WorldWideScience

Sample records for group carboxylic acid

  1. -chain carboxylic acids from chemical group 5

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 49 flavouring substances in the Flavouring Group Evaluation 07, including additional five substances in this Revision 4, using the Procedure in Commission ...

  2. Ozone-driven photochemical formation of carboxylic acid groups from alkane groups

    Directory of Open Access Journals (Sweden)

    S. Liu

    2011-03-01

    Full Text Available Carboxylic acids are ubiquitous in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were highly associated with trajectories from an industrial region with high organic mass (OM, likely from fossil fuel combustion emissions. The concentration of carboxylic acid groups peaked during daytime, suggesting a photochemical secondary formation mechanism. This daytime increase in concentration was tightly correlated with O3 mixing ratio, indicating O3 was the likely driver in acid formation. Based on the diurnal cycles of carboxylic acid and alkane groups, the covariation of carboxylic acid groups with O3, and the composition of the Combustion factor resulted from the factor analyses, gas-phase alkane oxidation by OH radicals to form dihyfrofuran followed by further oxidation of dihydrofuran by O3 is the likely acid formation mechanism. Using the multi-day average of the daytime increase of carboxylic acid group concentrations and m/z 44-based Aged Combustion factor, we estimated the lower-bound contributions of secondary organic aerosol (SOA formed in 12-h daytime of processing in a single day to be 30% of the carboxylic acid groups and 25–45% of the Combustion factor concentration. These unique ambient observations of photochemically-driven acid formation suggest that gas-phase alkanes might be important sources of SOA formation in this coastal region.

  3. Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups

    Directory of Open Access Journals (Sweden)

    S. Liu

    2011-08-01

    Full Text Available Carboxylic acids are present in substantial quantities in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were exclusively associated with a fossil fuel combustion factor derived from factor analysis of Fourier transform infrared spectroscopic measurements and closely correlated with oxygenated organic factors from aerosol mass spectrometry measurements. The high fraction of acid groups and the high ratio of oxygen to carbon in this factor suggest that this factor is composed of secondary organic aerosol (SOA products of combustion emissions from the upwind industrial region (the ports of Los Angeles and Long Beach. Another indication of the photochemically-driven secondary formation of this combustion-emitted organic mass (OM was the daytime increase in the concentrations of acid groups and the combustion factors. This daytime increase closely tracked the O3 mixing ratio with a correlation coefficient of 0.7, indicating O3 was closely associated with the SOA maximum and thus likely the oxidant that resulted in acid group formation. Using a pseudo-Lagrangian framework to interpret this daytime increase of carboxylic acid groups and the combustion factors, we estimate that the carboxylic acid groups formed in a 12-h daytime period of one day ("Today's SOA" accounted for 25–33 % of the measured carboxylic acid group mass, while the remaining 67–75 % (of the carboxylic acid group mass was likely formed 1–3 days previously (the "Background SOA". A similar estimate of the daytime increase in the combustion factors suggests that "Today's SOA" and the "Background SOA" respectively contributed 25–50 % and 50–75 % of the combustion factor (the "Total SOA", for a "Total SOA" contribution to the OM of 60 % for the project average. Further, size

  4. Rh(III)-catalyzed decarboxylative ortho-heteroarylation of aromatic carboxylic acids by using the carboxylic acid as a traceless directing group.

    Science.gov (United States)

    Qin, Xurong; Sun, Denan; You, Qiulin; Cheng, Yangyang; Lan, Jingbo; You, Jingsong

    2015-04-03

    Highly selective decarboxylative ortho-heteroarylation of aromatic carboxylic acids with various heteroarenes has been developed through Rh(III)-catalyzed two-fold C-H activation, which exhibits a wide substrate scope of both aromatic carboxylic acids and heteroarenes. The use of naturally occurring carboxylic acid as the directing group avoids troublesome extra steps for installation and removal of an external directing group.

  5. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    Science.gov (United States)

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  6. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    Science.gov (United States)

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  7. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    Science.gov (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction.

  8. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  9. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers

    Science.gov (United States)

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  10. Evaluation of the cyclopentane-1,2-dione as a potential bio-isostere of the carboxylic acid functional group.

    Science.gov (United States)

    Ballatore, Carlo; Gay, Bryant; Huang, Longchuan; Robinson, Katie Herbst; James, Michael J; Trojanowski, John Q; Lee, Virginia M-Y; Brunden, Kurt R; Smith, Amos B

    2014-09-01

    Cycloalkylpolyones hold promise in drug design as carboxylic acid bio-isosteres. To investigate cyclopentane-1,2-diones as potential surrogates of the carboxylic acid functional group, the acidity, tautomerism, and geometry of hydrogen bonding of representative compounds were evaluated. Prototypic derivatives of the known thromboxane A2 prostanoid (TP) receptor antagonist, 3-(3-(2-((4-chlorophenyl)sulfonamido)-ethyl)phenyl)propanoic acid, in which the carboxylic acid moiety is replaced by the cyclopentane-1,2-dione unit, were synthesized and evaluated as TP receptor antagonists. Cyclopentane-1,2-dione derivative 9 was found to be a potent TP receptor antagonist with an IC50 value comparable to that of the parent carboxylic acid. These results indicate that the cyclopentane-1,2-dione may be a potentially useful carboxylic acid bio-isostere.

  11. A Convenient, General Synthesis of 1,1-Dimethylallyl Esters as Protecting Groups for Carboxylic Acids

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A.

    2006-01-01

    Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided. PMID:15816730

  12. A convenient, general synthesis of 1,1-dimethylallyl esters as protecting groups for carboxylic acids.

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A

    2005-04-14

    [reaction: see text] Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl, and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided.

  13. Bimane: A Visible Light Induced Fluorescent Photoremovable Protecting Group for the Single and Dual Release of Carboxylic and Amino Acids.

    Science.gov (United States)

    Chaudhuri, Amrita; Venkatesh, Yarra; Behara, Krishna Kalyani; Singh, N D Pradeep

    2017-03-10

    A series of ester conjugates of carboxylic and amino acids were synthesized based on bimane fluorescent photoremovable protecting group (FPRPG). The photorelease of single and dual (same as well as different) carboxylic and amino acids is demonstrated from a single bimane molecule on irradiation with visible light (λ ≥ 410 nm). The detailed mechanistic study of photorelease revealed that the release of two caged acids is simultaneous but in a stepwise pathway.

  14. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  15. 2-Pyridinyl-N-(2,4-difluorobenzyl)aminoethyl Group As Thermocontrolled Implement for Protection of Carboxylic Acids.

    Science.gov (United States)

    Brzezinska, Jolanta; Witkowska, Agnieszka; Bałabańska, Sandra; Chmielewski, Marcin K

    2016-07-01

    A thermolabile protecting group strategy for carboxylic acids is expanded. Thermosensitive esters are readily prepared using a known procedure, and their stability under neutral condition is investigated. Effective thermolytic deprotection initiated only by temperature for different carboxylic acids is demonstrated, and the compatibility of a thermolytic protecting group with acidic and basic protecting groups in an orthogonal protection strategy is also presented. This study showed interesting correlations between the pKa of acids and the deprotection rate of their well-protected moieties.

  16. Application of the Organic Photosensitizers Bearing Two Carboxylic Acid Groups to Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-Hua; YAO Yi-Shan; LI Chao; WANG Wei-Bo; CHENG Xue-Xin; WANG Xue-Song; ZHANG Bao-Wen

    2008-01-01

    Three electron donor-n bridge-electron acceptor(D-π-A)organic dyes bearing two carboxylic acid groups were applied to dye-sensitized solar cells(DSSC)as sensitizers,in Which one triphenylamine or modified triphenylamine and two rhodanine-3-acetic acid fragments act as D and A.respectively.It was found that the introduction of t-butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer,thus improving the overall photoelectric conversion efficiency of the resultant DSSC.Under global AM 1.5 solar irradiation(73 mW·cm-2),the dye molecule based on methoxy-substituted triphenylamine achieved the best photovoltaic performance:a short circuit photocurrent density(Jsc)of 12.63 mA·cm-2,an open circuit voltage(Voc)of 0.55 V,a fill factor(FF)of 0.62,corresponding to an overall efficiency(η)of 5.9%.

  17. Structure Property Relationships of Carboxylic Acid Isosteres.

    Science.gov (United States)

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  18. Synthesis, structural characterization and antimicrobial activities of diorganotin(IV) complexes with azo-imino carboxylic acid ligand: Crystal structure and topological study of a doubly phenoxide-bridged dimeric dimethyltin(IV) complex appended with free carboxylic acid groups

    Science.gov (United States)

    Roy, Manojit; Roy, Subhadip; Devi, N. Manglembi; Singh, Ch. Brajakishor; Singh, Keisham Surjit

    2016-09-01

    Diorganotin(IV) complexes appended with free carboxylic acids were synthesized by reacting diorganotin(IV) dichlorides [R2SnCl2; R = Me (1), Bu (2) and Ph (3)] with an azo-imino carboxylic acid ligand i.e. 2-{4-hydroxy-3-[(2-hydroxyphenylimino)methyl]phenylazo}benzoic acid in presence of triethylamine. The complexes were characterized by elemental analysis, IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy. The structure of 1 in solid state has been determined by X-ray crystallography. Crystal structure of 1 reveals that the compound crystallizes in monoclinic space group P21/c and is a dimeric dimethyltin(IV) complex appended with free carboxylic acid groups. In the structure of 1, the Sn(IV) atoms are hexacoordinated and have a distorted octahedral coordination geometry in which two phenoxy oxygen atoms and the azomethine nitrogen atom of the ligand coordinate to each tin atom. One of the phenoxy oxygen atom bridges the two tin centers resulting in a planar Sn2O2 core. Topological analysis is used for the description of molecular packing in 1. Tin NMR spectroscopy study indicates that the complexes have five coordinate geometry around tin atom in solution state. Since the complexes have free carboxylic acids, these compounds could be further used as potential metallo-ligands for the synthesis of other complexes. The synthesized diorganotin(IV) complexes were also screened for their antimicrobial activities and compound 2 showed effective antimicrobial activities.

  19. Activation of carboxylic acids in asymmetric organocatalysis.

    Science.gov (United States)

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  20. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...

  1. Synthesis, characterization, guest inclusion, and photophysical studies of gold nanoparticles stabilized with carboxylic acid groups of organic cavitands.

    Science.gov (United States)

    Mondal, Barnali; Kamatham, Nareshbabu; Samanta, Shampa R; Jagadesan, Pradeepkumar; He, Jibao; Ramamurthy, V

    2013-10-15

    Water-soluble gold nanoparticles (AuNP) stabilized with cavitands having carboxylic acid groups have been synthesized and characterized by a variety of techniques. Apparently, the COOH groups similar to thiol are able to prevent aggregation of AuNP. These AuNP were stable either as solids or in aqueous solution. Most importantly, these cavitand functionalized AuNP were able to include organic guest molecules in their cavities in aqueous solution. Just like free cavitands (e.g., octa acid), cavitand functionalized AuNP includes guests such as 4,4'-dimethylbenzil and coumarin-1 through capsule formation. The exact structure of the capsular assembly is not known at this stage. Upon excitation there is communication between the excited guest present in the capsule and gold atoms and this results in quenching of phosphorescence from 4,4'-dimethylbenzil and fluorescence from coumarin-1.

  2. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    Science.gov (United States)

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  3. Biocatalytic reduction of carboxylic acids.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Winkler, Margit

    2014-06-01

    An increasing demand for non-petroleum-based products is envisaged in the near future. Carboxylic acids such as citric acid, succinic acid, fatty acids, and many others are available in abundance from renewable resources and they could serve as economic precursors for bio-based products such as polymers, aldehyde building blocks, and alcohols. However, we are confronted with the problem that carboxylic acid reduction requires a high level of energy for activation due to the carboxylate's thermodynamic stability. Catalytic processes are scarce and often their chemoselectivity is insufficient. This review points at bio-alternatives: currently known enzyme classes and organisms that catalyze the reduction of carboxylic acids are summarized. Two totally distinct biocatalyst lines have evolved to catalyze the same reaction: aldehyde oxidoreductases from anaerobic bacteria and archea, and carboxylate reductases from aerobic sources such as bacteria, fungi, and plants. The majority of these enzymes remain to be identified and isolated from their natural background in order to evaluate their potential as industrial biocatalysts.

  4. Carboxylic acids as substrates in homogeneous catalysis.

    Science.gov (United States)

    Goossen, Lukas J; Rodríguez, Nuria; Goossen, Käthe

    2008-01-01

    In organic molecules carboxylic acid groups are among the most common functionalities. Activated derivatives of carboxylic acids have long served as versatile connection points in derivatizations and in the construction of carbon frameworks. In more recent years numerous catalytic transformations have been discovered which have made it possible for carboxylic acids to be used as building blocks without the need for additional activation steps. A large number of different product classes have become accessible from this single functionality along multifaceted reaction pathways. The frontispiece illustrates an important reason for this: In the catalytic cycles carbon monoxide gas can be released from acyl metal complexes, and gaseous carbon dioxide from carboxylate complexes, with different organometallic species being formed in each case. Thus, carboxylic acids can be used as synthetic equivalents of acyl, aryl, or alkyl halides, as well as organometallic reagents. This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ. It serves to provide an invitation to complement, refine, and use these new methods in organic synthesis.

  5. Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups

    Science.gov (United States)

    Chen, Fang; Peng, Lin-Lu; Hong, Ze-Wen; Mao, Jin-Chuan; Zheng, Ju-Fang; Shao, Yong; Niu, Zhen-Jiang; Zhou, Xiao-Shun

    2016-08-01

    We have measured the alkane and benzene-based molecules with aldehyde and carboxylic acid as anchoring groups by using the electrochemical jump-to-contact scanning tunneling microscopy break junction (ECSTM-BJ) approach. The results show that molecule with benzene backbone has better peak shape and intensity than those with alkane backbone. Typically, high junction formation probability for same anchoring group (aldehyde and carboxylic acid) with benzene backbone is found, which contributes to the stronger attractive interaction between Cu and molecules with benzene backbone. The present work shows the import role of backbone in junction, which can guide the design molecule to form effective junction for studying molecular electronics.

  6. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    Science.gov (United States)

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  7. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-03

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling.

  8. Structure investigations of group 13 organometallic carboxylates.

    Science.gov (United States)

    Justyniak, Iwona; Prochowicz, Daniel; Tulewicz, Adam; Bury, Wojciech; Goś, Piotr; Lewiński, Janusz

    2017-01-17

    The octet-compliant group 13 organometallics with highly polarized bonds in the metal coordination sphere exhibit a significant tendency to maximize their coordination number through the formation of adducts with a wide range of neutral donor ligands or by self-association to give aggregates containing tetrahedral and higher coordinated aluminium centres, and even in some cases molecular complexes equilibrate with ionic species of different coordination numbers of the metal centre. This work provides a comprehensive overview of the structural chemistry landscape of the group 13 carboxylates. Aside from a more systematic approach to the general structural chemistry of the title compounds, the structure investigations of [R2M(μ-O2CPh)]2-type benzoate complexes (where M = B, Al and Ga) and their Lewis acid-base adducts [(R2M)(μ-O2CPh)(py-Me)] are reported. DFT calculations were also performed to obtain a more in-depth understanding of both the changes in the bonding of group 13 organometallic carboxylate adducts with a pyridine ligand.

  9. Silver-catalyzed decarboxylative chlorination of aliphatic carboxylic acids.

    Science.gov (United States)

    Wang, Zhentao; Zhu, Lin; Yin, Feng; Su, Zhongquan; Li, Zhaodong; Li, Chaozhong

    2012-03-07

    Decarboxylative halogenation of carboxylic acids, the Hunsdiecker reaction, is one of the fundamental functional group transformations in organic chemistry. As the initial method requires the preparations of strictly anhydrous silver carboxylates, several modifications have been developed to simplify the procedures. However, these methods suffer from the use of highly toxic reagents, harsh reaction conditions, or limited scope of application. In addition, none is catalytic for aliphatic carboxylic acids. In this Article, we report the first catalytic Hunsdiecker reaction of aliphatic carboxylic acids. Thus, with the catalysis of Ag(Phen)(2)OTf, the reactions of carboxylic acids with t-butyl hypochlorite afforded the corresponding chlorodecarboxylation products in high yields under mild conditions. This method is not only efficient and general, but also chemoselective. Moreover, it exhibits remarkable functional group compatibility, making it of more practical value in organic synthesis. The mechanism of single electron transfer followed by chlorine atom transfer is proposed for the catalytic chlorodecarboxylation.

  10. Recovery of carboxylic acids produced by fermentation.

    Science.gov (United States)

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ.

  11. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    Science.gov (United States)

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  12. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin street 2699, Changchun 130012, Jilin (China)

    2010-06-01

    In this study, a new type of cross-linked composite membrane is prepared and considered for its potential applications in direct methanol fuel cell. Nafion and sulfonated poly(arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) are blended and subsequently cross-linked by a Friedel-Craft reaction using the carboxylic acid groups in the SPAEK-C to achieve lower methanol permeability. The perfluoroalkyl sulfonic acid groups of Nafion act as a benign solid catalyst, which assist the cross-linking of SPAEK-C. The physical and chemical characterizations of the cross-linked composite membranes are performed by varying the contents of SPAEK-C. The c-Nafion-15% membrane exhibits appropriate water uptake (10.49-25.22%), low methanol permeability (2.57 x 10{sup -7} cm{sup 2} s{sup -1}), and high proton conductivity (0.179 S cm{sup -1} at 80 C). DSC and FTIR analyze suggest the cross-linking reaction. These results show that the self-cross-linking of SPAEK-C in the Nafion membrane can effectively reduce methanol permeability while maintaining high proton conductivity. (author)

  13. The Reactivity of Carboxylic Acid and Ester Groups in the Functionalized Interfacial Region of ’Polyethylene Carboxylic Acid’ (PE-CO2H) and Derivatives: Differentiation of the Functional Groups into Shallow and Deep Subsets Based on a Comparison of Contact Angle and ATR-IR Measurements

    Science.gov (United States)

    1986-10-01

    of Contact Angle and ATR-IR Measurements" by Stephen Randall Holmes-Farley and George M. Whitesides Accepted for publication in Langmuir D T C.= NOV...and Qerivatives. Differentiation of the Functional Groups into Shallow and Deep Subsets based on a Comparison of Contact Angle and ATR-IR Measurements 1...of the Interfacial carboxylic acid groups using ATR-IR spectroscopy and contact angle measurements as probes Both the local polarity of the

  14. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells.

    Science.gov (United States)

    Brennan, Bradley J; Llansola Portolés, Manuel J; Liddell, Paul A; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2013-10-21

    A tetra-arylporphyrin dye was functionalized with three different anchoring groups used to attach molecules to metal oxide surfaces. The physical, photophysical and electrochemical properties of the derivatized porphyrins were studied, and the dyes were then linked to mesoporous TiO2. The anchoring groups were β-vinyl groups bearing either a carboxylate, a phosphonate or a siloxy moiety. The siloxy linkages were made by treatment of the metal oxide with a silatrane derivative of the porphyrin. The surface binding and lability of the anchored molecules were studied, and dye performance was compared in a dye-sensitized solar cell (DSSC). Transient absorption spectroscopy was used to study charge recombination processes. At comparable surface concentration, the porphyrin showed comparable performance in the DSSC, regardless of the linker. However, the total surface coverage achievable with the carboxylate was about twice that obtainable with the other two linkers, and this led to higher current densities for the carboxylate DSSC. On the other hand, the carboxylate-linked dyes were readily leached from the metal oxide surface under alkaline conditions. The phosphonates were considerably less labile, and the siloxy-linked porphyrins were most resistant to leaching from the surface. The use of silatrane proved to be a practical and convenient way to introduce the siloxy linkages, which can confer greatly increased stability on dye-sensitized electrodes with photoelectrochemical performance comparable to that of the other linkers.

  15. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...

  16. New structural motif for carboxylic acid perhydrolases

    OpenAIRE

    Yin, Delu; Purpero, Vince M.; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J.

    2013-01-01

    Some serine hydrolases also catalyze a promiscuous reaction – reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five x-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (kcat comparison) than wild type. Surprisingly, satur...

  17. New structural motif for carboxylic acid perhydrolases

    OpenAIRE

    Yin, Delu; Purpero, Vince M.; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J.

    2013-01-01

    Some serine hydrolases also catalyze a promiscuous reaction – reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five x-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (kcat comparison) than wild type. Surprisingly, satur...

  18. Understanding biocatalyst inhibition by carboxylic acids.

    Science.gov (United States)

    Jarboe, Laura R; Royce, Liam A; Liu, Ping

    2013-09-03

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  19. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe

    2013-09-01

    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  20. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando

    2006-01-01

    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...

  1. Intramolecular hydrogen bond between 4-oxo and 3-carboxylic groups in quinolones and their analogs. Crystal structures of 7-methyl- and 6-fluoro-1,4-dihydro-4-oxocinnoline-3-carboxylic acids

    Science.gov (United States)

    Główka, Marek L.; Martynowski, Dariusz; Olczak, Andrzej; Bojarska, Joanna; Szczesio, Małgorzata; Kozłowska, Krystyna

    2003-09-01

    Crystal structures of two cinnoline analogs of quinolones and statistics on quinolones molecular forms observed in the crystal state have been determined. It has been shown that common quinolones may be divided into two main types, depending on presence of proton acceptor, usually aliphatic amine group, capable of protonation under mild conditions. Quinolones lacking amine group or having one(s) bound to an aromatic system exist at physiological pH mainly in a free acid form, in which acidic hydrogen atom is locked into an intramolecular hydrogen bond. The phenomenon enhances permeability of quinolones through lipophilic cell membranes but decreases the concentration of carboxylate form capable of specific binding with bacterial DNA. Molecular (neutral) form was observed exclusively in the crystalline state for these quinolones. The dominant forms seem different for quinolones having amine substituents with unconjugated lone pair electrons at N atom. Even in the crystalline state, they may exist also in a zwitterionic form, which was found to dominate in secondary amines crystallised at neutral pH. Our limited data suggest that position and order of amine group may play important role in controlling quinolones absorption, transport and concentration and thus their biological profile.

  2. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  3. Carboxylic acid (bio)isosteres in drug design.

    Science.gov (United States)

    Ballatore, Carlo; Huryn, Donna M; Smith, Amos B

    2013-03-01

    The carboxylic acid functional group can be an important constituent of a pharmacophore, however, the presence of this moiety can also be responsible for significant drawbacks, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the carboxylic acid moiety, medicinal chemists often investigate the use of carboxylic acid (bio)isosteres. The same type of strategy can also be effective for a variety other purposes, for example, to increase the selectivity of a biologically active compound or to create new intellectual property. Several carboxylic acid isosteres have been reported, however, the outcome of any isosteric replacement cannot be readily predicted as this strategy is generally found to be dependent upon the particular context (i.e., the characteristic properties of the drug and the drug-target). As a result, screening of a panel of isosteres is typically required. In this context, the discovery and development of novel carboxylic acid surrogates that could complement the existing palette of isosteres remains an important area of research. The goal of this Minireview is to provide an overview of the most commonly employed carboxylic acid (bio)isosteres and to present representative examples demonstrating the use and utility of each isostere in drug design.

  4. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  5. Arginine of retinoic acid receptor beta which coordinates with the carboxyl group of retinoic acid functions independent of the amino acid residues responsible for retinoic acid receptor subtype ligand specificity.

    Science.gov (United States)

    Zhang, Zeng Ping; Hutcheson, Juliet M; Poynton, Helen C; Gabriel, Jerome L; Soprano, Kenneth J; Soprano, Dianne Robert

    2003-01-15

    The biological actions of retinoic acid (RA) are mediated by retinoic acid receptors (RARalpha, RARbeta, and RARgamma) and retinoid X receptors (RXRalpha, RXRbeta, and RXRgamma). Consistent with the X-ray crystal structures of RARalpha and RARgamma, site-directed mutagenesis studies have demonstrated the importance of a conserved Arg residue (alphaArg(276), betaArg(269), and gammaArg(278)) for coordination with the carboxyl group of RA. However, mutation of Arg(269) to Ala in RARbeta causes only a 3- to 6-fold increase in the K(d) for RA and EC(50) in RA-dependent transcriptional transactivation assays while the homologous mutation in either RARalpha or RARgamma causes a 110-fold and a 45-fold increase in EC(50) value, respectively. To further investigate the nature of this difference, we prepared mutant RARs to determine the effect of conversion of betaR269A to a mutant which mimics either RARalpha ligand selectivity (betaA225S/R269A) or RARgamma ligand selectivity (betaI263M/R269A/V338A). Our results demonstrate that in RARbeta mutants that acquire either RARalpha or RARgamma ligand specificity the Arg(269) position responsible for coordination with the carboxyl group of retinoids continued to function like that of RARbeta. Furthermore, three mutant receptors (betaA225S/R269A, betaA225S/F279, and alphaF286A) were found to have a greater than wild-type affinity for the RARalpha-selective ligand Am580. Finally, a homology-based computer model of the ligand binding domain (LBD) of RARbeta and the X-ray crystal structures of the LBD of both RARalpha and RARgamma are used to describe potential mechanisms responsible for the increased affinity of some mutants for Am580 and for the difference in the effect of mutation of Arg(269) in RARbeta compared to its homologous Arg in RARalpha and RARgamma.

  6. Electrochemical impedance and spectroscopy study of the EDC/NHS activation of the carboxyl groups on poly(ε-caprolactone/poly(m-anthranilic acid nanofibers

    Directory of Open Access Journals (Sweden)

    Z. Guler

    2016-02-01

    Full Text Available Electrochemical impedance spectroscopy (EIS and spectroscopy was applied to investigate the surface activation of carboxyl group (–COOH containing nanofibers by the reaction of 1-ethyl-3-(dimethyl-aminopropyl carbodiimide hydrochloride (EDC/N-hydroxyl succinimide (NHS in different concentrations. Poly(!-caprolactone/poly(m-anthranilic acid (PCL/P3ANA nanofibers were fabricated by electrospinning and were activated with 5/0.5, 0.5/5, 5/5 and 50/50 mM of EDC/NHS. The surface activation was investigated by Attenuated Total Reflectance Fourier transform infrared spectroscopy (FTIR-ATR and activation yield was estimated. Albumin was immobilized after surface activation and the amount of covalently immobilized protein was determined by bicinchoninic acid (BCA assay. Morphology and composition of albumin immobilized nanofibers were characterized by Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy (SEM/EDX and Atomic force microscope (AFM. EIS measurements indicated that nanofibers become resistant after albumin immobilization. The obtained data revealed that the highest amount of albumin bound to nanofibers activated with 50/50 mM of EDC/NHS which was found to be the optimum concentration for the activation of PCL/P3ANA nanofibers.

  7. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...... investigations of ali the polymers in general exhibit [when poly(4-hydroxystyrene) is a subetantial parti significant changes in the glass-transition temperature from the polar poly(4-hydroxystyr- ene) (120—130 “C) to the much less polar alkyne polymers (46—60 DC). A direct correlation between the nature...

  8. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  9. Cu(I)-catalyzed (11)C carboxylation of boronic acid esters: a rapid and convenient entry to (11)C-labeled carboxylic acids, esters, and amides.

    Science.gov (United States)

    Riss, Patrick J; Lu, Shuiyu; Telu, Sanjay; Aigbirhio, Franklin I; Pike, Victor W

    2012-03-12

    Rapid and direct: the carboxylation of boronic acid esters with (11)CO(2) provides [(11)C]carboxylic acids as a convenient entry into [(11)C]esters and [(11)C]amides. This conversion of boronates is tolerant to diverse functional groups (e.g., halo, nitro, or carbonyl).

  10. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...

  11. Nanoparticles made of multi-block copolymer of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups for oral delivery of cyclosporine A

    OpenAIRE

    Ankola, D. D.; De Battisti,A.; Solaro, R.; Kumar, M. N. V. Ravi

    2010-01-01

    The purpose of this study was to evaluate the potential of new carboxylated multi-block copolymer of lactic acid and ethylene glycol (EL14) for nanoparticle (NP) formation and their ability to deliver high molecular weight hydrophobic drug—cyclosporine A (CsA). CsA-loaded EL14 NPs were compared with traditional poly(lactide-co-glycolide) (PLGA) NPs, both prepared by emulsion–diffusion–evaporation process. On the one hand, the increase in drug payload from 10 to 30 per cent for EL14 NPs showed...

  12. Analysis of Chiral Carboxylic Acids in Meteorites

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  13. New structural motif for carboxylic acid perhydrolases.

    Science.gov (United States)

    Yin, DeLu Tyler; Purpero, Vince M; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J

    2013-02-25

    Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Olfactory sensitivity and odor structure-activity relationships for aliphatic carboxylic acids in CD-1 mice.

    Science.gov (United States)

    Can Güven, Selçuk; Laska, Matthias

    2012-01-01

    Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C(2) to C(4)) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C(5) to C(8)). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific.

  15. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    FENG ZeWang; ZHAO XinQi; BI Hua

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in dichloromethane at room temperature.

  16. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  17. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma

    2008-10-01

    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid in diluted solutions. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group or equivalently, one dissociable sulphate ester per molecule ranges from 250 to 310 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable hydrogen (i.e. of carboxyl groups and sulphate esters jointly in HULIS molecules was refined to be between 1.1 and 1.4 in acidic solutions.

  18. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-04-24

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  19. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  20. Synthesis of Stereoisomers of 3-Aminocyclohexanecarboxylic Acid and cis-3-Aminocyclohexene-5-carboxylic Acid

    Institute of Scientific and Technical Information of China (English)

    HU Yu; YU Sheng-Liang; YANG Yu-Jin; ZHU Jin; DENG Jin-Gen

    2006-01-01

    A practical synthesis of stereoisomers of 3-aminocyclohexanecarboxylic acid and cis-3-aminocyclohexene-5-carboxylic acid was achieved from cyclohexene-4-carboxylic acid via a key resolving approach with chiral 1-phenylethylamine.

  1. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Zohreh; Badiei, Alireza, E-mail: abadiei@khayam.ut.ac.ir [University of Tehran, School of Chemistry, College of Science (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Alzahra University, Research Laboratory of Pharmaceutical (Iran, Islamic Republic of)

    2015-03-15

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N{sub 2} adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  2. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Science.gov (United States)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-03-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  3. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma

    2008-05-01

    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group per molecule ranges from 248 to 305 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable carboxyl groups in HULIS molecules was refined to be between 1.1 and 1.4.

  4. 膜乳化法制备尺寸均-P(NIPAM-co-AAc)微球及其羧基分布%Distribution of Carboxyl Groups in Monodispersed Poly(N-Isopropylacylamide-co-Acrylic Acid) Microspheres Prepared by Membrane Emulsification

    Institute of Scientific and Technical Information of China (English)

    司天保; 秦佳; 王玉霞; 马光辉

    2011-01-01

    Temperature-/pH-responsive monodispersed poly(N-isopropyl acrylamide-co-acrylic acid) [P(NIPAM-co-AAc)] microspheres were prepared by Shirasu porous glass membrane emulsification at room temperature with N,N,N',N'-tetramethylethylenediamine as accelerator and cyclohexane/trichluromethane mixture as oil phase. The monodispersed P(NIPAM-co-AAc) microspheres with controllable diameter could be reproducibly obtained with cyclohexane-trichloromethane mixture (volumetric ratio 7:3) as oil phase and two stage stirring speeds (140 and and 170 r/min) under the membrane emulsification pressure of 2 kPa. Conductometric titration was used to determine the distribution of carboxyl groups in the microspheres. Four-step titration curves of all the P(NIPAM-co-AAc)microspheres with different acrylic acid contents were obtained. With the increase of AAc content, the amounts of both exterior carboxyl and embeded carboxyl groups increased gradually, but the percentage of exterior carboxyl groups increased firstly, then remained at a fixed value. The highest percentage of exterior carboxyl groups was obtained with 15%(ω) acrylic acid in the microspheres.%采用膜乳化法,以环己烷和氯仿混合溶液为油相,在室温下通过加入加速剂TEMED引发聚合反应,制备了一系列不同内烯酸含量的P(NIPAM-co-AAc)微球.结果表明,在压力2 kPa、环己烷/氯仿体积比7:3、第一和第二阶段过膜搅拌速度分别为140和170 r/min的条件下,可制备粒径均一、大小可控、重复性较好的P(NlPAM-co-AAc)微球.用电导滴定法测定微球中羧基分布,所有不同丙烯酸含量的P(NIPAM-co-AAc)微球电导滴定曲线均为4阶梯形状,随其含量增加,微球外层羧基含量和内层包埋的羧基含量均逐渐增加,但外层羧基占总羧基含量比例先增大然后趋于不变,丙烯酸含量为15%时达最大值.

  5. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    Science.gov (United States)

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  6. Corrosion inhibition of steel in concrete by carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sagoe-Crentsil, K.K.; Glasser, F.P. (Univ. of Aberdeen, Old Aberdeen (United Kingdom). Dept. of Chemistry); Yilmaz, V.T. (Ondokuz Mayis Univ., Samsun (Turkey))

    1993-11-01

    Water soluble carboxylic acids have been used as corrosion inhibitors. They remain largely soluble after curing in cement for up to 90d. Corrosion current measurements are presented showing malonic acid, a dicarboxylic acid, to be a very effective corrosion inhibitor even in the presence of 2.5 wt % chloride. Unfortunately, it has an initial retarding effect on the set of Portland cement. The investigation suggests that corrosion inhibitors based on carboxylic acids remain a fruitful field of investigation.

  7. Kinetic resolution of racemic carboxylic acids through asymmetric protolactonization promoted by chiral phosphonous acid diester.

    Science.gov (United States)

    Sakuma, Masayuki; Sakakura, Akira; Ishihara, Kazuaki

    2013-06-07

    Chiral phosphonium salts induce the kinetic resolution of racemic α-substituted unsaturated carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S (= kfast/kslow) values. Asymmetric protolactonization also leads to the desymmetrization of achiral carboxylic acids. Notably, chiral phosphonous acid diester not only induced the enantioselectivity but also promoted protolactonization.

  8. Nanoparticles made of multi-block copolymer of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups for oral delivery of cyclosporine A.

    Science.gov (United States)

    Ankola, D D; Battisti, A; Solaro, R; Kumar, M N V Ravi

    2010-08-06

    The purpose of this study was to evaluate the potential of new carboxylated multi-block copolymer of lactic acid and ethylene glycol (EL14) for nanoparticle (NP) formation and their ability to deliver high molecular weight hydrophobic drug--cyclosporine A (CsA). CsA-loaded EL14 NPs were compared with traditional poly(lactide-co-glycolide) (PLGA) NPs, both prepared by emulsion-diffusion-evaporation process. On the one hand, the increase in drug payload from 10 to 30 per cent for EL14 NPs showed no difference in particle size, however the entrapment efficiency tends to decrease from 50 to 43 per cent; on the other hand, the more hydrophobic PLGA showed an increasing trend in entrapment efficiency from 20 to 62 per cent with increasing particle size. Over 90 per cent of CsA was released in vitro from both the nanoparticulates; however, the release was much slower in the case of more hydrophobic PLGA. On in vivo evaluation in rats, the NPs made of EL14 showed a higher C(max), a faster T(max) and enhanced tissue levels to that of PLGA that are crucial for CsA's activity and toxicity; however, the overall bioavailability of the nanoparticulates was similar and higher than Neoral. Together these data demonstrate the feasibility of NPs made of low molecular weight, hydrophilic polymer EL14 for efficient delivery of CsA.

  9. Silver-Catalyzed Decarboxylative Allylation of Aliphatic Carboxylic Acids in Aqueous Solution.

    Science.gov (United States)

    Cui, Lei; Chen, He; Liu, Chao; Li, Chaozhong

    2016-05-06

    Direct decarboxylative radical allylation of aliphatic carboxylic acids is described. With K2S2O8 as the oxidant and AgNO3 as the catalyst, the reactions of aliphatic carboxylic acids with allyl sulfones in aqueous CH3CN solution gave the corresponding alkenes in satisfactory yields under mild conditions. This site-specific allylation method is applicable to all primary, secondary, and tertiary alkyl acids and exhibits wide functional group compatibility.

  10. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  11. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  12. Direct esterification of ammonium salts of carboxylic acids

    Science.gov (United States)

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  13. Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production.

    Science.gov (United States)

    Moura, Matthew; Pertusi, Dante; Lenzini, Stephen; Bhan, Namita; Broadbelt, Linda J; Tyo, Keith E J

    2016-05-01

    Chemicals with aldehyde moieties are useful in the synthesis of polymerization reagents, pharmaceuticals, pesticides, flavors, and fragrances because of their high reactivity. However, chemical synthesis of aldehydes from carboxylic acids has unfavorable thermodynamics and limited specificity. Enzymatically catalyzed reductive bioaldehyde synthesis is an attractive route that overcomes unfavorable thermodynamics by ATP hydrolysis in ambient, aqueous conditions. Carboxylic acid reductases (Cars) are particularly attractive, as only one enzyme is required. We sought to increase the knowledge base of permitted substrates for four Cars. Additionally, the Lys2 enzyme family was found to be mechanistically the same as Cars and two isozymes were also tested. Our results show that Cars prefer molecules where the carboxylic acid is the only polar/charged group. Using this data and other published data, we develop a support vector classifier (SVC) for predicting Car reactivity and make predictions on all carboxylic acid metabolites in iAF1260 and Model SEED.

  14. Kinetic and Thermodynamic Parameters for Uncatalyzed Esterification of Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Kehinde S. Bankole

    2014-06-01

    Full Text Available A fundamental study on uncatalyzed esterification of various biomass-derived aliphatic carboxylic acids with stoichiometric amount of ethanol has been investigated in an isothermal batch reactor, with the objective to convert carboxylic acids to corresponding ethyl esters and to determine both the kinetic and thermodynamic parameters. The effects of temperature on the conversion of carboxylic acid, kinetic and thermodynamic parameters have been investigated. Temperature was found to have significant effect on the rate of reaction and conversion of carboxylic acid. A simple second order reversible kinetic model was developed to determine the kinetic and thermodynamic parameters. The thermodynamic and kinetic parameters varied for uncatalyzed esterification reaction of both short-chain and long-chain carboxylic acids considered. The predicted data from the kinetic model were correlated with experimental data and the two sets of data agreed reasonably well for the uncatalyzed esterification systems. It was observed that the Van’t Hoff plot for uncatalyzed esterification of linoleic acid was non-linear curve, whereas for the Arrhenius and Eyring plots, they were linear. Additional experiments to assess the catalytic and corrosion effects of several metallic substances revealed Inconel 625 alloy, nickel wire and stainless steel materials were susceptible to corrosion problem with uncatalyzed esterification reaction at elevated reaction temperatures. However, tantalum and grade-5 titanium materials were corrosion resistance metals, suitable for similar reaction conditions and this can encourage the design of a flow reactor system. Although, uncatalyzed esterification of carboxylic acids at elevated reaction temperature is still at laboratory scale. It is our hope that the estimated kinetic and thermodynamic parameters would be the guiding tools for reactor scale-up, thus providing a new perspective into the conversion of biomass-derived carboxylic

  15. Automatic analyzer for highly polar carboxylic acids based on fluorescence derivatization-liquid chromatography.

    Science.gov (United States)

    Todoroki, Kenichiro; Nakano, Tatsuki; Ishii, Yasuhiro; Goto, Kanoko; Tomita, Ryoko; Fujioka, Toshihiro; Min, Jun Zhe; Inoue, Koichi; Toyo'oka, Toshimasa

    2015-03-01

    A sensitive, versatile, and reproducible automatic analyzer for highly polar carboxylic acids based on a fluorescence derivatization-liquid chromatography (LC) method was developed. In this method, carboxylic acids were automatically and fluorescently derivatized with 4-(N,N-dimethylaminosulfonyl)-7-piperazino-2,1,3-benzoxadiazole (DBD-PZ) in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride by adopting a pretreatment program installed in an LC autosampler. All of the DBD-PZ-carboxylic acid derivatives were separated on the ODS column within 30 min by gradient elution. The peak of DBD-PZ did not interfere with the separation and the quantification of all the acids with the exception of lactic acid. From the LC-MS/MS analysis, we confirmed that lactic acid was converted to an oxytriazinyl derivative, which was further modified with a dimethoxy triazine group of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). We detected this oxytriazinyl derivative to quantify lactic acid. The detection limits (signal-to-noise ratio = 3) for the examined acids ranged from 0.19 to 1.1 µm, which correspond to 95-550 fmol per injection. The intra- and inter-day precisions of typical, highly polar carboxylic acids were all carboxylic acids in various samples, which included fruit juices, red wine and media from cultured tumor cells.

  16. Structure-activity relationship studies of 1-substituted 3-dodecanoylindole-2-carboxylic acids as inhibitors of cytosolic phospholipase A2-mediated arachidonic acid release in intact platelets.

    Science.gov (United States)

    Griessbach, Klaus; Klimt, Monika; Schulze Elfringhoff, Alwine; Lehr, Matthias

    2002-01-01

    A series of 3-dodecanoylindole-2-carboxylic acid derivatives with varied carboxylic acid substituents at the indole 1-position were synthesized and evaluated for their ability to inhibit arachidonic acid release in human platelets mediated by the cytosolic phospholipase A(2). Structure-activity relationship studies revealed that increasing the polarity of these substituents by the introduction of additional polar groups in the proximity of the carboxylic acid moiety reduced activity. Conformational restriction of the indole-1-carboxylic acid substituents in distinct positions as well as extending the length of these residues led to compounds which did not substantially differ in their potencies.

  17. Quinoline based receptor in fluorometric discrimination of carboxylic acids

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Quinoline and naphthalene-based fluororeceptors 1 and 2 have been designed and synthesized for detection of hydroxy carboxylic acids in less polar solvents. The receptor 1 shows monomer emission quenching followed by excimer emission upon hydrogen bond-mediated complexation of carboxylic acids. The excimer emission distinguishes aromatic dicarboxylic acids from aliphatic dicarboxylic acids and even long chain aliphatic dicarboxylic acids from short chain aliphatic dicarboxylic acids. The receptor 1 is found to be selective for citric acid with a strong excimer emission in CHCl3. On the contrary, the receptor 2 exhibited less binding constant value and did not form any excimer upon complexation with the same acids under similar conditions. This established the role of quinoline ring nitrogen in binding with the acids.

  18. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  19. Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector

    Science.gov (United States)

    Solomon, Sally D.; Rutkowsky, Susan A.

    2010-01-01

    Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the…

  20. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  1. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Science.gov (United States)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  2. Behavior of carboxylic acids upon complexation with beryllium compounds.

    Science.gov (United States)

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2014-07-31

    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  3. Density functional theory study of the oligomerization of carboxylic acids.

    Science.gov (United States)

    Di Tommaso, Devis; Watson, Ken L

    2014-11-20

    We present a density functional theory [M06-2X/6-31+G(d,p)] study of the structures and free energies of formation of oligomers of four carboxylic acids (formic acid, acetic acid, tetrolic acid, and benzoic acid) in water, chloroform, and carbon tetrachloride. Solvation effects were treated using the SMD continuum solvation model. The low-lying energy structures of molecular complexes were located by adopting an efficient search procedure to probe the potential energy surfaces of the oligomers of carboxylic acids (CA)n (n = 2-6). The free energies of the isomers of (CA)n in solution were determined as the sum of the electronic energy, vibrational-rotational-translational gas-phase contribution, and solvation free energy. The assessment of the computational protocol adopted in this study with respect to the dimerization of acetic acid, (AA)2, and formic acid, (FA)2, located new isomers of (AA)2 and (FA)2 and gave dimerization constants in good agreement with the experimental values. The calculation of the self-association of acetic acid, tetrolic acid, and benzoic acid shows the following: (i) Classic carboxylic dimers are the most stable isomer of (CA)2 in both the gas phase and solution. (ii) Trimers of carboxylic acid are stable in apolar aprotic solvents. (iii) Molecular clusters consisting of two interacting classic carboxylic dimers (CA)4,(D+D) are the most stable type of tetramers, but their formation from the self-association of classic carboxylic dimers is highly unfavorable. (iv) For acetic acid and tetrolic acid the reactions (CA)2 + 2CA → (CA)4,(D+D) and (CA)3 + CA → (CA)4,(D+D) are exoergonic, but these aggregation pathways go through unstable clusters that could hinder the formation of tetrameric species. (v) For tetrolic acid the prenucleation species that are more likely to form in solution are dimeric and trimeric structures that have encoded structural motifs resembling the α and β solid forms of tetrolic acid. (vi) Stable tetramers of

  4. Cyclic Comonomers for the Synthesis of Carboxylic Acid and Amine Functionalized Poly(l-Lactic Acid

    Directory of Open Access Journals (Sweden)

    Markus Heiny

    2015-03-01

    Full Text Available Degradable aliphatic polyesters such as poly(lactic acid are widely used in biomedical applications, however, they lack functional moieties along the polymer backbone that are amenable for functionalization reactions or could be the basis for interactions with biological systems. Here we present a straightforward route for the synthesis of functional α-ω epoxyesters as comonomers for lactide polymerization. Salient features of these highly functionalized epoxides are versatility in functionality and a short synthetic route of less than four steps. The α-ω epoxyesters presented serve as a means to introduce carboxylic acid and amine functional groups into poly(lactic acid polymers via ring-opening copolymerization.

  5. Silver-Catalyzed Decarboxylative Azidation of Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Zhu, Yuchao; Li, Xinyao; Wang, Xiaoyang; Huang, Xiaoqiang; Shen, Tao; Zhang, Yiqun; Sun, Xiang; Zou, Miancheng; Song, Song; Jiao, Ning

    2015-10-02

    The catalytic decarboxylative nitrogenation of aliphatic carboxylic acids for the synthesis of alkyl azides is reported. A series of tertiary, secondary, and primary organoazides were prepared from easily available aliphatic carboxylic acids by using K2S2O8 as the oxidant and PhSO2N3 as the nitrogen source. The EPR experiment sufficiently proved that an alkyl radical process was generated in the process, and DFT calculations further supported the SET process followed by a stepwise SH2 reaction to afford azide product.

  6. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  7. Frovatriptan salts of aliphatic carboxylic acids.

    Science.gov (United States)

    Ravikumar, Krishnan; Sridhar, Balasubramanian; Nanubolu, Jagadeesh Babu; Hariharakrishnan, Venkatasubramanian; Rao, Bandi Venugopal

    2013-04-01

    The interaction of the antimigraine pharmaceutical agent frovatriptan with acetic acid and succinic acid yields the salts (±)-6-carbamoyl-N-methyl-2,3,4,9-tetrahydro-1H-carbazol-3-aminium acetate, C14H18N3O(+)·C2H3O2(-), (I), (R)-(+)-6-carbamoyl-N-methyl-2,3,4,9-tetrahydro-1H-carbazol-3-aminium 3-carboxypropanoate monohydrate, C14H18N3O(+)·C4H5O4(-)·H2O, (II), and bis[(R)-(+)-6-carbamoyl-N-methyl-2,3,4,9-tetrahydro-1H-carbazol-3-aminium] succinate trihydrate, 2C14H18N3O(+)·C4H4O4(2-)·3H2O, (III). The methylazaniumyl substitutent is oriented differently in all three structures. Additionally, the amide group in (I) is in a different orientation. All the salts form three-dimensional hydrogen-bonded structures. In (I), the cations form head-to-head hydrogen-bonded amide-amide catemers through N-H···O interactions, while in (II) and (III) the cations form head-to-head amide-amide dimers. The cation catemers in (I) are extended into a three-dimensional network through further interactions with acetate anion acceptors. The presence of succinate anions and water molecules in (II) and (III) primarily governs the three-dimensional network through water-bridged cation-anion associations via O-H···O and N-H···O hydrogen bonds. The structures reported here shed some light on the possible mode of noncovalent interactions in the aggregation and interaction patterns of drug molecule adducts.

  8. More on Effects Controlling Carboxylic Acidity.

    Science.gov (United States)

    Schwartz, Lowell M.

    1981-01-01

    Gas phase acidity data shown are offered to writers of elementary organic chemistry texts for replacement of the aqueous phase data that are universally used. Relative acidities in the gas phase are controlled virtually exclusively by enthalpic factors. Structural-energetic explanations of acidic trends can therefore be used. (SK)

  9. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  10. Palladium-catalyzed regioselective decarboxylative alkylation of arenes and heteroarenes with aliphatic carboxylic acids.

    Science.gov (United States)

    Premi, Chanchal; Dixit, Ankit; Jain, Nidhi

    2015-06-05

    An unprecedented Pd(OAc)2-catalyzed decarboxylative alkylation of unactivated arenes, with aliphatic carboxylic acids as inexpensive alkyl sources, is reported. The alkylation, controlled by the directing group, is regioselective, shows high functional group tolerance, and provides mild access to alkylated indolines, 2-phenylpyridines, and azobenzenes under solvent-free conditions in moderate to high yields.

  11. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    Science.gov (United States)

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

  12. The crystalline structures of carboxylic acid monolayers adsorbed on graphite.

    Science.gov (United States)

    Bickerstaffe, A K; Cheah, N P; Clarke, S M; Parker, J E; Perdigon, A; Messe, L; Inaba, A

    2006-03-23

    X-ray and neutron diffraction have been used to investigate the formation of solid crystalline monolayers of all of the linear carboxylic acids from C(6) to C(14) at submonolayer coverage and from C(8) to C(14) at multilayer coverages, and to characterize their structures. X-rays and neutrons highlight different aspects of the monolayer structures, and their combination is therefore important in structural determination. For all of the acids with an odd number of carbon atoms, the unit cell is rectangular of plane group pgg containing four molecules. The members of the homologous series with an even number of carbon atoms have an oblique unit cell with two molecules per unit cell and plane group p2. This odd-even variation in crystal structure provides an explanation for the odd-even variation observed in monolayer melting points and mixing behavior. In all cases, the molecules are arranged in strongly hydrogen-bonded dimers with their extended axes parallel to the surface and the plane of the carbon skeleton essentially parallel to the graphite surface. The monolayer crystal structures have unit cell dimensions similar to certain close-packed planes of the bulk crystals, but the molecular arrangements are different. There is a 1-3% compression on increasing the coverage over a monolayer.

  13. Improvement of ruthenium based decarboxylation of carboxylic acids

    Science.gov (United States)

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  14. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    . Consequently, the observed endothermic dissolution process is mainly attributed to the hindering of polar interactions. Furthermore, upon mixing of two carboxylic acids, the rearrangement of hydrogen bonds due to the formation of cross associating species results in an insignificant contribution to the heats...

  15. Synthon preferences in cocrystals of cis-carboxamides:carboxylic acids

    NARCIS (Netherlands)

    Moragues-Bartolome, A.M.; Jones, W.; Cruz-Cabeza, A.J.

    2012-01-01

    We study synthon preferences in cocrystals of cis-carboxamides with carboxylic acids using a combination of database analyses, cocrystallisation experiments and theoretical calculations. We classify the cis-carboxamides into three families: primary amides, cyclic amides (lactams) and cyclic imides.

  16. Conformation of some carboxylic acids and their derivatives

    NARCIS (Netherlands)

    Kanters, J.A.; Kroon, Jan; Peerdeman, A.F.; Schoone, J.C.

    1967-01-01

    The conformation in the crystalline state of some aliphatic carboxylic acids and their derivatives has been analysed. This analysis, based upon the results of structure determinations by means of X-ray diffraction, seems to support the concept that the conformation of a molecule is governed chiefly

  17. Amine vs. carboxylic acid protonation in ortho-, meta-, and para-aminobenzoic acid: An IRMPD spectroscopy study

    Science.gov (United States)

    Cismesia, Adam P.; Nicholls, Georgina R.; Polfer, Nicolas C.

    2017-02-01

    Infrared multiple photon dissociation (IRMPD) spectroscopy and computational chemistry are applied to the ortho-, meta-, and para- positional isomers of aminobenzoic acid to investigate whether the amine or the carboxylic acid are the favored sites of proton attachment in the gas phase. The NH and OH stretching modes yield distinct patterns that establish the carboxylic acid as the site of protonation in para-aminobenzoic acid, as opposed to the amine group in ortho- and meta-aminobenzoic acid, in agreement with computed thermochemistries. The trends for para- and meta-substitutions can be rationalized simplistically by inductive effects and resonant stabilization, and will be discussed in light of computed charge distributions based from electrostatic potentials. In ortho-aminobenzoic acid, the close proximity of the amine and acid groups allow a simultaneous interaction of the proton with both groups, thus stabilizing and delocalizing the charge more effectively, and compensating for some of the resonance stabilization effects.

  18. Functional group induced excited state intramolecular proton transfer process in 4-amino-2-methylsulfanyl-pyrimidine-5-carboxylic acid ethyl ester: a combined spectroscopic and density functional theory study.

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Guchhait, Nikhil

    2013-09-01

    The molecule methyl-2-aminonicotinate (2-MAN) does not exhibit excited state intramolecular proton transfer (ESIPT), but its derivative 4-amino-2-methylsulfanyl-pyrimidine-5-carboxylic acid ethyl ester (AMPCE), widely used in the preparation of pyrimidopyrimidines as a protein kinase inhibitor, does exhibit ESIPT. Increasing acidic and basic character at the proton donor and proton acceptor sites by adding functional groups is found to be responsible for the large Stokes shifted ESIPT emission (Δν = 12,706 cm(-1)) in AMPCE. The photophysics of AMPCE have been explored on the basis of steady state and time resolved spectral measurements, quantum yield calculation with variation of polarity, as well as hydrogen bonding ability of solvents. Experimental findings have been correlated with the calculated structure and potential energy surfaces based on the intramolecular proton transfer model obtained by density functional theory (DFT). Properties based on the calculated excited state surfaces generated in vacuo and methanol solvent using time dependent density functional theory (TDDFT) and time dependent density functional theory polarized continuum model (TDDFT-PCM), respectively, show good agreement with the experimental findings. HOMO and LUMO diagrams also support the favorable ESIPT process in the first excited state potential energy surface.

  19. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    Science.gov (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  20. Esterification of Carboxylic Acids and Diacids by Trialkyl Borate under Solvent- and Catalyst-Free Conditions

    Institute of Scientific and Technical Information of China (English)

    MANSOORI Yagoub; TATAROGLU SEYIDOV Firdovsi; BOHLOOLI Shahrbanoo; ZAMANLOO Mohammad Reza; IMANZADEH Gholam Hassan

    2007-01-01

    Esterification or transesterification reactions are usually carried out in the presence of homogeneous or heterogeneous catalysts.However,recently a new method was reported for the esterification of carboxylic acids by tributyl borate under solvent- and catalyst-free conditions.In order to show the synthetic ability of trialkyl borate esters in the esterification reactions,here,the esterification of other carboxylic acids and diacids by tributyl-,triisoamyl-,and tribenzyl borate under the same conditions were reported.Some of the prepared ester and diester products have found wide applications as plasticizers and synthetic ester base lubricants.The esterification reactions have been cleanly carried out in the absence of any solvent under catalyst-free conditions.The maximum rate belongs to isoamyl trichloroacetate (Ⅵb) which reached about 76% within about 6.5 h.On the basis of obtained findings,it seems that electron withdrawing groups on carboxylic acid facilitate the esterification reaction.

  1. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I' region.

    Science.gov (United States)

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I' band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D₂O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  2. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region

    Science.gov (United States)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  3. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  4. The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors.

    Science.gov (United States)

    Xiang, Yibin; Hirth, Bradford; Asmussen, Gary; Biemann, Hans-Peter; Bishop, Kimberly A; Good, Andrew; Fitzgerald, Maria; Gladysheva, Tatiana; Jain, Annuradha; Jancsics, Katherine; Liu, Jinyu; Metz, Markus; Papoulis, Andrew; Skerlj, Renato; Stepp, J David; Wei, Ronnie R

    2011-05-15

    Novel benzofuran-2-carboxylic acids, exemplified by 29, 38 and 39, have been discovered as potent Pim-1 inhibitors using fragment based screening followed by X-ray structure guided medicinal chemistry optimization. The compounds demonstrate potent inhibition against Pim-1 and Pim-2 in enzyme assays. Compound 29 has been tested in the Ambit 442 kinase panel and demonstrates good selectivity for the Pim kinase family. X-ray structures of the inhibitor/Pim-1 binding complex reveal important salt-bridge and hydrogen bond interactions mediated by the compound's carboxylic acid and amino groups.

  5. Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution.

    Science.gov (United States)

    Liu, Chao; Wang, Xiaoqing; Li, Zhaodong; Cui, Lei; Li, Chaozhong

    2015-08-12

    We report herein an efficient and general method for the decarboxylative azidation of aliphatic carboxylic acids. Thus, with AgNO3 as the catalyst and K2S2O8 as the oxidant, the reactions of various aliphatic carboxylic acids with tosyl azide or pyridine-3-sulfonyl azide in aqueous CH3CN solution afforded the corresponding alkyl azides under mild conditions. A broad substrate scope and wide functional group compatibility were observed. A radical mechanism is proposed for this site-specific azidation.

  6. EFSA ; Scientific Opinion on Flavouring Group Evaluation 67, Revision 1 (FGE.67Rev.1): Consideration of 40 furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers evaluated by JECFA at the 65th meeting (JECFA, 2006

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 33 furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers evaluated by the JECFA...

  7. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  8. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    Science.gov (United States)

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  9. Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids.

    Science.gov (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Mroczyńska, Karina; Cysewski, Piotr

    2016-03-31

    The cocrystallization of salicylamide (2-hydroxybenzamide, SMD) and ethenzamide (2-ethoxybenzamide, EMD) with aromatic carboxylic acids was examined both experimentally and theoretically. The supramolecular synthesis taking advantage of the droplet evaporative crystallization (DEC) technique was combined with powder diffraction and vibrational spectroscopy as the analytical tools. This led to identification of eleven new cocrystals including pharmaceutically relevant coformers such as mono- and dihydroxybenzoic acids. The cocrystallization abilities of SMD and EMD with aromatic carboxylic acids were found to be unexpectedly divers despite high formal similarities of these two benzamides and ability of the R2,2(8) heterosynthon formation. The source of diversities of the cocrystallization landscapes is the difference in the stabilization of possible conformers by adopting alternative intramolecular hydrogen boding patterns. The stronger intramolecular hydrogen bonding the weaker affinity toward intermolecular complexation potential. The substituent effects on R2,2(8) heterosynthon properties are also discussed.

  10. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu

    2014-07-15

    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  11. Synthesis of cross-linked magnetic composite microspheres containing carboxyl groups

    Institute of Scientific and Technical Information of China (English)

    Jili ZHAO; Zhaorang HAN; Qiang SONG; Ying WANG; Dan SUN

    2008-01-01

    Fe3O4 magnetic nano-particles were prepared by a co-precipitation method and were modified using oleic acid. Then, the cross-linked magnetic composite microspheres containing a carboxyl group were prepared by using an improved emulsion polymerization with divinylbenzene (DVB) as the cross-linking agent. The composite microspheres comprised the Fe3O4 magnetic nano-partictes as cores and the copolymer of styrene and acrylic acid as shells. The morphology and structure of the composite microsphere were characterized by FT-IR, transmission electron microscopy (TEM), X-ray diffrac-tion (XRD), X-ray photoelectron spectrum (XPS) and so on. The results show that the composite microspheres were well dispersed in emulsion with uniform sizes and carboxyl groups on their surface. They were cross-linked and stable in 1 mol/L of HCl and DMF.

  12. A Novel Metal-free Reductive Esterification of N-Tosylhydrazones with Carboxylic Acids

    Institute of Scientific and Technical Information of China (English)

    周安坤; 吴磊; 李大志; 陈庆庆; 张晓; 夏吾炯

    2012-01-01

    A novel method for the synthesis of esters via reductive coupling of N-tosylhydrazones with carboxylic acids under metal-free conditions has been developed. Various functional groups were found to be tolerable under the re- action conditions to afford low to good yields.

  13. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-08-01

    Full Text Available In this study, fluorescent nitrogen-doped carbon dots (NCDs were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  14. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  15. 6-(Hex-5-enyloxynaphthalene-2-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Md. Lutfor Rahman

    2014-06-01

    Full Text Available The asymmetric unit of the title compound, C17H18O3, comprises three independent molecules with similar geometries. In each molecule, the carbonyl group is twisted away from the napthalene ring system, making dihedral angles of 1.0 (2, 1.05 (19° and 1.5 (2°. The butene group in all three molecules are disordered over two sets of sites, with a refined occupancy ratio of 0.664 (6:0.336 (6. In the crystal, molecules are oriented with respect to their carbonyl groups, forming head-to-head dimers via O—H...O hydrogen bonds. Adjacent dimers are further interconnected by C—H...O hydrogen bonds into chains along the a-axis direction. The crystal structure is further stabilized by weak C—H...π interactions.

  16. 3-Carb-oxy-methyl-1H-indole-4-carb-oxy-lic acid.

    Science.gov (United States)

    Mao, Shulin

    2012-01-01

    In the title compound, C(11)H(9)NO(4), the carboxyl group bonded to the six-membered ring lies close to the plane of the 1H-indole ring system [dihedral angle = 13.13 (9)°], whereas the carb-oxy-lic acid group linked to the five-membered ring by a methyl-ene bridge is close to perpendicular [78.85 (9)°]. In the crystal, O-H⋯O and N-H⋯O hydrogen bonds link the mol-ecules, generating (110) sheets.

  17. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  18. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acids, (C6-C9) branched and... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject...

  19. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  20. Carboxylic Acids as Indicators of Parent Body Conditions

    Science.gov (United States)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  1. 2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Yassir Filali Baba

    2016-06-01

    Full Text Available In the title compound, C10H7NO3·H2O, O—H...O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water molecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H...O interactions. The asymmetric unit contains two independent quinolone derivatives and two water molecules, one of which is disordered over two positions, of equal occupancy.

  2. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.

    Science.gov (United States)

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping

    2015-02-09

    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  3. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids.

    Science.gov (United States)

    Bordoni, Andrea V; Lombardo, M Verónica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro

    2015-07-15

    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks.

  4. Study on Copolymerization of Rare Earth-Carboxylic Acid Complex

    Institute of Scientific and Technical Information of China (English)

    Qiu Guanmin(邱关明); Zhang Ming(张明); Yan Chang hao(严长浩); Zhou Lanxiang(周兰香); Dai Shaojun(戴少俊); Okamo to Hiroshi

    2003-01-01

    Complex of rare earth with carboxylic acid was prepared by precipita tion and direct method. It was copolymerized with such monomers as acrylic acid and other ones to synthesize ionomer of rare earth and organic polymer with different rare earth contents. Its glass-transition temperature and heat stability were analyzed by TG and DTA. Infra-red detector was used to show its structure. The effect of rare earth complex prepared by different methods on copolymerization and properties of copolymers was also discussed.

  5. Azetidine-2-carboxylic acid in garden beets (Beta vulgaris).

    Science.gov (United States)

    Rubenstein, Edward; Zhou, Haihong; Krasinska, Karolina M; Chien, Allis; Becker, Christopher H

    2006-05-01

    Azetidine-2-carboxylic acid (L-Aze) is a toxic and teratogenic non-protein amino acid. In many species, including man, L-Aze is misincorporated into protein in place of proline, altering collagen, keratin, hemoglobin, and protein folding. In animal models of teratogenesis, it causes a wide range of malformations. The role of L-Aze in human disease has been unexplored, probably because the compound has not been associated with foods consumed by humans. Herein we report the presence of L-Aze in the garden or table beet (Beta vulgaris).

  6. Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols.

    Science.gov (United States)

    Wegst, W; Tittmann, U; Eberspächer, J; Lingens, F

    1981-03-15

    Strain E of chloridazon-degrading bacteria, when grown on L-phenylalanine accumulates cis-2,3-dihydro-2,3-dihydroxyphenylalanine. In experiments with resting cells and during growth the bacterium converts the aromatic carboxylic acids phenylacetate, phenylpropionate, phenylbutyrate and phenyl-lactate into the corresponding cis-2,3-dihydrodiol compounds. The amino acids L-phenylalanine, N-acetyl-L-phenylalanine and t-butyloxycarbonyl-L-phenylalanine were also transformed into dihydrodiols. All seven dihydrodiols, thus obtained, were characterized both by conventional analytical techniques and by the ability to serve as substrates for a cis-dihydrodiol dehydrogenase.

  7. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    Science.gov (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  8. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I; Wartelle, Lynda H

    2012-02-22

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar's sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam-activated biochar having a low O/C ratio (0.04-0.06) and high fixed carbon content (~80% dry weight basis) were oxidized using concentrated H(2)SO(4)/HNO(3) and 30% HNO(3). Oxidized and unoxidized biochars were characterized for O/C ratio, total acidity, pH, moisture, ash, volatile matter, and fixed carbon contents, Brunauer-Emmett-Teller surface area, and attenuated total reflectance Fourier transform infrared spectral features. Characterized biochars were amended (2%, 5%, 10%, and 20% in grams of biochar per gram of soil) on a sandy, slightly acidic (pH 6.27) heavy metal contaminated small arms range soil fraction (carbon (0.518%) and low cation exchange capacity (0.95 cmol(c) kg(-1)). Oxidized biochars rich in carboxyl functional groups exhibited significantly greater Pb, Cu, and Zn stabilization ability compared to unoxidized biochars, especially in pH 4.9 acetate buffer (standard solution for the toxicity characteristic leaching procedure). Oppositely, only oxidized biochars caused desorption of Sb, indicating a counteracting impact of carboxyl functional groups on the solubility of anions and cations. The results suggested that appropriate selection of biochar oxidant will produce recalcitrant biochars rich in carboxyl functional groups for a long-term heavy metal stabilization strategy in contaminated soils.

  9. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    Science.gov (United States)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  10. Enhance decarboxylation reaction of carboxylic acids in clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Ramos, S.; Albarran, G. [Instituto de Ciencias y Artes, Chiapas (Mexico). Escuela de Biologia

    1995-10-01

    Clay minerals are important constituents of the Earth`s crust. These minerals catalyze reactions in several ways: by energy transfer processes, redox reactions, stabilization of intermediates and by Broensted or Lewis acidity behavior. Important set of organic reactions can be improved in the precedence of clay minerals. Besides the properties of clays to catalyze chemical reactions, it is possible to enhance some of its reactions by using ionizing radiation. The phenomenon of radiation-induced catalysis may be connected with ionizing process in the solid and with the trapped non-equilibrium charge carriers. In this paper we are reporting the decarboxylation reaction of carboxylic acids catalyzed by clay and by irradiation of the system acid-clay. We studied the behaviour of several carboxylic acids and analyzed them by gas chromatography, X-ray and infrared spectroscopy. The results showed that decarboxylation of the target compound is the dominating pathway. The reaction is enhanced by gamma radiation in several orders of magnitude. (author).

  11. Stereocontrol in proline-catalyzed asymmetric amination: a comparative assessment of the role of enamine carboxylic acid and enamine carboxylate.

    Science.gov (United States)

    Sharma, Akhilesh K; Sunoj, Raghavan B

    2011-05-28

    The transition state models in two mechanistically distinct pathways, involving (i) an enamine carboxylic acid (path-A, 4) and (ii) an enamine carboxylate (path-B, 8), in the proline-catalyzed asymmetric α-amination have been examined using DFT methods. The path-A predicts the correct product stereochemistry under base-free conditions while path-B accounts for reversal of configuration in the presence of a base.

  12. The influence of pendant carboxylic acid loading on surfaces of statistical poly(4-hydroxystyrene)-co-styrene)s

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren

    2008-01-01

    synthesis with propargyl bromide and the copolymers were functionalized with pendant aliphatic or aromatic carboxylic acids by click chemistry. Differential scanning calorimetry of the copolymers demonstrates the large influence on Tg ofthe different functional groups and the backbone composition...... of acid groups on the surface....

  13. Uncatalysed Production of Coumarin-3-carboxylic Acids: A Green Approach

    Directory of Open Access Journals (Sweden)

    Joel Martínez

    2016-01-01

    Full Text Available A green contribution in short reaction times with moderate yields to produce coumarin-3-carboxylic acids is offered. Five different modes to activate the reactions (microwave, near-infrared, mechanical milling, and ultrasound were compared with mantle heating in the presence or absence of ethanol, a green solvent. Near-infrared and microwave irradiations deliver the best yields in contrast to ultrasound and mechanical milling; moreover, these four processes offered shorter reaction times in comparison with the conventional mantle heating method. It is also important to highlight that the obtained molecules were produced without the requirement of a catalyst and two nonconventional energies forms are presented as new processes.

  14. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  15. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    Science.gov (United States)

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  16. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  17. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  18. Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide.

    Science.gov (United States)

    Zhang, Honglei; Luo, Xiang; Shi, Kaiqi; Wu, Tao; He, Feng; Zhou, Shoubin; Chen, George Z; Peng, Chuang

    2017-09-11

    A new sulfonic/carboxylic dual-acid catalyst based on sulfur-rich graphene oxide (GO-S) was readily prepared and used as a highly efficient and reusable solid acid catalyst toward the esterification of oleic acid with methanol for biodiesel production. Higher yields of methyl oleate (98 %) and over 3 times higher turnover frequencies (TOFs) were observed for the GO-S dual-acid catalyst, compared to liquid sulfuric acid or other carbon-based solid acid catalysts. The "acidity" of sulfonic acid groups was enhanced by the addition of carboxylic acid groups as the combination of the two acids enhances their inherent activity by associative interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase.

    Science.gov (United States)

    Gheibi, N; Saboury, A A; Haghbeen, K; Rajaei, F; Pahlevan, A A

    2009-10-01

    Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2 mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (K(i)=0.14 mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (K(i)) of 0.36, 0.6, 3.6 and 4.5 mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.

  20. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedziolka-Joensson, Joanna [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Boland, Susan; Leech, Donal [School of Chemistry, National University of Irland, Galway (Ireland); Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Szunerits, Sabine, E-mail: sabine.szunerits@iri.univ-lille1.f [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France)

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  1. Integrated process for preparing a carboxylic acid from an alkane

    Science.gov (United States)

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  2. Thermodynamic properties of furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids

    Science.gov (United States)

    Sobechko, I. B.; Van-Chin-Syan, Yu. Ya.; Kochubei, V. V.; Prokop, R. T.; Velychkivska, N. I.; Gorak, Yu. I.; Dibrivnyi, V. N.; Obushak, M. D.

    2014-12-01

    The standard enthalpies of combustion, formation, fusion, and sublimation of crystalline furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids are determined by experimental methods and recalculated to 298 K. The possibility of using additive calculation schemes based on the principle of group contributions to calculate the standard enthalpies of vaporization and formation of substances with similar combinations of functional fragments in the gas phase is analyzed.

  3. Exploring the reductive capacity of Pyrococcus furiosus. The reduction of carboxylic acids and pyridine nucleotides

    OpenAIRE

    Ban, van den, A.W.

    2001-01-01

    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic acids.Reductions of carboxylic acids are interesting reactions, since the generated products, aldehydes and alcohols, are potentially applicable in the fine-chemical industry. However, the reduction of carboxylic acids to the corresponding aldehydes is a thermodynamicall...

  4. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.

    Science.gov (United States)

    Wang, Chen; Yu, Hai-Zhu; Fu, Yao; Guo, Qing-Xiang

    2013-04-07

    Arylboronic acids were found to be efficient catalysts for the amidation reactions between carboxylic acids and amines. Theoretical calculations have been carried out to investigate the mechanism of this catalytic process. It is found that the formation of the acyloxyboronic acid intermediates from the carboxylic acid and the arylboronic acid is kinetically facile but thermodynamically unfavorable. Removal of water (as experimentally accomplished by using molecular sieves) is therefore essential for overall transformation. Subsequently C-N bond formation between the acyloxyboronic acid intermediates and the amine occurs readily to generate the desired amide product. The cleavage of the C-O bond of the tetracoordinate acyl boronate intermediates is the rate-determining step in this process. Our analysis indicates that the mono(acyloxy)boronic acid is the key intermediate. The high catalytic activity of ortho-iodophenylboronic acid is attributed to the steric effect as well as the orbital interaction between the iodine atom and the boron atom.

  5. Synthesis of novel bis-allyloxy and hydroxypropoxy derivatives of 4, 5-diaryl thiophene-2-carboxylic acid and their biological evaluation

    Indian Academy of Sciences (India)

    T SHANMUGANATHAN; M VENUGOPAL; K PARTHASARATHY; N DHATCHANAMOORTHY; Y ARUN; A A M PRINCE

    2017-05-01

    In our earlier studies, we have shown that the introduction of amino moieties at carboxylic acid of 4,5-diarylthiophene-2-carboxylic acid significantly improved the anti-inflammatory activity of the compound against the standard drug diclofenac sodium. In the present study, we have synthesized new derivatives of 4,5- diarylthiophene-2-carboxylic acid by modifying the hydroxyl group of the phenyl ring and carboxylic acid group of the thiophene ring.Aseries of novel 4,5-diarylthiophene-2-carboxylic acid derivatives containing bis-allyloxyand hydroxypropoxy with methyl or ethyl ester moieties were synthesized, characterized and subsequently evaluated for anti-inflammatory and antioxidant property. Among the novel compounds, the inhibition of bovineserum albumin denaturation assay revealed that the compound 4,5-bis(4-(3-hydroxypropoxy)phenyl)thiophene- 2-carboxylic acid (15) and ethyl ester (13) having anti-inflammatory activity better than the standard drugdiclofenac sodium. The antioxidant screening showing 4,5-bis(4-(allyloxy)phenyl)thiophene-2-carboxylic acid (10), 4,5-bis(4-(3-hydroxypropoxy)phenyl)thiophene-2-carboxylic acid methyl ester (11) and 4,5-bis(4-(3- hydroxypropoxy)phenyl)thiophene-2-carboxylic acid ethyl ester (13) exhibited a slightly moderate antioxidant activity than standard ascorbic acid. Molecular docking analysis was performed for the synthesized compounds with the cyclooxygenase-2 (COX-2) receptor (PDB 1D: 1PXX). Docking studies revealed that all the synthesised compounds exhibit greater binding affinity than the standard drug. Particularly, the compound ethyl 4,5-bis(4- (allyloxy)phenyl)thiophene-2-carboxylate (8) and allyl 4,5-bis(4-(allyloxy)phenyl)thiophene-2-carboxylate (9) having high free energy binding of −10.40 and −10.48 Kcal/mol, respectively.

  6. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    Energy Technology Data Exchange (ETDEWEB)

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  7. Spectrofluorimetric determination of gallium with calon-carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simple and sensitive spectrofluorimetric procedure for the analysis of microquantities of gallium in alloy wasdescribed. The method is based on the formation of Ga(Ⅲ)-CCA (calon-carboxylic acid) complex. The emission of thefluorescent complex was measured at λ = 620 nm with excitation at λ = 584 nm. A good linearity was found in the galliumrange of 0.7-280 ng/mL. The precision of the method is good and the relative standard deviation is 1.9% for a gallium stan-dard solution of 70 ng/mL. The procedure was proved to be suitable in terms of accuracy and selectivity for the mi-croamount of gallium in alloy.

  8. A synthetic approach to carbon-14 labeled anti-bacterial naphthyridine and quinolone carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ekhato, I.V.; Huang, C.C. (Parke, Davis and Co., Ann Arbor, MI (United States))

    1993-09-01

    Labeled versions of (S)-clinafloxacin (1) and two napththyridine carboxylic acid anti-bacterial compounds 2 and 3 which are currently in development were synthesized. Preparations started from hitherto unknown bromo compounds 22 and 10, from which the corresponding [sup 14]C-labeled aromatic carboxylic acids 23 and 12 were generated by metal-halogen exchange followed by carboxylation reaction. Details of these preparations are given. (author).

  9. Synthesis and characterization of a novel carboxyl group containing (copolyimide with sulfur in the polymer backbone

    Directory of Open Access Journals (Sweden)

    Miroslav Mrsevic

    2012-05-01

    Full Text Available Soluble functional (copolyimides are of great interest in the area of separation processes or optical applications, due to their excellent mechanical-, thermal- and optical properties, their superior processability and the ability to adapt their properties to a wide range of special applications. Therefore, two series of novel (copolyimides containing fluorinated sulfur- and carboxylic acid groups consisting of 4,4′-(hexafluoroisopropylidenedi(phthalic anhydride (6FDA, 3,5-diaminobenzoic acid (DABA, 4,4′-diaminodiphenylsulfide (4,4′-SDA and 3,3′-diaminodiphenylsulfone (3,3′-DDS were synthesized in a two-step polycondensation reaction. The synthesized copolymers were characterized by using NMR, FTIR, GPC, and DSC. Furthermore, with regard to processing and potential applications, the thermal stability, solubility in common organic solvents, moisture uptake, and transparency were investigated. Compared to commercially available transparent polymers, i.e., polymethylmethacrylate and cycloolefin polymers, the sulfur (copolyimides containing carboxyl groups showed much higher glass-transition temperatures, comparably low moisture uptake and high transmission at the sodium D-line. Furthermore, good solubility in commonly used organic solvents makes them very attractive as high-performance coating materials.

  10. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    Science.gov (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  11. Nasal pungency and odor of homologous aldehydes and carboxylic acids.

    Science.gov (United States)

    Cometto-Muñiz, J E; Cain, W S; Abraham, M H

    1998-01-01

    Airborne substances can stimulate both the olfactory and the trigeminal nerve in the nose, giving rise to odor and pungent (irritant) sensations, respectively. Nose, eye, and throat irritation constitute common adverse effects in indoor environments. We measured odor and nasal pungency thresholds for homologous aliphatic aldehydes (butanal through octanal) and carboxylic acids (formic, acetic, butanoic, hexanoic, and octanoic). Nasal pungency was measured in subjects lacking olfaction (i.e., anosmics) to avoid odor biases. Similar to other homologous series, odor and pungency thresholds declined (i.e., sensory potency increased) with increasing carbon chain length. A previously derived quantitative structure-activity relationship (QSAR) based on solvation energies predicted all nasal pungency thresholds, except for acetic acid, implying that a key step in the mechanism for threshold pungency involves transfer of the inhaled substance from the vapor phase to the receptive biological phase. In contrast, acetic acid - with a pungency threshold lower than predicted - is likely to produce threshold pungency through direct chemical reaction with the mucosa. Both in the series studied here and in those studied previously, we reach a member at longer chain-lengths beyond which pungency fades. The evidence suggests a biological cut-off, presumably based upon molecular size, across the various series.

  12. Exploring the reductive capacity of Pyrococcus furiosus. The reduction of carboxylic acids and pyridine nucleotides

    NARCIS (Netherlands)

    Ban, van den E.C.D.

    2001-01-01

    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic acids.Reductions of carboxylic acids are interes

  13. 3-Methyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Rajendiran Nagappan

    2010-01-01

    Full Text Available 3-Methyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic acid was synthesized chemoselectively from 3-formyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic acid, using Et3SiH/I2 as a reducing agent. The title compound was characterized by IR, 1H NMR, 13C NMR and LCMS.

  14. Interconversion of biologically important carboxylic acids by radiation

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1978-01-01

    The interconversion of a group of biologically important polycarboxylic acids (acetic, fumaric, malic, malonic, succinic, citric, isocitric, tricarballylic) under gamma-ray or ultraviolet radiation was investigated. The formation of high molecular weight compounds was observed in all cases. Succinic acid was formed in almost all radiolysis experiments. Citric, malonic, and succinic acids appeared to be relatively insensitive to radiation. Interconversion of the polycarboxylic acids studied may have occurred under the effect of radiation in the prebiotic earth.

  15. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.

    Science.gov (United States)

    Connolly, Brian D; Tran, Benjamin; Moore, Jamie M R; Sharma, Vikas K; Kosky, Andrew

    2014-04-07

    Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.

  16. A novel synthesis of carbon-labelled quinolone-3-carboxylic acid antibacterials

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.M.; Sutherland, D.R. (Glaxo Research and Development Ltd., Greenford (United Kingdom). Isotope Chemistry Group)

    1994-10-01

    3-Iodoquinolones were prepared from the corresponding quinolone-3-carboxylic acids by Hunsdiecker-type iododecarboxylation reactions with lead tetraacetate and iodine. Cyanation of the iodo compounds with mixtures of potassium [[sup 13]C]cyanide and copper (1) iodide, gave [3-[sup 13]C]cyanoquinolones which on acidic hydrolysis afforded quinolone-[3-[sup 13]C]carboxylic acids. In this way, nalidixic acid, an immediate precursor of norfloxacin, and quinolone WIN57273 were labelled with carbon-13 in the metabolically stable carboxylic acid fragment. (author).

  17. Qualitative identification of carboxylic acids, boronic acids, and amines using cruciform fluorophores.

    Science.gov (United States)

    Schwaebel, Thimon; Lirag, Rio Carlo; Davey, Evan A; Lim, Jaebum; Bunz, Uwe H F; Miljanić, Ognjen Š

    2013-08-19

    Molecular cruciforms are X-shaped systems in which two conjugation axes intersect at a central core. If one axis of these molecules is substituted with electron-donors, and the other with electron-acceptors, cruciforms' HOMO will localize along the electron-rich and LUMO along the electron-poor axis. This spatial isolation of cruciforms' frontier molecular orbitals (FMOs) is essential to their use as sensors, since analyte binding to the cruciform invariably changes its HOMO-LUMO gap and the associated optical properties. Using this principle, Bunz and Miljanić groups developed 1,4-distyryl-2,5-bis(arylethynyl)benzene and benzobisoxazole cruciforms, respectively, which act as fluorescent sensors for metal ions, carboxylic acids, boronic acids, phenols, amines, and anions. The emission colors observed when these cruciform are mixed with analytes are highly sensitive to the details of analyte's structure and - because of cruciforms' charge-separated excited states - to the solvent in which emission is observed. Structurally closely related species can be qualitatively distinguished within several analyte classes: (a) carboxylic acids; (b) boronic acids, and (c) metals. Using a hybrid sensing system composed from benzobisoxazole cruciforms and boronic acid additives, we were also able to discern among structurally similar: (d) small organic and inorganic anions, (e) amines, and (f) phenols. The method used for this qualitative distinction is exceedingly simple. Dilute solutions (typically 10(-6) M) of cruciforms in several off-the-shelf solvents are placed in UV/Vis vials. Then, analytes of interest are added, either directly as solids or in concentrated solution. Fluorescence changes occur virtually instantaneously and can be recorded through standard digital photography using a semi-professional digital camera in a dark room. With minimal graphic manipulation, representative cut-outs of emission color photographs can be arranged into panels which permit quick naked

  18. Efficient Debromination of Vicinal (, (-Dibromo Carboxylic Acid Derivatives with the Sm/HOAc System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The α, β vicinal dibromo carboxylic acid and its derivatives were debrominated with Sm/HOAc system to afford the corresponding cinnamic acid and its derivatives in good yields under mild conditions.

  19. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS II: OPTIMIZATION OF CHROMATOGRAPHY AND EXTRACTION

    Science.gov (United States)

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  20. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS II: OPTIMIZATION OF CHROMATOGRAPHY AND EXTRACTION

    Science.gov (United States)

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  1. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.

    Science.gov (United States)

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong

    2016-04-11

    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins.

  2. In vitro thrombogenicity investigation of new water-dispersible polyurethane anionomers bearing carboxylate groups.

    Science.gov (United States)

    Poussard, L; Burel, F; Couvercelle, J-P; Lesouhaitier, O; Merhi, Y; Tabrizian, M; Bunel, C

    2005-01-01

    New segmented polyurethane (PU) anionomers based on hydroxytelechelic polybutadiene were synthesized via an aqueous dispersion process. Incorporation of carboxylic groups was achieved using thioacids of different length. Surface properties were investigated by mean of water absorption analysis and static contact-angle measurements using water, diiodomethane, formamide and ethylene glycol. Blood compatibility of the PUs was evaluated by in vitro adhesion assays using 111In-radiolabeled platelet-rich plasma and [125I]fibrinogen. Morphology of the adhered platelets was examined by scanning electron microscopy (SEM). Results were compared to two biomedical-grade PUs, namely Pellethane and Tecoflex. Insertion of carboxylic groups increased surface hydrophilicity and limited water uptake ( < 8% for an ion content of 5% by weight). Surface energy of all synthesized PUs was between 40 and 45 mJ/m2. Platelet adhesion and fibrinogen adsorption on the PU anionomer surfaces were affected as a function to the increase of graft length; thiopropionic was the most haemocompatible, followed by thiosuccinic and then thioglycolic acid. SEM analyses of all ionic PU samples exhibited low platelet adhesion to surfaces with no morphological modification. In conclusion, increased hydrophily, dynamic mobility and charge repulsion are synergistic key factors for enhanced haemocompatibility.

  3. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhiyuan [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Yang, Zhanhong, E-mail: zhongnan320@gmail.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resource Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha 410083 (China); Hu, Youwang; Li, Jianping [College of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Fan, Xinming [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-07-01

    In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.

  4. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  5. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested a......',2"] terpyridine-4'-carboxylic acid with a maximum output power similar to 0.016mWcm(-2) under illumination at 100mWcm(-2) AM1.5 and efficiencies 3 times higher than the symmetric complexes. (c) 2006 Elsevier B.V. All rights reserved....

  6. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    Science.gov (United States)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  7. Influence of cyclic dimer formation on the phase behavior of carboxylic acids.

    Science.gov (United States)

    Janecek, Jiri; Paricaud, Patrice

    2012-07-12

    A new thermodynamic approach based on the Sear and Jackson association theory for doubly bonded dimers [Mol. Phys.1994, 82, 1033] is proposed to describe the thermodynamic properties of carboxylic acids. The new model is able to simultaneously represent the vapor pressures, saturated densities, and vaporization enthalpies of the shortest acids and is in a much better agreement with experimental data than other approaches that do no consider the formation of cyclic dimers. The new model is applied to mixtures of carboxylic acids with nonassociating compounds, and a very good description of the vapor-liquid equilibria in mixtures of alkanes + carboxylic acids is obtained.

  8. Chiral discrimination of secondary alcohols and carboxylic acids by NMR spectroscopy.

    Science.gov (United States)

    Pal, Indrani; Chaudhari, Sachin R; Suryaprakash, Nagaraja Rao

    2015-02-01

    The manuscript reports two novel ternary ion-pair complexes, which serve as chiral solvating agents, for enantiodiscrimination of secondary alcohols and carboxylic acids. The protocol for discrimination of secondary alcohols is designed by using one equivalent mixture each of enantiopure mandelic acid, 4-dimethylaminopyridine (DMAP) and a chiral alcohol. For discrimination of carboxylic acids, the ternary complex is obtained by one equivalent mixture each of enantiopure chiral alcohol, DMAP and a carboxylic acid. The designed protocols also permit accurate measurement of enantiomeric composition.

  9. "S" shaped organotin(IV) carboxylates based on amide carboxylic acids: Syntheses, crystal structures and antitumor activities

    Science.gov (United States)

    Xiao, Xiao; Li, Yan; Dong, Yuan; Li, Wenliang; Xu, Kun; Shi, Nianqiu; Liu, Xin; Xie, Jingyi; Liu, Peigen

    2017-02-01

    Three organotin carboxylates based on amide carboxylic acids: (Ph3Sn)2(L1) (1) (L1 = 3,3‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)dipropionic acid), (Ph3Sn)2(L2)·C7H8 (2) (L2 = 3,3‧-(1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo [lmn][3,8]phenanthroline-2,7-diyl)dipropionic acid), [(Ph3Sn)(CH3CH2O)]2(L3) (3) (L3 = 2,2‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl) dibenzoic acid) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analyses. Complexes 1-3 are di-nuclear triphenlytin carboxylates owning "S" shaped monomer structures. Ligands in 1-3 adopt unidentate coordination. Intermolecular hydrogen bonds and Sn···O interactions help complexes 1-3 build their supramolecular structures which are discussed in detail. The preliminary antitumor activities of 1-3 against HepG2 cell lines have also been studied.

  10. (Quinoline-2-carboxyl-ato-κO)(quinoline-2-carb-oxy-lic acid-κO)bis-(quinoline-2-carb-oxy-lic acid-κN,O)potassium.

    Science.gov (United States)

    Ng, Seik Weng

    2010-07-17

    The K atom in the title complex, [K(C(10)H(6)NO(2))(C(10)H(7)NO(2))(3)], lies on a twofold rotation axis that relates one N,O-chelating quinoline-2-carb-oxy-lic acid to the other; their N and O atoms are cis to each other in the distorted octa-hedral coordination geometry. The K atom is also coordinated by another monodentate quinoline-2-carb-oxy-lic acid; the acid is disordered with respect to a monodentate quinoline-2-carboxyl-ate anion; the acid and anion are linked by an O-H⋯O hydrogen bond. An O-H⋯N hydrogen bond links adjacent mol-ecules into a linear chain structure along the a axis.

  11. Carboxylic acid production from brewer's spent grain via mixed culture fermentation.

    Science.gov (United States)

    Liang, Shaobo; Wan, Caixia

    2015-04-01

    This study aimed at investigating carboxylic acid production from brewer's spent grain (BSG) via mixed culture fermentation. The results showed that the distribution of fermentation products was significantly affected by pH conditions and the addition of electron donors. Lactic acid was the dominant component under acidic and alkaline conditions while volatile fatty acids (VFAs) became dominant under the neutral condition. Furthermore, the neutral condition favored the chain elongation of carboxylic acids, especially with ethanol as the electron donor. Ethanol addition enhanced valeric acid and caproic acid production by 44% and 167%, respectively. Lactic acid addition also had positive effects on VFAs production under the neutral condition but limited to C2-C4 products. As a result, propionic acid and butyric acid production was increased by 109% and 152%, respectively. These findings provide substantial evidence for regulating carboxylic acid production during mixed culture fermentation of BSG by controlling pH and adding electron donors.

  12. Silver-mediated decarboxylative C-S cross-coupling of aliphatic carboxylic acids under mild conditions.

    Science.gov (United States)

    Wang, Peng-Fei; Wang, Xiao-Qing; Dai, Jian-Jun; Feng, Yi-Si; Xu, Hua-Jian

    2014-09-05

    A silver-mediated decarboxylative C-S cross-coupling reaction of aliphatic carboxylic acid is described. This reaction occurs smoothly under mild conditions and shows good tolerance of functional groups. It provides an alternative approach for the synthesis of alkyl aryl sulfides.

  13. Studies of 1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid: Mechanism of Decomposition and Inhibition of 1-Aminocyclopropane-1-carboxylic Acid Deaminase.

    Science.gov (United States)

    Liu, Cheng-Hao; Wang, Shao-An; Ruszczycky, Mark W; Chen, Huawei; Li, Keqiang; Murakami, Kazuo; Liu, Hung-wen

    2015-07-02

    1-Amino-2,2-difluorocyclopropane-1-carboxylic acid (DFACC) is of interest in the study of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase due to the increased reactivity of its cyclopropyl functionality. It is shown that DFACC is unstable under near-physiological conditions where it primarily decomposes via specific-base catalysis to 3-fluoro-2-oxobut-3-enoic acid with a rate constant of 0.18 ± 0.01 min(-1). Upon incubation with ACC deaminase, DFACC is found to be a slow-dissociating inhibitor of ACC deaminase with submicromolar affinity.

  14. 2-Pyrrole Carboxylic Acid Nitro-Phenylamide: New Colorimetric Sensor for Anion

    Institute of Scientific and Technical Information of China (English)

    YIN Zhen-Ming; YANG Wen-Zhi; HE Jia-Qi; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Due to the role played by anions in the field of biology and environmental chemistry, the development of selec tive and sensitive chemosensor for anion sensing is a topic of current attention. Colorimetric anion sensor, which does not require the use of a potentiostate or spectrometer to detect redox or optical perturbation, can give immediate qualitative anion sensing information by visual detection and therefore has advantages over other molecular sensors.According the anion binding ability of some pyrrolic amides reported by Schmuck and Gale, we linked the color reporter group of nitroanile to pyrrole moiety and synthesized two 2-pyrrole carboxylic acid nitro-phenylamides (1 and 2).

  15. Silver-catalyzed decarboxylative alkynylation of aliphatic carboxylic acids in aqueous solution.

    Science.gov (United States)

    Liu, Xuesong; Wang, Zhentao; Cheng, Xiaomin; Li, Chaozhong

    2012-09-05

    C(sp(3))-C(sp) bond formations are of immense interest in chemistry and material sciences. We report herein a convenient, radical-mediated and catalytic method for C(sp(3))-C(sp) cross-coupling. Thus, with AgNO(3) as the catalyst and K(2)S(2)O(8) as the oxidant, various aliphatic carboxylic acids underwent decarboxylative alkynylation with commercially available ethynylbenziodoxolones in aqueous solution under mild conditions. This site-specific alkynylation is not only general and efficient but also functional group compatible. In addition, it exhibits remarkable chemo- and stereoselectivity.

  16. Chromone-2- and -3-carboxylic acids inhibit differently monoamine oxidases A and B.

    Science.gov (United States)

    Alcaro, Stefano; Gaspar, Alexandra; Ortuso, Francesco; Milhazes, Nuno; Orallo, Francisco; Uriarte, Eugenio; Yáñez, Matilde; Borges, Fernanda

    2010-05-01

    Chromone carboxylic acids were evaluated as human monoamine oxidase A and B (hMAO-A and hMAO-B) inhibitors. The biological data indicated that only chromone-3-carboxylic acid is a potent hMAO-B inhibitor, with a high degree of selectivity for hMAO-B compared to hMAO-A. Conversely the chromone-2-carboxylic acid resulted almost inactive against both MAO isoforms. Docking experiments were performed to elucidate the reasons of the different MAO IC(50) data and to explain the absence of activity versus selectivity, respectively. 2010 Elsevier Ltd. All rights reserved.

  17. Effect of Alkyl Chain Length on Carboxylic Acid SAMs on Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Gavin A. Buckholtz

    2012-07-01

    Full Text Available The formation of methyl-terminated carboxylic acid self-assembled monolayers (SAMs with even numbers of carbons, from eighteen to thirty, was investigated on the oxide surface of Ti-6Al-4V and component metal oxides. Modified surfaces were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT, matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS and contact angle analysis. Infrared spectroscopy indicated that using aerosol spray deposition techniques, stable, all-trans SAMs of octacosanoic (28 carbons and triacontanoic (30 carbons acids were formed on the alloy. Films were similarly formed on titanium and aluminum oxide. The surface of vanadium oxide exhibited limited reactivity. MALDI-TOF MS confirmed that formed films were monolayers, without multilayers or aggregates present. Water contact angles are indicative of the presence of hydrophobic methyl groups at the interface. This stable carboxylic acid SAM formation could be a useful alternative to phosphonic acid SAMs for corrosion and other applications.

  18. Carboxylic acid functionalized sesame straw: A sustainable cost-effective bioadsorbent with superior dye adsorption capacity.

    Science.gov (United States)

    Feng, Yanfang; Liu, Yang; Xue, Lihong; Sun, Haijun; Guo, Zhi; Zhang, Yingying; Yang, Linzhang

    2017-08-01

    This study prepared a carboxylic functionalized bioadsorbent that met the "4-E" criteria: Efficient, Economical, Environmentally friendly, and Easily-produced. Sesame straw (Sesamum indicum L.) was functionalized through treatment with citric acid (SSCA) and tartaric acid (SSTA). The products were examined for adsorption capacity and mechanisms. Langmuir model gave the best fit for the isotherm data, and the maximum monolayer adsorption capacity of SSCA was 650mgg(-1) for methylene blue (MB). The excellent dye adsorption capacity of SSCA can be attributed to the introduction of ester groups during citric-acid modification and the tube-like structures (i.e., sesame straw cell wall remnants). At last, the cost of carboxylic acid functionalized bioadsorbents was evaluated, which showed that SSCA would be the most cost-effective bioadsorbent. Additionally, this study presents a thermo-decomposition methodology for contaminant-loaded bioadsorbent. Results showed that SSCA is probably one of the few bioadsorbents that can be produced and applied in industrial scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Water and carboxyl group environments in the dehydration blueshift of bacteriorhodopsin.

    Science.gov (United States)

    Renthal, R; Gracia, N; Regalado, R

    2000-11-01

    The proton channels of the bacteriorhodopsin (BR) proton pump contain bound water molecules. The channels connect the purple membrane surfaces with the protonated retinal Schiff base at the membrane center. Films of purple membrane equilibrated at low relative humidity display a shift of the 570 nm retinal absorbance maximum to 528 nm, with most of the change occurring below 15% relative humidity. Purple membrane films were dehydrated to defined humidities between about 50 and 4.5% and examined by Fourier transform infrared difference spectroscopy. In spectra of dehydrated-minus-hydrated purple membrane, troughs are observed at 3645 and 3550 cm-1, and peaks are observed at 3665 and 3500 cm-1. We attribute these changes to water dissociation from the proton uptake channel and the resulting changes in hydrogen bonding of water that remains bound. Also, in the carboxylic acid spectral region, a trough was observed at 1742 cm-1 and a peak at 1737 cm-1. The magnitude of the trough to peak difference between 1737 and 1742 cm-1 correlates linearly with the extent of the 528 nm pigment. This suggests that a carboxylic acid group or groups is undergoing a change in environment as a result of dehydration, and that this change is linked to the appearance of the 528 nm pigment. Dehydration difference spectra with BR mutants D96N and D115N show that the 1737-1742 cm-1 change is due to Asp 96 and Asp 115. A possible mechanism is suggested that links dissociation of water in the proton uptake channel to the environmental change at the Schiff base site.

  20. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  1. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    Science.gov (United States)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  2. Simple coupling chemistry linking carboxyl-containing organic molecules to silicon oxide surfaces under acidic conditions.

    Science.gov (United States)

    Schmidt, Sebastian W; Christ, Timo; Glockner, Christian; Beyer, Martin K; Clausen-Schaumann, Hauke

    2010-10-05

    The coupling chemistry of carboxymethylated amylose with organo-silanized silicon oxide surfaces at pH 7.4 and 2.0 was investigated using atomic force microscopy (AFM) based single-molecule force spectroscopy. At close to neutral pH, carbodiimide activation of a carboxylic acid affords formation of an amide bond with an amino surface linker. At pH 2.0, no activation with carbodiimide was required to anchor carboxymethylated amylose between an AFM tip and a glass substrate. At the same time, the mean bond rupture force f(r) dropped from 1.65 ± 0.37 nN at pH 7.4 to 1.39 ± 0.30 nN at pH 2.0 without carbodiimide, indicating that a different link to the surface can be formed at low pH. The coupling mechanism at pH 2.0 was elucidated by a series of experiments, in which the surface was functionalized with four different organosilanes, each containing characteristic functional groups. The results are rationalized with an acid-catalyzed ester condensation between a carboxyl group and a free, unreacted silanol group in the surface anchor or on the surface.

  3. Structure-activity relationship between carboxylic acids and T cell cycle blockade.

    Science.gov (United States)

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim

    2006-04-04

    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  4. Correlations and predictions of carboxylic acid pKa values using intermolecular structure and properties of hydrogen-bonded complexes.

    Science.gov (United States)

    Tao, Li; Han, Jun; Tao, Fu-Ming

    2008-01-31

    Density functional theory calculations have been preformed on a series of hydrogen-bonded complexes of substituted aliphatic and aromatic carboxylic acids with ammonia. Molecular properties, particularly those related to hydrogen bonding, have been carefully examined for their interdependence as well as dependence on the acidity of the acid. The bond length and stretching frequency of the hydroxyl group and the hydrogen-bond length and energy of the complex are shown to be highly correlated with each other and are linearly correlated with available literature pKa values of the carboxylic acids. The linear correlations resulting from the fit to the available pKa values can be used to predict the pKa values of similar carboxylic acids. The pKa values so predicted using the different molecular properties are highly consistent and in good agreement with the literature values. This study suggests that calculated molecular properties of hydrogen-bonded complexes allow effective and systematic prediction of pKa values for a large range of organic acids using the established linear correlations. This approach is unique in its capability to determine the acidity of a particular functional group or the local acidity within a large molecular system such as a protein.

  5. Efficient Fixation of Carbon Dioxide by Electrolysis - Facile Synthesis of Useful Carboxylic Acids -

    Institute of Scientific and Technical Information of China (English)

    Masao Tokuda

    2006-01-01

    Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.

  6. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    Science.gov (United States)

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass.

  7. Evaluation of a series of prolylamidepyridines as the chiral derivatization reagents for enantioseparation of carboxylic acids by LC-ESI-MS/MS and the application to human saliva.

    Science.gov (United States)

    Kuwabara, Tomohiro; Takayama, Takahiro; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa

    2014-04-01

    Mass spectrometry has become a popular analytical tool because of its high sensitivity and specificity. The use of a chiral derivatization reagent for the mass spectrometry (MS) detection seems to be efficient for the enantiomeric separation of racemates. However, the number of chiral reagents for the liquid chromatography (LC)-MS/MS analysis is very limited. According to these observations, we are currently in the process of developing novel labeling reagents for chiral molecules in MS/MS analysis. The derivatization reagent that is effective for enhancing not only the electrospray ionization-MS/MS sensitivity but also the reversed-phase LC resolution of carboxylic acid enantiomers should have a highly proton-affinitive moiety and an asymmetric structure near the reactive functional group. Furthermore, the resulting derivative has to provide a characteristic product ion suitable for the selected reaction monitoring. Based upon these considerations, a series of prolylamidepyridines ((S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-2-yl)amide (PCP2), (S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-3-yl)amide, and (S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-4-yl)amide) was synthesized as ideal labeling reagents for the enantioseparation of chiral carboxylic acids and evaluated in terms of separation efficiency and detection sensitivity by ultra-performance LC (UPLC)-MS/MS. Among the synthesized reagents, PCP2 was the most efficient chiral derivatization reagent for the enantioseparation of carboxylic acid. The Rs values and the detection limits of the derivatives of non-steroidal anti-inflammatory drugs, which were selected as the representative carboxylic acids, were in the range of 2.52-6.07 and 49-260 amol, respectively. The sensitive detection of biological carboxylic acids (detection limits, 32-520 amol) was also carried out by the proposed method using PCP2 and UPLC-MS/MS. The PCP2 was applied to the determination of carboxylic acids in human saliva. Several

  8. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald

    2007-01-01

    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole...

  9. Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids is described via the Pfitzinger reaction of isatins with sodium pyruvate following consequent decarboxylation under microwave irradiation.

  10. Aliphatic carboxylic acids as new modifiers for separation of 2,4-dinitrophenyl amino acids by micellar liquid chromatography.

    Science.gov (United States)

    Boichenko, Alexander P; Kulikov, Artem U; Loginova, Lidia P; Iwashchenko, Anna L

    2007-07-20

    The possibilities of isocratic separation of 2,4-dinitrophenyl derivatives of 12 amino acids that considerably differ in hydrophobicity by micellar mobile phases with different organic modifiers have been discussed. For the first time aliphatic carboxylic acids have been used as modifiers of micellar eluent in micellar liquid chromatography with C18 columns. Elution strength of hybrid micellar phases on the basis of sodium dodecylsulfate and aliphatic carboxylic acids increases in sequence: aceticacid. The effect of sodium dodecylsulfate micelles on aliphatic carboxylic acids has been characterized by their micellar-induced shifts of ionization constants. The use of aliphatic carboxylic acids as modifiers of SDS micellar eluents provides better overall resolution of 2,4-dinitrophenyl-amino acids in comparison with aliphatic alcohols.

  11. Application of partially fluorinated carboxylic acids as ion-pairing reagents in LC/ESI-MS.

    Science.gov (United States)

    Yamamoto, Eiichi; Ishihama, Yasushi; Asakawa, Naoki

    2014-09-01

    This report describes the application of partially fluorinated carboxylic acids as ion-pairing reagents for basic analytes in high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI-MS) in positive-ion mode. Partially fluoridated carboxylic acids such as difluoroacetic acid, 3,3,3-trifluoropropionic acid and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid functioned as volatile paired-ion similarly as trifluoroacetic acid (TFA). These acids provided basic analytes larger retention factor (k) compared to acetic acid or formic acid in LC. The ESI-MS signal strength of analytes with these acids were higher than that of TFA and was analogous to that of acetic acid or formic acid. The performances of partially fluorinated carboxylic acids in LC and ESI-MS for basic analytes were analyzed by multivariate statistical analysis using physicochemical descriptors of acids. Equations obtained in the analysis enabled us the quantitative evaluation of the performance of fluorinated carboxylic acids as ion-pair reagents for basic analytes in LC/ESI-MS.

  12. Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

    Directory of Open Access Journals (Sweden)

    Brett N. Hemric

    2016-01-01

    Full Text Available This paper reports a novel approach for the direct and facile synthesis of 1,2-oxyamino moieties via an intermolecular copper-catalyzed oxyamination of olefins. This strategy utilizes O-benzoylhydroxylamines as an electrophilic amine source and carboxylic acids as a nucleophilic oxygen source to achieve a modular difunctionalization of olefins. The reaction proceeded in a regioselective manner with moderate to good yields, exhibiting a broad scope of carboxylic acid, amine, and olefin substrates.

  13. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    Science.gov (United States)

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  14. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  15. Effect of Concentration of Structurally-Different Carboxylic Acids on Growth and Aggregation of Calcium Oxalate in Gel Systems

    Institute of Scientific and Technical Information of China (English)

    DENG,Sui-Ping; OUYANG,Jian-Ming

    2007-01-01

    The effect of concentration of structurally-different carboxylic acids such as ethylene diamine tetraacetic acid (H4edta), citric acid (H3cit), tartaric acid (H2tart), and acetic acid (HOAc) on growth and aggregation of calcium oxalate (CaOxa) in gel systems was comparatively investigated. H2tart and H3cit could change the morphology of calcium oxalate monohydrate (COM) and induce the formation of calcium oxalate dihydrate (COD). H4edta could induce the formation of COD at a lower concentration of 0.33 mmol/L and have the strongest ability to inhibit aggregation of COM. HOAc inhibited COM aggregation only at a higher concentration than 500 mmol/L. With increasing the number of carboxylic groups in an acid or increasing the concentration of carboxylic acid, the capacity of this acid to induce COD formation and to inhibit growth and aggregation of COM crystals increased. That is, this capacity followed the order: H4edta>H3cit>H2tart>>HOAc. The result in this work suggested that the presence of H3cit and H2tart in urine played a role in the natural defense against stone formation.

  16. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases.

    Science.gov (United States)

    Yin, DeLu Tyler; Kazlauskas, Romas J

    2012-06-25

    Several serine hydrolases catalyze a promiscuous reaction: perhydrolysis of carboxylic acids to form peroxycarboxylic acids. The working hypothesis is that perhydrolases are more selective than esterases for hydrogen peroxide over water. In this study, we tested this hypothesis, and focused on L29P-PFE (Pseudomonas fluorescens esterase), which catalyzes perhydrolysis of acetic acid 43-fold faster than wild-type PFE. This hypothesis predicts that L29P-PFE should be approximately 43-fold more selective for hydrogen peroxide than wild-type PFE, but experiments show that L29P-PFE is less selective. The ratio of hydrolysis to perhydrolysis of methyl acetate at different concentrations of hydrogen peroxide fit a kinetic model for nucleophile selectivity. L29P-PFE (β(0)=170  M(-1)) is approximately half as selective for hydrogen peroxide over water than wild-type PFE (β(0)=330  M(-1)), which contradicts the working hypothesis. An alternative hypothesis is that carboxylic acid perhydrolases increase perhydrolysis by forming the acyl-enzyme intermediate faster. Consistent with this hypothesis, the rate of acetyl-enzyme formation, measured by (18)O-water exchange into acetic acid, was 25-fold faster with L29P-PFE than with wild-type PFE, which is similar to the 43-fold faster perhydrolysis with L29P-PFE. Molecular modeling of the first tetrahedral intermediate (T(d)1) suggests that a closer carbonyl group found in perhydrolases accepts a hydrogen bond from the leaving group water. This revised understanding can help design more efficient enzymes for perhydrolysis and shows how subtle changes can create new, unnatural functions in enzymes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    changes and the redshift favor the Z OH group, matching the results of NBO and AIM calculations. This reflects that the thermochemistry of adduct formation is not a good measure of the hydrogen bond strength in charged adducts, and that the ionic interactions in the E and Z adducts of protonated......It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...

  18. LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates.

    Science.gov (United States)

    Zur, Arik A; Chien, Huan-Chieh; Augustyn, Evan; Flint, Andrew; Heeren, Nathan; Finke, Karissa; Hernandez, Christopher; Hansen, Logan; Miller, Sydney; Lin, Lawrence; Giacomini, Kathleen M; Colas, Claire; Schlessinger, Avner; Thomas, Allen A

    2016-10-15

    Large neutral amino acid transporter 1 (LAT1) is a solute carrier protein located primarily in the blood-brain barrier (BBB) that offers the potential to deliver drugs to the brain. It is also up-regulated in cancer cells, as part of a tumor's increased metabolic demands. Previously, amino acid prodrugs have been shown to be transported by LAT1. Carboxylic acid bioisosteres may afford prodrugs with an altered physicochemical and pharmacokinetic profile than those derived from natural amino acids, allowing for higher brain or tumor levels of drug and/or lower toxicity. The effect of replacing phenylalanine's carboxylic acid with a tetrazole, acylsulfonamide and hydroxamic acid (HA) bioisostere was examined. Compounds were tested for their ability to be LAT1 substrates using both cis-inhibition and trans-stimulation cell assays. As HA-Phe demonstrated weak substrate activity, its structure-activity relationship (SAR) was further explored by synthesis and testing of HA derivatives of other LAT1 amino acid substrates (i.e., Tyr, Leu, Ile, and Met). The potential for a false positive in the trans-stimulation assay caused by parent amino acid was evaluated by conducting compound stability experiments for both HA-Leu and the corresponding methyl ester derivative. We concluded that HA's are transported by LAT1. In addition, our results lend support to a recent account that amino acid esters are LAT1 substrates, and that hydrogen bonding may be as important as charge for interaction with the transporter binding site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  20. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    Science.gov (United States)

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  1. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.

    Science.gov (United States)

    Nakagame, Seiji; Chandra, Richard P; Kadla, John F; Saddler, Jack N

    2011-03-01

    To assess the effects that the physical and chemical properties of lignin might have on the enzymatic hydrolysis of pretreated lignocellulosic substrates, protease treated lignin (PTL) and cellulolytic enzyme lignin (CEL) fractions, isolated from steam and organosolv pretreated corn stover, poplar, and lodgepole pine, were prepared and characterized. The adsorption of cellulases to the isolated lignin preparations corresponded to a Langmuir adsorption isotherm. It was apparent that, rather than the physical properties of the isolated lignin, the carboxylic acid functionality of the isolated lignin, as determined by FTIR and NMR spectroscopy, had much more of an influence when lignin was added to typical hydrolysis of pure cellulose (Avicel). An increase in the carboxylic content of the lignin preparation resulted in an increased hydrolysis yield. These results suggested that the carboxylic acids within the lignin partially alleviate non-productive binding of cellulases to lignin. To try to confirm this possible mechanism, dehydrogenative polymers (DHP) of monolignols were synthesized from coniferyl alcohol (CA) and ferulic acid (FA), and these model compounds were added to a typical enzymatic hydrolysis of Avicel. The DHP from FA, which was enriched in carboxylic acid groups compared with the DHP from CA, adsorbed a lower mount of cellulases and did not decrease hydrolysis yields when compared to the DHP from CA, which decreased the hydrolysis of Avicel by 8.4%. Thus, increasing the carboxylic acid content of the lignin seemed to significantly decrease the non-productive binding of cellulases and consequently increased the enzymatic hydrolysis of the cellulose. Copyright © 2010 Wiley Periodicals, Inc.

  2. Target-Specific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles.

    Science.gov (United States)

    Campbell, McKenzie L; Guerra, Fernanda D; Dhulekar, Jhilmil; Alexis, Frank; Whitehead, Daniel C

    2015-10-12

    Aldehyde and carboxylic acid volatile organic compounds (VOCs) present significant environmental concern due to their prevalence in the atmosphere. We developed biodegradable functional nanoparticles comprised of poly(d,l-lactic acid)-poly(ethylene glycol)-poly(ethyleneimine) (PDLLA-PEG-PEI) block co-polymers that capture these VOCs by chemical reaction. Polymeric nanoparticles (NPs) preparation involved nanoprecipitation and surface functionalization with branched PEI. The PDLLA-PEG-PEI NPs were characterized by using TGA, IR, (1) H NMR, elemental analysis, and TEM. The materials feature 1°, 2°, and 3° amines on their surface, capable of capturing aldehydes and carboxylic acids from gaseous mixtures. Aldehydes were captured by a condensation reaction forming imines, whereas carboxylic acids were captured by acid/base reaction. These materials reacted selectively with target contaminants obviating off-target binding when challenged by other VOCs with orthogonal reactivity. The NPs outperformed conventional activated carbon sorbents.

  3. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Baylon, Rebecca A. L.; Sun, Junming; Martin, Kevin J.; Venkitasubramanian, Padmesh; Wang, Yong

    2016-01-01

    Dwindling petroleum reserves combined with increased energy demand and political factors encouraging an increase in energy independence have led to a large amount of research on sustainable alternatives. To this end, biomass conversion has been recognized as themost readily viable technology to produce biofuel concerning our reliance on liquid fuels for transportation and has the advantage of being easily integrated into our heavy use of combustion engines. The interest in biomass conversion has also resulted in reduced costs and a greater abundance of bio-oil, a mixture of hundreds of oxygenates including alcohols, aldehydes, carboxylic acids, and ketones. However, the presence of carboxylic acids in bio-oil derived from lignocellulose pyrolysis leads to low pH, instability, and corrosiveness. In addition, carboxylic acids (i.e. acetic acid) can also be produced via fermentation of sugars. This can be accomplished by a variety of homoacetogenic microorganisms that can produce acetic acid with 100% carbon yield.

  4. Application of flow-injection potentiometric system for determination of total concentration of aliphatic carboxylic acids.

    Science.gov (United States)

    Mroczkiewicz, Monika; Górski, Łukasz; Zamojska-Jaroszewicz, Anna; Szewczyk, Krzysztof W; Malinowska, Elżbieta

    2011-09-30

    In this work, flow-injection system with potentiometric detection was tested for determination of total carboxylic acid concentration. Detection part of the examined system consists of ion-selective electrodes (ISEs) with polymer membranes of different compositions. First electrode is based on Zr(IV)-tetraphenylporphyrin as ionophore selective towards carboxylic acid anions, the membrane of second one contains only liphophilic anion exchanger - tridodecylmethylammonium chloride. Final response of the system is a result of combination of EMF signals from both electrodes. Combination of two detectors enables significant decrease of differences between potentiometric signals induced by mixtures of studied anions of various concentrations as compared to results obtained only with metalloporphyrin-based ISE. The use of anion-exchanger based detector allows for elimination of the influence of aliphatic carboxylic acids lipophilicity. Proposed potentiometric flow-injection system was employed for determination of short-chain aliphatic carboxylic acids (so-called VFA - volatile fatty acids) in samples originating from an anaerobic digester. Results obtained for these relatively complicated samples are in good agreement with results obtained with the use of reference colorimetric method. Linear response towards carboxylic acids was observed in the concentration range of 10(-4) to 10(-2)mold m(-3), with the slopes in the range of -110 to -150 mV dec(-1) (for acetate(-) and butyrate(-), respectively). System enables for determination of about 6 samples per hour. Life time of ISEs average about 2 months.

  5. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  6. The comparison between carboxyl, amido and hydroxy group in influencing electrorheological performance

    Science.gov (United States)

    Li, Huo; Li, Jun-Ran; Liao, Fu-Hui

    2011-03-01

    Three kinds of electrorheological (ER) materials with carboxyl, amido and hydroxyl group, respectively, were synthesized by a simple adsorption method. The powder of silicon dioxide as a substrate of the materials, as well as terephthalic acid [ p-C6H4(COOH)2, abbr.: phen-COOH], p-phenylenediamine [ p-C6H4(NH2)2, abbr.: phen-NH2] and hydroquinone [ p-C6H4(OH)2, abbr.: phen-OH] were chosen as starting materials. The ER properties of suspensions of the materials in silicon oil were studied. The suspension of the material adsorbing phen-COOH reveals the highest ER activity, the relative shear stress of the suspension (25 wt%), τr(=τE/τ0, τE and τ0 are the shear stresses at electric field strengths of E=4.2 and 0 kV/mm, respectively), reaches 220 under a DC electric field at a shear rate of 14.5 s-1. The shear stress of the suspension of the material adsorbing phen-NH2 is the largest at an high electric field strength. The ER activity of the material adsorbing phen-OH is the lowest among the three materials. The molecule structure is an importance factor in influencing ER performance of the materials for similar compounds with different polar function groups. The relationship between the ER activity and dielectric property of the materials was discussed.

  7. 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies.

    Science.gov (United States)

    Brisson, Lydie; El Bakkali-Taheri, Nadia; Giorgi, Michel; Fadel, Antoine; Kaizer, József; Réglier, Marius; Tron, Thierry; Ajandouz, El Hassan; Simaan, A Jalila

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket.

  8. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes

    Science.gov (United States)

    Gu, Quanli; Tang, Zhen; Su, Peifeng; Wu, Wei; Yang, Zhijun; Trindle, Carl O.; Knee, Joseph L.

    2016-08-01

    The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA—H2O, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA—HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes.

  9. Chiral trans-1,2-diaminocyclohexane derivatives as chiral solvating agents for carboxylic acids

    Indian Academy of Sciences (India)

    Mariappan Periasamy; Manasi Dalai; Meduri Padmaja

    2010-07-01

    Efficient use of the readily accessible chiral 2-symmetric acyclic diamines (1-2) as well as macrocyclic amines (3-5) containing trans-1,2-diaminocyclohexyl moiety as chiral solvating agents (CSA) for the determination of enantiomeric excess of representative carboxylic acids (6-7) and an amino acid derivative (8) is illustrated. The enantiomeric composition of different carboxylic acids estimated here by the 1H NMR method, based on the integration of the corresponding methine proton signals are in good correlation with that determined using HPLC method. The data are in accordance with the formation of multimolecular diastereomeric complexes in solution, which render good splitting of NMR signals for the enantiomers of representative carboxylic acids as well as for -Ts-phenylglycine (up to = 0.295 ppm, 118 Hz).

  10. Adsorption of gaseous formaldehyde and carboxylic acids by ammonium-ion-exchanged alpha-zirconium phosphate.

    Science.gov (United States)

    Hayashi, A; Fujimoto, Y; Ogawa, Y; Nakayama, H; Tsuhako, M

    2005-03-01

    Ammonium-ion-exchanged alpha-Zr(HPO(4))(2)H(2)O (alpha-ZrP) was obtained as a single phase with the interlayer distance of 9.4 A by the ion-exchange of proton with ammonium ion. The ammonium ion-exchanged alpha-ZrP could adsorb ill-smelling gases, such as formaldehyde and carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid). The adsorption amounts of carboxylic acids increased in the order, butyric acidacidacidacid, whereas the adsorption amount of formaldehyde was the same as that of butyric acid. It was cleared that the adsorbed formaldehyde was partially decomposed to formic acid and methanol by self oxidation-reduction reaction in the interlayer region as evidenced by solid-state NMR. Thereby the interlayer distance after the adsorption of formaldehyde expanded to 14.4 A. In the case of formic acid, it was cointercalated into the interlayer region, and the interlayer distance expanded to 11.1 A. On the other hand, the interlayer distance of the other carboxylic acid-adsorbed compounds decreased to 7.6 A due to release by the evacuation.

  11. Photosensitization of Nanocrystalline TiO2 Electrode Modifiedwith C60 Carboxylic Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    张文; 史亚茹; 甘良兵; 黄春辉; 王艳琴; 虎民

    2001-01-01

    C60 carboxylic acid derivatives can be readily adsorbed on the surface of nanocrystalline TiO2 films act as charge-transfer sensitizer. The electron transport from TiO2 to the C60 derivatives results in the generation of the cathodic photocurrent. The short-circuit photocurrent of a C60 tetracarboxylic acid is 0.45 μA/cm2 under 464 um light illumination. The photoelectric behaviour of ITO electrodes modified by the same C60 carboxylic acids is different from that of the modified TiO2 electrodes, and shows anodic photocurrent.

  12. Room-temperature decarboxylative alkynylation of carboxylic acids using photoredox catalysis and EBX reagents.

    Science.gov (United States)

    Le Vaillant, Franck; Courant, Thibaut; Waser, Jerome

    2015-09-14

    Alkynes are used as building blocks in synthetic and medicinal chemistry, chemical biology, and materials science. Therefore, efficient methods for their synthesis are the subject of intensive research. Herein, we report the direct synthesis of alkynes from readily available carboxylic acids at room temperature under visible-light irradiation. The combination of an iridium photocatalyst with ethynylbenziodoxolone (EBX) reagents allowed the decarboxylative alkynylation of carboxylic acids in good yields under mild conditions. The method could be applied to silyl-, aryl-, and alkyl- substituted alkynes. It was particularly successful in the case of α-amino and α-oxo acids derived from biomass.

  13. Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry

    Science.gov (United States)

    Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad

    2015-12-01

    A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.

  14. Enzymatic grafting of carboxyl groups on to chitosan--to confer on chitosan the property of a cationic dye adsorbent.

    Science.gov (United States)

    Chao, An-Chong; Shyu, Shin-Shing; Lin, Yu-Chuang; Mi, Fwu-Long

    2004-01-01

    Chitosan (CTS) is a good adsorbent for dyes but lacks the ability to adsorb cationic dyes. In this study, chitosan was modified to possess the ability to adsorb cationic dyes from water. Four kinds of phenol derivatives: 4-hydroxybenzoic acid (BA), 3,4-dihydroxybenzoic acid (DBA), 3,4-dihydroxyphenyl-acetic acid (PA), hydrocaffeic acid (CA) were used individually as substrates of tyrosinase to graft onto chitosan. FTIR analysis provided supporting evidence of phenol derivatives being grafted. The grafting amounts of these phenol derivatives onto chitosan were examined by the adsorption of an anionic dye (amaranth) and reached a plateau value. The final contents of carboxyl groups in chitosan (mmol carboxyl groups per kg chitosan) were measured as 46.36 for BA, 70.32 for DBA, 106.44 for PA, and 113.15 for CA. These modified chitosans were used in experiments on uptake of the cationic dyes crystal violet (CV) and bismarck brown Y (BB) by a batch adsorption technique at pH 7 for CV and at pH 9 for BB and 30 degrees C. Langmuir type adsorption was found, and the maximum adsorption capacities for both dyes were increased with the following order CTS-CA>CTS-PA>CTS-DBA>CTS-BA.

  15. Reinforcement of carboxyl groups in the surface of Corynebacterium glutamicum biomass for effective removal of basic dyes.

    Science.gov (United States)

    Won, Sung Wook; Vijayaraghavan, K; Mao, Juan; Kim, Sok; Yun, Yeoung-Sang

    2009-12-01

    The biomass of Corynebacterium glutamicum was treated with poly(amic acid) to improve the biosorption of Basic Blue 3 (BB3) from aqueous solution. The grafting of poly(amic acid) onto the biomass surface increased the density of the carboxyl groups. The UV-spectrum revealed that strong acidic (pH2) and basic conditions (pH11) resulted in the precipitation of BB3. Therefore, pH edge experiments were conducted only within the range 3-10; these results indicated that electrostatic attraction between carboxyl groups of C. glutamicum and BB3 dye cations was favored under alkaline conditions. From the Langmuir model, poly(amic acid)-modified biomass gave a maximum uptake of 173.6 mg/g at pH 9, compared to 52.8 mg/g by the raw biomass. The biosorption kinetics was found to be fast; with equilibrium attained within 10 min. The increase in the ionic strength strongly affected the uptake of BB3 for both forms of C. glutamicum.

  16. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  17. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    Science.gov (United States)

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  18. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films.

    Science.gov (United States)

    Woo, Kyoohee; Kim, Youngwoo; Lee, Byungyoon; Kim, Jonghee; Moon, Jooho

    2011-07-01

    The reduction effect of various carboxylic acids on inkjet-printed copper film was investigated. Carboxylic acids were exposed to the film by nitrogen gas that was bubbled through the liquid acids during the annealing process. It was observed that in the case of saturated monocarboxylic acid (formic, acetic, propionic, butyric), the acids with shorter hydrocarbon chains perform better in reducing the surface copper oxides in the printed copper conductive film. The printed films exposed to formic acid vapor exhibited the lowest resistivity (3.10 and 2.30 μΩ cm when annealed at 200 and 250 °C, respectively). In addition, the oxalic acid more effectively reduces copper oxide than formic acid and its usage can shorten the annealing time for highly conductive printed copper film. This reductive annealing process allows fabrication of copper patterns with low resistivity, (3.82 μΩ cm annealed at 250 °C) comparable to the resistivity of bulk copper.

  19. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate.

    Science.gov (United States)

    Ram, Ram N.; And Others

    1983-01-01

    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  20. Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2.

    Science.gov (United States)

    Syniugin, Anatolii R; Ostrynska, Olga V; Chekanov, Maksym O; Volynets, Galyna P; Starosyla, Sergiy A; Bdzhola, Volodymyr G; Yarmoluk, Sergiy M

    2016-01-01

    In this article, the derivatives of 3-quinoline carboxylic acid were studied as inhibitors of protein kinase CK2. Forty-three new compounds were synthesized. Among them 22 compounds inhibiting CK2 with IC50 in the range from 0.65 to 18.2 μM were identified. The most active inhibitors were found among tetrazolo-quinoline-4-carboxylic acid and 2-aminoquinoline-3-carboxylic acid derivatives.

  1. A novel derivatization reagent possessing a bromoquinolinium structure for biological carboxylic acids in HPLC-ESI-MS/MS.

    Science.gov (United States)

    Mochizuki, Yuko; Inagaki, Shinsuke; Suzuki, Mayu; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2013-06-01

    A novel bromoquinolinium reagent, i.e. 1-(3-aminopropyl)-3-bromoquinolinium bromide (APBQ), was synthesized for the analysis of carboxylic acids. A simple and practical precolumn derivatization procedure using the APBQ in RP chromatography and MS (HPLC-MS) has been developed using bile acids and free fatty acids, as the representative carboxylic acids in biological samples. The APBQ efficiently reacted with carboxylic acids at 60°C for 60 min in the presence of N,N-dicyclohexylcarbodiimide and pyridine as the activation reagents. Because the APBQ possesses a bromine atom in the structure, the identification of a series of carboxylic acids was easily achieved due to the characteristic bromine isotope pattern in the mass spectra. The APBQ also has a quaternary amine structure, thus the positively charged derivatives are predominate for the highly sensitive detection of carboxylic acids. The APBQ was successfully applied to the selective determination of biological carboxylic acids in human plasma. The bile acids (chenodeoxycholic acid and deoxycholic acid) and several saturated (stearic acid and palmitic acid) and unsaturated free fatty acids (oleic acid and linoleic acid) were reasonably determined by HPLC-MS under the proposed procedure. Based on the results of analyses of human plasma and saliva, the proposed procedure using APBQ seems to be applicable for the qualitative and quantitative analyses of a series of carboxylic acids in biological samples.

  2. Poly(2-thiophen-3-yl-malonic acid), a polythiophene with two carboxylic acids per repeating unit.

    Science.gov (United States)

    Bertran, Oscar; Armelin, Elaine; Estrany, Francesc; Gomes, Alex; Torras, Juan; Alemán, Carlos

    2010-05-20

    A new substituted polythiophene derivative bearing malonic acid, poly(2-thiophen-3-yl-malonic acid), has been prepared and characterized using a strategy that combines both experimental and theoretical methodologies. The chemical structure of this material has been investigated using FTIR and (1)H NMR, and its molecular conformation has been determined using quantum mechanical calculations. Interestingly, the arrangement of the inter-ring dihedral angles was found to depend on the ionization degree of the material, that is, on the pH, which has been found completely soluble in aqueous base solution. Thus, the preferred anti-gauche conformation changes to syn-gauche when the negatively charged carboxylate groups transforms into neutral carboxylic acid. UV-vis experiments and quantum mechanical calculations on model systems with a head-to-tail regiochemistry showed that the lowest pi-pi* transition energy is 2.25 and 2.39 eV for the negatively charged and the neutral polymer, respectively. These values are slightly larger than those previously reported for other polythiophenes with bulky polar side groups. The polymer presents a good thermal stability with a decomposition temperature above 215 degrees C and an electrical conductivity of 10(-5) S/cm, which is characteristic of semiconductor materials. Scanning electron microscopy micrographs showed that, after doping, the surface of this material displays regular distribution pores with irregular sizes. This surface suggests that poly(2-thiophen-3-yl-malonic acid) is a candidate for potential applications such as selective membranes for electrodialysis, wastewater treatment, or ion-selective membranes for biomedical uses.

  3. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe;

    2014-01-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification...... reactions. In this study, kinetics of two active pharmaceutical ingredients, cetirizine and indomethacin possessing carboxylic acid functionality, has been studied in PEG 400 and PEG 1000 at 50°C, 60°C, 70°C, and 80°C. HPLC-UV was applied for the determination of concentrations in the kinetic studies......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  4. Growth aspects, structural, optical, thermal and mechanical properties of benzotriazole pyridine-2-carboxylic acid single crystal

    Science.gov (United States)

    Thirunavukkarsu, A.; Sujatha, T.; Umarani, P. R.; Nizam Mohideen, M.; Silambarasan, A.; Kumar, R. Mohan

    2017-02-01

    Benzotriazole pyridine-2-carboxylic acid single crystal (BTPCA) was grown by slow evaporation solution growth technique. The cell parameters and crystallinity of BTPCA crystal were found by single crystal and powder X-ray diffraction studies. The presence of functional groups was studied by FT-IR analysis. UV-vis-NIR transmission studies reveal that the BTPCA crystal is transparent in the entire visible region with lower optical cut-off wavelength of 306 nm. The thermal stability, melting point and decomposition stages of BTPCA were analysed from the thermogravimetric and differential thermal analyses. The second harmonic output power of BTPCA was measured to be 2.5 times that of KDP reference crystal. Hardness studies reveal that grown crystal shows the reverse indentation size effect and breakeven point due to release of internal fatigue generated during indentation.

  5. 2-substituted thiazolidine-4(R)-carboxylic acids as prodrugs of L-cysteine. Protection of mice against acetaminophen hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H.T.; Goon, D.J.; Muldoon, W.P.; Zera, R.T.

    1984-05-01

    A number of 2-alkyl- and 2-aryl-substituted thiazolidine-4(R)-carboxylic acids were evaluated for their protective effect against hepatotoxic deaths produced in mice by LD/sub 90/ doses of acetaminophen. 2(RS)-Methyl-, 2(RS)-n-propyl-, and 2(RS)-n- pentylthiazolidine -4(R)-carboxylic acids (compounds 1b,d,e, respectively) were nearly equipotent in their protective effect based on the number of surviving animals at 48 h as well as by histological criteria. 2(RS)-Ethyl-, 2(RS)-phenyl-, and 2(RS)-(4-pyridyl)thiazolidine-4(R)-carboxylic acids (compounds 1c,f,g) were less protective. The enantiomer of 1b, viz., 2(RS)- methylthiazolidine -4(S)-carboxylic acid (2b), was totally ineffective in this regard. Thiazolidine-4(R)-carboxylic acid (1a), but not its enantiomer, 2a, was a good substrate for a solubilized preparation of rat liver mitochondrial proline oxidase (K/sub m/ 1.1 x 10(-4) M; V/sub max/ . 5.4 mumol min-1 (mg of protein)-1). Compound 1b was not a substrate for proline oxidase but dissociated to L-cysteine in this system. At physiological pH and temperature, the hydrogens on the methyl group of 1b underwent deuterium exchange with solvent D/sub 2/O (k1 . 2.5 X 10(-5) s), suggesting that opening of the thiazolidine ring must have taken place. Indeed, 1b labeled with /sup 14/C in the 2 and methyl positions was rapidly metabolized by the rat to produce /sup 14/CO/sub 2/, 80% of the dose being excreted in this form in the expired air after 24 h. It is suggested that these 2-substituted thiazolidine-4(R)-carboxylic acids are prodrugs of L-cysteine that liberate this sulfhydryl amino acid in vivo by nonenzymatic ring opening, followed by solvolysis.

  6. Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide.

    Science.gov (United States)

    Sun, Xiaobo; Zhao, Chen; Pan, Wei; Wang, Jinping; Wang, Weijun

    2015-06-05

    In this paper, the structure difference between the polysaccharides isolated from fruit bodies (FGAP) and submerged fermentation system (SGAP) of Ganoderma applanatum was investigated by means of GPC, HPLC and IR, respectively. And their antitumor activities were evaluated against Sarcoma 180 in vivo. The results showed that FGAP and SGAP were typical polysaccharides with different molecular weights, monosaccharide components, and functional groups. Closely related to the distinct structures, FGAP exhibited a better antitumor activity than SGAP. Moreover, since FGAP contained carboxylate groups rather than SGAP, such groups were chemically introduced into SGAP (CSGAP) by carboxymethylation in order to identify their contribution to antitumor activity. The results demonstrated that the inhibition of CSGAP against Sarcoma 180 in vivo was significantly enhanced by comparison to the native SGAP and even higher than that of FGAP, suggesting that the carboxylate groups played a major role in antitumor activity of G. applanatum polysaccharide.

  7. Combined effect of amino and carboxyl group in α-alanine on seeded precipitation of sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    L(U) Bao-lin; CHEN Qi-yuan; YIN Zhou-lan; HU Hui-ping

    2009-01-01

    α-alanine was adopted as a new additive to elucidate the seeded precipitation mechanism of sodium aluminate solution. α-alanine has the inhibitory effect at the initial period of reaction, but the favorable effect in subsequent reaction. The combined effect of amino and carboxyl group in α-alanine was confirmed by investigating the effect of propionic acid, ethamine and the mixture of propionic acid and ethamine (mole ratio 1:1) on the precipitation of sodium aluminate solution, respectively. The inhibitory effect derives from the adsorption of amino or carboxyl group in α-alanine on the active surface sites of gibbsite, which was confirmed by the alleviating inhibitory effects of propionic acid, ethamine and α-alanine due to the double crystal seed mass. The semi-quantitative IR spectrum analysis of the relative concentrations of Al2O(OH)62- with the band at about 550 cm-1 and polynuclear aluminate ion with the bands at about 880 cm-1 and 635 cm-1, indicates that the dynamic balance among some aluminate species present in sodium aluminate solution is broken due to the addition of α-alanine, thus resulting in the change of the seeded precipitation ratio of sodium aluminate solution.

  8. Metallaphotoredox-catalysed sp3-sp3 cross-coupling of carboxylic acids with alkyl halides

    Science.gov (United States)

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.

    2016-08-01

    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp3-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3-sp3 bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp3-sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp3-sp3 coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3-sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for

  9. Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives.

    Science.gov (United States)

    Puopolo, Gerardo; Masi, Marco; Raio, Aida; Andolfi, Anna; Zoina, Astolfo; Cimmino, Alessio; Evidente, Antonio

    2013-01-01

    Pseudomonas chlororaphis subsp. aureofaciens strain M71 produced two phenazine compounds as main secondary metabolites. These metabolites were identified as phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH P). In this study, the spectrum of the activity of PCA and 2-OH P was evaluated against a group of crop and forestal plant pathogenic fungi by an agar plate bioassay. PCA was active against most of the tested plant pathogens, while 2-OH P slightly inhibited a few fungal species. Furthermore, four semisynthesised derivatives of PCA (phenazine-1-carboxymethyl, phenazine-1-carboxamide, phenazine-1-hydroxymethyl and phenazine-1-acetoxymethyl) were assayed for their antifungal activity against 11 phytopathogenic species. Results showed that the carboxyl group is a structural feature important for the antifungal activity of PCA. Since the activity of phenazine-1-carboxymethyl and phenazine-1-carboxamide, the two more lipophilic and reversible PCA derivatives remained substantially unaltered compared with PCA.

  10. Crystal structure of (2S,4S)-5,5-dimethyl-2-(pyridin-2-yl)-1,3-thia-zolidine-4-carb-oxy-lic acid.

    Science.gov (United States)

    Laskar, Payel; Kuwamura, Naoto; Yoshinari, Nobuto; Konno, Takumi

    2014-12-01

    In the title compound, C11H14N2O2S, the thia-zolidine ring has an envelope conformation with the C atom bonded to the carb-oxy-lic acid group at the flap. Two C atoms of the thia-zolidine ring adopt S conformations. In the crystal, O-H⋯N hydrogen bonds between the amine and carb-oxy-lic acid groups construct a helical chain structure along the a-axis direction. The chains are further connected via weak C-H⋯π contacts, forming a layer parallel to the ac plane.

  11. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    NARCIS (Netherlands)

    Bel, A.J.E. van

    1984-01-01

    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas

  12. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    NARCIS (Netherlands)

    Bel, A.J.E. van

    1984-01-01

    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem,

  13. Wet oxidation kinetics of refractory low molecular mass carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Levec, J.

    1999-10-01

    Wet oxidation kinetics of aqueous solutions of formic, acetic, oxalic, and glyoxalic acids was studied in a titanium autoclave at a temperature range of 150--320 C and oxygen partial pressures between 8 and 60 bar. Oxidation reactions obeyed a first-order kinetics with respect to concentration of all substrates. On the basis of acid concentration decay, the activation energy for acetic, oxalic, and glyoxalic acid oxidation was 178, 137, and 97 kJ/mol, respectively; whereas on the total organic carbon (TOC) conversion basis, these values were slightly higher, namely 182, 141, and 104 kJ/mol. The activation energy for formic acid took a unique value of 149 kJ/mol regardless of the type of concentration used. The rate of oxidation was proportional to a square root of oxygen concentration (partial pressure) for acetic, formic, and oxalic acids, whereas it was linearly proportional for glyoxalic acid. When sufficiently high oxygen partial pressure was applied ({ge}22 bar), the individual acid conversion in a mixture of these acids was well predicted by the rate expression derived for that acid. The lumped TOC concentration of mixtures did not obey a first-order kinetic behavior, although underlying TOC kinetics for each individual acid was linear. The oxidation results are also discussed in a view of speculated reaction pathways and the reactor material.

  14. Significant improvement in the pore properties of SBA-15 brought about by carboxylic acids and hydrothermal treatment

    Indian Academy of Sciences (India)

    Milan Kanti Naskar; M Eswaramoorthy

    2008-01-01

    A comparative study of the pore properties of SBA-15 samples prepared under nonhydrothermal and hydrothermal conditions, in the absence and presence of carboxylic acids such as succinic, tartaric and citric acids has been carried out. In the absence of carboxylic acid, flake-like and spheroid particles were generally obtained irrespective of the preparative procedures. On the other hand, stirring of the pre-mix induces a rod-like morphology in presence of carboxylic acids. The samples prepared under non-hydrothermal conditions exhibit a higher degree of silicate condensation compared to those synthesized under hydrothermal conditions. SBA-15 samples prepared under hydrothermal conditions show higher values of the d (100) spacing independent of the presence of carboxylic acids. Presence of carboxylic acids as well as hydrothermal treatment improves the pore properties of SBA-15.

  15. "Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties.

    Science.gov (United States)

    Micillo, Raffaella; Panzella, Lucia; Koike, Kenzo; Monfrecola, Giuseppe; Napolitano, Alessandra; d'Ischia, Marco

    2016-05-17

    Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.

  16. Synthesis and characterization of a novel carboxyl group containing (co)polyimide with sulfur in the polymer backbone.

    Science.gov (United States)

    Mrsevic, Miroslav; Düsselberg, David; Staudt, Claudia

    2012-01-01

    Soluble functional (co)polyimides are of great interest in the area of separation processes or optical applications, due to their excellent mechanical-, thermal- and optical properties, their superior processability and the ability to adapt their properties to a wide range of special applications. Therefore, two series of novel (co)polyimides containing fluorinated sulfur- and carboxylic acid groups consisting of 4,4'-(hexafluoroisopropylidene)di(phthalic anhydride) (6FDA), 3,5-diaminobenzoic acid (DABA), 4,4'-diaminodiphenylsulfide (4,4'-SDA) and 3,3'-diaminodiphenylsulfone (3,3'-DDS) were synthesized in a two-step polycondensation reaction. The synthesized copolymers were characterized by using NMR, FTIR, GPC, and DSC. Furthermore, with regard to processing and potential applications, the thermal stability, solubility in common organic solvents, moisture uptake, and transparency were investigated. Compared to commercially available transparent polymers, i.e., polymethylmethacrylate and cycloolefin polymers, the sulfur (co)polyimides containing carboxyl groups showed much higher glass-transition temperatures, comparably low moisture uptake and high transmission at the sodium D-line. Furthermore, good solubility in commonly used organic solvents makes them very attractive as high-performance coating materials.

  17. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    Science.gov (United States)

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester.

    Science.gov (United States)

    2010-07-01

    ..., methyl ester. 721.4097 Section 721.4097 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical...-oxabicyclo heptane-3-carboxylic acid, methyl ester (PMN P-98-101) is subject to reporting under this...

  19. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  20. Role of apparent pKa of carboxylic acids in lipase-catalyzed esterifications in biphasic systems

    NARCIS (Netherlands)

    Dominguez de Maria, Pablo; Fernandez-Alvaro, Elena; Kate, ten Antoon; Bargeman, Gerrald

    2009-01-01

    Lipase-catalyzed esterifications in biphasic media (heptane–water, 1:1) were conducted by using Thermomyces lanuginosus lipase (TLL) as biocatalyst. Different carboxylic acids (from acetic to lauric) were thus esterified with 1-butanol at different pH values (2–10). For all carboxylic acids tested,

  1. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Science.gov (United States)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  2. 40 CFR 721.10142 - Oxabicycloalkane carboxylic acid alkanediyl ester (generic).

    Science.gov (United States)

    2010-07-01

    ... alkanediyl ester (generic). 721.10142 Section 721.10142 Protection of Environment ENVIRONMENTAL PROTECTION... ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as oxabicycloalkane carboxylic acid alkanediyl ester (PMN P-06-199)...

  3. β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water

    Institute of Scientific and Technical Information of China (English)

    Dong Po Shi; Hong Bing Ji

    2009-01-01

    A facile,efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaC10 catalyzed by β-cyclodextdn in water has been developed.A series of aldehydes which could form inclusion complex with β-cyclodextrin(β-CD)were oxidized selectively with excellent yields.

  4. Biocatalytic Synthesis of Highly Enantiopure 1,4-Benzodioxane-2-carboxylic Acid and Amide

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; WANG De-Xian; ZHENG Qi-Yu; WANG Mei-Xiang

    2006-01-01

    Catalyzed by Rhodococcus erythropolis A J270, a nitrile hydratase and amidase containing microbial whole-cell catalyst, at 10 ℃ and with the use of methanol as a co-solvent, nitrile and amide biotransformations produce 2S-1,4-benzodioxane-2-carboxamide and 2R-1,4-benzodioxane-2-carboxylic acid in high yields with excellent enantioselectivity.

  5. Three closely related dibenzazepine carboxylic acids: hydrogen-bonded aggregation in one, two and three dimensions.

    Science.gov (United States)

    Sanabría, Carlos M; Palma, Alirio; Cobo, Justo; Glidewell, Christopher

    2014-03-01

    In the structure of (6R*,11R*)-5-acetyl-11-ethyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxylic acid, C19H19NO3, (I), the molecules are linked into sheets by a combination of O-H...O and C-H...O hydrogen bonds; in the structure of the monomethyl analogue (6RS,11SR)-5-acetyl-11-ethyl-2-methyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxylic acid, C20H21NO3, (II), the molecules are linked into simple C(7) chains by O-H...O hydrogen bonds; and in the structure of the dimethyl analogue (6RS,11SR)-5-acetyl-11-ethyl-1,3-dimethyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxylic acid, C21H23NO3, (III), a combination of O-H...O, C-H...O and C-H...π(arene) hydrogen bonds links the molecules into a three-dimensional framework structure. None of these structures exhibits the R2(2)(8) dimer motif characteristic of simple carboxylic acids.

  6. Preparation of mono- and diacetyl 4,4′-dimethylbiphenyl and their corresponding carboxylic acids

    DEFF Research Database (Denmark)

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.

    2007-01-01

    dimethylbiphenyls. In chloroalkane or carbon disulfide solvent, the yields of isomers were in the order: 2 -> 3-; in nitromethane 3-isomer predominated. On the other hand diacetylation of the hydrocarbon gave only the 2,3′-diacetyl isomer. The mono- and di-ketones are converted to the corresponding carboxylic acids...

  7. Identification of tetrahydro-beta-carboline-3-carboxylic acid in foodstuffs, human urine and human milk.

    Science.gov (United States)

    Adachi, J; Mizoi, Y; Naito, T; Ogawa, Y; Uetani, Y; Ninomiya, I

    1991-05-01

    1-Methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (MTCA) and 1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (TCCA), both precursors of mutagenic N-nitroso compounds (N-nitrosamines, 1-methyl-2-nitroso-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid and 2-nitroso-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid), were detected in various food-stuffs, urine from healthy human subjects and human milk. A purification procedure, involving a chemically-bonded material followed by HPLC combined with fluorometric detection, was used for the quantitative determination of these compounds, allowing the separation of two diastereoisomers of MTCA. An HPLC and mass spectrometry method was also developed for their identification. Comparing the concentration of MTCA and TCCA in fermented products and raw materials suggested that tetrahydro-beta-carbolines may have been produced through fermentation or by condensation of tryptophan and acetaldehyde formed from ethanol added as a food preservative. This is the first report of excretion of tetrahydro-beta-carbolines in human urine and human milk. A comparison of the concentrations of tetrahydro-beta-carbolines in urine from human infants and human milk indicates that tetrahydro-beta-carbolines may be synthesized endogenously in humans. A possible pathway of tryptophan metabolism in plants and animals is presented.

  8. Multilayer Film Fabrication and Photoelectric Conversion Property of Two Pyrrolidinofullerene Carboxylic Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two multilayer films of pyrrolidinofullerene carboxylic acid derivatives, which exhibit photoelectric conversion property, are reported here. The first monolayers were fabricated on hydrophilic indium-tin-oxide (ITO), quartz, and mica by esterification reaction. The multilayers were characterized by contact angle and UV spectrum. The photoelectric conversion properties of both multilayer films were studied.

  9. ANTI-CORROSION PROPERTIES OF CARBOXYLIC ACID IN WATER-GLYCOL SOLUTIONS

    Directory of Open Access Journals (Sweden)

    BASHKIRCEVA N.Y.

    2012-01-01

    Full Text Available Sodium salts of carboxylic acids were investigated to evaluate the corrosion properties of the water-glycol solutions. Corrosion tests were performed by methods of gravimetry and galvanostatic dissolution with metals used in cooling systems. The compositions of anticorrosion systems and their concentration that provide the most effective inhibition of metals were determined.

  10. Fluorescent derivatization of aromatic carboxylic acids with horseradish peroxidase in the presence of excess hydrogen peroxide.

    Science.gov (United States)

    Odo, Junichi; Inoguchi, Masahiko; Aoki, Hiroyuki; Sogawa, Yuto; Nishimura, Masahiro

    2015-01-01

    The fluorescent derivatization of aromatic carboxylic acids by the catalytic activity of horseradish peroxidase (HRP) in the presence of excess H2O2 was investigated. Four monocarboxylic acids, nine dicarboxylic acids, and two tricarboxylic acids, all of which are non- or weakly fluorescent, were effectively converted into fluorescent compounds using this new method. This technique was further developed for the fluorometric determination of trace amounts of terephthalic acid (3c) and lutidinic acid (2b), and linear calibration curves for concentrations between 2.5 and 20.0 nmol of terephthalic acid (3c) and 1.0 and 10.0 nmol of lutidinic acid (2b) were demonstrated. Compound III, an intermediate of HRP, played an essential role in this process. Additionally, lactoperoxidase and manganese peroxidase, peroxidases similar to HRP, showed successful fluorescent derivatization of nicotinic acid (1b), lutidinic acid (2b), and hemimellitic acid (4a) in the presence of excess H2O2.

  11. [Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography].

    Science.gov (United States)

    Ito, Kazuaki; Sakamoto, Jun; Nagaoka, Kazuya; Takayama, Yohichi; Kanahori, Takashi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2012-04-01

    The analysis of seven aliphatic carboxylic acids (formic, acetic, propionic, iso-butyric, n-butyric, iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid, perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection. The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column (TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column (TSKgel Super IC-A/C). Good separation was performed on the TSKgel SCX in shorter retention times. For the TSKgel Super IC-A/C, peak shape of the acids was sharp and symmetrical in spite of longer retention times. In addition, the mutual separation of the acids was good except for iso- and n-butyric acids. The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series), lower concentrations of PFBA and sulfuric acid as eluents, non-suppressed conductivity detection and UV detection at 210 nm. This analysis was applied to anaerobic digestion process waters. The chromatograms with conductivity detection were relatively simpler compared with those of UV detection. The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  12. CATALYTIC ESTERIFICATION OF CARBOXYLIC ACIDS WITH ALCOHOLS BY SULFO—POLYVINYL CHLORIDE

    Institute of Scientific and Technical Information of China (English)

    YuShanxin; ZHAOZongbao; 等

    1993-01-01

    Polyvinyl Chloride reacted with chlorosulfonic acid to from a polymer catalyst PVC-SO3H.This polymer catalyst was found to have high activity for resterification reaction between carboxylic acids and alcohols.This paper deals with the conditions in synthesis of n-butlyacetate catalyzed with PVC-SO3H.The PVC-SO3H was used as a catalyst for preparing 11 esters of acetic acid,propionic acid and butyric acid with the yields of 82-92%.

  13. 5,6-dihydroxyindole-2-carboxylic acid (DHICA): a First Principles Density-Functional Study

    CERN Document Server

    Powell, B J

    2016-01-01

    We report first principles density functional calculations for 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and several reduced forms. DHICA and 5,6-dihydroxyindole (DHI) are believed to be the basic building blocks of the eumelanins. Our results show that carboxylation has a significant effect on the physical properties of the molecules. In particular, the relative stabilities and the HOMO-LUMO gaps (calculated with the $\\Delta$SCF method) of the various redox forms are strongly affected. We predict that, in contrast to DHI, the density of unpaired electrons, and hence the ESR signal, in DHICA is negligibly small.

  14. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    Science.gov (United States)

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Design of co-crystals/salts of some Nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.

    Science.gov (United States)

    Jennifer, Samson Jegan; Muthiah, Packianathan Thomas

    2014-01-01

    The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The

  16. Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2016-09-01

    Full Text Available Cyclopentane carboxylic acid (CPCA is a model compound of Naphthenic acids (NAs. This objective of this paper is to discover total acid number (TAN reduction kinetics and pathways of the reaction between CAPA and subcritical methanol (SubC-MeOH. The experiments were carried out in an autoclave reactor at temperatures of 180-220°C, a methanol partial pressure (MPP of 3 MPa, reaction times of 0-30 min and CPCA initial gas phase concentrations of 0.016-0.04 g/mL. TAN content of the samples were analyzed using ASTM D 974 techniques. The reaction products were identified and quantified with the help of GC/MS and GC-FID respectively. Experimental results reveal that TAN removal kinetics followed first order kinetics with an activation energy of 13.97 kcal/mol and a pre-exponential factor of 174.21 s-1. Subcritical methanol is able to reduce TAN of CPCA decomposing CPCA into new compounds such as cyclopentane, formaldehyde, methyl acetate and 3-pentanol.

  17. Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in Arabidopsis leaves.

    Science.gov (United States)

    Finkemeier, Iris; König, Ann-Christine; Heard, William; Nunes-Nesi, Adriano; Pham, Phuong Anh; Leister, Dario; Fernie, Alisdair R; Sweetlove, Lee J

    2013-05-01

    The transcriptional response to metabolites is an important mechanism by which plants integrate information about cellular energy and nutrient status. Although some carboxylic acids have been implicated in the regulation of gene expression for select transcripts, it is unclear whether all carboxylic acids have the same effect, how many transcripts are affected, and how carboxylic acid signaling is integrated with other metabolite signals. In this study, we demonstrate that perturbations in cellular concentrations of citrate, and to a lesser extent malate, have a major impact on nucleus-encoded transcript abundance. Functional categories of transcripts that were targeted by both organic acids included photosynthesis, cell wall, biotic stress, and protein synthesis. Specific functional categories that were only regulated by citrate included tricarboxylic acid cycle, nitrogen metabolism, sulfur metabolism, and DNA synthesis. Further quantitative real-time polymerase chain reaction analysis of specific citrate-responsive transcripts demonstrated that the transcript response to citrate is time and concentration dependent and distinct from other organic acids and sugars. Feeding of isocitrate as well as the nonmetabolizable citrate analog tricarballylate revealed that the abundance of selected marker transcripts is responsive to citrate and not downstream metabolites. Interestingly, the transcriptome response to citrate feeding was most similar to those observed after biotic stress treatments and the gibberellin biosynthesis inhibitor paclobutrazol. Feeding of citrate to mutants with defects in plant hormone signaling pathways did not completely abolish the transcript response but hinted at a link with jasmonic acid and gibberellin signaling pathways. Our results suggest that changes in carboxylic acid abundances can be perceived and signaled in Arabidopsis (Arabidopsis thaliana) by as yet unknown signaling pathways.

  18. A novel application of horseradish peroxidase: Oxidation of alcohol ethoxylate to alkylether carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel application of horseradish peroxidase (HRP) in the oxidation of alcohol ethoxylate to alkylether carboxylie acid in the present of H2O2 was reported in this paper. We propose the mechanism for the catalytic oxidation reaction is that the hydrogen transfers from the substrate to the ferryl oxygen to form the a-hydroxy carbon radical intermediate. The reaction offers a new approach for further research structure and catalytic mechanism of HRP and production of alkylether carboxylic acid.

  19. Direct Electrosynthesis and Characterization of a New Soluble Polythiophene Derivative Containing Carboxyl Groups in Boron Trifluoride Diethyl Etherate

    Science.gov (United States)

    He, Yu; Guo, Wenjuan; Pei, Meishan; Zhang, Guangyou; Jiang, Junzi

    2012-09-01

    High-quality poly(3-thiophenemalonic acid) (P3TMA), a water-soluble polythiophene derivative, was successfully electrosynthesized in boron trifluoride diethyl etherate + 50% (by volume) trifluoroacetic acid at lower potential (0.1 V versus Pt). The carboxyl groups make P3TMA highly soluble in water, facilitating its potential application as a blue-light-emitting material. P3TMA film with conductivity of 16 S cm-1 obtained from this medium showed better redox activity and thermal stability. The structure and morphology of the polymer were studied by ultraviolet-visible, Fourier-transform infrared, and nuclear magnetic resonance spectroscopy and scanning electron microscopy, respectively. To the best of our knowledge, this is the first report on electrosynthesis of P3TMA film.

  20. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    Science.gov (United States)

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  1. Fluorescent carboxylic and phosphonic acids: comparative photophysics from solution to organic nanoparticles.

    Science.gov (United States)

    Faucon, Adrien; Lenk, Romaric; Hémez, Julie; Gautron, Eric; Jacquemin, Denis; Le Questel, Jean-Yves; Graton, Jérôme; Brosseau, Arnaud; Ishow, Eléna

    2013-08-14

    Phosphonic and carboxylic fluorescent nanoparticles have been fabricated by direct reprecipitation in water. Their fluorescence properties strongly differ from those of the corresponding esters where strong H-bonding formation is prohibited. Comparative experiments between the two acid derivatives, differing only in their acid functions while keeping the same alkyl chain, have evidenced the peculiar behavior of the phosphonic acid derivative compared to its carboxylic analog. A dramatic emission quenching for the phosphonic acid in aprotic toluene could be observed while a fivefold increase in the fluorescence signal was observed for molecules assembled as nanoparticles. Such properties have been attributed on the theoretical basis to the formation of folded conformers in solution, leading to deactivation of the radiative excited state through intramolecular H-bonding. These studies evidence for the first time through time-resolved fluorescence measurements the stronger H-donating character of phosphonic acids compared to the carboxylic ones, and provide information on the degree of structural heterogeneity within the nanoparticles. They should pave the way for the rational fabrication of chelating acid fluorophores, able to complex metal oxides to yield stiff hybrid magnetofluorescent nanoparticles which are attracting considerable attention in the growing fields of bimodal imaging and vectorization applications.

  2. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme.

    Science.gov (United States)

    Micanovic, R; Bailey, C A; Brink, L; Gerber, L; Pan, Y C; Hulmes, J D; Udenfriend, S

    1988-01-01

    A carboxyl-terminal chymotryptic peptide from mature human placental alkaline phosphatase was purified by HPLC and monitored by a specific RIA. Sequencing and amino acid assay showed that the carboxyl terminus of the peptide was aspartic acid, representing residue 484 of the proenzyme as deduced from the corresponding cDNA. Further analysis of the peptide showed it to be a peptidoglycan containing one residue of ethanolamine, one residue of glucosamine, and two residues of neutral hexose. The inositol glycan is apparently linked to the alpha carboxyl group of the aspartic acid through the ethanolamine. Location of the inositol glycan on Asp-484 of the proenzyme indicates that a 29-residue peptide is cleaved from the nascent protein during the post-translational condensation with the phosphatidylinositol-glycan. PMID:3422741

  3. Selenium carboxylic acids betaine; 3,3‧,3″-selenotris(propanoic acid) betaine, Se(CH2CH2COOH)2(CH2CH2COO)

    Science.gov (United States)

    Doudin, Khalid; Törnroos, Karl W.

    2017-06-01

    Attempts to prepare [Se(CH2CH2COOH)3]+Cl- from Se(CH2CH2COOH)2 and H2Cdbnd CHCOOH in concentrated hydrochloric acid, for the corresponding sulfonium salt, led exclusively to the Se-betaine, Se(CH2CH2COOH)2(CH2CH2COO). The Se-betaine crystallises in the space group P2l/c with the cell dimensions at 223 K, a = 5.5717(1), b = 24.6358(4), c = 8.4361(1) Å, β = 104.762(1)°, V = 1119.74(3) Å3, Z = 4, Dcalc = 1.763 Mgm- 3, μ = 3.364 Mm-1. The structure refined to RI = 0.0223 for 2801 reflections with Fo > 4σ(Fo). In the crystalline state the molecule is intermolecularly linked to neighbouring molecules by a number of hydrogen bonds; a very strong carboxylic-carboxylate bond with an O⋯O distance of 2.4435(16) Å, a medium strong carboxylic-carboxylate bond with an O⋯O distance of 2.6431(16) Å and several weak O⋯H(CH2) with O⋯C distances between 3.2 and 3.3 Å. In the carboxylic group involved in the very strong hydrogen bond the O⋯H bond is antiperiplanar to the Cdbnd O bond while the Osbnd H bond is periplanar to the Cdbnd O bond in the second carboxylic group. Based upon the Csbnd O bond lengths and the elongation of the Osbnd H bond involved in the strong hydrogen bond one may describe the compound as strongly linked units of Se(CH2CH2COOH)(CH2CH2COO)2 rather than Se(CH2CH2COOH)2(CH2CH2COO). The selenium atom forms two strong intramolecular 1,5-Se⋯O contacts, with a carboxylate oxygen atom, 2.9385(12) Å, and with a carboxylic oxygen atom, 2.8979(11) Å. To allow for these contacts the two organic fragments have been forced into the periplanar conformation. The molecule is only slightly asymmetric with regard to the Csbnd Sesbnd C bond angles but is very asymmetric with regard to the torsion angles.

  4. Lead detoxification activities and ADMET hepatotoxicities of a class of novel 5-(1-carbonyl-L-amino-acid)-2,2-dimethyl-[1,3]dithiolane-4-carboxylic acids.

    Science.gov (United States)

    Xu, Yanxia; Wang, Yuji; Zhao, Ming; Hou, Baoguang; Peng, Li; Zheng, Meiqing; Wu, Jianhui; Peng, Shiqi

    2011-03-15

    By linking the mercapto groups with isopropyl and introducing L-amino acid into the 5-carboxyl of DMSA a class of novel 5-(1-carbonyl-L-amino-acid)-2,2- dimethyl-[1,3]dithiolane-4-carboxylic acids were prepared. Their in vivo activities were evaluated on lead loaded mice at the dose of 0.4 mmol/kg. The results showed that the lead levels of the livers, kidneys, femurs and brains in particular could be efficiently decreased by 0.4 mmol/kg of 5-(1-carbonyl-L-amino-acid)-2,2-dimethyl-[1,3]dithiolane-4-carboxylic acids. The benefit of 5-(1-carbonyl-L-amino-acid)-2,2-dimethyl-[1,3]dithiolane-4-carboxylic acids to the detoxification of the brain lead was attributed to their transmembrane ability. Compared with the lead detoxification efficacy, they did not affect the essential metals such as Fe, Cu, Zn, and Ca of the treated mice. Silico molecular modeling predicted that 5-(1-carbonyl-L-amino-acid)-2,2-dimethyl-[1,3]dithiolane-4-carboxylic acids had no hepatotoxicity.

  5. Profiling of chiral and achiral carboxylic acid metabolomics: synthesis and evaluation of triazine-type chiral derivatization reagents for carboxylic acids by LC-ESI-MS/MS and the application to saliva of healthy volunteers and diabetic patients.

    Science.gov (United States)

    Takayama, Takahiro; Kuwabara, Tomohiro; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Inoue, Koichi; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa

    2015-01-01

    Novel triazine-type chiral derivatization reagents, i.e., (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine (DMT-3(S)-Apy) and (S)-4,6-dimethoxy-N-(pyrrolidin-3-yl)-1,3,5-triazin-2-amine (DMT-1(S)-Apy), were developed for the highly sensitive and selective detection of chiral carboxylic acids by UPLC-MS/MS analysis. Among the synthesized reagents, DMT-3(S)-Apy was a more efficient chiral reagent for the enantiomeric separation of chiral carboxylic acids in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The DMT-3(S)-Apy was used for the determination of 13 carboxylic acids in human saliva of healthy volunteers and diabetic patients. Various biological carboxylic acids including chiral carboxylic acids, and mono- and di-carboxylic acids were clearly identified in the saliva of healthy persons and diabetic patients. The concentrations of carboxylic acids detected in the saliva of diabetic patients were relatively higher than those in the healthy persons. Furthermore, the concentration of D-lactic acid (LA) and the ratio of D/L-LA in the diabetic patients were significantly higher than those in the healthy persons. The low ratio of D/L-LA in healthy persons was also identified to be independent of age and sex. These results suggest that the determination of the D/L-LA ratio in saliva might be applicable for the diagnosis of diabetes. Based on these observations, DMT-3(S)-Apy seems to be a useful chiral derivatization reagent for the determination not only of chiral carboxylic acids but also achiral ones. In conclusion, the proposed method using DMT-3(S)-Apy is useful for the carboxylic acid metabolomics study of various specimens.

  6. ANALYSIS OF AIRBORNE CARBOXYLIC ACIDS AND PHENOLS AS THEIR PENTAFLUOROBENZYL DERIVATIVES: GAS CHROMATOGRAPHY/ION TRAP MASS SPECTROMETRY WITH A NOVEL CHEMICAL IONIZATION REAGENT, PFBOH. (R826247)

    Science.gov (United States)

    The complex photochemical transformations of biogenichydrocarbons such as isoprene and of anthropogenichydrocarbons such as aromatics are an important sourceof carboxylic acids in the troposphere. Theidentificationof unknown carboxylic acids can be difficul...

  7. Diastereomeric complex of ( R/ S)-piperidine-3-carboxylic acid with (2 R,3 R)-tartaric acid: Structural, spectroscopic and computational studies

    Science.gov (United States)

    Bartoszak-Adamska, E.; Dega-Szafran, Z.; Jaskólski, M.; Szafran, M.

    2011-07-01

    2:2 Complex of ( R) and ( S)-piperidine-3-carboxylic acids (P3C) with (2 R,3 R) -tartaric acid (TA), 1, has been characterized by single-crystal X-ray analysis, FTIR and NMR spectroscopies, and by DFT calculations. The crystals of 1 are monoclinic, space group P2 1. The crystal structure is formed by two distinct P3CH +·TA - components, A and B, linked by an O-H⋯O hydrogen bond of 2.603(2) Å. The A and B components differ in the absolute configuration of the C(3) atom of P3CH +; ( S) in A and ( R) in B. The piperidinium-3-carboxylic acid and (2 R,3 R)-semi-tartrate anion moieties of the components A and B are linked by O-H⋯O hydrogen bonds of 2.517(1) and 2.535(1) Å, respectively. In A and B the piperidinium rings adopt the chair conformation with the carboxyl group in the equatorial position. The structures of the monomers of P3CH +·TA -, 3A and 3B, as well as of a dimer 2, have been optimized by the B3LYP/6-31G(d,p) approach. The chemical shift assignments were based on two-dimensional 1H- 1H and 1H- 13C experiments.

  8. Precision Morphology in Sulfonic, Phosphonic, Boronic, and Carboxylic Acid Polyolefins

    Science.gov (United States)

    2013-11-15

    Science Part A: Polymer Chemistry , (02 2011): 0. doi: 10.1002/pola.24491 Number of Papers published in peer-reviewed journals: (b) Papers published in...Wagener. Effects of Boron-Containing Lewis Acids on Olefin Metathesis, Organometallics , (05 2013): 0. doi: 10.1021/om400257b Michael D. Schulz, Rachel R...Ford, Kenneth B. Wagener. Insertion metathesis depolymerization, Polymer Chemistry , (05 2013): 0. doi: 10.1039/c3py00531c Pascale Atallah, Kenneth

  9. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 3 (FGE.10Rev3): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 63 flavouring substances in the Flavouring Group Evaluation 10, including additional two substances in this Revision 3, using the Procedure in Commission R...

  10. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 2 (FGE.10Rev2): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 61 flavouring substances in the Flavouring Group Evaluation 10, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the sub...

  11. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Science.gov (United States)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  12. Hydrogen bonding in cyclic imides and amide carboxylic acid derivatives from the facile reaction of cis-cyclohexane-1,2-carboxylic anhydride with o- and p-anisidine and m- and p-aminobenzoic acids.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2012-09-01

    The structures of the open-chain amide carboxylic acid rac-cis-2-[(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C(15)H(19)NO(4), (I), and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C(15)H(17)NO(3), (II), chiral cis-3-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl)benzoic acid, C(15)H(15)NO(4), (III), and rac-cis-4-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl)benzoic acid monohydrate, C(15)H(15)NO(4)·H(2)O, (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060 (1) Å for the amide O atom] and the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H···O hydrogen-bonding interactions [graph-set notation R(2)(2)(8)]. The cyclic imides (II)-(IV) are conformationally similar, with comparable benzene ring rotations about the imide N-C(ar) bond [dihedral angles between the benzene and isoindole rings = 51.55 (7)° in (II), 59.22 (12)° in (III) and 51.99 (14)° in (IV)]. Unlike (II), in which only weak intermolecular C-H···O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H···O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph-set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxy O-atom acceptors in a cyclic R(4)(4)(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural database for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.

  13. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  14. Do carboximide-carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics.

    Science.gov (United States)

    Kaur, Ramanpreet; Gautam, Raj; Cherukuvada, Suryanarayan; Guru Row, Tayur N

    2015-05-01

    Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular inter-actions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  15. Ground measurements of carboxylic acids during the ChArMEx field campaign using PTR-ToFMS

    Science.gov (United States)

    Dusanter, Sébastien; Sauvage, Stéphane; Locoge, Nadine; Michoud, Vincent; Touati, Nabil; Zhang, Shouwen; Riffault, Véronique

    2014-05-01

    Carboxylic acids are long-lived and persistent species that have been shown to be important for ambient acidity and secondary organic aerosol formation. Formic, acetic, and propionic acids are among the most abundant carboxylic acids in the troposphere. However, their atmospheric sources are poorly characterized due to limited measurement data. Techniques usually used to measure gas-phase concentrations of carboxylic acids suffer from low time resolution and the use of fast instruments would be of prime interest to apportion the contribution of anthropogenic and biogenic emissions, as well as photochemical processes to the carboxylic acid budget. A Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToFMS) was characterized for field measurements of n-carboxylic acids (C1-C4). Laboratory experiments were carried out to get insights into fragmentation patterns of parent (RCOOHH+) and acylium (RCO+) ions, sensitivities, and detection limits under various operating conditions. Carefully designed experiments were conducted to assess the impact of relative humidity on the sensitivity. Detection limits of 500, 90, 50 and 40 ppt were achieved for 10-min measurements of formic, acetic, propionic and butyric acids, respectively. This instrument was deployed for the first time during the 2013 ChArMEx intensive field campaign at a ground site in Cap Corsica and successfully measured concentrations of carboxylic acids from July 15th to August 5th. Elevated mixing ratios in the range 500-4000 ppt, 260-2500 ppt, and 50-500 ppt were observed for formic, acetic, and propionic acids, respectively. Mixing ratios of butyric acids were close to the detection limit. In this presentation, we will discuss the potential of carboxylic acid measurements by PTR-ToFMS in remote areas and we will provide a preliminary analysis of carboxylic acid sources in an area impacted by local biogenic emissions as well as aged anthropogenic air masses.

  16. Variations in the saturation magnetization of nanosized NiFe2O4 particles on adsorption of carboxylic acids

    Directory of Open Access Journals (Sweden)

    Ryo Kurosawa

    2014-03-01

    Full Text Available This work investigated magnetization changes in NiFe2O4 nanoparticles induced by the adsorption of a series of carboxylic acids. The application of formic acid resulted in a significant 8.6% decrease in the magnetization of NiFe2O4 nanoparticles at 18,000 Oe. With increasing carbon bond number in the saturated carboxylic acids, reductions in the magnetization of NiFe2O4 nanoparticles became around 4%. All unsaturated carboxylic acids produced approximately equivalent reductions in the magnetization, regardless of their double bond content. Based on these results, the observed NiFe2O4 magnetization changes appear to depend on either the polarity or the molecular size of the carboxylic acids and are believed to be caused by canting or pinning of spins in the vicinity of particle surfaces following adsorption of the acids.

  17. 40 CFR 180.426 - 2-[4,5-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 2- -3-quinoline carboxylic acid... Tolerances § 180.426 2- -3-quinoline carboxylic acid; tolerance for residues. A tolerance is established for residues of the herbicide 2- -3-quinoline carboxylic acid, in or on the raw agricultural commodity...

  18. Rapid and selective derivatizatin method for the nitrogen-sensitive detection of carboxylic acids in biological fluids prior to gas chromatographic analysis

    NARCIS (Netherlands)

    Lingeman, H.; Haan, H.B.P.; Hulshoff, A.

    1984-01-01

    A rapid and selective derivatization procedure is described for the pre-column labelling of carboxylic acids with a nitrogen-containing label. The carboxylic acid function is activated with 2-bromo-1-methylpyridinium iodide and the activated carboxylic acid function reacts with a primary or a second

  19. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  20. DETERMINATION OF CARBOXYLIC ACIDS BY ION-EXCLUSION CHROMATOGRAPHY WITH NON-SUPPRESSED CONDUCTIVITY AND OPTICAL DETECTORS

    Science.gov (United States)

    Determination of carboxylic acids using non-suppressed conductivity and UV detections is described. The background conductance of 1-octanesulfonic acid, hexane sulfonic acid and sulfuric acid at varying concentrations was determined. Using 0.2 mM 1-octanesulfonic acid as a mobile...

  1. Wettability modification of graphene oxide by removal of carboxyl functional groups using non-thermal effects of microwave

    Energy Technology Data Exchange (ETDEWEB)

    Rasuli, R., E-mail: r_rasuli@znu.ac.ir; Mokarian, Z.; Karimi, R.; Shabanzadeh, H.; Abedini, Y.

    2015-08-31

    We study the non-thermal effects of microwave on the wettability of graphene oxide. It is shown that removal of carboxyl compound by using the non-thermal microwave effects decrease the wettability of graphene oxide. X-ray photoelectron spectroscopy (C1s and O1s peaks) and Fourier transform infrared spectroscopy show that carboxyl compound decreases dramatically due to microwave irradiation while other functional groups were gradually reduced. Consequently, after 20 min microwave irradiation, carboxyl functional groups are removed. Wettability tests of carboxyl-reduced graphene oxide show that water uptake capability decreases to half and contact angle of water droplets increases from ~ 29.7° to ~ 69.9°. - Highlights: • Carboxyl compound is removed by using the non-thermal microwave effects after 20 min. • Water uptake capability decreases to half by removal of carboxyl functional groups. • Contact angle of water droplets increases from ~ 29.7° to ~ 69.9° in carboxyl-reduced graphene oxide.

  2. On the Formation of Benzoic Acid and Higher Order Benzene Carboxylic Acids in Interstellar Model Ices grains

    Science.gov (United States)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-11-01

    With a binary ice mixture of benzene (C6H6) and carbon dioxide (CO2) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta- and para-benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  3. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    Science.gov (United States)

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  4. ELECTROSTATIC INTERACTION HYBRIDS FROM WATER-BORNE CONDUCTIVE POLYANILINE AND INORGANIC PRECURSOR CONTAINING CARBOXYL GROUP

    Institute of Scientific and Technical Information of China (English)

    Jing Luo; Xian-hong Wang; Ji Li; Xiao-jiang Zhao; Fo-song Wang

    2007-01-01

    Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline(cPANI).The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film,showing remarkable conductivity stability against water soaking.Most strikingly,it displayed ideal electrochemical activity even in a solution with pH=14,which enlarged the conducting polyaniline application window to strong alkaline media.

  5. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids.

    Science.gov (United States)

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T

    2013-04-01

    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  6. Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High Performance Ion Exclusion Chromatography.

    Science.gov (United States)

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D

    2013-06-01

    An ion exclusion chromatography (IELC) comparison between a conventional ion exchange column and an ultra-high performance liquid chromatography (UHPLC) dynamically surfactant modified C18 column for the separation of an aliphatic carboxylic acid and two aromatic carboxylic acids is presented. Professional software is used to optimize the conventional IELC separation conditions for acetylsalicylic acid and the hydrolysis products: salicylic acid and acetic acid. Four different variables are simultaneously optimized including H2SO4 concentration, pH, flow rate, and sample injection volume. Thirty different runs are suggested by the software. The resolutions and the time of each run are calculated and feed back to the software to predict the optimum conditions. Derringer's desirability functions are used to evaluate the test conditions and those with the highest desirability value are utilized to separate acetylsalicylic acid, salicylic acid, and acetic acid. These conditions include using a 0.35 mM H2SO4 (pH 3.93) eluent at a flow rate of 1 mL min(-1) and an injection volume of 72 μL. To decrease the run time and improve the performance, a UHPLC C18 column is used after dynamic modification with sodium dodecyl sulfate. Using pure water as a mobile phase, a shorter analysis time and better resolution are achieved. In addition, the elution order is different from the IELC method which indicates the contribution of the reversed-phase mode to the separation mechanism.

  7. Direct bonding for dissimilar metals assisted by carboxylic acid vapor

    Science.gov (United States)

    Song, Jenn-Ming; Huang, Shang-Kun; Akaike, Masatake; Suga, Tadatomo

    2015-03-01

    This study developed a low-temperature low-vacuum direct bonding process for dissimilar metals via surface modification with formic acid vapor. Robust Cu/Ag and Cu/Zn bonding with a shear strength higher than 25 MPa can be achieved by thermal compression at 275 and 300 °C, respectively. CuZn5 and Cu5Zn8 formed at the interface of Cu/Zn joints, while no distinct interdiffusion layers appeared at the Cu/Ag interface. At elevated temperatures, the shear strength of Cu/Zn joints decreased significantly and turned to be weaker than Cu/Ag at 250 °C due to the softening of Zn. All the joints performed well subjected to thermal cycling up to 1000 times. However, compared with Cu/Ag joints with stable mechanical performance suffering aging at 250 °C, the shear strength of Cu/Zn degraded drastically up to 200 h, and after that it remained almost constant, which can be ascribed to the competitive growth between CuZn5 and Cu5Zn8, resulting in collapse and oxidation of CuZn5.

  8. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups.

    Science.gov (United States)

    Wang, Cong-Zhi; Lan, Jian-Hui; Wu, Qun-Yan; Luo, Qiong; Zhao, Yu-Liang; Wang, Xiang-Ke; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-09-15

    Recovery of uranium from seawater is extremely challenging but important for the persistent development of nuclear energy, and thus exploring the coordination structures and bonding nature of uranyl complexes becomes essential for designing highly efficient uranium adsorbents. In this work, the interactions of uranium and a series of adsorbents with various well-known functional groups including amidoximate (AO(-)), carboxyl (Ac(-)), glutarimidedioximate (HA(-)), and bifunctional AO(-)/Ac(-), HA(-)/Ac(-) on different alkyl chains (R'═CH3, R″═C13H26) were systematically studied by quantum chemical calculations. For all the uranyl complexes, the monodentate and η(2) coordination are the main binding modes for the AO(-) groups, while Ac(-) groups act as monodentate and bidentate ligands. Amidoximes can also form cyclic imide dioximes (H2A), which coordinate to UO2(2+) as tridentate ligands. Kinetic analysis of the model displacement reaction confirms the rate-determining step in the extraction process, that is, the complexing of uranyl by amidoxime group coupled with the dissociation of the carbonate group from the uranyl tricarbonate complex [UO2(CO3)3](4-). Complexing species with AO(-) groups show higher binding energies than the analogues with Ac(-) groups. However, the obtained uranyl complexes with Ac(-) seem to be more favorable according to reactions with [UO2(CO3)3](4-) as reactant, which may be due to the higher stability of HAO compared to HAc. This is also the reason that species with mixed functional group AO(-)/Ac(-) are more stable than those with monoligand. Thus, as reported in the literature, the adsorbability of uranium can be improved by the synergistic effects of amidoxime and carboxyl groups.

  9. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres

    DEFF Research Database (Denmark)

    Petersen, Jette G; Bergmann, Rikke; Krogsgaard-Larsen, Povl;

    2013-01-01

    selective and potent GABAAR agonists. This review investigates the use of heterocyclic carboxylic acid bioisosteres within the GABAAR area. Several heterocycles including 3-hydroxyisoxazole, 3-hydroxyisoxazoline, 3-hydroxyisothiazole, and the 1- and 3-hydroxypyrazole rings have been employed in order to map...... the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods...... for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology...

  10. C-6 aryl substituted 4-quinolone-3-carboxylic acids as inhibitors of hepatitis C virus.

    Science.gov (United States)

    Chen, Yue-Lei; Zacharias, Jeana; Vince, Robert; Geraghty, Robert J; Wang, Zhengqiang

    2012-08-01

    Quinolone-3-carboxylic acid represents a highly privileged chemotype in medicinal chemistry and has been extensively explored as antibiotics and antivirals targeting human immunodeficiency virus (HIV) integrase (IN). Herein we describe the synthesis and anti-hepatitis C virus (HCV) profile of a series of C-6 aryl substituted 4-quinlone-3-carboxylic acid analogues. Significant inhibition was observed with a few analogues at low micromolar range against HCV replicon in cell culture and a reduction in replicon RNA was confirmed through an RT-qPCR assay. Interestingly, evaluation of analogues as inhibitors of NS5B in a biochemical assay yielded only modest inhibitory activities, suggesting that a different mechanism of action could operate in cell culture.

  11. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  12. Carboxyl group (-CO2 H) functionalized coordination polymer nanoparticles as efficient platforms for drug delivery.

    Science.gov (United States)

    Novio, Fernando; Lorenzo, Julia; Nador, Fabiana; Wnuk, Karolina; Ruiz-Molina, Daniel

    2014-11-17

    Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added-value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well-known peptide coupling reactions. The set of chemistries that we employed as proof-of-concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF-7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5-fold and increases the drug retention within the cell.

  13. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Zhu, Quan-Fei; Zhang, Zheng; Liu, Ping; Zheng, Shu-Jian; Peng, Ke; Deng, Qian-Yun; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-08-19

    Fatty acids (FAs) are groups of liposoluble carboxylic acids (LCAs) and play important roles in various physiological processes. Abnormal contents or changes of FAs are associated with a series of diseases. Here we developed a strategy with stable isotope labeling combined with liquid chromatography-tandem mass spectrometry (IL-LC-MS) analysis for comprehensive profiling and relative quantitation of LCAs in human serum. In this strategy, a pair of isotope labeling reagents (2-dimethylaminoethylamine (DMED)) and d4-2-dimethylaminoethylamine (d4-DMED) were employed to selectively label carboxyl groups of LCAs. The DMED and d4-DMED labeled products can lose four characteristic neutral fragments of 45 and 49Da or 63 and 67Da in collision-induced dissociation. Therefore, quadruple neutral loss scan (QNLS) mode was established and used for non-targeted profiling of LCAs. The peak pairs of DMED and d4-DMED labeling with the same retention time, intensity and characteristic mass differences were extracted from the two NLS spectra respectively, and assigned as potential LCA candidates. Using this strategy, 241 LCA candidates were discovered in the human serum; 156 carboxylic acid compounds could be determined by searching HMDB and METLIN databases (FAs are over 90%) and 21 of these LCAs were successfully identified by standards. Subsequently, a modified pseudo-targeted method with multiple reaction monitoring (MRM) detection mode was developed and used for relative quantification of LCAs in human serum from type 2 diabetes mellitus (T2DM) patients and healthy controls. As a result, 81 LCAs were found to have significant difference between T2DM patients and healthy controls. Taken together, the isotope labeling combined with tandem mass spectrometry analysis demonstrated to be a powerful strategy for identification and quantification of LCA compounds in serum samples.

  14. Wind tunnel investigations on the retention of carboxylic acids during riming

    Science.gov (United States)

    Jost, Alexander; Szakáll, Miklós; Diehl, Karoline; Mitra, Subir K.; Borrmann, Stephan

    2015-04-01

    In mid-latitudes, precipitation is mainly initiated via the ice phase in mixed phase clouds. In such clouds the ice particles grow to precipitation sizes at the expense of liquid drops through riming which means that supercooled droplets collide with ice particles and subsequently freeze. Water-soluble trace substances present in the liquid phase might remain only fractionally in the ice phase after freezing. This fractionation is called retention and is an important ratio which quantifies the partitioning of atmospheric trace substances between the phases. Laboratory experiments were carried out at the Mainz vertical wind tunnel to determine the retention of lower mono- and di-carboxylic acids during riming. Due to their low molecular weight and their polarity these acids are water-soluble. In the atmosphere formic acid and acetic acid are the most abundant mono-carboxylic acids in the gas and aqueous phase, thus, they represent the major fraction of carboxylic acids in cloud water. Oxalic and malonic acid are common coatings on aerosol particles because of their relatively low saturation vapor pressure. These di-carboxylic acids might therefore promote the aerosol particles to act as cloud condensation nuclei and additionally contribute to the aqueous phase chemistry in cloud droplets. The conditions during the riming experiments in the wind tunnel were similar to those in atmospheric mixed phase clouds, i.e. temperatures from -18°C to -6 °C, liquid water contents between 0.5 and 1.5 g/m3, and liquid drop radii between 10 and 20 μm. The liquid phase concentrations ranged from 3 to 5 mg/l (4.1 water was analyzed by ion chromatography and the retention coefficients, i.e. the fractions of the species which remained in the ice phase were determined. Average retention coefficients of formic acid and acetic acid were 0.73 ± 0.07 and 0.62 ± 0.12, respectively; both oxalic and malonic acids had average retention coefficients of 0.98 ± 0.04. These variations can be

  15. Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides.

    Science.gov (United States)

    Starkov, Pavel; Sheppard, Tom D

    2011-03-07

    Simple borates serve as effective promoters for amide bond formation with a variety of carboxylic acids and amines. With trimethyl or tris(2,2,2-trifluoroethyl) borate, amides are obtained in good to excellent yield and high purity after a simple work-up procedure. Tris(2,2,2-trifluoroethyl) borate can also be used for the straightforward conversion of primary amides to secondary amides via transamidation.

  16. Silver-Catalyzed Decarboxylative Addition/Cyclization of Activated Alkenes with Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Xia, Xiao-Feng; Zhu, Su-Li; Chen, Chao; Wang, Haijun; Liang, Yong-Min

    2016-02-05

    A silver-catalyzed decarboxylative addition/aryl migration/desulfonylation of N-phenyl-N-(phenylsulfonyl)methacrylamide with primary, secondary, and tertiary carboxylic acids was described. The protocol provides an efficient approach for the synthesis of α-all-carbon quaternary stereocenters amides and isoquinolinediones. It was proposed that the radical generated from the silver-catalyzed decarboxylation was involved in the sequence reaction.

  17. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  18. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.

    Science.gov (United States)

    Pritchard, James; Filonenko, Georgy A; van Putten, Robbert; Hensen, Emiel J M; Pidko, Evgeny A

    2015-06-01

    The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic hydrogenation and highlight the bifunctional nature of the mechanism that is preferred for supported metal catalysts as well as homogeneous transition metal complexes.

  19. Stimulation of h efflux and inhibition of photosynthesis by esters of carboxylic acids.

    Science.gov (United States)

    Duhaime, D E; Bown, A W

    1983-11-01

    Suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used to investigate the influence of various carboxyester compounds on rates of net H(+) efflux in the dark or light and photosynthetic O(2) production. Addition of 0.15 to 1.5 millimolar malathion, alpha-naphthyl acetate, phenyl acetate, or p-nitrophenyl acetate stimulated H(+) efflux and inhibited photosynthesis within 1 minute. In contrast, the more polar esters methyl acetoacetate or ethyl p-aminobenzoate had little or no effect on either of these two processes. A 0.15 millimolar concentration of alpha-naphthylacetate stimulated the normal rate of H(+) efflux, 0.77 nanomoles H(+) per 10(6) cells per minute by 750% and inhibited photosynthesis by 100%. The four active carboxyester compounds also stimulated H(+) efflux after the normal rate of H(+) efflux was eliminated with 0.01 milligrams per milliliter oligomycin or 100% N(2). Oligomycin reduced the ATP level by 70%. Incubation of cells with malathion, alpha-naphthyl acetate, or p-nitrophenyl acetate resulted in the generation of the respective hydrolysis products ethanol, alpha-naphthol, and p-nitrophenol. It is proposed that inhibition of photosynthesis and stimulation of H(+) efflux result when nonpolar carboxyester compounds enter the cell and generate acidic carboxyl groups when hydrolyzed by esterase enzymes.

  20. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.

    Science.gov (United States)

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

    2014-01-01

    Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the

  1. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    Science.gov (United States)

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  2. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    Science.gov (United States)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  3. Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography

    Institute of Scientific and Technical Information of China (English)

    Kazuaki ITO; Kazuhiko TANAKA; Jun SAKAMOTO; Kazuya NAGAOKA; Yohichi TAKAYAMA; Takashi KANAHORI; Hiroshi SUNAHARA; Tsuneo HAYASHI; Shinji SATO; Takeshi HIROKAWA

    2012-01-01

    The analysis of seven aliphatic carboxylic acids ( formic,acetic,propionic,iso-butyric,n-butyric,iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid,perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection.The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column ( TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column ( TSKgel Super IC-A/C ).Good separation was performed on the TSKgel SCX in shorter retention times.For the TSKgel Super IC-A/C,peak shape of the acids was sharp and symmetrical in spite of longer retention times.In addition,the mutual separation of the acids was good except for iso- and n-butyric acids.The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series),lower concentrations of PFBA and sulfuric acid as eluents,non-suppressed conductivity detection and UV detection at 210 nm.This analysis was applied to anaerobic digestion process waters.The chromatograms with conductivity detection were relatively simpler compared with those of UV detection.The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  4. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Saikat; Wu, Kevin C.-W., E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemistry, National Central University, Chung-Li 32054, Taiwan (China)

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  5. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Directory of Open Access Journals (Sweden)

    Saikat Dutta

    2014-11-01

    Full Text Available This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs functionalized with carboxylic acid (–COOH group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  6. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain L-2-hydroxy acid oxidase.

    Science.gov (United States)

    Barawkar, Dinesh A; Bandyopadhyay, Anish; Deshpande, Anil; Koul, Summon; Kandalkar, Sachin; Patil, Pradeep; Khose, Goraksha; Vyas, Samir; Mone, Mahesh; Bhosale, Shubhangi; Singh, Umesh; De, Siddhartha; Meru, Ashwin; Gundu, Jayasagar; Chugh, Anita; Palle, Venkata P; Mookhtiar, Kasim A; Vacca, Joseph P; Chakravarty, Prasun K; Nargund, Ravi P; Wright, Samuel D; Roy, Sophie; Graziano, Michael P; Cully, Doris; Cai, Tian-Quan; Singh, Sheo B

    2012-07-01

    Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.

  7. In Vitro Reactivity of Carboxylic Acid-CoA Thioesters with Glutathione

    DEFF Research Database (Denmark)

    Sidenius, Ulrik; Skonberg, Christian; Olsen, Jørgen

    2004-01-01

    was to investigate whether a correlation could be found between the structure of acyl-CoA thioesters and their reactivities toward the tripeptide, glutathione (ç- Glu-Cys-Gly).  The  acyl-CoA  thioesters  of  eight  carboxylic  acids  (ibuprofen,  clofibric  acid, indomethacin,  fenbufen,  tolmetin,  salicylic  acid......The chemical reactivity of acyl-CoA thioesters toward nucleophiles has been demonstrated in several recent studies. Thus, intracellularly formed acyl-CoAs of xenobiotic carboxylic acids may react covalently with endogenous proteins and potentially lead to adverse effects. The purpose of this study......,  2-phenoxypropionic  acid,  and  (4-chloro-2-methyl-phenoxy)acetic  acid  (MCPA))  were  synthesized,  and  each  acyl-CoA  (0.5  mM)  was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl...

  8. Using the Chiral Organophosphorus Derivatizing Agents for Determination of the Enantiomeric Composition of Chiral Carboxylic Acids by 31PNMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN

    2004-01-01

    The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.

  9. From linden flower to linden honey. Part 2: Glycosidic precursors of cyclohexa-1,3-diene-1-carboxylic acids.

    Science.gov (United States)

    Frérot, Eric; Velluz, Alain; Decorzant, Erik; Naef, Regula

    2006-01-01

    The presence of two unusual, recently identified terpene acids, i.e., 4-(1-hydroxy-1-methylethyl)cyclohexa-1,3-diene-1-carboxylic acid (1) and 4-(1-methylethenyl)cyclohexa-1,3-diene-1-carboxylic acid (2), was now also confirmed in (Swiss) linden honey, after solid-phase extraction and HPLC purification. NMR Spectroscopy, in combination with UPLC/MS analysis, showed the presence of several glycosides of 1, which accounted for ca. 0.6 weight-% of the honey, as quantified by UPLC-UV. The major 'glycoside' of 1, compound 5, could be isolated and identified by 2D-NMR experiments as the corresponding beta-gentiobiosyl ester (rather than the classical compound with a glycosidic bond between an aglycone OH group and the sugar). The same diglycosides found in linden honey were also detected in linden nectar; also, chestnut and fir honeys contained these glycosides in minor quantities, but not colza, acacia, or dandelion honeys (Table 2).

  10. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.

    Science.gov (United States)

    Yu, Yang; Murthy, Bandaru N; Shapter, Joseph G; Constantopoulos, Kristina T; Voelcker, Nicolas H; Ellis, Amanda V

    2013-09-15

    Graphene oxide (GO) nanosheets were grafted to acid-treated natural clinoptilolite-rich zeolite powders followed by a coupling reaction with a diazonium salt (4-carboxybenzenediazoniumtetrafluoroborate) to the GO surface. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) revealed successful grafting of GO nanosheets onto the zeolite surface. The application of the adsorbents for the adsorption of rhodamine B from aqueous solutions was then demonstrated. After reaching adsorption equilibrium the maximum adsorption capacities were shown to be 50.25, 55.56 and 67.56 mg g(-1) for pristine natural zeolite, GO grafted zeolite (GO-zeolite) and benzene carboxylic acid derivatized GO-zeolite powders, respectively. The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. Further, a relationship between surface functional groups, pH and adsorption efficiency was established. Results indicate that benzene carboxylic acid derivatized GO-zeolite powders are environmentally favorable adsorbents for the removal of cationic dyes from aqueous solutions.

  11. Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals

    Science.gov (United States)

    Freund, F.; Gupta, A. D.; Kumar, D.

    1999-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  12. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  13. The Analysis of 2-amino-2-thiazoline-4-carboxylic Acid in the Plasma of Smokers and Non-Smokers

    Science.gov (United States)

    2009-01-01

    formation of thiocyanate occurs when cyanide reacts with a sulfane sulfur donor (Isom and Baskin 1997), predominantly thiosulfate. This formation ...of cyanide exposure is to analyze biological matricies for 2-amino- thiazoline-4-carboxylic acid (ATCA). The formation of ATCA from cyanide, as...Borowitz et al. 2001). When cyanide reacts with cystine , ATCA or 2-iminothiazolidine-4-carboxylic acid (ITCA) is formed. These two tautomers, ATCA and

  14. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  15. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    Science.gov (United States)

    Meundaeng, Natthaya; Rujiwatra, Apinpus; Prior, Timothy J.

    2017-01-01

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu2+ coordination polymers with different dimensionality, namely, 1D [Cu2(5-tza)2(1,10-phenanthroline)2(NO3)2] (1), 2D [Cu(5-tza)2(MeOH)2] (2), and 3D [Cu(5-tza)2]·H2O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza)2]·1.5H2O upon heat treatment for 2 h. This 2D network can adsorb water and convert to 3 upon exposure to air.

  16. Structural studies of aromatic carboxylic acids via computational chemistry and microwave spectroscopy

    Science.gov (United States)

    Godfrey, Peter D.; McNaughton, Don

    2013-01-01

    The structures of three simple aromatic carboxylic acids: benzoic, isophthalic, and terephthalic have been investigated using a combination of theoretical high-level quantum chemical calculations and experimental millimeter-wave Stark-modulated free-jet absorption spectroscopy. Rotational and centrifugal distortion constants have been measured for one conformer of each of the species and for its -COOD isotopologue, leading to the experimental determination of the coordinates of the carboxyl hydrogen atom. Consideration of the observed inertial defect is consistent with a planar equilibrium structure for each species. Calculated structures, relative energies, and electric dipole moments, using ab initio methods at the MP2/cc-pVTZ level, are reported for all the lower-energy conformers of each species. The theoretical calculations lead to the unambiguous identification of the conformers involved in the observed microwave spectra. The match between theoretical and spectroscopic measurements was used to gauge the reliability of the quantum chemical structure optimization calculations.

  17. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Bonaventure Gustavo

    2009-11-01

    Full Text Available Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA and small polar molecules (e.g., jasmonic acid (JA, salicylic acid (SA containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the

  18. A comprehensive evaluation of the toxicology of cigarette ingredients: aliphatic and aromatic carboxylic acids.

    Science.gov (United States)

    Coggins, Christopher R E; Liu, Jianmin; Merski, Jerome A; Werley, Michael S; Oldham, Michael J

    2011-06-01

    Aromatic and aliphatic carboxylic acids are present in tobacco and tobacco smoke. A battery of tests was used to compare the toxicity of mainstream smoke from experimental cigarettes containing eight aromatic and aliphatic carboxylic acids and the salt of one acid that were added individually at three different levels (lowest and highest target inclusions were 100 and 90,000 ppm, respectively). Mainstream smoke from cigarettes containing each of the test ingredients was evaluated using analytical chemistry and assays to measure in vitro cytotoxicity (neutral red uptake) and Salmonella (five strains) mutagenicity. For four of the compounds (citric, lactic, benzoic acids, and sodium benzoate), 90-day rodent inhalation studies were also performed. Although sporadic statistically significant differences in some experimental cigarette smoke constituents occurred, none resulted in significant changes in mutagenicity or cytotoxicity responses, nor in responses measured in the inhalation studies, except for lactic acid (LA). Inclusion of LA resulted in dose-dependent increase in water and caused a dose-dependent decrease in cytotoxicity. Incorporation of LA into cigarettes resulted in several dose-related reductions in histopathology, which were largely restricted to the nasal passages. Incorporation of LA also ameliorated some of the typical decrease in body weight gain seen in cigarette smoke-exposed rats. Inclusion of these ingredients at exaggerated use levels resulted in sporadic dose-related and treatment effects for some smoke constituents, but no toxicological response was noted in the in vitro and in vivo tests performed.

  19. Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer-Polymer Solar Cells as Solvent Additive.

    Science.gov (United States)

    Zhang, Yannan; Yuan, Jianyu; Sun, Jianxia; Ding, Guanqun; Han, Lu; Ling, Xufeng; Ma, Wanli

    2017-04-19

    We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

  20. Recovery of carboxylic acids at pH greater than pK{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Tung, L.A.

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pK{sub a} and regenerability depend on sorbent basicity; apparent pK{sub a} and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  1. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    Science.gov (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride.

  2. Formation of Carbonyl and Carboxyl Groups on Cellulosic Pulps: Effect on Alkali Resistance

    Directory of Open Access Journals (Sweden)

    Jordan Perrin

    2014-10-01

    Full Text Available Ozone bleaching generates carbonyl groups on the cellulose polymer when applied to unbleached kraft pulps. This suggests that pulp fully bleached with a totally chlorine-free (TCF sequence may contain more oxidized groups than standard elemental chlorine-free (ECF bleached pulp. A fully bleached pulp was treated with sodium hypochlorite to form oxidized groups (mostly carbonyls on the pure carbohydrates, which were investigated during subsequent alkaline treatment. Carbonyl groups had a strong impact on color development during alkaline treatment. Among the carbonyls, the keto groups were the most active. This was confirmed by the behavior of carbohydrate model compounds that contained aldehyde, keto, and/or carboxyl groups when subjected to alkaline conditions. A subsequent hydrogen peroxide (P stage effectively decreased the carbonyl content, which reduced yellowing during alkaline treatment. However, the oxidized cellulose was severely depolymerized. The addition of magnesium sulfate (Mg into the P stage minimized depolymerization while maintaining some of the carbonyls in the carbohydrates. It is proposed that Mg cations can hinder alkaline β-elimination, possibly by forming a complex with the carbonyl groups.

  3. Carboxylic acid functionalized ortho-linked oxacalix[2]benzene[2]pyrazine: synthesis, structure, hydrogen bond and metal directed self-assembly.

    Science.gov (United States)

    Kong, Ling-Wei; Ma, Ming-Liang; Wu, Liang-Chun; Zhao, Xiao-Li; Guo, Fang; Jiang, Biao; Wen, Ke

    2012-05-14

    Cyclooligomerization of 2,6-dichloropyrazine 4 and benzyl 2,3-dihydroxybenzoate 5 under microwave irradiation resulted in a racemic pair of ester functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 6, which was further transformed to the corresponding racemic carboxylic acid functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 3. Both enantiomers of 3 adopt 1,3-alternate conformations with their two carboxylic acid groups pointing to opposite directions in the solid state. Enantiomers of 3 form a step-like one-dimensional supramolecular polymer via intermolecular hydrogen bond interactions between the carboxylic acids for crystals obtained in methanol. No hydrogen bonds were formed between the carboxylic acids for crystals of 3 obtained in pyridine and aqueous guanidine solutions; instead, intermolecular hydrogen bonds between the carboxylic acid groups of 3 and pyridine, as well as guanidinium ions were formed. Under metal-mediated self-assembly conditions, the pyrazinyl nitrogen atoms in 3 interacted with transition metal ions, such as Ag(I), Cu(II) and Zn(II), and resulted in the formation of four new metal-containing supramolecular complexes. Metallomacrocycles 7, 8 and 9 were formed by reactions of 3 with Ag(I) or Cu(II) ions by bridging two ligands 3 in the equatorial region via M-N coordination bonds. A one-dimensional coordination polymer 10 was generated by reaction between ligand 3 and Zn(II) ions, and a cage-based structure is presented in 10 by bridging of the cyclophane units by Zn(2+) ions via Zn-N and Zn-O bonds.

  4. Selective and Efficient Oxidation of Aldehydes to Their Corresponding Carboxylic Acids Using H2O2/HC1 in the Presence of Hydroxylamine Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    BAHRAMI,Kiumars; KHODAEI,Mohammad Mehdi; KAMALI,Shahab

    2008-01-01

    A wide variety of aldehydes were efficiently converted to their corresponding carboxylic acids in high yields using H2O2/HC1 in the presence of hydroxylamine hydrochloride.In addition,selective oxidation of aldehydes in the presence of other functional groups such as hydroxyl group,carbon-carbon double bond and other heteroatoms can be considered a noteworthy advantage of this method.

  5. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    OpenAIRE

    Onciu, M.; Tanasa, F.; C. Chiriac

    2005-01-01

    Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP) and pyridine (Py) as bases and N-methyl-2-pyrolidinone (NMP) as solvent, at reflux (180-190°C) for 8-12 hours.

  6. Photoelectrochemical properties of WO{sub 3} nanoparticulate thin films prepared by carboxylic acid-assisted electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, W.L., E-mail: w.l.kwong@student.unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Nakaruk, A. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Koshy, P.; Sorrell, C.C. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2013-10-01

    Optimisation of particle sizes of WO{sub 3} films is important for photoelectrochemical applications. However, most of the developed size-controlled synthesis techniques involve complicated instruments or vacuum systems. The present work presents an alternative method using carboxylic acid-assisted electrodeposition where WO{sub 3} thin films were deposited from peroxotungstic acid (PTA) solution containing different carboxylic acids (formic, oxalic, citric). The effects of carboxylic acids on the electrodeposition and the resultant morphological, mineralogical, optical, and photoelectrochemical properties of the WO{sub 3} films were investigated. The analysis showed that the films consisted of equiaxed nanoparticulate monoclinic WO{sub 3}. The deposition thicknesses and the average grain (individual particle and agglomerate) sizes of the films were dependent on the amount of hydronium ions and the molecular weight and associated sizes of the conjugate bases released upon the dissociation of carboxylic acids in the PTA solutions, which result in hydrogen bond formation and molecular dispersion. The photocurrent densities of the films deposited with carboxylic acids were greater than that of the film deposited from pure PTA. These differences were attributed to improvements in (1) grain size, which controls photogenerated electron-hole transport, and (2) effective grain boundary area, which controls the numbers of active reaction sites and electron-hole recombination sites. - Highlights: • Carboxylic acid-assisted electrodeposition of WO{sub 3} films from peroxotungstic acid. • The types of carboxylic acids control the deposition rates and microstructure. • WO{sub 3} grain sizes and effective grain boundary areas determine the photocurrents. • Maximal photocurrent measured in the smallest-aggregate films (∼ 83 nm)

  7. Addition of omega-3 carboxylic acids to statin therapy in patients with persistent hypertriglyceridemia.

    Science.gov (United States)

    Davidson, Michael H; Phillips, Alyssa K; Kling, Douglas; Maki, Kevin C

    2014-09-01

    The incidence of hypertriglyceridemia has grown alongside that of obesity. Statin therapy has been widely recommended for the treatment of dyslipidemias. Omega-3 (OM3) fatty acid concentrates are commonly prescribed concurrently with statins in patients with persistent hypertriglyceridemia for additional lowering of triglyceride and non-HDL cholesterol. The bioavailability of currently available OM3 ethyl ester drugs is limited by their need for hydrolysis by pancreatic lipases, largely stimulated by dietary fat, prior to intestinal absorption. This review will discuss the chemistry, pharmacokinetics and clinical efficacy of a novel OM3 carboxylic acid drug that provides polyunsaturated docosahexaenoic and eicosapentaenoic acids in the free fatty acid form, which is readily absorbed by the intestine. This drug was approved in May 2014 as an adjunct to diet to reduce triglyceride levels in adults with severe (≥500 mg/dl) hypertriglyceridemia.

  8. 2-Pyridinyl Thermolabile Groups as General Protectants for Hydroxyl, Phosphate, and Carboxyl Functions.

    Science.gov (United States)

    Brzezinska, Jolanta; Witkowska, Agnieszka; Kaczyński, Tomasz P; Krygier, Dominika; Ratajczak, Tomasz; Chmielewski, Marcin K

    2017-03-02

    Application of 2-pyridinyl thermolabile protecting groups (2-PyTPGs) for protection of hydroxyl, phosphate, and carboxyl functions is presented in this unit. Their characteristic feature is a unique removal process following the intramolecular cyclization mechanism and induced only by temperature rise. Deprotection rate of 2-PyTPGs is dependent on certain parameters, such as solvent (aqueous or non-aqueous medium), pH values, and electron distribution in a pyridine ring. The presented approach pertains not only to protecting groups but also to an advanced system of controlling certain properties of 2-pyridinyl derivatives. We improved the "chemical switch" method, allowing us to regulate the protecting group stability by inversing the electron distribution in 2-PyTPG. Together with pH values manipulation, this allows us to regulate the protecting group stability. Moreover, phosphite cyclization to oxazaphospholidine provides a very stable but easily reversible tool for phosphate protection/modifications. For all TPGs we confirmed their utility in a system of protecting groups. This concept can contribute to designing the general protecting group that could be useful in bioorganic chemistry. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    Science.gov (United States)

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA.

  10. Theoretical Study of the Thermal Decomposition of Carboxylic Acids at Pyrolysis Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. M.; Robichaud, D. J.; Nimlos, M. R.

    2013-01-01

    Carboxylic acids are important in the processing of biomass into renewable fuels and chemicals. They are formed from the pretreatment and pyrolysis of hemicellulose biopolymers and are released from the decomposition of sugars. They result from the deconstruction of polyhydroxyalkanoates (bacterial carbon storage polymers) from fatty acids derived from algae, bacteria, and oil crops. The thermal deoxygenation of carboxylic acids is an important step in the conversion of biomass into aliphatic hydrocarbons suitable for use in renewable biofuels and as petrochemical replacements. Decarboxylation, a primary decomposition pathway under pyrolysis conditions, represents an ideal conversion process, because it eliminates two atoms of oxygen for every carbon atom removed. Problematically, additional deoxygenation processes exist (e.g. dehydration) that are in direct competition with decarboxylation and result in the formation of reactive and more fragmented end products. To better understand the competition between decarboxylation and other deoxygenation processes and to gain insight into possible catalysts that would favor decarboxylation, we have investigated the mechanisms and thermochemistry of the various unimolecular and bimolecular deoxygenation pathways for a family of C1-C4 organic acids using electronic structure calculations at the M06-2X/6-311++G(2df,p) level of theory.

  11. Tetrahydro-beta-carboline-3-carboxylic acids and contaminants of L-tryptophan.

    Science.gov (United States)

    Adachi, J; Asano, M; Ueno, Y

    2000-06-09

    Methods for the separation, identification, and quantitative assay of contaminants of L-tryptophan implicated in eosinophilia-myalgia syndrome (EMS) are described. Propylsulfonic acid (PRS), benzenesulfonic acid (SCX), and octyl-derivatized silica (C8) bonded-phase cartridges were used for the separation; LC-MS and GC-MS for identification; and HPLC-UV-fluorescence detection for quantitative analyses of norharman, harman, tetrahydro-beta-carboline-3-carboxylic acid (TCCA), 1-methyltetrahydro-beta-carboline-3-carboxylic acid (MTCA), 1,1'-ethylidenbis(tryptophan) (EBT), and 3-(phenylamino)alanine (PAA). The tissue distribution, excretion, and metabolism of these contaminants of L-tryptophan associated with EMS after acute and chronic dosage regimens are described. Considerable amounts of EBT were observed in the large intestine of rats administered EBT, showing a transfer without decomposition in gastric fluid. In addition, MTCA was detected in the blood and urine as well as the organs of rats treated with EBT, suggesting MTCA as a major metabolite of EBT. PAA accumulated markedly in the brain, among the organs of rats, after both acute and chronic administration of PAA, while MTCA accumulated in the kidneys of rats after chronic dosage of MTCA. Ethanol and/or acetaldehyde-induced formation of MTCA, as well as tryptophan-induced formation of TCCA, occurred endogenously in man and animals.

  12. Calixarene based chiral solvating agents for α-hydroxy carboxylic acids

    Science.gov (United States)

    Bozkurt, Selahattin

    2013-09-01

    Novel chiral calix[4]arene derivatives functionalized at the lower rim have been prepared from the reaction of p-tert-butylcalix[4]arene diamine derivative with N-Phthaloyl-L-phenylalanine or (2S)-2-((benzyloxy)carbonyl)amino)-3-hydroxypropanoic acid or (2S,3R)-2-((benzyloxy)carbonyl)amino-3-hydroxybutanoic acid in 63-81% yield. The structures of these receptors were characterized by FTIR, 1H, 13C and 2D COSY NMR spectroscopy. The enantioselective recognition of these receptors towards the enantiomers of racemic carboxylic acids was studied by 1H NMR spectroscopy. The molar ratios of the chiral compounds with each of the enantiomers of guests were determined by using Job plots. The Job plots indicate that the hosts form 1:2 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. NMR studies demonstrated that the receptors function as highly effective chiral shift reagents for determining the enantiomeric purity of a series of carboxylic acids.

  13. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid

    Science.gov (United States)

    Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu

    2017-01-01

    Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...

  14. A metal-free, one-pot method for the oxidative cleavage of internal aliphatic alkenes into carboxylic acids

    NARCIS (Netherlands)

    Spannring, P.; Bruijnincx, P.C.A.; Weckhuysen, B.M.; Klein Gebbink, R.J.M.

    2013-01-01

    The oxidative cleavage of terpenes and unsaturated fatty acids into carbonyl compounds is an industrially interesting reaction. We have developed a metal-free protocol that can oxidatively cleave unsaturated fatty acids, terpenes and a variety of other alkenes into carboxylic acids in a

  15. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes.

    Science.gov (United States)

    Harada, H; Toyoda, Y; Endo, T; Kobayashi, M

    2015-10-01

    Although chemical trapping has been widely used to evaluate cytochrome P450-mediated drug bioactivation, thus far, only a few in vitro-trapping studies have been performed on UDP-glucuronosyltransferase (UGT)-mediated drug bioactivation. In this study, we used cysteine (Cys) as trapping agent to gain new insights into the UGT-mediated bioactivation involving acyl glucuronides of carboxylic acid drugs. Diclofenac, ketoprofen and ibuprofen were incubated in human liver microsomes with UDPGA and Cys, followed by analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The N-acyl-Cys amide adduct of diclofenac was characterized by mass analysis and was detectable even in photodiode array analysis. Our data indicated that the formation of such adducts reflects the reactivity of the corresponding acyl glucuronides. In addition, it was suggested that the adduct formation requires an N-terminal Cys moiety with both a free amine and a free thiol group, from the results using various cysteine derivatives. We propose that the S-acyl-Cys thioester adduct can form via transacylation of an acyl glucuronide and can then form to an N-acyl-Cys amide adduct through intramolecular S- to N-acyl rearrangement. This series of the reactions has important implications as a possible bioactivation mechanism for covalent binding of carboxylic acid drugs to macromolecules.

  16. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Directory of Open Access Journals (Sweden)

    Kashan eAhmed

    2011-10-01

    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  17. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling

    Directory of Open Access Journals (Sweden)

    Vázquez José

    2011-11-01

    Full Text Available Abstract Background Effects of organic acids on microbial fermentation are commonly tested in investigations about metabolic behaviour of bacteria. However, they typically provide only descriptive information without modelling the influence of acid concentrations on bacterial kinetics. Results We developed and applied a mathematical model (secondary model to capture the toxicological effects of those chemicals on kinetic parameters that define the growth of bacteria in batch cultures. Thus, dose-response kinetics were performed with different bacteria (Leuconostoc mesenteroides, Carnobacterium pisicola, Escherichia coli, Bacillus subtilis and Listonella anguillarum exposed at increasing concentrations of individual carboxylic acids (formic, acetic, propionic, butyric and lactic. In all bioassays the acids affected the maximum bacterial load (Xm and the maximum growth rate (vm but only in specific cases the lag phase (λ was modified. Significance of the parameters was always high and in all fermentations the toxicodynamic equation was statistically consistent and had good predictability. The differences between D and L-lactic acid effects were significant for the growth of E. coli, L. mesenteroides and C. piscicola. In addition, a global parameter (EC50,τ was used to compare toxic effects and provided a realistic characterization of antimicrobial agents using a single value. Conclusions The effect of several organic acids on the growth of different bacteria was accurately studied and perfectly characterized by a bivariate equation which combines the basis of dose-response theory with microbial growth kinetics (secondary model. The toxicity of carboxylic acids was lower with the increase of the molecular weight of these chemicals.

  18. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    Science.gov (United States)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  19. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    Science.gov (United States)

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the

  20. Extraction, purification, methylation and GC-MS analysis of short-chain carboxylic acids for metabolic flux analysis.

    Science.gov (United States)

    Tivendale, Nathan D; Jewett, Erin M; Hegeman, Adrian D; Cohen, Jerry D

    2016-08-15

    Dynamic metabolic flux analysis requires efficient and effective methods for extraction, purification and analysis of a plethora of naturally-occurring compounds. One area of metabolism that would be highly informative to study using metabolic flux analysis is the tricarboxylic acid (TCA) cycle, which consists of short-chain carboxylic acids. Here, we describe a newly-developed method for extraction, purification, derivatization and analysis of short-chain carboxylic acids involved in the TCA cycle. The method consists of snap-freezing the plant material, followed by maceration and a 12-15h extraction at -80 °C. The extracts are then subject to reduction (to stabilize β-keto acids), purified by strong anion exchange solid phase extraction and methylated with methanolic HCl. This method could also be readily adapted to quantify many other short-chain carboxylic acids.

  1. Anomalous spin polarization in the photoreduction of chromone-2-carboxylic acid with alcohol induced by hydrochloric acid

    Science.gov (United States)

    Ohara, Keishi; Mukai, Kazuo

    2000-02-01

    The addition effect of hydrochloric acid (HCl) on the photoreduction of chromone-2-carboxylic acid (CRCA) is studied by time-resolved EPR. The EPR lines of CRCA ketyl radical show an enhanced absorption in the presence of HCl, while without HCl these show an emissive character. On the other hand, the lines of the CRCA alkyl type radical show an emissive character whether HCl is included or not. The simultaneous reactions of the closely-lying two excited triplet states (T 1 and T 2) of CRCA may induce the above anomalous CIDEP behavior.

  2. Dibromidobis(pyrazine-2-carboxylic acid-κN4mercury(II dihydrate

    Directory of Open Access Journals (Sweden)

    Guo-Wei Wang

    2008-01-01

    Full Text Available The asymmetric unit of the title compound, [HgBr2(C5H4N2O22]·2H2O, contains one half-molecule and one water molecule. The HgII ion, lying on a twofold rotation axis, is four-coordinated by two N atoms of pyrazine-2-carboxylic acid ligands and two bromide ions, forming a highly distorted tetrahedral geometry. In the crystal structure, intermolecular O—H...O and O—H...N hydrogen bonds link the molecules.

  3. catena-Poly[[bis(pyridine-3-carboxylic acid-κNmercury(II]-di-μ-chlorido

    Directory of Open Access Journals (Sweden)

    Sadif A. Shirvan

    2012-04-01

    Full Text Available In the title compound, [HgCl2(C6H5NO22]n, the HgII cation is located on an inversion center and is six-coordinated in a distorted octahedral geometry by two N atoms from two pyridine-3-carboxylic acid molecules and four bridging Cl− anions. The bridging function of the Cl− anions leads to polymeric chains running along the a axis. One Hg—Cl bond is much longer than the other. In the crystal, O—H...O and weak C—H...Cl hydrogen bonds are observed.

  4. Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates

    Directory of Open Access Journals (Sweden)

    José Segura

    2008-06-01

    Full Text Available Addition of carboxylic acid dianions appears to be a potential alternative to the use of aluminium enolates for nucleophilic ring opening of epoxides. These conditions require the use of a sub-stoichiometric amount of amine (10% mol for dianion generation and the previous activation of the epoxide with LiCl. Yields are good, with high regioselectivity, but the use of styrene oxide led, unexpectedly, to a mixture resulting from the attack on both the primary and secondary carbon atoms. Generally, a low diastereoselectivity is seen on attack at the primary center, however only one diastereoisomer was obtained from attack to the secondary carbon of the styrene oxide.

  5. Dielectric properties of supramolecular ionic structures obtained from multifunctional carboxylic acids and amines

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Yu, Liyun; Hvilsted, Søren;

    2014-01-01

    The dielectric properties of several supramolecular ionic polymers and networks, linked by the ammonium salts of hexamethylene diamine (HMDA), tris(2-aminoethyl)amine (TAEA), poly(propylene imine) (PPI) dendrimers and two short bis carboxymethyl ether-terminated poly(ethylene glycol)s (Di......), are investigated. Here the relative dielectric permittivities of the supramolecular ionic structures formed with the multifunctional carboxylic acids were lower than those from the supramolecular ionic structures formed with the two carboxymethyl ether-terminated poly(ethylene glycol)s....

  6. Self-assembly of indole-2-carboxylic acid at graphite and gold surfaces

    Science.gov (United States)

    De Marchi, Fabrizio; Cui, Daling; Lipton-Duffin, Josh; Santato, Clara; MacLeod, Jennifer M.; Rosei, Federico

    2015-03-01

    Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.

  7. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia

    Directory of Open Access Journals (Sweden)

    Benes LB

    2016-12-01

    Full Text Available Lane B Benes1, Nikhil S Bassi2, Michael H Davidson1 1Department of Medicine, Section of Cardiology, 2Department of Medicine, University of Chicago, Chicago, IL, USA Abstract: The 2013 American College of Cardiology/American Heart Association guidelines on cholesterol management placed greater emphasis on statin therapy given the well-established benefits in primary and secondary prevention of cardiovascular disease. Residual risk may remain after statin initiation, in part because of triglyceride-rich lipoprotein cholesterol. Several large trials have failed to show benefit with non-statin cholesterol-lowering medications in the reduction of cardiovascular events. Yet, subgroup analyses showed a benefit in those with hypertriglyceridemia and lower high-density lipoprotein cholesterol level, a high-risk pattern of dyslipidemia. This review discusses the benefits of omega-3 carboxylic acids, a recently approved formulation of omega-3 fatty acid with enhanced bioavailability, in the treatment of dyslipidemia both as monotherapy and combination therapy with a statin. Keywords: omega-3 carboxylic acids, non-HDL-C, hypertriglyceridemia, residual risk, statin

  8. Kinetic studies on the carboxylation of 6-amino-penicillanic acid to 8-hydroxy-penillic acid

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Holm, SS; Schipper, D.

    1997-01-01

    The carboxylation in aqueous solution of 6-amino-penicillanic acid (6-APA) to 8-hydroxy-penillic acid (8-HPA) was studied at 25 degrees C and pH 6.5. During sparging with either a citrate buffer or a chemically defined cultivation medium containing 6-APA with mixtures of carbon dioxide and air (2.......7-41% (v/v) CO2), the kinetics for conversion of 6-APA was followed by HPLC. In the citrate buffer 6-APA was converted by two competitive reactions each following first order kinetics with respect to the concentration of 6-APA: 1. carboxylation into 8-HPA; and 2. slow conversion into an unknown compound....... Formation of the unknown compound was not observed in the cultivation medium. The carboxylation of 6-APA was also found to be first order with respect to the concentration of dissolved carbon dioxide. The rate constant for formation of 8-HPA did not differ significantly in the cultivation medium compared...

  9. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun

    2016-06-01

    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  10. Fluorescence of complexes of Eu( Ⅱ ) with aromatic carboxylic acid-1, 1O-phenanthroline

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The 1, 10-phenanthroline-aromatic carboxylic acid (benzoic acid and o-phthalic acid) binary and ternary complexes of europium were synthesized. The fluorescence and FT-IR spectroscopy, elemental analysis, UV spectroscopic studies on these complexes were also performed. These complexes can emit strong red fluorescence of Eu( m ) excited by UV light. At the same excited wavelength, the fluorescence spectra of the complexes were also studied. The results indi cated that the fluorescence intensities of ternary complexes are stronger than that of binary complexes. The reason is that phenanthroline has higher electron density and higher orbit scope in the conjugated system and consequently an easier ener gy transfer to the europium ion, which makes the fluorescence intensity of ternary complexes be stronger than that of bi nary complexes.

  11. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?

    Science.gov (United States)

    Yamazaki, Eriko; Falandysz, Jerzy; Taniyasu, Sachi; Hui, Ge; Jurkiewicz, Gabriela; Yamashita, Nobuyoshi; Yang, Yong-Liang; Lam, Paul K S

    2016-01-01

    Perfluorinated surfactants and repellents are synthetic substances that have found numerous industrial and customer applications. Due to their persistence, at least two groups of these substances-perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs)-are diffused widely in the environment. It is hypothesized that the Tibetan Plateau, is one of few unique places on the Earth, due to its topography, specifically the vast space and high elevation above sea level, geographic location, climate, high solar radiation, lack of industry, little urbanization and general lack of significant direct sources of pollution. There it is believed possible to gain an insight into atmospheric fate (possible photochemical degradation of higher molecular mass and formation of lower molecular mass PFCAs and PFSAs) of PFASs under un-disturbed environmental conditions. Ultratrace analytical method for PFCAs and PFSAs and use of transportation and field blanks, laboratory blanks and isotopically labelled surrogates for recovery control has allowed the determination of nine perfluorinated carboxylic acids and six perfluorinated sulfonic acids at ultra-trace levels in water based samples from the alpine dimension regions of the Tibetan Plateau, the eastern slope of Minya Konka peak at the eastern edge of the Tibetan Plateau, and also from the city of Chengdu from the lowland of the Sichuan Province in China. The specific compositional pattern of PFCAs and PFSAs and low levels of pollution with those compounds were observed in the central region of the Tibetan Plateau and in the region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau. The fingerprint of the compositional pattern of PFCAs and PFSAs in water samples in the central region of the Tibetan Plateau and in the alpine region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau may be explained by the result of photochemical degradation with dealkylation of longer chain

  12. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2014-03-15

    The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons.

  13. Biomimetic Decarboxylation of Carboxylic Acids with PhI(OAc)2 Catalyzed by Manganese Porphyrin [Mn(TPP)OAcl

    Institute of Scientific and Technical Information of China (English)

    GHOLAM REZA Karimipour; ROXANA Ahmadpour

    2008-01-01

    Manganese(Ⅲ) meso-tetraphenylporphyrin acetate [Mn(TPP)OAc] served as an effective catalyst for the oxidative decarboxylation of carboxylic acids with (diacetoxyiodo)benzene [Phl(OAc)2] in CH2C12-H2O(95:5,volume ratio),The aryl substituted acetic acids are more reactive than the less electron rich linear carboxylic acids in the presence of catalyst Mn(TPP)OAc,In the former case,the formation of carbonyl products was complete within just a few minutes with >97% selectivities,and no further oxidation of the produced aldehydes was achieved under these catalytic conditions,This method provides a benign procedure owing to the utilization of low toxic(diacetoxyiodo)benzene,biologically relevant manganese porphyrins,and carboxylic acids.

  14. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  15. Carboxylic acid terminated, solution exfoliated graphite by organic acylation and its application in drug delivery

    Indian Academy of Sciences (India)

    KOUSHIK BHOWMIK; AMRITA CHAKRAVARTY; U MANJU; GOUTAM DE; ARNAB MUKHERJEE

    2016-09-01

    Graphite nanosheets are considered as a promising material for a range of applications from flexible electronics to functional nanodevices such as biosensors, intelligent coatings and drug delivery. Chemical functionalizationof graphite nanosheets with organic/inorganic materials offers an alternative approach to control the electronic properties of graphene, which is a zero band gap semiconductor in pristine form. In this paper, we report the aromatic electrophilic substitution of solution exfoliated graphite nanosheets (SEGn). The highly conjugated π-electronic system of graphite nanosheets enable it to have an amphiphilic characteristic in aromatic substitution reactions. The substitution was achieved through Friedel–Crafts (FC) acylation reaction under mild conditions using succinic anhydride as acylating agent and anhydrous aluminum chloride as Lewisacid. Such reaction renders towards the carboxylic acid terminated graphite nanosheets (SEGn–FC) that usually requires harsh reaction conditions. The product thus obtained was characterized using various spectroscopicand microscopic techniques. Highly stable water-dispersed sodium salt of carboxylic acid terminated graphite nanosheets (SEGn–FC-Na) was also prepared. A comparative sheet-resistance measurements of SEGn, SEGn–FC and SEGn–FC-Na were also done. Finally, the anticancer drug doxorubicin (DOX) was loaded on water dispersible SEGn–FC-Na with a loading capacity of 0.266 mg mg−1 of SEGn–FC-Na and the release of DOX from this water-soluble DOX-loaded SEGn–FC-Na at two different temperatures was found to be strongly pHdependent.

  16. Conformation Analysis and Comparison of Epristeride(17β-N-t-Butylcarboxamide-androst-3,5-diene-3-carboxylic Acid) and Its Analogs

    Institute of Scientific and Technical Information of China (English)

    YAO Li-xin

    2005-01-01

    Conformations of Epristeride(17-β-N-t-butylcarboxamide-androst-3,5-diene-3-carboxylic acid) and its analogs were analyzed with the random search method and compared by means of the methods for steroid conformers, Connolly surfaces, dihedral angles, and molecular accessibility probes with protons, hydroxyl and methyl groups contained simultaneously. Analog d is different from others, which is in accordance with the preliminary clinical trial results under double blind conditions.

  17. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  18. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  19. Self-assembly of carboxylic acid appended naphthalene diimide derivatives with tunable luminescent color and electrical conductivity.

    Science.gov (United States)

    Molla, Mijanur Rahaman; Gehrig, Dominik; Roy, Lisa; Kamm, Valentin; Paul, Ankan; Laquai, Frédéric; Ghosh, Suhrit

    2014-01-13

    Self-assembly of a series of carboxylic acid-functionalized naphthalene diimide (NDI) chromophores with a varying number (n=1-4) of methylene spacers between the NDI ring and the carboxylic acid group has been studied. The derivatives show pronounced aggregation due to the synergistic effects of H-bonding between the carboxylic acid groups in a syn-syn catemer motif and π stacking between the NDI chromophores. Solvent-dependent UV/Vis studies reveal the existence of monomeric dye molecules in a "good" solvent such as chloroform and self-assembly in "bad" solvents such as methylcyclohexane. The propensity of self-assembly is comparable for all samples. Temperature-dependent spectroscopic studies show high thermal stability of the H-bonding-mediated self-assembled structures. In the presence of a protic solvent such as MeOH, self-assembly can be suppressed, suggesting a decisive role of H-bonding, whereas π stacking is more a consequence of than a cause for self-assembly. Syn-syn catemer-type H-bonding is supported by powder XRD studies and the results corroborate well with DFT calculations. The morphology as determined by AFM is found to be dependent on the value of n; with increasing n, the morphology gradually shifts from 2D nanosheets to 1D nanofibers. Emission spectra show sharp emission bands with relatively small Stokes shifts. In addition, a rather broad emission band is observed at longer wavelengths because of the in situ formation of excimer-type species. Due to such a heterogeneous nature, the emission spectrum spans almost the entire red-green-blue region. Depending on the value of n, the ratio of intensities of the two emission bands is changed, which results in a tunable luminescent color. Furthermore, in the case of n=1 and 3, almost pure white light emission is observed. Time-resolved photoluminescence spectra show a very short lifetime (a few picoseconds) of monomeric dye molecules and biexponential decays with longer lifetimes (on the order

  20. Synthesis and structural characterization of organotin(IV complexes formed with [O,O] donor atoms of carboxylic acids

    Directory of Open Access Journals (Sweden)

    SAQIB ALI

    2008-02-01

    Full Text Available Organotin(IV carboxylates of the general formula RnSnL4-n (where R = Me, n-Bu or Ph, and L = alpha-phenyl-2,3-(methylenedioxycinnamate anion or 2-(2,3-dimethlylanilinonicotinate anion have been prepared. The mono-, di- and tri-organotin(IV carboxylates were synthesized by the reaction of organotin(IV oxides or hydroxides with a stoichiometric amount of the ligand acids at an elevated temperature in dry toluene. The composition of the synthesized organotin(IV complexes, the bonding behavior of the donor groups and structural assignments were studied by elemental analysis, FT-IR, 1H-, 13C-NMR and mass spectrometry. The spectral data suggest that the ligand acts in a bidentate manner, coordinating through the oxygen atoms. These spectroscopic techniques revealed a distorted tetrahedral geometry in the solution state for the tri-organotins, while a mean coordination number between five to six for the di-organotin(IV dicarboxylates. In the solid phase, the tri-organotins were essentially trigonal bipyramidal polymeric while the di-organotins were octahedral. However, mono-organotin tricarboxylates were predicted to exist in the octahedral state both in solution as well as in the solid phase.

  1. Conjugates of 1'-Aminoferrocene-1-carboxylic Acid and Proline: Synthesis, Conformational Analysis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Monika Kovačević

    2014-08-01

    Full Text Available Our previous studies showed that alteration of dipeptides Y-Fca-Ala-OMe (III into Y-Ala-Fca-OMe (IV (Y = Ac, Boc; Fca = 1'-aminoferrocene-1-carboxylic acid significantly influenced their conformational space. The novel bioconjugates Y-Fca-Pro-OMe (1, Y = Ac; 2, Y = Boc and Y-Pro-Fca-OMe (3, Y = Boc; 4, Y = Ac have been prepared in order to investigate the influence of proline, a well-known turn-inducer, on the conformational properties of small organometallic peptides with an exchanged constituent amino acid sequences. For this purpose, peptides 1–4 were subjected to detailed spectroscopic analysis (IR, NMR, CD spectroscopy in solution. The conformation of peptide 3 in the solid state was determined. Furthermore, the ability of the prepared conjugates to inhibit the growth of estrogen receptor-responsive MCF-7 mammary carcinoma cells and HeLa cervical carcinoma cells was tested.

  2. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia.

    Science.gov (United States)

    Benes, Lane B; Bassi, Nikhil S; Davidson, Michael H

    2016-01-01

    The 2013 American College of Cardiology/American Heart Association guidelines on cholesterol management placed greater emphasis on statin therapy given the well-established benefits in primary and secondary prevention of cardiovascular disease. Residual risk may remain after statin initiation, in part because of triglyceride-rich lipoprotein cholesterol. Several large trials have failed to show benefit with non-statin cholesterol-lowering medications in the reduction of cardiovascular events. Yet, subgroup analyses showed a benefit in those with hypertriglyceridemia and lower high-density lipoprotein cholesterol level, a high-risk pattern of dyslipidemia. This review discusses the benefits of omega-3 carboxylic acids, a recently approved formulation of omega-3 fatty acid with enhanced bioavailability, in the treatment of dyslipidemia both as monotherapy and combination therapy with a statin.

  3. Recommended Correlations for the Surface Tension of Aliphatic, Carboxylic, and Polyfunctional Organic Acids

    Science.gov (United States)

    Mulero, A.; Cachadiña, I.; Sanjuán, E. L.

    2016-09-01

    In previous papers, we have proposed specific correlations to reproduce the surface tension values for several sets of fluids and for wide ranges of temperatures. In this paper, we focus our attention on organic fatty (aliphatic, carboxylic, and polyfunctional) acids. We have taken into account the available data and values in the DIPPR and DETHERM databases and also Wohlfarth and Wohlfarth's (1997) book. In some cases we have also considered new data published elsewhere. All the data and values have been carefully filtered and subsequently fitted with the use of the model currently implemented in NIST's REFPROP program, calculating two or four adjustable coefficients for each fluid. As a result, we propose recommended correlations for 99 acids, providing mean absolute percentage deviations below 1.6% in all cases.

  4. Synthesis and anticancer evaluation of 2-phenyl thiaolidinone substituted 2-phenyl benzothiazole-6-carboxylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Padmavathi P. Prabhu

    2015-03-01

    Full Text Available A novel series of 2-(3-(4-oxo-2-substituted phenyl thiazolidin-3-ylphenylbenzo[d]thiazole-6-carboxylic acid derivatives PP1–PP8 were synthesized by various benzothiazole Schiff’s bases by reaction with thioglycollic acid. Their structures were established on the basis of IR, 1H-NMR, 13C-NMR, mass spectral data and elemental analysis. All the synthesized compounds were screened for their in vitro anticancer activity by 3-(4,5-dimethyl thiazole-2yl-2,5-diphenyltetrazoliumbromide (MTT assay on human cervical cancer cell line (HeLa cell lines. Among these compound PP2 exhibited most significant activity as compared with PP5, PP7 and PP8. However, the activity was less as compared to the standard drug Cisplatin.

  5. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  6. Facile Synthesis of N-Methylated Amino Acids from Chiral Aziridine-2-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jihye; Ha, Hyun-Joon [Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    Our recent success with the so-called N-methylative aziridine ring-opening reaction of nonactivated aziridines led us to the preparation of N-methylated amino acids. The nucleophilic ring-opening reaction of nonactivated aziridines requires the prerequisite of activation of aziridine as aziridinium ion, as shown in Scheme 1. We activate this nonactivated aziridine by methylation with methyltriflate to methylated aziridinium ion whose counterpart triflate anion is not nucleophilic enough to open the aziridine ring. The following external nucleophiles are applicable to the ringopening reaction, yielding N-methylated aziridine. In conclusion, we described an efficient preparation of Nmethylated α- and β-amino acids by N-methylative aziridine ring-opening reaction of aziridine-2-carboxylate and carboxamide with various nucleophiles.

  7. Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives

    Directory of Open Access Journals (Sweden)

    Lesyk R. B.

    2010-04-01

    Full Text Available The aim of present research was investigation of anticancer activity of 4-azolidinone-3-carboxylic acids derivatives, and studies of structure–activity relationships (SAR aspects. Methods. Organic synthesis; spectral methods; anticancer screening was performed according to the US NCI protocol (Developmental Therapeutic Program. Results. The data of new 4-thiazolidinone-3-alkanecarboxylic acids derivatives in vitro anticancer activity were described. The most active compounds which belong to 5-arylidene-2,4- thia(imidazolidinone-3-alkanecarboxylic acids; 5-aryl(heterylidenerhodanine-3-succinic acids derivatives were selected. Determination of some SAR aspects which allowed to determine directions in lead- compounds structure optimization, as well as desirable molecular fragments for design of potential anticancer agents based on 4-azolidinone scaffold were performed. 5-Arylidenehydantoin-3-acetic acids amides were identified as a new class of significant selective antileukemic agents. Possible pharmacophore scaffold of 5-ylidenerhodanine-3-succinic acids derivatives was suggested. Conclusions. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Some SAR aspects were determined and structure design directions were proposed.

  8. Influence of concentration and position of carboxyl groups on the electronic properties of single-walled carbon nanotubes.

    Science.gov (United States)

    Lara, Ivi Valentini; Zanella, Ivana; de Souza Filho, Antonio Gomes; Fagan, Solange Binotto

    2014-10-21

    The effects of attaching COOH groups at different sites and in various concentrations on electronic and structural properties of (8,0) single-walled carbon nanotubes (SWNT) were investigated using ab initio calculations. The binding energies and the charge transfers between the COOH functional groups and the tube were calculated for several configurations and a novel feature in the electronic structure of these groups was observed. The electronic character of these systems can be modulated by playing with the concentration and the position of the carboxyl groups bonded on the tube wall. The carboxyl groups bound to different carbon atom sub-lattices are more hybridized than those bound in the same one. These results suggested that SWNT-COOH systems are a playground for engineering electronic properties through a proper chemical functionalization which exploit both the attachment site and concentration of functional groups.

  9. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    OpenAIRE

    Bel, A.J.E. van

    1984-01-01

    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas the amino acid distribution resulted from both xylem and phloem import. Comparison of the distribution of inu and aib permitted a quantitative assessment of the xylem-to-phloem transfer in the stem...

  10. Synthesis and Crystal Structure of 1-H-Pyrrole-2-carboxylic Acid [2-(Naphthalen-1-ylamino)-ethyl]-amide

    Institute of Scientific and Technical Information of China (English)

    YIN Zhen-Ming; WANG Jian-Ying

    2006-01-01

    1-H-Pyrrole-2-carboxylic acid [2-(naphthalen-1-ylamino)-ethyl]-amide has been synthesized and characterized. Its crystal is of monoclinic, space group P21/n with a = 5.930(6), b =12.144(13), c = 20.10(2) (A),β = 95.709(17)°, V= 1441(3) (A), Z= 4, C17H17N3O, Mr= 279.34, Dc=1.288 g/cm3, F(000) = 592, μ(MoKα) = 0.083 mm-1, S = 1.019, R = 0.0473 and wR = 0.1181 for 1713 observed reflections with 1 > 2σ(Ⅰ). X-ray diffraction reveals that two molecules of the title compound form a dimer through a pair of N-H…O hydrogen bonds.

  11. Synthesis and Crystal Structure of 4-(4,6-dimethoxyl -pyrimidin-2-yl)-3-thiourea Carboxylic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen; MA Hai-Xia

    2006-01-01

    The title compound 4-(4,6-dimethoxylpyrimidin-2-yl)-3-thiourea carboxylic acid methyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamide at the room temperature. The structure was characterized by elemental analysis and IR and determined by X-ray diffraction analysis. Crystallographic data: C9H12N4O4S, Mr = 272.29, monoclinic, space group C2/m with a = 1.6672(3), b = 0.66383(12), c = 1.1617(2) nm, β = 109.275(2)°, V = 1.2136(4) nm3, Dc = 1.490 g/cm3, μ = 0.281 mm-1, F(000) = 568, Z = 4, R1 = 0.0341and wR2 = 0.1042.

  12. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids.

    Science.gov (United States)

    Kuo, Hsiou-Ting; Yang, Po-An; Wang, Wei-Ren; Hsu, Hao-Chun; Wu, Cheng-Hsun; Ting, Yu-Te; Weng, Ming-Huei; Kuo, Li-Hung; Cheng, Richard P

    2014-08-01

    The charge-containing hydrophilic functionalities of encoded charged amino acids are linked to the backbone via different numbers of hydrophobic methylenes, despite the apparent electrostatic nature of protein ion pairing interactions. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on ion pairing interactions, α-helical peptides containing Zbb-Xaa (i, i + 3), (i, i + 4) and (i, i + 5) (Zbb = carboxylate-containing residues Aad, Glu, Asp in decreasing length; Xaa = guanidinium residues Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by circular dichroism spectroscopy (CD). The helicity of Aad- and Glu-containing peptides was similar and mostly pH independent, whereas the helicity of Asp-containing peptides was mostly pH dependent. Furthermore, the Arg-containing peptides consistently exhibited higher helicity compared to the corresponding Agp-, Agb-, and Agh-containing peptides. Side chain conformational analysis by molecular mechanics calculations showed that the Zbb-Xaa (i, i + 3) and (i, i + 4) interactions mainly involved the χ 1 dihedral combinations (g+, g+) and (g-, g+), respectively. These low energy conformations were also observed in intrahelical Asp-Arg and Glu-Arg salt bridges of natural proteins. Accordingly, Asp and Glu provides variation in helix characteristics associated with Arg, but Aad does not provide features beyond those already delivered by Glu. Importantly, nature may have chosen the side chain length of Arg to support helical conformations through inherent high helix propensity coupled with stabilizing intrahelical ion pairing interactions with the carboxylate-containing residues.

  13. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Bukovinszkine-Kiss, G.; Loon, van J.J.A.; Takken, W.

    2009-01-01

    The role of aliphatic carboxylic acids in host-seeking response of the malaria mosquito Anopheles gambiae sensu stricto was examined both in a dual-choice olfactometer and with indoor traps. A basic attractive blend of ammonia + lactic acid served as internal standard odor. Single carboxylic acids w

  14. Influence of cyclic dimer formation on the phase behavior of carboxylic acids. II. Cross-associating systems.

    Science.gov (United States)

    Janeček, Jiří; Paricaud, Patrice

    2013-08-15

    The doubly bonded dimer association scheme (DBD) proposed by Sear and Jackson is extended to mixtures exhibiting both self- and cross-associations. The PC-SAFT equation of state is combined with the new DBD association contribution to describe the vapor-liquid equilibria of binary mixtures of carboxylic acids + associating compounds (water, alcohols, and carboxylic acids). The effect of doubly bonded dimers on the phase behavior in such systems is less important than in mixtures of carboxylic acids with nonassociating compounds, due to the cross-associations that compete with the formation of DBDs. Nevertheless, a clear improvement in the description of vapor-liquid coexistence curves is achieved over the classical 2B association model, particularly for the dew point curves.

  15. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  16. Microbiologically produced carboxylic acids used as building blocks in organic synthesis.

    Science.gov (United States)

    Aurich, Andreas; Specht, Robert; Müller, Roland A; Stottmeister, Ulrich; Yovkova, Venelina; Otto, Christina; Holz, Martina; Barth, Gerold; Heretsch, Philipp; Thomas, Franziska A; Sicker, Dieter; Giannis, Athanassios

    2012-01-01

    Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-D-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building

  17. Continuous-Flow Electrophilic Amination of Arenes and Schmidt Reaction of Carboxylic Acids Utilizing the Superacidic Trimethylsilyl Azide/Triflic Acid Reagent System.

    Science.gov (United States)

    Chen, Yuesu; Gutmann, Bernhard; Kappe, C Oliver

    2016-10-07

    A continuous flow protocol for the direct stoichiometric electrophilic amination of aromatic hydrocarbons and the Schmidt reaction of aromatic carboxylic acids using the superacidic trimethylsilyl azide/triflic acid system is described. Optimization of reagent stoichiometry, solvent, reaction time, and temperature led to an intensified protocol at elevated temperatures that allows the direct amination of arenes to be completed within 3 min at 90 °C. In order to improve the selectivity and scope of this direct amination protocol, aromatic carboxylic acids were additionally chosen as substrates. Selected carboxylic acids could be converted to their corresponding amine counterparts in good to excellent yields (11 examples, 55-83%) via a Schmidt reaction employing similar flow reaction conditions (acid intermediate, the corrosive nature of triflic acid, and the exothermic quenching were addressed by designing a suitable continuous flow reaction setup for both types of transformations.

  18. Abiotic Formation of Carboxylic Acids (RCOOH) in Interstellar and Solar System Model Ices

    Science.gov (United States)

    Kim, Y. S.; Kaiser, R. I.

    2010-12-01

    The present laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar and solar system model ices of carbon dioxide (CO2)-hydrocarbon mix C n H2n+2 (n = 1-6). The pristine model ices were irradiated at 10 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray particles. The chemical processing of the ices was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (carriers) and quantitative (rate constants and yields) information on the newly synthesized species. Carboxylic acids were identified to be the main carrier, together with carbon monoxide (CO) and a trace of formyl (HCO) and hydroxycarbonyl (HOCO) radicals at 10 K. The upper limit of acid column density at 10 K was estimated as much as (1.2 ± 0.1) × 1017 molecules cm-2 at doses of 17 ± 2 eV molecule-1, or the yield of 39% ± 4% from the initial column density of carbon dioxide. The temporal column density profiles of the products were then numerically fit using two independent kinetic schemes of reaction mechanisms. Finally, we transfer this laboratory simulation to star-forming regions of the interstellar medium, wherein cosmic-ray-induced processing of icy grains at temperatures as low as 10 K could contribute to the current level of chemical complexity as evidenced in astronomical observations and in extracts of carbonaceous meteorites.

  19. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2011-09-01

    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  20. Cobalt(II)-catalyzed 1,4-addition of organoboronic acids to activated alkenes: an application to highly cis-stereoselective synthesis of aminoindane carboxylic acid derivatives.

    Science.gov (United States)

    Chen, Min-Hsien; Mannathan, Subramaniyan; Lin, Pao-Shun; Cheng, Chien-Hong

    2012-11-19

    It all adds up: The 1,4-addition of organoboronic acids to activated alkenes catalyzed by [Co(dppe)Cl(2)] is described. A [3+2]-annulation reaction of ortho-iminoarylboronic acids with acrylates to give various aminoindane carboxylic acid derivatives with cis-stereoselectivity is also demonstrated (see scheme; dppe = 1,2-bis(diphenylphosphino)ethane).

  1. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    Directory of Open Access Journals (Sweden)

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  2. Thermoreversible hydrogels based on triblock copolymers of poly(ethylene glycol) and carboxyl functionalized poly(ε-caprolactone): The effect of carboxyl group substitution on the transition temperature and biocompatibility in plasma.

    Science.gov (United States)

    Safaei Nikouei, Nazila; Vakili, Mohammad Reza; Bahniuk, Markian S; Unsworth, Larry; Akbari, Ali; Wu, Jianping; Lavasanifar, Afsaneh

    2015-01-01

    In this study we report on the development, characterization and plasma protein interaction of novel thermoresponsive in situ hydrogels based on triblock copolymers of poly(ethylene glycol) (PEG) and poly(α-carboxyl-co-benzyl carboxylate)-ε-caprolactone (PCBCL) having two different degrees of carboxyl group substitution on the PCBCL block. Block copolymers were synthesized through ring-opening polymerization of α-benzyl carboxylate-ε-caprolactone by dihydroxy PEG, leading to the production of poly(α-benzyl carboxylate-ε-caprolactone)-PEG-poly(α-benzyl carboxylate-ε-caprolactone) (PBCL-PEG-PBCL). This was followed by partial debenzylation of PBCL blocks under controlled conditions, leading to the preparation of PCBCL-PEG-PCBCL triblock copolymers with 30 and 54mol.% carboxyl group substitution. Prepared PCBCL-PEG-PCBCL block copolymers have been shown to have a concentration-dependent sol to gel transition as a result of an increase in temperature above ∼29°C, as evidenced by the inverse flow method, differential scanning calorimetry and dynamic mechanical analysis. The sol-gel transition temperature/concentration and dynamic mechanical properties of the gel were found to be dependent on the level of carboxyl group substitution. Both hydrogels (30 and 54mol.% carboxyl group substitution) showed similar amounts of protein adsorption but striking differences in the profiles of the adsorbed proteome. Additionally, the two systems showed similarities in their clot formation kinetics but substantial differences in clot endpoints. The results show great promise for the above-mentioned thermoreversible in situ hydrogels as biocompatible materials for biomedical applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Conformational equilibria and large-amplitude motions in dimers of carboxylic acids: rotational spectrum of acetic acid-difluoroacetic acid.

    Science.gov (United States)

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Caminati, Walther

    2014-10-01

    We report the rotational spectra of two conformers of the acetic acid-difluoroacetic acid adduct (CH3COOH-CHF2COOH) and supply information on its internal dynamics. The two conformers differ from each other, depending on the trans or gauche orientation of the terminal -CHF2 group. Both conformers display splittings of the rotational transitions, due to the internal rotation of the methyl group of acetic acid. The corresponding barriers are determined to be V3(trans)=99.8(3) and V3(gauche)=90.5(9) cm(-1) (where V3 is the methyl rotation barrier height). The gauche form displays a further doubling of the rotational transitions, due to the tunneling motion of the -CHF2 group between its two equivalent conformations. The corresponding B2 barrier is estimated to be 108(2) cm(-1). The increase in the distance between the two monomers upon OH→OD deuteration (the Ubbelohde effect) is determined.

  4. Different carboxylic acid homodimers in self-assemblies of adducts of 3-carboxyphenoxyacetic acid with nitrogen containing compounds

    Indian Academy of Sciences (India)

    KRAPA SHANKAR; JUBARAJ B BARUAH

    2016-05-01

    Different hydrogen bonded dimeric motifs of 3-carboxyphenoxyacetic acid (H2cpa) observed inthe self-assemblies of salts or cocrystals of H2cpa with nitrogen containing compounds are discussed. Pyridiniumsalt of the H2cpa is a self-assembly of Hcpa with the pyridinium cation. The assembly is a combinationof sub-assemblies of two Hcp anions with two pyridinium cations, in which the Hcpa cations are interconnectedthrough carboxylate-carboxylic acid interactions. The cocrystals of H2cpa with isoquinoline or isonicotinamideare self-assemblies of hydrogen bonded dimers of H2cpa holding the respective guest molecule.However, the dimeric assemblies of H2cpa in these two cases are different from each other; the former cocrystalhas carbony-hydroxyl type interactions in it whereas the latter cocrystal has unconventional dimeric subassembliesof H2cpa with hydroxyl-hydroxyl type hydrogen bond interactions. The cocrystal of H2cpa withtheophylline has sub-assemblies of two H2cpa molecules interacting with two theophylline guest molecules,where the theophylline molecules are hydrogen bonded in two different ways.

  5. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2008-12-01

    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  6. Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet.

    Science.gov (United States)

    Numata, Jorge; Kowalczyk, Janine; Adolphs, Julian; Ehlers, Susan; Schafft, Helmut; Fuerst, Peter; Müller-Graf, Christine; Lahrssen-Wiederholt, Monika; Greiner, Matthias

    2014-07-16

    The transfer of a mixture of perfluoroalkyl acids (PFAAs) from contaminated feed into the edible tissues of 24 fattening pigs was investigated. Four perfluoroalkyl sulfonic (PFSAs) and three perfluoroalkyl carboxylic acids (PFCAs) were quantifiable in feed, plasma, edible tissues, and urine. As percentages of unexcreted PFAA, the substances accumulated in plasma (up to 51%), fat, and muscle tissues (collectively, meat 40-49%), liver (under 7%), and kidney (under 2%) for most substances. An exception was perfluorooctanesulfonic acid (PFOS), with lower affinity for plasma (23%) and higher for liver (35%). A toxicokinetic model is developed to quantify the absorption, distribution, and excretion of PFAAs and to calculate elimination half-lives. Perfluorohexanoic acid (PFHxA), a PFCA, had the shortest half-life at 4.1 days. PFSAs are eliminated more slowly (e.g., half-life of 634 days for PFOS). PFAAs in pigs exhibit longer elimination half-lives than in most organisms reported in the literature, but still shorter than in humans.

  7. Hemp oil ingestion causes positive urine tests for delta 9-tetrahydrocannabinol carboxylic acid.

    Science.gov (United States)

    Costantino, A; Schwartz, R H; Kaplan, P

    1997-10-01

    A hemp oil product (Hemp Liquid Gold) was purchased from a specialty food store. Fifteen milliliters was consumed by seven adult volunteers. Urine samples were taken from the subjects before ingestion and at 8, 24, and 48 h after the dose was taken. All specimens were screened by enzyme immunoassay with SYVA EMIT II THC 20, THC 50, and THC 100 kits. The tetrahydrocannabinol carboxylic acid (THCA) concentration was determined on all samples by gas chromatography-mass spectrometry (GC-MS) (5). A total of 18 postingestion samples were submitted. Fourteen of the samples screened above the 20-ng cutoff, seven were above the 50-ng cutoff, and two screened greater than the 100-ng cutoff. All of the postingestion samples showed the presence of THCA by GC-MS.

  8. SAR studies on carboxylic acid series M(1) selective positive allosteric modulators (PAMs).

    Science.gov (United States)

    Kuduk, Scott D; Beshore, Douglas C

    2014-01-01

    There is mounting evidence from preclinical and early proof-of-concept studies suggesting that selective modulation of the M1 muscarinic receptor is efficacious in cognitive models of Alzheimer's disease (AD). A number of nonselective M1 muscarinic agonists have previously shown positive effects on cognitive function in AD patients, but were limited due to cholinergic adverse events thought to be mediated by pan activation of the M2 to M5 sub-types. Thus, there is a need to identify selective activators of the M1 receptor to evaluate their potential in cognitive disorders. One strategy to confer selectivity for M1 is the identification of allosteric agonists or positive allosteric modulators, which would target an allosteric site on the M1 receptor rather than the highly conserved orthosteric acetylcholine binding site. BQCA has been identified as a highly selective carboxylic acid M1 PAM and this review focuses on an extensive lead optimization campaign undertaken on this compound.

  9. Application of L-thiazolidine-4-carboxylic acid monolayer in electrochemical determination of copper(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    L-Thiazolidine-4-carboxylic acid monolayer was prepared on gold electrodes through the self-assembly approach.Such novel thioether-based monolayer could efficiently preconcentrate Cu2+,which provided a simple,stable and reproducible method for the determination of Cu2+.The modified electrodes were stable enough to be continuously used for one week(more than 30 times regeneration) with lower than 10% decrease in the response.They retained their initial activity for more than one month if used once a day.The calibration curve was linear for Cu2+ from 0.6 to 158.8 μg L?1 with a detection limit of 0.38 μg L?1.The relative standard deviation was 3.2% for a series of six successive measurements.The proposed method was applied in the determination of Cu2+ in mineral water and human hair samples.

  10. Enhanced diastereoselectivity via confinement: photoisomerization of 2,3-diphenylcyclopropane-1-carboxylic acid derivatives within zeolites.

    Science.gov (United States)

    Sivaguru, J; Sunoj, Raghavan B; Wada, Takehiko; Origane, Yumi; Inoue, Yoshihisa; Ramamurthy, Vaidhyanathan

    2004-10-01

    From the perspective of asymmetric induction, the photochemistry of 24 chiral esters and amides of cis-2,3-diphenylcyclopropane-1-carboxylic acid from excited singlet and triplet states has been investigated within zeolites. The chiral auxiliaries placed at a remote location from the isomerization site functioned far better within a zeolite than in solution. Generally, chiral auxiliaries with an aromatic or a carbonyl substituent performed better than the ones containing only alkyl substituents. A model based on cation-binding-dependent flexibility of the chiral auxiliary accounts for the observed variation in de between aryl (and carbonyl) and alkyl chiral auxiliaries within zeolites. Cation-dependent diastereomer switch was also observed in select examples.

  11. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Jia-Hong Zhu

    2015-02-01

    Full Text Available Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7 of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment. These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production.

  12. Polymorphism in Self-Assembled Structures of 9-Anthracene Carboxylic Acid on Ag(111

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2012-06-01

    Full Text Available Surface self-assembly process of 9-anthracene carboxylic acid (AnCA on Ag(111 was investigated using STM. Depending on the molecular surface density, four spontaneously formed and one annealed AnCA ordered phases were observed, namely a straight belt phase, a zigzag double-belt phase, two simpler dimer phases, and a kagome phase. The two high-density belt phases possess large unit cells on the scale length of 10 nm, which are seldom observed in molecular self-assembled structures. This structural diversity stems from a complicated competition of different interactions of AnCA molecules on metal surface, including intermolecular and molecular-substrate interactions, as well as the steric demand from high molecular surface density.

  13. Determination of Trace Perfluoroalkyl Carboxylic Acids in Edible Crop Matrices: Matrix Effect and Method Development.

    Science.gov (United States)

    Xiang, Lei; Chen, Lei; Xiao, Tao; Mo, Ce-Hui; Li, Yan-Wen; Cai, Quan-Ying; Li, Hui; Zhou, Dong-Mei; Wong, Ming-Hung

    2017-10-04

    A robust method was developed for simultaneous determination of nine trace perfluoroalkyl carboxylic acids (PFCAs) in various edible crop matrices including cereal (grain), root vegetable (carrot), leafy vegetable (lettuce), and melon vegetable (pumpkin) using ultrasonic extraction followed by solid-phase extraction cleanup and high liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The varieties of extractants and cleanup cartridges, the usage of Supelclean graphitized carbon, and the matrix effect and its potential influencing factors were estimated to gain an optimal extraction procedure. The developed method presented high sensitivity and accuracy with the method detection limits and the recoveries at four fortification levels in various matrices ranging from 0.017 to 0.180 ng/g (dry weight) and from 70% to 114%, respectively. The successful application of the developed method to determine PFCAs in various crops sampled from several farms demonstrated its practicability for regular monitoring of PFCAs in real crops.

  14. Electrochemiluminescence Study of Europium (III Complex with Coumarin3-Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Stefan Lis

    2008-01-01

    Full Text Available The europium (III complex of coumarin-3-carboxylic acid (C3CA has been prepared and characterized on the basis of elemental analysis, IR, and emission (photoluminescence and electrochemiluminescence spectroscopy. The synthesised complex having a formula Eu(C3CA2(NO3(H2O2 was photophysically characterized in solution and in the solid state. Electrochemiluminescence, ECL, of the system containing the Eu(III/C3CA complex was studied using an oxide-covered aluminium electrode. The goal of these studies was to show the possibility of the use of electrochemical excitation of the Eu(III ion in aqueous solution for emission generation. The generated ECL emission was very weak, and therefore its measurements and spectral analysis were carried out with the use of cut-off filters method. The studies proved a predominate role of the ligand-to-metal energy transfer (LMET in the generated ECL.

  15. Omega-3 carboxylic acids (Epanova): a review of its use in patients with severe hypertriglyceridemia.

    Science.gov (United States)

    Blair, Hannah A; Dhillon, Sohita

    2014-10-01

    Omega-3 carboxylic acids (Epanova) [OM3-CA] is the first free fatty acid form of long-chain marine omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid being the most abundant) to be approved by the US FDA as an adjunct to diet to lower triglyceride levels in patients with severe hypertriglyceridemia (≥ 500 mg/dL). Oral OM3-CA has greater bioavailability than ethyl ester forms of omega-3 and, unlike omega-3 acid ethyl esters, does not require co-ingestion of a high-fat meal, as it does not need pancreatic enzyme activity for absorption. In the 12-week EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial, OM3-CA 2 or 4 g/day significantly reduced serum triglyceride levels relative to placebo. Other lipid parameters, including non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol, and very low-density lipoprotein cholesterol (VLDL-C) levels, were also reduced significantly with OM3-CA relative to placebo. Low-density lipoprotein cholesterol levels were increased significantly with OM3-CA relative to placebo; however, these increases were not accompanied by increases in the circulating concentrations of non-HDL-C, VLDL-C, or apolipoprotein B. OM3-CA was generally well tolerated in this study, with most adverse events being of mild or moderate severity. Although additional comparative data are needed to position OM3-CA with respect to other formulations of omega-3 fatty acids, current evidence suggests that OM3-CA is a useful addition to the treatment options available for patients with severe hypertriglyceridemia.

  16. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    Science.gov (United States)

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.

  17. Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands

    Science.gov (United States)

    Sullivan, Matthew R.; Sokkalingam, Punidha; Nguyen, Thong; Donahue, James P.; Gibb, Bruce C.

    2017-01-01

    In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests ( 3- 8) to two hosts ( 1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants ( K a ) covered five orders of magnitude, ranging from 56 M-1 for guest 6 binding with host 2 up to 7.43 × 106 M-1 for guest 6 binding to host 1.

  18. Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2

    KAUST Repository

    Poater, Albert

    2013-01-29

    The present study pretends to assign the correct multiplicity state to dinuclear copper complexes when interacting with free molecular oxygen. Recently, the formation of a bridge butterfly μ-η2: η2-peroxo dicopper core structure stabilized by the direct interaction of the counterion, a carboxylate group that allows the double bridge linking both metal-centre atoms, was characterized by crystallography. This system was assigned as a diradical singlet with Ms = 0. However, after new calculations it has turned out to be triplet (Ms = 1) despite the stabilization for this latter multiplicity state is not high. Here, the factors that contribute to make this structure display a multiplicity different with respect to the previously expected diradical singlet are described. In the present theoretical study, the roles of the αSp ligand constraints and the counterion are unravelled. On the other hand, the relative stability between the butterfly μ-η2: η2-peroxo structure and the isomeric bis(μ-oxo) species is also on discussion. Despite the relative stabilities of all these either structural or electronic isomeric species are supposed to depend on the computational method, which is a difficulty to reach a definite conclusion about the nature of the active species, all DFT methods using either pure or not pure DFT functionals here reach the same conclusion, favoring the triplet as the ground state for the butterfly μ-η2: η2-peroxo dicopper core structure, and the bis(μ-oxo) species when removing the benzoate counterion. © Springer-Verlag Berlin Heidelberg 2013.

  19. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    Science.gov (United States)

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-02

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities.

  20. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals.

  1. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte;

    2015-01-01

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal...... carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD...... and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate...

  2. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  3. Equilibrium studies of ternary systems containing some selected transition metal ions, triazoles and aromatic carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed Magdy; Radalla, Abd-Elatty; Qasem, Fatma; Khaled, Rehab [Beni-Suef University, Beni-Suef (Egypt)

    2014-01-15

    Solution equilibria of the binary and ternary complex systems of the divalent transition metal ions Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+} with 1,2,4-triazole (TRZ), 3-mercapto-1,2,4-triazole (TRZSH), and 3-amino-1,2,4-triazole (TRZAM) and aromatic carboxylic acids (phthalic, anthranilic, salicylic, and 5-sulfosalicylic acid) have been studied pH-metrically at (25.0±0.1) .deg. C, and a constant ionic strength I=1x10{sup -1} mol L{sup -1} NaNO{sub 3} in an aqueous medium. The potentiometric titration curves show that binary and ternary complexes of these ligands are formed in solution. The stability constants of the different binary and ternary complexes formed were calculated on the basis of computer analysis of the titration data. The relative stability of the different ternary complex species is expressed in terms of Δ log K values, log X and R. S.% parameters. The effect of temperature of the medium on both the proton-ligand equilibria for TRZAM and phthalic acid and their metal-ligand equilibria with Cu{sup 2+}, Ni{sup 2+}, and Co{sup 2+} has been studied along with the corresponding thermodynamic parameters. The complexation behavior of ternary complexes is ascertained using conductivity measurements. In addition, the formation of ternary complexes in solution has been confirmed by using UV-visible spectrophotometry.

  4. Syntheses, structures, and properties of multidimensional lithium coordination polymers based on aliphatic carboxylic acids.

    Science.gov (United States)

    Cheng, Pei-Chi; Lin, Wei-Cheng; Tseng, Feng-Shuen; Kao, Ching-Che; Chang, Ting-Guang; Senthil Raja, Duraisamy; Liu, Wei-Ren; Lin, Chia-Her

    2013-02-28

    Three lithium coordination polymers, [Li4(H2O)2(EDTA)] (1), [Li4(H2O)4(BTCA)] (2), and (H2NMe2)2[Li2(H2O)2(BTCA)] (3) (H4EDTA = ethylenediaminetetraacetic acid, H4BTCA = 1,2,3,4-butane tetracarboxylic acid, H2NMe2 = dimethyl amine), have been synthesized by reacting lithium salts with aliphatic carboxylic acids using a solvothermal method. The structures of all the three complexes have been determined by single crystal X-ray diffraction studies. The single crystal structure analysis revealed that complex 1 has a three-dimensional framework, whereas complex 2 has 2D sheets and complex 3 has 1D chains. In addition, these lithium complexes contain various inorganic motifs with a tetramer in 1 and 2, and discrete tetrahedra in 3 and have further been connected through organic ligands to construct multidimensional structures. Further, the electrochemical properties of complexes 1–3 have been studied to evaluate these compounds as electrode materials for lithium ion batteries with discharge capacities of around 100 mA h g(-1) in the first thirty cycles.

  5. Aliphatic carboxylic acids and alcohols as efficiency and elution strength enhancers in micellar liquid chromatography.

    Science.gov (United States)

    Boichenko, Alexander P; Berthod, Alain

    2010-09-03

    Micellar liquid chromatography (MLC) uses surfactant solutions as mobile phases with added organic additives to enhance both the elution strength and the chromatographic efficiency. Two aliphatic carboxylic acids (1-butanoic and 1-pentanoic) were used as MLC additives and compared with the two corresponding alcohols (1-butanol, 1-pentanol) in terms of elution strength, efficiency and selectivity. A set of 11 phenol derivatives was used as probe compounds. All micellar mobile phases were prepared with sodium dodecylsulfate (SDS) with concentration ranging from 0.05 to 0.15M and the modifier content within 1.0 and 5.0% (v/v). The elution strength of different mobile phases containing a constant amount of SDS and different amounts of modifiers; and mobile phases containing a constant amount of modifier and different SDS concentration were determined and discussed. The effect of the acid modifiers on efficiency was studied constructing van Deemter plots that showed no minimum within the 0.01-0.7mL/min flow rate range studied. Temperature effects were also studied constructing the classical van't Hoff plots. The slight curvature of the plots in the 25-70 degrees C range may indicate some modification of the surfactant-bonded moiety layer on the stationary phase surface. Since no definitive advantage of the use of aliphatic acids were established compared to their alcohol counterpart, their terrible smell will probably preclude their use as MLC organic modifiers.

  6. From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase.

    Science.gov (United States)

    Olmedo, Andrés; Aranda, Carmen; Del Río, José C; Kiebist, Jan; Scheibner, Katrin; Martínez, Angel T; Gutiérrez, Ana

    2016-09-26

    A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of (18) O from the cosubstrate H2 (18) O2 , demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.

  7. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Van Vunakis, H.; Freeman, D.S.; Gjika, H.B.

    1975-10-01

    Antibodies that bind an /sup 125/I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 10/sup 4/, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay.

  8. LIQUID-CHROMATOGRAPHIC ANALYSIS OF CARBOXYLIC-ACIDS USING N-(4-AMINOBUTYL)-N-ETHYLISOLUMINOL AS CHEMILUMINESCENT LABEL - DETERMINATION OF IBUPROFEN IN SALIVA

    NARCIS (Netherlands)

    STEIJGER, OM; LINGEMAN, H; BRINKMAN, UAT; HOLTHUIS, JJM; SMILDE, AK; DOORNBOS, DA

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for t

  9. Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes.

    Science.gov (United States)

    Wu, Xinxin; Meng, Chunna; Yuan, Xiaoqian; Jia, Xiaotong; Qian, Xuhong; Ye, Jinxing

    2015-07-28

    We report herein an efficient, general and green method for decarboxylative fluorination of aliphatic carboxylic acids. By using a transition-metal-free, organocatalytic photoredox system, the reaction of various aliphatic carboxylic acids with the Selectfluor reagent afforded the corresponding alkyl fluorides in satisfactory yields under visible light irradiation at room temperature.

  10. Novel chiral derivatization reagents possessing a pyridylthiourea structure for enantiospecific determination of amines and carboxylic acids in high-throughput liquid chromatography and electrospray-ionization mass spectrometry for chiral metabolomics identification.

    Science.gov (United States)

    Nagao, Ryuji; Tsutsui, Haruhito; Mochizuki, Toshiki; Takayama, Takahiro; Kuwabara, Tomohiro; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2013-06-28

    This paper reports the synthesis and the application of novel derivatization reagents possessing a pyridylthiourea structure for the enantiospecific determination of chiral amines and carboxylic acids in high-throughput LC-ESI-MS/MS. The novel reagents, i.e., (R)-N-(3-pyridylthiocarbamoyl)pyrrolidine-2-carboxylic acid (PyT-C) and (S)-3-amino-1-(3-pyridylthiocarbamoyl)pyrrolidine (PyT-N), were evaluated as chiral derivatization reagents for the enantiomeric determination of chiral amines and carboxylic acids, respectively, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The chiral amines and carboxylic acids were easily labeled with PyT-C and PyT-N, respectively, at 60°C in 60min in the presence of 2,2'-dipyridyl disulfide (DPDS) and triphenylphosphine (TPP) as the activation reagents. The resulting diastereomers were completely separated by reversed-phase chromatography using a small particle (1.7μm) ODS column (Rs=3.54-6.00 for carboxylic acids and Rs=3.07-4.75 for amines). A highly sensitive detection at the sub-fmol level was also obtained from the SRM chromatograms at a single monitoring ion, m/z 137.0 (0.72-1.46fmol for carboxylic acids and 0.55-1.89fmol for amines). The proposed procedure using PyT-C and PyT-N was applied to the determination of chiral amines and carboxylic acids spiked into human saliva, as a model study of chiral metabonomics identification. dl-Amino acid methyl esters and N-acetyl dl-amino acids, which are the representatives as the chiral amines and carboxylic acids, in the saliva were clearly identified by the present method. Because the same product ion at m/z 137.0 was obtained from collision-induced dissociation (CID) of protonated molecular ions of all the derivatives, the proposed procedure using both reagents (i.e., PyT-C and PyT-N) seems to be useful for chiral metabolomics identification having selected functional groups (i.e., amines and carboxylic acids).

  11. EFFECTS OF CARBOXYLIC ACIDS ON LIQUID-PHASE ADSORPTION OF ETHANOL AND WATER BY HIGH-SILICA ZSM-5

    Science.gov (United States)

    Adsorption isotherms were measured for each compound adsorbed on commercially available ZSM-5 (Si/Al = 140) powder from binary and ternary liquid mixtures of ethanol, carboxylic acids, and water at room temperature. The amounts adsorbed were measured using a recently developed t...

  12. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    Science.gov (United States)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  13. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong;

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...

  14. 7-(3-Chlorophenylamino-1-cyclopropyl-6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Ghassan F. Shattat

    2010-03-01

    Full Text Available 7-(3-Chlorophenylamino-1-cyclopropyl-6-fluoro-8-nitro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (2 was prepared and fully characterized by NMR, IR, and MS. Compound 2 exhibited good antibacterial activity against gram-positive standard and resistant strains.

  15. Anodic coupling of carboxylic acids to electron-rich double bonds: A surprising non-Kolbe pathway to lactones

    Directory of Open Access Journals (Sweden)

    Robert J. Perkins

    2013-08-01

    Full Text Available Carboxylic acids have been electro-oxidatively coupled to electron-rich olefins to form lactones. Kolbe decarboxylation does not appear to be a significant competing pathway. Experimental results indicate that oxidation occurs at the olefin and that the reaction proceeds through a radical cation intermediate.

  16. Selective preparation of terminal alkenes from aliphatic carboxylic acids by a palladium-catalysed decarbonylation-eliminiation reaction

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2010-01-01

    Trialkylamines were used as additives in the decarbonylation–elimination reaction catalysed by the combination of palladium(II) chloride and DPE-Phos. Aliphatic carboxylic acids were transformed at relatively low temperature into terminal alkenes in high yield and high selectivity, without the need

  17. Design, Synthesis and Anti-HIV Integrase Evaluation of 4-Oxo-4H-quinolizine-3-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Li-Ming Hu

    2009-02-01

    Full Text Available 4-Oxo-4H-quinolizine-3-carboxylic acid derivatives bearing sulfamido, carboxylamido, benzimidazole and benzothiazole substituents have been designed and synthesized. The structures of these new compounds were confirmed by 1H-NMR, 13C- NMR, IR and ESI (or HRMS spectra. Compounds were screened for possible HIV integrase inhibitory activity.

  18. “Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties

    Directory of Open Access Journals (Sweden)

    Raffaella Micillo

    2016-05-01

    Full Text Available Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI and 5,6-dihydroxyindole-2-carboxylic acid (DHICA, and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ and its 3-carboxylic acid (BTZCA. In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA absorption features, accounting for light-dependent reactive oxygen species (ROS production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.

  19. “Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties

    Science.gov (United States)

    Micillo, Raffaella; Panzella, Lucia; Koike, Kenzo; Monfrecola, Giuseppe; Napolitano, Alessandra; d’Ischia, Marco

    2016-01-01

    Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed. PMID:27196900

  20. Comparison of unimolecular decomposition pathways for carboxylic acids of relevance to biofuels.

    Science.gov (United States)

    Clark, Jared M; Nimlos, Mark R; Robichaud, David J

    2014-01-09

    Quantum mechanical molecular modeling is used [M06-2X/6-311++G(2df,p)] to compare activation energies and rate constants for unimolecular decomposition pathways of saturated and unsaturated carboxylic acids that are important in the production of biofuels and that are models for plant and algae-derived intermediates. Dehydration and decarboxylation reactions are considered. The barrier heights to decarboxylation and dehydration are similar in magnitude for saturated acids (∼71 kcal mol(-1)), with an approximate 1:1 [H2O]/[CO2] branching ratio over the temperature range studied (500-2000 K). α,β-Unsaturation lowers the barrier to decarboxylation between 2.2 and 12.2 kcal mol(-1) while increasing the barriers to dehydration by ∼3 kcal mol(-1). The branching ratio, as a result, is an order of magnitude smaller, [H2O]/[CO2] = 0.07. For some α,β-unsaturated acids, six-center transition states are available for dehydration, with barrier heights of ∼35.0 kcal mol(-1). The branching ratio for these acids can be as high as 370:1. β,γ-Unsaturation results in a small lowering in the barrier height to decarboxylation (∼70.0 kcal mol(-1)). β,γ-Unsaturation also leads to a lowering in the dehydration pathway from 1.7 to 5.1 kcal mol(-1). These results are discussed with respect to predicted kinetic values for acids of importance in biofuels production.

  1. Determination of pKa and Hydration Constants for a Series of α-Keto-Carboxylic Acids Using Nuclear Magnetic Resonance Spectrometry.

    Science.gov (United States)

    Lopalco, Antonio; Douglas, Justin; Denora, Nunzio; Stella, Valentino J

    2016-02-01

    The determination of the acid-base dissociation constants, and thus the pKa values, of α-keto acids such as pyruvic acid is complex because of the existence of these acids in their hydrated and nonhydrated or oxo state. Equilibria involved in the hydration and dehydration of the α-keto group of pyruvic acid and three other α-keto acids, 3-methyl-2-oxobutanoic acid, 4-methyl-2-oxopentanoic acid, and 2-oxo-2-phenylacetic acid, were investigated by proton and carbon nuclear magnetic resonance spectrometry, at constant ionic strength, 0.15, and 25 °C. Dissociation constants for the oxo (pKa(oxo)) and hydrated (pKa(hyd)) acids of each compound were estimated from the change in the degree of hydration with changes in pH and directly from the changes in chemical shifts of various hydrogen and carbons nuclei with pH. α-Keto acids showed greater hydration in their acidic forms than their carboxylate forms. The degree of hydration was sensitive to steric and electronic/resonance factors. As expected, the oxo forms of the acids were stronger acids compared with their hydrated analogs, and their dissociation constants were also sensitive to steric and electronic factors.

  2. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur

    2013-10-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  3. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite

    Science.gov (United States)

    Epstein, S.; Krishnamurthy, R. V.; Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1987-01-01

    The isotopic composition of hydrogen, nitrogen, and carbon in amino acid and monocarboxylic acid extracts from the Murchison meteorite has been determined. The unusually high D/H and N-15/N-14 ratios in the amino acid fraction are uniquely characteristic of known interstellar organic materials. The delta D value of the monocarboxylic acid fraction is lower but still consistent with an interstellar origin. These results confirm the extraterrestrial origin of both classes of compound and provide the first evidence suggesting a direct relationship between the massive organosynthesis occurring in interstellar clouds and the presence of prebiotic compounds in primitive planetary bodies.

  4. An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst.

    Science.gov (United States)

    Wang, Yang; Ren, Wenlong; Shi, Yian

    2015-08-21

    An effective Pd-catalyzed hydrocarboxylation of olefins using formic acid with acetic anhydride as a co-catalyst is described. A variety of carboxylic acids are obtained in good yields with high regioselectivities under mild reaction conditions without the use of toxic CO gas.

  5. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times.

  6. 1,2-Dihydroxy-2-(3-methylbut-2-enyl-3-oxo-2,3-dihydro-1H-indene-1-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Acácio Ivo Franscisco

    2010-02-01

    Full Text Available The title compound, C15H16O5·H2O, is an intermediate of the Hooker oxidation reaction, used for the synthesis of 2-hydroxy-3-(2-methylprop-1-enylnaphthalene-1,4-dione (nor-lapachol. The packing in the crystal structure is arranged by an O—H...O hydrogen-bonded network along the [100] and [010] directions. Each organic molecule is linked to four other molecules via the hydroxy groups. The water solvent molecule is connected to carboxylic acid groups by three hydrogen bonds.

  7. Spectral and in vitro antimicrobial properties of 2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid transition metal complexes

    Science.gov (United States)

    Dhankar, Raksha P.; Rahatgaonkar, Anjali M.; Chorghade, Mukund S.; Tiwari, Ashutosh

    2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid (ADP) was complexed with acetates of Mn(II), Ni(II), Cu(II) and Zn(II). The structures of the ligand and its metal complexes were characterized by microanalysis, IR, NMR, UV-vis spectroscopy, magnetic susceptibility and TGA-DTA analyses. Octahedral and square planar geometries were suggested for the complexes in which the central metal ion coordinated with sbnd O donors of ligand and acetate ions. Each ligand binds the metal using carboxylate oxygens. The ligand and complexes were evaluated for their antimicrobial activities against different species of pathogenic bacteria and fungi. The present novel pyrimidine containing complexes could constitute a new group of antibacterial and antifungal agents.

  8. Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension.

    Science.gov (United States)

    Hromas, R; Kim, C H; Klemsz, M; Krathwohl, M; Fife, K; Cooper, S; Schnizlein-Bick, C; Broxmeyer, H E

    1997-09-15

    Chemokines are a group of small, homologous proteins that regulate leukocyte migration, hemopoiesis, and HIV-1 absorption. We report here the cloning and characterization of a novel murine and human C-C chemokine termed Exodus-2 for its similarity to Exodus-1/MIP-3alpha/LARC, and its chemotactic ability. This novel chemokine has a unique 36 or 37 (murine and human, respectively) amino acid carboxyl-terminal extension not seen in any other chemokine family member. Purified recombinant Exodus-2 was found to have two activities classically associated with chemokines: inhibiting hemopoiesis and stimulating chemotaxis. However, Exodus-2 also had unusual characteristics for C-C chemokines. It selectively stimulated the chemotaxis of T-lymphocytes and was preferentially expressed in lymph node tissue. The combination of these characteristics may be a functional correlate for the unique carboxyl-terminal structure of Exodus-2.

  9. The stereodirecting effect of the glycosyl C5-carboxylate ester: stereoselective synthesis of beta-mannuronic acid alginates.

    Science.gov (United States)

    Codée, Jeroen D C; van den Bos, Leendert J; de Jong, Ana-Rae; Dinkelaar, Jasper; Lodder, Gerrit; Overkleeft, Herman S; van der Marel, Gijsbert A

    2009-01-02

    Glycosylations of mannuronate ester donors proceed highly selectively to produce the 1,2-cis-linked products. We here forward a mechanistic rationale for this counterintuitive selectivity, based on the remote stereodirecting effect of the C5-carboxylate ester, which has been demonstrated using pyranosyl uronate ester devoid of ring substituents other than the C5- carboxylate ester. It is postulated that the C5-carboxylate ester prefers to occupy an axial position in the oxacarbenium intermediate, thereby favoring the formation of the (3)H4 half-chair over the (4)H3 conformer. Nucleophilic attack on the (3)H4 half-chair intermediate occurs in a beta-fashion, providing the 1,2-cis-mannuronates with excellent stereoselectivity. The potential of the mannuronate ester donors in the formation of the beta-mannosidic linkage has been capitalized upon in the construction of a mannuronic acid alginate pentamer using a convergent orthogonal glycosylation strategy.

  10. CARBOXYLATIONS AND DECARBOXYLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin; Pon, Ning G.

    1959-04-21

    A brief survey of decarboxylation reactions and carboxylation reactions that are known or presumed in biological systems will be presented. While a considerable number of amino acid decarboxylations are known, their mechanisms will not be included in the present discussion but will be reserved for a later paper in the symposium. The remaining decarboxylation reactions may be subdivided into oxidative and nonoxidative decarboxylations. In most cases, these reactions are practically irreversible except when coupled with suitable energy-yielding systems. The carboxylation reactions which are useful in the formation of carbon-carbon bonds in biological systems seem to fall into two or three groups: those which exhibit an apparent ATP requirement, and those which exhibit a reduced pyridine nucleotide requirement, and those which exhibit no apparent ATP requirement. Of the first group at least four cases, and possibly six or seven, are known, and one interpretation of them involves the preliminary formation of 'active' carbon dioxide, generally in the form of a carbonic acid-phosphoric acid anhydride. Those exhibiting no apparent ATP requirement seem to be susceptible to classifications as enol carboxylations in which the energy level of the substrate compound is high, rather than that of the carbon dioxide. There appear to be at least three examples of this latter type known, amongs them being the carboxy-dismutase reaction of ribulose diphosphate with carbon dioxide.

  11. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Directory of Open Access Journals (Sweden)

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  12. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.

    Science.gov (United States)

    Nelp, Micah T; Bandarian, Vahe

    2015-09-01

    The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered amide intermediate 7-amido-7-deazaguanine (ADG). This is subsequently dehydrated to form the nitrile in a process that consumes a second equivalent of ATP. The authentic amide intermediate is shown to be chemically and kinetically competent. The ability of ToyM to activate two different substrates, an acid and an amide, accounts for this unprecedented one-enzyme catalysis of nitrile synthesis, and the differential rates of these two half reactions suggest that this catalytic ability is derived from an amide synthetase that gained a new function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids.

    Science.gov (United States)

    Önen Bayram, F Esra; Sipahi, Hande; Acar, Ebru Türköz; Kahveci Ulugöl, Reyhan; Buran, Kerem; Akgün, Hülya

    2016-05-23

    Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself.

  14. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide.

    Science.gov (United States)

    Zhou, Lian; Jiang, Hai-Xia; Sun, Shuang; Yang, Dan-Dan; Jin, Kai-Ming; Zhang, Wei; He, Ya-Wen

    2016-03-01

    Bacterial phenazine metabolites belong to a group of nitrogen-containing heterocyclic compounds with antimicrobial activities. In this study, a rhizosphere Pseudomonas aeruginosa strain PA1201 was isolated and identified through 16S rDNA sequence analysis and fatty acid profiling. PA1201 inhibited the growth of various pathogenic microorganisms, including Rhizotonia solani, Magnaporthe grisea, Fusarium graminearum, Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Staphylococcus aureus. High Performance Liquid Chromatography showed that PA1201 produced high levels of phenazine-1-carboxylic acid (PCA), a registered green fungicide 'Shenqinmycin' with the fermentation titers of 81.7 mg/L in pigment producing medium (PPM) and 926.9 mg/L in SCG medium containing soybean meal, corn steep liquor and glucose. In addition, PA1201 produced another antifungal metabolite, phenazine-1-carboxaminde (PCN), a derivative of PCA, with the fermentation titers of 18.1 and 489.5 mg/L in PPM and SCG medium respectively. To the best of our knowledge, PA1201 is a rhizosphere originating P. aeruginosa strain that congenitally produces the highest levels of PCA and PCN among currently reported P. aeruginosa isolates, which endows it great biotechnological potential to be transformed to a biopesticide-producing engineering strain.

  15. Effect of 1,10-phenanthroline aromaticity in carboxylic acids:1H NMR spectroscopy, GIAO calculations and thermodynamic properties

    Science.gov (United States)

    Machado, Camila M. B.; Santos, Vanessa F. C.; Belarmino, Marcia K. D. L.; França, José A. A.; Moura, Gustavo L. C.; Lima, Nathalia B. D.

    2016-08-01

    Hydrogen bonding represents a class of chemical interactions, which are directly responsible for several physical properties, such as: energetic stabilities, boiling points, vibrational modes, bond lengths, etc. In this article, we examine from the point of view of 1H NMR spectroscopy and GIAO calculations, the effects associated with the process of formation of the hydrogen bonds as they appear in the chemical shifts of the acidic hydrogens in the complexes between nitrogenated compounds, PHEN, BIPY and DIBIPY, and carboxylic acids, HOOCH, HOOCCH3 and HOOCC6H5. All computational simulations were performed using the quantum chemical methods B3LYP/6-31++G(d,p) and ωB97X-D/def2-TZVP. The 1H NMR spectroscopy results showed that, in both cases, the hydrogen nucleus of the OH group is the most affected in the process of hydrogen bond formation. For the complexes involving PHEN we observed that the hydrogen nucleus is more strongly shielded when compared with this signal in the corresponding complexes involving BIPY and DIBIPY.

  16. Supramolecular Assemblies Using Piperazine with Dicarboxylic Acids and Hydroxy-carboxylic Acids

    Institute of Scientific and Technical Information of China (English)

    CHEN Zi-Yun; PENG Meng-Xia

    2008-01-01

    The molecular self-assembly of piperazine (pip) with 1,4-cyclohexanedicarboxylic acid (H2chda),m-phthalic acid (H2mpda),6-hydroxy-2-naphthalic acid (Hohna) and 1-hydroxy-2-naphthalic acid (Hshna) results in four new supramolecular networks formulated as H2pip·chda (1),H2pip·2Hmpda (2),HEpip·ohna·2H2O(3) and H2pip·shna (4),respectively.Single-crystal X-ray diffraction study reveals that compounds 1--3 are three-dimensional supramolecular networks,while 4 has a one-dimensional hydrogen-bonded chain-based structure,with CCDC:672051 (1),672052 (2),672053 (3) and 672054 (4).

  17. Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid

    Institute of Scientific and Technical Information of China (English)

    Zhong; He; Xianqin; Wang

    2013-01-01

    The supported Pt catalysts(1 wt%)were prepared by the incipient impregnation method and analyzed using synchrotron-based X-ray diffraction,BET surface area,oxygen adsorption,CO pulse chemisorption,temperature-programmed desorption(TPD)of acetic acid,H2-TPD,NH3-TPD,O2-TPD,and H2-TPR.The reactivity of Pt-based catalysts was studied using a fixed bed reactor at 300 C and 4 MPa for hydrodeoxygenation of acetic acid,where Pt/TiO2 was very selective for ethane production.TPD experiments revealed that several conditions must be satisfied to achieve this high selectivity to ethane from acetic acid,such as Pt sites,moderate acidity,and medium metal-oxygen bond strength in the oxide support.This work provides insights in developing novel catalytic materials for hydrocarbon productions from various organics including bio-fuels.

  18. The structure-anticoagulant activity relationships of sulfated lacquer polysaccharide: effect of carboxyl group and position of sulfation.

    Science.gov (United States)

    Yang, Jianhong; Du, Yumin; Huang, Ronghua; Wan, Yunyang; Wen, Yan

    2005-07-01

    Regiospecific oxidation of the primary hydroxyl groups in lacquer polysaccharide (LPL, Mw 6.85 x 10(4)) and its NaIO4 oxidation derivatives (LPLde) to C-6 carboxy groups was achieved with NaOCl in the presence of Tempo and NaBr. Sulfate groups were incorporated into the oxidated polysaccharides using Py.SO3 complex as a reagent. Reactivity of polysaccharide hydroxyl group was C-6 > C-2 > C-4. Sulfate groups were mainly linked to the second hydroxy at C-2 in the products. The results of APTT assay showed after incorporation of carboxyl groups into lacquer polysaccharides, the intrinsic coagulation pathway was promoted, and all sulfated polysaccharides had very weak anticoagulant activity within the scope of studied DS (0.39-1.11). These indicated that carboxyl groups and sulfate groups had the synergistic action. At the same time, the anticoagulant activity increased very slowly with the DS in the second hydroxy. This indicated that 6-O-SO3- in the side chains took an important role in the anticoagulant activity.

  19. On the possibility of using short chain length mono-carboxylic acids for stabilization of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation)]. E-mail: avd@nf.jinr.ru; Bica, Doina [Laboratory of Magnetic Fluids, CFATR, Romanian Academy, Timisoara Division, Timisoara (Romania); Vekas, Ladislau [National Center for Engineering of Systems with Complex Fluids, University Politehnica, Timisoara (NC ESCF-UPT) (Romania); Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Marinica, Oana [National Center for Engineering of Systems with Complex Fluids, University Politehnica, Timisoara (NC ESCF-UPT) (Romania); Balasoiu, Maria [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary); Aksenov, Victor L. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation); Rosta, Laszlo [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Garamus, Vasil M. [GKSS Research Centre, Geesthacht (Germany); Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany)

    2007-04-15

    Short chain length mono-carboxylic acids (lauric and myristic acids) are used to coat magnetite nanoparticles in non-polar organic liquids, which results in highly stable magnetic fluids. The new fluids are compared with classical organic fluids stabilized by oleic acid (OA). Magnetic granulometry and small-angle neutron scattering (polarized mode) reveal a great difference in the particle size distribution function for the studied magnetic fluids, particularly a decrease in the characteristic particle radius of magnetite when lauric and myristic acids are used instead of OA.

  20. On the possibility of using short chain length mono-carboxylic acids for stabilization of magnetic fluids

    Science.gov (United States)

    Avdeev, Mikhail V.; Bica, Doina; Vékás, Ladislau; Marinica, Oana; Balasoiu, Maria; Aksenov, Victor L.; Rosta, László; Garamus, Vasil M.; Schreyer, Andreas

    2007-04-01

    Short chain length mono-carboxylic acids (lauric and myristic acids) are used to coat magnetite nanoparticles in non-polar organic liquids, which results in highly stable magnetic fluids. The new fluids are compared with classical organic fluids stabilized by oleic acid (OA). Magnetic granulometry and small-angle neutron scattering (polarized mode) reveal a great difference in the particle size distribution function for the studied magnetic fluids, particularly a decrease in the characteristic particle radius of magnetite when lauric and myristic acids are used instead of OA.

  1. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities

    Science.gov (United States)

    Akhtar, M. Kalim; Turner, Nicholas J.; Jones, Patrik R.

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C6–C18) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C8–C16) or fatty alkanes (C7–C15) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L−1 was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C8–C18). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  2. (1H-Benzimidazole-5-carb-oxy-lic acid-κN)(1H-benzimidazole-6-carb-oxy-lic acid-κN)silver(I) perchlorate.

    Science.gov (United States)

    Ma, Li; Huang, Yu-Hua; Xu, Jian-Feng; Deng, Hong

    2011-04-01

    The reaction of 1H-benzimidazole-5-carb-oxy-lic acid with silver nitrate in the presence of perchloric acid under hydro-thermal conditions yielded the title complex, [Ag(C(8)H(6)N(2)O(2))(2)]ClO(4), which comprises of an [Ag(C(8)H(6)N(2)O(2))(2)] mononuclear cation and a perchlorate anion. The Ag(I) ion is coordinated by two N atoms from two different neutral 1H-benzimidazole-5-carb-oxy-lic acid ligands with an N-Ag-N bond angle of 163.21 (14)°, forming an [Ag(C(8)H(6)N(2)O(2))(2)] mononuclear cation. Although both ligands in the mononuclear cation are monodentate with one N atom coordinated to the metal ion, they are different: one is N(3) coordinated to the Ag (I) ion and the N(1) atom protonated, the other with the N(1) coordinated to the Ag (I) ion and the N(3) atom protonated (and thus formally a 1H-benzimidazole-6-carb-oxy-lic acid rather than a 1H-benzimidazole-5-carb-oxy-lic acid ligand). The planes of the two planar ligands are roughly perpendicular, making a dihedral angle of 84.97 (2)°. The packing of the ions is stablized by extensive O-H⋯O, N-H⋯O and C-H⋯O hydrogen bonds, and by remote Ag⋯O inter-actions [3.002 (3), 3.581 (5) and 3.674 (5) Å].

  3. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR.

    Science.gov (United States)

    del Campo, Gloria; Zuriarrain, Juan; Zuriarrain, Andoni; Berregi, Iñaki

    2016-04-01

    A method using (1)H NMR spectroscopy has been developed to quantify simultaneously thirteen analytes in honeys without previous separation or pre-concentration steps. The method has been successfully applied to determine carboxylic acids (acetic, formic, lactic, malic and succinic acids), amino acids (alanine, phenylalanine, proline and tyrosine), carbohydrates (α- and β-glucose and fructose), ethanol and hydroxymethylfurfural in eucalyptus, heather, lavender, orange blossom, thyme and rosemary honeys. Quantification was performed by using the area of the signal of each analyte in the honey spectra, together with external standards. The regression analysis of the signal area against concentration plots, used for the calibration of each analyte, indicates a good linearity over the concentration ranges found in honeys, with correlation coefficients higher than 0.985 for the thirteen quantified analytes. The recovery studies give values over the 93.7-105.4% range with relative standard deviations lower than 7.4%. Good precision, with relative standard deviations over the range of 0.78-5.21% is obtained.

  4. Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)-phosphane.

    Science.gov (United States)

    Kriechbaum, Margit; List, Manuela; Himmelsbach, Markus; Redhammer, Günther J; Monkowius, Uwe

    2014-10-06

    We have developed a protocol for the direct coupling between methyl ester protected amino acids and the chlorido-gold(I)-phosphane (p-HOOC(C6H4)PPh2)AuCl. By applying the EDC·HCl/NHS strategy (EDC·HCl = N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide hydrochloride, NHS = N-hydroxysuccinimide), the methyl esters of l-phenylalanine, glycine, l-leucine, l-alanine, and l-methionine are coupled with the carboxylic acid of the gold complex in moderate to good yields (62-88%). All amino acid tagged gold complexes were characterized by (1)H and (13)C NMR spectroscopy and high-resolution mass spectrometry. As corroborated by measurement of the angle of optical rotation, no racemization occurred during the reaction. The molecular structure of the leucine derivative was determined by single-crystal X-ray diffraction. In the course of developing an efficient coupling protocol, the acyl chlorides (p-Cl(O)C(C6H4)PPh2)AuX (X = Cl, Br) were also prepared and characterized.

  5. The Effect of Phenazine-1-Carboxylic Acid on the Morphological, Physiological, and Molecular Characteristics of Phellinus noxius.

    Science.gov (United States)

    Huang, Huazhi; Sun, Longhua; Bi, Keke; Zhong, Guohua; Hu, Meiying

    2016-05-11

    In this study, the effect of phenazine-1-carboxylic acid (PCA) on morphological, physiological, and molecular characteristics of Phellinus noxius has been investigated, and the potential antifungal mechanism of PCA against P. noxius was also explored. The results revealed that PCA showed in vitro antifungal potential against P. noxius and completely inhibited P. noxius hyphae at concentrations >40 μg/mL. PCA inhibited both mycelial growth and the loss of mycelial biomass in vitro in a dose-dependent manner. Morphological changes in PCA-treated P. noxius hyphae, such as irregularly swollen mycelia as well as short hyphae with increased septation and less branching, were observed by optical microscopy. The intracellular reactive oxygen species (ROS) levels were significantly increased in PCA-treated P. noxius cells as compared to control groups. Induced hyperpolarization of the mitochondrial membrane potential (MMP), repressed superoxide dismutase (SOD) activity and up-regulated gene expression of seven tested genes were also found in PCA-treated P. noxius groups. Thus, the present results suggested that the mechanism of action of PCA against P. noxius might be attributed to direct damage of mycelium and high intracellular ROS production, and indirect induction of genes involved in cell detoxification, oxidation-reduction process, and electron transport of the respiratory chain.

  6. The Effect of Phenazine-1-Carboxylic Acid on the Morphological, Physiological, and Molecular Characteristics of Phellinus noxius

    Directory of Open Access Journals (Sweden)

    Huazhi Huang

    2016-05-01

    Full Text Available In this study, the effect of phenazine-1-carboxylic acid (PCA on morphological, physiological, and molecular characteristics of Phellinus noxius has been investigated, and the potential antifungal mechanism of PCA against P. noxius was also explored. The results revealed that PCA showed in vitro antifungal potential against P. noxius and completely inhibited P. noxius hyphae at concentrations >40 μg/mL. PCA inhibited both mycelial growth and the loss of mycelial biomass in vitro in a dose-dependent manner. Morphological changes in PCA-treated P. noxius hyphae, such as irregularly swollen mycelia as well as short hyphae with increased septation and less branching, were observed by optical microscopy. The intracellular reactive oxygen species (ROS levels were significantly increased in PCA-treated P. noxius cells as compared to control groups. Induced hyperpolarization of the mitochondrial membrane potential (MMP, repressed superoxide dismutase (SOD activity and up-regulated gene expression of seven tested genes were also found in PCA-treated P. noxius groups. Thus, the present results suggested that the mechanism of action of PCA against P. noxius might be attributed to direct damage of mycelium and high intracellular ROS production, and indirect induction of genes involved in cell detoxification, oxidation-reduction process, and electron transport of the respiratory chain.

  7. Study on surface acid-base property of carboxylic acid-terminated self-assembled monolayers by cyclic voltammetry and electro-chemical impedance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    罗立强; 程志亮; 杨秀荣; 汪尔康

    2000-01-01

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers (SAMs). A carboxylic acid-terminated thiol, such as thioctic acid (1,2-dithiolane-3-pentanoic acid), was self-assembled on gold electrodes. Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)63 as a probe. The surface pK. of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6±0.1 and 5.8±0.1, respectively. The method is compared with other methods of monolayer pK.measurement.

  8. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto.

    Science.gov (United States)

    Smallegange, Renate C; Qiu, Yu Tong; Bukovinszkiné-Kiss, Gabriella; Van Loon, Joop J A; Takken, Willem

    2009-08-01

    The role of aliphatic carboxylic acids in host-seeking response of the malaria mosquito Anopheles gambiae sensu stricto was examined both in a dual-choice olfactometer and with indoor traps. A basic attractive blend of ammonia + lactic acid served as internal standard odor. Single carboxylic acids were tested in a tripartite blend with ammonia + lactic acid. Four different airflow stream rates (0.5, 5, 50, and 100 ml/min) carrying the compounds were tested for their effect on trap entry response in the olfactometer. In the olfactometer, propanoic acid, butanoic acid, 3-methylbutanoic acid, pentanoic acid, heptanoic acid, octanoic acid, and tetradecanoic acid increased attraction relative to the basic blend. While several carboxylic acids were attractive only at one or two flow rates, tetradecanoic acid was attractive at all flow rates tested. Heptanoic acid was attractive at the lowest flow rate (0.5 ml/min), but repellent at 5 and 50 ml/min. Mixing the air stream laden with these 7 carboxylic acids together with the headspace of the basic blend increased attraction in two quantitative compositions. Subtraction of single acids from the most attractive blend revealed that 3-methylbutanoic acid had a negative effect on trap entry response. In the absence of tetradecanoic acid, the blend was repellent. In assays with MM-X traps, both a blend of 7 carboxylic acids + ammonia + lactic acid (all applied from low density polyethylene-sachets) and a simple blend of ammonia + lactic acid + tetradecanoic acid were attractive. The results show that carboxylic acids play an essential role in the host-seeking behavior of An. gambiae, and that the contribution to blend attractiveness depends on the specific compound studied.

  9. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Science.gov (United States)

    Li, Dan; Jia, Shaojie; Fodjo, Essy Kouadio; Xu, Hu; Wang, Yuhong; Deng, Wei

    2016-03-01

    In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from -0.3 to -0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from -0.3 to -0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  10. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme.

    Science.gov (United States)

    Li, N; Mattoo, A K

    1994-03-04

    1-Aminocyclopropane-1-carboxylic acid (ACC) synthase is a key enzyme regulating biosynthesis of the plant hormone ethylene. The expression of an enzymatically active, wound-inducible tomato (Lycopersicon esculentum L. cv Pik-Red) ACC synthase (485 amino acids long) in a heterologous Escherichia coli system allowed us to study the importance of hypervariable COOH terminus in enzymatic activity and protein conformation. We constructed several deletion mutants of the gene, expressed these in E. coli, purified the protein products to apparent homogeneity, and analyzed both conformation and enzyme kinetic parameters of the wild-type and truncated ACC syntheses. Deletion of the COOH terminus through Arg429 results in complete inactivation of the enzyme. Deletion of 46-52 amino acids from the COOH terminus results in an enzyme that has nine times higher affinity for the substrate S-adenosylmethionine than the wild-type enzyme. The highly efficient, truncated ACC synthase was found to be a monomer of 52 +/- 1.8 kDa as determined by gel filtration, whereas the wild-type ACC synthase, analyzed under similar conditions, is a dimer. These results demonstrate that the non-conserved COOH terminus of ACC synthase affects its enzymatic function as well as dimerization.

  11. Transferable force field for carboxylate esters: application to fatty acid methylic ester phase equilibria prediction.

    Science.gov (United States)

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2012-03-15

    In this work, a new transferable united-atoms force field for carboxylate esters is proposed. All Lennard-Jones parameters are reused from previous parametrizations of the AUA4 force field, and only a unique set of partial electrostatic charges is introduced for the ester chemical function. Various short alkyl-chain esters (methyl acetate, ethyl acetate, methyl propionate, ethyl propionate) and two fatty acid methylic esters (methyl oleate and methyl palmitate) are studied. Using this new force field in Monte Carlo simulations, we show that various pure compound properties are accurately predicted: saturated liquid densities, vapor pressures, vaporization enthalpies, critical properties, liquid-vapor surface tensions. Furthermore, a good accuracy is also obtained in the prediction of binary mixture pressure-composition diagrams, without introducing empirical binary interaction parameters. This highlights the transferability of the proposed force field and gives the opportunity to simulate mixtures of industrial interest: a demonstration is performed through the simulation of the methyl oleate + methanol mixture involved in the purification sections of biodiesel production processes.

  12. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice

    Institute of Scientific and Technical Information of China (English)

    Jinfeng Qi; Yonggen Lou; Jiancai Li; Xiu Han; Ran Li; Jianqiang Wu; Haixin Yu; Lingfei Hu; Yutao Xiao; Jing Lu

    2016-01-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.

  13. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs.

    Science.gov (United States)

    Yang, X; Zhou, Y-F; Yu, Y; Zhao, D-H; Shi, W; Fang, B-H; Liu, Y-H

    2015-02-01

    A multi-compartment physiologically based pharmacokinetic (PBPK) model to describe the disposition of cyadox (CYX) and its metabolite quinoxaline-2-carboxylic acid (QCA) after a single oral administration was developed in rats (200 mg/kg b.w. of CYX). Considering interspecies differences in physiology and physiochemistry, the model efficiency was validated by pharmacokinetic data set in swine. The model included six compartments that were blood, muscle, liver, kidney, adipose, and a combined compartment for the rest of tissues. The model was parameterized using rat plasma and tissue concentration data that were generated from this study. Model simulations were achieved using a commercially available software program (ACSLXL ibero version 3.0.2.1). Results supported the validity of the model with simulated tissue concentrations within the range of the observations. The correlation coefficients of the predicted and experimentally determined values for plasma, liver, kidney, adipose, and muscles in rats were 0.98, 0.98, 0.98, 0.99, and 0.95, respectively. The rat model parameters were then extrapolated to pigs to estimate QCA disposition in tissues and validated by tissue concentration of QCA in swine. The correlation coefficients between the predicted and observed values were over 0.90. This model could provide a foundation for developing more reliable pig models once more data are available.

  14. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    Science.gov (United States)

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions.

  15. Thermodynamics of Carboxyl Group′s Protonation of α -amino Acids in Water-Ethanol Mixtures at 298.15K%α-氨基酸在水-乙醇中羧基质子化热力学

    Institute of Scientific and Technical Information of China (English)

    厉刚; 林瑞森; 宗汉兴

    2000-01-01

    Enthalpy changes for the protonation of carboxyl group of four α-amino acids(glycine,L-α-alanine,L-valine and L-serine) were measured in water-ethanol mixtures (10- 70wt%) at 298.15K using LKB-2277 Bioactivity Monitor.The corresponding entropy and Gibbs energy changes were also calculated.The results show that both enthalpy changes and entropy changes are favorable to the protonation of carboxyl groups of the investigated amino acids in water-ethanol mixtures.However,the influence of the composition of ethanol in the mixed solvents on the enthalpy change and entropy changes is complicated.Both sδ and sδ ,the differences of enthalpy changes and entropy changes in mixed solvents and in pure water respectively,show a minimum approximately at xEtOH=0.1.The effects of side chains on the enthalpy change and entropy changes were also investigated using the proton transfer process between glycine and the other three amino acids.The results demonstrate that the proton transfer processes for alanine and valine are spontaneous but not for serine,which could be interpreted in terms of the electrostatic interaction between amino group and carboxyl group within the molecule and the interaction between carboxyl group and the solvent.

  16. An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media.

    Science.gov (United States)

    Mehrparvar, Saber; Balalaie, Saeed; Rabbanizadeh, Mahnaz; Ghabraie, Elmira; Rominger, Frank

    2014-08-01

    Novel analogs of 2-pyridone-3-carboxylic acids 4a-l have been prepared by the three-component reaction of 3-formyl chromone, Meldrum's acid, and primary amines in the presence of a catalytic amount of diammonium hydrogen phosphate in water. Good-to-high yields, easy work-up, and an environmentally friendly profile are the advantages of this method for the synthesis of 2-pyridone-3-carboxylic acid derivatives.

  17. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    Science.gov (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  18. Short-chain carboxylic acids, a new class of teratogens: studies of potential biochemical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, M.E.; Rawlings, S.J.; Brown, N.A.

    1986-12-01

    Certain short-chain carboxylic acids (SCCA) appear to share a common teratogenic potential, although the structural requirements for activity remain obscure. By using a whole rat embryo culture model system, several biochemical processes have been examined, either as potential initial sites of teratogenic action or as early steps in the pathway to malformation. Valproate, methoxyacetate, and butyrate were the prototype SCCA examined. Measurement of (/sup 14/C)glucose utilization and lactate production confirmed that energy production by the early organogenesis embryo is predominantly from glycolysis. While the positive control agent, iodoacetate, caused a significant inhibition of lactate production, none of the SCCA affected this process or glucose utilization at teratogenic concentrations. Pinocytosis by the visceral yolk sac (VYS) was measured by the uptake of (/sup 125/I)polyvinylpyrrolidone. This process ultimately supplies the embryo with amino-acids and is essential for normal development. SCCA induce morphological abnormalities of the VYS in embryo culture. Pinocytosis was slightly reduced by valproate, but not the other SCCA. However, comparison with the action of an antiserum, for which inhibition of pinocytosis is the initial teratogenic insult, suggests that this is not the mechanism for valproate. Incorporation of (/sup 3/H)thymidine into embryo or yolk sac was not affected after 3 hr of SCCA exposure, but there was a marked effect of the positive control, hydroxyurea. This suggests that DNA synthesis is not directly influenced by SCCA. It can be concluded that SCCA do not exert their teratogenic effects by actions on glycolysis; maintenance of cellular acetyl CoA; pinocytosis or DNA synthesis. These observations contrast with preliminary results which suggest significant effects of SCCA on embryonic and yolk sac lipid metabolic pathways.

  19. Short-chain carboxylic acids, a new class of teratogens: studies of potential biochemical mechanisms.

    Science.gov (United States)

    Coakley, M E; Rawlings, S J; Brown, N A

    1986-01-01

    Certain short-chain carboxylic acids (SCCA) appear to share a common teratogenic potential, although the structural requirements for activity remain obscure. By using a whole rat embryo culture model system, several biochemical processes have been examined, either as potential initial sites of teratogenic action or as early steps in the pathway to malformation. Valproate, methoxyacetate, and butyrate were the prototype SCCA examined. Measurement of [14C]glucose utilization and lactate production confirmed that energy production by the early organogenesis embryo is predominantly from glycolysis. While the positive control agent, iodoacetate, caused a significant inhibition of lactate production, none of the SCCA affected this process or glucose utilization at teratogenic concentrations. Valproate did not influence embryonic acetyl CoA levels, in marked contrast to the reported response of adult liver, the other major target of valproate toxicity. Pinocytosis by the visceral yolk sac (VYS) was measured by the uptake of [125I]polyvinylpyrrolidone. This process ultimately supplies the embryo with amino-acids and is essential for normal development. SCCA induce morphological abnormalities of the VYS in embryo culture. Pinocytosis was slightly reduced by valporate, but not the other SCCA. However, comparison with the action of an antiserum, for which inhibition of pinocytosis is the initial teratogenic insult, suggests that this is not the mechanism for valproate. Incorporation of [3H]thymidine into embryo or yolk sac was not affected after 3 hr of SCCA exposure, but there was a marked effect of the positive control, hydroxyurea. This suggests that DNA synthesis is not directly influenced by SCCA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3830097

  20. The effect of varying carboxylic-group content in reduced graphene oxides on the anticorrosive properties of PMMA/reduced graphene oxide composites

    Directory of Open Access Journals (Sweden)

    K. C. Chang

    2014-12-01

    Full Text Available We present comparative studies on the effect of varying the carboxylic-group content of thermally reduced graphene oxides (TRGs on the anticorrosive properties of as-prepared poly(methyl methacrylate (PMMA/TRG composite (PTC coatings. TRGs were formed from graphene oxide (GO by thermal exfoliation. The as-prepared TRGs were then characterized using Fourier transform infrared (FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS. Subsequently, the PTC materials were prepared via a UV-curing process and then characterized using FTIR spectroscopy and transmission electron microscopy (TEM. PTC coatings containing TRGs with a higher carboxylic-group content exhibited better corrosion protection of a cold-rolled steel electrode that those with a lower carboxylic-group content. This is because the well-dispersed TRG with a higher carboxylic-group content embedded in the PMMA matrix effectively enhances the oxygen barrier properties of the PTC. This conclusion was supported by gas permeability analysis.

  1. Perfluorinated carboxylic acids in human breast milk from Spain and estimation of infant's daily intake

    Energy Technology Data Exchange (ETDEWEB)

    Motas Guzmàn, Miguel [Área de Toxicología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Clementini, Chiara [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Pérez-Cárceles, Maria Dolores; Jiménez Rejón, Sandra [Department of Legal Medicine, School of Medicine, University of Murcia & Instituto Murciano de Investigacion Biomedica (IMIB), (IMIB-VIRGEN DE LA ARRIXACA), Murcia (Spain); Cascone, Aurora; Martellini, Tania [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy); Guerranti, Cristiana [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, GR (Italy); Cincinelli, Alessandra, E-mail: acincinelli@unifi.it [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy)

    2016-02-15

    Human milk samples were collected from 67 mothers in 2014 at a Primary Care Centre in Murcia (Spain) and analyzed for perfluorinated carboxylic acids (PFCAs). Concentrations measured for perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA) ranged from < LOQ (< 10 ng/L) to 397 ng/L with a mean concentration of 66 ± 68 ng/L and a median of 29 ng/L. The presence of these compounds was revealed in 50 samples out of 67 analyzed. Influence of number of pregnancies and food habits on PFCAs concentrations was also investigated. Statistically significant differences in PFCA levels were found when the women were divided into maternal age classes and into the categories primiparae and multiparae. A greater transfer of PFC during breastfeeding by primiparous was evidenced and thus a higher exposure to these contaminants for the first child. Moreover, it was possible to hypothesize that the content of PFCs is in general correlated to the eating habits of donors and, in particular, with the fish consumption. Finally, PFOA daily intakes and risk index (RI) were estimated for the first six months of life and we found that ingestion rates of PFOA did not exceed the tolerable daily intake (TDI) recommended by the European Food Safety Authority (EFSA). - Graphical abstract: Figure SI 1. Concentrations (ng/L) of PFCs recovered in 67 samples of human breast milk. - Highlights: • Perfluorinated carboxylic acids were analyzed in a set of 67 breast milk samples collected from Spanish women. • PFOA appeared as the major contributor to the total perfluorinated carboxylic acids. • PFOA concentrations were significantly higher in milk of primiparous participants. • PFOA daily intake and risk index were estimated for the firsts six month of life.

  2. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  3. NBS/DBU mediated one-pot synthesis of α-acyloxyketones from benzylic secondary alcohols and carboxylic acids.

    Science.gov (United States)

    Zhu, Minghui; Wei, Wei; Yang, Daoshan; Cui, Hong; Cui, Huanhuan; Sun, Xuejun; Wang, Hua

    2016-11-22

    A simple and efficient one-pot NBS/DBU-mediated method has been developed for the synthesis of α-acyloxyketones from various benzylic secondary alcohols and carboxylic acids. Through this methodology, a series of α-acyloxyketones could be obtained in good to excellent yields under mild conditions. Importantly, this new reaction avoids the direct usage of toxic metal catalysts or potentially dangerous peroxide oxidants.

  4. Enantioselective Diels-Alder reactions of carboxylic ester dienophiles catalysed by titanium-based chiral Lewis acid

    Directory of Open Access Journals (Sweden)

    Yogesh K. Choughule

    2016-05-01

    Full Text Available A new titanium-based chiral Lewis acid 1 has been developed using (1R,2R-1,2-bis-(2-methoxyphenyl-ethane-1,2-diol as a chiral vicinal diol ligand. This chiral catalyst was found to exhibit uniformly high enantioselectivity towards carboxylic ester dienophiles in Diels-Alder reactions. The chiral vicinal ligand (1R,2R-1,2-bis-(2-methoxyphenyl-ethane-1,2-diol is inexpensive and is easily accessible.

  5. An efficient way to coupling amine with derivatives of steric N-Boc-pyrrolidine-2-carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    Feng Zhi Liu; Hao Fang; Wen Fang Xu

    2007-01-01

    An efficient way to coupling amine with the derivatives of steric N-Boc-pyrrolidine-2-carboxylic acid was reported in this paper.We have found that the synthesis of derivatives is problematic with the commonly used DCC/HOBT method. As a substitute, the mixed anhydride method was adopted. A series of 6-(3-nitroguanidino)hexanamidopyrrolidine derivatives were prepared with this method.

  6. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development.

    Science.gov (United States)

    Morrison, Christopher K; Arseneault, Tanya; Novinscak, Amy; Filion, Martin

    2017-03-01

    Phytophthora infestans causes late blight of potato, one of the most devastating diseases affecting potato production. Alternative approaches for controlling late blight are being increasingly sought due to increasing environmental concerns over the use of chemical pesticides and the increasing resistance of P. infestans to fungicides. Our research group has isolated a new strain of Pseudomonas fluorescens (LBUM636) of biocontrol interest producing the antibiotic phenazine-1-carboxylic acid (PCA). Wild-type LBUM636 was shown to significantly inhibit the growth of Phytophthora infestans in in vitro confrontational assays whereas its isogenic mutant (phzC-; not producing PCA) only slightly altered the pathogen's growth. Wild-type LBUM636 but not the phzC- mutant also completely repressed disease symptom development on tubers. A pot experiment revealed that wild-type LBUM636 can significantly reduce P. infestans populations in the rhizosphere and in the roots of potato plants, as well as reduce in planta disease symptoms due to PCA production. The expression of eight common plant defense-related genes (ChtA, PR-1b, PR-2, PR-5, LOX, PIN2, PAL-2, and ERF3) was quantified in tubers, roots, and leaves by reverse-transcription quantitative polymerase chain reaction and revealed that the biocontrol observed was not associated with the induction of a plant defense response by LBUM636. Instead, a direct interaction between P. infestans and LBUM636 is required and PCA production appears to be a key factor for LBUM636's biocontrol ability.

  7. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic acid functionality in polyethylene glycol: formulation implications.

    Science.gov (United States)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe; Østergaard, Jesper

    2014-08-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reactions. In this study, kinetics of two active pharmaceutical ingredients, cetirizine and indomethacin possessing carboxylic acid functionality, has been studied in PEG 400 and PEG 1000 at 50 °C, 60 °C, 70 °C, and 80 °C. HPLC-UV was applied for the determination of concentrations in the kinetic studies, whereas HPLC-MS was used to identify reaction products. The esterification reactions were observed to be reversible. A second-order reversible kinetic model was applied and rate constants were determined. The rate constants demonstrated that cetirizine was esterified about 240 times faster than indomethacin at 80 °C. The shelf-life for cetirizine in a PEG 400 formulation at 25 °C expressed as t(95%) was predicted to be only 30 h. Further, rate constants for esterification of cetirizine in PEG 1000 in relation to PEG 400 decreased by a factor of 10, probably related to increased viscosity. However, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably.

  8. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong

    2014-01-21

    A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    Science.gov (United States)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  10. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 3 (FGE.06Rev3): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister;

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the subs...

  11. Influence of carboxylic acid functionalization on the cytotoxic effects induced by single wall carbon nanotubes on human endothelial cells (HUVEC).

    Science.gov (United States)

    Gutiérrez-Praena, Daniel; Pichardo, Silvia; Sánchez, Elena; Grilo, Antonio; Cameán, Ana Maria; Jos, Angeles

    2011-12-01

    A vast variety of nanomaterials have been developed in the recent years, being carbon nanotubes (CNTs) the ones that have attracted more attention, due to its unique properties which make them suitable for numerous applications. Consequently, it is predicted that tons of CNTs will be produced worldwide every year, being its exposure of toxicological concern. Nanomaterials, once into the body, can translocate from the uptake sites to the blood circulation or the lymphatic system, resulting in distribution throughout the body. Thus, the vascular endothelium can be in contact with them and can suffer from their toxic effects. In this regard, the aim of this work was to investigate the cytotoxicity of single-walled carbon nanotubes (SWCNTs) on human endothelial cells evaluating the influence of acid carboxylic functionalization and also the exposure time (24 and 48 h). Biomarkers assessed were neutral red uptake, protein content, a tetrazolium salt metabolization and cell viability by means of the Trypan blue exclusion test. Cells were exposed to concentrations between 0 and 800 μg/mL SWCNTs for 24 and 48 h. Results have shown that both SWCNTs and carboxylic acid functionalized single-walled carbon nanotubes (COOH-SWCNTs) induce toxic effects in HUVEC cells in a concentration- and time-dependent way. Moreover, the carboxylic acid functionalization results in a higher toxicity compared to the SWCNTs.

  12. Selective Two-Photon-Absorption-Induced Reactions of Anthracene-2-Carboxylic Acid on Tunable Plasmonic Substrate with Incoherent Light Source.

    Science.gov (United States)

    Pincella, Francesca; Isozaki, Katsuhiro; Taguchi, Tomoya; Song, Yeji; Miki, Kazushi

    2015-02-01

    In this research, we report the development, characterization and application of various plasmonic substrates (with localized surface plasmon resonance wavelength tunable by gold nanoparticle size) for two-photon absorption (TPA)-induced photodimerization of an anthracene derivative, anthracene carboxylic acid, in both surface and solution phase under incoherent visible light irradiation. Despite the efficient photoreaction property of anthracene derivatives and the huge number of publications about them, there has never been a report of a multiphoton photoreaction involving an anthracene derivative with the exception of a reverse photoconversion of anthracene photodimer to monomer with three-photon absorption. We examined the progress of the TPA-induced photoreaction by means of surface-enhanced Raman scattering, taking advantage of the ability of our plasmonic substrate to enhance and localize both incident light for photoreaction and Raman scattering signal for analysis of photoreaction products. The TPA-induced photoreaction in the case of anthracene carboxylic acid coated 2D array of gold nanoparticles gave different results according to the properties of the plasmonic substrate, such as the size of the gold nanoparticle and also its resultant optical properties. In particular, a stringent requirement to achieve TPA-induced photodimerization was found to be the matching between irradiation wavelength, localized surface plasmon resonance of the 2D array, and twice the wavelength of the molecular excitation of the target material (in this case, anthracene carboxylic acid). These results will be useful for the future development of efficient plasmonic substrates for TPA-induced photoreactions with various materials.

  13. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Tinca, E-mail: tbur@icmpp.ro [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Melinte, Violeta [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, 16 University Str., 700115 Iasi (Romania); Pelin, Irina M.; Buruiana, Emil C. [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1–F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and {sup 1}H ({sup 13}C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm{sup −3} (F1) and 40.52 μg mm{sup −3} (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82–49.14 μg mm{sup −3} (F1–F3-HAP) and 34.58–45.56 μg mm{sup −3}, respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. - Highlights: • Fluorinated urethane dimethacrylate with carboxylic units (UF-DMA) was proposed as co-monomer in dental adhesives. • UF-DMA exhibits good photoreactivity in mixture with commercial dental monomers. • Water sorption/solubility and diffusion coefficient depend on the amount of UF-DMA. • The infiltration of adhesive mixture into the dentin tubules was evidenced by SEM.

  14. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.

    Science.gov (United States)

    Zelle, Rintze M; de Hulster, Erik; van Winden, Wouter A; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A; Geertman, Jan-Maarten A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2008-05-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.

  15. Application of 2-Aminothiazoline-4-carboxylic Acid as a Forensic Marker of Cyanide Exposure.

    Science.gov (United States)

    Rużycka, Monika; Giebułtowicz, Joanna; Fudalej, Marcin; Krajewski, Paweł; Wroczyński, Piotr

    2017-02-20

    Cyanides are infamous for their highly poisonous properties. Accidental cyanide poisoning occurs frequently, but occasionally, intentional poisonings also occur. Inhalation of fumes generated by fire may also cause cyanide poisoning. There are many limitations in direct analysis of cyanide. 2-Aminothiazoline-4-carboxylic acid (ATCA), a cyanide metabolite, seems to be the only surrogate that is being used in the detection of cyanide because of its stability and its cyanide-dependent quality in a biological matrix. Unfortunately, toxicokinetic studies on diverse animal models suggest significant interspecies differences; therefore, the attempt to extrapolate animal models to human models may be unsuccessful. The aim of the present study was to evaluate the use of ATCA as a forensic marker of cyanide exposure. For this purpose, post-mortem materials (blood and organs) from fire victims (n = 32) and cyanide-poisoned persons (n = 3) were collected. The distribution of ATCA in organs and its thermal stability were evaluated. The variability of cyanides in a putrid sample and in the context of their long-term and higher temperature stability was established. The presence of ATCA was detected by using an LC-MS/MS method and that of cyanide was detected spectrofluorimetrically. This is the first report on the endogenous ATCA concentrations and the determination of ATCA distribution in tissues of fire victims and cyanide-poisoned persons. It was found that blood and heart had the highest ATCA concentrations. ATCA was observed to be thermally stable even at 90 °C. Even though the cyanide concentration was not elevated in putrid samples, it was unstable during long-term storage and at higher temperature, as expected. The relationship between ATCA and cyanides was also observed. Higher ATCA concentrations were related to increased levels of cyanide in blood and organs (less prominent). ATCA seems to be a reliable forensic marker of exposure to lethal doses of cyanide.

  16. Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid.

    Science.gov (United States)

    Abercrombie, J J; Leung, Kai P; Chai, Hanbo; Hicks, Rickey P

    2015-03-15

    Ac-GF(A6c)G(A6c)K(A6c)G(A6c)F(A6c)G(A6c)GK(A6c)KKKK-amide (A6c=1-aminocyclohexane carboxylic acid) is a synthetic antimicrobial peptide (AMP) that exhibits in vitro inhibitory activity against drug resistant strains of Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterococcus faecium at concentrations ranging from 10.9 to 43μM. Spectroscopic investigations were conducted to determine how this AMP interacts with simple membrane model systems in order to provide insight into possible mechanisms of action. CD and 2D-(1)H NMR experiments indicated this AMP on binding to SDS and DPC micelles adopts conformations with varying percentages of helical and random coil conformers. CD investigations in the presence of three phospholipid SUVs consisting of POPC, 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC revealed: (1) The interactions occurring with POPC SUVs have minimal effect on the conformational diversity of the AMP yielding conformations similar to those observed in buffer. (2) The interactions with 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC SUVs exhibited a greater influence on the percentage of different conformers contributing to the CD spectra. (3) The presence of a high of percentage of helical conformers was not observed in the presence of SUVs as was the case with micelles. This data indicates that the diversity of surface bound conformations adopted by this AMP are very different from the diversity of conformations adopted by this AMP on insertion into the lipid bilayer. CD spectra of this AMP in the presence of SUVs consisting of LPS isolated from P. aeruginosa, K. pneumoniae and Escherichia coli exhibited characteristics associated with various helical conformations.

  17. Formation of 4'-carboxyl acid metabolite of imrecoxib by rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Hai-yan XU; Peng ZHANG; Ai-shen GONG; Yu-ming SUN; Feng-ming CHU; Zong-ru GUO; Da-fang ZHONG

    2006-01-01

    Aim:Imrecoxib is a novel and moderately selective COX-2 inhibitor.The aim of the present in vitro investigation was to study the formation of the major metabolite 4'-carboxylic acid imrecoxib (M2) and identify the enzyrne(s) involved in the reaction.Methods:The formation of M2 was studied in rat liver cytosol in the absence or presence of liver microsomes.The formed metabolite was identified and quantified by LC/MSn.In addition,to characterize the cytochrome P450 (CYP) isozymes involved in M2 formation,the effects of typical CYP inhibitors (such as ketoconazle,quinine,α-naphthoflavone, methylpyrazole,and cimetidine) on the formation rate of M2 were investigated.Results:The formation of M2 from 4'hydroxymethyl imrecoxib (M4) was completely dependent on rat liver microsomes and NADPH.Enzyme kinetic studies demonstrated that the formation rate of M2 conformed to monophasic Michaelis-Menten kinetics.Additional experiments showed that the formation of M2 was induced significantly by dexamethasone and lowered by ketoconazole strongly and concentration-dependently.By comparison.other CYP inhibitors.such as α-naphthoflavone,cimetidine,quinine,and methylpyrazole had no inhibitory effects on this metabolic pathway.Conclusion:These biotransformation studies of M4 and imrecoxib in rat liver at the subcellular level showed that the formation of M2 occurs in rat liver microsomes and is NADPH-dependent.The reaction was mainly catalyzed by CYP 3A in untreated rats and in dexamethasone-induced rats.Other CYP,such as CYP 1A,2C,2D,and 2E,seem unlikely to participate in this metabolic pathway.

  18. 4,4'-Bipyridine-2-(carb-oxy-methyl-sulfan-yl)pyridine-3-carb-oxy-lic acid (1/1).

    Science.gov (United States)

    Jiang, Xian-Rong; Wang, Xiao-Juan; Feng, Yun-Long

    2010-11-27

    In the title co-crystal, C(10)H(8)N(2)·C(8)H(7)NO(4)S, the formate group is coplanar with the pyridyl ring of the acid [dihedral angle = 6.2 (7)°], while the carb-oxy-methyl-sulfanyl group makes a C-S-C-C torsion angle of 70.2 (1)° with the pyridine ring. The dihedral angle between the pyridyl rings of the 4,4'-bipyridine mol-ecule is 27.4 (1)°. The acid and the 4,4'-bipyridine mol-ecules are involved in hydrogen bonding via carb-oxy-lic O and pyridyl N atoms. The structure is further consolidated by inter-molecular C-H⋯O hydrogen bonds, generating a three-dimensional network.

  19. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    Science.gov (United States)

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  20. 4-(Benzylamino)formoyldiphenylammonium Triflate (BDPAT):An Efficient, Recoverable Biphasic Catalyst For Esterification of Carboxylic Acids with Equimolar Amounts of Alcohols

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered without loss of activity.

  1. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    Science.gov (United States)

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-02

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread.

  2. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 2 (FGE.06Rev2): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1 and 4

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    in a wide range of food items. According to the default MSDI approach, the 48 flavouring substances in this group have intakes in Europe from 0.001 to 120 microgram/capita/day, which are below the thresholds of concern value for both structural class I (1800 microgram/person/day) and structural class II...... of approximately 255 and 0.7 microgram/capita/day, respectively. These values are below the thresholds of concern for structural class I and class II substances of 1800 and 540 microgram/person/day, respectively. The total combined estimated intake of 65 of the 70 supporting substances for which European annual...... (540 microgram/person/day) substances. On the basis of the reported annual production volumes in Europe (MSDI approach), the combined intake of the 46 candidate substances belonging to structural class I and of the two candidate substances belonging to structural class II would result in a total intake...

  3. Immune Modulation in Normal Human Peripheral Blood Mononuclear Cells (PBMCs) (Lymphocytes) in Response to Benzofuran-2-Carboxylic Acid Derivative KMEG during Spaceflight

    Science.gov (United States)

    Okoro, Elvis; Mann, Vivek; Ellis, Ivory; Mansoor, Elvedina; Olamigoke, Loretta; Marriott, Karla Sue; Denkins, Pamela; Williams, Willie; Sundaresan, Alamelu

    2017-08-01

    Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p mitochondria from the accumulation of oxidatively damaged membrane proteins. Overall, our analysis indicates that KMEG

  4. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity of...

  5. Difference between Extra- and Intracellular T1 Values of Carboxylic Acids Affects the Quantitative Analysis of Cellular Kinetics by Hyperpolarized NMR

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Jensen, Pernille Rose; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    Incomplete knowledge of the longitudinal relaxation time constant (T1) leads to incorrect assumptions in quantitative kinetic models of cellular systems, studied by hyperpolarized real-time NMR. Using an assay that measures the intracellular signal of small carboxylic acids in living cells...... on the quantification of intracellular metabolic activity. It is expected that the significantly shorter T1 value of the carboxylic moieties inside cells is a result of macromolecular crowding. An artificial cytosol has been prepared and applied to predict the T1 of other carboxylic acids. We demonstrate the value...

  6. Fluorescence quantum efficiency of CdSe/ZnS quantum dots functionalized with amine or carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Pilla, Viviane, E-mail: vivianepilla@infis.ufu.br [Universidade Federal de Uberlandia (UFU), Instituto de Fisica (Brazil); Munin, Egberto [Universidade Camilo Castelo Branco (UNICASTELO), Centro de Engenharia Biomedica (Brazil)

    2012-10-15

    The thermo-optical parameters of cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) suspended in aqueous solutions were measured using a Thermal Lens (TL) technique. TL transient measurements were performed using the mode-mismatched dual-beam (excitation and probe) configuration. A He-Ne laser at {lambda}{sub p} = 632.8 nm was used as the probe beam, and an Ar{sup +} laser (at {lambda}{sub e} = 514.5 nm) was used as the excitation beam to study the effect of the core sizes (2-4 nm) of CdSe/ZnS nanocrystals functionalized with amine (R-NH{sub 2}) or carboxyl (R-COOH) groups. The average values of the thermal diffusivity D = (1.48 {+-} 0.06) Multiplication-Sign 10{sup -3} cm{sup 2}/s obtained for QDs samples are in good agreement with the pure water solvent result. The fraction thermal load ({phi}) and radiative quantum efficiencies ({eta}) of the functionalized CdSe/ZnS QDs were determined and compared with non-functionalized CdSe/ZnS QDs. The obtained {eta} values for non-functionalized CdSe/ZnS are slightly higher than those for the QDs functionalized with amine or carboxyl groups.

  7. Study on Utilization of Carboxyl Group Decorated Carbon Nanotubes and Carbonation Reaction for Improving Strengths and Microstructures of Cement Paste

    Directory of Open Access Journals (Sweden)

    Xiantong Yan

    2016-08-01

    Full Text Available Carbon nanotubes (CNTs have excellent mechanical properties and can be used to reinforce cement-based materials. On the other hand, the reaction product of carbonation with hydroxides in hydrated cement paste can reduce the porosity of cement-based materials. In this study, a novel method to improve the strength of cement paste was developed through a synergy of carbon nanotubes decorated with carboxyl group and carbonation reactions. The experimental results showed that the carboxyl group (–COOH of decorated carbon nanotubes and the surfactant can control the morphology of the calcium carbonate crystal of carbonation products in hydrated cement paste. The spindle-like calcium carbonate crystals showed great morphological differences from those observed in the conventional carbonation of cement paste. The spindle-like calcium carbonate crystals can serve as fiber-like reinforcements to reinforce the cement paste. By the synergy of the carbon nanotubes and carbonation reactions, the compressive and flexural strengths of cement paste were significantly improved and increased by 14% and 55%, respectively, when compared to those of plain cement paste.

  8. N-(5′-Phosphopyridoxyl)glutamic acid and N-(5′-phosphopyridoxyl)-2-oxopyrrolidine-5-carboxylic acid and their action on the apoenzyme of aspartate aminotransferase

    Science.gov (United States)

    Khomutov, Radiǐ M.; Dixon, Henry B. F.; Vdovina, Lyudmila V.; Kirpichnikov, Mikhaǐl P.; Morozov, Yuriǐ V.; Severin, Evgeniǐ S.; Khurs, Elena N.

    1971-01-01

    1. N-(5′-Phosphopyridoxyl)-l-glutamic acid (P-Pxy-Glu, compound I) is readily converted at pH3 into a substance (P-Pxy-Glp, compound II) characterized as N-(5′-phosphopyridoxyl)-2-oxopyrrolidine-5-carboxylic acid. 2. The u.v., i.r. and fluorescence spectra of P-Pxy-Glu and P-Pxy-Glp have been determined; from the u.v. spectra their pK values have been found and compared. 3. The apoenzyme of aspartate aminotransferase is rapidly and irreversibly inactivated by P-Pxy-Glu, but is inactivated more slowly by P-Pxy-Glp. The complex with P-Pxy-Glp is stable enough to be isolated, but it is slowly reactivated in the presence of excess of pyridoxal phosphate. 4. The u.v. spectrum of the complex of apoenzyme and P-Pxy-Glp suggests that it contains a hydrogen bond between the phenolic hydroxyl group and the pyrrolidone nitrogen; this specifies the conformation of most of the molecule of P-Pxy-Glp. This conformation is similar to that previously postulated for the enzyme–glutamate complex except for the side chain of glutamate. Hence both the affinity of P-Pxy-Glp for the apoenzyme and the fact that it is more easily removed than P-Pxy-Glu are explicable. PMID:5126478

  9. Effect of carboxyl anchoring groups in asymmetric zinc phthalocyanine with large steric hindrance on the dye-sensitized solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wenye; Peng, Bosi; Lin, Li; Li, Renjie; Zhang, Jing, E-mail: jzhang03@whu.edu.cn; Peng, Tianyou, E-mail: typeng@whu.edu.cn

    2015-08-01

    Asymmetric zinc phthalocyanines containing tribenzonaphtho-condensed porphyrazine with six bulky diphenylphenoxy and one or two carboxyl groups are used as sensitizers for dye-sensitized solar cells (DSSCs). It is found that Zn-tri-PcNc-4 having two carboxyl groups shows a slight redshift in the Q-band absorption but a significantly decreased absorbance as compared with Zn-tri-PcNc-8 having one carboxyl group, and Zn-tri-PcNc-4 can be more stably and perpendicularly grafted onto the TiO{sub 2} surface than Zn-tri-PcNc-8, which further leads to the differences in the interfacial charge transfer dynamics and dye-loaded amount. Zn-tri-PcNc-4 with two carboxyl groups grafted onto the TiO{sub 2} electrode surface of DSSC results in a photovoltaic conversion efficiency of 3.22%, higher than that (3.01%) of the analog with one carboxyl group (Zn-tri-PcNc-8), which exhibits a lower short-circuit current but much higher open-circuit voltage. The additional carboxyl group in Zn-tri-PcNc-4 leads to the enhanced dye-loaded amount and the molecular orbital energy level shift toward positive direction, causing more efficient electron injection and higher short-circuit current than Zn-tri-PcNc-8; while the two carboxyl groups of Zn-tri-PcNc-4 would cause more protonation of TiO{sub 2} surface, which possibly leads to the downward shift of TiO{sub 2} conduction band edge, and then to the decreased open-circuit voltage. The present results demonstrate the molecular engineering aspect of ZnPc dyes in which the fine tuning of the energy levels and molecular structures is crucial for high conversion efficiency of DSSCs. - Highlights: • ZnPcs with six diphenylphenoxy and one/two carboxyl groups are used as dyes for DSSCs. • Effect of carboxyl group number on the ZnPc-sensitized cell property are scrutinized. • Grafting two carboxyl groups on ZnPc leads to the enhanced photocurrent and efficiency. • ZnPc with one COOH has a higher open-circuit voltage than its analog with two

  10. Crystal structure of 3-(3,4,5-trimethoxyphenyl-1,2,3,4-tetrahydrocyclopenta[b]indole-2-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Daniara Fernandes

    2015-06-01

    Full Text Available In the title compound, C21H21NO5, obtained from a Morita–Baylis–Hillman adduct, the hydrogenated five-membered ring adopts a shallow envelope conformation, with the C atom bearing the carboxylic acid substituent deviating by 0.237 (1 Å from the mean plane of the other four atoms (r.m.s. deviation = 0.007 Å. The dihedral angle between the fused ring system (all atoms; r.m.s. deviation = 0.057 Å and the pendant trimethoxy benzene ring is 66.65 (3°. The C atoms of the meta-methoxy groups lie close to the plane of the benzene ring [deviations = 0.052 (1 and −0.083 (1 Å], whereas the C atom of the para-methoxy group is significantly displaced [deviation = −1.289 (1 Å]. In the crystal, carboxylic acid inversion dimers generate R22(8 loops. The dimers are connected by N—H...O hydrogen bonds, forming [011] chains. A C—H...O interaction is also observed.

  11. Chemical reactions in dense monolayers: in situ thermal cleavage of grafted esters for preparation of solid surfaces functionalized with carboxylic acids.

    Science.gov (United States)

    Dugas, Vincent; Chevalier, Yves

    2011-12-06

    The thermodynamics of a chemical reaction confined at a solid surface was investigated through kinetic measurements of a model unimolecular reaction. The thermal cleavage of ester groups grafted at the surface of solid silica was investigated together with complementary physicochemical characterization of the grafted species. The ester molecules were chemically grafted to the silica surface and subsequently cleaved into the carboxylic acids. A grafting process of a reproducible monolayer was designed using the reaction of monofunctional organosilane from its gas phase. The thermal deprotection step of the ester end-group was investigated. The thermal deprotection reaction behaves in quite a specific manner when it is conducted at a surface in a grafted layer. Different organosilane molecules terminated by methyl, isopropyl and tert-butyl ester groups were grafted to silica surface; such functionalized materials were characterized by elemental analysis, IR and NMR spectroscopy, and thermogravimetric analysis, and the thermodynamic parameters of the thermal elimination reaction at the surface were measured. The limiting factor of such thermal ester cleavage reaction is the thermal stability of grafted ester group according to the temperature order: tert-butyl groups were not selectively cleaved by temperature. The thermal deprotection of i-propyl ester groups took place at a temperature close to the thermal degradation of the organofunctional tail of the silane. The low thermolysis temperature of the grafted tert-butyl esters allowed their selective cleavage. There is a definite influence of the surface on the reaction. The enthalpy of activation is lower than in the gas phase because of the polarity of the reaction site. The major contribution is entropic; the negative entropy of activation comes from lateral interactions with the neighbor grafted molecules because of the high grafting density. Such reaction is an original strategy to functionalize the silica

  12. Biosynthesis of 1-aminocyclopropane-1-carboxylic acid and ethylene from delta-aminolevulinic acid in ripening tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    El-Rayes, D.E.D.A.

    1987-01-01

    A new pathway for ethylene (C/sub 2/H/sub 4/) biosynthesis, which utilizes delta-aminolevulinic acid (ALA) as a precursor of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of C/sub 2/H/sub 4/, is presented. ALA enhanced ACC accumulation to 410% and C/sub 2/H/sub 4/ production to 232% of the control. The C/sub 2/H/sub 4/ production rate varied with the ALA concentration and the stage of tomato fruit development. As the ALA concentration increased from zero to 40 mM, the C/sub 2/H/sub 4/ production rate increased. Both treated and untreated pericarp discs from fruits at the pink stage of development yielded the largest C/sub 2/H/sub 4/ production rate. Radioactivity from (2,3-/sup 3/H)ALA was detected in both ACC and C/sub 2/H/sub 4/, and radioactivity from (4-/sup 14/C)ALA was detected in ACC and CO/sub 2/ but not in C/sub 2/H/sub 4/. However, radioactivity from (5-/sup 14/C)ALA was detected in CO/sub 2/, and its amount was greater than that obtained from (4-/sup 14/C)ALA. Neither ACC nor C/sub 2/H/sub 4/ showed any radioactivity when (5-/sup 14/C)ALA was supplied to the fruit discs. In addition, when (2,3-/sup 3/H)ALA or (4-/sup 14/C)ALA was supplied to the fruit discs, radioactivity was detected in other metabolites such as fumarate, succinate, malate, glutamate, glutamine, ..cap alpha..-ketoglutarate, and methionine, but the amount of radioactivity was insignificant as compared with the amount of radioactivity found in C/sub 2/H/sub 4/ and ACC.

  13. Chiral Integrated Catalysts Composed of Bifunctional Thiourea and Arylboronic Acid: Asymmetric Aza-Michael Addition of α,β-Unsaturated Carboxylic Acids.

    Science.gov (United States)

    Hayama, Noboru; Azuma, Takumi; Kobayashi, Yusuke; Takemoto, Yoshiji

    2016-01-01

    The first intermolecular asymmetric Michael addition of nitrogen-nucleophiles to α,β-unsaturated carboxylic acids was achieved through a new type of arylboronic acid equipped with chiral aminothiourea. The use of BnONH2 as a nucleophile gives a range of enantioenriched β-(benzyloxy)amino acid derivatives in good yields and with high enantioselectivity (up to 90% yield, 97% enantiomeric excess (ee)). The obtained products are efficiently converted to optically active β-amino acid and 1,2-diamine derivatives.

  14. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    Science.gov (United States)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  15. Comparison of Three Solid Phase Materials for the Extraction of Carboxylic Acids from River Water Followed by 2D GC × GC-TOFMS Determination.

    Science.gov (United States)

    Bosire, G O; Ngila, J C; Parshotam, H

    2016-01-01

    The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges.

  16. Morphological control of layered double hydroxide through a biomimetic approach using carboxylic and sulfonic acids

    Directory of Open Access Journals (Sweden)

    Taishi Yokoi

    2015-09-01

    Full Text Available Layered double hydroxides (LDHs have intercalation properties and are used in various applications. The performances of the LDH materials can be improved by controlling crystal morphology. Morphology of inorganic crystals is controlled by organic molecules in biomineralization. Inspired by biomineralization, we investigated the effect of the addition of mono, di and triacids as morphological control agents on crystal morphology of LDH synthesized by the homogeneous precipitation method. Morphology of LDH was changed from hexagonal plate to stacked disc by addition of monoacids, namely acetic acid and methanesulfonic acid, in the reaction solution. Flower-shaped LDH crystals were formed in the presence of diacids and a triacid, namely succinic acid, 1,2-ethanedisulfonic acid and 1,2,3-propanetricarboxylic acid. We found that the morphology of the LDH crystals was controlled by the number of functional group on the morphological control agent rather than the type of functional group. These findings can contribute for the development of novel and functional LDH materials with precisely controlled morphology.

  17. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions.

    Science.gov (United States)

    Buruiana, Tinca; Melinte, Violeta; Aldea, Horia; Pelin, Irina M; Buruiana, Emil C

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1-F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and (1)H ((13)C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm(-3) (F1) and 40.52 μg mm(-3) (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82-49.14 μg mm(-3) (F1-F3-HAP) and 34.58-45.56 μg mm(-3), respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth.

  18. Thermodynamic study by infrared spectroscopy of the association of 2-quinolone, some carboxylic acids, and the corresponding 2-quinolone--acid mixed dimers

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, J.C.

    1971-01-01

    Self-association of 2-quinolone in carbon tetrachloride was studied by infrared spectroscopy, using the absorption bands in the amide NH and carbonyl stretching regions. 2-Quinolone forms a cyclic dimer from which the enthalpy (..delta..H/sup 0/, kcal/mol), free energy (..delta..G/sup 0//sub 22/, kcal/mol), and entropy (..delta..S/sup 0/, eu) of association are -8.69, -6.11, and -8.76, respectively. Dimer formation is via a carbonyl-hydrogen bond, although evidence exists for the formation of a small amount of dimer via a ..pi..-hydrogen bond. 2-Quinolone was also found to form cyclic mixed dimers with carboxylic acids. Mixed dimers of 2-quinolone with benzoic, cyclohexanecarboxylic, and 4-cyclohexylbutanoic acids gave ..delta..H/sup 0/ values of -12.2, -10.3, and -10.4; ..delta..G/sup 0//sub 22/ values of -6.36, -5.94, and -5.78; and ..delta..S/sup 0/ values of -19.9, -14.8, and -15.6, respectively. Thermodynamic data on the acid dimers and spectral data on the different systems studied are also reported. The 2-quinolone-carboxylic acid interaction is of importance because of the simultaneous occurrence of quinolones and carboxylic acids in many biologically derived materials.

  19. Surface modification of silicone tubes by functional carboxyl and amine, but not peroxide groups followed by collagen immobilization improves endothelial cell stability and functionality.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Shokrgozar, Mohammad Ali; Mottaghy, Khosrow; Klein-Nulend, Jenneke; Zandieh-Doulabi, Behrouz

    2015-03-02

    Surface modification by functional groups promotes endothelialization in biohybrid artificial lungs, but whether it affects endothelial cell stability under fluid shear stress, and the release of anti-thrombotic factors, e.g. nitric oxide (NO), is unknown. We aimed to test whether surface-modified silicone tubes containing different functional groups, but similar wettability, improve collagen immobilization, endothelialization, cell stability and cell-mediated NO-release. Peroxide, carboxyl, and amine-groups increased collagen immobilization (41-76%). Only amine-groups increased ultimate tensile strength (2-fold). Peroxide and amine enhanced (1.5-2.5 fold), but carboxyl-groups decreased (2.9-fold) endothelial cell number after 6 d. After collagen immobilization, cell numbers were enhanced by all group-modifications (2.8-3.8 fold). Cells were stable under 1 h-fluid shear stress on amine, but not carboxyl or peroxide-group-modified silicone (>50% cell detachment), while cells were also stable on carboxyl-group-modified silicone with immobilized collagen. NO-release was increased by peroxide and amine (1.1-1.7 fold), but decreased by carboxyl-group-modification (9.8-fold), while it increased by all group-modifications after collagen immobilization (1.8-2.8 fold). Only the amine-group-modification changed silicone stiffness and transparency. In conclusion, silicone-surface modification of blood-contacting parts of artificial lungs with carboxyl and amine, but not peroxide-groups followed by collagen immobilization allows the formation of a stable functional endothelial cell layer. Amine-group-modification seems undesirable since it affected silicone's physical properties.

  20. Difference between Extra- and IntracellularT1Values of Carboxylic Acids Affects the Quantitative Analysis of Cellular Kinetics by Hyperpolarized NMR

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Jensen, Pernille Rose; Ardenkjær-Larsen, Jan Henrik;

    2016-01-01

    Incomplete knowledge of the longitudinal relaxationtime constant (T1) leads to incorrect assumptions in quantita-tive kinetic models of cellular systems, studied by hyper-polarized real-time NMR. Using an assay that measures theintracellular signal of small carboxylic acids in living cells......, theintracellular T1of the carboxylic acid moiety of acetate, keto-isocaproate, pyruvate, and butyrate was determined. Theintracellular T1is shown to be up to four-fold shorter thanthe extracellular T1. Such a large difference in T1valuesbetween the inside and the outside of the cell has significantinfluence...... on the quantification of intracellular metabolicactivity. It is expected that the significantly shorter T1valueof the carboxylic moieties inside cells is a result of macro-molecular crowding. An artificial cytosol has been preparedand applied to predict the T1of other carboxylic acids. Wedemonstrate the value...