. The materials developed in this work are constituted by a 430L matrix core and composite materials with this matrix and gradient concentration with NbC reinforcement, from the core to the surface, through different steps. Composite powders of different content in NbC were produced through high energy milling in order to obtain the gradient composition. The morphology and microhardness of these powders were characterised and subsequently were processed through conventional P/M techniques, pressing and sintering. The materials obtained show improved wear behaviour.

  19. The Cyogenic Evaluation of Irradiated Composite Materials for Use in Composite Pressure Vessels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HyPerComp Engineering, Inc. (HEI) proposes to continue the characterization of the cryogenic evaluation of irradiated composite materials for use in composite...

  20. Overview of bacterial cellulose composites: a multipurpose advanced material.

    Science.gov (United States)

    Shah, Nasrullah; Ul-Islam, Mazhar; Khattak, Waleed Ahmad; Park, Joong Kon

    2013-11-06

    Bacterial cellulose (BC) has received substantial interest owing to its unique structural features and impressive physico-mechanical properties. BC has a variety of applications in biomedical fields, including use as biomaterial for artificial skin, artificial blood vessels, vascular grafts, scaffolds for tissue engineering, and wound dressing. However, pristine BC lacks certain properties, which limits its applications in various fields; therefore, synthesis of BC composites has been conducted to address these limitations. A variety of BC composite synthetic strategies have been developed based on the nature and relevant applications of the combined materials. BC composites are primarily synthesized through in situ addition of reinforcement materials to BC synthetic media or the ex situ penetration of such materials into BC microfibrils. Polymer blending and solution mixing are less frequently used synthetic approaches. BC composites have been synthesized using numerous materials ranging from organic polymers to inorganic nanoparticles. In medical fields, these composites are used for tissue regeneration, healing of deep wounds, enzyme immobilization, and synthesis of medical devices that could replace cardiovascular and other connective tissues. Various electrical products, including biosensors, biocatalysts, E-papers, display devices, electrical instruments, and optoelectronic devices, are prepared from BC composites with conductive materials. In this review, we compiled various synthetic approaches for BC composite synthesis, classes of BC composites, and applications of BC composites. This study will increase interest in BC composites and the development of new ideas in this field.

  1. Effect of temporary filling materials on repair bond strengths of composite resins.

    Science.gov (United States)

    Erdemir, Ali; Eldeniz, Ayce Unverdi; Belli, Sema

    2008-08-01

    Endodontic access cavities sometimes can be prepared through a permanent composite restoration. Between the appointments, temporary cements are used to seal access cavities and may have negative effect on bonding of further composite restoration. The purpose of this study was to compare shear bond strength of composite to composite which had been in contact with various temporary filling materials. Standard cavities were prepared on 160 acrylic resin blocks, obturated with composite resin (Clearfil AP-X, Kuraray, Japan) and randomly divided into eight groups (n = 20). Group 1 received no treatment. From group 2-8, composite surfaces were covered with the following cements temporarily: Zinc-oxide/calcium-sulphate (Cavit-G, ESPE, Germany), two different Zinc-Oxide-Eugenol materials (ZnOE, Cavex, Holland and IRM, Dentsply, USA), Zinc-phosphate cement (Adhesor, Spofa-Dental, Germany), Zinc-polycarboxylate cement (Adhesor-Carbofine, Spofa-Dental, Germany), Glass-Ionomer-Cement (Argion-Molar, Voco, Germany), or light curing temporary material (Clip, Voco, Germany). The cements were removed mechanically after 1 week storage in distilled water at 37 degrees C and composite surfaces were treated with a self-etch adhesive system (SE-Bond, Kuraray, Japan). Composite resin build-ups were created on composite surfaces. Shear bond strength values were measured using universal testing machine at crosshead speed of 1 mm/min. The data was calculated in MPa and statistically analyzed using one-way ANOVA and Tukey tests. Eugenol-containing cements significantly reduced shear bond strengths of composite to composite (p materials had no adverse effect on shear bond strength (p > 0.05). These findings suggested that temporary filling materials except eugenol-containing materials have no negative effect on composite repair bond strengths.

  2. Resin-based composite as a direct esthetic restorative material.

    Science.gov (United States)

    Malhotra, Neeraj; Mala, Kundabala; Acharya, Shashirashmi

    2011-06-01

    The search for an ideal esthetic material for tooth restoration has resulted in significant improvements in both materials and the techniques for using them. Various resin-based composite (RBC) materials have recently been introduced into the market that offer improved esthetic and physical properties. This article reviews RBCs, including their compositions, advantages, and disadvantages, that are contemporary to today's clinical practice as well as those that are under research consideration and/ or in clinical trial phase.

  3. Multi-length Scale Material Model Development for Armorgrade Composites

    Science.gov (United States)

    2014-05-02

    synthesis -/processing-induced defects; (c) effect of 3 synthesis -/processing-induced defects on PPTA-fiber properties; (d) effect of fiber-/ yarn ...Derivation of the Materials Constitutive Relations for Carbon Nanotube Reinforced Poly-Vinyl-Ester-Epoxy Based Composites,” Journal of Materials Science, 42...fabric or PPTA-fiber-reinforced polymer-matrix composites. Specifically, the role of various material- synthesis -/fiber-processing-induced defects, as

  4. Damage tolerance of continuous fibre composites: material and environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Bibo, G.A.; Hogg, P.J. [Queen Mary and Westfield Coll., London (United Kingdom). Dept. of Materials

    1998-05-01

    Aerospace design philosophies are used to discuss critically, the suitability of composite materials to primary structural applications. The principal issues limiting the use of composites, compression after impact performance and high cost, are examined in terms of material/manufacturing form and environmental conditioning. The material types investigated consist of thermoset and thermoplastic matrix reinforced unidirectional prepreg tape and textile manufactured architectures. (orig.) 141 refs.

  5. ECODESIGN CRITERIA FOR COMPOSITE MATERIALS AND PRODUCTS

    OpenAIRE

    B Attaf

    2013-01-01

    According to sustainable development principles, the design of a composite product must be in compliance with the new regulations and standards in terms of Health protection (H) and Environmental preservation (E) besides Quality assurance (Q). With this argument as an objective, our contribution aims to innovate and develop new methodologies providing sustainable design of new generation of composite products through the consideration of the three balanced key aspects: H, E and Q. To achieve ...

  6. Discussion on the Standardization of Shielding Materials — Sensitivity Analysis of Material Compositions

    Directory of Open Access Journals (Sweden)

    Ogata Tomohiro

    2017-01-01

    Full Text Available The overview of standardization activities for shielding materials is described. We propose a basic approach for standardizing material composition used in radiation shielding design for nuclear and accelerator facilities. We have collected concrete composition data from actual concrete samples to organize a representative composition and its variance data. Then the sensitivity analysis of the composition variance has been performed through a simple 1-D dose calculation. Recent findings from the analysis are summarized.

  7. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  8. Damage Threshold Characterization in Structural Composite Materials and Composite Joints

    Science.gov (United States)

    2010-02-28

    polyester, vinyl ester and epoxy, as reported earlier [1-3], the differences between resins are significant. The Vectorply ELT 5500 fabric (D) contains a...Delamination Testing,” AIAA Journal , vol. 28, 1990, pp. 1270-1276. 15. Agastra, P., "Mixed Mode Delamination of Glass Fiber/Polymer Matrix Composite

  9. Composite Material Suitable for Use as Electrode Material in a SOC

    DEFF Research Database (Denmark)

    2010-01-01

    in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-[delta] or (Ln1-xSrx)1-sFe1-yCioyO3-[delta](s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material...

  10. Composite group of explicit Runge-Kutta methods

    Science.gov (United States)

    Hamid, Fatin Nadiah Abd; Rabiei, Faranak; Ismail, Fudziah

    2016-06-01

    In this paper,the composite groups of Runge-Kutta (RK) method are proposed. The composite group of RK method of third and second order, RK3(2) and fourth and third order RK4(3) base on classical Runge-Kutta method are derived. The proposed methods are two-step in nature and have less number of function evaluations compared to the existing Runge-Kutta method. The order conditions up to order four are obtained using rooted trees and composite rule introduced by J. C Butcher. The stability regions of RK3(2) and RK4(3) methods are presented and initial value problems of first order ordinary differential equations are carried out. Numerical results are compared with existing Runge-Kutta method.

  11. Interfacial Design of Composite Ablative Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) project proposes the development of a computational software package to provide NASA with advanced materials...

  12. The composite materials handbook (MIL handbook 17). Volume 1: Guidelines for characterization of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    1999-01-01

    The Composite Materials Handbook (MIL Handbook 17) is THE source for data and usage guidelines for current and emerging polymer matrix composite materials. It provides the tools needed to design and fabricate end items from polymer matrix composite materials and offers guidelines for how these data should be generated and used. The Handbook is a comprehensive guide of composites technology and engineering, an area that is advancing and changing rapidly. Volume 1 explains the methods by which materials property data should be obtained, and criteria for their acceptance for publication in the Handbook.

  13. Stiffness analysis of the sarafix external fixator of composite materials

    Directory of Open Access Journals (Sweden)

    Nedim Pervan

    2016-01-01

    Full Text Available This paper describes a structural analysis of the CAD model three versions fixators Sarafix which to explore the possibility of introducing composite materials in the construction of the connecting rod fixators comparing values of displacement and stiffness at characteristic points structure. Namely, we investigated constructional performance of fixators Sarafix with a connecting rod formed from three different composite materials, the same matrix (epoxy resin with three different types of fibers (E glass, kevlar 49 and carbon M55J. Results of structural analysis fixators Sarafix with a connecting rod made of composite materials are compared with the results of tubular connecting rod fixators made of stainless steel. After comparing the results, from the aspect of stiffness, we gave the final considerations about composite material which provides an adequate substitution for the existing material.

  14. The surface finish of light-cured composite resin materials.

    Science.gov (United States)

    Sidhu, S K; Henderson, L J

    1993-01-01

    A necessity for any dental restorative material is its ability to take and maintain a smooth surface finish. Composite resin restorative materials with fillers and matrix of differing hardness are difficult to finish and polish. The use of aluminum trioxide discs is a popular and acceptable method of finishing composite restorative materials where the material is accessible. Burs and stones are used for finishing and polishing inaccessible areas. This study was undertaken to compare the surface finish of composite resin restorative material when finished with white stones, superfine diamond burs and aluminum trioxide discs. The finished surface was measured with a profilometer and the roughness average value used to compare the surfaces. The aluminum trioxide discs gave the best and most consistent results. It was possible to attain similar results with the superfine diamond bur. However, the results were highly variable. None of the methods used achieved the smoothness of composite resin cured against a transparent matrix.

  15. ECODESIGN CRITERIA FOR COMPOSITE MATERIALS AND PRODUCTS

    Directory of Open Access Journals (Sweden)

    B. Attaf

    2015-07-01

    Full Text Available According to sustainable development principles, the design of a composite product must be in compliance with the new regulations and standards in terms of Health protection (H and Environmental preservation (E besides Quality assurance (Q. With this argument as an objective, our contribution aims to innovate and develop new methodologies providing sustainable design of new generation of composite products through the consideration of the three balanced key aspects: H, E and Q. To achieve these requirements, we have defined and developed new criteria in the form of eco-coefficients, which can later on be implemented into mechanical characterization tests, in advanced composite formulations and associated constitutive equations. They can also be integrated into future finite-element computer programs to assess and improve the performance of the H-E-Q interrelated function.

  16. ECODESIGN CRITERIA FOR COMPOSITE MATERIALS AND PRODUCTS

    Directory of Open Access Journals (Sweden)

    B. Attaf

    2013-06-01

    Full Text Available According to sustainable development principles, the design of a composite product must be in compliance with the new regulations and standards in terms of Health protection (H and Environmental preservation (E besides Quality assurance (Q. With this argument as an objective, our contribution aims to innovate and develop new methodologies providing sustainable design of new generation of composite products through the consideration of the three balanced key aspects: H, E and Q. To achieve these requirements, we have defined and developed new criteria in the form of eco-coefficients, which can later on be implemented into mechanical characterization tests, in advanced composite formulations and associated constitutive equations. They can also be integrated into future finite-element computer programs to assess and improve the performance of the H-E-Q interrelated function.

  17. Structured Piezoelectric Composites: Materials and Applications

    NARCIS (Netherlands)

    Van den Ende, D.A.

    2012-01-01

    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits t

  18. Mechanics of composite material subjected to eigenstress

    DEFF Research Database (Denmark)

    Fuglsang Nielsen, L.

    In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given to the t......In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given...

  19. Compendium of Fractographic Data for Composite Materials

    Science.gov (United States)

    1989-12-01

    Society for Metals, 1987, p6-45. Figure B-12 Neat Resin Properties at Room Temperature/Composite Design Encyclopedia, University of Delaware, Vol 1...Mechanical Behavior, Carl Zweben and H. Thomas Hahn. Figure B-13 Graphical Representation of Neat Resin Properties at Room Temperature/Composite Design... Resin Properties at Room Temperature D180-3 1996-1 B13 100 _____________________________ 9.0 (14.5) (1.3) f-j Strength (1.1 Modulus 80 (13-1)(1.2) 0

  20. Composite resin: a versatile, multi-purpose restorative material.

    Science.gov (United States)

    Margeas, Robert

    2012-01-01

    Introduced more than some 50 years ago, composite resin technology has simplified the manner in which clinicians practice restorative dentistry, offering greater predictability and improved physical properties. Decades of material science and laboratory development along with clinical trials in human subjects have culminated in composite resin being validated as a reliable, multifunctional restorative material. With a wide range of composite resins available today, clinicians can benefit from knowing the infrastructure of a given material in order to determine which type will work best in a particular clinical situation.

  1. The New Technology of Composite Materials Repairing by Light Wave

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-min; CHEN Yu-ming; YU Xiao-lei; WANG Le-xin

    2004-01-01

    The repairing of damaged composite materials becomes a hot research subject in the late 1990s.In this paper a new technology of repairing composite materials is given on the basis of our previous research.The light wave of 675nm transmitted by optical fiber is used as repairing light source,special repairable adhesive which can be stimulated by the light is adopted.By comparing the stiffness of the composite material before and after being damaged,it can be concluded that the mechanical property will not be changed with the feasible repairing technology.

  2. Use of textile fibres in the reinforcement of a gypsum-cork based composite material

    OpenAIRE

    Vasconcelos, Graça; Camões, Aires; Fangueiro, Raúl, ed. lit.; Vila-Chã, Nuno; Jesus, Carlos M. G.; Cunha, Fernando Eduardo Macedo

    2013-01-01

    The study presented herein focus on the analysis of a series of experimental tests aiming at characterizing the performance of distinct textile fibers acting as a reinforcement of a gypsum-cork composite material. Two groups of textile fibers were selected, namely synthetic fibers (glass and basalt) and natural fibers (banana and sisal). The reinforced composite material was submitted to distinct types of loading, namely compression tests, which it was possible to obtain the compressive stren...

  3. Active Structural Fibers for Multifunctional Composite Materials

    Science.gov (United States)

    2012-07-31

    31, 2012 X - ray Diffraction of BST Coatings • BaxSr1-xTiO3 films can be grown with stoichiometry control • Process allows for control of the film...thickness from ~500nm to 20mm •Other perovskite compositions can be synthesized 2q Henry A Sodano – AFOSR Mech. of Multifunctional and

  4. Thickening compositions, and related materials and processes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Michael Joseph; Perry, Robert James; Enick, Robert Michael; Lee, Jason Jiwoo

    2017-10-03

    A silicone polymer is provided, modified with at least one functional group from the class of anthraquinone amide groups; anthraquinone sulfonamide groups; thioxanthone amide groups; or thioxanthone sulfone amide groups. The polymer can be combined with a hydrocarbon solvent or with supercritical carbon dioxide (CO.sub.2), and is very effective for increasing the viscosity of either medium. A process for the recovery of oil from a subterranean, oil-bearing formation is also described, using supercritical carbon dioxide modified with the functionalized silicone polymer. A process for extracting natural gas or oil from a bedrock-shale formation is also described, again using the modified silicone polymer.

  5. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    The high strain rate characterisation of FRP materials present the experimenter with a new set of challenges in obtaining valid experimental data. These challenges were addressed in this work with basis in classic wave theory. The stress equilibrium process for linear elastic materials, as fibre...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...

  6. Mathematical model predicts the elastic behavior of composite materials

    Directory of Open Access Journals (Sweden)

    Zoroastro de Miranda Boari

    2005-03-01

    Full Text Available Several studies have found that the non-uniform distribution of reinforcing elements in a composite material can markedly influence its characteristics of elastic and plastic deformation and that a composite's overall response is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method, Eshelby's method and dislocation mechanisms are usually employed in formulating a composite's constitutive response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose of this study was to find the correlation between a composite material's particle distribution and its resistance, and to come up with a mathematical model to predict the material's elastic behavior. The proposed formulation was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It is also shown that Maxwell-Boltzmann's distribution law can be applied to identify the correlation between the material's particle distribution and its resistance, using Eshelby's thermal stresses.

  7. Microbiological destruction of composite polymeric materials in soils

    Science.gov (United States)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  8. Comparison of self repair in various composite matrix materials

    Science.gov (United States)

    Dry, Carolyn

    2014-04-01

    In a comparison of self repair in graphite composites (for airplane applications) versus epoxy and vinyl ester composites (for building structures or walls) 1 the type of damage that the fiber/matrix is prone to experience is a prime factor in determining which materials self repair well and 2 the flow of energy during damage determines what kinds of damage that can be self repaired well. 1) In brittle composites, repair was successful throughout the composite due to matrix cracking which allowed for optimum chemical flow, whereas in toughened composites that did not crack, the repair chemical flows into a few layers of the composite. 2) If the damage energy is stopped by the composite and goes laterally, it causes delamination which will be repaired; however if the damage energy goes through the composite as with a puncture, then there will be limited delamination, less chemical release and less self repair.

  9. Composite materials for polymer electrolyte membrane microbial fuel cells.

    Science.gov (United States)

    Antolini, Ermete

    2015-07-15

    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials.

  10. Using Virtual Testing for Characterization of Composite Materials

    Science.gov (United States)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  11. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications

    Directory of Open Access Journals (Sweden)

    Haribabu Palneedi

    2016-03-01

    Full Text Available Multiferroic magnetoelectric (ME composites are attractive materials for various electrically and magnetically cross-coupled devices. Many studies have been conducted on fundamental understanding, fabrication processes, and applications of ME composite material systems in the last four decades which has brought the technology closer to realization in practical devices. In this article, we present a review of ME composite materials and some notable potential applications based upon their properties. A brief summary is presented on the parameters that influence the performance of ME composites, their coupling structures, fabrications processes, characterization techniques, and perspectives on direct (magnetic to electric and converse (electric to magnetic ME devices. Overall, the research on ME composite systems has brought us closer to their deployment.

  12. Methods for forming group III-arsenide-nitride semiconductor materials

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  13. The Surface Groups and Active Site of Fibrous Mineral Materials

    Institute of Scientific and Technical Information of China (English)

    DONG Fa-qin; WAN Pu; FENG Qi-ming; SONG Gong-bao; PENG Tong-jiang; LI Ping; LI Guo-wu

    2004-01-01

    The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials.

  14. Use of composite materials in oil industry

    OpenAIRE

    Trifunović, Prvoslav

    2011-01-01

    The most frequently used composites for fabrication of primary and secondary constructions within the oil industry are made of epoxy, phenolic or polymer matrix combined with glass, carbon or aramid fibers. For fabrication of risers, thermoplastic polymers (polyethylene, polyvinyldenefluoride, and polyamide) are used, which are to be wound around steel reinforcement of riser. Polymer may be reinforced with glass or carbon fibers. Instead of thermoplastic polymers, epoxy matrix reinforced with...

  15. Active Structural Fibers for Multifunctional Composite Materials

    Science.gov (United States)

    2014-05-06

    Sebald [3] used extrusion methods to produce fibers with a platinum core surrounded by a PNN-PZT/ polymer binder which was fired to leave a platinum/PNN...researchers have developed composite piezoelectric devices consisting of an active piezoceramic fiber embedded in a polymer matrix. The polymer matrix acts...active fibers are embedded in a polymer matrix, the rule of mixtures can be applied again a second time by taking the piezoelectric shell to be an

  16. Mechanical behaviour of dental composite filling materials using digital holography

    OpenAIRE

    Monteiro, J.M.; Lopes, H.; M. A. P. Vaz; Campos, J.C. Reis

    2010-01-01

    One of the most common clinical problems in dentistry is tooth decay. Among the dental filling materials used to repair tooth structure that has been destroyed by decay are dental amalgam and composite materials based on acrylics. Dental amalgam has been used by dentists for the past 150 years as a dental restorative material due to its low cost, ease of application, strength, durability, and bacteriostatic effects. However its safety as a filling material has been questioned due to th...

  17. Health, safety and environmental requirements for composite materials

    Science.gov (United States)

    Hazer, Kathleen A.

    1994-01-01

    The health, safety and environmental requirements for the production of composite materials are discussed. The areas covered include: (1) chemical identification for each chemical; (2) toxicology; (3) industrial hygiene; (4) fire and safety; (5) environmental aspects; and (6) medical concerns.

  18. Space Radiation Effects in Inflatable and Composite Habitat Materials

    Science.gov (United States)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  19. An Expert System in FRP Composite Material Design

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design,ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowledge bases, a material properties algorithm base, an explanation engine, various data bases, several function models and the user interface. The ESFRP can simulate human experts to make design scheme for fibre-reinforced plastics design, FRP layered plates design and FRP typical engineering components design. It can also predict the material properties and make strength analysis according to the micro and macro mechanics of composite materials. A satisfied result can be gained through the reiterative design.

  20. Electrode material comprising graphene-composite materials in a graphite network

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  1. Electrode material comprising graphene-composite materials in a graphite network

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H.; Lee, Jung K.

    2014-07-15

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  2. The group velocity variation of Lamb wave in fiber reinforced composite plate.

    Science.gov (United States)

    Rhee, Sang-Ho; Lee, Jeong-Ki; Lee, Jung-Ju

    2007-12-01

    Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not the same as the theoretical group velocities which is calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude correction in addition to direction correction. In this study, S0 mode phase velocity dispersion curves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity could be calculated from the slowness surface. The recalculated group velocities with consideration of the magnitude and direction from the slowness surface are compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.

  3. Support Assembly for Composite Laminate Materials During Roll Press Processing

    Science.gov (United States)

    Catella, Luke A.

    2011-01-01

    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  4. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  5. Development of graphite-polymer composites as electrode materials

    Directory of Open Access Journals (Sweden)

    Carolina Maria Fioramonti Calixto

    2007-06-01

    Full Text Available Graphite powder was mixed to polyurethane, silicon rubber and Araldite® (epoxy in order to prepare composite materials to be used in the preparation of electrodes. Results showed that voltammetric response could be obtained when at least 50% of graphite (w.w-1 is present in the material. SEM and thermogravimetry were also used in the characterization of the composites.

  6. Composite Materials for Radiation Shielding During Deep Space Missions

    Science.gov (United States)

    Grugel, R. N.; Watts, J.; Adams, J. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Minimizing radiation exposure from the galactic cosmic ray (GCR) environment during deep space missions is essential to human health and sensitive instrument survivability. Given the fabrication constraints of space transportation vehicles protective shielding is, consequently, a complicated materials issue. These concerns are presented and considered in view of some novel composite materials being developed/suggested for GCR shielding applications. Advantages and disadvantages of the composites will be discussed as well as the need for coordinated testing/evaluation and modeling efforts.

  7. Sensor development exploiting graphite-epoxy composite as electrode material

    Science.gov (United States)

    Azevedo, André L. M.; Oliveira, Renato S.; Ponzio, Eduardo A.; Semaan, Felipe S.

    2015-11-01

    This study presents some results regarding the development and characterization of graphite-epoxy composites for use as working electrodes in electroanalysis. Such composites were preliminary assessed by TGA-DTA, AFM, XDR and cyclic voltammetry (CV), standing for a suitable stable and low cost material for electroanalytical purposes. The described material was used, in its best proportion (65% graphite m/m), to build a cell electrochemistry.

  8. Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications

    OpenAIRE

    2015-01-01

    The paper describes the preparation, characterisation, and testing of tetracycline loaded collagen-carboxymethylcellulose/hydroxyapatite ternary composite materials. The synthesis of this drug delivery system consists in two steps: the first step is the mineralization of collagen-carboxymethylcellulose gel while the second step corresponds to the loading of the ternary composite material with tetracycline. The obtained DDS is characterised by physicochemical, morphological, and release behavi...

  9. Physical and mechanical properties of composite materials of different compositions based on waste products

    Directory of Open Access Journals (Sweden)

    A.E. Burdonov

    2012-12-01

    Full Text Available This paper presents a study on the effect of mineral filler on the polymer composite material based on waste products of heat and power engineering - fly ash. This type of waste products has never been used for the production of polymer-mineral composites. Depending on the type of ash, its chemical composition and its quantity in the material, we can adjust the properties of the resulting composites. The use of fly ash as a filler will not only make a product less expensive, but it also will reduce development pressure on the environment and improve the physical and mechanical properties of the material. The article shows research results of the ash chemical composition as well as the properties of the resulting materials on its basis. According to the research conclusions there is a prospect for using this material in the construction industry.

  10. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  11. Composite materials for wind power turbine blades

    DEFF Research Database (Denmark)

    Brøndsted, P.; Lilholt, H.; Lystrup, Aa.

    2005-01-01

    Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood...... procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic...

  12. Statistical analysis and interpolation of compositional data in materials science.

    Science.gov (United States)

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-01

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  13. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    Science.gov (United States)

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Presin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  14. Friction Stir Processing of Particle Reinforced Composite Materials

    Directory of Open Access Journals (Sweden)

    Daniel Solomon

    2010-01-01

    Full Text Available The objective of this article is to provide a review of friction stir processing (FSP technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  15. Method of tissue repair using a composite material

    Science.gov (United States)

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  16. Method of tissue repair using a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O' Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  17. Composite Structures and Materials Research at NASA Langley Research Center

    Science.gov (United States)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  18. Mechanical behaviour of engineering materials. Metals, ceramics, polymers, and composites

    Energy Technology Data Exchange (ETDEWEB)

    Roesler, Joachim; Baeker, Martin [TU Braunschweig (Germany). Inst. fuer Werkstoffe; Harders, Harald

    2007-07-01

    How do engineering materials deform when bearing mechanical loads? To answer this crucial question, the book bridges the gap between continuum mechanics and materials science. The different kinds of material deformation (elasticity, plasticity, fracture, creep, fatigue) are explained in detail. The book also discusses the physical processes occurring during the deformation of all classes of engineering materials (metals, ceramics, polymers, and composites) and shows how these materials can be strengthened to meet the design requirements. It provides the knowledge needed in selecting the appropriate engineering material for a certain design problem.

  19. Fatigue Prediction for Composite Materials and Structures

    Science.gov (United States)

    2005-10-01

    Teoría de Mezclas Serie-Paralelo Avanzada para el Análisis de Materiales Compuestos ” V Congreso de la Asociacion Española de Materiales Compuestos ...Computational Materials Science 32, 175–195 [2] Rastellini, F.; Oller, S. (2004). Modelado numérico de no linealidad constitutiva en laminados compuestos

  20. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    Science.gov (United States)

    2013-03-01

    Neutrons are moderated or reduced in energy by scattering off of nuclei. When cosmic neutrons with high kinetic energy enter earth’s atmosphere...neutron flux. The simulation volume was modeled as a sphere centered at the origin with a radius of 100 cm. The shielding material was modeled as a

  1. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  2. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  3. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  4. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  5. Water Group Composition Near the Orbit of Enceladus

    Science.gov (United States)

    Williams, J. D.; Delamere, P. A.; Bagenal, F.; Reisenfeld, D.; Fleshman, R.

    2008-12-01

    We present magnetospheric ion composition results from the Cassini CAPS IMS instrument. The data set is averaged over a four year period. Data from the equatorial plane are selected and binned into radial, local time and longitude bins with a focus on radial distances between 3-10 Saturn radii. The data analysis process necessitates fitting the instrument response functions to the raw data and so methods of assessment of data uncertainty are also presented. Water group ions (O+, OH+, H2O+, H3O+; or collectively W+), presented as mixing ratios dominate over H+ in this radial range and O+ is the dominant water group species. Temporal variations within the study period are presented. The energy distribution of the ion composition is also examined and the flow velocity is compared to the corotation velocity of the plasma.

  6. Phase stress measurements in composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Akiniwa, Yoshiaki; Tanaka, Keisuke [Nagoya Univ. (Japan). School of Engineering

    1997-06-01

    Using an aluminum alloy composite containing 20 wt.% of SiC powder and an aluminum alloy itself, a phase stress under monoaxial tensile load was tested using x-ray and neutron methods, to compare both of them. For specimens, a 20 vol.% SiC powder reinforced aluminum alloy and an aluminum alloy itself were used. As a result, the following results could be obtained. Young`s modulus and Poisson ratio of the aluminum alloy itself using x-ray method were E=74.5 GPa and {nu}=0.312, respectively, and those using neutron method were E=75.3 GPa and {nu}=0.384, respectively. A relationship between loading stress and lattice strain of the aluminum alloy itself using neutron method was possible to approximate linearly by containing macroscopic plastic deformation region. The lattice strain of each phase in the composite increased proportionally with loading stress in its elastic region, but when remarkably increasing plastic deformation, the lattice strain decreased proportionally in aluminum phase and increased in SiC phase. (G.K.)

  7. The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials

    Science.gov (United States)

    Barghouty, A. F.; Thibeault, S. A.

    2006-01-01

    This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.

  8. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    decisions in waste planning thus require a holistic and systematic assessment of environmental impacts of different waste management options. Such assessment requires reliable information on the physical and chemical waste properties to model the flows of waste materials and substances throughout the entire...... the selection of appropriate acid digestion method for future waste characterization studies and the comparison of data across existing studies. A consistent dataset for 73 physico-chemical parameters in 49 residual and 24 source-segregated Danish household waste fractions was obtained and is now available...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions...

  9. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  10. The impact of group composition and attitudes towards diversity on anticipated outcomes of diversity in groups

    NARCIS (Netherlands)

    van Oudenhoven-van der Zee, Karen; Paulus, Paul; Vos, Menno; Parthasarathy, Niveditha

    2009-01-01

    In two studies, students evaluated group pictures of workgroups of varying ethnic and gender composition with respect to anticipated affective and productive outcomes. The impact of level of diversity, faultlines and individual differences in diversity attitudes on anticipated outcomes were examined

  11. Gender and Group Composition in Small Task Groups Using Computer-Mediated Communication.

    Science.gov (United States)

    Savicki, Victor; And Others

    1996-01-01

    Gender and group composition variables in a computer-mediated communication context are examined. Subjects were 36 undergraduate male and female psychology students. Findings are analyzed in terms of choice of language; participation; satisfaction; and interpersonal conflict. Ten tables present study results. (Author/AEF)

  12. The impact of group composition and attitudes towards diversity on anticipated outcomes of diversity in groups

    NARCIS (Netherlands)

    van Oudenhoven-van der Zee, Karen; Paulus, Paul; Vos, Menno; Parthasarathy, Niveditha

    2009-01-01

    In two studies, students evaluated group pictures of workgroups of varying ethnic and gender composition with respect to anticipated affective and productive outcomes. The impact of level of diversity, faultlines and individual differences in diversity attitudes on anticipated outcomes were examined

  13. Regeneration and Remodeling of Composite Materials

    Science.gov (United States)

    2015-08-27

    binary image (Figure 21a and 21b), overlaying a 30x30 cell grid (cell size ~200 µm x 200 µm, Figure 21c), and calculating cell concentrations of each...2011) 3536–3544. doi:10.1557/JMR.2001.0485. [64] J.A. Carioscia, H. Lu, J.W. Stanbury, C.N. Bowman, Thiol-ene oligomers as dental restorative materials

  14. Thin Film Composite Materials, Phase 2

    Science.gov (United States)

    1987-01-01

    were Kevlar coated with silicone, EPDM , or neoprene rubber, with the following results: 1. Tensile testing of coated Kevlar fabric is very difficult...materials. 2. A method was developed for measuring water vapor permeability. Neoprene and EPDM are promising as coatings with good water resistance; however...control the folding of the fabric, since the diameters of the spiral channel will be fixed. Because of the stability imparted by the channel, it is

  15. Accelerated hygrothermal stabilization of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Jeffrey Alan [Univ. of California, Davis, CA (United States)

    1994-05-01

    Experimentation validated a simple moisture conditioning scheme to prepare Gr/Ep composite parts for precision applications by measuring dimensional changes over 90 days. It was shown that an elevated temperature moisture conditioning scheme produced a dimensionally stable part from which precision structures could be built/machined without significant moisture induced dimensional changes after fabrication. Conversely, that unconditioned Gr/Ep composite panels exhibited unacceptably large dimensional changes (i.e., greater than 125 ppM). It was also shown that time required to produce stable parts was shorter, by more than an order of magnitude, employing the conditioning scheme than using no conditioning scheme (46 days versus 1000+ days). Two final use environments were chosen for the experiments: 50% RH/21C and 0% RH/21C. Fiberite 3034K was chosen for its widespread use in aerospace applications. Two typical lay-ups were chosen, one with low sensitivity to hygrothermal distortions and the other high sensitivity: [0, ± 45, 90]s, [0, ± 15, 0]s. By employing an elevated temperature, constant humidity conditioning scheme, test panels achieved an equilibrium moisture content in less time, by more than an order of magnitude, than panels exposed to the same humidity environment and ambient temperature. Dimensional changes, over 90 days, were up to 4 times lower in the conditioned panels compared to unconditioned panels. Analysis of weight change versus time of test coupons concluded that the out-of-autoclave moisture content of Fiberite 3034K varied between 0.06 and 0.1%.

  16. Extended propagation model for interfacial crack in composite material structure

    Institute of Scientific and Technical Information of China (English)

    闫相桥; 冯希金

    2002-01-01

    An interfacial crack is a common damage in a composite material structure . An extended propaga-tion model has been established for an interfacial crack to study the dependence of crack growth on the relativesizes of energy release rates at left and right crack tips and the properties of interfacial material characterize thegrowth of interfacial crack better.

  17. Designing with an underdeveloped computational composite for materials experience

    NARCIS (Netherlands)

    Barati, B.; Karana, E.; Hekkert, P.P.M.; Jönsthövel, I.

    2015-01-01

    In response to the urge for multidisciplinary development of computational composites, designers and material scientists are increasingly involved in collaborative projects to valorize these technology-push materials in the early stages of their development. To further develop the computational com

  18. Investigation of woven composites as potential cryogenic tank materials

    Science.gov (United States)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  19. Effective Dielectric Response of Composites with Graded Material

    Institute of Scientific and Technical Information of China (English)

    YANG Zi-Dong; WEI En-Bo; SONG Jin-Bao

    2004-01-01

    The effective dielectric response of linear composites containing graded material is investigated under an applied electric field Eo. For the cylindrical inclusion with gradient dielectric function, εi(r) = b+cr, randomly embedded in a host with dielectric constant εm, we have obtained the exact solution of local electric potential of the composite media regions, which obeys a linear constitutive relation D= εE, using hypergeometric function. In dilute limit, we have derived the effective dielectric response of the linear composite media. Furthermore, for larger volume fraction, the formulas of effective dielectric response of the graded composite media are given.

  20. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  1. Electromechanical coupling of 2-2 piezo-composite material

    Institute of Scientific and Technical Information of China (English)

    水永安; 薛强

    1996-01-01

    A dynamic mode) for 2-2 piezo-composite material was developed,in which the acoustic plane waves propagating along the interface were solved and their dispersion curves were obtained.By taking the resonator thickness as half a wavelength or its odd fold,the resonant frequencies of the composite transducers are in agreement with the dispersion curves.From the dynamic model the piezoelectric coupling coefficients for the thickness vibration of the composite could be obtained as a function of the composite thickness as well as the volume fraction of the ceramic phase.The results show that when the thickness vibration mode is decoupled with the lateral periodical vibration mode,the piezoelectric coupling reaches its maximum.This condition gives a maximum frequency bandwidth and a greatest piezoelectric coupling coefficient for the composite material.

  2. Development and characterization of composite materials for production of composite risers by filament winding

    Energy Technology Data Exchange (ETDEWEB)

    Sobrinho, L.L.; Bastian, F.L. [Federal University of Rio de Janeiro, RJ (Brazil). Dept. of Metallurgical and Materials Engineering], e-mail: ledjane@metalmat.ufrj.br; Calado, V.M.A. [Federal University of Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2008-07-01

    Industry has been challenged to provide riser systems which are more cost effective and which can fill the technology gaps with respect to water depth, riser diameter and high temperatures left open by flexible, steel catenary risers (SCRs) and hybrid risers. Composite materials present advantages over conventional steel risers because composite materials are lighter, more fatigue and corrosion resistant, better thermal insulators and can be designed for improving the structural and mechanical response. Besides, composite materials present some attractive attributes for the offshore service, such as: high specific strength and stiffness. This paper focuses on the development and characterization of a polymer matrix (epoxy) and of material composite (epoxy/fiber glass), which will be used in a development for composites risers by the filament winding process (wet winding). (author)

  3. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / R and D mesoscopic organ control heat-resistant / wear-resistant metal group composite materials (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / mesoscopic fukuso soshiki seigyo tainetsu taimamosei kinzokuki fukugo zairyo no kenkyu kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Out of the R and D of mesoscopic metal group composite materials, the paper described the fiscal 1997 results. In the in-situ method as a composite material making method, elucidated to some degree were chemical composition of Fe-C-Cr-V-Nb-Mo-W-Ni base multi-dimensional alloys, and wear resistance and oxidation resistance of MC type carbide dispersion multi-phase texture crystallizing as primary crystal and eutectic. In the composite material making with ceramic fiber and alloy by the pressure infiltration method, the paper clarified the texture formation mechanism in solidification/heat treatment by a combination of Al alloys and alumina long fiber, and the relation between fiber configuration and wear resistance. By MA and MG methods as the powder metallurgy composite material making method, a composed body of {alpha}-stainless steel of Fe-12%Cr composition and M23C6 of 40-90vol% are designed for alloy composition, and powder of amorphous or hyperfine texture was fabricated. By hot pressing this, fine texture mixed with M23C6 of 1{mu}m and ferrite was obtained. Further, by mechanically alloying the powder composed of high speed steel, TiN powder and TiC powder, hyperfine texture mixed powder was fabricated. Conditions of HIP treatment of large members were also discussed. 58 refs., 124 figs., 35 tabs.

  4. DOE Automotive Composite Materials Research: Present and Future Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  5. Emissivity Results on High Temperature Coatings for Refractory Composite Materials

    Science.gov (United States)

    Ohlhorst, Craig W.; Vaughn, Wallace L.; Daryabeigi, Kamran; Lewis, Ronald K.; Rodriguez, Alvaro C.; Milhoan, James D.; Koenig, John R.

    2007-01-01

    The directional emissivity of various refractory composite materials considered for application for reentry and hypersonic vehicles was investigated. The directional emissivity was measured at elevated temperatures of up to 3400 F using a directional spectral radiometric technique during arc-jet test runs. A laboratory-based relative total radiance method was also used to measure total normal emissivity of some of the refractory composite materials. The data from the two techniques are compared. The paper will also compare the historical database of Reinforced Carbon-Carbon emissivity measurements with emissivity values generated recently on the material using the two techniques described in the paper.

  6. Recent advances and developments in composite dental restorative materials.

    Science.gov (United States)

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  7. Microscale Fracture of Composite Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Martyniuk, Karolina

    materials models can be developed if the understanding of the microscale damage- the first stage of material failure- is increased. Therefore it is important to characterize materials’ microstructures and micro-cracks initiation and propagation.The microstructure of fibre reinforced composite materials...... which are the most extensively used in the rotor blades, has been shown to play an important role on the overall response of the material. The properties of a fibre/matrix interface have been found to have a significant influence on the macroscopic behavior of composites. Therefore, the characterization......Due to the increase in wind turbines size it is essential that weight savings due to design changes do not compromise the reliability of the rotor blades. The reliability can be increased by improving design rules and the material models that describe the materials properties. More reliable...

  8. Thermoviscoelastic dynamic response for a composite material thin narrow strip

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hong Liang; Qi, Li-Li; Liu, Hai-Bo [Hunan University, Changsha (China)

    2015-02-15

    Based on von Karman nonlinear strain-displacement relationships and classical thin plate theory, a list of nonlinear dynamic equilibrium equations for a viscoelastic composite material thin narrow strip under thermal and mechanic loads are deduced. According to the material constitutive relationship and the relaxation modulus in the form of the Prony series, combing with the Newmark method and the Newton-cotes integration method, a new numerical algorithm for direct solving the whole problem in the time domain is established. By applying this numerical algorithm, the viscoelastic composite material thin narrow strip as the research subject is analyzed systematically, and its rich dynamical behaviors are revealed comprehensively. To verify the accuracy of the present work, a comparison is made with previously published results. Finally, the viscoelastic composite material thin narrow strip under harmonic excitation load and impact load are discussed in detail, and many valuable thermoviscoelastic dynamic characteristics are revealed.

  9. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  10. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2017-09-28

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  11. A grammatical approach to customization of shape and composite materials

    Science.gov (United States)

    Nandi, Soumitra

    With the increasing use of composite materials in Mechanical and Aerospace industries, an approach is required to facilitate designing of components using composite materials, while ensuring customization of the shape such a way that multiple design goals for the components are satisfied. Existing design methods may be used in some cases, where the component shape and loadings are simple. While a significant amount of research has been conducted to study the properties of composite materials, little attention has been paid to find out a design approach such that (1) the user requirements in the very general form may be used directly and as the input for the design, (2) the best possible composite material are selected to meet multiple desired functions, and (3) shape variation is analyzed in order to enable mass customization of the design. Thus an approach is required that will be able to handle both the shape and the material in order to design a load bearing component using composite materials. In this research the focus is to develop a design approach that will consider the user requirements for a composite component in its very general form and generate component shape and material details in a systematic order so that the designed component can withstand a given loading condition. Consequently, the Primary Research Question is: How to simultaneously explore shape and composite materials during the design of a product to meet multiple property and functional goals? The wide range of properties, covered by various fiber-matrix combinations, along with their directional property characteristics, maximizes the flexibility of the designers, while designing composite material products. Meeting multiple property goals, however, complicates the design process as both the composite material selection and the component shape formation becomes highly intricate with the loading conditions and a number of matrix calculations needs to be performed to determine theoretical

  12. Composite material fabrication techniques. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B J; Paulauskas, F L [Oak Ridge National Lab., TN (United States); Miller, J; Parzych, W [Metters Industries, Inc. (United States)

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  13. Composite materials based on wastes of flat glass processing.

    Science.gov (United States)

    Gorokhovsky, A V; Escalante-Garcia, J I; Gashnikova, G Yu; Nikulina, L P; Artemenko, S E

    2005-01-01

    Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.

  14. A novel wound dressing material — fibrin–chitosan–sodium alginate composite sheet

    Indian Academy of Sciences (India)

    M Pandima Devi; M Sekar; M Chamundeswari; A Moorthy; G Krithiga; N Selva Murugan; T P Sastry

    2012-12-01

    The present study describes preparation and characterization of fibrin–chitosan–sodium alginate composite (F–C–SA) in sheet form. F–C–SA composite was prepared and characterized for its physicochemical properties like water absorption capacity, surface morphology, FTIR spectra and mechanical properties. The optimum quantities of fibrin, chitosan and sodium alginate to get better mechanical properties to composite were determined. FTIR spectrum confirmed the interaction between amino groups of chitosan, fibrin and sodium alginate and SEM studies revealed composite nature of the material.

  15. Recycling Wood Composite Panels: Characterizing Recycled Materials

    Directory of Open Access Journals (Sweden)

    Hui Wan

    2014-10-01

    Full Text Available Downgraded medium density fiberboard (MDF, particleboard (PB, and oriented strandboard (OSB panels were individually subjected to steam explosion treatment. Downgraded MDF and PB panels were separately treated with thermal chemical impregnation using 0.5% butanetetracarboxylic acid (BTCA. And downgraded PB panels were processed with mechanical hammermilling. The pH, buffer capacity, fiber length, and particle size of these recycled materials were evaluated. After the steam explosion and thermal chemical impregnation treatments, the pH and buffer capacity of recycled urea formaldehyde resin (UF-bonded MDF and PB furnishes increased and the fiber length decreased. The hammermilling of recycled PB was less likely to break particles down into sizes less than 1 mm2.

  16. Highly explosive nanosilicon-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Clement, D.; Diener, J.; Gross, E.; Kuenzner, N.; Kovalev, D. [Technical University of Munich, Physics Department, James-Franck-Str., 85747 Garching (Germany); Timoshenko, V.Yu. [Moscow State M.V. Lomonosov University, Physics Department, 119899 Moscow (Russian Federation)

    2005-06-01

    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Longevity of dental amalgam in comparison to composite materials

    Directory of Open Access Journals (Sweden)

    Windisch, Friederike

    2008-11-01

    Full Text Available Health political background: Caries is one of the most prevalent diseases worldwide. For (direct restaurations of carious lesions, tooth-coloured composite materials are increasingly used. The compulsory health insurance pays for composite fillings in front teeth; in posterior teeth, patients have to bear the extra cost. Scientific background: Amalgam is an alloy of mercury and other metals and has been used in dentistry for more than one hundred and fifty years. Composites consist of a resin matrix and chemically bonded fillers. They have been used for about fifty years in front teeth. Amalgam has a long longevity; the further development of composites has also shown improvements regarding their longevity. Research questions: This HTA-report aims to evaluate the longevity (failure rate, median survival time (MST, median age of direct amalgam fillings in comparison to direct composite fillings in permanent teeth from a medical and economical perspective and discusses the ethical, legal and social aspects of using these filling materials. Methods: The systematic literature search yielded a total of 1,149 abstracts. After a two-step selection process based on defined criteria 25 publications remained to be assessed. Results: The medical studies report a longer longevity for amalgam fillings than for composite fillings. However, the results of these studies show a large heterogeneity. No publication on the costs or the cost-effectiveness of amalgam and composite fillings exists for Germany. The economic analyses (NL, SWE, GB report higher costs for composite fillings when longevity is assumed equal (for an observation period of five years or longer for amalgam compared to composite fillings. These higher costs are due to the higher complexity of placing composite fillings. Discussion: Due to different study designs and insufficient documentation of study details, a comparison of different studies on longevity of direct amalgam and composite

  18. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials

    Directory of Open Access Journals (Sweden)

    Xing S. Li

    2010-02-01

    Full Text Available Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.

  19. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  20. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  1. Review on advanced composite materials boring mechanism and tools

    Science.gov (United States)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  2. Fabrication of a nanostructured gold-polymer composite material.

    Science.gov (United States)

    Mallick, K; Witcomb, M; Scurrell, M

    2006-07-01

    A facile synthesis route is described for the preparation of a poly-(o-aminophenol)-gold nanoparticle composite material by polymerization of o-aminophenol (AP) monomer using HAuCl(4) as the oxidant. The synthesis was carried out in a methanol medium so that it could serve a dual solvent role, a solvent for both the AP and the water solution of HAuCl(4). It was found that oxidative polymerization of AP leads to the formation of poly-AP with a diameter of 50+/-10nm, while the reduction of AuCl(4) (-) results in the formation of gold nanoparticles ( approximately 2nm). The gold nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer composite material. The resultant composite material was characterized by means of different techniques, such as UV-vis, IR and Raman spectroscopy, which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the composite material and the distribution of the metal particles in the composite material.

  3. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    Science.gov (United States)

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    To assess the microhardness of three resin composites employed in the adhesive luting of indirect composite restorations and examine the influence of the overlay material and thickness as well as the curing time on polymerization rate. Three commercially available resin composites were selected: Enamel Plus HRI (Micerium) (ENA), Saremco ELS (Saremco Dental) (SAR), Esthet-X HD (Dentsply/DeTrey) (EST-X). Post-polymerized cylinders of 6 different thicknesses were produced and used as overlays: 2 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, and 6 mm. Two-mm-thick disks were produced and employed as underlays. A standardized amount of composite paste was placed between the underlay and the overlay surfaces which were maintained at a fixed distance of 0.5 mm. Light curing of the luting composite layer was performed through the overlays for 40, 80, or 120 s. For each specimen, the composite to be cured, the cured overlay, and the underlay were made out of the same batch of resin composite. All specimens were assigned to three experimental groups on the basis of the resin composite used, and to subgroups on the basis of the overlay thickness and the curing time, resulting in 54 experimental subgroups (n = 5). Forty-five additional specimens, 15 for each material under investigation, were produced and subjected to 40, 80, or 120 s of light curing using a microscope glass as an overlay; they were assigned to 9 control subgroups (n = 5). Three Vicker's hardness (VH) indentations were performed on each specimen. Means and standard deviations were calculated. Data were statistically analyzed using 3-way ANOVA. Within the same material, VH values lower than 55% of control were not considered acceptable. The used material, the overlay thickness, and the curing time significantly influenced VH values. In the ENA group, acceptable hardness values were achieved with 3.5-mm or thinner overlays after 120 or 80 s curing time (VH 41.75 and 39.32, respectively), and with 2-mm overlays after 40 s (VH 54

  4. Repair bond strength of dual-cured resin composite core buildup materials.

    Science.gov (United States)

    El-Deeb, Heba A; Ghalab, Radwa M; Elsayed Akah, Mai M; Mobarak, Enas H

    2016-03-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers' instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm(2)) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64-86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage.

  5. Cementitious composite materials with improved self-healing potential

    Directory of Open Access Journals (Sweden)

    Cornelia BAERA

    2015-12-01

    Full Text Available Cement-based composites have proved, over the time, certain abilities of self-healing the damages (cracks and especially microcracs that occur within their structure. Depending on the level of damage and of the composite type in which this occurs, the self - healing process (SH can range from crack closing or crack sealing to the stage of partial or even complete recovery of material physical - mechanical properties. The aim of this paper is to present the general concept of Engineered Cementitious Composites (ECCs with their unique properties including their self-healing (SH capacity, as an innovative direction for a global sustainable infrastructure. The experimental steps initiated for the development in Romania of this unique category of materials, using materials available on the local market, are also presented.

  6. A physically-based abrasive wear model for composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  7. Vegetable Fibers for Composite Materials In Constructive Sector

    Science.gov (United States)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  8. Percolation Phenomena For New Magnetic Composites And Tim Nanocomposites Materials

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2015-01-01

    Full Text Available This paper presents a theoretical investigation in order to obtain new composite and nanocomposite magnetic industrial materials. The effective conductivity and thermal effective conductivity have been predicted by adding various types and percentages of conductive particles (Al2O3, MgO, ZnO, Graphite etc. to the main matrices of Epoxy, Iron and Silicon for formulating new composite and nanocomposite industrial materials. The characterization of effective conductivity of new polymeric composites has been investigated with various applied forces, inclusion types and their concentrations. In addition, the effect of inclusion types and their concentrations on the effective thermal conductivities of thermal interface nanocomposite industrial materials has been explained and discussed.

  9. Heat induced damage detection in composite materials by terahertz radiation

    Science.gov (United States)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  10. Composite materials applied to the E-ELT structure

    Science.gov (United States)

    Pajuelo, Eugenio; Gómez, José Ramón; Ronquillo, Bernardo; Brunetto, Enzo; Koch, Fran

    2008-07-01

    The upper part of the European Extremely Large Telescope (E-ELT) altitude structure is one of the most critical areas of the telescope's structure. This part hosts sensitive optical elements of the telescope. Its structural performance has a major impact on the whole system. The most critical requirements are low optical path obscuration, high static and dynamic performance (high specific modulus), high mechanical safety (high specific strength), low wind cross section and low weight. Composite materials are ideally suited to meet these requirements. This study is carried out in order to quantify the relative advantage of composite material over mild steel, in terms of performance and costs. The mechanical behavior of the steel structure can be easily improved with a structure manufactured with composite materials. This structure is significantly lighter than the steel one and reduces relative displacements between primary and secondary mirror. Consequently, optical performance is improved, assembly process is simplified and transport cost is reduced.

  11. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  12. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  13. Mimesis, Memory, and Borrowed Materials: A Portfolio of Compositions

    OpenAIRE

    Bunce, Guy

    2013-01-01

    This thesis consists of a portfolio of nine musical compositions with accompanying recordings and commentary. The works included range from solo chamber music to large ensemble and explore the notions of mimesis, memory, and borrowed materials in musical composition. The commentary begins by providing a framework and historical context to the portfolio and in particular explores mimesis as an æsthetic device across the centuries and art forms. Music for amateurs and multiple tempi are then pr...

  14. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    Science.gov (United States)

    Ifju, Peter G.

    1995-01-01

    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less

  15. Composite materials with uncured epoxy matrix exposed in stratosphere during NASA stratospheric balloon flight

    CERN Document Server

    Kondyurin, Alexey; Bilek, Marcela

    2010-01-01

    A cassette of uncured composite materials with an epoxy resin matrix was exposed in the stratosphere (40 km altitude) over 3 days. Temperature variations of -76...+32.50C and pressure up to 2.1 Torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polycondensation reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed, that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composite in a free space environment during an orbital space flight.

  16. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  17. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  18. Manufacturing technology of the composite materials: nanocrystalline material – polymer type

    OpenAIRE

    B. Ziębowicz; D. Szewieczek; L.A. Dobrzański

    2005-01-01

    Purpose: This paper presents the material and technological solution which makes it possible to obtain the nanocrystalline, ferromagnetic powder material of Fe73.5Cu1Nb3Si13.5B9 alloy after its thermal nanocrystallization with the succeeding high-energy milling. Another aspect was to develop the technology to obtain the nanocrystalline composite materials made by binding the obtained powder material with the high density low-pressures polyethylene (PEHD) with the controlled ferromagnetic and ...

  19. A LOWER BOUND LIMIT ANALYSIS OF DUCTILE COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongtao; Liu Yinghua; Xu Bingye

    2005-01-01

    The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogenization theory with static limit analysis, where the temperature parameter method is used to construct the self-equilibrium stress field. An interface failure model is proposed to account for the effects of the interface on the failure of composites.The static limit analysis with the finite-element method is then formulated as a constrained nonlinear programming problem, which is solved by the Sequential Quadratic Programming (SQP)method. Finally, the macroscopic transverse strength of perforated materials, the macroscopic transverse and off-axis strength of fiber-reinforced composites are obtained through numerical calculation. The computational results are in good agreement with the experimental data.

  20. Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Daniels; Daniel J. Prentice; Chelsea Weir; Michelle L. Pantoya; Gautham Ramachandran; Tim Dallas

    2013-02-01

    Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum with copper oxide was the only mixture to ignite by electrostatic discharge with minimum ignition energy (MIE) of 25 mJ and an electrical conductivity of 1246.25 nS; two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.

  1. Determination of replicate composite bone material properties using modal analysis.

    Science.gov (United States)

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Infrared thermography to impact damaging of composite materials

    Science.gov (United States)

    Boccardi, Simone; Boffa, Natalino D.; Carlomagno, Giovanni M.; Meola, Carosena; Ricci, Fabrizio; Russo, Pietro; Simeoli, Giorgio

    2017-04-01

    Composite materials are becoming ever more popular and being used in an increasing number of applications. This because, to meet the users' demand, it is possible to create a new material of given characteristics in a quite simple way by changing either the type of matrix, or reinforcement. Of course, any new material requires characterization for its appropriate exploitation. In this context, infrared thermography (IRT) represents a viable means since it is non-contact, non-intrusive and can be used either for non-destructive evaluation to detect manufacturing defects, or fatigue induced degradation, or else for monitoring online the response to applied loads. In this work, IRT is used to investigate different types of composite materials which are based on either a thermoset, or a thermoplastic matrix, which may be neat, or modified by addition of a percentage of a specific compatibilizing agent, and reinforced with carbon, glass, or jute fibers. IRT is used with a twofold function. First, to non-destructively evaluate, with the lock-in technique, materials before and after impact to either assure absence of manufacturing defects, or discover the damage caused by the impact. Second, IRT is used to visualize thermal effects, which develop when the material is subjected to impact. The obtained results show that it is possible to follow the material bending, delamination and eventual failure under impact and get information, which may be valuable to deepen the complex impact damaging mechanisms of composites

  3. Report of the Working Group on novel concepts and materials

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R. K.; Brun, T. O.

    1997-09-01

    The working group meeting was chaired by Carpenter and Brun. This session was intended as a session to present ideas that had not yet been fully explored, as well as a place for discussion of topics that did not readily fit in any of the other workshop sessions. The first part of the session focused on moderator materials. During the course of the discussions of some novel potential moderator materials it became clear that there was not even agreement on what makes a good moderator for cold neutrons at short-pulse sources. There were two competing diametrically-opposed schools of thought.

  4. Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Laura Cristina Rusu

    2015-01-01

    Full Text Available The paper describes the preparation, characterisation, and testing of tetracycline loaded collagen-carboxymethylcellulose/hydroxyapatite ternary composite materials. The synthesis of this drug delivery system consists in two steps: the first step is the mineralization of collagen-carboxymethylcellulose gel while the second step corresponds to the loading of the ternary composite material with tetracycline. The obtained DDS is characterised by physicochemical, morphological, and release behaviour by using FTIR spectroscopy and microscopy, scanning electron microscopy, and UV-VIS spectroscopy. Based on the release study, it can be assumed that tetracycline is released in a prolonged way, assuring at least 6 days of antiseptic properties.

  5. Preparation of Nano/Micron Composite Materials by Process Method

    Institute of Scientific and Technical Information of China (English)

    GAN Ai-feng; WEI Qi; JI; Yuan; HU Chuan-xin; YAO Jun-min

    2004-01-01

    This thesis put forward a method that controls the process of synthesizing nanomaterial to realize the composite of nanomaterial and micronmaterial. This thesis realizes the composite of nanomaterial and micronmaterial by adding micronmaterial during production of nanomaterial through sol-gel method, also introduces the technique and experiment's process preparation of nanocomposite material, and successfully prepared nanocomposite materials with nano-PbTiO3 covered on the surface of micron-Ni. According to the sample's SEM-pictures, the core-shell can be observed plate microstructure, and it is uniform, tight, full and good.

  6. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  7. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    Science.gov (United States)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  8. Composite Materials Design Database and Data Retrieval System Requirements

    Science.gov (United States)

    1991-08-01

    technology. Gaining such an understanding will facilitate the eventual development and operation of utilitarian composite materials databases ( CMDB ) designed...Significant Aspects of Materials Databases. While the components of a CMDB can be mapped to components of other types of databases, some differences...stand out and make it difficult to implement an effective CMDB on current Commercial, Off-The-Shelf (COTS) systems, or general DBMSs. These are summarized

  9. Area group: an example of style and paste compositional covariation in Maya pottery

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, R.L.; Reents, D.J.; Harbottle, G.; Sayre, E.V.; van Zelst, L.

    1983-06-12

    This paper has addressed aspects of ceramic style and iconography as found in Late Classic Maya ceramic art, including the supplemental perspective afforded by the analysis of ceramic paste. The chemical data provide a means to assess the extent of stylistic-paste compositional covariation. Depending upon the strength of that covariation various inferences may be drawn about craft specialization, exchange and information flow within Maya society. At the least, it provides an empirical means of comparing stylistically similar vessels; and when they are members of a chemically homogeneous group, it permits style to be addressed in terms of its variation. Additionally, compositionally defined site or region specific reference units provide a chemical background against which the non-provenienced vessels may be compared, allowing the whole vessels to be related to the archaelogically recovered fragmentary material. Finally, this multidisciplinary approach has been illustrated by preliminary findings concerning a specific group of polychrome vessels, The Area Group.

  10. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  11. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how t...... cell of the periodic material can take the shape of a square, rectangle, or parallelogram, allowing for all kinds of 2D periodicities. © 2013 Elsevier B.V. All rights reserved.......Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  12. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  13. Theoretical studies on energetic materials bearing pentaflurosulphyl (SF5) groups

    Indian Academy of Sciences (India)

    Li Xiao-Hong; Cui Hong-Ling; Ju Wei-Wei; Li Tong-Wei; Zhang Rui-Zhou; Yong Yong-Liang

    2014-07-01

    Heats of formation (HOF) for a series of energetic materials containing SF5 group were studied by density functional theory. Results show that HOFs increase with the augmention of field effects of substituted groups. Addition of furazan or furoxan ring increases HOF of the energetic materials. All the SF5-containing compounds have densities which are ∼0.19 g/cm3 higher than those containing -NH2 group. S-F bond is the trigger bond for the thermolysis process in the title compounds and bond dissociation energies of the weakest bonds range from 351.1 to 388.3 kJ/mol. Detonation velocities (D) and pressures (P) are evaluated by Kamlet-Jacobs equations with the calculated densities and HOFs. Results show that increasing the amount of furazan rings results in a larger D and P. Considering the detonation performance and thermal stability, eight compounds may be considered as potential candidates for high-energy density materials.

  14. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-10-31

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  15. Influence of increment thickness on dentin bond strength and light transmission of composite base materials.

    Science.gov (United States)

    Omran, Tarek A; Garoushi, Sufyan; Abdulmajeed, Aous A; Lassila, Lippo V; Vallittu, Pekka K

    2017-06-01

    Bulk-fill resin composites (BFCs) are gaining popularity in restorative dentistry due to the reduced chair time and ease of application. This study aimed to evaluate the influence of increment thickness on dentin bond strength and light transmission of different BFCs and a new discontinuous fiber-reinforced composite. One hundred eighty extracted sound human molars were prepared for a shear bond strength (SBS) test. The teeth were divided into four groups (n = 45) according to the resin composite used: regular particulate filler resin composite: (1) G-ænial Anterior [GA] (control); bulk-fill resin composites: (2) Tetric EvoCeram Bulk Fill [TEBF] and (3) SDR; and discontinuous fiber-reinforced composite: (4) everX Posterior [EXP]. Each group was subdivided according to increment thickness (2, 4, and 6 mm). The irradiance power through the material of all groups/subgroups was quantified (MARC® Resin Calibrator; BlueLight Analytics Inc.). Data were analyzed using two-way ANOVA followed by Tukey's post hoc test. SBS and light irradiance decreased as the increment's height increased (p composite used. EXP presented the highest SBS in 2- and 4-mm-thick increments when compared to other composites, although the differences were not statistically significant (p > 0.05). Light irradiance mean values arranged in descending order were (p composites. Discontinuous fiber-reinforced composite showed the highest value of curing light transmission, which was also seen in improved bonding strength to the underlying dentin surface. Discontinuous fiber-reinforced composite can be applied safely in bulks of 4-mm increments same as other bulk-fill composites, although, in 2-mm thickness, the investigated composites showed better performance.

  16. Effects of pulp capping materials on fracture resistance of Class II composite restorations

    OpenAIRE

    2015-01-01

    Objective: The aim of this study was to investigate the effect of cavity design and the type of pulp capping materials on the fracture resistance of Class II composite restorations. Materials and Methods: Sixty freshly extracted, sound molar teeth were selected for the study. A dovetail cavity on the mesio-occlusal and a slot cavity on disto-occlusal surfaces of each tooth were prepared, and the teeth were divided 4 groups which one of them as a control group. The pulp capping materials (Ther...

  17. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  18. Tensile & impact behaviour of natural fibre-reinforced composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B.C. [Victoria Univ. of Technology, Footscray (Australia). Dept. of Mechanical Engineering

    1993-12-31

    Short abaca fiber reinforced composite materials are fabricated and investigated for short term performance. Abaca plants which grow in abundance in Asia contain fibers that are inexpensive but underutilized. This study attempts to utilize the abaca fibers for composite material structure as a possible alternative to timber products in building applications. The composite material is fabricated using the hand lay-up method under varying fiber length and fiber volume fraction. The fibers are impregnated with a mixture of resins which cures at room temperature. A fabricating facility is designed to accommodate fabrication of lamina. Tensile and impact properties are determined in relation to the length and volume fraction of the fiber. For a given fiber length, the tensile and impact strength increase as the volume fraction increases up to a limiting value. And for a given fiber volume fraction, the tensile strength increases but the impact strength decreases as the fiber length increases. This behavior of abaca fiber-reinforced composite lamina will help in optimizing the design parameter in random composite panels.

  19. Analysis of Composite Material Blended With Thermoplastics and Jute Fibre

    Directory of Open Access Journals (Sweden)

    Venugopal S

    2015-03-01

    Full Text Available Recently natural fibres have been receiving considerable attention as substitutes for synthetic fibre reinforcements due to their low cost, low density, acceptable specific strength, good thermal insulation properties, reduced tool wear, reduced thermal and respiratory irritation and renewable resources. The aim of this work is to develop chemically treated and chemically untreated fibre reinforced composite material with optimum properties so that it can replace the existing synthetic fibre reinforced composite material for a suitable application. In this work, polyester resin has been reinforced with jute fabric, so as to develop jute fibre reinforced plastic (JFRP with a weight ratio of 10:1:1 Hand lay-up technique was used to manufacture the composites where Methyl Ethyl Ketone Peroxide and cobalt Naphthalene were used as coupling agent and accelerator respectively. The thickness of the composite specimen was obtained by laying up layer of fibre and matrix. The untreated composites have been used and mechanical properties are compared with natural fibre and jute fibre composite by using the Ansys method.

  20. NASA Composite Materials Development: Lessons Learned and Future Challenges

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  1. Uncertainty modelling and code calibration for composite materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Mishnaevsky, Leon, Jr

    2013-01-01

    between risk of failure and cost of the structure. Consideration related to calibration of partial safety factors for composite material is described, including the probability of failure, format for the partial safety factor method and weight factors for different load cases. In a numerical example...

  2. Graphics and composite material computer program enhancements for SPAR

    Science.gov (United States)

    Farley, G. L.; Baker, D. J.

    1980-01-01

    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.

  3. Quantitative Description of the Morphology and Microdamages of Composite Materials

    DEFF Research Database (Denmark)

    Axelsen, M. S.

    The purpose of the present Ph.D project is to investigate correlation between the microstructure variability and transverse mechanical properties. The material considered here is a polymer based unidirectional composite with long cylindrical fibers, and the transverse properties can be analysed...

  4. The Deflated Preconditioned Conjugate Gradient Method Applied to Composite Materials

    NARCIS (Netherlands)

    Jönsthövel, T.B.

    2012-01-01

    Simulations with composite materials often involve large jumps in the coefficients of the underlying stiffness matrix. These jumps can introduce unfavorable eigenvalues in the spectrum of the stiffness matrix. We show that the rigid body modes; the translations and rotations, of the disjunct rigid b

  5. Aluminum-matrix composite materials with shungite rock fillers

    Science.gov (United States)

    Kalashnikov, I. E.; Kovalevski, V. V.; Chernyshova, T. A.; Bolotova, L. K.

    2010-11-01

    A method is proposed for the introduction of shungite rocks into aluminum melts by mechanical mixing with carriers, namely, aluminum granules and reactive titanium powders taking part in exothermic in situ reactions. The structures of composite materials with shungite rock additions are studied, and a stabilizing effect of these additions on dry sliding friction is revealed.

  6. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    Science.gov (United States)

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  7. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    Directory of Open Access Journals (Sweden)

    Monika Łukomska-Szymańska

    2016-01-01

    Full Text Available Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM and one commercially available flowable light-curing composite material (FA that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM and Energy Dispersive Spectroscopy (EDS. Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA, unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties.

  8. Calculation of Gamma Photon Propagation Processes in a Composite Material

    Science.gov (United States)

    Pavlenko, V. I.; Cherkashina, N. I.; Noskov, A. V.; Yastrebinskii, R. N.; Sokolenko, I. V.

    2016-12-01

    The paper presents the data on radiation protection properties of a composite material consisting of the glass-crystalline matrix and nanotubular chrysotile modified by inserting PbWO4 into its structure, as well as the data on key physico-mechanical characteristics of the composite, such as density, ultimate compression strength, microhardness, porosity, water absorption, temperature stability, and thermostability. It was established that in addition to radiation protection properties, the examined material has enhanced practical design characteristics and can be used as a construction material. The propagation of gamma photons with different energy levels through the composite material is examined. A graph is built for dependence of the linear gamma radiation attenuation coefficient (μ) on energy in the range 0.25 data is very small and equals around 2%, which confirms that the developed model is correct. It is established that the composite possesses enhanced radiation protection characteristics, far exceeding those of iron and slightly (by 10.4%) yielding to pure lead.

  9. Data-driven design optimization for composite material characterization

    Science.gov (United States)

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa

    2011-06-01

    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  10. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  11. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  12. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  13. Study on the Compatibility of SMA and Composite Materials by Holographic Interferometry

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhimin

    2000-01-01

    With the help of holographic interferometry a study is conducted on the compatibility of SMA (shape memory alloy) and epoxy resin composite material. The paper gives experiment results and analysis which show that after coupling SMA with the composite material, the flexural rigidity of composite material is somewhat reinforced. Under certain conditions, SMA and the epoxy resin composite material are compatible.

  14. Adherence of Streptococcus mutans to Fiber-Reinforced Filling Composite and Conventional Restorative Materials.

    Science.gov (United States)

    Lassila, Lippo V J; Garoushi, Sufyan; Tanner, Johanna; Vallittu, Pekka K; Söderling, Eva

    2009-12-04

    OBJECTIVES.: The aim was to investigate the adhesion of Streptococcus mutans (S. mutans) to a short glass fibers reinforced semi-IPN polymer matrix composite resin. The effect of surface roughness on adhesion was also studied. For comparison, different commercial restorative materials were also evaluated. MATERIALS AND METHODS.: Experimental composite FC resin was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of IPN-resin and 55 wt% of silane treated silica fillers using high speed mixing machine. Three direct composite resins (Z250, Grandio and Nulite), resin-modified glass ionomers (Fuji II LC), amalgam (ANA 2000), fiber-reinforced composite (FRC) (everStick and Ribbond), and pre-fabricated ceramic filling insert (Cerana class 1) were tested in this study. Enamel and dentin were used as controls. The specimens (n=3/group) with or without saliva were incubated in a suspension of S. mutans allowing initial adhesion to occur. For the enumeration of cells on the disc surfaces as colony forming units (CFU) the vials with the microbe samples were thoroughly Vortex-treated and after serial dilutions grown anaerobically for 2 days at +37 degrees C on Mitis salivarius agars (Difco) containing bacitracin. Bacterial adhesion was also evaluated by using scanning electron microscopy. Surface roughness (Ra) of the materials was also determined using a surface profilometer. All results were statistically analyzed with one-way analysis of variance (ANOVA). RESULTS.: Composite FC resin and other commercial restorative materials showed similar adhesion of S. mutans, while adhesion to dentin and enamel was significantly higher (p<0.05). Surface roughness had no effect on bacterial adhesion. Saliva coating significantly decreased the adhesion for all materials (p<0.05). Composite FC resin had a significantly higher Ra value than control groups (p<0.05). CONCLUSIONS.: Short fiber-reinforced composite with semi-IPN polymer matrix revealed similar S. mutans adhesion

  15. Recent developments of discrete material optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Lund, Erik; Sørensen, Rene

    2015-01-01

    This work will give a quick summary of recent developments of the Discrete Material Optimization approach for structural optimization of laminated composite structures. This approach can be seen as a multi-material topology optimization approach for selecting the best ply material and number....... The different interpolation schemes used are described, and it is briefly outlined how design rules/manufacturing constraints can be included in the optimization. The approach has been demonstrated for a number of global design criteria like mass, compliance, buckling load factors, etc., but recent work makes...

  16. Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics

    Science.gov (United States)

    Prasad, Alisha; Mahato, Kuldeep; Chandra, Pranjal; Srivastava, Ananya; Joshi, Shrikrishna N.; Maurya, Pawan Kumar

    2016-08-01

    Evolution-optimized specimens from nature with inimitable properties, and unique structure-function relationships have long served as a source of inspiration for researchers all over the world. For instance, the micro/nanostructured patterns of lotus-leaf and gecko feet helps in self-cleaning, and adhesion, respectively. Such unique properties shown by creatures are results of billions of years of adaptive transformation, that have been mimicked by applying both science and engineering concepts to design bioinspired materials. Various bioinspired composite materials have been developed based on biomimetic principles. This review presents the latest developments in bioinspired materials under various categories with emphasis on diagnostic and therapeutic applications.

  17. Concept of a Conducting Composite Material for Lightning Strike Protection

    Directory of Open Access Journals (Sweden)

    Katunin A.

    2016-06-01

    Full Text Available The paper focuses on development of a multifunctional material which allows conducting of electrical current and simultaneously holds mechanical properties of a polymeric composite. Such material could be applied for exterior fuselage elements of an aircraft in order to minimize damage occurring during lightning strikes. The concept introduced in this paper is presented from the points of view of various scientific disciplines including materials science, chemistry, structural physics and mechanical engineering with a discussion on results achieved to-date and further plans of research.

  18. Toward Uniformly Dispersed Battery Electrode Composite Materials: Characteristics and Performance.

    Science.gov (United States)

    Kwon, Yo Han; Huie, Matthew M; Choi, Dalsu; Chang, Mincheol; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S; Reichmanis, Elsa

    2016-02-10

    Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches for improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. The study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.

  19. Experimental analysis of electrical properties of composite materials

    Science.gov (United States)

    Fiala, L.; Rovnaník, P.; Černý, R.

    2017-02-01

    Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.

  20. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  1. Operational strategies for contamination control of composite materials

    Science.gov (United States)

    Hansen, Patricia A.

    1992-01-01

    Composite materials, used on many instruments, are a potential contamination source for sensitive sensors, especially for sensors or detectors cooled below -80 C. It is a well known fact that composite materials absorb water during fabrication, integration, test, and launch activities and desorb this water under vacuum conditions. Water absorption can be divided into two types: shallow water and deep water. Shallow water is generally about 500 A thick on a clean material surface and is easily desorbed under vacuum conditions. Deep water is a function of the material and is absorbed into the bulk of the material. Deep water can outgas for weeks, months, or years, depending on the vent path, the amount of absorbed water, and the temperature of the material. Several operational strategies have been successfully employed on the Wide Field Planetary Camera. The operational strategies include ultradry gaseous nitrogen purge, dew point of less than -80 C, and vacuum bake-out with verification of outgassing rates. The nitrogen purge is instituted during the fabrication phase and is continued through launch activities. Great care is taken to avoid extended periods of time that the material is exposed to the ambient environment (50 percent relative humidity). On-orbit operational strategies include heat-up and cool-down scenarios which allow the deep water to be sufficiently outgassed before cooling the sensors or detectors.

  2. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where...... batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...... method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste...

  3. Designing Listening Material Based on Visual Multimodality Compositions

    Directory of Open Access Journals (Sweden)

    Jepri Ali Saiful

    2015-06-01

    Full Text Available In recent decades, multimodality has eventually augmented into the realm of language teaching and learning known as Applied Multimodality. This interdisciplinary approach draws on a multiplicity of communication or representation modes, all of which contribute to meaning. Accordingly, images, colors, and sounds within a text are catalysts to increase an audience’s reception of an idea or concept of the text, that is, a message. Thus, the present article intends to make a contribution to the field of material development in English language teaching. The aim of this article is therefore to provide guidelines for ELT teachers on how to design listening materials based on visual multimodal compositions of image and text. The result is that the compositions of image and text in designing listening materials rests upon three main principles: information value, salience and framing. These principles enable students’ L2 acquisition through listening as proved by recent research.

  4. Composite material based on fluoroplast and low melting oxyfluoride glass

    Science.gov (United States)

    Ignatieva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Goncharuk, V. K.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Bouznik, V. M.

    2016-05-01

    The present work summarizes the results of studies of the samples fabricated through extrusion blending of mixtures composed of the perfluorocarbon polymer (polyvinylidene fluoride, PVDF), which presently undergoes intensive studies, and the inorganic glass (BF-glass) of the composition 3B2O3-97(40SnF2-30SnO-30P2O5). It is revealed as a result of application of the suggested technique the composite material whose structure depends on the component ratio in the mixture (from individual areas formed by each component to homogeneously distributed composite particles) has been fabricated. The peculiarities of formation of composites were studied on the basis of the results of studying their morphology, molecular structure and phase composition. It was revealed the preservation of the polymer molecular structure and the absence of interaction with the glass in the fabricated samples. We found that in the process of sample fabrication there occur melting of the mixture, mixing of particles and changing of the phase compositions. The polymer partially and the glass almost completely crystallize in the process of composite fabrication. Glass crystals fill polymer cavities forming agglomerates. Along with the increase of the amount of inorganic component crystals, the polymer monolithic nature is disrupted and an inversion occurs at a certain component ratio: polymer particles are located between crystals of the inorganic component, mixing with them and covering them. The glass crystallization is facilitated through pre-crushing in extruder mill.

  5. Percolation modeling of self-damaging of composite materials

    Science.gov (United States)

    Domanskyi, Sergii; Privman, Vladimir

    2014-07-01

    We propose the concept of autonomous self-damaging in “smart” composite materials, controlled by activation of added nanosize “damaging” capsules. Percolation-type modeling approach earlier applied to the related concept of self-healing materials, is used to investigate the behavior of the initial material's fatigue. We aim at achieving a relatively sharp drop in the material's integrity after some initial limited fatigue develops in the course of the sample's usage. Our theoretical study considers a two-dimensional lattice model and involves Monte Carlo simulations of the connectivity and conductance in the high-connectivity regime of percolation. We give several examples of local capsule-lattice and capsule-capsule activation rules and show that the desired self-damaging property can only be obtained with rather sophisticated “smart” material's response involving not just damaging but also healing capsules.

  6. Fracture Resistance of Endodontically Treated Teeth Restored with 2 Different Fiber-reinforced Composite and 2 Conventional Composite Resin Core Buildup Materials: An In Vitro Study.

    Science.gov (United States)

    Eapen, Ashly Mary; Amirtharaj, L Vijay; Sanjeev, Kavitha; Mahalaxmi, Sekar

    2017-09-01

    The purpose of this in vitro study was to comparatively evaluate the fracture resistance of endodontically treated teeth restored with 2 fiber-reinforced composite resins and 2 conventional composite resin core buildup materials. Sixty noncarious unrestored human maxillary premolars were collected, endodontically treated (except group 1, negative control), and randomly divided into 5 groups (n = 10). Group 2 was the positive control. The remaining 40 prepared teeth were restored with various direct core buildup materials as follows: group 3 teeth were restored with dual-cure composite resin, group 4 with posterior composite resin, group 5 with fiber-reinforced composite resin, and group 6 with short fiber-reinforced composite resin. Fracture strength testing was performed using a universal testing machine. The results were statistically analyzed by 1-way analysis of variance and the post hoc Tukey test. Fracture patterns for each sample were also examined under a light microscope to determine the level of fractures. The mean fracture resistance values (in newtons) were obtained as group 1 > group 6 > group 4 > group 3 > group 5 > group 2. Group 6 showed the highest mean fracture resistance value, which was significantly higher than the other experimental groups, and all the fractures occurred at the level of enamel. Within the limitations of this study, a short fiber-reinforced composite can be used as a direct core buildup material that can effectively resist heavy occlusal forces against fracture and may reinforce the remaining tooth structure in endodontically treated teeth. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Intensive chemistry seminar, group ability composition, and students' achievement

    Science.gov (United States)

    Fakhreddine, Fatima Hassan

    Intensive Chemistry Seminar (ICS) is an optional, supplemental, honors-level program for chemistry and biochemistry majors. The program emphasizes academic excellence in a challenging yet supportive chemistry rich learning environment that brings together a community of freshmen sharing the same interests. At the heart of ICS are intensive discussion sessions where students work in small groups on worksheets of carefully chosen problems that are direct application of the concepts covered in the main general chemistry course. Central to the success of such learning environment are interactions among students. A key element affecting the depth of such interactions is the relative ability levels of group members. The main focus of this study is to investigate the relationship between. group ability composition and chemistry knowledge acquisition within the ICS sessions. However, the study also compares the achievement of the ICS students with achievement of the non-ICS students. Our data analyses show that chemistry knowledge acquisition within the ICS sessions was significantly enhanced when group members' selection occurred from a Zone of Proximal Development perspective. Our analyses show that students' attitude toward the ICS is overwhelmingly positive and that the benefits of the program extend beyond academic achievement. In practice, our significant results have important applications in college level, cooperative learning practices with objectives similar to those of ICS. Our results show that Vygotsky's ZPD theory seems to be very appropriate for the design and application of cooperative learning environments. Finally, the significant beneficial outcomes of the ICS program should strongly support its integration into the general chemistry I and II majors' sections curriculums.

  8. Cytogenetic genotoxic investigation in peripheral blood lymphocytes of subjects with dental composite restorative filling materials.

    Science.gov (United States)

    Pettini, F; Savino, M; Corsalini, M; Cantore, S; Ballini, A

    2015-01-01

    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. The objective of this study was to evaluate the genotoxicity of a common dental composite material (Enamel Plus-HFO), in subjects with average 13 filled teeth with the same material, compared to a control group (subjects having neither amalgam nor composite resin fillings). Genotoxicity assessment of composite materials was carried out in vitro in human peripheral blood leukocytes using sister-chromatid exchange (SCE) and chromosomal aberrations (CA) cytogenetic tests. The results of correlation and multiple regression analyses confirmed the absence of a relationship between SCE/cell, high frequency of SCE(HFC) or CA frequencies and exposure to dental composite materials. These results indicate that composite resins used for dental restorations differ extensively in vivo in their cytotoxic and genotoxic potential and in their ability to affect chromosomal integrity, cell-cycle progression, DNA replication and repair.

  9. A Study of Failure Criteria of Fibrous Composite Materials

    Science.gov (United States)

    Paris, Federico; Jackson, Karen E. (Technical Monitor)

    2001-01-01

    The research described in this paper is focused on two areas: (1) evaluation of existing composite failure criteria in the nonlinear, explicit transient dynamic finite element code, MSC.Dytran, and (2) exploration of the possibilities for modification of material and failure models to account for large deformations, progressive failure, and interaction of damage accumulation with stress/strain response of laminated composites. Following a review of the MSC.Dytran user manual, a bibliographical review of existing failure criteria of composites was performed. The papers considered most interesting for the objective of this report are discussed in section 2. The failure criteria included in the code under consideration are discussed in section 3. A critical summary of the present procedures to perform analysis and design of composites is presented in section 4. A study of the most important historical failure criteria for fibrous composite materials and some of the more recent modifications proposed were studied. The result of this analysis highlighted inadequacies in the existing failure criteria and the need to perform some numerical analyses to elucidate the answer to questions on which some of the proposed criteria are based. A summary of these ideas, which is a proposal of studies to be developed, is presented in section 5. Finally, some ideas for future developments are summarized in section 6.

  10. Results of ASTM round robin testing for mode 1 interlaminar fracture toughness of composite materials

    Science.gov (United States)

    Obrien, T. Kevin; Martin, Roderick H.

    1992-01-01

    The results are summarized of several interlaboratory 'round robin' test programs for measuring the mode 1 interlaminar fracture toughness of advanced fiber reinforced composite materials. Double Cantilever Beam (DCB) tests were conducted by participants in ASTM committee D30 on High Modulus Fibers and their Composites and by representatives of the European Group on Fracture (EGF) and the Japanese Industrial Standards Group (JIS). DCB tests were performed on three AS4 carbon fiber reinforced composite materials: AS4/3501-6 with a brittle epoxy matrix; AS4/BP907 with a tough epoxy matrix; and AS4/PEEK with a tough thermoplastic matrix. Difficulties encountered in manufacturing panels, as well as conducting the tests are discussed. Critical issues that developed during the course of the testing are highlighted. Results of the round robin testing used to determine the precision of the ASTM DCB test standard are summarized.

  11. A generalized methodology to characterize composite materials for pyrolysis models

    Science.gov (United States)

    McKinnon, Mark B.

    The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to

  12. Structural elements of construction of individual and group exercises’ competition compositions in calisthenics

    Directory of Open Access Journals (Sweden)

    Kovalenko Y.O.

    2016-02-01

    Full Text Available Purpose: to analyze content of individual and group exercises’ competition compositions in calisthenics. Material: in the research HEEs’ girl students (n=20, junior sportswomen (n=10, experts (n=30, coaches with 10-40 years’ working experience participated. Results: it was found that temporary indicators permit to assess level of female gymnasts’ readiness for fulfillment of competition compositions’ elements; facilitated rational correlation of body and object’s elements of complexity. Quickness of preparation to elements and directly time of exercise’s fulfillment acquire great importance. In individual and group exercises the most important are distribution of sportswoman’s moving on all site with frequent change of directions. It was established that realization of structural elements facilitates full opening of female gymnast’s artistic image. Conclusions: for building of competition compositions coaches shall fully use indicators of space and time structural elements.

  13. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  14. Development of a novel regenerated cellulose composite material.

    Science.gov (United States)

    De Silva, Rasike; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

    2015-05-01

    We report for the first time on a new natural composite material achieved by blending cotton and duck feather using an ionic liquid. The addition of duck feather was found to improve the elasticity, strain at break, by 50% when compared to regenerated cellulose alone. This is a significant finding since regenerated cotton using ionic liquids often suffers from poor elasticity. The improved elasticity is likely due to the regenerated duck feather maintaining its helical structure. The new regenerated cellulose composites were characterized using a combination of dynamic mechanical analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis, contact angle measurements and scanning electron microscopy.

  15. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  16. SULFONATED POLYIMIDES CONTAINING PYRIDINE GROUPS AS PROTON EXCHANGE MEMBRANE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Rui Lei; Chuan-qing Kang; Yun-jie Huang; Xue-peng Qiu; Xiang-ling Ji; Wei Xing; Lian-xun Gao

    2011-01-01

    A series of sulfonated polyimides (SPIs) containing pyridine groups were prepared by direct polycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA),4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) and 4-(4-methoxy)phenyl-2,6-bis(4-aminophenyl)pyridine (DAM).The resulting copolymers displayed good solubility in common organic solvents.Flexible,transparent,tough membranes were obtained via solution casting.All the films showed high thermal stability with desulfonation temperature over 300℃.They exhibited prominent mechanical properties with Young's modulus around 2.0 GPa.High proton conductivity (0.23 S/em at 100% RH) was also observed.More importantly,the new materials exhibited low water uptake (30 wt%-75 wt% at 80℃) and improved water stability,which were attributed to the acid-base interaction between sulfonic acid and pyridine functional groups.

  17. Effect of cyclic loading on the bond strength of class II restorations with different composite materials.

    Science.gov (United States)

    Cavalcanti, Andrea Nóbrega; Mitsui, Fabio Hiroyuki Ogata; Silva, Flávia; Peris, Alessandra Rezende; Bedran-Russo, Ana; Marchi, Giselle Maria

    2008-01-01

    This study evaluated the effect of cyclic loading on the bond strength of Class II restorations using different composite materials. Class II preparations with gingival margins located in dentin were performed on the mesial surface of 80 bovine incisors. The teeth were randomly allocated to eight groups (n=10) according to resin composite (Filtek Z250, Filtek Supreme, Tetric Ceram HB and Esthet-X) and use of cyclic loading. The restorations were bonded with the Single Bond adhesive system. Simulated aging groups were cyclic loaded for 200,000 cycles with 80N load (2Hz). The specimens were vertically sectioned (two slabs per restoration) and further trimmed into an hour-glass shape at the adhesive interface to obtain a final bonded area 1 mm2. Samples were placed in an apparatus and tested under tension using a universal testing machine. The data were analyzed using two-way ANOVA and Tukey test with a 95% confidence level. Aged groups presented significantly lower means when compared to the groups that were not aged (p=0.03). However, significant differences among composite materials were not observed (p=0.17). Regardless of the restorative composite material used, it could be concluded that the bond strength of Class II restorations at the gingival wall was affected by simulated cyclic loading.

  18. DOE/MSU composite material fatigue database: Test methods, materials, and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, J.F.; Samborsky, D.D. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemical Engineering

    1997-12-01

    This report presents a detailed analysis of the results from fatigue studies of wind turbine blade composite materials carried out at Montana State University (MSU) over the last seven years. It is intended to be used in conjunction with the DOE/MSU composite Materials Fatigue Database. The fatigue testing of composite materials requires the adaptation of standard test methods to the particular composite structure of concern. The stranded fabric E-glass reinforcement used by many blade manufacturers has required the development of several test modifications to obtain valid test data for materials with particular reinforcement details, over the required range of tensile and compressive loadings. Additionally, a novel testing approach to high frequency (100 Hz) testing for high cycle fatigue using minicoupons has been developed and validated. The database for standard coupon tests now includes over 4,100 data points for over 110 materials systems. The report analyzes the database for trends and transitions in static and fatigue behavior with various materials parameters. Parameters explored are reinforcement fabric architecture, fiber content, content of fibers oriented in the load direction, matrix material, and loading parameters (tension, compression, and reversed loading). Significant transitions from good fatigue resistance to poor fatigue resistance are evident in the range of materials currently used in many blades. A preliminary evaluation of knockdowns for selected structural details is also presented. The high frequency database provides a significant set of data for various loading conditions in the longitudinal and transverse directions of unidirectional composites out to 10{sup 8} cycles. The results are expressed in stress and strain based Goodman Diagrams suitable for design. A discussion is provided to guide the user of the database in its application to blade design.

  19. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental

  20. Analysis of a New Composite Material for Watercraft Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Alexandre Wahrhaftig; Henrique Ribeiro; Ademar Nascimento; Milton Filho

    2016-01-01

    In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell.

  1. Production and Properties of Composite Material Comprising Gd Multiscale Particles

    Directory of Open Access Journals (Sweden)

    Jaworski Jacek

    2015-02-01

    Full Text Available The article presents a novel method of producing Gd particles and preserving them from oxidation. The particles were produced in liquid paraffin by means of AC electric discharge and stored in the solidified paraffin. After seven months, the surface of the Gd was found to be exempt of oxidation. Moreover a composite material formed from mixing paraffin with Gd particles was conductive and magnetic and also presented photovoltaic effect. This method is a promising means of producing, at an industrial scale, particles from materials extremely sensitive to environment such as rare earth materials. Also the new material consisted of Gd particles in a paraffin matrix can find applications in many branches of industry.

  2. Analysis of a new composite material for watercraft manufacturing

    Science.gov (United States)

    Wahrhaftig, Alexandre; Ribeiro, Henrique; Nascimento, Ademar; Filho, Milton

    2016-09-01

    In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell.

  3. Multimaterial magnetically assisted 3D printing of composite materials.

    Science.gov (United States)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R

    2015-10-23

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  4. Characterization of carbon fiber composite materials for RF applications

    Science.gov (United States)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2014-05-01

    Carbon Fiber Composite (CFC) materials have been used for decades in the aerospace, automotive, and naval industries. They have often been used because of their mechanical advantages. These advantageous characteristics have typically included low weight and high strength. It is also a benefit that CFC materials can be made into nearly any shape or size. With the abundant use of CFC materials, it seems desirable to better under- stand the electromagnetic applications of these materials. CFC materials consist of a non-conductive resin or epoxy in addition to conductive carbon fibers. The carbon fibers can be oriented and layered in many different configurations. The specific orientation and layering of the carbon fibers has a direct impact on its electrical characteristics. One specific characteristic of interest is the conductivity of CFC materials. The work in this paper deals with probing the conductivity characteristics of CFC materials for applications in antenna and radar design. Multiple layouts of carbon fiber are investigated. The DC conductivity was measured by applying a conductive epoxy to sample edges and using a milliohm meter. Shielding effectiveness was then predicted based on fundamental electromagnetics for conducting media. Finally, prototype dipole antennas made from CFC materials were investigated.

  5. Novel composite piezoelectric material for energy harvesting applications

    Science.gov (United States)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Prosycevas, Igoris; Ponelyte, Sigita; Baltrusaitis, Valentinas; Sakalys, Rokas

    2015-04-01

    Past few decades were concentrated on researches related to effective energy harvesting applied in modern technologies, MEMS or MOEMS systems. There are many methods for harvesting energy as, for example, usage of electromagnetic devices, but most dramatic changes were noticed in the usage of piezoelectric materials in small scale devices. Major limitation faced was too small generated power by piezoelectric materials or high resonant frequencies of such smallscale harvesters. In this research, novel composite piezoelectric material was created by mixing PZT powder with 20% solution of polyvinyl butyral in benzyl alcohol. Obtained paste was screen printed on copper foil using 325 mesh stainless steel screen and dried for 30 min at 100 °C. Polyvinyl butyral ensures good adhesion and flexibility of a new material at the conditions that requires strong binding. Five types of a composite piezoelectric material with different concentrations of PZT (40%, 50%, 60%, 70% and 80 %) were produced. As the results showed, these harvesters were able to transform mechanical strain energy into electric potential and, v.v. In experimental setup, electromagnetic shaker was used to excite energy harvester that is fixed in the custom-built clamp, while generated electric potential were registered with USB oscilloscope PICO 3424. The designed devices generate up to 80 μV at 50 Hz excitation. This property can be applied to power microsystem devices or to use them in portable electronics and wireless sensors. However, the main advantage of the created composite piezoelectric material is possibility to apply it on any uniform or nonuniform vibrating surface and to transform low frequency vibrations into electricity.

  6. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=composition and bonding interphase of resin base composites promise improvements of mechanical properties, decreasing the incidence of clinical failure of posterior composite restorations, hence resulting in a more ideal restorative material for use in posterior segment. The results of this investigation showed that the deficiency of hydrostability in dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane

  7. Mechanical properties of Al-mica particulate composite material

    Science.gov (United States)

    Nath, D.; Bhatt, R. T.; Rohatgi, P. K.; Biswas, S. K.

    1980-01-01

    Cast aluminum alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40-120 microns) the tensile and compression strengths of aluminum alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/sq mm and compression strength of 28 kg/sq mm performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminum-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

  8. POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2016-11-01

    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  9. Peridynamics for analysis of failure in advanced composite materials

    KAUST Repository

    Askari, A.

    2015-08-14

    Peridynamics has been recently introduced as a way to simulate the initiation and propagation of multiple discontinuities (e.g. cracks). It is an alternative to classical continuum damage mechanics and fracture mechanics and is based on a nonlocal rewriting of the equilibrium equation. This new technique is particularly promising in the case of composite materials, in which very complex mechanisms of degradation must be described. We present here some fundamental aspects of peridynamics models for composite materials, and especially laminates. We also propose an approach to couple peridynamics domains with classical continuum mechanics (which relies on the concept of contact forces) by the use of a recently introduced coupling technique: the morphing technique, that appears to be a very versatile and powerful tool for coupling local to nonlocal descriptions.

  10. Degradation, Fatigue, and Failure of Resin Dental Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.L. (UIC)

    2008-11-03

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.

  11. Theoretical determination of thermal diffusivity of composite material

    Institute of Scientific and Technical Information of China (English)

    Thomas Kabayabaya; Fan Yu; Xinxin Zhang

    2004-01-01

    A very simple model based on the Quadrupole method was used in the theoretical analysis of thermal diffusivity of composite materials of Cu-PVC, PVC-Cu-PVC, and Cu-PVC-Cu. The use of MATLAB software with a return to real space using the Stehfest algorithm makes the time of calculation very short. The thermal responses on the rear face of each considered sample, which determine the thermal diffusivity were represented. A mathematical demonstration which confirmed the results was given. Thermal diffusivity determined from the rear face thermal responses were compared with the results of the thermal diffusivity calculated by considering the composite materials to be homogeneous, and a discussion on the two kinds of results was provided.

  12. Degradation, fatigue, and failure of resin dental composite materials.

    Science.gov (United States)

    Drummond, J L

    2008-08-01

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.

  13. Study of erosion characterization of carbon fiber reinforced composite material

    Science.gov (United States)

    Debnath, Uttam Kumar; Chowdhury, Mohammad Asaduzzaman; Kowser, Md. Arefin; Mia, Md. Shahin

    2017-06-01

    Carbon fiber composite materials are widely used at different engineering and industrial applications there are good physical, mechanical, chemical properties and light weight. Erosion behavior of materials depends on various factors such as impact angle, particle velocity, particle size, particle shape, particle type, particle flux, temperature of the tested materials. Among these factors impact angle and particle velocity have been recognized as two parameters that noticeably influence the erosion rates of all tested materials. Irregular shaped sand (SiO2) particles of various sizes (200-300 µm, 400-500 µm, and 500-600 µm) were selected erosive element. Tested conditions such as impingement angles between 15 degree to 90 degree, impact velocities between 30-50 m/sec, and stand-off distances 15-25 mm at surrounding room temperature were maintained. The highest level of erosion of the tested composite is obtained at 60° impact angle, which signifies the semi-ductile behavior of this material. Erosion showed increasing trend with impact velocity and decreasing nature in relation to stand-off distance. Surface damage was analyzed using SEM to examine the nature of the erosive wear mechanism.

  14. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  15. Micromechanics of Composite Materials Governed by Vector Constitutive Laws

    Science.gov (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2017-01-01

    The high-fidelity generalized method of cells micromechanics theory has been extended for the prediction of the effective property tensor and the corresponding local field distributions for composites whose constituents are governed by vector constitutive laws. As shown, the shear analogy, which can predict effective transverse properties, is not valid in the general three-dimensional case. Consequently, a general derivation is presented that is applicable to both continuously and discontinuously reinforced composites with arbitrary vector constitutive laws and periodic microstructures. Results are given for thermal and electric problems, effective properties and local field distributions, ordered and random microstructures, as well as complex geometries including woven composites. Comparisons of the theory's predictions are made to test data, numerical analysis, and classical expressions from the literature. Further, classical methods cannot provide the local field distributions in the composite, and it is demonstrated that, as the percolation threshold is approached, their predictions are increasingly unreliable. XXXX It has been observed that the bonding between the fibers and matrix in composite materials can be imperfect. In the context of thermal conductivity, such imperfect interfaces have been investigated in micromechanical models by Dunn and Taya (1993), Duan and Karihaloo (2007), Nan et al. (1997) and Hashin (2001). The present HFGMC micromechanical method, derived for perfectly bonded composite materials governed by vector constitutive laws, can be easily generalized to include the effects of weak bonding between the constituents. Such generalizations, in the context of the mechanical micromechanics problem, involve introduction of a traction-separation law at the fiber/matrix interface and have been presented by Aboudi (1987), Bednarcyk and Arnold (2002), Bednarcyk et al. (2004) and Aboudi et al. (2013) and will be addressed in the future.

  16. Polymer composites filled with powders as polymer graded materials

    Directory of Open Access Journals (Sweden)

    J. Stabik

    2010-11-01

    Full Text Available Purpose: The goal of this paper is to present general overview of research results on Polymeric Gradient Materials (PGMs performed in Division of Metallic and Polymeric Materials Processing of Silesian University of Technology. Achievements in research on production technologies, compositions and properties are presented.Design/methodology/approach: Two basic technologies that were used for preparing polymeric gradient composites filled with powders are presented (centrifugal and gravity casting. Composites based on epoxy resin and filled with iron, ferrite, graphite, coal powders are characterized. Among other, the following properties were tested: surface resistivity, coefficient of friction, magnetic induction, filler particles distribution in polymeric matrix and others.Findings: Casting methods presented in this article can successfully be used to produce polymer composites characterized by gradual distribution of powder content and by this way by gradual distribution of properties. Results show that it is possible not only to achieve but also in some extend to control gradient of filler concentration. Especially in centrifugal casting is possible to influence gradient of filler concentration and in this way gradient of many properties.Research limitations/implications: The main problem in presented researches was to introduce higher quantities of filler. The side effect of high filler content was high viscosity. Filler particles were added to the epoxy matrix in range from 3vol.% to 50vol.% depending on filler properties, method of casting etc.Practical implications: Elaborated PGMs may be applied in many fields such as medicine, electronics, mining industry, machine building industry and many others.Originality/value: New type of polymeric gradient composites were achieved using centrifugal and gravity casting technique. Influence of casting parameters, concentration and type of filler on composites properties was researched.

  17. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    2012-08-29

    Mechanical Testing Measurements were made of the Young’s modulus and toughness of half-Heusler bulk materials with compositions [Zro.5Hfo...will be optimized to meet the needs of engineered devices. A microhardness tester will be used to obtain hardness measurements and determine the...modulus of elasticity for thermoelectric samples. These tests will be used to assess homogeneity of mechanical properties as a function of processing

  18. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  19. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  20. Application of Composite Materials in the Fire Explosion Suppression System

    Institute of Scientific and Technical Information of China (English)

    REN Shah

    2012-01-01

    In order to lighten the weight of the special vehicles and improve their mobility and flexibility, the weight of all subsystems of the whole vehicle must be reduced in the general planning. A fire explosion suppression system is an important subsystem for the self-protection of vehicle, protection of crews and safety of a vehicle. The performances of the special vehicles determine their survival ability and combat capability. The composite bottle is made of aluminum alloy with externally wrapped carbon fiber ; it has been proven by a large number of tests that the new type explosion suppression fire distinguisher made of such composite materials applied in the special vehicle has reliable performance, each of its technical indexes is higher or equal to that of a steel distinguisher, and the composites can also optimize the assembly structure of the bottle, and improve the reliability and corrosion resistance. Most important is that the composite materials can effectively lighten the weight of the fire explosion suppression system to reach the target of weight reduction of the subsystem in general planning.

  1. Intermetallic and titanium matrix composite materials for hypersonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Berton, B.; Surdon, G.; Colin, C. [Dassault Aviation, Saint-Cloud (France)]|[Aersopatiale Space & Defence, St Medard en Jalles (France)

    1995-09-01

    As part of the French Program of Research and Technology for Advanced Hypersonic Propulsion (PREPHA) which was launched in 1992 between Aerospatiale, Dassault Aviation, ONERA, SNECMA and SEP, an important work is specially devoted to the development of titanium and intermetallic composite materials for large airframe structures. At Dassault Aviation, starting from a long experience in Superplastic Forming - Diffusion Bonding (SPF-DB) of titanium parts, the effort is brought on the manufacturing and characterization of composites made from Timet beta 21S or IMI 834 foils and Textron SCS6 fiber fabrics. At `Aersopatiale Espace & Defence`, associated since a long time about intermetallic composite materials with university research laboratories, the principal effort is brought on plasma technology to develop the gamma titanium aluminide TiAl matrix composite reinforced by protected silicon carbide fibers (BP SM 1240 or TEXTRON SCS6). The objective, is to achieve, after 3 years of time, to elaborate a medium size integrally stiffened panel (300 x 600 sq mm).

  2. Materials and Process Activities for NASA's Composite Crew Module

    Science.gov (United States)

    Polis, Daniel L.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  3. Hybrid Aluminum Composite Materials Based on Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Tatiana S. Koltsova

    2015-09-01

    Full Text Available We investigated formation of carbon nanofibers grown by chemical deposition (CVD method using an acetylene-hydrogen mixture on the surface of micron-sized aluminum powder particles. To obtain uniform distribution of the carbon nanostructures on the particles we deposited nickel catalyst on the surface by spraying from the aqueous solution of nickel nitrate. It was found that increasing the time of the synthesis lowers the rate of growth of carbon nanostructures due to the deactivation of the catalyst. The Raman spectroscopy measurements confirm the presence of disordered carbon corresponding to CNFs in the specimen. X-ray photoelectron spectroscopy showed the presence of aluminum carbide in the hot pressed samples. An aluminum composite material prepared using 1 wt.% CNFs obtained by uniaxial cold pressing and sintering showed 30% increase in the hardness compared to pure aluminum, whereas the composites prepared by hot pressing showed 80% increase in the hardness. Composite materials have satisfactory ductility. Thus, the aluminum based material reinforced with carbon nanostructures should be appropriate for creating high-strength and light compacts for aerospace and automotive applications and power engineering.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7355

  4. Strain Gage Selection Criteria for Textile Composite Materials

    Science.gov (United States)

    Masters, John E.

    1996-01-01

    This report will provide a review of efforts to establish a set of strain gage selection guidelines for textile reinforced composite materials. A variety of strain gages were evaluated in the study to determine the sensitivity of strain measurements to the size of the strain gage. The strain gages were chosen to provide a range of gage lengths and widths. The gage aspect ratio (the length-to-width ratio) was also varied. The gages were tested on a diverse collection of textile composite laminates. Test specimens featured eleven different textile architectures: four 2-D triaxial braids, six 3-D weaves, and one stitched uniweave architecture. All specimens were loaded in uniaxial tension. The materials' moduli were measured in both the longitudinal (parallel to the O deg. yarns) and the transverse (perpendicular to the O deg. yarns) directions. The results of these measurements were analyzed to establish performance levels for extensometers and strain gages on textile composite materials. Conclusions are expressed in a summary that discusses instrumentation practices and defines strain gage selection criteria.

  5. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  6. Preparation and characterization of nano hydroxyapatite/polymeric composites materials. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); El-Rashidy, Zenab M. [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); Salama, Aida A. [Biophysics Dept., Faulty of Science, El-Azhar Univ., Cairo (Egypt)

    2011-10-17

    Highlights: {yields} The formation and coating of CHA increased by increasing polymer content. {yields} The size of the prepared CHA was within nano-range scale. {yields} The composites had homogeneity and CHA formed within the polymeric matrix. - Abstract: The present study is focused on preparation of nano composite materials and the effect of citric acid on their different properties. The formation of nano HA and its interaction with chitosan (C), gelatin (G) polymers and citric acid (CA) materials were studied. The Fourier Transformed Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize these composite materials. The compressive strength (CS) was also measured to know the reinforcement of the prepared composites. The results show that carboxylic and amino groups play crucial role for HA formation on chitosan-gelatin polymeric matrix in the presence of citric acid (CA). The formation of nano HA particles and its average size of crystallite is increased with increase of CG content and decreased with addition of CA. Also, the HA formation and binding strength between its particles are improved into the composites especially with CA. The nano-composites containing the best ratio of nHA (70%) with CA (0.2 M) are promising for medical applications in the future.

  7. Methods to achieve the effect of «dry shine» of composite restorative materials

    OpenAIRE

    Mekhtieva R.R.; Nelovko T.V.; Eremin O.V.; Zaitseva E.M.; Ivashchenko Y.Y.

    2013-01-01

    The purpose: to determine the most effective method and sequence of polishing systems to achieve the effect of «dry light» of the final restoration ofthevestibular surface of the incisors and molars chewing surface of the hybrid light-cured composite materials. Material and methods. Material for polishing for the restoration divided into three groups: 1. Grinding discs — firm TOR VM with three types of grit: coarse, medium, soft and super soft, firm 3M ESPE «Sof-Lex» ultrafine polishing wheel...

  8. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  9. Complete Recycling of Composite Material Comprising Polybutylene Terephthalate and Copper

    Directory of Open Access Journals (Sweden)

    Fabian Knappich

    2017-06-01

    Full Text Available Composite materials comprising plastic and metal parts generate a large amount of waste containing valuable components that are difficult to separate and recycle. We therefore developed an economical solvent-based process for the recovery of costly manufactured composite materials comprising several copper panels over-moulded with a polymeric matrix of polybutylene terephthalate (PBT. We applied the CreaSolv® Process, which uses proprietary formulations with a low risk to user and environment, in order to dissolve the polymer and retain the inert copper. After separating the metal from the solution, solvent recovery was achieved by means of vacuum distillation and melt degassing extrusion. The recovered solvent was collected and recycled while maintaining its original properties. We tested two candidate solvents with PBT, measuring their impact on the molecular weight (Mw and polydispersity of the polymer at different residence times and dissolution temperatures. We found that increasing the temperature-time-load had a negative effect on the Mw. Both solvents we tested were able to dissolve the polymeric matrix within 30 min and with moderate energy consumption. Furthermore, we found that the exclusion of oxygen during dissolution significantly increases the quality of the recovered polymer and metal. We transferred the process from the laboratory scale to the small-technical scale and produced material for large analytical and mechanical quality evaluation, revealing no decline in the polymer quality by blending with new plastic. The recovered copper met virgin material properties. Therefore, both components of the original composite material have been recovered in a form suitable for reuse.

  10. Focused Research Group in Correlated Electron and Complex Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Boston College, Chestnut Hill, MA (United States)

    2016-02-17

    While the remarkable physical properties of correlated and complex electronic materials hold great promise for technological applications, one of the key values of the research in this field is its profound impact on fundamental physics. The transition metal oxides, pnictides, and chalcogenides play a key role and occupy an especially important place in this field. The basic reason is that the outer shell of transition metals contains the atomic d-orbitals that have small spatial extent, but not too small to behave as localized orbtials. These d-electrons therefore have a small wave function overlap in a solid, e.g. in an octahedral environment, and form energy bands that are relatively narrow and on the scale of the short-range intra-atomic Coulomb repulsion (Hubbard U). In this intermediate correlation regime lies the challenge of the many-body physics responsible for new and unconventional physical properties. The study of correlated electron and complex materials represents both the challenge and the vitality of condensed matter and materials physics and often demands close collaborations among theoretical and experimental groups with complementary techniques. Our team has a track record and a long-term research goal of studying the unusual complexities and emergent behaviors in the charge, spin, and orbital sectors of the transition metal compounds in order to gain basic knowledge of the quantum electronic states of matter. During the funding period of this grant, the team continued their close collaborations between theory, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy and made significant progress and contributions to the field of iron-based superconductors, copper-oxide high-temperature superconductors, triangular lattice transition metal oxide cobaltates, strontium ruthenates, spin orbital coupled iridates, as well as topological insulators and other topological quantum states of matter. These results include both new

  11. Composite material pedestrian bridge for the Port of Bilbao

    Science.gov (United States)

    Gorrochategui, I.; Manteca, C.; Yedra, A.; Miguel, R.; del Valle, F. J.

    2012-09-01

    Composite materials in comparison to traditional ones, steel and concrete, present advantages in civil works construction: lower weight, higher corrosion resistance (especially in the marine environment), and ease of installation. On the other hand, fabrication costs are generally higher. This is the reason why this technology is not widely used. This work illustrates the process followed for the design, fabrication and installation of a composite material pedestrian bridge in the Port of Bilbao (Northern Spain). In order to reduce the price of the bridge, the use of low cost materials was considered, therefore polyester resin was selected as the polymeric matrix, and glass fibres as reinforcement. Two material choices were studied. Currently in the market there is high availability of carbon nanoparticles: carbon nanotubes (CNT) and carbon nanofibres (CNF), so it was decided to add this kind of nanoparticles to the reference material with the objective of improving its mechanical properties. The main challenge was to transfer the CNT and CNF excellent properties to the polymeric matrix. This requires dispersing the nanoreinforcements as individual particles in the polymeric matrix to avoid agglomerates. For this reason, an advanced high shear forces dispersion technique (called "three roll mills") was studied and implemented. Also surface functionalization of the nanoreinforcements by chemical treatment was carried out. Herein, a comparison is performed between both materials studied, the explanation of the employment of the reference material (without nanoreinforcement) as the one used in the fabrication of the pedestrian bridge is justified and, finally, the main characteristics of the final design of the structural element are described.

  12. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA

    Science.gov (United States)

    2014-04-01

    16 4.2.4.3 Fabrication and Modeling of Rubber Muscle Actuators ..........17 4.2.4.4 Modeling of Power Response of SMP/SMA...Processing of BMI/Preceramic Polymer Blends .................................28 4.9 Task 9.0 Hybrid Material Processing and Fabrication...electrical stimulus, similar in action to the natural response of the conformation of a bird wing during flight vs. takeoff or landing, a muscle pair

  13. Influence of composition on friction-wear behavior of composite materials reinforced by brass fibers

    Institute of Scientific and Technical Information of China (English)

    JIA Xian; LING Xiaomei

    2003-01-01

    In the study, for the composite materials reinforced by brass fibers, the influence of dominant ingredients, such as organic adhesion agent, cast iron debris, brass fiber, and graphite powder, on the friction-wear characteristics was investigated. The friction-wear experiment was carried out on the block-on-ring tribometer MM200. The worn surfaces of the friction pair consisting of the composite materials and grey cast iron HT200 under dry sliding friction were examined using scanning electron microscope (SEM), energy dispersive analysis (EDX) and differential thermal analysis-thermogravimetric analysis (DTA-TAG). The experimental results showed that the friction coefficient and the wear loss of the composite material increase obviously with the increase of cast iron debris content, but decrease obviously with the increase of graphite powder content, and increase a little when the mass fraction of brass fiber was over 19%, and the orientation of brass fiber has obvious influence on friction-wear property. When the mass fraction of organic adhesion agent was about 10-11%, the composite materials have an excellent friction-wear performance. The friction heat can pyrolyze organic ingredient in worn surface layer.

  14. Standard Test Methods for Constituent Content of Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods determine the constituent content of composite materials by one of two approaches. Method I physically removes the matrix by digestion or ignition by one of seven procedures, leaving the reinforcement essentially unaffected and thus allowing calculation of reinforcement or matrix content (by weight or volume) as well as percent void volume. Method II, applicable only to laminate materials of known fiber areal weight, calculates reinforcement or matrix content (by weight or volume), and the cured ply thickness, based on the measured thickness of the laminate. Method II is not applicable to the measurement of void volume. 1.1.1 These test methods are primarily intended for two-part composite material systems. However, special provisions can be made to extend these test methods to filled material systems with more than two constituents, though not all test results can be determined in every case. 1.1.2 The procedures contained within have been designed to be particularly effective for ce...

  15. Poly(vinylidene fluoride)/zinc oxide smart composite material

    Science.gov (United States)

    Öğüt, Erdem; Yördem, O. Sinan; Menceloğlu, Yusuf Z.; Papila, Melih

    2007-04-01

    This work aimed at fabrication and electromechanical characterization of a smart material system composed of electroactive polymer and ceramic materials. The idea of composite material system is on account of complementary characteristics of the polymer and ceramic for flexibility and piezoelectric activity. Our preliminary work included Polyvinylidene Fluoride (PVDF) as the flexible piezoelectric polymer, and Zinc Oxide (ZnO) as the piezoelectric ceramic brittle, but capable to respond strains without poling. Two alternative processes were investigated. The first process makes use of ZnO fibrous formation achieved by sintering PVA/zinc acetate precursor fibers via electrospinning. Highly brittle fibrous ZnO mat was dipped into a PVDF polymer solution and then pressed to form pellets. The second process employed commercial ZnO nanopowder material. The powder was mixed into a PVDF/acetone polymer solution, and the resultant paste was pressed to form pellets. The free standing composite pellets with electrodes on the top and bottom surfaces were then subjected to sinusoidal electric excitation and response was recorded using a fotonic sensor. An earlier work on electrospun PVDF fiber mats was also summarized here and the electromechanical characterization is reported.

  16. Influence of Material Distribution on Impact Resistance of Hybrid Composites

    Science.gov (United States)

    Abatan, Ayu; Hu, Hurang

    1998-01-01

    Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.

  17. Polyvinyl alcohol–cellulose composite: a taste sensing material

    Indian Academy of Sciences (India)

    Sarmishtha Majumdar; Basudam Adhikari

    2005-12-01

    There are reports of fabrication of taste sensor by adsorbing lipids into Millipore filter paper. With this lipid based sensor, it has been found that the taste sensing efficiency of membrane can be remarkably improved. We have made an attempt to prepare taste sensor material by using functionalized polymer without any lipid. PVA–cellulose composite has been modified to use as the sensor material. The research work covers polymer membrane preparation, morphology study and structural characterization of the membrane and study of the taste sensing characteristics of this membrane for five different taste substances. PVA–cellulose composite membrane was modified by phosphorylation with POCl3. FTIR spectroscopic analysis, XRD analysis and SEM were done to get an idea about the structure and morphology of the prepared phosphorylated PVA–cellulose composite membrane. The sensor characteristics like temporal stability, response stability, response to different taste substances, and reproducibility of sensing performance were studied using phosphorylated PVA–cellulose composite membrane. Sensor device prepared with this membrane has shown distinct response patterns for different taste substances in terms of membrane potential. Threshold concentrations of phosphorylated PVA–cellulose composite membrane for HCl, NaCl, Q-HCl, sucrose and MSG are 0.001 mM, 0.001 mM, 0.001 mM, 0.001 mM and 0.009 mM, respectively. The threshold concentrations are below human threshold concentrations. Membranes also showed characteristic response patterns for organic acids like acetic acid, citric acid, formic acid etc, mineral acids like HCl, H2SO4 and HNO3 salts, bitter substances, sweet substances and umami substances. Sensor device prepared with this membrane has excellent shelf life.

  18. Continuation of tailored composite structures of ordered staple thermoplastic material

    Science.gov (United States)

    Santare, Michael H.; Pipes, R. Byron

    1992-01-01

    The search for the cost effective composite structure has motivated the investigation of several approaches to develop composite structure from innovative material forms. Among the promising approaches is the conversion of a planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. A framework was established which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated, discontinuous fibers suspended in viscous matrix were extended to capture the characteristics of typical polymers including non-Newtonian behavior and temperature dependence. In addition, the influence of fiber misorientation was also modeled by compliance averaging to determine ensemble properties for a given orientation distribution. A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams such as those used in aircraft fuselage structures. Material heterogeneity can be induced during manufacturing processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing radial and tangential gradients in material properties. Two analysis procedures are used to solve the beam problems. The first method uses separate two-dimensional elasticity solutions for the stresses in the flange and web sections of the beam. The separate solutions are coupled by requiring that forces and displacements match section boundaries. The second method uses an approximate Rayleigh-Ritz technique to find the solutions for more complex beams. Analyses

  19. Phosphogypsum Utilization Part III: as Adhesive Filler and Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The aim of this work is to make use of phosphogypsum (PG) waste material, which is produced in phosphoric acid and phosphate fertilizer manufactures. A number of wood adhesive formulations based on polyvinyl acetate (PVAc) polymer and phosphogypsum as a filler have been prepared, using different percentages of phusphogypsum, ranging between 5~20 wt pct. The prepared formulations wore tested for adhesion strength and compared with both natural and pure gypsum fillers. The results indicate that PG improves the adhesion strenth when 5 wt pct added, and that may be due to filling the porous surface of wood with the fine particles of PG, as well as coating the particles of the filler (PG) with PVAc units. Also, a number of formulations based on urea-formaldehyde polymer have been prepared using phosphogypsum as an active filler in the ratio of 40~75 wt pct to prepare composite materials used for some decoration purposes and construction. Mechanical, physical, and thermal properties of these formulations were studied. Also, the activation energy was calculated. The results indicate that PG without acid hardener can be used for preparation of composite materials based on urea-formaldehyde between 40~63.64 wt pct for construction purposes in the humid atmosphere, while between 63.64~75 wt pct for decoration purposes. The improvement of the physical, mechanical and thermal properties of the composite material may be attributed to the simultaneous hydration hardening action of phosphogypsum and the presence of 0.8% P2O5. These effects act as an active hardener for urea-formaldehyde resin and accelerate the cross-linking and network formation reinforced by the fine dusty inorganic particles of PG. The advantage of this method is to prepare composite material gypsum-urea-formaldehyde, which achieves the utilization of large amount of PG, reducing the price of the main product phosphate, minimizing the pollution and producing new materials which possess high thermal

  20. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    Science.gov (United States)

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials.

  1. Effect of Different Surface Treatment on Shear Bond Strength of Veneering Composite to Polyetherketone Core Material

    Directory of Open Access Journals (Sweden)

    Hossein Pourkhalili

    2016-12-01

    Full Text Available Background and Objective:The purpose of this in vitro study was to assess the effect of different surface treatment methods on shear bond strength of the veneering composite to polyetheretherketone (PEEK core material. Materials and Methods::In this in vitro, experimental study, 60 PEEK discs were fabricated, polished with silicon carbide abrasive paper and divided into five surface treatment groups (n=12 namely air abrasion with 110µm alumina particles at 0.2MPa pressure for 10 seconds, 98% sulfuric acid etching for one minute, air abrasion plus sulfuric acid etching, application of cyanoacrylate resin and a no surface treatment control group. Visio.link adhesive and GC Gradia veneering composite were applied on PEEK surfaces and light-cured. Shear bond strength was measured using a universal testing machine and the data were analyzed by one-way ANOVA and Tukey’s test. Results:The mean ± standard deviation (SD values of shear bond strength of the veneering composite to PEEK surfaces were 8.85±3.03, 15.6±5.02, 30.42±5.43, 26.14±4.33 and 5.94±4.49MPa in the control, air-abrasion, sulfuric acid etching, air-abrasion plus sulfuric acid etching and cyanoacrylate resin groups, respectively. The control and cyanoacrylate groups had significant differences with air abrasion, sulfuric acid etching and air abrasion plus sulfuric acid etching groups in terms of shear bond strength (P<0.0001. Higher bond strength values were noted in sulfuric acid etching, air-abrasion plus sulfuric acid etching and air abrasion groups compared to the control and cyanoacrylate groups (P<0.0001. Conclusion:Sulfuric acid etching, air abrasion and a combination of both are recommended as efficient surface treatments to increase the shear bond strength of the veneering composite to PEEK core material.

  2. New Materials for Structural Composites and Protective Coatings

    Science.gov (United States)

    2008-01-01

    The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.

  3. A new silver based composite material for SPA water disinfection.

    Science.gov (United States)

    Tartanson, M A; Soussan, L; Rivallin, M; Chis, C; Penaranda, D; Lapergue, R; Calmels, P; Faur, C

    2014-10-15

    A new composite material based on alumina (Al2O3) modified by two surface nanocoatings - titanium dioxide (TiO2) and silver (Ag) - was studied for spa water disinfection. Regarding the most common microorganisms in bathing waters, two non-pathogenic bacteria Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram positive) were selected as surrogates for bacterial contamination. The bactericidal properties of the Al2O3-TiO2-Ag material were demonstrated under various operating conditions encountered in spa water (temperature: 22-37 °C, presence of salt: CaCO3 or CaCl2, high oxygen content, etc.). Total removal of 10(8) CFU mL(-1) of bacteria was obtained in less than 10 min with 16 g L(-1) of material. Best results were observed for both conditions: a temperature of 37 °C and under aerobic condition; this latest favouring Reactive Oxygen Species (ROS) generation. The CaCO3 salt had no impact on the bactericidal activity of the composite material and CaCl2 considerably stabilized the silver desorption from the material surface thanks to the formation of AgCl precipitate. Preliminary tests of the Al2O3-TiO2-Ag bactericidal behaviour in a continuous water flow confirmed that 2 g L(-1) of material eliminated more than 90% of a 2.0 × 10(8) CFU mL(-1) bacterial mixture after one water treatment recycle and reached the disinfection standard recommended by EPA (coliform removal = 6 log) within 22 h.

  4. Antibacterial properties of amalgam and composite resin materials used as cores under crowns.

    Science.gov (United States)

    Al Ghadban, A; Al Shaarani, F

    2012-06-01

    The Aim of this Study was to compare the bacterial growth in the bulk of both amalgam and fluoridated composite resin materials used as cores under crowns at core's surface (in the superficial area of the bulk) and depth levels. With 24 lower premolars, 12 of them were restored with metal posts and amalgam cores (group 1). The rest were restored with glass Fiber-reinforced Composite (FRC) posts and fluoridated composite resin cores (group 2). All specimens were covered with aluminium crowns cemented with resin cement, and then they were soaked in natural saliva for three months. Excoriations abraded from the superficial and the depth areas of the core materials were cultured under aerobic conditions on blood agar plates. After incubation for 2 days, colonies formed on the plates were identified, and the CFU mg(-1) counts were recorded accordingly. Statistical analysis was performed using an independent sample T test. The mean values of CFU mg(-1) counts in group 2 excoriations (surface 39.75, and depth 9.75) were higher than the group 1 excoriations (surface 1.67, and depth 0.42). This study supports the use of amalgam for building up cores due to its antibacterial properties. Composite resin, however, enhanced sizable bacterial growth despite the presence of fluoride.

  5. Achieving tunable sensitivity in composite high-energy density materials

    Science.gov (United States)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Rashkeev, Sergey

    2017-01-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural point defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  6. Novel SiO2-C composite adsorptive material

    Directory of Open Access Journals (Sweden)

    Volzone, C.

    2001-08-01

    Full Text Available The present work is about the development of a Novel Composite that has several properties in only one material. This material is composed by a silica network with a sharpened pore size distribution - diameter near 1000 Å - intercrossed with another carbon network that has carbonaceous microdomains of high activity. The first network facilitates the entrance of big molecules to the interior of the material grains so they quickly reach the active sites of the carbonous network, minimizing the diffusional resistance observed when high performance activated carbons are used in adsorption processes or catalytic applications. These two intercrossed structures are self-supporting and independent among them, so one from the other can be isolated without losing the original shape and volume of the starting composite, then, their possible uses may be multiplied. The Novel Composite is stable with respect to other support or adsorbent materials due to its high obtention temperature (1550 ºC. The obtention methods of the composite and its isolated structures are described. The material was characterized by different techniques (XRD, IR, Loss on ignition, pore size distribution, specific surface area, adsorption desorption isotherms, methylene blue adsorption and SEM.En el presente trabajo se describe el desarrollo de un nuevo material compuesto que reúne distintas propiedades en un solo material. Dicho material está formado por una red de sílice con distribución de tamaño de poro estrecha - diámetro cercano a los 1000 Å - entrecruzada con otra red de carbón pseudografítica donde los microdominios carbonosos son de alta actividad. La primer red facilita la entrada de grandes moléculas al interior de los granos del material permitiendo su rápido acceso a los sitios activos de la red carbonosa, esto minimiza la resistencia difusional observada cuando se utilizan carbones activados de alto rendimiento en los procesos de adsorción o aplicaciones

  7. Certification of Discontinuous Composite Material Forms for Aircraft Structures

    Science.gov (United States)

    Arce, Michael Roger

    New, high performance chopped, discontinuous, or short fiber composites (DFCs), DFCs, such as HexMC and Lytex, made by compression molding of randomly oriented pre-impregnated unidirectional tape, can be formed into complex geometry while retaining mechanical properties suitable for structural use. These DFCs provide the performance benefits of Continuous Fiber Composites (CFCs) in form factors that were previously unavailable. These materials demonstrate some notably different properties from continuous fiber composites, especially with respect to damage tolerance and failure behavior. These behaviors are not very well understood, and fundamental research efforts are ongoing to better characterize the material and to ease certification for future uses. Despite this, these new DFCs show such promise that they are already in service in the aerospace industry, for instance in the Boeing 787. Unfortunately, the relative novelty of these parts means that they needed to be certified by “point design”, an excess of physical testing, rather than by a mix of physical testing and finite element analysis, which would be the case for CFCs or metals. In this study, one particular approach to characterizing both linear-elastic and failure behaviors are considered. The Stochastic Laminate Analogy, which represents a novel approach to modeling DFCs, and its combination with a Ply Discount scheme. Owing to limited available computational resources, only preliminary results are available, but those results are quite promising and warrant further investigation.

  8. Micro-Scale Experiments and Models for Composite Materials with Materials Research

    DEFF Research Database (Denmark)

    Zike, Sanita

    Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... properties acquired at macro-scale are used for micro-mechanical models. This is because material properties at the macro-scale are much more available and the test procedures to obtain them are well defined. The aim of this research was to find methods to extract the micro-mechanical properties of the epoxy...... resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam...

  9. Glassy Carbon Coating Deposited on Hybrid Structure of Composite Materials

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available This paper presents a method of production metal matrix composites with aluminum oxide foam covered by glassy carbon layer used as reinforcement. The glassy carbon coating was formed for decreasing of friction coefficient and reducing the wear. In first step of technology liquid glassy carbon precursor is on ceramic foam deposited, subsequently cured and carbonated at elevated temperature. In this way ceramic foam is covered with glassy carbon coating with thickness of 2-8 μm. It provides desirable amount of glassy carbon in the structure of the material. In the next step, porous spheres with carbon coating are infiltrated by liquid matrix of Al-Cu-Mg alloy. Thereby, equable distribution of glassy carbon in composite volume is achieved. Moreover, typical problems for composites reinforced by particles like sedimentation, agglomeration and clustering of particles are avoided. Tribological characteristics during friction in air versus cast iron as a counterpart were made. Produced composites with glassy carbon layer are characterised by friction coefficient between 0.08-0.20, thus meeting the typical conditions for solid lubricants.

  10. Structural integrity of engineering composite materials: a cracking good yarn.

    Science.gov (United States)

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  11. Physics in ``Polymers, Composites, and Sports Materials" an Interdisciplinary Course

    Science.gov (United States)

    Hagedorn, Eric; Suskavcevic, Milijana

    2007-10-01

    The undergraduate science course described uses the themes of polymers and composites, as used in sports materials, to teach some key concepts in introductory chemistry and physics. The course is geared towards students who are interested in science, but are still completing prerequisite mathematics courses required for science majors. Each class is built around a laboratory activity. Atoms, molecules and chemical reactions are taught in reference to making polyvinyl acetate (white glue) and polyvinyl alcohol (gel glue). These materials, combined with borax, form balls which are subsequently used in physics activities centered on free-fall and the coefficient of restitution. These activities allow the introduction of kinematics and dynamics. A free fall activity involving ice pellets, with and without embedded tissue paper, illustrates the properties of composites. The final series of activities uses balls, shoes, racquets and bats to further illustrate dynamics concepts (including friction, momentum and energy). The physical properties of these sports objects are discussed in terms of the materials of which they are made. The evaluation plan to determine the effectiveness of these activities and preliminary results are also presented.

  12. Moderating Effects of Group Status, Cohesion, and Ethnic Composition on Socialization of Aggression in Children's Peer Groups

    Science.gov (United States)

    Shi, Bing; Xie, Hongling

    2014-01-01

    We explored the effects of 3 group features (i.e., status, cohesion, and ethnic composition) on socialization processes of aggression in early adolescents' natural peer social groups. Gender differences in these effects were also determined. A total of 245 seventh-grade individuals belonging to 65 peer groups were included in the analyses. All 3…

  13. Moderating Effects of Group Status, Cohesion, and Ethnic Composition on Socialization of Aggression in Children's Peer Groups

    Science.gov (United States)

    Shi, Bing; Xie, Hongling

    2014-01-01

    We explored the effects of 3 group features (i.e., status, cohesion, and ethnic composition) on socialization processes of aggression in early adolescents' natural peer social groups. Gender differences in these effects were also determined. A total of 245 seventh-grade individuals belonging to 65 peer groups were included in the analyses.…

  14. Present and Future Automotive Composite Materials Research Efforts at DOE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D.

    1999-07-03

    Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

  15. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  16. The material histories of food quality and composition.

    Science.gov (United States)

    Atkins, Peter J

    2011-06-01

    This article argues for material histories of food. In recent decades food historians have tended to emphasize the cultural factors in consumption, in addition to the already well-established social, political and economic perspectives, but what is still missing is the stuff in foodstuffs. With reference in particular to milk and wine, the suggestion here is that physical and chemical composition is a major influence in what we might call the biographies of particular items of food and drink. Product characteristics are rarely static for long and today's mass-produced bread is different from that of the past, but then so are the flour, the yeast, and the even the butter that is spread on it. Adulteration was a particularly interesting aspect of composition in the nineteenth century and was the key to the emergence of two different traditions of understanding and valuing food quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  18. Super-hybrid composites - An emerging structural material

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Specimens of super-hybrids and advanced fiber composites were subjected to extensive tests to determine their mechanical properties, including impact and thermal fatigue. The super-hybrids were fabricated by a procedure similar to that reported by Chamis et al., (1975). Super-hybrids subjected to 1000 cycles of thermal fatigue from -100 to 300 F retained over 90% of their longitudinal flexural strength and over 75% of their transverse flexural strength; their transverse flexural strength may be as high as 8 times that of a commercially supplied boron/1100-Al composite. The thin specimen Izod longitudinal impact resistance of the super-hybrids was twice that of the boron/110-Al material. Super-hybrids subjected to transverse tensile loads exhibited nonlinear stress-strain relationships. The experimentally determined initial membrane (in-plane) and bending elastic properties of super-hybrids were predicted adequately by linear laminate analysis.

  19. Through-life data management for composite material products

    Science.gov (United States)

    Swindells, N.

    2016-10-01

    The management of digital engineering information throughout the life cycle of an engineered product can be achieved by the representation of this information in information models specified in International Standards. The fundamental basis of this technology is described and its application to the design and manufacture of composites is outlined. The use of ISO 10303-235 ‘Engineering properties and materials information’ for the representation of data from the testing of composite coupons and for the ultrasonic non-destructive evaluation of defects is described as an new example of this technology. The benefits of these standards for the quality control of the information and their role in its conservation are briefly described.

  20. Designing magnetic composite materials using aqueous magnetic fluids

    CERN Document Server

    Galicia, J A; Cousin, F; Guemghar, D; Menager, C; Cabuil, V

    2003-01-01

    In this paper, we report on how to take advantage of good knowledge of both the chemistry and the stability of an aqueous magnetic colloidal suspension to realize different magnetic composites. The osmotic pressure of the magnetic nanoparticles is set prior to the realization of the composite to a given value specially designed for the purpose for each hybrid material: magnetic particles in polymer networks, particles as probes for studying the structure of clay suspensions and shape modification of giant liposomes. First, we show that the introduction of magnetic particles in polyacrylamide gels enhances their Young modulus and reduces the swelling caused by water. The particles cause both a mechanical and an osmotic effect. The latter is strongly dependent on the ionic strength and is attributed to an attraction between particles and the polymeric matrix. In the second part, we determine the microscopic structure of suspensions of laponite as a function of concentration, by combining SANS and magneto-optica...

  1. Proposal of a Novel Approach to Developing Material Models for Micro-scale Composites Based on Testing and Modeling of Macro-scale Composites

    Energy Technology Data Exchange (ETDEWEB)

    Siranosian, Antranik Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schembri, Philip Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferred from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso

  2. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  3. Depenence of the Effective Conductivity of an Anisotropic 2D Composite Material on Perturbation of Inclusions

    OpenAIRE

    Mityushev, V.; Rogosin, S.; Rutkauskas, S.

    2009-01-01

    Our work is devoted to the study of dependence of the effective conductivity of 2D composite material on the perturbation of inclusions. We consider the case of bounded composite material with finite number of inclusions.

  4. Materials Characterisation of Glass/epoxy Composites - Focusing on Process Conditions

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Lyckegaard, Anders; Jensen, Erik Appel

    2013-01-01

    Predicting the behaviour of fibre reinforced polymer composites taking the process conditions into account involves advanced modelling techniques and an extensive materials characterisation. The materials characterisation of a chopped strand mat glass/epoxy composite has been the focus...

  5. A Nanotechnology Approach to Lightweight Multifunctional Polyethylene Composite Materials for Use Against the Space Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene-based composite materials are under consideration as multifunctional structural materials, with the expectation that they can provide radiation...

  6. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2014-09-30

    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  7. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    is also estimated based on test results. The results show that Miners rule gives a non-conservative estimate on the accumulated damage at failure. The reliability of a wind turbine blade is estimated for both out-of-plane and in-plane loading using three different design standards. The estimated annual......In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  8. Preparation and Properties of Orthogonal Piezoelectric Composite Materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Lu Ying; Zhang Xingguo; Shen Yi; Chen Chun

    2004-01-01

    . PZT piezoelectric ceramic with La2O3, SrCO3, BaO and Sb2O5 was prepared. It has high value of the piezoelectric strain constant d33 ( -681 PC/N) and high value of-d33/d31 (2.65). Orthogonal piezoelectric composite materials was designed and prepared by PZT, DAD- 40 electric conductive adhesive and E51 epoxy resin. The OPCM shows obvious orthogonal anisotropy. The matching property of the interface between piezoelectric ceramic and polymer of OPCM relies on the defects of interface. The proper conductive mid-layer could improve the matching property of the interface.

  9. Degree of conversion and microhardness of dental composite resin materials

    Science.gov (United States)

    Marovic, D.; Panduric, V.; Tarle, Z.; Ristic, M.; Sariri, K.; Demoli, N.; Klaric, E.; Jankovic, B.; Prskalo, K.

    2013-07-01

    Dental composite resins (CRs) are commonly used materials for the replacement of hard dental tissues. Degree of conversion (DC) of CR measures the amount of the un-polymerized monomers in CR, which can cause adverse biological reactions and weakening of the mechanical properties. In the past, studies have determined the positive correlation of DC values determined by Fourier transform infrared spectroscopy (FT-IR) and microhardness (MH) values. The aim of this study was to establish whether MH can replace FTIR for the determination of DC of contemporary CR.

  10. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    Science.gov (United States)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  11. Light Reflection and Transmission in Structured Composite Material

    Directory of Open Access Journals (Sweden)

    A.A. Goloborodko

    2013-10-01

    Full Text Available The paper deals with the optical properties of composite material which consist of dielectric plate with a 2D array of silver nanoparticles. The possibility of describing the reflection and transmission of coherent electromagnetic radiation in a dielectric slab with an array of metal rods by effective medium model was analyzed. The coefficients of reflection and transmission depending on rods filling factor for such medium were calculated. The results of calculations by nonlocal homogenization model were compared with the data of the exact T-matrix method calculations.

  12. Thermal-vacuum effects on polymer matrix composite materials

    Science.gov (United States)

    Tennyson, R. C.; Mabson, G. E.

    1991-01-01

    Results are presented on the thermal-vacuum response of a variety of fiber reinforced polymers matrix composites that comprised the UTIAS experiment on the LDEF satellite. Theoretical temperature-time predictions for this experiment are in excellent agreement with test data. Results also show quite clearly the effect of outgassing in the dimensional changes of these materials and the corresponding coefficients of thermal expansion. Finally, comparison with ground-based simulation tests are presented as well. Use of these data for design purposes are also given.

  13. High-toughness graphite/epoxy composite material experiment

    Science.gov (United States)

    Felbeck, David K.

    1993-01-01

    This experiment was designed to measure the effect of near-earth space exposure on three mechanical properties of specially toughened 5208/T300 graphite/epoxy composite materials. The properties measured are elastic modulus, strength, and fracture toughness. Six toughness specimens and nine tensile specimens were mounted on an external frame during the 5.8-year orbit of the Long Duration Exposure Facility (LDEF). Three identical sets of specimens were manufactured at the outset: the flight set, a zero-time non-flight set, and a total-time non-flight set.

  14. Development of Ceramic Fibers for Reinforcement in Composite Materials

    Science.gov (United States)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    Refinements of the vertical arc fiberizing apparatus resulted in its ability to fiberize very different refractory glasses having wide ranges of properties. Although the apparatus, was originally designed as a laboratory research tool for the evaluation of many compositions daily, up to one quarter pound of fibers of a single composition could be produced in an 8-hour day. Fibers up to six and a half feet long were produced with the apparatus. Studies were conducted of two methods of fiberizing refractory glasses requiring rapid freezing from the melt. The first method consisted of fiberizing droplets of molten glass passing through an annular nozzle. The second method consisted of reconstructing the annular nozzle in. the shape of a horseshoe to achieve a shorter delay in blasting a molten droplet from the tip of a rod. Both methods were judged feasible for producing fibers of glasses requiring rapid freezing. The first method would be more amenable to volume fiber production. Studies of induction heating for fiber formation did not lead to its designation as a very efficient heating method. Problems. remain to be solved, in the design of a suitable susceptor for a higher heating rate, in protecting the susceptor from oxidation with an inert gas, in contamination of the melt from a refractory crucible, and in the protective radiation shielding of the induction concentrator coil. It is not considered practical to continue studies of this heating method. In the course of this program 151 refractory glass compositions were evaluated for fiber, forming characteristics. Of the various types of materials studied, the following showed promise in producing acceptable refractory fibers: sIlica- spinel (magnesium aluminate), silica- spinel-zirconia, silica-zirconia, silica-zinc spinel, aluminum phosphate glasses, and fluoride glasses. Compositions which did not produce acceptable fibers were high zirconia materials, barium spinels, and calcium aluminates. Improvements in

  15. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  16. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  17. Wave dynamics and composite mechanics for microstructured materials and metamaterials

    CERN Document Server

    2017-01-01

    This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characte...

  18. Evaluation of hybrid composite materials in cylindrical specimen geometries

    Science.gov (United States)

    Liber, T.; Daniel, I. M.

    1976-01-01

    Static and fatigue properties of three composite materials and hybrids were examined. The materials investigated were graphite/epoxy, S-glass/epoxy, PRD-49 (Kevlar 49)/epoxy, and hybrids in angle-ply configurations. A new type of edgeless cylindrical specimen was developed. It is a flattened tube with two flat sides connected by curved sections and it is handled much like the standard flat coupon. Special specimen fabrication, tabbing, and tab region reinforcing techniques were developed. Axial modulus, Poisson's ratio, strength, and ultimate strain were obtained under static loading from flattened tube specimens of nine laminate configurations. In the case of graphite/epoxy the tubular specimens appeared to yield somewhat higher strength and ultimate strain values than flat specimens. Tensile fatigue tests were conducted with all nine types of specimens and S-N curves obtained. Specimens surviving 10 million cycles of tensile loading were subsequently tested statically to failure to determine residual properties.

  19. Acoustic Emission During Tensile Testing of Composite Materials

    Directory of Open Access Journals (Sweden)

    Jaroslav Začal

    2017-01-01

    Full Text Available This paper deals with possibilities of acoustic emission method utilization as an online surveillance tool for improvement of identification of structural damage onset in composite materials. With employment of AE method we are able to localize the degraded areas in stressed components and subsequently estimate the extent of degradation. In experimental part the piezoelectric sensor was employed for continuous record of emission signals, continuous processing and analysis of measured data and monitoring of stressed material feedback on applied mechanical load in real time. Partial results from distinctive areas of conducted research were implemented in this method, especially detection of emission signals and analysis of recorded signals in both frequency and temporal zones. Samples were reinforcement of 6 layers aramide-carbon weave 0/90° of specific mass 180 g/m2. In total 7 samples were tested in monoaxial tension on universal testing apparatus ZDM 5/51 with acoustic emission measurement recording in course of testing.

  20. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Science.gov (United States)

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  1. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  2. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V

    2013-01-01

    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  3. Thermal properties of composite materials with a complex fractal structure

    Science.gov (United States)

    Cervantes-Álvarez, F.; Reyes-Salgado, J. J.; Dossetti, V.; Carrillo, J. L.

    2014-06-01

    In this work, we report the thermal characterization of platelike composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, the thermal diffusivity, conductivity and volumetric heat capacity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal conductivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a decrease in the thermal conductivity of some of the anisotropic samples, compared to the isotropic randomly distributed ones. Our analysis indicates that the development of elongated inclusion structures leads to the formation of magnetite and resin domains, causing this effect. We correlate the complexity of the inclusion structure with the observed thermal response through a multifractal and lacunarity analysis. All the experimental data are contrasted with the well known Maxwell-Garnett effective media approximation for composite materials.

  4. Composition, structure and mechanical properties of several natural cellular materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stem piths of sunflower, kaoliang and corn are natural cellular materials. In this paper, the contents of the compositions of these piths are determined and their cell shapes and structures are examined through scanning electron microscope (SEM) and optical microscope. Further research is conducted in the effects of the compositions and structures of the piths on the mechanical properties after testing the partial mechanical properties. The results show that the total cellulose, hemicelluloses and lignin content of each sample approaches 75% of the dry mass of its primary cell walls. With the fall of R value, a parameter relative to the contents of the main compositions, the flexibilities of the cellular piths descend while their stresses and rigidities increase. The basic cell shape making up the sunflower pith is approximately a tetrakaidehedron. The stem piths of kaoliang and corn are made up of cells close to hexangular prisms and a few tubular ones which can observably reinforce their mechanical properties in the axial directions.

  5. Dynamic fracture of functionally graded magnetoelectroelastic composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Stoynov, Y. [Faculty of Applied Mathematics and Informatics, Technical University of Sofia (Bulgaria); Dineva, P. [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2014-11-12

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamental solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.

  6. Structural integrity of engineering composite materials: a cracking good yarn

    Science.gov (United States)

    Beaumont, Peter W. R.

    2016-01-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a ‘fracture safe design’ is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242293

  7. Moderating effects of group status, cohesion, and ethnic composition on socialization of aggression in children's peer groups.

    Science.gov (United States)

    Shi, Bing; Xie, Hongling

    2014-09-01

    We explored the effects of 3 group features (i.e., status, cohesion, and ethnic composition) on socialization processes of aggression in early adolescents' natural peer social groups. Gender differences in these effects were also determined. A total of 245 seventh-grade individuals belonging to 65 peer groups were included in the analyses. All 3 group features moderated the strength of group socialization on physical aggression with the exception of group status on girls' physical aggression. Stronger socialization of physical aggression occurred in higher status, more cohesive, or ethnically more homogeneous groups. In contrast, only group cohesion moderated the strength of group socialization on social aggression among girls. These findings suggest that somewhat different processes may be involved in peer group influences on different forms of aggression. Future intervention and prevention efforts for adolescent aggression should consider peer group membership and group features simultaneously.

  8. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  9. Shear bond strength between an indirect composite veneering material and zirconia ceramics after thermocycling.

    Science.gov (United States)

    Komine, Futoshi; Kobayashi, Kazuhisa; Saito, Ayako; Fushiki, Ryosuke; Koizumi, Hiroyasu; Matsumura, Hideo

    2009-12-01

    The present study evaluated the shear bond strength between an indirect composite material and zirconium dioxide (zirconia) ceramics after thermocycling. A total of 80 zirconia (Katana) discs were divided into five groups and primed with one of following agents: All Bond 2 Primer B (ABB), Alloy Primer (ALP), AZ Primer (AZP), Estenia Opaque Primer (EOP), and Porcelain Liner M Liquid A (PLA). An indirect composite material (Estenia C&B) was then bonded to the primed zirconia. One-half of the specimens (n = 8) in each group were stored in distilled water at 37 degrees C for 24 h, and the remaining eight specimens were thermocycled 5,000 times before shear bond strength testing. Mean bond strengths before thermocycling varied from 10.1 to 15.6 MPa; bond strengths after thermocycling ranged from 4.3 to 17.6 MPa. The ALP group had the highest strengths after thermocycling; there were no significant differences among the PLA, AZP, and EOP groups. The bond strength values for PLA, AZP, EOP, and ALP did not decrease with thermocycling. The application of an acidic functional monomer containing carboxylic anhydride (4-META), phosphonic acid (6-MHPA), or phosphate monomer (MDP) provided durable bond strength between Estenia C&B indirect composite and Katana zirconia.

  10. Evaluation of fracture resistance of indirect composite resin crowns by cyclic impact test: influence of crown and abutment materials.

    Science.gov (United States)

    Sakoguchi, Kenji; Minami, Hiroyuki; Suzuki, Shiro; Tanaka, Takuo

    2013-01-01

    This study evaluated the effect of abutment materials on the fracture resistance of composite crowns for premolars. Composite crowns were fabricated using two different indirect composite resin materials (Meta Color Prime Art or Estenia C&B) and cemented onto either a metal (Castwell M.C. 12) or composite resin (Build-It FR and FibreKor) abutment with resin cement (Panavia F2.0). Twenty-four specimens were fabricated for four groups (n=6 each) and subjected to 280-N cyclic impact loading at 1.0 Hz. The number of cycles which caused the composite crown to fracture was defined as its fracture resistance. All data were statistically analyzed using ANOVA and the Bonferroni test (α=0.05). Composite crowns cemented onto resin abutments showed higher fracture resistance than those cemented onto metal abutments.

  11. Anisotropy of torsional rigidity of sheet polymer composite materials

    Science.gov (United States)

    Startsev, O. V.; Kovalenko, A. A.; Nasonov, A. D.

    1999-05-01

    Wide application of polymer composite materials (PCM) in modern technology calls for detailed evaluation of their stress-strain properties in a broad temperature range. To obtain such information, we use the dynamic mechanical analysis and with the help of a reverse torsion pendulum measure the dynamic torsional rigidity of PCM bars of rectangular cross section in the temperature range up to 600 K. It is found that the temperature dependences of the dynamic rigidity of the calculated values of dynamic shear moduli are governed by the percentage and properties of the binder and fibers, the layout of fibers, the phase interaction along interfaces, etc. The principles of dynamic mechanical spectrometry are used to substantiate and analyze the parameters of anisotropy by which the behavior of a composite can be described in the temperature range including the transition of the binder from the glassy into a highly elastic state. For this purpose, the values of dynamic rigidity are measured under low-amplitude vibrations of the PCM specimens with a fiber orientation angle from 0 to 90°. It is shown that for unidirectional composites the dependence between the dynamic rigidity and the fiber orientation angle is of extreme character. The value and position of the peak depend on the type of the binder and fibers and change with temperature. It is found that the anisotropy degree of PCM is dictated by the molecular mobility and significantly changes in the temperature range of transition of the binder and reinforcement from the glassy into a highly elastic state (in the case of SVM fibers). The possibility of evaluating the anisotropy of composites with other reinforcement schemes, in particular, of orthogonally reinforced PCMs, is shown.

  12. Poly phenylenediamine and its TiO{sub 2} composite as hydrogen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Rehim, Mona H. Abdel [Packing and Packaging Materials Department, Center of Excellence for Advanced Science, Renewable Energy Group, National Research Center, Cairo (Egypt); Ismail, Nahla, E-mail: nahlaismail24@yohoo.com [Physical Chemistry Department, National Research Center, Center of Excellence for Advanced Science, Renewable Energy Group, National Research Center, El-bohooth St 33, Cairo (Egypt); Badawy, Abd El-Rahman A.A. [Physical Chemistry Department, National Research Center, Center of Excellence for Advanced Science, Renewable Energy Group, National Research Center, El-bohooth St 33, Cairo (Egypt); Turky, Gamal [Microwave Physics and Dielectrics Department, National Research Center, Cairo (Egypt)

    2011-08-15

    Highlights: {yields} A new polymeric material has been prepared and fully characterized. {yields} The composite with TiO{sub 2} showed a change in the morphology. {yields} The mechanism of the reaction of the polymer with TiO{sub 2} is studied. {yields} The conductivity of the new polymer and the composite is studied. {yields} The hydrogen storage capacity of the materials prepared are evaluated. - Abstract: Poly phenylenediamine was synthesized from 1,4-phenylenediamine in presence of potassium persulphate and salicylic acid. The structure of the formed poly phenylenediamine was traced using FTIR and its morphology was examined by transmittance electron microscope (TEM). Gel permeation chromatography (GPC) was used to evaluate the polymer molecular weight which showed that the value of its molar mass is 20,000 g mol{sup -1} and it has polydispersity index of 1.01. Different concentrations of TiO{sub 2} were incorporated in the poly phenylenediamine structure via coordination bond between the oxygen atom of TiO{sub 2} and the hydrogen atom of N-H group of polymer. The prepared composites were characterized using FTIR, TA, TEM and SEM/EDX. The TEM micrographs revealed that the composites have 2-D network structure and its morphology changed from a dendritic structure for the pure polymer to layered structure of the composite. The polymer and its composite are completely insulators. Their hydrogen storage capacity has been estimated at -193 deg. C and the composite reported higher hydrogen uptake values than the pure polymer. The reason is suggested to be due to the layered structure of composite which gives it the privilege to store more hydrogen in its interlayer vicinity.

  13. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  14. Comparison of the microtensile bond strength of different composite core materials and bonding systems to a fiber post (DT Light

    Directory of Open Access Journals (Sweden)

    Lelya Sadighpour

    2013-10-01

    Full Text Available   Background and Aims: Retention and stability of the post and core system is the key factor for success of final restoration . The aim of this study was to evaluate the microtensile bond strength of the different composite core materials and bonding systems to a fiber post.   Materials and Methods: To evaluate the bond strength of the composite resins to a fiber post ( DT light post 60 posts were divided into six groups : group A: Heliomolar Flow + Seal Bond, group B: Heliomolar Flow + SE Bond , group C: Valux Plus + Seal Bond , group D: Valux Plus + SE Bond , group E: Corecem + Seal Bond, group F: Corecem + SE Bond. All samples were thermocycled for 5000 cycles (5-55 0C and cut into four bars for the microtensile bond strength test. Failure modes were identified using a stereomicroscope. Data were analysed using One-way ANOVA and Tukey HSD post hoc test (P<0.05.   Results: The interaction between composite resin materials and bonding systems were positive. The conventional hybrid composite (Valux Plus had significantly higher bond strength compared with the core specific flowable composite (Corecem when Seal Bond was applied as bonding agent (P<0.05. However, when SE Bond was utilized hybrid composite demonstrated significantly lower bond strength than that of other two groups (P<0.05.   Conclusion: The performance of a particular composite is affected by the bonding system that is applied. A single composite resin may have different bond strength when combined with different bonding system.

  15. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    Science.gov (United States)

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  16. The effect of group composition and age on social behavior and competition in groups of weaned dairy calves.

    Science.gov (United States)

    Faerevik, G; Jensen, M B; Bøe, K E

    2010-09-01

    The objective of the present study was to investigate how group composition affects behavior and weight gain of newly weaned dairy calves and how age within heterogeneous groups affects behavior and competition. Seventy-two calves were introduced into 6 groups of 12 calves, of which 3 groups were homogeneous and 3 groups were heterogeneous (including 6 young and 6 old calves). The 9.8 mx9.5 m large experimental pen had 4 separate lying areas as well as a feeding area. Behavior and subgrouping were recorded on d 1, 7, and 14 after grouping, and calves were weighed before and after the experimental period of 14 d. Analysis of the effect of group composition on behavior and weight gain included young calves in heterogeneous groups and calves in homogeneous groups within the same age range at grouping (30 to 42 d). Irrespective of group composition, time spent feeding and lying increased, whereas time spent active decreased from d 1 to 7. In homogeneous groups, calves were more explorative on d 1 after grouping. Finally, calves in homogeneous groups had a higher average daily weight gain than calves in heterogeneous groups. Analysis of the effect of age included young and old calves of heterogeneous groups. Young calves were less explorative than old calves. Young calves were more active than old calves on d 1 but less active on d 7. Time spent lying and lying alone increased over time. More displacements from the feed manger were performed by old calves than by young calves. An analysis including all calves in both homogeneous and heterogeneous groups showed that when lying, calves were evenly distributed on the 4 lying areas and formed subgroups of on average 3 calves. In conclusion, age heterogeneity leads to increased competition, which may have a negative influence on the young calves' performance.

  17. Pyrolysis of municipal plastic wastes: Influence of raw material composition.

    Science.gov (United States)

    López, A; de Marco, I; Caballero, B M; Laresgoiti, M F; Adrados, A

    2010-04-01

    The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5dm(3) autoclave at 500 degrees C for 30min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO(2), and have very high gross calorific values (GCV). It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO(2) in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect.

  18. The Comparison of Shear Bond Strength Between Fibre Reinforced Composite Posts with Three Different Composite Core Materials – An In vitro Study

    Science.gov (United States)

    Anche, Sampath; Kakarla, Pranitha; Kadiyala, Krishna Kishore; Sreedevi, B.; Chiramana, Sandeep; Dev J., Ravi Rakesh; Manne, Sanjay Dutt; G., Deepthi

    2014-01-01

    Aim: The aim of this study is to compare the shear bond strength between fiber reinforced composite post with three different composite core materials. Materials and Methods: The materials used for the study were: 30 maxillary central incisors, pre fabricated fiber reinforced composite post (postec plus posts), Multi-core heavy body, Ti-core, Fluoro-core, Etchant gel, Silane coupling agent, Dentin bonding agent, Standardized gutta percha points, Rely-X dual cure composite resin. A total of 30 human maxillary central incisor were selected for this study. They were divided into three groups of 10 specimens each namely A, B and C. Results: The results obtained were analyzed by using one way analysis (ANOVA) and Tukey Honestly Significant Difference and they showed highest mean shear bond strength for group C when compared with group A and group B. There is no significant difference in the shear bond strength values between group A and group B. Conclusion: The teeth restored with multicore HB showed highest shear bond strength. The teeth restored with Fluoro core showed lowest shear bond strength. No statistically significant difference exists between the shear bond strength values between Ti-core and Fluoro-core. PMID:24596784

  19. TGA-DTA and chemical composition study of raw material of Bikaner region for electrical porcelain

    Science.gov (United States)

    Tak, S. K.; Shekhawat, M. S.; Mangal, R.

    2013-06-01

    Porcelains are vitrified and a fine grained ceramic product, used either glazed or unglazed and is often manufactured from a tri-axial body mix of clays, quartz and alkaline feldspar. Physical properties associated with porcelain include those of permeability, high strength, hardness, glassiness, durability, whiteness, translucence, resonance, brittleness, high resistance to the passage of electricity, high resistance to thermal shock and high elasticity[1,2]. Porcelain insulators are made from three raw materials; clay; feldspar and quartz. For porcelain manufacture the clay is categorized in two groups; ball clay and kaolin, each of which plays an important role, either in the preparation of the product or in the properties of the finished products. The following research highlights the importance that suits these materials for their contributions to the final properties of the product. Keeping this view a TGA-DTA and chemical composition of these raw materials were observed and these materials are found suitable for production of Electrical Porcelain.

  20. Production integrated nondestructive testing of composite materials and material compounds – an overview

    Science.gov (United States)

    Straß, B.; Conrad, C.; Wolter, B.

    2017-03-01

    Composite materials and material compounds are of increasing importance, because of the steadily rising relevance of resource saving lightweight constructions. Quality assurance with appropriate Nondestructive Testing (NDT) methods is a key aspect for reliable and efficient production. Quality changes have to be detected already in the manufacturing flow in order to take adequate corrective actions. For materials and compounds the classical NDT methods for defectoscopy, like X-ray and Ultrasound (US) are still predominant. Nevertheless, meanwhile fast, contactless NDT methods, like air-borne ultrasound, dynamic thermography and special Eddy-Current techniques are available in order to detect cracks, voids, pores and delaminations but also for characterizing fiber content, distribution and alignment. In Metal-Matrix Composites US back-scattering can be used for this purpose. US run-time measurements allow the detection of thermal stresses at the metal-matrix interface. Another important area is the necessity for NDT in joining. To achieve an optimum material utilization and product safety as well as the best possible production efficiency, there is a need for NDT methods for in-line inspection of the joint quality while joining or immediately afterwards. For this purpose EMAT (Electromagnetic Acoustic Transducer) technique or Acoustic Emission testing can be used.

  1. Functional materials - Study of process for CVD SiC/C composite material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Wang, Chae Chyun; Lee, Young Jin; Oh, Byung Jun [Yonsei University, Seoul (Korea)

    2000-04-01

    The CVD SiC coating techniques are the one of high functional material manufactures that improve the thermal, wear, oxidization and infiltration resistance of the surface of raw materials and extend the life of material. Silicon carbide films have been grown onto graphite substrates by low pressure chemical vapor deposition using MTS(CH{sub 3}SiCl{sub 3}) as a source precursor and H{sub 2} or N{sub 2} as a diluent gas. The experiments for temperature and diluent gas addition changes were performed. The effect of temperature from 900 deg. C to 1350 deg. C and the alteration of diluent gas species on the growth rate and structure of deposits have been studied. The experimental results showed that the deposition rate increased with increasing deposition temperature irrespective of diluent gases and reactant depletion effect increased especially at H{sub 2} diluent gas ambient. As the diluent gas added, the growth rate decreased parabolically. For N{sub 2} addition, surface morphology of leaf-like structure appeared, and for H{sub 2}, faceted structure at 1350 deg. C. The observed features were involved by crystalline phase of {beta}-SiC and surface composition with different gas ambient. We also compared the experimental results of the effect of partial pressure on the growth rate with the results of theoretical approach based on the Langmuir-Hinshelwood model. C/SiC composites were prepared by isothermal chemical vapor infiltration (ICVI). In order to fabricate the more dense C/SiC composites, a novel process of the in-situ whisker growing and filling during ICVI was devised, which was manipulated by alternating dilute gas species. The denser C/SiC composites were successfully prepared by the novel process comparing with the conventional ICVI process. 64 refs., 36 figs., 5 tabs. (Author)

  2. High strength bimetallic composite material fabricated by electroslag casting and characteristics of its composite interface

    Directory of Open Access Journals (Sweden)

    Tian-shun Dong

    2016-11-01

    Full Text Available Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer (EDS. Results show that the tensile strength (1,450 MPa, hardness (HRC 41-47 and impact toughness (94.7J·cm-2 of bainitic steel were comparatively high, while its elongation was slightly low (4.0%. Tensile strength (1,100 MPa, hardness (>HRC 31 and elongation (7.72% of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm-2. Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface.

  3. Selecting the Best Materials Compositions of Resin Based Bioasphalt

    Science.gov (United States)

    Setyawan, Ary; Widiharjo, Budi; Djumari

    2017-07-01

    Damar asphalt is one type of bioaspal which is a mixture with the main ingredient is a resin as a binder and cooking oil as a solvent. One major drawback of this damar asphalt is the low ductility. To improve the ductility values, then use the added material Filler. Filler serves as a divider between the impurities with damar asphalt, increases ductility and increase the ability of cohesion or bonding between the particles of material damar asphalt. The purpose of this study was to determine damar asphalt modifications to the properties in accordance with the properties of damar asphalt test specifications based on the value of penetration. This method uses some variant on material such as powder bricks and fly ash as a binder. Solvent in constituent used oil and used cooking oil. It also added the polymer latex up to 10% at intervals of 2%. The best composition of damar asphalt materials were obtained with gum rosin, Fly Ash, Oil and Latex. Damar asphalt modification damar asphalt optimum mix of resin (100g pure resin or resin chunk + 350g powder), Fly Ash powder (150g), cooking oil (205g), and latex 4%, ductility increased from 63.5 cm to 119.5 cm, the value of the flash point was originally at temperature of 240 °C to 260 °C, damar asphalt penetration of 68.2 dmm to 43 dmm, and the value of density decreases from 1.01 g / cm3 to 0.99 g / cm3. Damar asphalt at these modifications meet the specifications in terms of solubility in trichlore ethylene is equal to 99.5%, and also meet the affinity of damar asphalt at 99%. With the optimum value, damar asphalt could be categorized as bitumen 40/60 penetration.

  4. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  5. Damage Prediction Models for Advanced Materials and Composites

    Science.gov (United States)

    Xie, Ming; Ahmad, Jalees; Grady, Joseph E. (Technical Monitor)

    2005-01-01

    In the present study, the assessment and evaluation of various acoustic tile designs were conducted using three-dimensional finite element analysis, which included static analysis, thermal analysis and modal analysis of integral and non-integral tile design options. Various benchmark specimens for acoustic tile designs, including CMC integral T-joint and notched CMC plate, were tested in both room and elevated temperature environment. Various candidate ceramic matrix composite materials were used in the numerical modeling and experimental study. The research effort in this program evolved from numerical modeling and concept design to a combined numerical analysis and experimental study. Many subjects associated with the design and performance of the acoustic tile in jet engine exhaust nozzle have been investigated.

  6. Magnetomechanical Properties Of Composite Materials With Giant Magnetostriction

    Directory of Open Access Journals (Sweden)

    Tomiczek A.E.

    2015-09-01

    Full Text Available The aim of this work was to observe the changes in the magnetomechanical properties of composite materials with different Tb0.3Dy0.7Fe1.9 (Terfenol-D powder particle-size distributions and varying volume fractions in the polyurethane matrix. The results show a direct relationship between the properties and the particle size of the Tb0.3Dy0.7Fe1.9 powder: the increases in the particle-size distribution of the Tb0.3Dy0.7Fe1.9 powder in the matrix amplify the magnetostrictive responses and the compressive modulus values. Moreover, it was found that the key role in efficiency of the transformation of magnetic energy into mechanical plays the initial compressing pre-stress.

  7. Nanoengineered thermal materials based on carbon nanotube array composites

    Science.gov (United States)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Dangelo, Carlos (Inventor)

    2010-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  8. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail: c2b2chen@163.com; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)

    2008-04-24

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  9. Expert model process control of composite materials in a press

    Science.gov (United States)

    Saliba, Tony E.; Quinter, Suzanne R.; Abrams, Frances L.

    An expert model for the control of the press processing of thermoset composite materials has been developed. The knowledge base written using the PC PLUS expert system shell was interfaced with models written in FORTRAN. The expert model, which is running on a single computer with a single processor, takes advantage of the symbol-crunching capability of LISP and the number crunching capability of FORTRAN. The Expert Model control system is a qualitative-quantitative process automation (QQPA) system since it includes both quantitative model-based and qualitative rule-based expert system operations. Various physical and mechanical properties were measured from panels processed using the two cycles. Using QQPA, processing time has been reduced significantly without altering product quality.

  10. Vibration of cylindrical shells of bimodulus composite materials

    Science.gov (United States)

    Bert, C. W.; Kumar, M.

    1982-03-01

    A theory is formulated for the small amplitude free vibration of thick, circular cylindrical shells laminated of bimodulus composite materials, which have different elastic properties depending upon whether the fiber-direction strain is tensile or compressive. The theory used is the dynamic, shear deformable (moderately thick shell) analog of the Sanders best first approximation thin shell theory. By means of tracers, the analysis can be reduced to that of various simpler shell theories, namely Love's first approximation, and Donnell's shallow shell theory. As an example of the application of the theory, a closed form solution is presented for a freely supported panel or complete shell. To validate the analysis, numerical results are compared with existing results for various special cases. Also, the effects of the various shell theories, thickness shear flexibility, and bimodulus action are investigated.

  11. Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor)

    2006-01-01

    A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.

  12. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  13. Designing magnetic composite materials using aqueous magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Galicia, Jose Alberto [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Sandre, Olivier [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Cousin, Fabrice [Laboratoire Leon Brillouin, UMR 12 CNRS/CEA CEA-Saclay - 91191, Gif-sur-Yvette (France); Guemghar, Dihya [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Menager, Christine [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Cabuil, Valerie [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France)

    2003-04-23

    In this paper, we report on how to take advantage of good knowledge of both the chemistry and the stability of an aqueous magnetic colloidal suspension to realize different magnetic composites. The osmotic pressure of the magnetic nanoparticles is set prior to the realization of the composite to a given value specially designed for the purpose for each hybrid material: magnetic particles in polymer networks, particles as probes for studying the structure of clay suspensions and shape modification of giant liposomes. First, we show that the introduction of magnetic particles in polyacrylamide gels enhances their Young modulus and reduces the swelling caused by water. The particles cause both a mechanical and an osmotic effect. The latter is strongly dependent on the ionic strength and is attributed to an attraction between particles and the polymeric matrix. In the second part, we determine the microscopic structure of suspensions of laponite as a function of concentration, by combining SANS and magneto-optical experiments with the probes. This study requires conditions suitable for including the magnetic particles as probes without disturbing the clay suspensions. The third part presents giant magnetoliposomes, which encapsulate magnetic nanoparticles. Shape transitions are obtained with either a magnetic field or an osmotic stress.

  14. Intelligent Molding Proceeding of Composites and Intelligent Manufacturing Systems for Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The technology of Intelligent cure operation is set forth according to developing tedency of smart material and structure. Intelligent-sy s tem-based tool was developed in order to operate the autoclave cure of a fiber r einforced thermosetting matrix composite laminate in an optimal manner.The objec tive function is comforts for minimizing the total cure time,uniforming the tem perature distribution,controling exothermal and minimizing the process-induced r esidual stresses in the laminate.Data is analyzed on-line to determine the t r ends in real-time. The results from application of this overall strategy for the curing of composites are presented.

  15. Ultrasonic guided wave mechanics for composite material structural health monitoring

    Science.gov (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  16. Quantitative measurement of nanomechanical properties in composite materials

    Science.gov (United States)

    Zhao, Wei

    results significantly, and new, power-law body of revolution models of the probe tip geometry have been applied. Due to the low yield strength of polymers compared with other engineering materials, elastic-plastic contact is considered to better represent the epoxy surface response and was used to acquire more accurate quantitative measurements. Visco-elastic contact response was introduced in the boundary condition of the AFAM cantilever vibration model, due to the creep nature of epoxy, to determine time-dependent effects. These methods have direct impact on the quantitative measurement capabilities of near-filler interphase regions in polymers and composites and the long-term influence of environmental conditions on composites. In addition, quantitative AFAM scans were made on distal surfaces of human bicuspids and molars, to determine the microstructural and spatial variation in nanomechanical properties of the enamel biocomposite. Single point AFAM measurements were performed on individual enamel prism and sheath locations to determine spatial elastic modulus. Mechanical property variation of enamel is associated to the differences in the mineral to organic content and the apatite crystal orientations within the enamel microstructure. Also, variation in the elastic modulus of the enamel ultrastructure was observed in measurements at the outer enamel versus near the dentine enamel junction (DEJ).

  17. Structure and magnetism in novel group IV element-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Frank [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  18. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Science.gov (United States)

    Rathnayake, R. M. N. M.; Mantilaka, M. M. M. G. P. G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H. W. M. A. C.; Yoshimura, Masamichi; Pitawala, H. M. T. G. A.

    2017-07-01

    Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g-1, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.

  19. A model for biodegradation of composite materials made of polyesters and tricalcium phosphates.

    Science.gov (United States)

    Pan, Jingzhe; Han, Xiaoxiao; Niu, Wenjuan; Cameron, Ruth E

    2011-03-01

    A saturation behaviour has been observed when incorporating tricalcium phosphate (TCP) in various polyesters to control the degradation rate. This paper presents an understanding of this behaviour using a mathematical model. The coupled process of hydrolysis reaction of the ester bonds, acid dissociation of the carboxylic end groups, dissolution of the calcium phosphates and buffering reactions by the dissolved phosphate ions is modelled together using a set of differential equations. Two non-dimensional groups of the material and chemical parameters are identified which control the degradation rate of the composites. An effectiveness map is established to show the conditions under which incorporating TCP into polyesters is effective, saturated or ineffective. Comparisons are made between the model predictions and existing experimental data in the literature. The map provides a useful tool to guide the design of polyester/TCP composites for tissue engineering and orthopaedic fixation applications.

  20. Composite materials. Volume 1: Properties, non-destructive testing, and repair

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.M. [United Technologies Corp., East Hartford, CT (United States)

    1997-12-31

    This book provides a practical overview of the different types, properties, applications and design implementations of the latest composite materials. It describes important composite families, including metals, ceramics, polymers and other engineered materials; shows how each type of composite may be designed, manufactured, strengthened, and repaired; introduces composite modeling techniques; and explains the major industrial applications for composites. Primary markets for this book include materials engineers and designers in aerospace, automotive and transportation industries; works managers, facilities engineers, test engineers, plant engineers, manufacturing and industrial engineers, and production managers; students in material science, mechanical engineering and metallurgy.

  1. Application of radiation-crosslinked polytetrafluoroethylene to fiber-reinforced composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Akihiro E-mail: aks@taka.jaeri.go.jp; Udagawa, Akira; Morita, Yousuke

    2001-07-01

    Plain-woven carbon fiber-filled polytetrafluoroethylene (PTFE) composites were fabricated by radiation-crosslinking under selective conditions. High mechanical and frictional properties are found in the composite materials compared with crosslinked PTFE without fiber. The composite materials with optional shapes, which are laminated after electron beam (EB) crosslinking treatment of each mono-layer could also be fabricated. (author)

  2. Effects of different acids and etching times on the bond strength of glass fiber-reinforced composite root canal posts to composite core material.

    Science.gov (United States)

    Güler, Ahmet Umut; Kurt, Murat; Duran, Ibrahim; Uludamar, Altay; Inan, Ozgur

    2012-01-01

    To investigate the effects of different acids and etching times on the bond strength of glass fiber-reinforced composite (FRC) posts to composite core material. Twenty-six FRC posts (FRC Postec Plus) were randomly divided into 13 groups (each n = 2). One group received no surface treatment (control). The posts in the other groups were acid etched with 35% phosphoric acid and 5% and 9.6% hydrofluoric acid gel for four different etching times (30, 60, 120, and 180 seconds). A cylindric polytetrafluoroethylene mold was placed around the treated posts and filled with dual-cure composite core material (MultiCore Flow). All samples were light cured for 60 seconds. After 24 hours of water storage, the specimens were sectioned perpendicularly to the bonded interface under water cooling to obtain 2-mm post-and-core specimens. Eight specimens were made from each group. Push-out tests were performed at a crosshead speed of 0.5 mm/min using a universal testing machine. Data were analyzed by one-way ANOVA followed by the Tukey honestly significant difference test (alpha = .05). The lowest bond strength was observed in the control group (12.51 megapascal [MPa]). No statistical significant difference was observed among group H5-120 (20.31 MPa), group H9-120 (20.55 MPa), or group P-180 (20.57 MPa) (P > .05). These groups demonstrated the highest bond strength values (P strength when compared with the control group. Acid-etching with 5% hydrofluoric acid and 9.6% hydrofluoric acid for 2 minutes and with 35% phosphoric acid for 3 minutes (groups H5-120, H9-120, and P-180, respectively) demonstrated the highest bond strength values between the FRC post and composite core material. Although the bond strength was increased by prolonged acid etching, the microstructure of the FRC posts might have been damaged.

  3. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  4. Influence of Group Size and Group Composition on the Adhered Distance Headway

    NARCIS (Netherlands)

    Duives, D.C.; Daamen, W.; Hoogendoorn, S.P.

    2014-01-01

    Research into the influence of groups on pedestrian flow dynamics has been limited. Previous research found that group size influences the walking velocity of pedestrians within the group and as such the capacity the pedestrian infrastructure. This paper's aim is to provide quantitative insights

  5. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Directory of Open Access Journals (Sweden)

    Manjusha Ramakrishnan

    2016-01-01

    Full Text Available This paper provides an overview of the different types of fiber optic sensors (FOS that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  6. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials.

    Science.gov (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-15

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  7. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    Science.gov (United States)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  8. Effect of preheating on the film thickness of contemporary composite restorative materials

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-12-01

    Conclusion: The film thickness of the composites tested is material dependent. The thickness of the preheated conventional composites is significantly lower than those at room temperature. The conventional composites provide film thickness values greater than those of the flowable composites regardless of preheating temperature.

  9. MPS/CAS Partner Group on Nanostructured Materials

    Institute of Scientific and Technical Information of China (English)

    Lu Ke; Manfred Rühle

    2004-01-01

    @@ As one of the first Partner Groups which were initiated to foster scientific exchange and interaction between the Max Pianck Society (MPS) and the Chinese Academy of Sciences (CAS), the Partner Group led by Lu Ke was established on April 1, 1999.During the past five years, the group has received substantial support from the CAS for equipment and from the MPS for personnel and travel expenses. Extensive and productive collaborations between the research staff and students of the Partner Group with several professors (departments) in the Max Planck Institute for Metals Research (MPI-MF) have led to significant advances in synthesis,mechanical properties, melting and superheating of nanostructured metals. The research is well recognized internationally and a substantial number of publications in high quality, peer-reviewed journals (including Science and Physical Review Letters) have resulted.

  10. The Comparison of Shear Bond Strength Between Fibre Reinforced Composite Posts with Three Different Composite Core Materials - An In vitro Study.

    Science.gov (United States)

    Anche, Sampath; Kakarla, Pranitha; Kadiyala, Krishna Kishore; Sreedevi, B; Chiramana, Sandeep; Dev J, Ravi Rakesh; Manne, Sanjay Dutt; G, Deepthi

    2014-01-01

    The aim of this study is to compare the shear bond strength between fiber reinforced composite post with three different composite core materials. The materials used for the study were: 30 maxillary central incisors, pre fabricated fiber reinforced composite post (postec plus posts), Multi-core heavy body, Ti-core, Fluoro-core, Etchant gel, Silane coupling agent, Dentin bonding agent, Standardized gutta percha points, Rely-X dual cure composite resin. A total of 30 human maxillary central incisor were selected for this study. They were divided into three groups of 10 specimens each namely A, B and C. The results obtained were analyzed by using one way analysis (ANOVA) and Tukey Honestly Significant Difference and they showed highest mean shear bond strength for group C when compared with group A and group B. There is no significant difference in the shear bond strength values between group A and group B. The teeth restored with multicore HB showed highest shear bond strength. The teeth restored with Fluoro core showed lowest shear bond strength. No statistically significant difference exists between the shear bond strength values between Ti-core and Fluoro-core.

  11. Surface roughness of flowable and packable composite resin materials after finishing with abrasive discs.

    Science.gov (United States)

    Uçtaşli, M B; Bala, O; Güllü, A

    2004-12-01

    The aim of this study was to compare surface roughness of flowable (Admira Flow, Filtek Flow, Tetric Flow) and packable (Admira, Filtek P60, Tetric HB) composite resin restorative materials finishing with Sof-Lex discs by means of average surface roughness (Ra) measurement using a surface profilometer and scanning electron microscopy (SEM). For each test group five specimens were prepared and roughness was measured in five different positions using a profilometer with a traversing distance of 4 mm and a cut-off value of 0.8 mm. The radius of the tracing diamond tip was 5 microm and measuring force and speed was 4 mN and 0.5 mm/s, respectively. The surface roughness of each individual disk was taken as the arithmetic mean of the Ra values measured in five different positions. Additionally, one specimen of each test group after finishing was observed under SEM with the magnification of x800 and x2500. Before finishing with Sof-Lex discs, flowable composite materials showed a smoother surface than packable composites restoratives (P 0.05).

  12. Evaluation of cryogenic insulation materials and composites for use in nuclear radiation environments

    Science.gov (United States)

    Bullock, R. E.

    1972-01-01

    The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.

  13. Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions

    Science.gov (United States)

    2015-10-30

    Distribution Unlimited Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions The views...peer-reviewed journals: Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions Report...2.00 4.00 Evan Vargas, Michelle L. Pantoya, Mohammed A Saed, Brandon L Weeks. Advanced Susceptors for Microwave Heating of Energetic Materials

  14. Wood-based Tri-Axial Sandwich Composite Materials: Design, Fabrication, Testing, Modeling and Application

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    As the demand for sustainable materials increases, there are unique challenges and opportunities to develop light-weight green composites materials for a wide range of applications. Thus wood-based composite materials from renewable forests may provide options for some niche applications while helping to protect our environment. In this paper, the wood-based tri-axial...

  15. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework.

    Science.gov (United States)

    Komine, Futoshi; Fushiki, Ryosuke; Koizuka, Mai; Taguchi, Kohei; Kamio, Shingo; Matsumura, Hideo

    2012-03-01

    The present study evaluated the effect of various surface treatments for zirconia ceramics on shear bond strength between an indirect composite material and zirconia ceramics. In addition, we investigated the durability of shear bond strength by using artificial aging (20,000 thermocycles). A total of 176 Katana zirconia disks were randomly divided into eight groups according to surface treatment, as follows: group CON (as-milled); group GRD (wet-ground with 600-grit silicon carbide abrasive paper); groups 0.05, 0.1, 0.2, 0.4, and 0.6 MPa (airborne-particle abrasion at 0.05, 0.1, 0.2, 0.4, and 0.6 MPa, respectively); and group HF (9.5% hydrofluoric acid etching). Shear bond strength was measured at 0 thermocycles in half the specimens after 24-h immersion. The remaining specimens were subjected to 20,000 thermocycles before shear bond strength testing. Among the eight groups, the 0.1, 0.2, 0.4, and 0.6 MPa airborne-particle abraded groups had significantly higher bond strengths before and after thermocycling. The Mann-Whitney U-test revealed no significant difference in shear bond strength between 0 and 20,000 thermocycles, except in the 0.2 MPa group (P = 0.013). From the results of this study, use of airborne-particle abrasion at a pressure of 0.1 MPa or higher increases initial and durable bond strength between an indirect composite material and zirconia ceramics.

  16. A decade of science and engineering of composite materials at the North West Composites Centre, University of Manchester, UK

    Science.gov (United States)

    Soutis, Constantinos

    2017-04-01

    The University of Manchester, School of Materials has a large multidisciplinary research programme on polymers, composites and carbon-based materials. This takes place through fundamental studies of structure-property relationships for these materials, including controlled synthesis and processing, and effects of structure andnano-, meso- and macro-scale morphology on physical properties and engineering applications.

  17. A decade of science and engineering of composite materials at the North West Composites Centre, University of Manchester, UK

    Science.gov (United States)

    Soutis, Constantinos

    2016-12-01

    The University of Manchester, School of Materials has a large multidisciplinary research programme on polymers, composites and carbon-based materials. This takes place through fundamental studies of structure-property relationships for these materials, including controlled synthesis and processing, and effects of structure andnano-, meso- and macro-scale morphology on physical properties and engineering applications.

  18. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.

  19. The Cryogenic Impact Resistant Evaluation of Filament Wound Materials for Use in Composite Pressure Vessels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HyPerComp Engineering Inc. (HEI) and Utah State University (USU) propose to develop technology for lightweight composite materials for use in composite structures...

  20. The effect of group composition and age on social behaviour and competition in groups of weaned dairy calves

    DEFF Research Database (Denmark)

    Færevik, G.; Jensen, Margit Bak; Bøe, K. E.

    2010-01-01

    including all calves in both homogeneous and heterogeneous groups showed that when lying, calves were evenly distributed on the 4 lying areas and formed subgroups of on average 3 calves. In conclusion, age heterogeneity leads to increased competition, which may have a negative influence on the young calves......The objective of the present study was to investigate how group composition affects behavior and weight gain of newly weaned dairy calves and how age within heterogeneous groups affects behavior and competition. Seventy-two calves were introduced into 6 groups of 12 calves, of which 3 groups were...... homogeneous and 3 groups were heterogeneous (including 6 young and 6 old calves). The 9.8 m × 9.5 m large experimental pen had 4 separate lying areas as well as a feeding area. Behavior and subgrouping were recorded on d 1, 7, and 14 after grouping, and calves were weighed before and after the experimental...

  1. Effect of preheating on the film thickness of contemporary composite restorative materials

    OpenAIRE

    Dimitrios Dionysopoulos; Kosmas Tolidis; Paris Gerasimou; Eugenia Koliniotou-Koumpia

    2014-01-01

    Background/purpose: Recently, the placement of composite materials at an elevated temperature has been proposed in order to increase their flow for better adaptation in cavity walls. The aim of this in vitro study was to evaluate the effect of preheating on the film thickness of a variety of commercially available conventional composites and to compare them with those obtained from a variety of flowable composites at room temperature. Materials and methods: The composites were three nanohy...

  2. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  3. Gender, Group Composition, and Task Type in Small Task Groups Using Computer-Mediated Communication.

    Science.gov (United States)

    Savicki, Victor; And Others

    1996-01-01

    To investigate gender effects on computer-mediated communication, undergraduate psychology students were put in small groups (males, females, or mixed) and were assigned feminine content (decision making) and masculine content (intellective) task types. Groups of females, regardless of task, sent more words per e-mail message, were more satisfied…

  4. EVALUATION OF SURFACE CONDITION AFTER FINISHING AND POLISHING OF A FLOWABLE COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Bogdan MUNTEANU

    2016-06-01

    Full Text Available The aim of the study was to evaluate the surface condition, after finishing and polishing with 3 different systems, of a flowable composite material, starting from the microstructure experimentally analyzed by atomic force microscopy. Materials and method. The material tested in the present study was Filtek Ultimate Flowable Restorative (3M ESPE composite. 20 cylindrical samples, 5 mm in diameter and 2 mm thick, were prepared by using metallic molds. The samples were randomly divided into 4 groups: a group containing 5 control samples, not subjected to finishing and 3 groups formed, each, of 5 samples for each of the three finishing and polishing systems, respectively system 1: the two-step Sof-Lex (3M ESPE, system 2: multistep Super Snap (Shofu, Inc. Kyoto, Japan and system 3: multi-step OptiDisc (KerrHawe SA, Switzerland. The surfaces of the samples were analyzed by atomic force microscopy. For quantitative evaluations, the rugosity parameter (Ra, and the mean deviation of the determined profile were calculated. Results. All 3 polishing systems determined an increase of the Ra parameter, comparatively with the control samples; the highest mean Ra value, of 1.19 µm, was recorded for system 3, followed by system 2 (mean Ra value = 1.12 µm, while the lowest mean value, of 1.10 µm, was registered for system 1. Conclusions. All three systems under investigation induced increased rugosity on the surfaces of the samples prepared from the Filtek Ultimate Flowable Restorative (3M ESPE composite resin. The most abrasive system appears to be OptiDisc (KerrHawe SA, Switzerland, followed by the Super Snap (Shofu, Inc. Kyoto, Japan system, the one recording the lowest abrasion being SofLex (3M ESPE.

  5. Tetherless mobile micrograsping using a magnetic elastic composite material

    Science.gov (United States)

    Zhang, Jiachen; Diller, Eric

    2016-11-01

    In this letter, we propose and characterize a new type of tetherless mobile microgripper for micrograsping that is made of a magnetic elastic composite material. Its magnetically-programmable material and structures make it the first three-dimensional (3D) mobile microgripper that is directly actuated and controlled by magnetic forces and torques. With a symmetric four-limb structure, the microgripper is 3.5 mm long from tip to tip when it is open and 30 μm thick. It forms an approximate 700 μm cube when it is closed. The orientation and 3D shape of the microgripper are determined by the direction and strength of the applied magnetic field, respectively. As a mobile device, the microgripper can be moved through aqueous environments for precise grasping and transportation of micro-objects, pulled by magnetic gradients directly or rolled in rotating magnetic fields. The deformation of the microgripper under magnetic actuation is characterized by modeling and confirmed experimentally. Being directly controlled by magnetic forces and torques, the microgripper is easier and more intuitive to control than other magnetic microgrippers that require other inputs such as thermal and chemical responses. In addition, the microgripper is capable of performing fast repeatable grasping motions, requiring no more than 25 ms to change from fully open to fully closed in water at room temperature. As a result of its large-amplitude 3D deformation, the microgripper can accommodate cargoes with a wide range of geometries and dimensions. A pick-and-place experiment demonstrates the efficacy of the microgripper and its potentials in biomedical, microfluidic, and microrobotic applications.

  6. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow production rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.

  7. Method of making bearing materials. [self-lubricating, oxidation resistant composites for high temperature applications

    Science.gov (United States)

    Sliney, H. E. (Inventor)

    1979-01-01

    A method is described for making a composite material which provides low friction surfaces for materials in rolling or sliding contact. The composite material which is self-lubricating and oxidation resistant up to and in excess of about 930 C is comprised of a metal component which lends strength and elasticity to the structure and a fluorine salt component which provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  8. Laminate Analyses, Micromechanical Creep Response, and Fatigue Behavior of Polymer Matrix Composite Materials.

    Science.gov (United States)

    1982-12-01

    FATIGUE BEHAVIOR of POLYMER MATRIX COMPOSITE MATERIALS , 4 " .’* .. . . ". ... .. ... . . ~December 1982 41 .. FINAL REPORT .Army Research Office I I...DEPARTMENT REPORT UWME-DR-201-108-1 LAMINATE ANALYSES, MICROMECHANICAL CREEP RESPONSE, AND FATIGUE BEHAVIOR OF POLYMER MATRIX COMPOSITE MATERIALS...Behavior of Polymer Matrix Composite 16 Sept. 1979 - 30 Nov. 1982 Materials 6 PERFORMING ORG. REPORT NUMBER UWME-DR-201-108-1 7. AUTHOR(.) S. CONTRACT

  9. The analysis of the electromagnetic characteristics of composite materials with negative effective permittivity

    Institute of Scientific and Technical Information of China (English)

    BAO Yongfang; LU Yinghua; HE Pengfei; HAN Chunyuan

    2007-01-01

    A new method based on the finite difference time domain(FDTD) method is presented to numerically analyze the transmission and reflection characteristic of composite materials with negative effective permittivity.The numerical results are compared with the results of the existing theoretical model and the experimental data.The feasibility of analyzing the composite materials using the FDTD method is validated.It is useful for the design and application of the composite materials.

  10. Influence of raw materials composition on firing shrinkage, porosity, heat conductivity and microstructure of ceramic tiles

    Science.gov (United States)

    Kurovics, E.; Buzimov, A. Y.; Gömze, L. A.

    2016-04-01

    In this work some new raw material compositions from alumina, conventional brick-clays and sawdust were mixed, compacted and heat treated by the authors. Depending on raw material compositions and firing temperatures the specimens were examined on shrinkage, water absorption, heat conductivity and microstructures. The real raised experiments have shown the important role of firing temperature and raw material composition on color, heat conductivity and microstructure of the final product.

  11. Engineering of fluorescent emission of silk fibroin composite materials by material assembly.

    Science.gov (United States)

    Lin, Naibo; Meng, Zhaohui; Toh, Guoyang William; Zhen, Yang; Diao, Yingying; Xu, Hongyao; Liu, Xiang Yang

    2015-03-01

    This novel materials assembly technology endows the designated materials with additional/enhanced performance by fixing "functional components" into the materials. Such functional components are molecularly recognized and accommodated by the designated materials. In this regard, two-photon fluorescence (TPF) organic molecules and CdTe quantum dots (QDs) are adopted as functional components to functionalize silk fibers and films. TPF organic molecules, such as, 2,7-bis[2-(4-nitrophenyl) ethenyl]-9,9-dibutylfluorene (NM), exhibit TPF emission quenching because of the molecular stacking that leads to aggregation in the solid form. The specific recognition between -NO2 in the annealed fluorescent molecules and the -NH groups in the silk fibroin molecules decouples the aggregated molecules. This gives rise to a significant increase in the TPF quantum yields of the silk fibers. Similarly, as another type of functional components, CdTe quantum dots (QDs) with different sizes were also adopted in the silk functionalization method. Compared to QDs in solution the fluorescence properties of functionalized silk materials display a long stability at room temperature. As the functional materials are well dispersed at high quantum yields in the biocompatible silk a TPF microscope can be used to pursue 3D high-resolution imaging in real time of the TPF-silk scaffold. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of the Flexure Behavior and Compressive Strength of Fly Ash Core Sandwiched Composite Material

    Directory of Open Access Journals (Sweden)

    Vijaykumar H.K

    2014-07-01

    Full Text Available In this paper, commercially available Fly Ash and Epoxy is used for the core material, woven glass fabric as reinforcing skin material, epoxy as matrix/adhesive materials used in this study for the construction of sandwich composite. Analysis is carried out on different proportions of epoxy and fly ash sandwiched composite material for determining the flexural strength and compressive strength, three different proportions of epoxy and fly ash used for the study. Those are 65%-35% (65% by weight fly ash and 35% by weight epoxy resin composite material, 60%-40% and 55%-45% composite material. 60%-40% composite material specimen shows better results in the entire test carried out i.e. Flexure and Compression. The complete experimental results are discussed and presented in this paper.

  13. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    Directory of Open Access Journals (Sweden)

    Zaiku Xie

    2010-05-01

    Full Text Available Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT, etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts.

  14. Advanced fiber-composite hybrids--A new structural material

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    Introduction of metal foil as part of matrix and fiber composite, or ""sandwich'', improves strength and stiffness for multidirectional loading, improves resistance to cyclic loading, and improves impact and erosion resistance of resultant fiber-composite hybrid structure.

  15. Changing the composition of the group hydrocarbons of diesel fractions in the process of hydrotreating

    Science.gov (United States)

    Krivtcova, N.; Baklashkina, К; Sabiev, Sh; Krivtsov, E.; Syskina, A.

    2016-09-01

    Change in group composition of sulfur compounds and structural group composition of the diesel fractions in the course of hydrotreating is presented in the paper. The removal degree of sulfur compounds is shown to comprise 95.8% rel. The homologs of benzothiophenes are removed for 93.9% rel., ones of the dibenzothiophenes are for 90.7% rel. A considerable change in group composition of diesel fraction is established in the course of hydrotreating. Hydrogenation degree of aromatic hydrocarbons is 24.4% wt., the amount of saturated hydrocarbons has increased by 20.4% wt.

  16. Micromechanics and homogenization of inelastic composite materials with growing cracks

    Science.gov (United States)

    Costanzo, Francesco; Boyd, James G.; Allen, David H.

    1996-03-01

    A homogenization scheme is employed to derive the effective constitutive equations of an elastoplastic composite system with growing damage. The homogenization procedure followed herein is based on the thermodynamics of dissipative media. It is shown that when damage consists of sharps microcracks the macroscopic constitutive behavior is that of a so-called generalized standard material. The latter is a general dissipative medium whose constitutive equations are completely characterized by a single scalar convex potential function of the chosen state variables and whose evolution is completely characterized by a single convex dissipation potential function of the thermodynamic forces conjugate to the chosen internal state variables. The analysis presented is valid under the assumption that the evolution of the representative volume element at hand is unique and stable. The results of the theoretical analysis are then employed for formulating an approximate method for practically deriving the macroscopic constitutive equations. Computer software development for the application of said method is currently ongoing. A simple example of the numerical results obtained so far is presented.

  17. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    Science.gov (United States)

    Li, Jun; Meyyappan, Meyya; Dangelo, Carols

    2012-01-01

    State-of-the-art integrated circuits (ICs) for microprocessors routinely dissipate power densities on the order of 50 W/cm2. This large power is due to the localized heating of ICs operating at high frequencies and must be managed for future high-frequency microelectronic applications. As the size of components and devices for ICs and other appliances becomes smaller, it becomes more difficult to provide heat dissipation and transport for such components and devices. A thermal conductor for a macro-sized thermal conductor is generally inadequate for use with a microsized component or device, in part due to scaling problems. A method has been developed for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler-composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place, and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  18. Studies of Matrix/Fiber Reinforced Composite Materials for the High Speed Research (HSR) Program

    Science.gov (United States)

    Orwoll, Robert A.

    1998-01-01

    The research on the curing mechanism of the phenylethynyl terminated imide matrix resins was the primary focus of this research. The ability to process high performance polymers into useful adhesives and high quality composites has been significantly advanced by synthetic techniques in which oligomers terminated with reactive groups cure or crosslink at elevated temperature after the article has been fabricated. The research used a variety of analytical techniques. Many stable products were isolated, and attempts at identification were made. This research was intended to provide fundamental insight into the molecular structure of these new engineering materials.

  19. Effective Thermal Conductivity Analysis of Xonotlite-aerogel Composite Insulation Material

    Institute of Scientific and Technical Information of China (English)

    Gaosheng WEI; Xinxin ZHANG; Fan YU

    2009-01-01

    A 3-dimensional unit cell model is developed for analyzing effective thermal conductivity of xonotlite-aerogel composite insulation material based on its microstructure features. Effective thermal conductivity comparisons between xonotlite-type calcium silicate and aerogel as well as xonotlite-aerogei composite insulation material are presented. It is shown that the density of xonotlite-type calcium silicate is the key factor affecting the effective thermal conductivity of xonotlite-aerogel composite insulation material, and the density of aerogel has tittle in-fluence. The effective thermal conductivity can be lowered greatly by composite of the two materials at an ele-vated temperature.

  20. Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage

    Directory of Open Access Journals (Sweden)

    Hans-Conrad zur Loye

    2009-10-01

    Full Text Available This review summarizes the current state of polymer composites used as dielectric materials for energy storage. The particular focus is on materials: polymers serving as the matrix, inorganic fillers used to increase the effective dielectric constant, and various recent investigations of functionalization of metal oxide fillers to improve compatibility with polymers. We review the recent literature focused on the dielectric characterization of composites, specifically the measurement of dielectric permittivity and breakdown field strength. Special attention is given to the analysis of the energy density of polymer composite materials and how the functionalization of the inorganic filler affects the energy density of polymer composite dielectric materials.